WorldWideScience

Sample records for alkyl hydroperoxide reductase

  1. Alkyl hydroperoxide reductase enhances the growth of Leuconostoc mesenteroides lactic acid bacteria at low temperatures.

    Science.gov (United States)

    Goto, Seitaro; Kawamoto, Jun; Sato, Satoshi B; Iki, Takashi; Watanabe, Itaru; Kudo, Kazuyuki; Esaki, Nobuyoshi; Kurihara, Tatsuo

    2015-01-01

    Lactic acid bacteria (LAB) can cause deterioration of food quality even at low temperatures. In this study, we investigated the cold-adaptation mechanism of a novel food spoilage LAB, Leuconostoc mesenteroides NH04 (NH04). L. mesenteroides was isolated from several spoiled cooked meat products at a high frequency in our factories. NH04 grew rapidly at low temperatures within the shelf-life period and resulted in heavy financial losses. NH04 grew more rapidly than related strains such as Leuconostoc mesenteroides NBRC3832 (NBRC3832) at 10°C. Proteome analysis of NH04 demonstrated that this strain produces a homolog of alkyl hydroperoxide reductase--AhpC--the expression of which can be induced at low temperatures. The expression level of AhpC in NH04 was approximately 6-fold higher than that in NBRC3832, which was grown under the same conditions. Although AhpC is known to have an anti-oxidative role in various bacteria by catalyzing the reduction of alkyl hydroperoxide and hydrogen peroxide, the involvement of AhpC in cold adaptation of food spoilage bacteria was unclear. We introduced an expression plasmid containing ahpC into NBRC3832, which grows slower than NH04 at 10°C, and found that expression of AhpC enhanced growth. These results demonstrated that AhpC, which likely increases anti-oxidative capacity of LAB, plays an important role in their rapid growth at low temperatures.

  2. Role of alkyl hydroperoxide reductase (AhpC in the biofilm formation of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Euna Oh

    Full Text Available Biofilm formation of Campylobacter jejuni, a major cause of human gastroenteritis, contributes to the survival of this pathogenic bacterium in different environmental niches; however, molecular mechanisms for its biofilm formation have not been fully understood yet. In this study, the role of oxidative stress resistance in biofilm formation was investigated using mutants defective in catalase (KatA, superoxide dismutase (SodB, and alkyl hydroperoxide reductase (AhpC. Biofilm formation was substantially increased in an ahpC mutant compared to the wild type, and katA and sodB mutants. In contrast to the augmented biofilm formation of the ahpC mutant, a strain overexpressing ahpC exhibited reduced biofilm formation. A perR mutant and a CosR-overexpression strain, both of which upregulate ahpC, also displayed decreased biofilms. However, the introduction of the ahpC mutation to the perR mutant and the CosR-overexpression strain substantially enhanced biofilm formation. The ahpC mutant accumulated more total reactive oxygen species and lipid hydroperoxides than the wild type, and the treatment of the ahpC mutant with antioxidants reduced biofilm formation to the wild-type level. Confocal microscopy analysis showed more microcolonies were developed in the ahpC mutant than the wild type. These results successfully demonstrate that AhpC plays an important role in the biofilm formation of C. jejuni.

  3. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Wang, Liang; Chong, Huiqing; Jiang, Rongrong

    2012-12-01

    Bacillus cereus (B. cereus) is an ubiquitous facultative anaerobic bacterium, and its growth in aerobic environment correlates to the functions of its oxygen defense system. Water-forming NADH oxidase (nox-2) can catalyze the conversion of oxygen to water with concomitant NADH oxidation in anaerobic microorganisms. Here, we report the cloning and characterization of two annotated nox-2 s (nox-2(444) and nox-2(554)) from B. cereus ATCC 14579 and their comparison with another oxidative stress defense system alkyl hydroperoxide reductase (AhpR) from this microbe, which composed of two enzymes-hydrogen peroxide-forming NADH oxidase (nox-1) and peroxidase. Both nox-2 and AhpR catalyze the same reaction in the presence of oxygen. With the stimulation of exogenously added FAD, the maximum activity of nox-1, nox-2(444), and nox-2(554) could reach 27.7 U/mg, 22.9 U/mg, and 2.4 U/mg, respectively, at pH 7.0, 30 °C. Different from nox-1, both nox-2 s were thermotolerant enzymes and could maintain above 87% of their optimum activity at 80 °C, which was not found in other nox-2 s. As for operational stability, all are turnover-limited. Exogenously added reductive reagent dithiothreitol could dramatically increase the total turnover number of nox-2(444) and nox-2(554) by twofold and threefold, respectively, but had no effect on AhpR or nox-1.

  4. Expression of alkyl hydroperoxide reductase is regulated negatively by OxyR1 and positively by RpoE2 sigma factor in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Dwivedi, Susheel Kumar; Singh, Vijay Shankar; Tripathi, Anil Kumar

    2016-10-01

    OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Azospirillum brasilense Sp7 harbours two copies of OxyR. The inactivation of the oxyR1, the gene organized divergently to ahpC in A. brasilense Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of ahpC :lacZ fusion and increased synthesis of AhpC protein in the oxyR1::km mutant. The upstream region of ahpC promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of ahpC in A. brasilense suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring oxyR1-ahpC intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of ahpC in A. brasilense. Sequence of the promoter of ahpC, predicted on the basis of transcriptional start site, and an enhanced expression of ahpC:lacZ fusion in chrR2::km mutant background suggested that ahpC promoter was RpoE2 dependent. Thus, this study shows that in A. brasilense Sp7, ahpC expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in A. brasilense.

  5. Characterization of a salt-induced DhAHP, a gene coding for alkyl hydroperoxide reductase, from the extremely halophilic yeast Debaryomyces hansenii

    Directory of Open Access Journals (Sweden)

    Ku Maurice SB

    2009-08-01

    Full Text Available Abstract Background Debaryomyces hansenii is one of the most salt tolerant species of yeast and has become a model organism for the study of tolerance mechanisms against salinity. The goal of this study was to identify key upregulated genes that are involved in its adaptation to high salinity. Results By using forward subtractive hybridization we have cloned and sequenced DhAHP from D. hansenii that is significantly upregulated during salinity stress. DhAHP is orthologous to the alkly hydroperoxide reductase of the peroxiredoxin gene family, which catalyzes the reduction of peroxides at the expense of thiol compounds. The full-lengthed cDNA of DhAHP has 674 bp of nucleotide and contains a 516 bp open reading frame (ORF encoding a deduced protein of 172 amino acid residues (18.3 kDa. D. hansenii Ahp is a cytosolic protein that belongs to the Ahp of the 1-Cys type peroxiredoxins. Phylogentically, the DhAhp and Candida albicans Ahp11 (Swiss-Prot: Q5AF44 share a common ancestry but show divergent evolution. Silence of its expression in D. hansenii by RNAi resulted in decreased tolerance to salt whereas overexpression of DhAHP in D. hansenii and the salt-sensitive yeasts Saccharomyces cereviasiae and Pichia methanolica conferred a higher tolerance with a reduced level of reactive oxygen species. Conclusion In conclusion, for the first time our study has identified alkly hydroperoxide reductase as a key protein involved in the salt tolerance of the extremely halophilic D. hansenii. Apparently, this enzyme plays a multi-functional role in the yeast's adaptation to salinity; it serves as a peroxidase in scavenging reactive oxygen species, as a molecular chaperone in protecting essential proteins from denaturation, and as a redox sensor in regulating H2O2-mediated cell defense signaling.

  6. Comparative inhibition of tetrameric carbonyl reductase activity in pig heart cytosol by alkyl 4-pyridyl ketones.

    Science.gov (United States)

    Shimada, Hideaki; Tanigawa, Takahiro; Matayoshi, Kazunori; Katakura, Kazufumi; Babazono, Ken; Takayama, Hiroyuki; Murahashi, Tsuyoshi; Akita, Hiroyuki; Higuchi, Toshiyuki; Eto, Masashi; Imamura, Yorishige

    2014-06-01

    The present study is to elucidate the comparative inhibition of tetrameric carbonyl reductase (TCBR) activity by alkyl 4-pyridyl ketones, and to characterize its substrate-binding domain. The inhibitory effects of alkyl 4-pyridyl ketones on the stereoselective reduction of 4-benzoylpyridine (4-BP) catalyzed by TCBR were examined in the cytosolic fraction of pig heart. Of alkyl 4-pyridyl ketones, 4-hexanoylpyridine, which has a straight-chain alkyl group of five carbon atoms, inhibited most potently TCBR activity and was a competitive inhibitor. Furthermore, cyclohexyl pentyl ketone, which is substituted by cyclohexyl group instead of phenyl group of hexanophenone, had much lower ability to be reduced than hexanophenone. These results suggest that in addition to a hydrophobic cleft corresponding to a straight-chain alkyl group of five carbon atoms, a hydrophobic pocket with affinity for an aromatic group is located in the substrate-binding domain of TCBR.

  7. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC.

    Science.gov (United States)

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E K; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D; Mukhopadhyay, Aindrila

    2015-07-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpC(L177Q)) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1 ? ??

    OpenAIRE

    Randall, Matthew J.; Spiess, Page C.; Hristova, Milena; Hondal, Robert J.; van der Vliet, Albert

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant impl...

  9. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1

    Directory of Open Access Journals (Sweden)

    Matthew J. Randall

    2013-01-01

    Full Text Available Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal. Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1, a critical enzyme involved in regulation of thioredoxin (Trx-mediated redox signaling, by alkylation at its selenocysteine (Sec residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1–30 μM resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases

  10. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1.

    Science.gov (United States)

    Randall, Matthew J; Spiess, Page C; Hristova, Milena; Hondal, Robert J; van der Vliet, Albert

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1-30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK, and

  11. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1☆☆☆

    Science.gov (United States)

    Randall, Matthew J.; Spiess, Page C.; Hristova, Milena; Hondal, Robert J.; van der Vliet, Albert

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1–30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated1 kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK

  12. ORF Alignment: NC_000913 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available detoxification of ... hydroperoxides [Escherichia coli K12] gb|AAC73706.1| ... alkyl hydroper...oxide reductase, C22 subunit; ... detoxification of hydroperoxides; alkyl ...hydroperoxide ... reductase, C22 subunit, thioredoxin-like, detoxification ... of hydroperoxides...eductase, C22 ... subunit; detoxification of hydroperoxides [Escherichia ... coli O157:H7 EDL9...ced protein 8) (SSI8) ... gb|AAG54940.1| alkyl hydroperoxide reductase, C22 ... subunit; detoxification of hydroperoxid

  13. ORF Alignment: NC_004337 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available detoxification of ... hydroperoxides [Escherichia coli K12] gb|AAC73706.1| ... alkyl hydroper...oxide reductase, C22 subunit; ... detoxification of hydroperoxides; alkyl ...hydroperoxide ... reductase, C22 subunit, thioredoxin-like, detoxification ... of hydroperoxides...eductase, C22 ... subunit; detoxification of hydroperoxides [Escherichia ... coli O157:H7 EDL9...ced protein 8) (SSI8) ... gb|AAG54940.1| alkyl hydroperoxide reductase, C22 ... subunit; detoxification of hydroperoxid

  14. ORF Alignment: NC_002695 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available detoxification of ... hydroperoxides [Escherichia coli K12] gb|AAC73706.1| ... alkyl hydroper...oxide reductase, C22 subunit; ... detoxification of hydroperoxides; alkyl ...hydroperoxide ... reductase, C22 subunit, thioredoxin-like, detoxification ... of hydroperoxides...eductase, C22 ... subunit; detoxification of hydroperoxides [Escherichia ... coli O157:H7 EDL9...ced protein 8) (SSI8) ... gb|AAG54940.1| alkyl hydroperoxide reductase, C22 ... subunit; detoxification of hydroperoxid

  15. ORF Alignment: NC_002655 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available detoxification of ... hydroperoxides [Escherichia coli K12] gb|AAC73706.1| ... alkyl hydroper...oxide reductase, C22 subunit; ... detoxification of hydroperoxides; alkyl ...hydroperoxide ... reductase, C22 subunit, thioredoxin-like, detoxification ... of hydroperoxides...eductase, C22 ... subunit; detoxification of hydroperoxides [Escherichia ... coli O157:H7 EDL9...ced protein 8) (SSI8) ... gb|AAG54940.1| alkyl hydroperoxide reductase, C22 ... subunit; detoxification of hydroperoxid

  16. ORF Alignment: NC_004741 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available detoxification of ... hydroperoxides [Escherichia coli K12] gb|AAC73706.1| ... alkyl hydroper...oxide reductase, C22 subunit; ... detoxification of hydroperoxides; alkyl ...hydroperoxide ... reductase, C22 subunit, thioredoxin-like, detoxification ... of hydroperoxides...eductase, C22 ... subunit; detoxification of hydroperoxides [Escherichia ... coli O157:H7 EDL9...ced protein 8) (SSI8) ... gb|AAG54940.1| alkyl hydroperoxide reductase, C22 ... subunit; detoxification of hydroperoxid

  17. ORF Alignment: NC_004431 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available detoxification of ... hydroperoxides [Escherichia coli K12] gb|AAC73706.1| ... alkyl hydroper...oxide reductase, C22 subunit; ... detoxification of hydroperoxides; alkyl ...hydroperoxide ... reductase, C22 subunit, thioredoxin-like, detoxification ... of hydroperoxides...eductase, C22 ... subunit; detoxification of hydroperoxides [Escherichia ... coli O157:H7 EDL9...ced protein 8) (SSI8) ... gb|AAG54940.1| alkyl hydroperoxide reductase, C22 ... subunit; detoxification of hydroperoxid

  18. ORF Alignment: NC_002695 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available e reductase subunit, FAD/NAD(P)-binding, ... detoxification of hydroperoxides [Escherichia coli K12] ... ... gb|AAC73707.1| alkyl hydroperoxide reductase, F52a ... subunit; detoxification of hydroperoxides... ... detoxification of hydroperoxides [Escherichia coli K12] ... gb|AAG54941.1| alkyl hydroperoxid...e reductase, F52a ... subunit; detoxification of hydroperoxides [Escherichia ... coli O157:H7 ...on of ... hydroperoxides [Escherichia coli O157:H7 EDL933] ... Length = 521 ... Query: 11 ... MLDTNM

  19. ORF Alignment: NC_002655 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available e reductase subunit, FAD/NAD(P)-binding, ... detoxification of hydroperoxides [Escherichia coli K12] ... ... gb|AAC73707.1| alkyl hydroperoxide reductase, F52a ... subunit; detoxification of hydroperoxides... ... detoxification of hydroperoxides [Escherichia coli K12] ... gb|AAG54941.1| alkyl hydroperoxid...e reductase, F52a ... subunit; detoxification of hydroperoxides [Escherichia ... coli O157:H7 ...on of ... hydroperoxides [Escherichia coli O157:H7 EDL933] ... Length = 521 ... Query: 11 ... MLDTNM

  20. ORF Alignment: NC_000913 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available e reductase subunit, FAD/NAD(P)-binding, ... detoxification of hydroperoxides [Escherichia coli K12] ... ... gb|AAC73707.1| alkyl hydroperoxide reductase, F52a ... subunit; detoxification of hydroperoxides... ... detoxification of hydroperoxides [Escherichia coli K12] ... gb|AAG54941.1| alkyl hydroperoxid...e reductase, F52a ... subunit; detoxification of hydroperoxides [Escherichia ... coli O157:H7 ...on of ... hydroperoxides [Escherichia coli O157:H7 EDL933] ... Length = 521 ... Query: 11 ... MLDTNM

  1. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane

    KAUST Repository

    Rodriguez, Anne

    2017-02-13

    A wide range of hydroperoxides (C-C alkyl hydroperoxides, C-C alkenyl hydroperoxides, C ketohydroperoxides, and hydrogen peroxide (HO)), as well as ketene and diones, have been quantified during the gas-phase oxidation of n-heptane. Some of these species, as well as C alkenyl hydroperoxides and ketohydroperoxides, were also measured during the oxidation of n-decane. These experiments were performed using an atmospheric-pressure jet-stirred reactor at temperatures from 500 to 1100 K and one of three analytical methods, time-of-flight mass spectrometry combined with tunable synchrotron photoionization with a molecular beam sampling: time-of-flight mass spectrometry combined with laser photoionization with a capillary tube sampling, continuous wave cavity ring-down spectroscopy with sonic probe sampling. The experimental temperature at which the maximum mole fraction is observed increases significantly for alkyl hydroperoxides, alkenyl hydroperoxides, and then more so again for hydrogen peroxide, compared to ketohydroperoxides. The influence of the equivalence ratio from 0.25 to 4 on the formation of these peroxides has been studied during n-heptane oxidation. The up-to-date detailed kinetic oxidation models for n-heptane and for n-decane found in the literature have been used to discuss the possible pathways by which these peroxides, ketene, and diones are formed. In general, the model predicts well the reactivity of the two fuels, as well as the formation of major intermediates. (Figure Presented).

  2. Mechanisms of action of quinone-containing alkylating agents: DNA alkylation by aziridinylquinones.

    Science.gov (United States)

    Hargreaves, R H; Hartley, J A; Butler, J

    2000-11-01

    Aziridinyl quinones can be activated by cellular reductases eg. DT-diaphorase and cytochrome P450 reductase to form highly reactive DNA alkylating agents. The mechanisms by which this activation and alkylation take place are many and varied. Using clinically relevant and experimental agents this review will describe many of these mechanisms. The agents discussed are Mitomycin C, EO9 and analogues, diaziridinylbenzoquinones and the pyrrolo[1, 2-alpha]benzimidazolequinones.

  3. Impact of organic hydroperoxides on rat testicular tissue and ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... Organic hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide have been implicated to cause oxidative stress leading to damage in membrane lipids, proteins, carbohydrates and DNA. This study was aimed to develop an in vivo animal model. The effects of hydroperoxides on testicular ...

  4. Limonene hydroperoxide analogues show specific patch test reactions.

    Science.gov (United States)

    Christensson, Johanna Bråred; Hellsén, Staffan; Börje, Anna; Karlberg, Ann-Therese

    2014-05-01

    The fragrance terpene R-limonene is a very weak sensitizer, but forms allergenic oxidation products upon contact with air. The primary oxidation products of oxidized limonene, the hydroperoxides, have an important impact on the sensitizing potency of the oxidation mixture. One analogue, limonene-1-hydroperoxide, was experimentally shown to be a significantly more potent sensitizer than limonene-2-hydroperoxide in the local lymph node assay with non-pooled lymph nodes. To investigate the pattern of reactivity among consecutive dermatitis patients to two structurally closely related limonene hydroperoxides, limonene-1-hydroperoxide and limonene-2-hydroperoxide. Limonene-1-hydroperoxide, limonene-2-hydroperoxide, at 0.5% in petrolatum, and oxidized limonene 3.0% pet. were tested in 763 consecutive dermatitis patients. Of the tested materials, limonene-1-hydroperoxide gave most reactions, with 2.4% of the patients showing positive patch test reactions. Limonene-2-hydroperoxide and oxidized R-limonene gave 1.7% and 1.2% positive patch test reactions, respectively. Concomitant positive patch test reactions to other fragrance markers in the baseline series were frequently noted. The results are in accordance with the experimental studies, as limonene-1-hydroperoxide gave more positive patch test reactions in the tested patients than limonene-2-hydroperoxide. Furthermore, the results support the specificity of the allergenic activity of the limonene hydroperoxide analogues and the importance of oxidized limonene as a cause of contact allergy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Mechanistic insights in the olefin epoxidation with cyclohexyl hydroperoxide

    NARCIS (Netherlands)

    Hereijgers, B.P.C.|info:eu-repo/dai/nl/314131116; Parton, R.F.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2012-01-01

    Olefin epoxidation with cyclohexyl hydroperoxide offers great perspective in increasing the yield from industrial cyclohexane oxidation and the production of epoxides in an apolar medium. Two competing hydroperoxide conversion routes, namely direct epoxidation and thermal decomposition, were

  6. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Alia, Mario; Ramos, Sonia; Mateos, Raquel; Granado-Serrano, Ana Belen; Bravo, Laura; Goya, Luis

    2006-01-01

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 μM quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 μM) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 μM and for 20 h with 5 μM quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult

  7. Impact of organic hydroperoxides on rat testicular tissue and ...

    African Journals Online (AJOL)

    The effects of hydroperoxides on testicular tissue and epididymal sperm were investigated. Male Wistar rats aged 10 - 12 weeks were randomly placed in groups and received standard rat chow and water ad libitum. Animals were injected intraperitoneally with saline (0.5 ml), t-butyl hydroperoxide (5, 10, 20 and 40 ìM; 0.5 ...

  8. Redox regulation of the tumor suppressor PTEN by the thioredoxin system and cumene hydroperoxide.

    Science.gov (United States)

    Han, Seong-Jeong; Zhang, Ying; Kim, Inyoung; Chay, Kee-Oh; Yoon, Hyun Joong; Jang, Dong Il; Yang, Sung Yeul; Park, Jiyoung; Woo, Hyun Ae; Park, Iha; Lee, Seung-Rock

    2017-11-01

    Intracellular redox status influences the oxidation and enzyme activity of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN). Cumene hydroperoxide (CuHP), an organic hydroperoxide, is a known tumor promoter. However, molecular targets and action mechanism of CuHP in tumor promotion have not been well characterized. In this study, we investigated the effect of CuHP on the redox state of PTEN in HeLa cells. In addition, the intracellular reducing system of oxidized PTEN was analyzed using a biochemical approach and the effect of CuHP on this reducing system was also analyzed. While PTEN oxidized by hydrogen peroxide is progressively converted to its reduced form, PTEN was irreversibly oxidized by exposure to CuHP in HeLa cells. A combination of protein fractionation and mass analysis showed that the reducing system of PTEN was comprised of NADPH, thioredoxin reductase (TrxR), and thioredoxin (Trx). Although CuHP-mediated PTEN oxidation was not reversible in cells, CuHP-oxidized PTEN was reactivated by the exogenous Trx system, indicating that the cellular Trx redox system for PTEN is inactivated by CuHP. We present evidence that PTEN oxidation and the concomitant inhibition of thioredoxin by CuHP results in irreversible oxidation of PTEN in HeLa cells. In addition, ablation of peroxiredoxin (Prdx) enhanced CuHP-induced PTEN oxidation in cells. These results provide a new line of evidence that PTEN might be a crucial determinant of cell fate in response to cellular oxidative stress induced by organic hydroperoxides. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Role of the somersault rearrangement in the oxidation step for flavin monooxygenases (FMO). A comparison between FMO and conventional xenobiotic oxidation with hydroperoxides.

    Science.gov (United States)

    Bach, Robert D

    2011-10-13

    Model quantum mechanical calculations presented for C-4a-flavin hydroperoxide (FlHOOH) at the B3LYP/6-311+G(d,p) level suggest a new mechanism for flavoprotein monooxygenase (FMO) oxidation involving a concerted homolytic O-O bond cleavage in concert with hydroxyl radical transfer from the flavin hydroperoxide rather than an S(N)2-like displacement by the substrate on the C-4a-hydroperoxide OOH group. Homolytic O-O bond cleavage in a somersault-like rearrangement of hydroperoxide C-4a-flavinhydroperoxide (1) (FLHO-OH → FLHO···HO) produces an internally hydrogen-bonded HO(•) radical intermediate with a classical activation barrier of 27.0 kcal/mol. Model hydroperoxide 1 is used to describe the transition state for the key oxidation step in the paradigm aromatic hydroxylase, p-hydroxybenzoate hydroxylase (PHBH). A comparison of the electron distribution in the transition structures for the PHBH hydroxylation of p-hydroxybenzoic acid (ΔE(‡) = 23.0 kcal/mol) with that of oxidation of trimethylamine (ΔE(‡) = 22.3 kcal/mol) and dimethyl sulfide (ΔE‡ = 14.1 kcal/mol) also suggests a mechanism involving a somersault mechanism in concert with transfer of an HO(•) radical to the nucleophilic heteroatom center with a hydrogen transfer back to the FLH-O residue after the barrier is crossed to produce the final product, FLH-OH. In each case the hydroxylation barrier was less than that of the O-O rearrangement barrier in the absence of a substrate supporting an overall concerted process. All three transition structures bear a resemblance to the TS for the comparable hydroxylation of isobutane (ΔE(‡) = 29.2 kcal/mol) and for simple Fenton oxidation by aqueous iron(III) hydroperoxides. To our surprise the oxidation of N- and S-nucleophiles with conventional oxidants such as alkyl hydroperoxides and peracids also proceeds by HO(•) radical transfer in a manner quite similar to that for tricyclic hydroperoxide 1. Stabilization of the developing oxyradical

  10. Processes controlling the concentration of hydroperoxides at Jungfraujoch Observatory, Switzerland

    Directory of Open Access Journals (Sweden)

    S. J. Walker

    2006-01-01

    Full Text Available An automated, ground-based instrument was used to measure gas-phase hydroperoxides at the Jungfraujoch High Altitude Research Station as part of the Free Tropospheric EXperiment (FREETEX during February/March 2003. A nebulising reflux concentrator sampled ambient air twice hourly, prior to on-site analysis by HPLC speciation, coupled with post-column peroxidase derivatisation and fluorescence detection. Hydrogen peroxide (H2O2 concentrations reached up to 1330 pptv over the 13-day period with a mean of 183±233 pptv (± one standard deviation. Methyl hydroperoxide (CH3OOH reached up to 379 pptv with a mean of 51±55 pptv. No other organic hydroperoxides were detected. The lack of an explicit diurnal cycle suggests that hydroperoxide concentrations are chiefly influenced by transport processes rather than local photochemistry at this mountainous site. There was some evidence that elevated concentrations of H2O2 existed in air-masses originating from the south-west, suggesting higher concentrations of HOx due to more active photochemistry. Air which had been recently polluted exhibited low H2O2 concentration due to a combination of suppression of HO2 by NOx and deposition. The concentrations of H2O2 sampled here are consistent with previous box modelling studies of hydroperoxides, except in periods influenced by the boundary layer, where agreement required a depositional sink.

  11. Biomarkers derived from heterolytic and homolytic cleavage of allylic hydroperoxides resulting from alkenone autoxidation

    Digital Repository Service at National Institute of Oceanography (India)

    Rontania, J.F; Harji, R.; Volkmanc, J.K.

    Laboratory incubation of alkenone mixtures with tert-butyl hydroperoxide and di-tert-butyl nitroxide (radical initiator) in hexane, as a means to simulate alkenone autoxidation processes, rapidly led to the formation of allylic hydroperoxides, whose...

  12. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...

  13. Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Noordermeer, M.A.; Veldink, G.A.

    1999-01-01

    Fatty acid hydroperoxides formed by lipoxygenase can be cleaved by hydroperoxide lyase resulting in the formation of short-chain aldehydes and omega-oxo acids. Plant hydroperoxide lyases use 13- or 9-hydroperoxy linoleic and linolenic acid as substrates. Alfalfa (Medicago sativa L.) has been

  14. Protective mechanisms of anthocyanins from purple sweet potato against tert-butyl hydroperoxide-induced hepatotoxicity.

    Science.gov (United States)

    Hwang, Yong Pil; Choi, Jae Ho; Choi, Jun Min; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Anthocyanins have been shown to exert anti-proliferative, anti-inflammatory effects and anti-carcinogenic activity. In the present work, we investigated the protective effects of anthocyanin fraction (AF) from purple sweet potato on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in HepG2 cell line and in rat liver. The result showed that the oral pretreatment of AF before t-BHP treatment significantly lowered the serum levels of the hepatic enzyme markers (ALT and AST) and reduced oxidative stress of the liver by evaluation of malondialdehyde and glutathione. Histopathological evaluation of the livers also revealed that AF reduced the incidence of liver lesions. The in vitro result showed that AF significantly reduced t-BHP-induced oxidative injury, as determined by cell cytotoxicity, intracellular glutathione content, lipid peroxidation, reactive oxygen species (ROS) levels, and caspases activation. Also, AF up-regulated antioxidant enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinone reductase, and glutathione S-transferase. Moreover, AF induced Nrf2 nuclear translocation and Akt and ERK1/2 activation, pathways that are involved in inducing Nrf2 nuclear translocation. Taken together, these results suggest that the protective effects of AF against t-BHP-induced hepatotoxicity may, at least in part, be due to its ability to scavenge ROS and to regulate the antioxidant enzyme HO-1 via the Akt and ERK1/2/Nrf2 signaling pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Degradation of carbonyl hydroperoxides in the atmosphere and in combustion

    KAUST Repository

    Xing, Lili

    2017-10-12

    Oxygenates with carbonyl and hydroperoxy functional groups are important intermediates that are generated during the autooxidation of organic compounds in the atmosphere and during the autoignition of transport fuels. In the troposphere, the degradation of carbonyl hydroperoxides leads to low-vapor-pressure polyfunctional species that be taken into in cloud and fog droplets or to the formation of secondary organic aerosols (SOAs). In combustion, the fate of carbonyl hydroperoxides is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the carbonyl hydroperoxides is reac-tion with OH radicals, for which kinetics data are experimentally unavailable. Here, we study 4-hydroperoxy-2-pentanone (CH3C(=O)CH2CH(OOH)CH3) as a model compound to clarify the kinetics of OH reactions with carbonyl hydroperoxides, in par-ticular H-atom abstraction and OH addition reactions. With a combination of electronic structure calculations, we determine previ-ously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunnel-ing (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in atmospheric and combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for the addition reaction are computed using system-specific quantum RRK theory. The calculated temperature range is 298-2400 K, and the pressure range is 0.01–100 atm. The accu-rate thermodynamic and kinetics data determined in this work are indispensable in the global modeling of SOAs in atmospheric science and in the detailed understanding and prediction of ignition properties of hydrocarbons

  16. Interfce alkylation of ethyldiphenylphosphinylacetate

    International Nuclear Information System (INIS)

    Yarkevich, A.N.; Tsvetkov, E.N.

    1994-01-01

    The paper deals with the alkylation of the methyline group of ethyldiphenylphosphinylacetate (1) by different alkylating agents in the presence of Cs 2 CO 3 . In all cases the application of Cs 2 CO 3 results in a significant increase of reaction rate. 10 refs., 3 tabs

  17. Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up

    NARCIS (Netherlands)

    Villaverde, J.J.; Vlist, van der V.; Santos, S.A.O.; Haarmann, T.; Langfelder, K.; Pirttimaa, M.; Nyyssola, A.; Jylhä, S.; Tamminen, T.; Kruus, K.; Graaff, de L.H.; Pascoal Neto, C.; Simoes, M.M.Q.; Domingues, M.R.M.; Silvestre, A.J.D.; Eidner, J.; Buchert, J.

    2013-01-01

    Linoleic acid was converted into hydroperoxides by a Gaeumannomyces graminis tritici lipoxygenase produced recombinantly in Trichoderma reesei. Hydroperoxide production was optimized using a face-centred experimental design in order to study the effects of pH, temperature and time on the conversion

  18. Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA

    DEFF Research Database (Denmark)

    Luxford, C; Dean, R T; Davies, Michael Jonathan

    2000-01-01

    Exposure of individual histone proteins (H1, H2A, H2B, H3, or H4) and histone octamers (consisting of two molecules each of H2A, H2B, H3, and H4) to hydroxyl radicals, generated by gamma-irradiation, in the presence of O(2) generates protein-bound hydroperoxides in a dose-dependent fashion......; this is in accord with previous studies with other proteins. These histone hydroperoxides are stable in the absence of exogenous catalysts (e.g., heat, light, and transition metal ions), but in the presence of these agents decompose rapidly to give a variety of radicals which have been identified by EPR spin...... trapping. Histone hydroperoxide-derived radicals generated on decomposition of the hydroperoxides with Cu(+) react with both pyrimidine and purine nucleobases. Thus, with uridine the histone hydroperoxide-derived radicals undergo addition across the C(5)-C(6) double bond of the pyrimidine ring to give...

  19. General regularities of olefin epoxidation by hydroperoxide catalyzed by V, W and Ti compounds

    International Nuclear Information System (INIS)

    Sapunov, V.N.; Sharykin, V.G.; Logvinov, A.S.; Litvintsev, I.Yu.; Lebedev, N.N.

    1983-01-01

    The kinetic analysis of cyclohexane epoxidation by ethylbenzene hydroperoxide when catalyzed by titanium- and tungsten cyclohexandiolates has shown that the reaction follows the main regularities of hydroperoxide epoxidation previously established for catalysis by molybdenum- and vanadiUm compounds. The catalyst activity varies depending on the metal nature and forms the following series: Mo>V>W>Ti, which agrees with their π-acceptor capacity. During the cyclohexane epoxidation on all catalysts the hydroperoxide activities vary according to the following series: ethylbenzene hydroperoxide>cumene>tertiarybutyl>tertiaryamyl. Correlation relationships between the olefine structure, characterized by th constants, and the reactivity of olefines are foUnd. The reaction sensitivity during catalysis by WV, and Ti cyclohexandiolates is -1.2, -1.0- and -1.3, respectively. The mechanism of hydroperoxide epoxidation of olefine is discussed

  20. Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

    International Nuclear Information System (INIS)

    ASSINK, ROGER A.; CELINA, MATHIAS C.; DUNBAR, TIMOTHY D.; ALAM, TODD M.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    1999-01-01

    13 C-enriched polyethylene was subjected to γ-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by 13 C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase

  1. Isobutane/olefin-alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Waitkamp, J.; Maixner, S.

    1983-11-01

    Isobutane/olefin-alkylation - technology and reaction mechanism of a refinery process for production of high octane gasoline components: The alkylation of i-butane with olefins, especially with butenes, is a process for the conversion of light byproducts of a catalytic cracker to high quality gasoline components. Alkylate is a complex mixture of i-paraffins containing 5 to ca. 12 carbon atoms. Due to their octane numbers the four trimethylpentane isomers are the most desirable product components. Indeed, under optimum process conditions these isomers are the main products. Presently, alkylation capacity in the western world amounts to more than 40x10/sup 6/ t/a. Most units are located in the USA. Two liquid-phase processes using sulfuric acid and hydrofluoric acid, respectively, are of commercial importance. At present, there is a definite trend towards HF-alkylation. The reaction mechanism which proceeds via carbocations, is extremely complex. It is composed of a great variety of individual steps. Modern mechanistic concepts are discussed.

  2. Identify alkylation hazards

    International Nuclear Information System (INIS)

    Scott, B.

    1992-01-01

    This paper reports that extensive experience shows that alkylation plants regardless of acid catalyst choice, can be operated safely, and with minimum process risk to employees or neighbors. Both types of plants require a comprehensive and fully supported hazard management program that accounts for differing physical properties of the acids involved. Control and mitigation cost to refiners will vary considerably from plant to plant and location to location. In the author's experience, the order of magnitude costs will be about $1 to $2 million for a sulfuric acid (SA) alkylation plant, and about $10 to $15 million for a hydrofluoric acid (HF) plant. These costs include water supply systems and impoundment facilities for contaminated runoff water. The alkylation process, which chemically reacts isobutane and light olefins in the presence of a strong acid catalyst into a premium gasoline component is described

  3. Recommendation to test limonene hydroperoxides 0·3% and linalool hydroperoxides 1·0% in the British baseline patch test series.

    Science.gov (United States)

    Wlodek, C; Penfold, C M; Bourke, J F; Chowdhury, M M U; Cooper, S M; Ghaffar, S; Green, C; Holden, C R; Johnston, G A; Mughal, A A; Reckling, C; Sabroe, R A; Stone, N M; Thompson, D; Wilkinson, S M; Buckley, D A

    2017-12-01

    There is a significant rate of sensitization worldwide to the oxidized fragrance terpenes limonene and linalool. Patch testing to oxidized terpenes is not routinely carried out; the ideal patch test concentration is unknown. To determine the best test concentrations for limonene and linalool hydroperoxides, added to the British baseline patch test series, to optimize detection of true allergy and to minimize irritant reactions. During 2013-2014, 4563 consecutive patients in 12 U.K. centres were tested to hydroperoxides of limonene in petrolatum (pet.) 0·3%, 0·2% and 0·1%, and hydroperoxides of linalool 1·0%, 0·5% and 0·25% pet. Irritant reactions were recorded separately from doubtful reactions. Concomitant reactions to other fragrance markers and clinical relevance were documented. Limonene hydroperoxide 0·3% gave positive reactions in 241 (5·3%) patients, irritant reactions in 93 (2·0%) and doubtful reactions in 110 (2·4%). Linalool hydroperoxide 1·0% gave positive reactions in 352 (7·7%), irritant reactions in 178 (3·9%) and doubtful reactions in 132 (2·9%). A total of 119 patients with crescendo reactions to 0·3% limonene would have been missed if only tested with 0·1% and 131 patients with crescendo reactions to 1·0% linalool would have been missed if only tested with 0·25%. In almost two-thirds of patients with positive patch tests to limonene and linalool the reaction was clinically relevant. The majority of patients did not react to any fragrance marker in the baseline series. We recommend that limonene hydroperoxides be tested at 0·3% and linalool hydroperoxides at 1·0% in the British baseline patch test series. © 2017 British Association of Dermatologists.

  4. Synthesis, photochemistry, DNA cleavage/binding and cytotoxic properties of fluorescent quinoxaline and quinoline hydroperoxides.

    Science.gov (United States)

    Chowdhury, Nilanjana; Gangopadhyay, Moumita; Karthik, S; Pradeep Singh, N D; Baidya, Mithu; Ghosh, S K

    2014-01-05

    Novel fluorescent quinoxaline and quinoline hydroperoxides were shown to perform dual role as both fluorophores for cell imaging and photoinduced DNA cleaving agents. Photophysical studies of newly synthesized quinoxaline and quinoline hydroperoxides showed that they all exhibited moderate to good fluorescence. Photolysis of quinoxaline and quinoline hydroperoxides in acetonitrile using UV light above 350nm resulted in the formation of corresponding ester compounds via γ-hydrogen abstraction by excited carbonyl chromophore. Single strand DNA cleavage was achieved on irradiation of newly synthesized hydroperoxides by UV light (⩾350nm). Both hydroxyl radicals and singlet oxygen were identified as reactive oxygen species (ROS) responsible for the DNA cleavage. Further, we showed quinoline hydroperoxide binds to ct-DNA via intercalative mode. In vitro biological studies revealed that quinoline hydroperoxide has good biocompatibility, cellular uptake property and cell imaging ability. Finally, we showed that quinoline hydroperoxide can permeate into cells efficiently and may cause cytotoxicity upon irradiation by UV light. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Contact Allergy to Hydroperoxides of Linalool and D-Limonene in a US Population.

    Science.gov (United States)

    Nath, Neel Som; Liu, Beiyu; Green, Cynthia; Atwater, Amber Reck

    Linalool and D-limonene are common fragrance ingredients that readily oxidize on exposure to air. The resulting hydroperoxides of linalool and D-limonene have been shown to have high frequencies of positive patch test reactions in several European and international studies. The aim of the study was to investigate the prevalence of contact allergy to the hydroperoxides of linalool and D-limonene in a US population. In this retrospective study, 103 patients with suspected fragrance allergy were patch tested to linalool 10% petrolatum (pet), hydroperoxides of linalool 1% pet, D-limonene 10% pet, and/or the hydroperoxides of D-limonene 0.3% pet between July 9, 2014, and October 25, 2016. In this study, the frequency of positive patch test reactions to the hydroperoxides of linalool is 20% (19/96), and the frequency of positive reactions to the hydroperoxides of D-limonene is 8% (7/90). These high frequencies suggest that patch testing to the hydroperoxides of linalool and limonene should be performed in all patients with suspected fragrance allergy.

  6. Detection of potentially skin sensitizing hydroperoxides of linalool in fragranced products.

    Science.gov (United States)

    Kern, Susanne; Dkhil, Hafida; Hendarsa, Prisca; Ellis, Graham; Natsch, Andreas

    2014-10-01

    On prolonged exposure to air, linalool can form sensitizing hydroperoxides. Positive hydroperoxide patch tests in dermatitis patients have frequently been reported, but their relevance has not been established. Owing to a lack of analytical methods and data, it is unclear from which sources the public might be exposed to sufficient quantities of hydroperoxides for induction of sensitization to occur. To address this knowledge gap, we developed analytical methods and performed stability studies for fine fragrances and deodorants/antiperspirants. In parallel, products recalled from consumers were analysed to investigate exposure to products used in everyday life. Liquid chromatography-mass spectrometry with high mass resolution was found to be optimal for the selective and sensitive detection of the organic hydroperoxide in the complex product matrix. Linalool hydroperoxide was detected in natural linalool, but the amount was not elevated by storage in a perfume formulation exposed to air. No indication of hydroperoxide formation in fine fragrances was found in stability studies. Aged fine fragrances recalled from consumers contained a geometric mean linalool concentration of 1,888 μg/g and, corrected for matrix effects, linalool hydroperoxide at a concentration of around 14 μg/g. In antiperspirants, we detected no oxidation products. In conclusion, very low levels of linalool hydroperoxide in fragranced products may originate from raw materials, but we found no evidence for oxidation during storage of products. The levels detected are orders of magnitude below the levels inducing sensitization in experimental animals, and these results therefore do not substantiate a causal link between potential hydroperoxide formation in cosmetics and positive results of patch tests.

  7. ORF Sequence: NC_001136 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available H2O2 and alkyl hydroperoxides with the use of hydrogens provided by thioredoxin, thioredoxin reductase, and ... NC_001136 gi|6320661 >gi|6320661|ref|NP_010741.1| Thioredoxin-peroxidase, reduces

  8. Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

    International Nuclear Information System (INIS)

    Assink, Roger A.; Celina, Mathias C.; Dunbar, Timothy D.; Alam, Todd M.; Clough, Roger Lee; Gillen, Kenneth T.

    2000-01-01

    The authors have shown that the hydroperoxide species in γ-irradiated 13 C-polyethylene can be directly observed by 13 C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions

  9. Side-by-Side Comparison of Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Tram, Camilla Mia; Kjærgaard, Henrik Grum

    2017-01-01

    Hydroperoxides are formed in significant amounts in the atmosphere by oxidation of volatile organic compounds and are key in aerosol formation. In a room-temperature experiment, we detected the formation of bimolecular complexes of tert-butyl hydroperoxide (t-BuOOH) and the corresponding alcohol...... results, we find that the hydroperoxide complex is stabilized by ∼4 kJ/mol (Gibbs free energy) more than the alcohol complex. Measured red shifts show the same trend in hydrogen-bond strength with trimethylamine (N acceptor atom) and dimethyl sulfide (S acceptor atom) as the hydrogen-bond acceptors....

  10. Histone H1- and other protein- and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA

    DEFF Research Database (Denmark)

    Luxford, C; Morin, B; Dean, R T

    1999-01-01

    analysis has demonstrated that radicals from histone H1-hydroperoxides, and other protein and amino acid hydroperoxides, can also oxidize both free 2'-deoxyguanosine and intact calf thymus DNA to give the mutagenic oxidized base 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine, 8-oxod......Exposure of amino acids, peptides and proteins to radicals, in the presence of oxygen, gives high yields of hydroperoxides. These materials are readily decomposed by transition metal ions to give further radicals. We hypothesized that hydroperoxide formation on nuclear proteins, and subsequent...... decomposition of these hydroperoxides to radicals, might result in oxidative damage to associated DNA. We demonstrate here that exposure of histone H1 and model compounds to gamma-radiation in the presence of oxygen gives hydroperoxides in a dose-dependent manner. These hydroperoxides decompose to oxygen...

  11. Ternary catalyst-olefin-hydroperoxide complexes and their contribution to epoxidation

    International Nuclear Information System (INIS)

    Svitych, R.B.; Rzhevskaya, N.N.; Buchachenko, A.L.; Yablonskij, O.P.; Petukhov, A.A.; Belyaev, V.A.

    1976-01-01

    Electron and NMR spectroscopy have been used for studying the complex formation of catalysts (Mo 5+ , Mn 2+ , Co 2+ ) in double and triple systems: metal-olefin and metal-olefin-hydroperoxide. It has been established that ions of metals form complexes with olefins in the first sphere. The formation has been proved of ternary complexes metal-olefin-hydroperoxide. The structure of the complexes has been proposed with olefins in the first and hydroperoxide in the second sphere of the metal ion. The structure explains known kinetic regularities of epoxydation and the mechanism of the formation of final products, oxide and alcohol. It has been shown that the best catalysts for epoxydation of olefins with hydroperoxides must be the compounds of the metals with an electron state of ion d 0 [ru

  12. Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems.

    Science.gov (United States)

    Girotti, Albert W; Korytowski, Witold

    2017-12-01

    Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.

  13. Gold/acid-co-catalyzed direct microwave-assisted synthesis of fused azaheterocycles from propargylic hydroperoxides.

    Science.gov (United States)

    Alcaide, Benito; Almendros, Pedro; Quirós, M Teresa

    2014-03-17

    The gold-acid-co-catalyzed synthesis of nine series of fused azaheterocycles with structural diversity starting from the same synthons as readily available propargylic hydroperoxides and aromatic amines has been achieved. The overall tandem process consists in a gold-catalyzed hydroperoxide rearrangement/Michael reaction followed by a final acid-catalyzed cyclization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of overexpression of fatty acid 9-hydroperoxide lyase in tomatoes (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Matsui, K; Fukutomi, S; Wilkinson, J; Hiatt, B; Knauf, V; Kajwara, T

    2001-11-01

    To modify the flavor properties of tomato fruits, cucumber fatty acid hydroperoxide lyase (HPL), which can act on 9-hydroperoxides of fatty acids to form volatile C9-aldehydes, was introduced to tomato plants. Through enzyme assay, high activity of the introduced HPL could be found in either the leaves or fruits of transgenic tomatoes; however, the composition of volatile short-chain aldehydes and alcohols in the transgenic tomato fruits was little modified. This was unexpected because tomato fruits have high lipoxygenase activity to form 9-hydroperoxides. When linoleic acid was added to a crude homogenate prepared from the transgenic tomato fruits, a high amount of C9-aldehyde was formed, but the amount of C6-aldehyde was almost equivalent to that in nontransgenic tomatoes. Through quantification of fatty acid hydroperoxides, it has been revealed that 13-hydroperoxides of fatty acids are preferably formed from endogenous substrate, whereas 9-hydroperoxides are formed from fatty acids added exogenously. From these observations, possible mechanisms to regulate metabolic flow of the lyase pathway are discussed.

  15. Method of making alkyl esters

    Science.gov (United States)

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  16. Prostaglandin endoperoxide H synthases: peroxidase hydroperoxide specificity and cyclooxygenase activation.

    Science.gov (United States)

    Liu, Jiayan; Seibold, Steve A; Rieke, Caroline J; Song, Inseok; Cukier, Robert I; Smith, William L

    2007-06-22

    The cyclooxygenase (COX) activity of prostaglandin endoperoxide H synthases (PGHSs) converts arachidonic acid and O2 to prostaglandin G2 (PGG2). PGHS peroxidase (POX) activity reduces PGG2 to PGH2. The first step in POX catalysis is formation of an oxyferryl heme radical cation (Compound I), which undergoes intramolecular electron transfer forming Intermediate II having an oxyferryl heme and a Tyr-385 radical required for COX catalysis. PGHS POX catalyzes heterolytic cleavage of primary and secondary hydroperoxides much more readily than H2O2, but the basis for this specificity has been unresolved. Several large amino acids form a hydrophobic "dome" over part of the heme, but when these residues were mutated to alanines there was little effect on Compound I formation from H2O2 or 15-hydroperoxyeicosatetraenoic acid, a surrogate substrate for PGG2. Ab initio calculations of heterolytic bond dissociation energies of the peroxyl groups of small peroxides indicated that they are almost the same. Molecular Dynamics simulations suggest that PGG2 binds the POX site through a peroxyl-iron bond, a hydrogen bond with His-207 and van der Waals interactions involving methylene groups adjoining the carbon bearing the peroxyl group and the protoporphyrin IX. We speculate that these latter interactions, which are not possible with H2O2, are major contributors to PGHS POX specificity. The distal Gln-203 four residues removed from His-207 have been thought to be essential for Compound I formation. However, Q203V PGHS-1 and PGHS-2 mutants catalyzed heterolytic cleavage of peroxides and exhibited native COX activity. PGHSs are homodimers with each monomer having a POX site and COX site. Cross-talk occurs between the COX sites of adjoining monomers. However, no cross-talk between the POX and COX sites of monomers was detected in a PGHS-2 heterodimer comprised of a Q203R monomer having an inactive POX site and a G533A monomer with an inactive COX site.

  17. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  18. Heterofacial alkylation of alkylenediamines by higher alkyl halides

    International Nuclear Information System (INIS)

    Semenov, V.A.; Kryshko, G.M.; Sokal'skaya, L.I.; Zhukova, N.G.

    1985-01-01

    A study of the physiochemical properties of alkylenediamines substituted by lower alkyls, showed that they possess increased complex-forming ability with respect to salts of different metals as titanium, niobium, zirconium, molybdenum, and zinc. To create a simpler method of synthesis of higher tetraaklyalkylalklyenediamines, based on the use of the accessible domestic raw material, the authors investigated the reaction of alkylenediamines with various alkyl halides. It was established that the best reagents can be obtained using alkyl bromides. It is concluded that the procedure of alkylation of alkylenediamines by higher alkyl halides in the presence of water developed permits the production of terraalkylalkylenediamines in one step with good yield and with purity acceptable for use as extraction reagents

  19. The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen

    International Nuclear Information System (INIS)

    Catalá, M.; Gasulla, F.; Pradas del Real, A.E.; García-Breijo, F.; Reig-Armiñana, J.; Barreno, E.

    2013-01-01

    Organic pollutants effects on lichens have not been addressed. Rehydration is critical for lichens, a burst of free radicals involving NO occurs. Repeated dehydrations with organic pollutants could increase oxidative damage. Our aim is to learn the effects of cumene hydroperoxide (CP) during lichen rehydration using Ramalina farinacea (L.) Ach., its photobiont Trebouxia spp. and Asterochloris erici. Confocal imaging shows intracellular ROS and NO production within myco and phycobionts, being the chloroplast the main source of free radicals. CP increases ROS, NO and lipid peroxidation and reduces chlorophyll autofluorescence, although photosynthesis remains unaffected. Concomitant NO inhibition provokes a generalized increase of ROS and a decrease in photosynthesis. Our results suggest that CP induces a compensatory hormetic response in Ramalina farinacea that could reduce the lichen's antioxidant resources after repeated desiccation-rehydration cycles. NO is important in the protection from CP. -- Highlights: •Organic pollutants could be involved in lichen decline but effects are unknown. •Cumene hydroperoxide induces a compensatory response in rehydration (hormesis). •Cumene hydroperoxide induces a delayed lipid peroxidation. •NO is involved in rehydration oxidative stress regulation under cumene hydroperoxide. •Symbionts display specific responses probably involving communication along time. -- The organic air pollutant cumene hydroperoxide induces oxidative membrane damage in the lichen Ramalina farinacea during rehydration. Nitric oxide (NO) is involved in lichen response

  20. Detection Identification and Quantification of Keto-Hydroperoxides in Low-Temperature Oxidation.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils; Moshammer, Kai; Jasper, Ahren W.

    2017-07-01

    Keto-hydroperoxides are reactive partially oxidized intermediates that play a central role in chain-branching reactions during the low-temperature oxidation of hydrocarbons. In this Perspective, we outline how these short lived species can be detected, identified, and quantified using integrated experimental and theoretical approaches. The procedures are based on direct molecular-beam sampling from reactive environments, followed by mass spectrometry with single-photon ionization, identification of fragmentation patterns, and theoretical calculations of ionization thresholds, fragment appearance energies, and photoionization cross sections. Using the oxidation of neo-pentane and tetrahydrofuran as examples, the individual steps of the experimental approaches are described in depth together with a detailed description of the theoretical efforts. For neo-pentane, the experimental data are consistent with the calculated ionization and fragment appearance energies of the keto-hydroperoxide, thus adding confidence to the analysis routines and the employed levels of theory. For tetrahydrofuran, multiple keto-hydroperoxide isomers are possible due to the presence of nonequivalent O2 addition sites. Despite this additional complexity, the experimental data allow for the identification of two to four keto-hydroperoxides. Mole fraction profiles of the keto-hydroperoxides, which are quantified using calculated photoionization cross sections, are provided together with estimated uncertainties as function of the temperature of the reactive mixture and can serve as validation targets for chemically detailed mechanisms.

  1. Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA

    DEFF Research Database (Denmark)

    Luxford, C; Dean, R T; Davies, Michael Jonathan

    2000-01-01

    ; this is in accord with previous studies with other proteins. These histone hydroperoxides are stable in the absence of exogenous catalysts (e.g., heat, light, and transition metal ions), but in the presence of these agents decompose rapidly to give a variety of radicals which have been identified by EPR spin...... cross-linked adduct species which have been identified by EPR spectroscopy. HPLC analysis of the products generated on reaction of histone hydroperoxide-derived radicals with 2'-deoxyguanosine, or intact calf thymus DNA, has shown that significant levels of the mutagenic oxidized DNA base 8-oxo-7...... in the transfer of oxidative damage to associated DNA via the formation and subsequent decomposition of protein hydroperoxides to reactive radicals, and provide a novel route for the formation of mutagenic lesions in DNA....

  2. Hydroperoxide-dependent oxygenation of polycyclic aromatic hydrocarbons and their metabolites

    International Nuclear Information System (INIS)

    Marnett, L.J.

    1985-01-01

    Fatty acid hydroperoxides in the presence of heme complexes and heme proteins oxidize benzo(a)pyrene and 7,8-dihydroxy-7, 8-dihydrobenzo(a)pyrene to quinones and diol epoxides, respectively. The oxidizing agent is a peroxyl radical derived from the fatty acid hydroperoxide but not a higher oxidation state of a mammalian peroxidase. The stereochemistry of (+-)-BP-dihydrodiol epoxidation is distinct from that catalyzed by mixed-function oxidases, which provides a convenient method for discriminating the contributions of the two systems to BP-7,8-dihydrodiol metabolism in cell homogenates, cell or organ culture. Using this method, epoxidation of BP-7,89-dihydroodiol has been detected during prostaglandin biosynthesis, lipid peroxidation, and xenobiotic oxygenation. Fatty acid hydroperoxide-dependent oxidation constitutes a novel pathway for metabolic activation of polycyclic hydrocarbons and other carcinogens which has widespread potential in vivo significance

  3. Comparison of wet-chemical methods for determination of lipid hydroperoxides

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Timm Heinrich, Maike; Jacobsen, Charlotte

    2003-01-01

    Five methods for determination of lipid hydroperoxides were evaluated, including two iodometric procedures involving a titration and a spectrophotometric micro method, and three other spectrophotometric methods namely the ferro, International Dairy Federation (IDF) and FOX2 (ferrous oxidation...... in xylenol orange). Peroxide values determined in a range of food products by these five methods gave different results. The ferro method required large amounts of solvent (50 mL/sample); the FOX2 method had a low range (0.005-0.04 mumol hydroperoxide); the end point detection of the titration method...

  4. Histone H1- and other protein- and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA

    DEFF Research Database (Denmark)

    Luxford, C; Morin, B; Dean, R T

    1999-01-01

    analysis has demonstrated that radicals from histone H1-hydroperoxides, and other protein and amino acid hydroperoxides, can also oxidize both free 2'-deoxyguanosine and intact calf thymus DNA to give the mutagenic oxidized base 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine, 8-oxod......Exposure of amino acids, peptides and proteins to radicals, in the presence of oxygen, gives high yields of hydroperoxides. These materials are readily decomposed by transition metal ions to give further radicals. We hypothesized that hydroperoxide formation on nuclear proteins, and subsequent......- and carbon-centred radicals (detected by electron paramagnetic resonance spectroscopy) on exposure to Cu(+) and other transition metal ions. These hydroperoxide-derived radicals react readily with pyrimidine DNA bases and nucleosides to give adduct species (i.e. protein-DNA base cross-links). Product...

  5. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction.

    Science.gov (United States)

    Takeda, Kouji; Iizuka, Mayumi; Watanabe, Toshihiro; Nakagawa, Junichi; Kawasaki, Shinji; Niimura, Youichi

    2007-03-01

    In order to identify an enzyme capable of Fenton reaction in Synechocystis, we purified an enzyme catalyzing one-electron reduction of t-butyl hydroperoxide in the presence of FAD and Fe(III)-EDTA. The enzyme was a 26 kDa protein, and its N-terminal amino acid sequencing revealed it to be DrgA protein previously reported as quinone reductase [Matsuo M, Endo T and Asada K (1998) Plant Cell Physiol39, 751-755]. The DrgA protein exhibited potent quinone reductase activity and, furthermore, we newly found that it contained FMN and highly catalyzed nitroreductase, flavin reductase and ferric reductase activities. This is the first demonstration of nitroreductase activity of DrgA protein previously identified by a drgA mutant phenotype. DrgA protein strongly catalyzed the Fenton reaction in the presence of synthetic chelate compounds, but did so poorly in the presence of natural chelate compounds. Its ferric reductase activity was observed with both natural and synthetic chelate compounds with a better efficiency with the latter. In addition to small molecular-weight chemical chelators, an iron transporter protein, transferrin, and an iron storage protein, ferritin, turned out to be substrates of the DrgA protein, suggesting it might play a role in iron metabolism under physiological conditions and possibly catalyze the Fenton reaction under hyper-reductive conditions in this microorganism.

  6. Poly(alkyl acrylate) nonparticles

    International Nuclear Information System (INIS)

    Kreuter, J.

    1985-01-01

    This study deals with the preparation of poly(alkyl acrylic) and poly(alkyl cyanocrylic) nanoparticles. Nonoparticles are solid colloidal particles, consisting of macromolecular materials in which drugs or biologically active materials are dissolved, entrapped, and encapsulated, and/or to which the active substance is adsorbed or attached. Poly(alkyl acrylic) nanoparticles are much more slowly biodegradable than poly(alkyl cyanoacrylate) nanoparticles, and are thus more suitable for drug delivery purposes. Poly(methyl methacrylate) is the material of choice for the use of nanoparticles as an adjuvant for vaccines and are produced by emulsifier-free polymerization in aqueous media. The polymerization, which can be initiated with gamma rays or with potassium peroxodisulfate, is described

  7. [Peroxides as plant constituents. 6. Hydroperoxides from the blossoms of Roman camomile, Anthemis nobilis L].

    Science.gov (United States)

    Rücker, G; Mayer, R; Lee, K R

    1989-11-01

    From the ethanol extract of the blossoms of Anthemis nobilis L. (syn. Chamaemelum nobile L.), six new hydroperoxides (1-6) were isolated, besides the known 1 beta-hydroperoxyisonobilin (7). The structures were elucidated by spectroscopic methods and in some cases ascertained by synthesis. Compounds 2 and 3 show a medium antibacterial activity.

  8. Iron reductases from Pseudomonas aeruginosa.

    Science.gov (United States)

    Cox, C D

    1980-01-01

    Cell-free extracts of Pseudomonas aeruginosa contain enzyme activities which reduce Fe(III) to Fe(II) when iron is provided in certain chelates, but not when the iron is uncomplexed. Iron reductase activities for two substrates, ferripyochelin and ferric citrate, appear to be separate enzymes because of differences in heat stabilities, in locations in fractions of cell-free extracts, in reductant specificity, and in apparent sizes during gel filtration chromatography. Ferric citrate iron reductase is an extremely labile activity found in the cytoplasmic fraction, and ferripyochelin iron reductase is a more stable activity found in the periplasmic as well as cytoplasmic fraction of extracts. A small amount of activity detectable in the membrane fraction seemed to be loosely associated with the membranes. Although both enzymes have highest activity reduced nicotinamide adenine dinucleotide, reduced glutathione also worked with ferripyochelin iron reductase. In addition, oxygen caused an irreversible loss of a percentage of the ferripyochelin iron reductase following sparge of reaction mixtures, whereas the reductase for ferric citrate was not appreciably affected by oxygen. PMID:6766439

  9. Alkyl and aryl phosphorodiiodidites. Pt. 2

    International Nuclear Information System (INIS)

    Feshchenko, N.G.; Kostina, V.G.

    1976-01-01

    Alkyl phosphorodiiodidites are formed in the reactions of alkyl phosphorodichloridites with lithium iodide. They are stable at -60 to -50 0 . When warmed to 20 0 , they disproportionate with conversion into trialkyl phosphites and phosphorus triiodide. The latter also react together and give alkyl iodides, diphosphorus tetraiodide, and a polymer of unestablished structure. Diaryl and dialkyl phosphoriodidites are stable only in solution at low temperatures. They disproportionate in a similar way to aryl and alkyl phosphorodiiodidites. Alkyl phosphorodiiodidites react with iodine with the formation of alkyl iodides and phosphoryl iodide

  10. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.

    Science.gov (United States)

    Takeda, Kouji; Sato, Junichi; Goto, Kazuyuki; Fujita, Takanori; Watanabe, Toshihiro; Abo, Mitsuru; Yoshimura, Etsuro; Nakagawa, Junichi; Abe, Akira; Kawasaki, Shinji; Niimura, Youichi

    2010-08-01

    Two free flavin-independent enzymes were purified by detecting the NAD(P)H oxidation in the presence of Fe(III)-EDTA and t-butyl hydroperoxide from E. coli. The enzyme that requires NADH or NADPH as an electron donor was a 28 kDa protein, and N-terminal sequencing revealed it to be oxygen-insensitive nitroreductase (NfnB). The second enzyme that requires NADPH as an electron donor was a 30 kDa protein, and N-terminal sequencing revealed it to be ferredoxin-NADP(+) reductase (Fpr). The chemical stoichiometry of the Fenton activities of both NfnB and Fpr in the presence of Fe(III)-EDTA, NAD(P)H and hydrogen peroxide was investigated. Both enzymes showed a one-electron reduction in the reaction forming hydroxyl radical from hydrogen peroxide. Also, the observed Fenton activities of both enzymes in the presence of synthetic chelate iron compounds were higher than their activities in the presence of natural chelate iron compounds. When the Fenton reaction occurs, the ferric iron must be reduced to ferrous iron. The ferric reductase activities of both NfnB and Fpr occurred with synthetic chelate iron compounds. Unlike NfnB, Fpr also showed the ferric reductase activity on an iron storage protein, ferritin, and various natural iron chelate compounds including siderophore. The Fenton and ferric reductase reactions of both NfnB and Fpr occurred in the absence of free flavin. Although the k(cat)/K(m) value of NfnB for Fe(III)-EDTA was not affected by free flavin, the k(cat)/K(m) value of Fpr for Fe(III)-EDTA was 12-times greater in the presence of free FAD than in the absence of free FAD.

  11. Mimicking the Lipid Peroxidation Inhibitory Activity of Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4 by Using Fatty Acid Conjugates of a Water-Soluble Selenolane

    Directory of Open Access Journals (Sweden)

    Michio Iwaoka

    2015-07-01

    Full Text Available A series of fatty acid conjugates of trans-3,4-dihydroxy-1-selenolane (DHS were synthesized by reacting DHS with appropriate acid chlorides. The obtained monoesters were evaluated for their antioxidant capacities by the lipid peroxidation assay using a lecithin/cholesterol liposome as a model system. The observed antioxidant capacities against accumulation of the lipid hydroperoxide (LOOH increased with increasing the alkyl chain length and became saturated for dodecanoic acid (C12 or higher fatty acid monoesters, for which the capacities were much greater than those of DHS, its tridecanoic acid (C13 diester, and PhSeSePh. On the other hand, the bacteriostatic activity of myristic acid (C14 monoester, evaluated through the colony formation assay using Bacillus subtilis, indicated that it has higher affinity to bacterial cell membranes than parent DHS. Since DHS-fatty acid conjugates would inhibit lipid peroxidation through glutathione peroxidase (GPx-like 2e− mechanism, higher fatty acid monoesters of DHS can mimic the function of GPx4, which interacts with LOOH to reduce it to harmless alcohol (LOH. Importance of the balance between hydrophilicity and lipophilicity for the design of effective GPx4 mimics was suggested.

  12. DNA minor groove alkylating agents.

    Science.gov (United States)

    Denny, W A

    2001-04-01

    Recent work on a number of different classes of anticancer agents that alkylate DNA in the minor groove is reviewed. There has been much work with nitrogen mustards, where attachment of the mustard unit to carrier molecules can change the normal patterns of both regio- and sequence-selectivity, from reaction primarily at most guanine N7 sites in the major groove to a few adenine N3 sites at the 3'-end of poly(A/T) sequences in the minor groove. Carrier molecules discussed for mustards are intercalators, polypyrroles, polyimidazoles, bis(benzimidazoles), polybenzamides and anilinoquinolinium salts. In contrast, similar targeting of pyrrolizidine alkylators by a variety of carriers has little effect of their patterns of alkylation (at the 2-amino group of guanine). Recent work on the pyrrolobenzodiazepine and cyclopropaindolone classes of natural product minor groove binders is also reviewed.

  13. Alkyl-benzene-sulfonates; Alkylbenzenesulfonates

    Energy Technology Data Exchange (ETDEWEB)

    Marcou, L. [Ecole Superieure de Physique et Chimie Industrielles, 75 - Paris (France)]|[CEN, Comite europeen de normalisation (France)]|[Syndicat francais des producteurs d`agents de surface et produits auxiliaires industriels (ASPA) (France)

    1998-03-01

    The alkyl-benzene-sulfonates, or sulfophenyl-4-alkanes salts, (ABS) are anionic surface agents whose chemical formula is R-C{sub 6} H{sub 4}-SO{sub 3} M (where R is an aliphatic hydro-carbonated radical and M a metal). Like most of the surface agents, the ABS are complicated mixtures of isomers and homologues, the most usual products having 10 or 13 atoms of carbons. Their chemical preparation is carried out in two steps: 1)the alkyl-benzenes production by the alkanes or alkenes condensation on benzene 2)the alkyl-benzenes sulfonation and the neutralization of the sulfonic acids. The environmental impacts of these compounds are also given. (O.M.) 11 refs.

  14. Comparison of wet-chemical methods for determination of lipid hydroperoxides

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Timm Heinrich, Maike; Jacobsen, Charlotte

    2003-01-01

    Five methods for determination of lipid hydroperoxides were evaluated, including two iodometric procedures involving a titration and a spectrophotometric micro method, and three other spectrophotometric methods namely the ferro, International Dairy Federation (IDF) and FOX2 (ferrous oxidation...... in xylenol orange). Peroxide values determined in a range of food products by these five methods gave different results. The ferro method required large amounts of solvent (50 mL/sample); the FOX2 method had a low range (0.005-0.04 mumol hydroperoxide); the end point detection of the titration method...... was subjective and required a large amount of sample (1 g); and the micro method was sensitive to interruptions during execution. Therefore, only the modified IDF method was chosen for further testing and validation. Stability tests of the standard curve showed a variation coefficient of 4% and within runs...

  15. Cell-mediated reduction of protein and peptide hydroperoxides to reactive free radicals

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2003-01-01

    Radical attack on proteins in the presence of O(2) gives protein hydroperoxides in high yields. These peroxides are decomposed by transition metal ions, reducing agents, UV light and heat, with the formation of a range of reactive radicals that are capable of initiating further damage. Evidence has....... In this study we have investigated the reduction of peptide and protein hydroperoxides by THP-1 (human monocyte-like) cells and it is shown that this process is accompanied by radical formation as detected by EPR spin trapping. The radicals detected, which are similar to those detected from metal-ion catalyzed...... transport system (TPMET) either directly, or indirectly via redox cycling of trace transition metal ions....

  16. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    Science.gov (United States)

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  17. FEATURES OF INITIATION OF STYRENE POLYMERIZATION BY CUMENE HYDROPEROXIDE IN PRESENCE OF ACETULACETONATE OF COPPER(II

    Directory of Open Access Journals (Sweden)

    A. V. Grekova

    2016-04-01

    Full Text Available Kinetics of sectional styrene polymerization initiated by cumene hydroperoxide, acetylacetonate of copper(II and by the system of cumene hydroperoxide — acetylacetonate of copper(II in a temperature range 333-363 K is studied. Kinetic parameters of polymerization process are determined. It is shown, that system of cumene hydroperoxide — acetylacetonate of copper(II is in 5-6 times more effective on the initiating ability comparatively to application of its individual components. From findings ensues that decline of energy of activating of initiation from 110 kdzh/mol’ to 87 kdzh/mol’ for cumene hydroperoxide at the use of the studied system is caused with participating of monomer in preliminary complexation facilitating formation of free radicals.

  18. Chichibabin-type direct alkylation of pyridyl alcohols with alkyl lithium reagents.

    Science.gov (United States)

    Jeffrey, Jenna L; Sarpong, Richmond

    2012-11-02

    Direct C(6) alkylation of pyridyl alcohols can be achieved following an initial deprotonation of the hydroxy group. This transformation, which is believed to occur by a Chichibabin-type alkylation, avoids lateral deprotonation prior to pyridine ring alkylation and gives increased regioselectivity for C(6) over C(4) alkylation.

  19. Contact sensitization to limonene and linalool hydroperoxides in Spain: a GEIDAC* prospective study.

    Science.gov (United States)

    Deza, Gustavo; García-Bravo, Begoña; Silvestre, Juan F; Pastor-Nieto, Maria A; González-Pérez, Ricardo; Heras-Mendaza, Felipe; Mercader, Pedro; Fernández-Redondo, Virginia; Niklasson, Bo; Giménez-Arnau, Ana M

    2017-02-01

    Limonene and linalool are common fragrance terpenes widely used in cosmetic, household and hygiene products. Their primary oxidation products formed after air exposure, the hydroperoxides, have been recognized as important contact haptens. To investigate the prevalence of contact allergy to hydroperoxides of limonene (Lim-OOHs) and hydroperoxides of linalool (Lin-OOHs) in Spain, and to define the optimal concentration for screening in consecutive patients. Three different concentrations of Lim-OOHs (0.1%, 0.2% and 0.3% pet.) and Lin-OOHs (0.25%, 0.5% and 1.0% pet.) were simultaneously tested in 3639 consecutive patients at 22 departments of dermatology in Spain. Lim-OOHs at 0.1%, 0.2% and 0.3% yielded positive patch test reactions in 1.4%, 3.4% and 5.1% of the tested patients, respectively; and Lin-OOHs at 0.25%, 0.5% and 1.0% yielded positive reactions in 1.3%, 2.9% and 4.9% of the tested patients, respectively. Few irritant (1.5-1.9%) and doubtful reactions (0.4-0.5%) to both terpene hydroperoxides were registered at the highest concentrations tested. Lim-OOHs and Lin-OOHs can be considered as common causes of contact allergy, and their inclusion in an extended baseline patch test series therefore seems to be appropriate. The patch test preparations of Lim-OOHs 0.3% pet. and Lin-OOHs 1.0% pet. are useful tools for screening of contact sensitization. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal

    OpenAIRE

    Arora, Jasbir S.; Oe, Tomoyuki; Blair, Ian A.

    2011-01-01

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α,β-unsaturated aldehyde that can react in multiple ways and w...

  1. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.

    Science.gov (United States)

    Krügener, Sven; Krings, Ulrich; Zorn, Holger; Berger, Ralf G

    2010-01-01

    A selective and highly efficient allylic oxidation of the sesquiterpene (+)-valencene to the grapefruit flavour compound (+)-nootkatone was achieved with lyophilisate of the edible mushroom Pleurotus sapidus. The catalytic reaction sequence was elucidated through the identification of intermediate, (+)-valencene derived hydroperoxides. A specific staining of hydroperoxides allowed the semi-preparative isolation of two secondary (+)-valencene hydroperoxides, 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-4(S)-yl-hydroperoxide and 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2(R)-yl-hydroperoxide. Chemical reduction of the biotransformation products yielded a tertiary alcohol identified as 2(R)-Isopropenyl-8(R),8a(S)-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a(R)-ol. This suggested a lipoxygenase-type oxidation of (+)-valencene via secondary and tertiary hydroperoxides and confirmed homology data of the key enzyme obtained previously from amino acid sequencing.

  2. Isolated menthone reductase and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  3. Synthesis and evaluation of sequence-specific DNA alkylating agents: effect of alkylation subunits.

    Science.gov (United States)

    Shimizu, Tatsuhiko; Sasaki, Shunta; Minoshima, Masafumi; Shinohara, Ken-ichi; Bando, Toshikazu; Sugiyama, Hiroshi

    2006-01-01

    We have demonstrated that hairpin pyrrole (Py)- imidazole (Im) polyamide-CBI conjugates selectively alkylate predetermined sequences. In this study, we investigated the effect of alkylation subunits, for example conjugates 1-4 with three types of DNA alkylating units, and Py-Im polyamides with indole linker. Conjugate 3 and 4 selectively alkylated the predetermined sequences as described previously, while conjugates 1 and 2 alkylate at mismatched sites.

  4. ORF Alignment: NC_006369 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_006369 gi|54295805 >1xvqA 17 164 3 161 4e-27 ... ref|YP_096958.1| peroxynitrite re...28220.1| ... alkyl hydroperoxide reductase [Legionella pneumophila ... str. Lens] gb|AAU29011.1| peroxynitrite...bsp. ... pneumophila str. Philadelphia 1] gb|AAM00601.1| ... peroxynitrite reductase [Legionel

  5. ORF Alignment: NC_006368 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_006368 gi|54298970 >1xvqA 17 164 3 161 4e-27 ... ref|YP_096958.1| peroxynitrite re...28220.1| ... alkyl hydroperoxide reductase [Legionella pneumophila ... str. Lens] gb|AAU29011.1| peroxynitrite...bsp. ... pneumophila str. Philadelphia 1] gb|AAM00601.1| ... peroxynitrite reductase [Legionel

  6. ORF Alignment: NC_002942 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002942 gi|52843159 >1xvqA 17 164 3 161 4e-27 ... ref|YP_096958.1| peroxynitrite re...28220.1| ... alkyl hydroperoxide reductase [Legionella pneumophila ... str. Lens] gb|AAU29011.1| peroxynitrite...bsp. ... pneumophila str. Philadelphia 1] gb|AAM00601.1| ... peroxynitrite reductase [Legionel

  7. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... reductase activity and nitrite accumulation depend on the exogenous nitrate. Nitrite itself is reduced to ammonium by palstidic nitrite reductase. Nitrite reductase is activated by both nitrate and nitrite ions by positive feed forward, whereas nitrate metabolites, most likely ammonium and glutamine; down.

  8. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects.

  9. Association between methylenetetrahydrofolate reductase (MTHFR ...

    African Journals Online (AJOL)

    Association between methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and risk of ischemic stroke in North Indian population: A hospital based case–control study. Amit Kumar, Shubham Misra, Anjali Hazarika, Pradeep Kumar, Ram Sagar, Abhishek Pathak, Kamalesh Chakravarty, Kameshwar ...

  10. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects of MTHFR ...

  11. Trametes versicolor carboxylate reductase uncovered.

    Science.gov (United States)

    Winkler, Margit; Winkler, Christoph K

    The first carboxylate reductase from Trametes versicolor was identified, cloned, and expressed in Escherichia coli . The enzyme reduces aromatic acids such as benzoic acid and derivatives, cinnamic acid, and 3-phenylpropanoic acid, but also aliphatic acids such as octanoic acid are reduced.

  12. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Shamala Salvamani

    2016-01-01

    Full Text Available Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH, nitric oxide (NO, and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase.

  13. Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries

    Directory of Open Access Journals (Sweden)

    Carlos F. Araujo-Lima

    2018-01-01

    Full Text Available Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay, cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS or cyclophosphamide (CPA. Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA.

  14. Complex responses to alkylating agents

    International Nuclear Information System (INIS)

    Samson, L.D.

    2003-01-01

    Using Affymetrix oligonucleotide GeneChip analysis, we previously found that, upon exposure to the simple alkylating agent methylmethane sulfonate, the transcript levels for about one third of the Saccharomyces cerevisiae genome (∼2,000 transcripts) are induced or repressed during the first hour or two after exposure. In order to determine whether the responsiveness of these genes has any relevance to the protection of cells against alkylating agents we have undertaken several follow-up studies. First, we explored the specificity of this global transcriptional response to MMS by measuring the global response of S. cerevisiae to a broad range of agents that are known to induce DNA damage. We found that each agent produced a very different mRNA transcript profile, even though the exposure doses produced similar levels of toxicity. We also found that the selection of genes that respond to MMS is highly dependent upon what cell cycle phase the cells are in at the time of exposure. Computational clustering analysis of the dataset derived from a large number of exposures identified several promoter motifs that are likely to control some of the regulons that comprise this large set of genes that are responsive to DNA damaging agents. However, it should be noted that these agents damage cellular components other than DNA, and that the responsiveness of each gene need not be in response to DNA damage per se. We have also begun to study the response of other organisms to alkylating agents, and these include E. coli, cultured mouse and human cells, and mice. Finally, we have developed a high throughput phenotypic screening method to interrogate the role of all non-essential S. cerevisiae genes (about 4,800) in protecting S. cerevisiae against the deleterious effects of alkylating agents; we have termed this analysis 'genomic phenotyping'. This study has uncovered a plethora of new pathways that play a role in the recovery of eukaryotic cells after exposure to toxic

  15. Binding of peroxiredoxin 6 to substrate determines differential phospholipid hydroperoxide peroxidase and phospholipase A2 activities

    Science.gov (United States)

    Manevich, Yefim; Shuvaeva, Tea; Dodia, Chandra; Kazi, Altaf; Feinstein, Sheldon I.; Fisher, Aron B.

    2010-01-01

    Peroxiredoxin 6 (Prdx6) differs from other mammalian peroxiredoxins both in its ability to reduce phospholipid hydroperoxides at neutral pH and in having phospholipase A2 (PLA2) activity that is maximal at acidic pH. We previously showed an active site C47 for peroxidase activity and a catalytic triad S32-H26-D140 necessary for binding of phospholipid and PLA2 activity. This study evaluated binding of reduced and oxidized phospholipid hydroperoxide to Prdx6 at cytosolic pH. Incubation of recombinant Prdx6 with 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine hydroperoxide (PLPCOOH) resulted in peroxidase activity, cys47 oxidation as detected with Prdx6-SO2(3) antibody, and a marked shift in the Prdx6 melting temperature by circular dichroism analysis indicating that PLPCOOH is a specific substrate for Prdx6. Preferential Prdx6 binding to oxidized liposomes was detected by changes in DNS-PE or bis-Pyr fluorescence and by ultrafiltration. Site-specific mutation of S32 or H26 in Prdx6 abolished binding while D140 mutation had no effect. Treatment of A549 cells with peroxides led to lipid peroxidation and translocation of Prdx6 from the cytosol to the cell membrane. Thus, the pH specificity for the two enzymatic activities of Prdx6 can be explained by the differential binding kinetics of the protein; Prdx6 binds to reduced phospholipid at acidic pH but at cytosolic pH binds only phospholipid that is oxidized compatible with a role for Prdx6 in the repair of peroxidized cell membranes. PMID:19236840

  16. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    Science.gov (United States)

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  17. Isobutane alkylation over solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kozorezov, Y.I.; Lisin, V.I.

    1979-05-01

    Commercial alumina modified with 6Vertical Bar3< by wt boron trifluoride was active in isobutane alkylation with ethylene in a flow reactor at 5:1 isobutane-ethylene and 5-20 min reaction time. The reaction rate was first-order in ethylene and increased with increasing temperature (20/sup 0/-80/sup 0/C) and ethylene pressure (0.2-3 atm). The calculated activation energy was 8.4 kj. Kinetic data and the activity of tert.-butyl chloride, but not ethyl chloride as alkylating agents in place of ethylene suggested a carbonium-ion chain mechanism involving both surface and gas-phase reactions. The ethylene-based yield of the alkylate decreased from 132 to 41Vertical Bar3< by wt after nine hours on stream, and its bromine number increased from 0.2 to 1 g Br/sub 2//100 ml. This inhibition was attributed to adsorption on the active acidic sites of the reaction products, particularly C/sub 10//sup +/ olefins. Catalyst stabilization could probably be achieved by selecting an appropriate solvent that would continuously desorb the inhibiting products from the catalyst surface.

  18. Oxidation of heteroleptic diarylpalladium compounds with tert-butyl hydroperoxide. Substituent effects in aromatic oxidation reactions

    NARCIS (Netherlands)

    Koten, G. van; Valk, J.-M.; Boersma, J.

    1996-01-01

    A series of heteroleptic diarylpalladium compounds, containing both a naphthyl (1-C10H6CH2NMe2-2 or 1-C10H5CH2NMe2-2-Me-3) and a phenyl (1-C6H4CH2NMe2-2 or 1-C6H3CH2NMe2-2-Me-x, x = 3, 5, 6) monoanionic C,N-bidentate ligand, was reacted with tert-butyl hydroperoxide (TBHP) to give selective oxygen

  19. State-resolved photochemistry and spectroscopic characterization of atmospherically relevant hydroperoxides

    Science.gov (United States)

    Matthews, Jamie

    This dissertation focuses on the photodissociation dynamics, thermochemistry, spectroscopy and structure of important hydroperoxide molecules which influence the oxidation capacity of the atmosphere. Since hydroperoxides such as CH 3OOH, HOCH2OOH, HO2NO2 and HOOH species serve as reservoir for the HOx (=HO2 + OH) radicals, a thorough examination of excited state and ground state photochemistry of these species is needed. In this dissertation, the photodissociation dynamics of vibrationally excited HO2NO2 molecule is examined, and its first OH-stretching state dissociation quantum yield is assessed in order to quantify its contribution to the HOx budget. An ab initio study is used to obtain bond dissociation energies, vibrational spectra and absorption cross-sections. The HOONO molecule is an important structural isomer of nitric acid. Studies of HOONO molecule have primarily focused on the vibrational structure, spectra and energetics of vibrational states in the vicinity of the first and second OH-stretching overtones. From these measurements, the heat of formation and vibrational band assignment of cis-cis HOONO are determined. Organic hydroperoxides such as CH3OOH and HOCH2OOH are fundamental systems to explore the flow of energy among different vibrational modes. In HOCH2OOH, the dissociation rates that are extracted from the third OH-stretching overtone suggest that excitation of the alcohol OH-stretch result in dissociation rates that are substantially slower than rates resulting from excitation of the peroxide OH-stretch where IVR is evidently more restricted. Non-statistical behavior is also observed in CH3OOH, where the excitation of HOO-bending mode and CH-stretching modes result in more complete IVR due to strong state-mixing compared with excitation of the OH-stretching modes; as inferred from the quantities of vibrationally excited OH product formed. Enhanced IVR mixing is also observed in HOOH molecule, suggesting mode-selective behavior is a common

  20. The Scarlet Letter of Alkylation: A Mini Review of Selective Alkylating Agents

    OpenAIRE

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-01-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to “tame” the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it i...

  1. Two novel phospholipid hydroperoxide glutathione peroxidase genes of Paragonimus westermani induced by oxidative stress.

    Science.gov (United States)

    Kim, S-H; Cai, G-B; Bae, Y-A; Lee, E-G; Lee, Y-S; Kong, Y

    2009-04-01

    Phospholipid hydroperoxide glutathione peroxidase (PHGPx; GPx4) plays unique roles in the protection of cells against oxidative stress by catalysing reduction of lipid hydroperoxides. We characterized 2 novel GPx genes from a lung fluke, Paragonimus westermani (designated PwGPx1 and PwGPx2). These single copy genes spanned 6559 and 12 371 bp, respectively, and contained each of 5 intervening introns. The PwGPx2 harboured a codon for Sec and a Sec insertion sequence motif. Proteins encoded by the Paragonimus genes demonstrated a primary structure characteristic to the PHGPx family, including preservation of catalytic and glutathione-binding domains and absence of the subunit interaction domain. Expression of PwGPx1 increased gradually as the parasite matured, whereas that of PwGPx2 was temporally regulated. PwGPx2 was expressed at the basal level from the metacercariae to the 3-week-old juveniles; however, the expression was significantly induced in the 7-week-old immature worms and reached a plateau in the 12-week-old adults and eggs. PwGPx1 and PwGPx2 were largely localized in vitellocytes within vitelline glands and eggs. Oxidative stress-inducible paraquat, juglone and H2O2 substantially augmented the PwGPx1 and PwGPx2 expressions in viable worms by 1.5- to 11-fold. Our results strongly suggested that PwGPxs may actively participate in detoxification of oxidative hazards in P. westermani.

  2. Redox Regulation of the Tumor Suppressor PTEN by Hydrogen Peroxide and Tert-Butyl Hydroperoxide

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2017-05-01

    Full Text Available Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx system. Here, the role of tert-butyl hydroperoxide (t-BHP in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t-BHP led to oxidation of recombinant PTEN. In contrast to H2O2, PTEN oxidation by t-BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t-BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t-BHP in the promotion of tumorigenesis.

  3. Purification of soybean lipoxygenase isoenzyme-1 and characterization of its inhibition by 13-hydroperoxides

    Directory of Open Access Journals (Sweden)

    Fauconnier, M. L.

    1996-08-01

    Full Text Available Purification of soybean lipoxygenase isoenzyme-1 was reinvestigated furnishing a new procedure. Different parameters influencing the hydroperoxide production were studied. Our study focused particularly on the enzyme activity inhibition by the reaction products. Dixon plots revealed competitive inhibition with Ki value of 0.45 and 1.5 mM respectively for 13-linoleic and 13-linolenic acid hydroperoxides.

    La purificación de la isoenzima-1 de la lipoxigenasa de soja fue reinvestigada mediante un nuevo procedimiento. Diferentes parámetros que influyen en la producción de hidroperóxidos fueron estudiados. Nuestros estudios se centraron particularmente en la inhibición de la actividad enzimática por los productos de reacción. Las representaciones de Dixon mostraron inhibición competitiva con valor de Ki de 0.45 y 1.5 mM respectivamente para los 13- hidroperóxidos de los ácidos linoleico y linolénico.

  4. Determination of Lipid Hydroperoxides in Marine Diatoms by the FOX2 Assay.

    Science.gov (United States)

    Orefice, Ida; Gerecht, Andrea; d'Ippolito, Giuliana; Fontana, Angelo; Ianora, Adrianna; Romano, Giovanna

    2015-09-11

    Ecologically-relevant marine diatoms produce a plethora of bioactive oxylipins deriving from fatty acid oxidation, including aldehydes, hydroxy-fatty acids, epoxy-hydroxy-fatty acids, and oxo-acids. These secondary metabolites have been related to the negative effect of diatoms on copepod reproduction, causing low hatching success and teratogenesis in the offspring during periods of intense diatom blooms. The common intermediates in the formation of oxylipins are fatty acid hydroperoxides. The quantitative measurement of these intermediates can fundamentally contribute to understanding the function and role of lipoxygenase metabolites in diatom-copepod interactions. Here, we describe the successful adaptation of the ferrous oxidation-xylenol orange 2 (FOX2) assay to diatom samples, which showed several advantages over other spectrophotometric and polarographic methods tested in the present work. Using this method we assessed fatty acid hydroperoxide levels in three diatom species: Skeletonema marinoi, Thalassiosira rotula, and Chaetoceros affinis, and discuss results in light of the literature data on their detrimental effects on copepod reproduction.

  5. Redox Regulation of the Tumor Suppressor PTEN by Hydrogen Peroxide and Tert-Butyl Hydroperoxide.

    Science.gov (United States)

    Zhang, Ying; Han, Seong-Jeong; Park, Iha; Kim, Inyoung; Chay, Kee-Oh; Kim, Seok Mo; Jang, Dong Il; Lee, Tae-Hoon; Lee, Seung-Rock

    2017-05-10

    Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx) system. Here, the role of tert -butyl hydroperoxide ( t -BHP) in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t -BHP led to oxidation of recombinant PTEN. In contrast to H₂O₂, PTEN oxidation by t -BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t -BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t -BHP in the promotion of tumorigenesis.

  6. Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin

    DEFF Research Database (Denmark)

    Silvester, J A; Timmins, G S; Davies, Michael Jonathan

    1998-01-01

    Porphyrin-sensitized photo-oxidation of bovine serum albumin results in oxidation at specific sites to produce protein radical species: at the Cys-34 residue (to give a thiyl radical) and at one or both tryptophan residues (Trp-134 and Trp-214) to give tertiary carbon-centered radicals and cause...... disruption of the indole ring system. This study shows that these photo-oxidation processes also consume oxygen and give rise to hydrogen peroxide, protein hydroperoxides, and carbonyl functions. The yield of hydrogen peroxide, protein hydroperoxides, and carbonyl functions is shown to be dependent...

  7. Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species

    NARCIS (Netherlands)

    Kremer, D.R.; Veenhuis, M.; Fauque, G.; Peck Jr., H.D.; LeGall, J.; Lampreia, J.; Moura, J.J.G.; Hansen, T.A.

    1988-01-01

    The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were

  8. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  9. Novel Profluorescent Nitroxides for Monitoring Alkyl Radical Reactions During Radiation Degradation

    International Nuclear Information System (INIS)

    George, G.

    2006-01-01

    Hindered amine stabilizers (HAS) are effective at retarding the photo-oxidative and high energy radiation degradation of PP and in certain circumstances, also thermo-oxidative degradation. The effectiveness of HAS as retarders of oxidation relies on the oxidation of the N-C bond by polymer hydroperoxide, ROOH, to form the nitroxyl group -NO which is the scavenger of polymer alkyl radicals, R. This reaction, which produces the alkoxy amine: -NO-R, must be competitive with the reaction of R with oxygen (which gives the chain-carrying peroxy radical, RO 2 ) if this stabilization mechanism is to be important in the inhibition of radiation-induced oxidative degradation of polyolefins by HAS. The rate of this reaction is high and in solution the rate coefficient is from 1 to 9x10 8 l mol - 1 s - 1. The efficient radical trapping by nitroxides has been widely employed in spin-trapping studies by electron spin resonance (esr) spectroscopy]. In addition to the hindered piperidine structure of commercial HAS, more rigid aromatic systems have been studied that are more stable to oxidative degradation and are more efficient at scavenging alkyl radicals. One such family is the iso-indoline nitroxide system, TMDBIO, shown below which, as it contains the phenanthrene fluorophore, is termed phenanthrene nitroxide. This nitroxide only becomes fluorescent when it reacts with alkyl radicals or is reduced and is termed profluorescent. TMDBIO has a vanishingly small fluorescence quantum yield (φ∼10 - 4) due to the enhanced intersystem crossing from the first excited singlet state to the ground state due to electron exchange interactions of the nitroxyl radical. When the nitroxide traps an alkyl radical, R, the resulting alkoxy amine is fluorescent (φ∼10 - 1) and the emission intensity is a measure of the number of reactions that have occurred. This property may be exploited by using quantitative fluorescence spectroscopy to follow the reaction of the nitroxide with alkyl radicals

  10. S-alkylation of soft scorpionates.

    Science.gov (United States)

    Rajasekharan-Nair, Rajeev; Moore, Dean; Chalmers, Kirsten; Wallace, Dawn; Diamond, Louise M; Darby, Lisa; Armstrong, David R; Reglinski, John; Spicer, Mark D

    2013-02-11

    The alkylation reactions of soft scorpionates are reported. The hydrotris(S-alkyl-methimazolyl)borate dications (alkyl = methyl, allyl, benzyl), which were prepared by the reaction of Tm(Me) anion and primary alkyl halides, have been isolated and structurally characterised. The reaction is, however, not universally successful. DFT analysis of these alkylation reactions (C=S versus B-H alkylation) indicates that the observed outcome is driven by kinetic factors. Extending the study to incorporate alternative imine thiones (mercaptobenzothiazole, bz; thiazoline, tz) led to the structural characterisation of di[aquo-μ-aquohydrotris(mercaptobenzothiazolyl)boratosodium], which contains sodium atoms in the κ(3)-S,S,S coordination mode. Alkylation of Na[Tbz] and Na[tzTtz] leads to decomposition resulting in the formation of the simple S-alkylated heterocycles. The analysis of the species involved in these reactions shows an inherent weakness in the B-N bond in soft scorpionates, which has implications for their use in more advanced chemistry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Isobutane alkylation. Recent developments and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Hommeltoft, Sven Ivar [Haldor Topsoe A/S, Nymoellevej 55, DK-2800 Lyngby (Denmark)

    2001-11-30

    In the isobutane alkylation, alkylated gasoline is obtained which is a valuable blending component for the gasoline pool. Thereby the C{sub 3}-C{sub 4} cut from the FCC units can be extensively used. Established technologies and recent developments will be reviewed and future perspectives will be given.

  12. Amino acid nitrosation products as alkylating agents.

    Science.gov (United States)

    García-Santos, M del P; Calle, E; Casado, J

    2001-08-08

    Nitrosation reactions of alpha-, beta-, and gamma-amino acids whose reaction products can act as alkylating agents of DNA were investigated. To approach in vivo conditions for the two-step mechanism (nitrosation and alkylation), nitrosation reactions were carried out in aqueous acid conditions (mimicking the conditions of the stomach lumen) while the alkylating potential of the nitrosation products was investigated at neutral pH, as in the stomach lining cells into which such products can diffuse. These conclusions were drawn: (i) The alkylating species resulting from the nitrosation of amino acids with an -NH(2) group are the corresponding lactones; (ii) the sequence of alkylating power is: alpha-lactones > beta-lactones > gamma-lactones, coming respectively from the nitrosation of alpha-, beta-, and gamma-amino acids; and (iii) the results obtained may be useful in predicting the mutagenic effectiveness of the nitrosation products of amino acids.

  13. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  14. The hydroperoxide lyase branch of the oxylipin pathway protects against photoinhibition of photosynthesis.

    Science.gov (United States)

    Savchenko, Tatyana; Yanykin, Denis; Khorobrykh, Andrew; Terentyev, Vasily; Klimov, Vyacheslav; Dehesh, Katayoon

    2017-06-01

    This study describes a new role for hydroperoxide lyase branch of oxylipin biosynthesis pathway in protecting photosynthetic apparatus under high light conditions. Lipid-derived signaling molecules, oxylipins, produced by a multi-branch pathway are central in regulation of a wide range of functions. The two most known branches, allene oxide synthase (AOS) and 13-hydroperoxide lyase (HPL) pathways, are best recognized as producers of defense compounds against biotic challenges. In the present work, we examine the role of these two oxylipin branches in plant tolerance to the abiotic stress, namely excessive light. Towards this goal, we have analyzed variable chlorophyll fluorescence parameters of intact leaves of Arabidopsis thaliana genotypes with altered oxylipin profile, followed by examining the impact of exogenous application of selected oxylipins on functional activity of photosynthetic apparatus in intact leaves and isolated thylakoid membranes. Our findings unequivocally bridge the function of oxylipins to photosynthetic processes. Specifically, HPL overexpressing lines display enhanced adaptability in response to high light treatment as evidenced by lower rate constant of photosystem 2 (PS2) photoinhibition and higher rate constant of PS2 recovery after photoinhibition. In addition, exogenous application of linolenic acid, 13-hydroperoxy linolenic acid, 12-oxophytodienoic acid, and methyl jasmonate individually, suppresses photochemical activity of PS2 in intact plants and isolated thylakoid membranes, while application of HPL-branch metabolites-does not. Collectively these data implicate function of HPL branch of oxylipin biosynthesis pathway in guarding PS2 under high light conditions, potentially exerted through tight regulation of free linolenic acid and 13-hydroperoxy linolenic acid levels, as well as competition with production of metabolites by AOS-branch of the oxylipin pathway.

  15. Metabolism of fatty acids and lipid hydroperoxides in human body monitoring with Fourier transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang Qin-Zeng

    2009-07-01

    Full Text Available Abstract Background The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. Results We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR – attenuated total reflection (ATR detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005~3015 cm-1, of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm-1. Conclusion The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively.

  16. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC

    OpenAIRE

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E. K.; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2015-01-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. I...

  17. The "somersault" mechanism for the p-450 hydroxylation of hydrocarbons. The intervention of transient inverted metastable hydroperoxides.

    Science.gov (United States)

    Bach, Robert D; Dmitrenko, Olga

    2006-02-08

    A series of model theoretical calculations are described that suggest a new mechanism for the oxidation step in enzymatic cytochrome P450 hydroxylation of saturated hydrocarbons. A new class of metastable metal hydroperoxides is described that involves the rearrangement of the ground-state metal hydroperoxide to its inverted isomeric form with a hydroxyl radical hydrogen bonded to the metal oxide (MO-OH --> MO....HO). The activation energy for this somersault motion of the FeO-OH group is 20.3 kcal/mol for the P450 model porphyrin iron(III) hydroperoxide [Por(SH)Fe(III)-OOH(-)] to produce the isomeric ferryl oxygen hydrogen bonded to an *OH radical [Por(SH)Fe(III)-O....HO(-)]. This isomeric metastable hydroperoxide, the proposed primary oxidant in the P450 hydroxylation reaction, is calculated to be 17.8 kcal/mol higher in energy than the ground-state iron(III) hydroperoxide Cpd 0. The first step of the proposed mechanism for isobutane oxidation is abstraction of a hydrogen atom from the C-H bond of isobutane by the hydrogen-bonded hydroxyl radical to produce a water molecule strongly hydrogen bonded to anionic Cpd II. The hydroxylation step involves a concerted but nonsynchronous transfer of a hydrogen atom from this newly formed, bound, water molecule to the ferryl oxygen with a concomitant rebound of the incipient *OH radical to the carbon radical of isobutane to produce the C-O bond of the final product, tert-butyl alcohol. The TS for the oxygen rebound step is 2 kcal/mol lower in energy than the hydrogen abstraction TS (DeltaE() = 19.5 kcal/mol). The overall proposed new mechanism is consistent with a lot of the ancillary experimental data for this enzymatic hydroxylation reaction.

  18. Characterization of xylose reductase from Candida tropicalis ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... Xylose reductase gene, enzyme cofactors and plasmids. E.coli BL21(DE3) was used as host strains for ... C. tropicalis xylose reductase gene was isolated from plasmid. pMD18-T (TaKaRa, Japan). Enzyme ..... the gels is instable, soft and even dissolve in the solution containing multivalent anions or high ...

  19. Location of the redox-active thiols of ribonucleotide reductase: sequences similarity between the Escherichia coli and Lactobacillus leichmannii enzymes

    International Nuclear Information System (INIS)

    Lin, A.N.I.; Ashley, G.W.; Stubbe, J.

    1987-01-01

    The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with [1- 14 C]iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of 14 C. Sequencing of tryptic peptides shows that 2.8 equiv of 14 C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of 14 C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of 14 C. Sequencing of tryptic peptides shows that 1.4 equiv of 14 C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I

  20. Alkylation of organic aromatic compounds

    Science.gov (United States)

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  1. Alkylation of organic aromatic compounds

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  2. Alkylation of N-substituted 2-phenylacetamides

    Directory of Open Access Journals (Sweden)

    SLOBODAN D. PETROVIC

    2004-10-01

    Full Text Available Various N-substituted phenylacetamides were alkylated using different alkylating agents under neutral and basic conditions. Reactions were performed at different reaction temperatures and in various solvents. Also, a number of various catalysts were used including phase-transfer catalysts. Reactions were followed using GC or GC-MS technique and the presence as well as the yields of the alkylation products were established. Generally, the best yield and high selectivity in the studied reactions were achieved under basic conditions where in the certain cases some products, mostly N-product, were obtained solely in quantitative yields.

  3. Antimitotic antitumor agents: synthesis, structure-activity relationships, and biological characterization of N-aryl-N'-(2-chloroethyl)ureas as new selective alkylating agents.

    Science.gov (United States)

    Mounetou, E; Legault, J; Lacroix, J; C-Gaudreault, R

    2001-03-01

    A series of N-aryl-N'-(2-chloroethyl)ureas (CEUs) and derivatives were synthesized and evaluated for antiproliferative activity against a wide panel of tumor cell lines. Systematic structure--activity relationship (SAR) studies indicated that: (i) a branched alkyl chain or a halogen at the 4-position of the phenyl ring or a fluorenyl/indanyl group, (ii) an exocyclic urea function, and (iii) a N'-2-chloroethyl moiety were required to ensure significant cytotoxicity. Biological experiments, such as immunofluorescence microscopy, confirmed that these promising compounds alter the cytoskeleton by inducing microtubule depolymerization via selective alkylation of beta-tubulin. Subsequent evaluations demonstrated that potent CEUs were weak alkylators, were non-DNA-damaging agents, and did not interact with the thiol function of either glutathione or glutathione reductase. Therefore, CEUs are part of a new class of antimitotic agents. Finally, among the series of CEUs evaluated, compounds 12, 15, 16, and 27 were selected for further in vivo trials.

  4. N-Alkylation Using Sodium Triacetoxyborohydride with Carboxylic Acids as Alkyl Sources.

    Science.gov (United States)

    Tamura, Satoru; Sato, Keigo; Kawano, Tomikazu

    2018-01-01

    A versatile N-alkylation was performed using sodium triacetoxyborohydride and carboxylic acid as an alkyl source. The combination of these reagents furnished products different from those given previously by a similar reaction. Moreover, the mild conditions of our method allowed some functional groups to remain through the reaction, whereas they would react and be converted into other moieties in the similar reductive N-alkylation reported previously. Herein, we provide a new procedure for the preparation of various compounds containing nitrogen atoms.

  5. The Barbier-Grignard-type carbonyl alkylation using unactivated alkyl halides in water.

    Science.gov (United States)

    Keh, Charlene C K; Wei, Chunmei; Li, Chao-Jun

    2003-04-09

    The aqueous Barbier-Grignard-type alkylation of aldehydes with unactivated alkyl iodides and bromides was developed. By using a combination of zinc and cuprous iodide, catalyzed by indium(I) chloride, we successfully added tertiary, secondary, and primary alkyl halides to various aromatic aldehydes in 0.07 M aqueous Na2C2O4. A mechanistic rationale for the success of the reaction has been proposed.

  6. Can contact allergy to p-phenylenediamine explain the high rates of terpene hydroperoxide allergy? - An epidemiological study based on consecutive patch test results

    DEFF Research Database (Denmark)

    Bennike, Niels Højsager; Lepoittevin, Jean-Pierre; Johansen, Jeanne D

    2017-01-01

    BACKGROUND: Contact allergy to linalool hydroperoxides (Lin-OOHs) and limonene hydroperoxides (Lim-OOHs) is common. Similarly to what occurs with the terpene hydroperoxides, reactive intermediates formed from p-phenylenediamine (PPD) can cause oxidative modifications of tryptophan residues...... increased risk (OR 2.11, 95%CI:0.92-4.80) of a positive patch test reaction to Lin-OOHs. CONCLUSIONS: PPD sensitization cannot explain the high rates of sensitization to Lin-OOHs and/or Lim-OOHs. Contact allergy to oxidized linalool is more strongly associated with fragrance allergy than with PPD allergy....

  7. Carboxylic acid reductase enzymes (CARs).

    Science.gov (United States)

    Winkler, Margit

    2018-04-01

    Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ferrisiderophore reductase activity in Bacillus megaterium.

    Science.gov (United States)

    Arceneaux, J E; Byers, B R

    1980-01-01

    The release of iron from ferrisiderophores (microbial ferric-chelating iron transport cofactors) by cell-free extracts of Bacillus megaterium was demonstrated. Reductive transfer of iron from ferrisiderophores to the ferrous-chelating agent ferrozine was measured spectrophotometrically. This ferrisiderophore reductase activity (reduced nicotinamide adenine dinucleotide phosphate:ferrisiderophore oxidoreductase) was associated primarily with the cell soluble rather than particulate (membrane) fraction. Ferrisiderophore reductase was inhibited by oxygen and required the addition of a reductant (reduced nicotinamide adenine dinucleotide phosphate was most effective) for maximal activity. The activity was destroyed by both heat and protease treatments and was inhibited by iodoacetamide treatment. Ferrisiderophore reductase activity for several microbial ferrisiderophores was measured; highest activity was displayed for ferrischizokinen, the ferrisiderophore produced by this organism. The Km and Vmax values of the reductase for ferrischizokinen were 2.5 x 10(-4) M and 35.7 nmol/min per mg of the ferrisiderophore reductase reaction. Preliminary fractionation of the cell soluble material by gel filtration chromatography resulted in the demonstration of ferrisiderophore reductase activity in three peaks of different molecular weight. Ferrisiderophore reductase probably mediates entrance of iron into cellular metabolism. PMID:6444944

  9. Alkylation of Zwitterionic Thiooxalic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Manfred Michalik

    2001-05-01

    Full Text Available The new S-alkyl thiooxal-1-hydrazono-2-amidrazonium halides 2-4 were synthesized by reaction of the corresponding zwitterionic thiooxalic acid derivatives 1 with alkyl halides in methanol. The structures of compounds 4b and 4d were proven by X-ray structural analysis. Both compounds form an interesting intermolecular network of hydrogen bonds in the solid state.

  10. Mechanochemical N-alkylation of imides

    Directory of Open Access Journals (Sweden)

    Anamarija Briš

    2017-08-01

    Full Text Available The mechanochemical N-alkylation of imide derivatives was studied. Reactions under solvent-free conditions in a ball mill gave good yields and could be put in place of the classical solution conditions. The method is general and can be applied to various imides and alkyl halides. Phthalimides prepared under ball milling conditions were used in a mechanochemical Gabriel synthesis of amines by their reaction with 1,2-diaminoethane.

  11. N-Alkylation by Hydrogen Autotransfer Reactions.

    Science.gov (United States)

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.

  12. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  13. Investigation of the reactions of histone protein hydroperoxides and their role in DNA damage

    International Nuclear Information System (INIS)

    Luxford, C.; Dean, R.T.; Davies, M.J.

    1998-01-01

    Free radical attack on DNA results in base changes, cross-linking and strand cleavage leading to mutations if unrepaired. Histone proteins are intimately involved in DNA packaging and are excellent candidates for investigating DNA damage arising from protein-OOH-derived radicals. This study aimed (i) to investigate the formation of hydroperoxide on the linker histone H1 via radical reactions in the presence of O 2 ; (ii) to examine the radicals formed from transition metal ion-catalyzed breakdown of histone H1-OOH and (iii) to determine whether histone H1-OOH-derived radicals can damage DNA and free bases. (i) Histone H1 solutions were γ-irradiated ( 60 Co source) in the presence of O 2 and histone H1-OOH concentrations determined using a manual iodometric assay. Formation ( histone H1-OOH was dose-dependent and, in the absence of light or transition metal ions these hydroperoxides were found to be very stable (half life of 24 hours at 4degC ). (ii) Electron Paramagnetic Resonance (EPR) spectroscopy and spin trapping was used t investigate the Cu + -catalyzed breakdown of histone H1-OOH to form histone H1 protein side chain and -backbone carbon-centred radicals. Further EPR/spin trapping experiments showed that histone H1-OOH-derived radicals can oxidise pyrimidine bases (eg. uridine with the resultant trapping of three radical species; two pyrimidine radicals, C5-yl and Ct yl adducts (via addition of histone H1-OOH-derived radicals to the C5-C6 double bond o the pyrimidine ring) and an acyl radical adduct, whose origin is currently unknown. (iii) Damage to DNA and 2'-deoxyguanosine after reaction of histone H1-OOH-derive radicals were detected and quantified using HPLC (with EC and UV detection). We have identified 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) as a significant product ( histone H1-OOH-derived oxidative DNA modification. Increasing histone H1-OOH concentrations resulted in a concomitant increase in the amount of 8-oxodG formed. Our studies show

  14. Alkylation of reticular polymers of ethynyl piperidol by alkyl halogen and investigation of the swelling of the products in water

    International Nuclear Information System (INIS)

    Khakimkhodjaev, S.N.; Khalikov, D.Kh.

    1999-01-01

    In the paper the results of investigation on alkylation of reticular polymer of ethyl piperidol by methyl Iodide and ethyl Iodide are adduced. It have been shown that in the first case the reaction of an alkylation proceeds up to 100% of a degree of completion. In the second case of an alkylation the highest degree of alkylation reaches only 60% which is connected with formation of secondary structures. In both cases the process of an alkylation results in deriving highly swelled system

  15. Access to Alkyl-Substituted Lactone via Photoredox-Catalyzed Alkylation/Lactonization of Unsaturated Carboxylic Acids.

    Science.gov (United States)

    Sha, Wanxing; Ni, Shengyang; Han, Jianlin; Pan, Yi

    2017-11-03

    An efficient photoredox-catalyzed alkylation/lactonization reaction of unsaturated carboxylic acids by using alkyl N-hydroxyphthalimide esters as alkylation reagents has been developed. Varieties of redox-active esters derived from aliphatic carboxylic acids were proved viable in this method, affording alkyl substituted lactones in moderate to good yields. This redox-neutral procedure features mild conditions and operational simplicity, which provides a new strategy for the synthesis of alkyl substituted lactones.

  16. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS

    OpenAIRE

    Mei-Li You

    2016-01-01

    Cumene hydroperoxide (CHP) is widely used in chemical processes, mainly as an initiator for the polymerization of acrylonitrile–butadiene–styrene. It is a typical organic peroxide and an explosive substance. It is susceptible to thermal decomposition and is readily affected by contamination; moreover, it has high thermal sensitivity. The reactor tank, transit storage vessel, and pipeline used for manufacturing and transporting this substance are made of metal. Metal containers used in chemica...

  17. Technical note: Conversion of isoprene hydroxy hydroperoxides (ISOPOOHs) on metal environmental simulation chamber walls

    Science.gov (United States)

    Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Keutsch, Frank N.; Hansel, Armin

    2017-03-01

    Sources and sinks of isoprene oxidation products from low-NOx isoprene chemistry have been studied at the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber with a custom-built selective reagent ion time-of-flight mass spectrometer (SRI-ToF-MS), which allows quantitative measurement of isoprene hydroxy hydroperoxides (ISOPOOHs). The measured concentrations of the main oxidation products were compared to chemical box model simulations based on the Leeds Master Chemical Mechanism (MCM) v3.3. The modeled ISOPOOH concentrations are a factor of 20 higher than the observed concentrations, and methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations are up to a factor of 2 lower compared to observations, despite the artifact-free detection method. Addition of catalytic conversion of 1,2-ISOPOOH and 4,3-ISOPOOH to methyl vinyl ketone (MVK) and methacrolein (MACR) on the stainless-steel surface of the chamber to the chemical mechanism resolves the discrepancy between model predictions and observation. This suggests that isoprene chemistry in a metal chamber under low-NOx conditions cannot be described by a pure gas phase model alone. Biases in the measurement of ISOPOOH, MVK, and MACR can be caused not only intra-instrumentally but also by the general experimental setup. The work described here extends the role of heterogeneous reactions affecting gas phase composition and properties from instrumental surfaces, described previously, to general experimental setups. The role of such conversion reactions on real environmental surfaces is yet to be explored.

  18. Stability of hydroperoxide lyase activity from Amaranthus tricolor (Amaranthus mangostanus L.) leaves: influence of selected additives.

    Science.gov (United States)

    Long, Zhen; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei

    2010-04-15

    Hydroperoxide lyase (HPL) has potential value for the flavour additive industry. Currently, the production and application of HPL suffer from stability problems. The objective of this study was to investigate the stabilisation of HPL preparation from Amaranthus tricolor leaves by the addition of selected chemical additives. Amaranthus tricolor leaves were identified as a particularly rich source of 13-HPL activity. The addition of 100 g L(-1) sucrose and trehalose to microsomal HPL prior to lyophilisation could retain nearly 100% enzymatic activity, compared to only 20% for the lyophilised control. The lyophilised microsomal HPL containing sucrose maintained full activity for even 40 days storage at -20 degrees C. For HPL solution, glycerol was effective for long-term stability at -20 degrees C. Moreover, poyols (sucrose and trehalose) and amino acid (glycine) enhanced the thermostability of HPL, while KCl and polyol mannitol decreased the thermostability of HPL. The flavour-producing enzyme HPL, found in the leaves of Amaranthus tricolor, was stabilised by the addition of chemical additives. (c) 2010 Society of Chemical Industry.

  19. Activation and Stabilization of Olive Recombinant 13-Hydroperoxide Lyase Using Selected Additives.

    Science.gov (United States)

    Jacopini, Sabrina; Vincenti, Sophie; Mariani, Magali; Brunini-Bronzini de Caraffa, Virginie; Gambotti, Claude; Desjobert, Jean-Marie; Muselli, Alain; Costa, Jean; Tomi, Félix; Berti, Liliane; Maury, Jacques

    2017-07-01

    The stabilization of olive recombinant hydroperoxide lyases (rHPLs) was investigated using selected chemical additives. Two rHPLs were studied: HPL full-length and HPL with its chloroplast transit peptide deleted (matured HPL). Both olive rHPLs are relatively stable at 4 °C, and enzyme activity can be preserved (about 100% of the rHPL activities are maintained) during 5 weeks of storage at -20 or at -80 °C in the presence of glycerol (10%, v/v). Among the additives used in this study, glycine (2.5% w/v), NaCl (0.5 M), and Na 2 SO 4 (0.25 M) provided the highest activation of HPL full-length activity, while the best matured HPL activity was obtained with Na 2 SO 4 (0.25 M) and NaCl (1 M). Although the inactivation rate constants (k) showed that these additives inactivate both rHPLs, their use is still relevant as they strongly increase HPL activity. Results of C6-aldehyde production assays also showed that glycine, NaCl, and Na 2 SO 4 are appropriate additives and that NaCl appears to be the best additive, at least for hexanal production.

  20. The enol-variant of the hydroperoxide channel in alkene ozonolysis

    Science.gov (United States)

    Uherek, E.; Moortgat, G. K.

    2003-04-01

    Carboxylic acids, in particular dicarboxylic acids, belong to the product classes with lowest volatility in atmospheric oxidation and significantly contribute to aerosol formation. The mechanisms leading to carboxylic acids in the ozonolysis of alkenes have been investigated in laboratory experiments. The concentrations of symmetric alkenes have been varied in the range from 0.5 - 4 ppm (excess of ozone) in a 570 L smog chamber. The systematic tendencies leading to different yields for C(n) acids (2-5%) and C(n-1) acids (4-10%) formed from a Criegee Intermediate with n carbon atoms reveal that C(n) acids are formed via several pathways, partially as products of secondary chemistry. The formation of the C(n-1) acids however, which are not yet included in the established mechanisms, requires the introduction of a new mechanism. The acids are primary products and their formation can be explained by a variant of the hydroperoxide channel in ozonolysis. In this variant a keto-enol tautomery of a radical intermediate is followed by an allyl rearrangement. This step allows further oxidation of the beta-C-atom of the Criegee Intermediate and does not only explain the formation of C(n-1) acids in this systematic study but can also be an additional pathway to the dicarboxylic acids detected in terpene oxidation.

  1. Measurement of hydrogen peroxide and organic hydroperoxide concentrations during autumn in Beijing, China.

    Science.gov (United States)

    Zhang, Qingyu; Liu, Jiaoyu; He, Youjiang; Yang, Jiaying; Gao, Jian; Liu, Houfeng; Tang, Wei; Chen, Yizhen; Fan, Wenhao; Chen, Xuan; Chai, Fahe; Hatakeyama, Shiro

    2018-02-01

    Gaseous peroxides play important roles in atmospheric chemistry. To understand the pathways of the formation and removal of peroxides, atmospheric peroxide concentrations and their controlling factors were measured from 7:00 to 20:00 in September, October, and November 2013 at a heavily trafficked residential site in Beijing, China, with average concentrations of hydrogen peroxide (H 2 O 2 ) and methyl hydroperoxide (MHP) at 0.55ppb and 0.063ppb, respectively. H 2 O 2 concentrations were higher in the afternoon and lower in the morning and evening, while MHP concentrations did not exhibit a regular diurnal pattern. Both H 2 O 2 and MHP concentrations increased at dusk in most cases. Both peroxides displayed monthly variations with higher concentrations in September. These results suggested that photochemical activity was the main controlling factor on variations of H 2 O 2 concentrations during the measurement period. Increasing concentrations of volatile organic compounds emitted by motor vehicles were important contributors to H 2 O 2 and MHP enrichment. High levels of H 2 O 2 and MHP concentrations which occurred during the measurement period probably resulted from the transport of a polluted air mass with high water vapor content passing over the Bohai Bay, China. Copyright © 2017. Published by Elsevier B.V.

  2. Measuring hydroperoxide chain-branching agents during n-pentane low-temperature oxidation

    KAUST Repository

    Rodriguez, Anne

    2016-06-23

    The reactions of chain-branching agents, such as HO and hydroperoxides, have a decisive role in the occurrence of autoignition. The formation of these agents has been investigated in an atmospheric-pressure jet-stirred reactor during the low-temperature oxidation of n-pentane (initial fuel mole fraction of 0.01, residence time of 2s) using three different diagnostics: time-of-flight mass spectrometry combined with tunable synchrotron photoionization, time-of-flight mass spectrometry combined with laser photoionization, and cw-cavity ring-down spectroscopy. These three diagnostics enable a combined analysis of HO, C-C, and C alkylhydroperoxides, C-C alkenylhydroperoxides, and C alkylhydroperoxides including a carbonyl function (ketohydroperoxides). Results using both types of mass spectrometry are compared for the stoichiometric mixture. Formation data are presented at equivalence ratios from 0.5 to 2 for these peroxides and of two oxygenated products, ketene and pentanediones, which are not usually analyzed during jet-stirred reactor oxidation. The formation of alkenylhydroperoxides during alkane oxidation is followed for the first time. A recently developed model of n-pentane oxidation aids discussion of the kinetics of these products and of proposed pathways for C-C alkenylhydroperoxides and the pentanediones.

  3. Molecular design of sequence specific DNA alkylating agents.

    Science.gov (United States)

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  4. Formation of Aldehydic Phosphatidylcholines during the Anaerobic Decomposition of a Phosphatidylcholine Bearing the 9-Hydroperoxide of Linoleic Acid

    Directory of Open Access Journals (Sweden)

    Arnold N. Onyango

    2016-01-01

    Full Text Available Lipid oxidation-derived carbonyl compounds are associated with the development of various physiological disorders. Formation of most of these products has recently been suggested to require further reactions of oxygen with lipid hydroperoxides. However, in rat and human tissues, the formation of 4-hydroxy-2-nonenal is greatly elevated during hypoxic/ischemic conditions. Furthermore, a previous study found an unexpected result that the decomposition of a phosphatidylcholine (PC bearing the 13-hydroperoxide of linoleic acid under a nitrogen atmosphere afforded 9-oxononanoyl-PC rather than 13-oxo-9,11-tridecadienoyl-PC as the main aldehydic PC. In the present study, products of the anaerobic decomposition of a PC bearing the 9-hydroperoxide of linoleic acid were analysed by electrospray ionization mass spectrometry. 9-Oxononanoyl-PC (ONA-PC and several well-known bioactive aldehydes including 12-oxo-9-hydroperoxy-(or oxo or hydroxy-10-dodecenoyl-PCs were detected. Hydrolysis of the oxidized PC products, methylation of the acids obtained thereby, and subsequent gas chromatography-mass spectroscopy with electron impact ionization further confirmed structures of some of the key aldehydic PCs. Novel, hydroxyl radical-dependent mechanisms of formation of ONA-PC and peroxyl-radical dependent mechanisms of formation of the rest of the aldehydes are proposed. The latter mechanisms will mainly be relevant to tissue injury under hypoxic/anoxic conditions, while the former are relevant under both normoxia and hypoxia/anoxia.

  5. The scarlet letter of alkylation: a mini review of selective alkylating agents.

    Science.gov (United States)

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-08-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to "tame" the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it is referred to herein, constitutes an extremely nascent and dynamic field in oncology. The pharmacodynamic response to this selective strategy depends on a delicate kinetic balance between specificity and the rate and extent of binding. Three representative compounds are presented: RRx-001, 3-bromopyruvate, and TH-302. The main impetus for the development of these compounds has been the avoidance of the serious complications of traditional alkylating agents; therefore, it is the thesis of this review that they should not experience stigma by association.

  6. Alkylation of isobutane with light olefins: Yields of alkylates for different olefins

    Energy Technology Data Exchange (ETDEWEB)

    Albright, L.F. [Purdue Univ., West Lafayette, IN (United States); Kranz, K.E.; Masters, K.R. [STRATCO, Inc., Leawood, KS (United States)

    1993-12-01

    For alkylation of isobutane with C{sub 3}-C{sub 5} olefins using sulfuric acid as the catalyst, the yields of alkylates with different olefins are compared as the operating conditions are changed. The results of recent pilot plant experiments with propylene, C{sub 4} olefins, and C{sub 5} olefins permit such comparisons. The yields expressed as weight of alkylate produced per 100 wt of olefin consumed varied from about 201:100 to 220:100. Weight ratios of the isobutane consumed per olefin consumed vary from about 101:100 to 120:100. differences of yield values are explained by the changes in the overall chemistry. The procedure employed to calculate yields with good accuracy is based on the analysis of the alkylate and the amount of conjunct polymers produced. Based on literature data, yields are also reported for alkylations using HF as the catalyst.

  7. Thioredoxin Reductase and its Inhibitors

    Science.gov (United States)

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  8. The light activated alkylation of glycine

    International Nuclear Information System (INIS)

    Knowles, H.S.

    2001-04-01

    The work contained in this thesis focuses on the light-initiated alkylation of the α-centre of glycine compounds. The elaboration of the glycines in this manner represents a versatile, clean and cost effective alternative to ionic routes to higher α-amino acids. Preliminary investigations demonstrated that a range of nitrogen protecting groups were compatible with the radical alkylation. A variety of solvents could also be used although solvents with easily removable hydrogen atoms were found to interfere with the alkylation. Furthermore, a number of photo-initiators were investigated and the use of di-tert-butyl peroxide was found to afford the desired phenylalanine products in up to 27% yield (54% based on recovered starting material) when toluene was used as the alkylating agent. A range of different precursor concentrations was investigated and it was found that the optimum concentration of the glycine precursor was 0.13 mol dm -3 ; the phenylalanine yields were reduced when the concentration was less than this value. Owing to the poor UV absorption by di-tert-butyl peroxide, benzophenone (an effective photosensitiser) was added to the reaction mixture and this was shown to increase the alkylation yields. The ratio of reagents which produced the highest yield of phenylalanine products was found to be 1 : 5 : 5 : 10 for glycine : di-tert-butyl peroxide : benzophenone : toluene. This produced the phenylalanine product in up to 37% yield (57% based on recovered starting material). A number of substituents. (e.g. F, Cl etc.) could be attached to the aromatic ring of the toluene alkylating agent, affording substituted phenylalanines in 5 - 36% under these conditions. The formation of chiral phenylalanine products was probed by reacting glycine precursors bearing chiral auxiliaries. However, low diastereoselectivities were observed; the d.r. ranged from 1 : 1.1 to 1 : 1.5 only when chiral ester and amide protecting groups were used. In the final chapter, the α-alkylation

  9. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols

    Science.gov (United States)

    Hua, W.; Chen, Z. M.; Jie, C. Y.; Kondo, Y.; Hofzumahaus, A.; Takegawa, N.; Chang, C. C.; Lu, K. D.; Miyazaki, Y.; Kita, K.; Wang, H. L.; Zhang, Y. H.; Hu, M.

    2008-11-01

    Atmospheric hydrogen peroxide (H2O2) and organic hydroperoxides were measured from 18 to 30 July in 2006 during the PRIDE-PRD'06 campaign at Backgarden, a rural site located 48 km north of Guangzhou, a mega-city in southern China. A ground-based instrument was used as a scrubbing coil collector to sample ambient air, followed by on-site analysis by high-performance liquid chromatography (HPLC) coupled with post-column derivatization and fluorescence detection. The H2O2 mixing ratio over the 13 days ranged from below the detection limit to a maximum of 4.6 ppbv, with a mean (and standard deviation) of (1.26±1.24) ppbv during the daytime (08:00 20:00 LT). Methyl hydroperoxide (MHP), with a maximum of 0.8 ppbv and a mean (and standard deviation) of (0.28±0.10) ppbv during the daytime, was the dominant organic hydroperoxide. Other organic peroxides, including bis-hydroxymethyl hydroperoxide (BHMP), peroxyacetic acid (PAA), hydroxymethyl hydroperoxide (HMHP), 1-hydroxy-ethyl hydroperoxide (1-HEHP) and ethyl hydroperoxide (EHP), were detected occasionally. The concentration of H2O2 exhibited a pronounced diurnal variation on sunny days, with a peak mixing ratio in the afternoon (12:00 18:00 LT), but lacked an explicit diurnal cycle on cloudy days. Sometimes a second peak mixing ratio of H2O2 was observed during the evening, suggesting that H2O2 was produced by the ozonolysis of alkenes. The diurnal variation profile of MHP was, in general, consistent with that of H2O2. The estimation indicated that in the morning the H2O2 detected was formed mostly through local photochemical activity, with the rest probably attributable to vertical transport. It is notable that relatively high levels of H2O2 and MHP were found in polluted air. The unexpectedly high level of HO2 radicals detected in this region can account for the production of hydroperoxides, while the moderate level of NOx suppressed the formation of hydroperoxides. High concentrations of hydroperoxides were detected

  10. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols

    Directory of Open Access Journals (Sweden)

    W. Hua

    2008-11-01

    Full Text Available Atmospheric hydrogen peroxide (H2O2 and organic hydroperoxides were measured from 18 to 30 July in 2006 during the PRIDE-PRD'06 campaign at Backgarden, a rural site located 48 km north of Guangzhou, a mega-city in southern China. A ground-based instrument was used as a scrubbing coil collector to sample ambient air, followed by on-site analysis by high-performance liquid chromatography (HPLC coupled with post-column derivatization and fluorescence detection. The H2O2 mixing ratio over the 13 days ranged from below the detection limit to a maximum of 4.6 ppbv, with a mean (and standard deviation of (1.26±1.24 ppbv during the daytime (08:00–20:00 LT. Methyl hydroperoxide (MHP, with a maximum of 0.8 ppbv and a mean (and standard deviation of (0.28±0.10 ppbv during the daytime, was the dominant organic hydroperoxide. Other organic peroxides, including bis-hydroxymethyl hydroperoxide (BHMP, peroxyacetic acid (PAA, hydroxymethyl hydroperoxide (HMHP, 1-hydroxy-ethyl hydroperoxide (1-HEHP and ethyl hydroperoxide (EHP, were detected occasionally. The concentration of H2O2 exhibited a pronounced diurnal variation on sunny days, with a peak mixing ratio in the afternoon (12:00–18:00 LT, but lacked an explicit diurnal cycle on cloudy days. Sometimes a second peak mixing ratio of H2O2 was observed during the evening, suggesting that H2O2 was produced by the ozonolysis of alkenes. The diurnal variation profile of MHP was, in general, consistent with that of H2O2. The estimation indicated that in the morning the H2O2 detected was formed mostly through local photochemical activity, with the rest probably attributable to vertical transport. It is notable that relatively high levels of H2O2 and MHP were found in polluted air. The unexpectedly high level of HO2 radicals

  11. Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages.

    Directory of Open Access Journals (Sweden)

    Soo-Ho Choi

    Full Text Available Oxidation of low-density lipoprotein (LDL is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography - tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis.

  12. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  13. Outlook for the U.S. alkylation industry

    International Nuclear Information System (INIS)

    Felten, J.R.; Bradshaw, T.; McCarthy, K.

    1994-01-01

    Alkylation has long been recognized in the refining industry as one of the best options to convert refinery olefins into valuable, clean, high octane blending components. In fact, refinery alkylation is a preferred source of blending stocks for reformulated gasoline. However, the hydrofluoric acid (HF) alkylation process and, to a lesser extent, the sulfuric acid (SA) process have come under increasing pressure in the US due to safety and environmental concerns. This paper examines the current outlook for the US alkylation industry including: key trends and driving forces in the industry, the impact of environmental issues on both HF and SA alkylation, US alkylation supply/demand forecast including the outlook for oxygenates, how US refines will respond to the increased demand and restricted supply for alkylates, and the outlook for new solid acid alkylation (SAC) technology

  14. Mechanisms of resistance to alkylating agents

    OpenAIRE

    Damia, G.; D‘Incalci, M.

    1998-01-01

    Alkylating agents are the most widely used anticancer drugs whose main target is the DNA, although how exactly the DNA lesions cause cell death is still not clear. The emergence of resistance to this class of drugs as well as to other antitumor agents is one of the major causes of failure of cancer treatment. This paper reviews some of the best characterized mechanisms of resistance to alkylating agents. Pre- and post-target mechanisms are recognized, the former able to limit the formation of...

  15. Graft copolymerization of a series of alkyl acrylates and alkyl methacrylates onto polyethylene

    International Nuclear Information System (INIS)

    Zurakowska-Orszagh, J.; Soerjosoeharto, K.; Busz, W.; Oldziejewski, J.

    1977-01-01

    Graft copolymerization of a series of alkyl acrylates and alkyl methacrylates into polyethylene of Polish production was investigated, using benzoyl peroxide as the initiator as well as preirradiation technique, namely ionizing radiation from a 60 Co γ-source. The effect of α-carbon methyl substituent of methacrylates as well as the influence of the length of alkyl chains in the ester groups of both series of monomers into the grafting process was observed. The ungrafted and some of the grafted polyethylene film obtained was studied by infrared spectrophotometry. (author)

  16. Oxidative Umpolung α‐Alkylation of Ketones

    DEFF Research Database (Denmark)

    Shneider, O. Svetlana; Pisarevsky, Evgeni; Fristrup, Peter

    2015-01-01

    We disclose a hypervalent iodine mediated α-alkylative umpolung reaction of carbonyl compounds with dialkylzinc as the alkyl source. The reaction is applicable to all common classes of ketones including 1,3-dicarbonyl compounds and regular ketones via their lithium enolates. The α-alkylated...

  17. 40 CFR 721.10053 - Alkyl silane methacrylate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl silane methacrylate (generic... Specific Chemical Substances § 721.10053 Alkyl silane methacrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl silane...

  18. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  19. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    Science.gov (United States)

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  20. Quantitative estimation of the extent of alkylation of DNA following treatment of mammalian cells with non-radioactive alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D. (Univ. of Tennessee, Oak Ridge); Regan, J.D.

    1981-01-01

    Alkaline sucrose sedimentation has been used to quantitate phosphotriester formation following treatment of human cells with the monofunctional alkylating agents methyl and ethyl methanesulfonate. These persistent alkaline-labile lesions are not repaired during short-term culture conditions and thus serve as a useful and precise index of the total alkylation of the DNA.Estimates of alkylation by this procedure compare favorably with direct estimates by use of labeled alkylating agents.

  1. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  2. Williamson alkylation approach to the synthesis of poly(alkyl vinyl ether) copolymers

    International Nuclear Information System (INIS)

    Markova, D.; Christova, D.; Velichkova, R.

    2008-01-01

    A method for synthesis of poly(alkyl vinyl ether-co-vinyl alcohol) copolymers was developed based on the Williamson's alkylation of poly(vinyl acetate) (PVAc) with alkyl iodides. The influence of the alkylating agent and the reaction conditions on the efficiency of the modification reaction was investigated. The copolymers obtained were characterized by means of 1 H NMR and GPC. It was proved that by applying the proposed method copolymers of different composition and properties containing methyl vinyl ether, ethyl vinyl ether as well as n-butyl vinyl ether units could be prepared. Poly(methyl vinyl ether-co-vinyl alcohol)s of high degree of methylation exhibit sharp temperature response at 38-39 deg C in aqueous solution typical of the so-called smart polymers. (authors)

  3. Spurious cooperativity in alkylated succinic acids

    Science.gov (United States)

    Ben-Naim, A.

    1998-03-01

    The proton-proton correlation, as measured by the ratio between the second and the first dissociation constants of dibasic acid, is sometimes very large and far beyond what could be explained by electrostatic theories. We propose a novel interpretation of this phenomenon based on the idea of spurious cooperativity. The general theoretical framework underlying the onset of spurious cooperativity is developed first. The basic result is that whenever a binding (or dissociating) two-site (or more) system splits into a mixture of noninterconverting isomers the binding isotherm (or the titration curve) behaves as if it is more negatively cooperative compared with the genuine cooperativities of the individual isomer. The theory is applied to a specific system of α-α' dialkyl succinic acid. It is known that the Meso form of these alkylated derivatives show a normal correlation of the same order of magnitude as in succinic acid. On the other hand, the Racemic form of these alkylated derivatives shows anomalous strong negative correlations when the alkyl groups become large (e.g., isopropyl and tert butyl). It is shown that the theory of spurious cooperativity can explain the different behavior of the Racemic and the Meso forms, as well as the onset of anomalous strong negative correlations when the alkyl groups become large.

  4. Biodesulfurization of dibenzothiophene and its alkylated derivatives ...

    African Journals Online (AJOL)

    RIPI-S81 is a new dibenzothiophene (DBT)-desulfurizing bacterium, which was isolated by Research Institute of Petroleum Industry in Iran. Resting cells and growing cells of RIPI-S81 was able to convert alkylated dibenzothiophenes (Cx DBTs) to hydroxybiphenyls such that they were almost stoichiometrically accumulated ...

  5. Poly(ethyleneoxide) functionalization through alkylation

    Science.gov (United States)

    Sivanandan, Kulandaivelu; Eitouni, Hany Basam; Li, Yan; Pratt, Russell Clayton

    2015-04-21

    A new and efficient method of functionalizing high molecular weight polymers through alkylation using a metal amide base is described. This novel procedure can also be used to synthesize polymer-based macro-initiators containing radical initiating groups at the chain-ends for synthesis of block copolymers.

  6. Catalytic Asymmetric Alkylation of Aryl Heteroaryl Ketones

    NARCIS (Netherlands)

    Ortiz, Pablo; Harutyunyan, Syuzanna; del Hoyo, Ana

    Tertiary diarylmethanols are highly bioactive structural motifs. A new strategy to access chiral tertiary diarylmethanols through copper-catalyzed direct alkylation of (di)(hetero)aryl ketones by using Grignard reagents was developed. The low reactivity and the similarity of the enantiotopic faces

  7. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pKa of the nucleophile. This limitation could be due to the pH dependence...

  8. Palladium catalysed asymmetric alkylation of benzophenone Schiff ...

    Indian Academy of Sciences (India)

    Asymmetric alkyl substitution of various benzophenone Schiff base substrates under biphasic conditions proceeded using optically active Palladium(II) complexes. The corresponding products were obtained in high yields but with moderate enantiomeric excess (ee). Addition of specific ionic liquids to the reaction medium ...

  9. Electrochemical synthesis of alkyl nitroaromatic compounds.

    Science.gov (United States)

    Gallardo, Iluminada; Guirado, Gonzalo; Marquet, Jordi

    2003-01-24

    Alkyl nitroaromatic compounds were readily prepared via nucleophilic aromatic substitution for hydrogen or a heteroatom by electrochemical oxidation of the sigma-complex. Butyllithium and butylmagnesium chloride were used as nucleophiles, and several nitrocompounds were tested to explore the possibilities of the NASH and NASX reactions promoted electrochemically.

  10. Palladium catalysed asymmetric alkylation of benzophenone Schiff ...

    Indian Academy of Sciences (India)

    transfer catalysts for asym- metric alkylation of achiral Schiff base esters. Trans. Met. Chem. 35 249. (doi:10.1007/s11243-010-9416-4). 29. Wilkes J S 2002 A short history of ionic liquids from molten salts to neoteric solvents. Green Chem. 4 73. 30.

  11. Recent developments in isobutane/olefin alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Lercher, J.A.; Feller, A. [Inst. fuer Technische Chemie, Technische Univ. Muenchen (Germany)

    2002-07-01

    The isobutane/alkene alkylation is reviewed with respect to recent process developments based on liquid and solid acid catalysts. A brief overview about the established processes is given followed by the description of new processes based on solid acids under development. (orig.)

  12. Isolation and characterization of two hydroperoxide lyase genes from grape berries : HPL isogenes in Vitis vinifera grapes.

    Science.gov (United States)

    Zhu, Bao-Qing; Xu, Xiao-Qing; Wu, Yu-Wen; Duan, Chang-Qing; Pan, Qiu-Hong

    2012-07-01

    C6 compounds are the major fraction of the volatile profiles of grape berries, contributing the typical 'green' aroma to the grape and wine. Hydroperoxide lyase (HPL) catalyzes the cleavage of fatty acid hydroperoxides to produce C6 compounds. Two hypothetical genes, VvHPL1 and VvHPL2 were cloned from grape berries (Vitis vinifera L. Cabernet Sauvignon). Bioinformatics analysis revealed that the proteins encoded by these two genes both belong to subfamily of cytochrome P450 and contain typical conserved domains of HPLs, and have high identity with HPLs from other plants. Prokaryotically-expressed VvHPL1 and VvHPL2 with thioredoxin-6xHis-fusion partner were confirmed to have enzymatic activity. VvHPL1 is specific for 13-HPOD (T) producing C6 aldehydes with relatively higher activity and VvHPL2 catalyzes the cleavage of both 9- and 13-hydroperoxides producing C6 aldehydes and C9 aldehydes respectively. Analysis of real time-PCR showed that VvHPL2 was highly expressed in the leaves and the flowers of the grapes, while relatively low transcript abundance was detected in the berries, tendril and stems; VvHPL1 had high expression in all detected tissues. During grape berry development, the expression of these two isogenes presented similar trends with a rapid increase after veraison and a decrease at full-ripen stage, which roughly corresponded to the accumulation of their volatile products. These data lay an essential foundation for further study on the accumulation and control of C6 volatiles in grape berries.

  13. Bis(trialkylsilyl) peroxides as alkylating agents in the copper-catalyzed selective mono-N-alkylation of primary amides.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-06-13

    The copper-catalyzed selective mono-N-alkylation of primary amides with bis(trialkylsilyl) peroxides as alkylating agents was reported. The results of a mechanistic study suggest that this reaction should proceed via a free radical process that includes the generation of alkyl radicals from bis(trialkylsilyl) peroxides.

  14. Sulfonium Salts as Alkylating Agents for Palladium-Catalyzed Direct Ortho Alkylation of Anilides and Aromatic Ureas.

    Science.gov (United States)

    Simkó, Dániel Cs; Elekes, Péter; Pázmándi, Vivien; Novák, Zoltán

    2018-02-02

    A novel method for the ortho alkylation of acetanilide and aromatic urea derivatives via C-H activation was developed. Alkyl dibenzothiophenium salts are considered to be new reagents for the palladium-catalyzed C-H activation reaction, which enables the transfer of methyl and other alkyl groups from the sulfonium salt to the aniline derivatives under mild catalytic conditions.

  15. VP-16 and alkylating agents activate a common metabolic pathway for suppression of DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Berger, N.A.

    1986-05-01

    The cytotoxic effects of etoposide (VP-16) are mediated by topoisomerase II production of protein crosslinked DNA strand breaks. Previous studies have shown that alkylating agent induced DNA damage results in expansion of dTTP pools and reduction of dCTP pools and DNA replication. Studies were conducted with V79 cells to determine whether the metabolic consequences of VP-16 treatment were similar to those induced by alkylating agents. Treatment with 0.5..mu..M VP-16 prolonged the doubling time of V79 cells from 12 to 18 hrs and caused cell volume to increase from 1.1 to 1.6 x 10/sup -12/l. 2mM caffeine completely blocked the volume increase and substantially prevented the prolongation of doubling time. 5..mu..M VP-16 reduced the rate of (/sup 3/H)TdR incorporation by 70%, whereas in the presence of 2mM caffeine, VP-16 caused only a 10% decrease in the rate of (/sup 3/H)TdR incorporation. 4 hr treatment with 5.0..mu..M VP-16 increased dTTP levels from 65 +/- 10 pmol/10/sup 6/ cells to 80 +/- 13 pmol/10/sup 6/ cells and caused dCTP level to decline from 113 +/- 23 pmol/10/sup 6/ cells to 92 +/- 17 pmol/10/sup 6/ cells. These results indicate that the metabolic consequences of VP-16 treatment are similar to alkylating agent treatment and that an increase in dTTP pools with a subsequent effect on ribonucleotide reductase may be a final common pathway by which many cytotoxic agents suppress DNA synthesis.

  16. VP-16 and alkylating agents activate a common metabolic pathway for suppression of DNA replication

    International Nuclear Information System (INIS)

    Das, S.K.; Berger, N.A.

    1986-01-01

    The cytotoxic effects of etoposide (VP-16) are mediated by topoisomerase II production of protein crosslinked DNA strand breaks. Previous studies have shown that alkylating agent induced DNA damage results in expansion of dTTP pools and reduction of dCTP pools and DNA replication. Studies were conducted with V79 cells to determine whether the metabolic consequences of VP-16 treatment were similar to those induced by alkylating agents. Treatment with 0.5μM VP-16 prolonged the doubling time of V79 cells from 12 to 18 hrs and caused cell volume to increase from 1.1 to 1.6 x 10 -12 l. 2mM caffeine completely blocked the volume increase and substantially prevented the prolongation of doubling time. 5μM VP-16 reduced the rate of [ 3 H]TdR incorporation by 70%, whereas in the presence of 2mM caffeine, VP-16 caused only a 10% decrease in the rate of [ 3 H]TdR incorporation. 4 hr treatment with 5.0μM VP-16 increased dTTP levels from 65 +/- 10 pmol/10 6 cells to 80 +/- 13 pmol/10 6 cells and caused dCTP level to decline from 113 +/- 23 pmol/10 6 cells to 92 +/- 17 pmol/10 6 cells. These results indicate that the metabolic consequences of VP-16 treatment are similar to alkylating agent treatment and that an increase in dTTP pools with a subsequent effect on ribonucleotide reductase may be a final common pathway by which many cytotoxic agents suppress DNA synthesis

  17. Quinone reductase (QR) inducers from Andrographis paniculata and identification of molecular target of andrographolide.

    Science.gov (United States)

    Yuan, Yonglei; Ji, Long; Luo, Liping; Lu, Juan; Ma, Xiaoqiong; Ma, Zhongjun; Chen, Zhe

    2012-12-01

    In the present study, it was demonstrated that the petroleum extract of Andrographis paniculata (AP) had quinone reductase (QR) inducing activity, which might be attributed to the modification of key cysteine residues in Keap1 by Michael addition acceptors (MAAs) in it. To screen MAAs in AP, glutathione (GSH) was employed, and a LC/MS/MS method was implied. Three compounds, andrographoside, andrographolide, 14-deoxy-14,15-dehydroandrographolide were revealed could well conjugated with GSH. Then, andrographolide along with 4 new and 14 known compounds were isolated to conduct QR induction evaluation, and the CD (the concentration required to double the activity of QR) value of andrographolide is 1.43μM. The QR induce activity of andrographolide might be attributed to its targeting multiple cysteine residues in Keap1, therefore, the alkylation of Keap1 by andrographolide was further studied and the result showed that four cysteine residues: Cys77, Cys151, Cys273 and Cys368 were alkylated, which indicated that Keap1 is a potential target for the QR induce activity of andrographolide. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Embryotoxicity induced by alkylating agents. Some methodological aspects of DNA alkylation studies in murine embryos using ethylmethanesulfonate.

    Science.gov (United States)

    Platzek, T; Bochert, G; Rahm, U; Neubert, D

    1987-05-01

    Synthesis and spectroscopic analysis of some alkylated DNA purine bases are described. HPLC separation methods are developed for the determination of DNA alkylation rates in mammalian embryonic tissues. Following treatment of pregnant mice with the ethylating agent ethylmethanesulfonate (EMS), an appreciable amount of alkylation (ethylation and methylation) was found in the nuclear DNA of the embryos during organogenesis. The results are discussed in context of our thesis that a certain amount of DNA alkylation in the embryos is correlated to the teratogenic potential of alkylating agents.

  19. Reaction of lithium diethylamide with an alkyl bromide and alkyl benzenesulfonate: origins of alkylation, elimination, and sulfonation.

    Science.gov (United States)

    Gupta, Lekha; Ramírez, Antonio; Collum, David B

    2010-12-17

    A combination of NMR, kinetic, and computational methods are used to examine reactions of lithium diethylamide in tetrahydrofuran (THF) with n-dodecyl bromide and n-octyl benzenesulfonate. The alkyl bromide undergoes competitive S(N)2 substitution and E2 elimination in proportions independent of all concentrations except for a minor medium effect. Rate studies show that both reactions occur via trisolvated-monomer-based transition structures. The alkyl benzenesulfonate undergoes competitive S(N)2 substitution (minor) and N-sulfonation (major) with N-sulfonation promoted at low THF concentrations. The S(N)2 substitution is shown to proceed via a disolvated monomer suggested computationally to involve a cyclic transition structure. The dominant N-sulfonation follows a disolvated-dimer-based transition structure suggested computationally to be a bicyclo[3.1.1] form. The differing THF and lithium diethylamide orders for the two reactions explain the observed concentration-dependent chemoselectivities.

  20. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... nitrate salts supply on nitrate accumulation, amino acid biosynthesis, total protein production, nitrate reductase activity and carbohydrate biosynthesis in the roots and leaves of the plants. The results indicate that both sodium and potassium nitrate supplementation had stimulatory effects on all of the.

  1. Methylenetetrahydrofolate reductase A1298C polymorphism and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: A meta analysis of 33 studies. ... were searched for case‑control studies relating the association between MTHFR A1298C polymorphism and BC risk and estimated summary odds ratios (ORs) with confidence intervals (CIs) for assessment.

  2. Xylose reductase from the thermophilic fungus Talaromyces ...

    Indian Academy of Sciences (India)

    Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed ...

  3. Methylenetetrahydrofolate reductase (MTHFR) C677T gene ...

    Indian Academy of Sciences (India)

    vitamin B12 and riboflavin that are required in Hcy metabolic pathway. Gene that encodes the methylenete- trahydrofolate reductase (MTHFR) enzyme that .... tors like climate, food habits, lifestyle and genetic makeup are common. Validation of the results of the present study in different ethnic groups with larger sample ...

  4. phenotype correlation of methylene tetrahydrofolate reductase ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    2014-06-21

    Jun 21, 2014 ... ORIGINAL ARTICLE. Study of genotype–phenotype correlation of methylene tetrahydrofolate reductase (MTHFR) gene polymorphisms in a sample of Egyptian autistic children. Rabah M. Shawky a,. *, Farida El-baz b. , Tarek M. Kamal c. , Reham M. Elhossiny b. ,. Mona A. Ahmed b. , Ghada H. El Nady d.

  5. Tomato Phospholipid Hydroperoxide Glutathione Peroxidase Inhibits Cell Death Induced by Bax and Oxidative Stresses in Yeast and Plants1

    Science.gov (United States)

    Chen, Shaorong; Vaghchhipawala, Zarir; Li, Wei; Asard, Han; Dickman, Martin B.

    2004-01-01

    Using a conditional life or death screen in yeast, we have isolated a tomato (Lycopersicon esculentum) gene encoding a phospholipid hydroperoxide glutathione peroxidase (LePHGPx). The protein displayed reduced glutathione-dependent phospholipid hydroperoxide peroxidase activity, but differs from counterpart mammalian enzymes that instead contain an active seleno-Cys. LePHGPx functioned as a cytoprotector in yeast (Saccharomyces cerevisiae), preventing Bax, hydrogen peroxide, and heat stress induced cell death, while also delaying yeast senescence. When tobacco (Nicotiana tabacum) leaves were exposed to lethal levels of salt and heat stress, features associated with mammalian apoptosis were observed. Importantly, transient expression of LePHGPx protected tobacco leaves from salt and heat stress and suppressed the apoptotic-like features. As has been reported, conditional expression of Bax was lethal in tobacco, resulting in tissue collapse and membrane permeability to Evans blue. When LePHGPx was coexpressed with Bax, little cell death and no vital staining were observed. Moreover, stable expression of LePHGPx in tobacco conferred protection against the fungal phytopathogen Botrytis cinerea. Taken together, our data indicated that LePHGPx can protect plant tissue from a variety of stresses. Moreover, functional screens in yeast are a viable tool for the identification of plant genes that regulate cell death. PMID:15235116

  6. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal.

    Science.gov (United States)

    Arora, Jasbir S; Oe, Tomoyuki; Blair, Ian A

    2011-05-15

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2( E )-nonenal and 4-oxo-2( E )-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α , β -unsaturated aldehyde that can react in multiple ways and with glutathione, proteins and DNA. Heavy isotope-labeled analogs of ONE are not readily available for conducting mechanistic studies or for use as internal standards in mass spectrometry (MS)-based assays. An efficient onestep cost-effective method has been developed for the preparation of C-9 deuterium-labeled ONE. In addition, a method for specific deuterium labeling of ONE at C-2, C-3 or both C-2 and C-3 has been developed. This latter method involved the selective reduction of an intermediate alkyne either by lithium aluminum hydride or lithium aluminum deuteride and quenching with water or deuterium oxide. The availability of these heavy isotope analogs will be useful as internal standards for quantitative studies employing MS and for conducting mechanistic studies of complex interactions between ONE and DNA bases as well as between ONE and proximal amino acid residues in peptides and proteins.

  7. Reaction engineering of urea alcoholysis: Alkyl carbamates

    OpenAIRE

    Mote, Dhananjay R.; Ranade, Vivek V.

    2017-01-01

    Urea alcoholysis is a reversible reaction generating alkyl carbamate and ammonia as products. The reaction can be performed non-catalytically or in presence of catalyst. The first step in Reaction engineering analysis is to finalize the reactor configuration. In this case it is important to determine the necessity of reactive separation (simultaneous reaction and separation). This has been addressed by first establishing the reversibility of the reaction through theoretical and experimental i...

  8. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    Science.gov (United States)

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  9. DNA-directed alkylating ligands as potential antitumor agents: sequence specificity of alkylation by intercalating aniline mustards.

    Science.gov (United States)

    Prakash, A S; Denny, W A; Gourdie, T A; Valu, K K; Woodgate, P D; Wakelin, L P

    1990-10-23

    The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.

  10. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents.

    Science.gov (United States)

    Beranek, D T

    1990-07-01

    Alkylating agents, because of their ability to react directly with DNA either in vitro or in vivo, or following metabolic activation as in the case of the dialkylnitrosamines, have been used extensively in studying the mechanisms of mutagenicity and carcinogenicity. Their occurrence is widespread in the environment and human exposure from natural and pollutant sources is universal. Since most of these chemicals show varying degrees of both carcinogenicity and mutagenicity, and exhibit compound-specific binding patterns, they provide an excellent model for studying molecular dosimetry. Molecular dosimetry defines dose as the number of adducts bound per macromolecule and relates the binding of these adducts to the human mutagenic or carcinogenic response. This review complies DNA alkylation data for both methylating and ethylating agents in a variety of systems and discusses the role these alkylation products plays in molecular mutagenesis.

  11. Manganese-catalyzed Dehydrogenative Alkylation or α-Olefination of Alkyl-N-Heteroaromatics by Alcohols.

    Science.gov (United States)

    Kempe, Rhett; Zhang, Guoying; Irrgang, Torsten; Dietel, Thomas; Kallmeier, Fabian

    2018-05-02

    Catalysis involving earth-abundant transition metals is an option to help save our rare noble metal resources and is especially interesting if novel reactivity or selectivity patterns are observed. We report here on a novel reaction: the dehydrogenative alkylation or α-olefination of alkyl-N-heteroaromatics by alcohols. Manganese complexes developed in our laboratory catalyze the reaction efficiently. Fe and Co complexes stabilized by such ligands are essentially inactive. Hydrogen is liberated during the reaction and bromo or iodo functional groups and olefins can be tolerated. A variety of alkyl-N-heteroaromatics can be functionalized, and benzyl and aliphatic alcohols undergo the reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Visible light- and radiation-induced alkylation of pyridine ring with alkanoic acid

    International Nuclear Information System (INIS)

    Sugimori, Akira; Yamada, Tetsuo

    1986-01-01

    Quinoline and 4-methylquinoline are efficiently alkylated with alkanoic acid in the presence of iron(III) sulfate upon visible light-irradiation. Iron(III) sulfate not only accelerates the photoreaction but also increases the yield of alkylation. Gamma-irradiation also brings about the alkylation. In the photo- and radiation-induced alkylation with alkanoic acid, alkyl radicals play important roles. (author)

  13. Alkylation damage by lipid electrophiles targets functional protein systems.

    Science.gov (United States)

    Codreanu, Simona G; Ullery, Jody C; Zhu, Jing; Tallman, Keri A; Beavers, William N; Porter, Ned A; Marnett, Lawrence J; Zhang, Bing; Liebler, Daniel C

    2014-03-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions.

  14. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    Science.gov (United States)

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  15. Effects of alkyl parabens on plant pathogenic fungi.

    Science.gov (United States)

    Ito, Shinsaku; Yazawa, Satoru; Nakagawa, Yasutaka; Sasaki, Yasuyuki; Yajima, Shunsuke

    2015-04-15

    Alkyl parabens are used as antimicrobial preservatives in cosmetics, food, and pharmaceutical products. However, the mode of action of these chemicals has not been assessed thoroughly. In this study, we determined the effects of alkyl parabens on plant pathogenic fungi. All the fungi tested, were susceptible to parabens. The effect of linear alkyl parabens on plant pathogenic fungi was related to the length of the alkyl chain. In addition, the antifungal activity was correlated with the paraben-induced inhibition of oxygen consumption. The antifungal activity of linear alkyl parabens likely originates, at least in part, from their ability to inhibit the membrane respiratory chain, especially mitochondrial complex II. Additionally, we determined that some alkyl parabens inhibit Alternaria brassicicola infection of cabbage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    Science.gov (United States)

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis.

    Science.gov (United States)

    Nakamura, Hitomi; Schultz, Erica E; Balskus, Emily P

    2017-08-01

    Alkylation of aromatic rings with alkyl halides is an important transformation in organic synthesis, yet an enzymatic equivalent is unknown. Here, we report that cylindrocyclophane biosynthesis in Cylindrospermum licheniforme ATCC 29412 involves chlorination of an unactivated carbon center by a novel halogenase, followed by a previously uncharacterized enzymatic dimerization reaction featuring sequential, stereospecific alkylations of resorcinol aromatic rings. Discovery of the enzymatic machinery underlying this unique biosynthetic carbon-carbon bond formation has implications for biocatalysis and metabolic engineering.

  18. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  19. Possible targets for the aneugenic activity of alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Pellerano, P. [IST-National Institute for Research on Cancer, Genova (Italy); Abbondandolo, A. [Univ. of Genova (Italy); Bonatti, S.; Simili, M. [CNR Institute of Mutagenesis and Differentiation, Pisa (Italy)

    1993-12-31

    Alkylating agents have been of invaluable help in mutation research for half a century. In all tested organisms, they have proved able to induce a large variety of genetic effects, including aneuploidy. Credible molecular models exist to explain the ability of alkylating agents to induce gene mutation and to act as initiators in carcinogenesis as a consequence of DNA alkylation at specific sites. On the contrary, neither the mechanism of aneuploidy induction nor the relevant cellular targets are known.

  20. Microbial metabolism of alkyl and condensed thiophenes: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fedorak, P.M.

    1992-01-01

    This study was conducted to gain a better understanding of the metabolic pathways used by aerobic microorganisms for the biodegradation or biotransformation of organosulfur compounds found in petroleum. The study used alkyl-substituted thiophenes, benzothiophene and alkyl-substituted benzothiophenes and alkyl-substituted dibenzothiophenes. The results provide information relevant to environmental matters, aspects of microbial transformations in petroleum reservoirs and further assessment of the feasibility of biodesulfurization.

  1. Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings

    Science.gov (United States)

    Chaki, Mounira; Valderrama, Raquel; Fernández-Ocaña, Ana M.; Carreras, Alfonso; Gómez-Rodríguez, Maria. V.; Pedrajas, José R.; Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Luque, Francisco; Leterrier, Marina; Corpas, Francisco J.; Barroso, Juan B.

    2011-01-01

    Nitric oxide (NO) and related molecules such as peroxynitrite, S-nitrosoglutathione (GSNO), and nitrotyrosine, among others, are involved in physiological processes as well in the mechanisms of response to stress conditions. In sunflower seedlings exposed to five different adverse environmental conditions (low temperature, mechanical wounding, high light intensity, continuous light, and continuous darkness), key components of the metabolism of reactive nitrogen species (RNS) and reactive oxygen species (ROS), including the enzyme activities L-arginine-dependent nitric oxide synthase (NOS), S-nitrosogluthathione reductase (GSNOR), nitrate reductase (NR), catalase, and superoxide dismutase, the content of lipid hydroperoxide, hydrogen peroxide, S-nitrosothiols (SNOs), the cellular level of NO, GSNO, and GSNOR, and protein tyrosine nitration [nitrotyrosine (NO2-Tyr)] were analysed. Among the stress conditions studied, mechanical wounding was the only one that caused a down-regulation of NOS and GSNOR activities, which in turn provoked an accumulation of SNOs. The analyses of the cellular content of NO, GSNO, GSNOR, and NO2-Tyr by confocal laser scanning microscopy confirmed these biochemical data. Therefore, it is proposed that mechanical wounding triggers the accumulation of SNOs, specifically GSNO, due to a down-regulation of GSNOR activity, while NO2-Tyr increases. Consequently a process of nitrosative stress is induced in sunflower seedlings and SNOs constitute a new wound signal in plants. PMID:21172815

  2. Lapachol inhibition of vitamin K epoxide reductase and vitamin K quinone reductase.

    Science.gov (United States)

    Preusch, P C; Suttie, J W

    1984-11-01

    Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] has been shown to be a potent inhibitor of both vitamin K epoxide reductase and the dithiothreitol-dependent vitamin K quinone reductase of rat liver microsomes in vitro. These observations explain the anticoagulant activity of lapachol previously observed in both rats and humans. Lapachol inhibition of the vitamin K epoxide and quinone reductases resembled coumarin anticoagulant inhibition, and was observed in normal strain but not in warfarin-resistant strain rat liver microsomes. This similarity of action suggests that the lactone functionality of the coumarins is not critical for their activity. The initial-velocity steady-state inhibition patterns for lapachol inhibition of the solubilized vitamin K epoxide reductase were consistent with tight binding of lapachol to the oxidized form of the enzyme, and somewhat lower affinity for the reduced form. It is proposed that lapachol assumes a 4-enol tautomeric structure similar to that of the 4-hydroxy coumarins. These structures are analogs of the postulated hydroxyvitamin K enolate intermediate bound to the oxidized form of the enzyme in the chemical reaction mechanism of vitamin K epoxide reductase, thus explaining their high affinity.

  3. Development of novel alkylating drugs as anticancer agents.

    Science.gov (United States)

    Izbicka, Elzbieta; Tolcher, Anthony W

    2004-06-01

    Although conventional alkylating drugs have proven efficacy in the treatment of malignancies, the agents themselves are not selective. Therefore, non-specific alkylation of cellular nucleophilic targets may contribute to many of the observed toxic effects. Novel approaches to drug discovery have resulted in candidate agents that are focused on 'soft alkylation'--alkylators with greater target selectivity. This review highlights the discovery of small molecule drugs that bind to DNA with higher selectivity, act in a unique hypoxic tumor environment, or covalently bind specific protein targets overexpressed in cancer, such as topoisomerase II, glutathione transferase pi1, beta-tubulin and histone deacetylase.

  4. Biosynthesis of Alkyl Lysophosphatidic Acid by Diacylglycerol Kinases

    Science.gov (United States)

    Gellett, Amanda M.; Kharel, Yugesh; Sunkara, Manjula; Morris, Andrew J.; Lynch, Kevin R.

    2012-01-01

    Lysophosphatidic acid (LPA) designates a family of bioactive phosphoglycerides that differ in the length and degree of saturation of their radyl chain. Additional diversity is provided by the linkage of the radyl chain to glycerol: acyl, alkyl, or alk-1-enyl. Acyl-LPAs are the predominate species in tissues and biological fluids. Alkyl-LPAs exhibit distinct pharmacodynamics at LPA receptors, potently drive platelet aggregation, and contribute to ovarian cancer aggressiveness. Multiple biosynthetic pathways exist for alkyl-LPA production. Herein we report that diacylglycerol kinases (DGKs) contribute to cell-associated alkyl-LPA production involving phosphorylation of 1-alkyl-2-acetyl glycerol and document the biosynthesis of alkyl-LPA by DGKs in SKOV-3 ovarian cancer cells, specifically identifying the contribution of DGKα. Concurrently, we discovered that treating SKOV-3 ovarian cancer cell with a sphingosine analog stimulates conversion of exogenous 1-alkyl-2-acetyl glycerol to alkyl-LPA, indicating that DGKα contributes significantly to the production of alkyl-LPA in SKOV-3 cells and identifying cross-talk between the sphingolipid and glycerol lipid pathways. PMID:22627129

  5. The antimalarial drug artemisinin alkylates heme in infected mice

    Science.gov (United States)

    Robert, Anne; Benoit-Vical, Françoise; Claparols, Catherine; Meunier, Bernard

    2005-01-01

    Heme alkylation by the antimalarial drug artemisinin is reported in vivo, within infected mice that have been treated at pharmacologically relevant doses. Adducts resulting from the alkylation of heme by the drug were characterized in the spleen of treated mice, and their glucuroconjugated derivatives were present in the urine. Because these heme-artemisinin adducts were not observed in noninfected mice, this report confirms that the alkylating activity of this antimalarial drug is related to the presence of the parasite in infected animals. The identification of heme-artemisinin adducts in mice should be considered as the signature of the alkylation capacity of artemisinin in vivo. PMID:16155128

  6. X-ray absorption spectroscopy of soybean lipoxygenase-1 : Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Heijdt, L.M. van der; Feiters, M.C.; Navaratnam, S.; Nolting, H.-F.; Hermes, C.; Veldink, G.A.

    1992-01-01

    X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 23 eV

  7. Metal Ions and Hydroperoxide Content: Main Drivers of Coastal Lipid Autoxidation in Riverine Suspended Particulate Matter and Higher Plant Debris

    Directory of Open Access Journals (Sweden)

    Marie-Aimée Galeron

    2016-08-01

    Full Text Available Autoxidation is a complex abiotic degradation process, and while it has long been known and well studied in biological compounds, it has been widely overlooked in environmental samples and as a part of environmental processes. With recent observations showing the magnitude of the involvement of autoxidation in coastal environments, it has become critical to better understand how and why this degradative process takes place. At the riverine/marine interface, recent findings evidenced a spike in autoxidation rates upon the arrival of suspended particulate matter in seawater. In this study, we aimed at identifying autoxidation-favoring factors in vitro by analyzing suspended particulate matter incubated under different conditions. If metal ions have long been known to induce autoxidation in biological systems, we show that they indeed induce autoxidation in particulate matter incubated in water, but also that the content in photochemically-produced hydroperoxides in suspended particulate matter is crucial to the induction of its autoxidation in water.

  8. Determination of reaction rate constants for alkylation of 4-(p-nitrobenzyl) pyridine by different alkylating agents.

    Science.gov (United States)

    Walles, S A

    1980-02-01

    The rate constants have been determined for the reaction between some different alkylating agents and 4-(p-nitrobenzyl) pyridine (NBP) in methanol. These constants have been compared with those for alkylation of aniline in water. All the constants were lower in methanol than in water but in different degrees. The rate constants of the different alkylating agents have been calculated at a nucleophilic strength n=2. The genetic risk defined as the degree of alkylation of a nucleophile (n=2) is equivalent to the rate constant kn=2 and the target dose. The dependence of the genetic risk on the rate constant (kn=2) is discussed.

  9. Thermogravimetric studies on alkyl methacrylate polymers and poly(alkyl methacrylate)-grafted polypropylene fibers

    International Nuclear Information System (INIS)

    Hayakawa, Kiyoshi; Taoda, Hiroshi; Kawase, Kaoru; Tazawa, Masato; Yamakita, Hiromi

    1986-01-01

    Thermal behavior of several kinds of poly (alkyl methacrylate) and polypropylene-g-poly (alkyl methacrylate) fibers prepared by γ-irradiation was investigated by thermogravimetric measurements with the intermittent analysis of the gaseous products. The degradation of poly (methyl methacrylate) proceeded according to the deploymerization mechanism reproducing the pristine monomer exclusively. The thermogram in inert atmosphere showed the features of a two-step depolymerization, while in air it showed no such a stepwise decrease with the elevating temperature. The dissolution-precipitation treatment of polymer seemed to affect the decomposition behavior. On other alkyl methacrylate polymers, the thermal decomposition generally proceeded also according to the depolymerization mechanism. But, for instance, at least two kinds of products besides its own monomer were formed from poly (isobutyl methacrylate), and their relative fractions differed with the temperature. Polypropylene-g-poly (alkyl methacrylate) fibers showed lowering of initiation temperature of decomposition with the increase in extent of the grafting, and their initiation temperatures of decomposition in air were lower than those in inert atmosphere. (author)

  10. Hydration of urea and alkylated urea derivatives

    Science.gov (United States)

    Kaatze, Udo

    2018-01-01

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  11. New Bioactive Alkyl Sulfates from Mediterranean Tunicates

    Directory of Open Access Journals (Sweden)

    Marialuisa Menna

    2012-10-01

    Full Text Available Chemical investigation of two species of marine ascidians, Aplidium elegans and Ciona edwardsii, collected in Mediterranean area, led to isolation of a series of alkyl sulfates (compounds 1–5 including three new molecules 1–3. Structures of the new metabolites have been elucidated by spectroscopic analysis. Based on previously reported cytotoxic activity of these type of molecules, compounds 1–3 have been tested for their effects on the growth of two cell lines, J774A.1 (BALB/c murine macrophages and C6 (rat glioma in vitro. Compounds 1 and 2 induced selective concentration-dependent mortality on J774A.1 cells.

  12. NADH-Ferricyanide Reductase of Leaf Plasma Membranes : Partial Purification and Immunological Relation to Potato Tuber Microsomal NADH-Ferricyanide Reductase and Spinach Leaf NADH-Nitrate Reductase.

    Science.gov (United States)

    Askerlund, P; Laurent, P; Nakagawa, H; Kader, J C

    1991-01-01

    Plasma membranes obtained by two-phase partitioning of microsomal fractions from spinach (Spinacea oleracea L. cv Medania) and sugar beet leaves (Beta vulgaris L.) contained relatively high NADH-ferricyanide reductase and NADH-nitrate reductase (NR; EC 1.6.6.1) activities. Both of these activities were latent. To investigate whether these activities were due to the same enzyme, plasma membrane polypeptides were separated with SDS-PAGE and analyzed with immunoblotting methods. Antibodies raised against microsomal NADH-ferricyanide reductase (tentatively identified as NADH-cytochrome b(5) reductase, EC 1.6.2.2), purified from potato (Solanum tuberosum L. cv Bintje) tuber microsomes, displayed one single band at 43 kilodaltons when reacted with spinach plasma membranes, whereas lgG produced against NR from spinach leaves gave a major band at 110 kilodaltons together with a few fainter bands of lower molecular mass. Immunoblotting analysis using inside-out and right-side-out plasma membrane vesicles strongly indicated that NR was not an integral protein but probably trapped inside the plasma membrane vesicles during homogenization. Proteins from spinach plasma membranes were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio] 1-propane-sulfonate and separated on a Mono Q anion exchange column at pH 5.6 with fast protein liquid chromatography. One major peak of NADH-ferricyanide reductase activity was found after separation. The peak fraction was enriched about 70-fold in this activity compared to the plasma membrane. When the peak fractions were analyzed with SDS-PAGE the NADH-ferricyanide reductase activity strongly correlated with a 43 kilodalton polypeptide which reacted with the antibodies against potato microsomal NADH-ferricyanide reductase. Thus, our data indicate that most, if not all, of the truly membrane-bound NADH-ferricyanide reductase activity of leaf plasma membranes is due to an enzyme very similar to potato tuber

  13. Porous CuO catalysed green synthesis of some novel 3-alkylated indoles as potent antitubercular agents

    Directory of Open Access Journals (Sweden)

    Gulzar A. Khan

    2018-01-01

    Full Text Available A green multicomponent one pot synthesis of novel 2-(1H-indol-3-ylmethyl-5,5-dimethyl-cyclohexane-1,3-diones (4a–l in excellent yields was conveniently carried out in aqueous medium at room temperature over mpCuO as heterogeneous catalyst. The synthesised 3-alkylated indoles were characterised by FTIR, 1H NMR, 13C NMR and HRLCMS. The nanocatalyst was facially synthesised via a green sol–gel route and characterised by SEM, TEM, EDX, PXRD, BET and FTIR. The porous nanocatalyst can be recycled five times without significant drop in product yield. Docking studies against enoyl acyl carrier protein reductase predicts that the compounds bind at the active site with high binding affinity values. The compound 4k (MIC, 15 μg/mL shows comparable activity in reference to Isoniazid at the same concentrations against MT H37 Rv.

  14. Direct, Regioselective N-Alkylation of 1,3-Azoles.

    Science.gov (United States)

    Chen, Shuai; Graceffa, Russell F; Boezio, Alessandro A

    2016-01-04

    Regioselective N-alkylation of 1,3-azoles is a valuable transformation. Organomagnesium reagents were discovered to be competent bases to affect regioselective alkylation of various 1,3-azoles. Counterintuitively, substitution selectively occurred at the more sterically hindered nitrogen atom. Numerous examples are provided, on varying 1,3-azole scaffolds, with yields ranging from 25 to 95%.

  15. Alkylation of hydrothiophosphoryl compounds in conditions of interphase catalysis

    International Nuclear Information System (INIS)

    Aladzheva, I.M.; Odinets, I.L.; Petrovskij, P.V.; Mastryukova, T.A.; Kabachkin, M.I.

    1993-01-01

    A method of interphase catalysis permitted to develop a common method for synthesis of compounds with thiophosphoryl group. The effect of nature of hydrothiophosphoryl compound, alkylating agent, two-phase system and reaction conditions on alkylation product yields was investigated in detail

  16. Polyfluorinated alkyl phosphate ester surfactants - current knowledge and knowledge gaps

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Rosenmai, Anna Kjerstine; Vinggaard, Anne Marie

    2014-01-01

    information on fluorochemicals. Polyfluorinated alkyl phosphate ester surfactants (PAPs) belong to the group of polyfluorinated alkyl surfactants. They have been detected in indoor dust and are widely used in food-contact materials, from which they have the ability to migrate into food. Toxicological data...

  17. dialkylated perylene diimides in poly(alkyl methacrylate) films.

    Indian Academy of Sciences (India)

    lene diimides in films of poly(alkyl methacrylate)s (PAMAs) with 5 different alkyl groups and in a 'model solvent' ... indicate that the perylenes can be used as a complementary probe of local polymer chain dynamics, but they are ... can be designed to allow a greater or lesser interaction with an anisotropic host matrix. Also ...

  18. Organocalcium-mediated nucleophilic alkylation of benzene.

    Science.gov (United States)

    Wilson, Andrew S S; Hill, Michael S; Mahon, Mary F; Dinoi, Chiara; Maron, Laurent

    2017-12-01

    The electrophilic aromatic substitution of a C-H bond of benzene is one of the archetypal transformations of organic chemistry. In contrast, the electron-rich π-system of benzene is highly resistant to reactions with electron-rich and negatively charged organic nucleophiles. Here, we report that this previously insurmountable electronic repulsion may be overcome through the use of sufficiently potent organocalcium nucleophiles. Calcium n -alkyl derivatives-synthesized by reaction of ethene, but-1-ene, and hex-1-ene with a dimeric calcium hydride-react with protio and deutero benzene at 60°C through nucleophilic substitution of an aromatic C-D/H bond. These reactions produce the n- alkyl benzenes with regeneration of the calcium hydride. Density functional theory calculations implicate an unstabilized Meisenheimer complex in the C-H activation transition state. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Preparation of trialkylindium by alkylation of metallic indium

    International Nuclear Information System (INIS)

    Eremeev, I.V.; Danov, S.M.; Sakhipov, V.R.

    1995-01-01

    The investigation results on production of trialkyl indium by alkylation of metallic indium are presented. In contradistinction to the known techniques for the production of trialkyls on indium by alkylation it is suggested to separate the synthesis into two steps. At the first step indium is alkylated by alkylhalide to alkyl indium halide, and at the second alkylation is carried out using. Grignard reagent. The techniques for preparation of trimethyl- and triethylindium, developed on the bases of this scheme, are noted for good reproducibility, allow to preclude, agglomeration of indium during the synthesis, as well as to reduce the consumption coefficients, and amounts, of the introduced starting reagents, i.e. magnesium and alkylhalide. Refs. 16

  20. Nanostructured poly(benzimidazole membranes by N-alkylation

    Directory of Open Access Journals (Sweden)

    J. Weber

    2014-01-01

    Full Text Available Modification of poly(benzimidazole (PBI by N-alkylation leads to polymers capable of undergoing microphase separation. Polymers with different amounts of C18 alkyl chains have been prepared. The polymers were analyzed by spectroscopy, thermal analysis, electron microscopy and X-ray scattering. The impact of the amount of alkyl chains on the observed microphase separation was analyzed. Membranes prepared from the polymers do show microphase separation, as evidenced by scattering experiments. While no clear morphology could be derived for the domains in the native state, evidence for the formation of lamellar morphologies upon doping with phosphoric acid is provided. Finally, the proton conductivity of alkyl-modified PBI is compared with that of pure PBI, showing that the introduction of alkyl side chains does not result in significant conductivity changes.

  1. Human carbonyl reductase 4 is a mitochondrial NADPH-dependent quinone reductase.

    Science.gov (United States)

    Endo, Satoshi; Matsunaga, Toshiyuki; Kitade, Yukio; Ohno, Satoshi; Tajima, Kazuo; El-Kabbani, Ossama; Hara, Akira

    2008-12-26

    A protein encoded in the gene Cbr4 on human chromosome 4q32.3 belongs to the short-chain dehydrogenase/reductase family. Contrary to the functional annotation as carbonyl reductase 4 (CBR4), we show that the recombinant tetrameric protein, composed of 25-kDa subunits, exhibits NADPH-dependent reductase activity for o- and p-quinones, but not for other aldehydes and ketones. The enzyme was insensitive to dicumarol and quercetin, potent inhibitors of cytosolic quinone reductases. The 25-kDa CBR4 was detected in human liver, kidney and cell lines on Western blotting using anti-CBR4 antibodies. The overexpression of CBR4 in bovine endothelial cells reveals that the enzyme has a non-cleavable mitochondrial targeting signal. We further demonstrate that the in vitro quinone reduction by CBR4 generates superoxide through the redox cycling, and suggest that the enzyme may be involved in the induction of apoptosis by cytotoxic 9,10-phenanthrenequinone.

  2. Structure and mechanism of dimethylsulfoxide reductase, a molybdopterin-containing enzyme of DMSO reductase family

    International Nuclear Information System (INIS)

    McEwan, A.G.; Ridge, J.P.; McDevitt, C.A.; Hanson, G.R.

    2001-01-01

    Full text: Apart from nitrogenase, enzymes containing molybdenum are members of a superfamily, the molybdopterin-containing enzymes. Most of these enzymes catalyse an oxygen atom transfer and two electron transfer reaction. During catalysis the Mo at the active site cycles between the Mo(VI) and Mo(IV) states. The DMSO reductase family of molybdopterin-containing enzymes all contain a bis(molybdopterin guanine dinucleotide)Mo cofactor and over thirty examples have now been described. Over the last five years crystal structures of dimethylsulfoxide (DMSO) reductase and four other enzymes of the DMSO reductase family have revealed that enzymes of this family have a similar tertiary structure. The Mo atom at the active site is coordinated by four thiolate ligands provided by the dithiolene side chains of the two MGD molecules of the bis(MGD)Mo cofactor as well as a ligand provided by an amino acid side chain. In addition, an oxygen atom in the form of an oxo, hydroxo or aqua group is also coordinated to the Mo atom. In the case of dimethylsulfoxide reductase X-ray crystallography of the product-reduced species and Raman spectroscopy has demonstrated that the enzyme contains a single exchangeable oxo group that is H-bonded to W116

  3. Nitroreductase reactions of Arabidopsis thaliana thioredoxin reductase.

    Science.gov (United States)

    Miskiniene, V; Sarlauskas, J; Jacquot, J P; Cenas, N

    1998-09-07

    Arabidopsis thaliana NADPH:thioredoxin reductase (TR, EC 1.6.4.5) catalyzed redox cycling of aromatic nitrocompounds, including the explosives 2,4,6-trinitrotoluene and tetryl, and the herbicide 3,5-dinitro-o-cresol. The yield of nitro anion radicals was equal to 70-90%. Redox cycling of tetryl was accompanied by formation of N-methylpicramide. Bimolecular rate constants of nitroaromatic reduction (kcat/Km) and reaction catalytic constants (kcat) increased upon an increase in oxidant single-electron reduction potential (E(1)7). Using compounds with an unknown E(1)7 value, the reactivity of TR increased parallelly to the increase in reactivity of ferredoxin:NADP+ reductase of Anabaena PCC 7119 (EC 1.18.1.2). This indicated that the main factor determining reactivity of nitroaromatics towards TR was their energetics of single-electron reduction. Incubation of reduced TR in the presence of tetryl or 2,4-dinitrochlorobenzene resulted in a loss of thioredoxin reductase activity, most probably due to modification of reduced catalytic disulfide, whereas nitroreductase reaction rates were unchanged. This means that on the analogy of quinone reduction by TR (D. Bironaite, Z. Anusevicius, J.-P. Jacquot, N. Cenas, Biochim. Biophys. Acta 1383 (1998) 82-92), FAD and not catalytic disulfide of TR was responsible for the reduction of nitroaromatics. Tetryl, 2,4,6-trinitrotoluene and thioredoxin increased the FAD fluorescence intensity of TR. This finding suggests that nitroaromatics may bind close to the thioredoxin-binding site at the catalytic disulfide domain of TR, and induce a conformational change of enzymes (S.B. Mulrooney, C.H. Williams Jr., Protein Sci. 6 (1997) 2188-2195). Our data indicate that certain nitroaromatic herbicides, explosives and other classes of xenobiotics may interfere with the reduction of thioredoxin by plant TR, and confer prooxidant properties to this antioxidant enzyme.

  4. Cu(I)-Catalyzed Enantioselective Friedel-Crafts Alkylation of Indoles with 2-Aryl-N-sulfonylaziridines as Alkylating Agents.

    Science.gov (United States)

    Ge, Chen; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-07-01

    A highly enantioselective Friedel-Crafts alkylation of indoles with N-sulfonylaziridines as alkylating agents has been developed by utilizing the complex of Cu(CH3CN)4BF4/(S)-Segphos as a catalyst. A range of optically active tryptamine derivatives are obtained in good to excellent yields and enantioselectivities (up to >99% ee) via a kinetic resolution process.

  5. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    Red blood cells (RBCs) possess methemoglobin reductase activity that counters the ongoing oxidation of hemoglobin (Hb) to methemoglobin (metHb), which in circulating blood is caused by Hb autoxidation or reactions with nitrite. We describe an assay for determining metHb reductase activity in intact...

  6. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... reductase deficiency, or riboflavin deficiency. (b) Classification. Class II (performance standards). [45 FR...

  7. Selective Hydrodeoxygenation of Alkyl Lactates to Alkyl Propionates with Fe-based Bimetallic Supported Catalysts

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; He, Jian; Schill, Leonhard

    2018-01-01

    significantly when using Fe-Ni/ZrO2 instead of Fe/ZrO2 alone. Moreover, the ZrO2 support contributed to improve the yield as a phase transition of ZrO2 from tetragonal to monoclinic occurred after metal doping giving rise to fine dispersion of the Fe and Ni on the ZrO2 , resulting in a higher catalytic activity...... of the material. Interestingly, it was observed that Fe-Ni/ZrO2 also effectively catalyzed methanol reforming to produce H2 in situ, followed by HDO of ML, yielding 60 % MP at 220 °C with 50 bar N2 instead of H2. Fe-Ni/ZrO2 also catalyzed HDO of other short-chain alkyl lactates to the corresponding alkyl...

  8. Cytotoxicity of Poly(Alkyl Cyanoacrylate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Einar Sulheim

    2017-11-01

    Full Text Available Although nanotoxicology has become a large research field, assessment of cytotoxicity is often reduced to analysis of one cell line only. Cytotoxicity of nanoparticles is complex and should, preferentially, be evaluated in several cell lines with different methods and on multiple nanoparticle batches. Here we report the toxicity of poly(alkyl cyanoacrylate nanoparticles in 12 different cell lines after synthesizing and analyzing 19 different nanoparticle batches and report that large variations were obtained when using different cell lines or various toxicity assays. Surprisingly, we found that nanoparticles with intermediate degradation rates were less toxic than particles that were degraded faster or more slowly in a cell-free system. The toxicity did not vary significantly with either the three different combinations of polyethylene glycol surfactants or with particle size (range 100–200 nm. No acute pro- or anti-inflammatory activity on cells in whole blood was observed.

  9. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiguchi, Masayuki [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2010-06-15

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 gamma-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  10. Optimization of the alkyl side chain length of fluorine-18-labeled 7α-alkyl-fluoroestradiol

    International Nuclear Information System (INIS)

    Okamoto, Mayumi; Shibayama, Hiromitsu; Naka, Kyosuke; Kitagawa, Yuya; Ishiwata, Kiichi; Shimizu, Isao; Toyohara, Jun

    2016-01-01

    Introduction: Several lines of evidence suggest that 7α-substituted estradiol derivatives bind to the estrogen receptor (ER). In line with this hypothesis, we designed and synthesized 18 F-labeled 7α-fluoroalkylestradiol (Cn-7α-[ 18 F]FES) derivatives as molecular probes for visualizing ERs. Previously, we successfully synthesized 7α-(3-[ 18 F]fluoropropyl)estradiol (C3-7α-[ 18 F]FES) and showed promising results for quantification of ER density in vivo, although extensive metabolism was observed in rodents. Therefore, optimization of the alkyl side chain length is needed to obtain suitable radioligands based on Cn-7α-substituted estradiol pharmacophores. Methods: We synthesized fluoromethyl (23; C1-7α-[ 18 F]FES) to fluorohexyl (26; C6-7α-[ 18 F]FES) derivatives, except fluoropropyl (C3-7α-[ 18 F]FES) and fluoropentyl derivatives (C5-7α-[ 18 F]FES), which have been previously synthesized. In vitro binding to the α-subtype (ERα) isoform of ERs and in vivo biodistribution studies in mature female mice were carried out. Results: The in vitro IC 50 value of Cn-7α-FES tended to gradually decrease depending on the alkyl side chain length. C1-7α-[ 18 F]FES (23) showed the highest uptake in ER-rich tissues such as the uterus. Uterus uptake also gradually decreased depending on the alkyl side chain length. As a result, in vivo uterus uptake reflected the in vitro ERα affinity of each compound. Bone uptake, which indicates de-fluorination, was marked in 7α-(2-[ 18 F]fluoroethyl)estradiol (C2-7α-[ 18 F]FES) (24) and 7α-(4-[ 18 F]fluorobutyl)estradiol (C4-7α-[ 18 F]FES) (25) derivatives. However, C1-7α-[ 18 F]FES (23) and C6-7α-[ 18 F]FES (26) showed limited uptake in bone. As a result, in vivo bone uptake (de-fluorination) showed a bell-shaped pattern, depending on the alkyl side chain length. C1-7α-[ 18 F]FES (23) showed the same levels of uptake in uterus and bone compared with those of 16α-[ 18 F]fluoro-17β-estradiol. Conclusions: The optimal alkyl

  11. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS.

    Science.gov (United States)

    You, Mei-Li

    2016-04-28

    Cumene hydroperoxide (CHP) is widely used in chemical processes, mainly as an initiator for the polymerization of acrylonitrile-butadiene-styrene. It is a typical organic peroxide and an explosive substance. It is susceptible to thermal decomposition and is readily affected by contamination; moreover, it has high thermal sensitivity. The reactor tank, transit storage vessel, and pipeline used for manufacturing and transporting this substance are made of metal. Metal containers used in chemical processes can be damaged through aging, wear, erosion, and corrosion; furthermore, the containers might release metal ions. In a metal pipeline, CHP may cause incompatibility reactions because of catalyzed exothermic reactions. This paper discusses and elucidates the potential thermal hazard of a mixture of CHP and an incompatible material's metal ions. Differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III) were employed to preliminarily explore and narrate the thermal hazard at the constant temperature environment. The substance was diluted and analyzed by using a gas chromatography spectrometer (GC) and gas chromatography/mass spectrometer (GC/MS) to determine the effect of thermal cracking and metal ions of CHP. The thermokinetic parameter values obtained from the experiments are discussed; the results can be used for designing an inherently safer process. As a result, the paper finds that the most hazards are in the reaction of CHP with Fe(2+). When the metal release is exothermic in advance, the system temperature increases, even leading to uncontrollable levels, and the process may slip out of control.

  12. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS

    Directory of Open Access Journals (Sweden)

    Mei-Li You

    2016-04-01

    Full Text Available Cumene hydroperoxide (CHP is widely used in chemical processes, mainly as an initiator for the polymerization of acrylonitrile–butadiene–styrene. It is a typical organic peroxide and an explosive substance. It is susceptible to thermal decomposition and is readily affected by contamination; moreover, it has high thermal sensitivity. The reactor tank, transit storage vessel, and pipeline used for manufacturing and transporting this substance are made of metal. Metal containers used in chemical processes can be damaged through aging, wear, erosion, and corrosion; furthermore, the containers might release metal ions. In a metal pipeline, CHP may cause incompatibility reactions because of catalyzed exothermic reactions. This paper discusses and elucidates the potential thermal hazard of a mixture of CHP and an incompatible material’s metal ions. Differential scanning calorimetry (DSC and thermal activity monitor III (TAM III were employed to preliminarily explore and narrate the thermal hazard at the constant temperature environment. The substance was diluted and analyzed by using a gas chromatography spectrometer (GC and gas chromatography/mass spectrometer (GC/MS to determine the effect of thermal cracking and metal ions of CHP. The thermokinetic parameter values obtained from the experiments are discussed; the results can be used for designing an inherently safer process. As a result, the paper finds that the most hazards are in the reaction of CHP with Fe2+. When the metal release is exothermic in advance, the system temperature increases, even leading to uncontrollable levels, and the process may slip out of control.

  13. Comparison of the effects of tert-butyl hydroperoxide and peroxynitrite on the oxidative damage to isolated beef heart mitochondria.

    Science.gov (United States)

    Kohutiar, M; Ivica, J; Vytášek, R; Skoumalová, A; Illner, J; Šantorová, P; Wilhelm, J

    2016-11-08

    Isolated beef heart mitochondria have been exposed to tert-butyl hydroperoxide (tBHP) and peroxynitrite (PeN) in order to model the effects of reactive oxygen and nitrogen species on mitochondria in vivo. The formation of malondialdehyde (MDA), protein carbonyls, lipofuscin-like pigments (LFP), and nitrotyrosine was studied during incubations with various concentrations of oxidants for up to 24 h. The oxidants differed in their ability to oxidize particular substrates. Fatty acids were more sensitive to the low concentrations of tBHP, whereas higher concentrations of PeN consumed MDA. Oxidation of proteins producing carbonyls had different kinetics and also a probable mechanism with tBHP or PeN. Diverse proteins were affected by tBHP or PeN. In both cases, prolonged incubation led to the appearance of proteins with molecular weights lower than 29 kDa bearing carbonyl groups that might have been caused by protein fragmentation. PeN induced nitration of protein tyrosines that was more intensive in the soluble proteins than in the insoluble ones. LFP, the end products of lipid peroxidation, were formed more readily by PeN. On the other hand, fluorometric and chromatographic techniques have confirmed destruction of LFP by higher PeN concentrations. This is a unique feature that has not been described so far for any oxidant.

  14. Effect of Curcumin on the Increase in Hepatic or Brain Phosphatidylcholine Hydroperoxide Levels in Mice after Consumption of Excessive Alcohol

    Directory of Open Access Journals (Sweden)

    Chang Won Pyun

    2013-01-01

    Full Text Available Curcumin is a bright yellow compound found in Curcuma longa L., a member of the family Zingiberaceae. In the present study, we determined whether curcumin protects against oxidative stress in liver and brain in mice fed excessive alcohol. BALB/c mice were administered 20% alcohol (16 g/kg body weight with or without curcumin (0.016% in diet for 12 weeks. The concentrations of phosphatidylcholine hydroperoxide (PC-OOH in liver and brain samples were determined using chemiluminescence high-performance liquid chromatography. Mice treated with ethanol and curcumin significantly ( showed a lower hepatic PC-OOH level compared to mice treated with only ethanol. However, there was no significant difference in the brain PC-OOH level among all mice. Our finding indicates that the dosage of alcohol might increase the lipid peroxide level of liver but not of brain, and daily curcumin consumption might be protective for liver against alcohol-related oxidative stress in mice.

  15. Protective effect of kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes.

    Science.gov (United States)

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2011-07-01

    Kombucha (KT), a fermented black tea (BT), is known to have many beneficial properties. In the present study, antioxidant property of KT has been investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity using murine hepatocytes. TBHP, a reactive oxygen species inducer, causes oxidative stress resulting in organ pathophysiology. Exposure to TBHP caused a reduction in cell viability, increased membrane leakage and disturbed the intra-cellular antioxidant machineries in hepatocytes. TBHP exposure disrupted mitochondrial membrane potential and induced apoptosis as evidenced by flow cytometric analyses. KT treatment, however, counteracted the changes in mitochondrial membrane potential and prevented apoptotic cell death of the hepatocytes. BT treatment also reverted TBHP induced hepatotoxicity, however KT was found to be more efficient. This may be due to the formation of antioxidant molecules like D-saccharic acid-1,4-lactone (DSL) during fermentation process and are absent in BT. Moreover, the radical scavenging activities of KT were found to be higher than BT. Results of the study showed that KT has the potential to ameliorate TBHP induced oxidative insult and cell death in murine hepatocytes more effectively than BT.

  16. Kinetics and products of the reaction of the first-generation isoprene hydroxy hydroperoxide (ISOPOOH) with OH

    DEFF Research Database (Denmark)

    St. Clair, Jason M.; Rivera-Rios, Jean C.; Crounse, John D.

    2016-01-01

    from both ISOPOOH isomers was IEPOX (cis-β and trans-β isomers), with a ∼ 2:1 preference for trans-β IEPOX and similar total yields from each ISOPOOH isomer (∼70-80%). An IEPOX global production rate of more than 100 Tg C each year is estimated from this chemistry using a global 3D chemical transport......The atmospheric oxidation of isoprene by the OH radical leads to the formation of several isomers of an unsaturated hydroxy hydroperoxide, ISOPOOH. Oxidation of ISOPOOH by OH produces epoxydiols, IEPOX, which have been shown to contribute mass to secondary organic aerosol (SOA). We present kinetic...... rate constant measurements for OH + ISOPOOH using synthetic standards of the two major isomers: (1,2)- and (4,3)-ISOPOOH. At 297 K, the total OH rate constant is 7.5 ± 1.2 × 10(-11) cm(3) molecule(-1) s(-1) for (1,2)-ISOPOOH and 1.18 ± 0.19 × 10(-10) cm(3) molecule(-1) s(-1) for (4,3)-ISOPOOH...

  17. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives.

    Science.gov (United States)

    Akacha, Najla B; Karboune, Salwa; Gargouri, Mohamed; Kermasha, Selim

    2010-03-01

    The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t (1/2)), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at -20 degrees Celsius and 4 degrees Celsius. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive.

  18. Immunization of Mice with Recombinant Brucella abortus Organic Hydroperoxide Resistance (Ohr) Protein Protects Against a Virulent Brucella abortus 544 Infection.

    Science.gov (United States)

    Hop, Huynh Tan; Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Lee, Jin Ju; Chang, Hong Hee; Kim, Suk

    2016-01-01

    In this study, the Brucella abortus ohr gene coding for an organic hydroperoxide resistance protein (Ohr) was cloned into a maltose fusion protein expression system (pMAL), inserted into Escherichia coli, and purified, and its immunogenicity was evaluated by western blot analysis using Brucella-positive mouse sera. The purified recombinant Ohr (rOhr) was treated with adjuvant and injected intraperitoneally into BALB/c mice. A protective immune response analysis revealed that rOhr induced a significant increase in both the IgG1 and IgG2a titers, and IgG2a reached a higher level than IgG1 after the second and third immunizations. Additionally, immunization with rOhr induced high production of IFN-γ as well as proinflammatory cytokines such as TNF, MCP-1, IL-12p70, and IL-6, but a lesser amount of IL-10, suggesting that rOhr predominantly elicited a cell-mediated immune response. In addition, immunization with rOhr caused a significantly higher degree of protection against a virulent B. abortus infection compared with a positive control group consisting of mice immunized with maltose-binding protein. These findings showed that B. abortus rOhr was able to induce both humoral and cell-mediated immunity in mice, which suggested that this recombinant protein could be a potential vaccine candidate for animal brucellosis.

  19. A yeast mutant specifically sensitive to bifunctional alkylation

    International Nuclear Information System (INIS)

    Ruhland, A.; Kircher, M.; Wilborn, F.; Brendel, M.

    1981-01-01

    A mutation that specifically confers sensitivity to bi- and tri-functional alkylating agents is presented. No or little cross-sensitivity to radiation or monofunctional agents could be detected. Sensitivity does not seem to be due to preferential alkylation of mutant DNA as parent and mutant strain exhibit the same amount of DNA alkylation and the same pattern of DNA lesions including interstrand crosslinks. The mutation is due to a defect in a nuclear gene which has been designated SNM1 (sensitive to nitrogen mustard); it may control an important step in the repair of DNA interstrand crosslinks (orig.(AJ)

  20. An adaptive response to alkylating agents in Aspergillus nidulans.

    Science.gov (United States)

    Hooley, P; Shawcross, S G; Strike, P

    1988-11-01

    A simple method is described for demonstrating adaptation to alkylation damage in Aspergillus nidulans. One wild type, two MNNG-sensitive, and one MNNG-resistant strain all showed improvement in colony growth when challenged with MNNG following appropriate inducing pretreatments. Other alkylating agents (MMS, EMS) could also adapt mycelium to later MNNG challenge, while 4NQO and UV could not. The inducible effect was not transmissible through conidia. A standard reversion assay based upon methG proved impractical for studying mutation frequencies during alkylation treatments owing to variations in MNNG resistance amongst revertants.

  1. Modulation of the ribonucleotide reductase M1-gemcitabine interaction in vivo by N-ethylmaleimide

    International Nuclear Information System (INIS)

    Chen, Zhengming; Zhou, Jun; Zhang, Yingtao; Bepler, Gerold

    2011-01-01

    Highlights: → Gemcitabine induces a RRM1 conformational change in tumor cell lines and xenografts. → The 110 kDa RRM1 is unique to gemcitabine interaction among 12 cytotoxic agents. → The 110 kDa RRM1 can be stabilized by the thiol alkylator N-ethylmaleimide. → C218A, C429A, and E431A mutations in RRM1 abolished the conformational change. → The 110 kDa RRM1 may be a specific biomarker of gemcitabine's therapeutic efficacy. -- Abstract: Ribonucleotide reductase M1 (RRM1) is the regulatory subunit of the holoenzyme that catalyzes the conversion of ribonucleotides to 2'-deoxyribonucleotides. Its function is indispensible in cell proliferation and DNA repair. It also serves as a biomarker of therapeutic efficacy of the antimetabolite drug gemcitabine (2',2'-difluoro-2'-deoxycytidine) in various malignancies. However, a mechanistic explanation remains to be determined. This study investigated how the alkylating agent N-ethylmaleimide (NEM) interacts with the inhibitory activity of gemcitabine on its target protein RRM1 in vivo. We found, when cells were treated with gemcitabine in the presence of NEM, a novel 110 kDa band, along with the 90 kDa native RRM1 band, appeared in immunoblots. This 110 kDa band was identified as RRM1 by mass spectrometry (LC-MS/MS) and represented a conformational change resulting from covalent labeling by gemcitabine. It is specific to gemcitabine/NEM, among 11 other chemotherapy drugs tested. It was also detectable in human tumor xenografts in mice treated with gemcitabine. Among mutations of seven residues essential for RRM1 function, C218A, C429A, and E431A abolished the conformational change, while N427A, C787A, and C790A diminished it. C444A was unique since it was able to alter the conformation even in absence of gemcitabine treatment. We conclude that the thiol alkylator NEM can stabilize the gemcitabine-induced conformational change of RRM1, and this stabilized RRM1 conformation has the potential to serve as a specific

  2. The Thr-His Connection on the Distal Heme of Catalase-Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides.

    Science.gov (United States)

    Mashhadi, Zahra; Newcomer, Marcia E; Brash, Alan R

    2016-11-03

    This review focuses on a group of heme peroxidases that retain the catalase fold in structure, yet show little or no reaction with hydrogen peroxide. Instead of having a role in oxidative defense, these enzymes are involved in secondary metabolite biosynthesis. The prototypical enzyme is catalase-related allene oxide synthase, an enzyme that converts a specific fatty acid hydroperoxide to the corresponding allene oxide (epoxide). Other catalase-related enzymes form allylic epoxides, aldehydes, or a bicyclobutane fatty acid. In all catalases (including these relatives), a His residue on the distal face of the heme is absolutely required for activity. Its immediate neighbor in sequence as well as in 3 D space is conserved as Val in true catalases and Thr in the fatty acid hydroperoxide-metabolizing enzymes. Thr-His on the distal face of the heme is critical in switching the substrate specificity from H 2 O 2 to fatty acid hydroperoxide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Meridional distribution of hydroperoxides and formaldehyde in the marine boundary layer of the Atlantic (48°N-35°S) measured during the Albatross campaign

    Science.gov (United States)

    Weller, R.; Schrems, O.; Boddenberg, A.; GäB, S.; Gautrois, M.

    2000-06-01

    Gas phase H2O2, organic peroxides, and formaldehyde (HCHO) have been measured in situ during October/November 1996 on board RV Polarstern in surface air over the Atlantic from 48°N-35°S with different analytical methods. The results indicate that recombination and self-reactions of peroxy radicals largely dominate over scavenging by NO. The peroxy radical chemistry was governed by the photooxidation of CH4 and CO, as could be deduced from our failure to detect organic hydroperoxides other than CH3OOH (methyl hydroperoxide (MHP)). Hydroperoxide and formaldehyde mixing ratios were highest within the tropics with peak values of around 2000 parts per trillion by volume (pptv) (H2O2), 1500 pptv (MHP), and 1000 pptv (HCHO). In the case of H2O2 and MHP we observed diurnal variations of the mixing ratios in the tropical North Atlantic and derived deposition rates of around (1.8±0.6)×10-5 s-1 for H2O2 and (1.2±0.4)×10-5 s-1 for MHP. The measured MHP/(H2O2+MHP) and MHP/HCHO ratios corresponded to 0.32±0.12 and 0.87±0.4, respectively. HCHO mixing ratios observed during the expedition were significantly higher than predicted by current photochemical theory based on the photooxidation of CH4 and CO.

  4. Variant Cell Lines of Haplopappus gracilis with Disturbed Activities of Nitrate Reductase and Nitrite Reductase.

    Science.gov (United States)

    Gilissen, L J; Barneix, A J; van Staveren, M; Breteler, H

    1985-07-01

    Selected variant cell lines of Haplopappus gracilis (Nutt) Gray that showed disturbed growth after transfer from an alanine medium to NO(3) (-) medium were characterized. The in vivo NO(3) (-) reductase activity (NRA) was lower in these lines than in the wild type. In vitro NRA assays suggest that decreased in vivo NRA was not caused by a lower amount of active enzyme. Cells of the variant lines revealed up to 75% lower extractable activity of NO(2) (-) reductase as compared with the wild type. This coincided with higher accumulation of NO(2) (-) by the variant than by the wild type cells after transfer from alanine medium to NO(3) (-) medium. NO(2) (-) accumulation was transient or continuous, depending on cell line, metabolic state of the cells, and light conditions.

  5. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structures of mammalian cytosolic quinone reductases.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Faig, M; Amzel, L M

    2000-08-01

    The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.

  7. Hydroxylated naphthoquinones as substrates for Escherichia coli anaerobic reductases.

    Science.gov (United States)

    Rothery, R A; Chatterjee, I; Kiema, G; McDermott, M T; Weiner, J H

    1998-01-01

    We have used two hydroxylated naphthoquinol menaquinol analogues, reduced plumbagin (PBH2, 5-hydroxy-2-methyl-1,4-naphthoquinol) and reduced lapachol [LPCH2, 2-hydroxy-3-(3-methyl-2-butenyl)-1, 4-naphthoquinol], as substrates for Escherichia coli anaerobic reductases. These compounds have optical, solubility and redox properties that make them suitable for use in studies of the enzymology of menaquinol oxidation. Oxidized plumbagin and oxidized lapachol have well resolved absorbances at 419 nm (epsilon=3.95 mM-1. cm-1) and 481 nm (epsilon=2.66 mM-1.cm-1) respectively (in Mops/KOH buffer, pH 7.0). PBH2 is a good substrate for nitrate reductase A (Km=282+/-28 microM, kcat=120+/-6 s-1) and fumarate reductase (Km=155+/-24 microM, kcat=30+/-2 s-1), but not for DMSO reductase. LPCH2 is a good substrate for nitrate reductase A (Km=57+/-35 microM, kcat=68+/-13 s-1), fumarate reductase (Km=85+/-27 microM, kcat=74+/-6 s-1) and DMSO reductase (Km=238+/-30 microM, kcat=191+/-21 s-1). The sensitivity of enzymic LPCH2 and PBH2 oxidation to 2-n-heptyl-4-hydroxyquinoline N-oxide inhibition is consistent with their oxidation occurring at sites of physiological quinol binding. PMID:9576848

  8. The cytochrome bd respiratory oxygen reductases.

    Science.gov (United States)

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. 2011 Elsevier B.V. All rights reserved.

  9. ORF Alignment: NC_003197 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available reductase, F52a subunit; detoxification of ... hydroperoxides [Salmonella enterica subsp. enterica ... ...bunit; detoxification of ... hydroperoxides [Salmonella enterica subsp. en

  10. ORF Alignment: NC_006905 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available reductase, F52a subunit; detoxification of ... hydroperoxides [Salmonella enterica subsp. enterica ... ...bunit; detoxification of ... hydroperoxides [Salmonella enterica subsp. en

  11. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities.

    Science.gov (United States)

    Soll, Jennifer M; Sobol, Robert W; Mosammaparast, Nima

    2017-03-01

    Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so-called 'epigenetic' adducts. Here, we discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Detection of Alkylating Agents using Electrical and Mechanical Means

    International Nuclear Information System (INIS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Eichen, Yoav; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir

    2011-01-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  13. Direct N-alkylation of unprotected amino acids with alcohols

    NARCIS (Netherlands)

    Yan, Tao; Feringa, Ben L; Barta, Katalin

    2017-01-01

    N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic

  14. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  15. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    Science.gov (United States)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  16. N-Alkylation of sulfonamides by alkyl halides in the presence of electrophilic catalysts and transformations of alkylated compounds

    Directory of Open Access Journals (Sweden)

    Larysa V. Dmitrikova

    2016-12-01

    Full Text Available Vicinal halo amines constitute an important class of compounds due to their diverse biological activity and a broad application as synthones in the production of pharmaceutical agents. The reaction of aryl- and alkylsulfonamides with 1,2-dibromo-2-phenylethane in the presence of Lewis acids (such as FeCl3 and ZnCl2 in 1,2-dichloroethane can represent one of the most efficient ways of halo amine synthesis. It has been shown that methanesulfonamides and benzylsulfonamides starting materials produced the alkylation products with good yields while p-toluenesulfonamides appeared to be less active and 6-methyl-3-nitrobenzylsulfonamides did not give the expected compounds. It has been found that synthesized vicinal halo amides can easily cyclize in alkaline conditions to give 1-sulfonylaziridines. The regioselectivity of aziridine ring opening has also been studied. It was established that strong nucleophile attacks terminal carbon which leads to the breaking-up of 1–3 bond and subsequent aziridine ring opening. In contrast, weak nucleophiles (water, potassium rhodanide, hydrogen bromide trigger the cleavage of aziridine cycle by breaking-up of 1–2 bond under acidic conditions which is in accordance with molecular orbital theory. Substituents at the aromatic ring of sulfonyl fragment do not influence on the pathway of aziridine ring opening.

  17. Antitumor activity of C-methyl-beta-D-ribofuranosyladenine nucleoside ribonucleotide reductase inhibitors.

    Science.gov (United States)

    Franchetti, Palmarisa; Cappellacci, Loredana; Pasqualini, Michela; Petrelli, Riccardo; Vita, Patrizia; Jayaram, Hiremagalur N; Horvath, Zsuzsanna; Szekeres, Thomas; Grifantini, Mario

    2005-07-28

    A series of adenosine derivatives substituted at the 1'-, 2'-, or 3'-position of the ribose ring with a methyl group was synthesized and evaluated for antitumor activity. From this study 3'-C-methyladenosine (3'-Me-Ado) emerged as the most active compound, showing activity against human myelogenous leukemia K562, multidrug resistant human leukemia K562IU, human promyelocytic leukemia HL-60, human colon carcinoma HT-29, and human breast carcinoma MCF-7 cell lines with IC(50) values ranging from 11 to 38 muM. Structure-activity relationship studies showed that the structure of 3'-Me-Ado is crucial for the activity. Substitution of a hydrogen atom of the N(6)-amino group with a small alkyl or cycloalkyl group, the introduction of a chlorine atom in the 2-position of the purine ring, or the moving of the methyl group from the 3'-position to other ribose positions brought about a decrease or loss of antitumor activity. The antiproliferative activity of 3'-Me-Ado appears to be related to its ability to deplete both intracellular purine and pyrimidine deoxynucleotides through ribonucleotide reductase inhibition.

  18. Iminium Salts by Meerwein Alkylation of Ehrlich’s Aldehyde

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2013-03-01

    Full Text Available 4-(Dimethylaminobenzaldehyde is alkylated at the N atom by dialkyl sulfates, MeI, or Me3O BF4. In contrast, ethylation by Et3O BF4 occurs selectively at the O atom yielding a quinoid iminium ion. 4-(Diethylaminobenzaldehyde is alkylated only at O by either Et or Me oxonium reagent. The iminium salts are prone to hydrolysis giving the corresponding hydrotetrafluoroborates. Five crystal structures were determined.

  19. Enantioselective γ-Alkylation of α,β-Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement

    OpenAIRE

    Liu, Wen-Bo; Okamoto, Noriko; Alexy, Eric J.; Hong, Allen Y.; Tran, Kristy; Stoltz, Brian M.

    2016-01-01

    A catalytic, enantioselective ? -alkylation of ?,?-unsaturated malonates and ketoesters is reported. This strategy entails a highly regio- and enantioselective iridium-catalyzed ?-alkylation of an extended enolate, and a subsequent translocation of chirality to the ?-position via a Cope rearrangement.

  20. On The Regulation of Spinach Nitrate Reductase 1

    Science.gov (United States)

    Sanchez, Juan; Heldt, Hans W.

    1990-01-01

    A coupled assay has been worked out to study spinach (Spinacea oleracea L.) nitrate reductase under low, more physiological concentrations of NADH. In this assay the reduction of nitrate is coupled to the oxidation of malate catalyzed by spinach NAD-malate dehydrogenase. The use of this coupled system allows the assay of nitrate reductase activity at steady-state concentrations of NADH below micromolar. We have used this coupled assay to study the kinetic parameters of spinach nitrate reductase and to reinvestigate the putative regulatory role of adenine nucleotides, inorganic phosphate, amino acids, and calcium and calmodulin. PMID:16667335

  1. Final Technical Report [Development of Catalytic Alkylation and Fluoroalkylation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vicic, David A.

    2014-05-01

    In the early stages of this DOE-funded research project, we sought to prepare and study a well-defined nickel-alkyl complex containing tridentate nitrogen donor ligands. We found that reaction of (TMEDA)NiMe2 (1) with terpyridine ligand cleanly led to the formation of (terpyridyl)NiMe (2), which we also determined to be an active alkylation catalyst. The thermal stability of 2 was unlike that seen for any of the active pybox ligands, and enabled a number of key studies on alkyl transfer reactions to be performed, providing new insights into the mechanism of nickel-mediated alkyl-alkyl cross-coupling reactions. In addition to the mechanistic studies, we showed that the terpyridyl nickel compounds can catalytically cross-couple alkyl iodides in yields up to 98% and bromides in yields up to 46 %. The yields for the bromides can be increased up to 67 % when the new palladium catalyst [(tpy’)Pd-Ph]I is used. The best route to the targeted [(tpy)NiBr] (1) was found to involve the comproportionation reaction of [(dme)NiBr{sub 2}] and [Ni(COD){sub 2}] in the presence of two equivalents of terpyridine. This reaction was driven to high yields of product formation (72 % isolated) by the precipitation of 1 from THF solvent.

  2. Salvage of Failed Protein Targets by Reductive Alkylation

    Science.gov (United States)

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  3. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.

    Science.gov (United States)

    Oslovsky, Vladimir E; Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.

  4. Alcohols as alkylating agents in heteroarene C-H functionalization

    Science.gov (United States)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  5. Alcohols as alkylating agents in heteroarene C–H functionalization

    Science.gov (United States)

    Jin, Jian; MacMillan, David W. C.

    2015-01-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  6. On the role of alkylating mechanisms, O-alkylation and DNA-repair in genotoxicity and mutagenicity of alkylating methanesulfonates of widely varying structures in bacterial systems.

    Science.gov (United States)

    Eder, E; Kütt, W; Deininger, C

    2001-07-31

    The Ames test and the SOS-chromotest are widely used bacterial mutagenicity/genotoxicity assays to test potential carcinogens. Though the molecular mechanisms leading to backmutations and to the induction of SOS-repair are in principle known the role of alkylation mechanisms, of different DNA-lesions and of DNA-repair is in parts still unknown. In this study we investigated 14 monofunctional methanesulfonates of widely varying structures for mutagenicity in Salmonella typhimurium strain TA 1535 sensitive for O(6)-guanine alkylation for comparison with strain TA 100 in order to obtain additional information on the role of alkylation mechanisms, formation of the procarcinogenic DNA-lesion O(6)-alkylguanine and the role of DNA-repair in induction of backmutation. The substances were also tested in the SOS-chromotest with Escherichia coli strain PQ 37 and strain PQ 243 lacking alkyl base glycosylases important for base excision repair in order to examine the role of alkylation mechanisms, of base excision repair and the role of O-alkyl and N-alkyl DNA-lesions on the induction of SOS-repair. The secondary methanesulfonates with very high S(N)1-reactivity isopropyl methanesulfonate and 2-butyl methanesulfonate showed highest mutagenicities in both strains. The higher substituted methanesulfonates with very high S(N)1-reactivity had lower mutagenic activities because of reduced half lives due to their high hydrolysis rates. A clear increase in mutagenicities in strain TA 100 was observed for the primary compounds methyl methanesulfonate and allyl methanesulfonate with very high S(N)2-reactivity. The primary compound phenylethyl methanesulfonate has a relatively high mutagenicity in both Salmonella strains which can be explained by an increased S(N)1-reactivity and by low repair of the O(6)-phenylethylguanine. Highest SOSIPs (SOS inducing potency) in strains PQ 37 and PQ 243 were found for methyl methanesulfonate and for the secondary compounds with high S(N)1-reactivity

  7. Alkyl-halogenide promoted ionic liquid catalysis of isobutane/butene-alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Schilder, L.; Korth, W.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2011-07-01

    The effect of two different types of promoters on the performance of Lewis-acidic chloroaluminate ionic liquid catalysts was studied for liquid liquid biphasic isobutane/2-butene alkylation. In particular, the activity and selectivity of such catalytic systems was investigated. Experimental results obtained from a batch reactor show, that tert-butyl halides increase the reaction rate significantly and shift the C8-selectivity towards the desired high-octane trimethylpentanes (TMPs). But, secondary reactions like oligomerization and cracking are not affected by the use of these promoters. (orig.)

  8. DNA minor groove targeted alkylating agents based on bisbenzimidazole carriers: synthesis, cytotoxicity and sequence-specificity of DNA alkylation.

    Science.gov (United States)

    Smaill, J B; Fan, J Y; Denny, W A

    1998-12-01

    A series of bisbenzimidazoles bearing a variety of alkylating agents [ortho- and meta-mustards, imidazolebis(hydroxymethyl), imidazolebis(methylcarbamate) and pyrrolebis(hydroxymethyl)], appended by a propyl linker chain, were prepared and investigated for sequence-specificity of DNA alkylation and their cytotoxicity. Previous work has shown that, for para-aniline mustards, a propyl linker is optimal for cytotoxicity. Alkaline cleavage assays using a variety of different labelled oligonucleotides showed that the preferred sequences for adenine alkylation were 5'-TTTANANAANN and 5'-ATTANANAANN (underlined bases show the drug alkylation sites), with AT-rich sequences required on both the 5' and 3' sides of the alkylated adenine. The different aniline mustards showed little variation in alkylation pattern and similar efficiencies of DNA cross-link formation despite the changes in orientation and positioning of the mustard, suggesting that the propyl linker has some flexibility. The imidazole- and pyrrolebis(hydroxymethyl) alkylators showed no DNA strand cleavage following base treatment, indicating that no guanine or adenine N3 or N7 adducts were formed. Using the PCR-based polymerase stop assay, these alkylators showed PCR blocks at 5'-C*G sites (the * nucleotide indicates the blocked site), particularly at 5'-TAC*GA 5'-AGC*GGA, and 5'-AGCC*GGT sequences, caused by guanine 2-NH2 lesions on the opposite strand. Only the (more reactive) imidazolebis(methylcarbamoyl) and pyrrolebis(hydroxymethyl) alkylators demonstrated interstrand cross-linking ability. All of the bifunctional mustards showed large (approximately 100-fold) increases in cytotoxicity over chlorambucil, with the corresponding monofunctional mustards being 20- to 60-fold less cytotoxic. These results suggest that in the mustards the propyl linker provides sufficient flexibility to achieve delivery of the alkylator to favoured (adenine N3) sites in the minor groove, regardless of its exact geometry with

  9. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway.

    Science.gov (United States)

    Tong, Xiaohong; Qi, Jinfeng; Zhu, Xudong; Mao, Bizeng; Zeng, Longjun; Wang, Baohui; Li, Qun; Zhou, Guoxin; Xu, Xiaojing; Lou, Yonggen; He, Zuhua

    2012-09-01

    As important signal molecules, jasmonates (JAs) and green leaf volatiles (GLVs) play diverse roles in plant defense responses against insect pests and pathogens. However, how plants employ their specific defense responses by modulating the levels of JA and GLVs remains unclear. Here, we describe identification of a role for the rice HPL3 gene, which encodes a hydroperoxide lyase (HPL), OsHPL3/CYP74B2, in mediating plant-specific defense responses. The loss-of-function mutant hpl3-1 produced disease-resembling lesions spreading through the whole leaves. A biochemical assay revealed that OsHPL3 possesses intrinsic HPL activity, hydrolyzing hydroperoxylinolenic acid to produce GLVs. The hpl3-1 plants exhibited enhanced induction of JA, trypsin proteinase inhibitors and other volatiles, but decreased levels of GLVs including (Z)-3-hexen-1-ol. OsHPL3 positively modulates resistance to the rice brown planthopper [BPH, Nilaparvata lugens (Stål)] but negatively modulates resistance to the rice striped stem borer [SSB, Chilo suppressalis (Walker)]. Moreover, hpl3-1 plants were more attractive to a BPH egg parasitoid, Anagrus nilaparvatae, than the wild-type, most likely as a result of increased release of BPH-induced volatiles. Interestingly, hpl3-1 plants also showed increased resistance to bacterial blight (Xanthomonas oryzae pv. oryzae). Collectively, these results indicate that OsHPL3, by affecting the levels of JA, GLVs and other volatiles, modulates rice-specific defense responses against different invaders. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  10. Role of tunable acid catalysis in decomposition of α-hydroxyalkyl hydroperoxides and mechanistic implications for tropospheric chemistry.

    Science.gov (United States)

    Kumar, Manoj; Busch, Daryle H; Subramaniam, Bala; Thompson, Ward H

    2014-10-16

    Electronic structure calculations have been used to investigate possible gas-phase decomposition pathways of α-hydroxyalkyl hydroperoxides (HHPs), an important source of tropospheric hydrogen peroxide and carbonyl compounds. The uncatalyzed as well as water- and acid-catalyzed decomposition of multiple HHPs have been examined at the M06-2X/aug-cc-pVTZ level of theory. The calculations indicate that, compared to an uncatalyzed or water-catalyzed reaction, the free-energy barrier of an acid-catalyzed decomposition leading to an aldehyde or ketone and hydrogen peroxide is dramatically lowered. The calculations also find a direct correlation between the catalytic effect of an acid and the distance separating its hydrogen acceptor and donor sites. Interestingly, the catalytic effect of an acid on the HHP decomposition resulting in the formation of carboxylic acid and water is relatively much smaller. Moreover, since the free-energy barrier of the acid-catalyzed aldehyde- or ketone-forming decomposition is ∼ 25% lower than that required to break the O-OH linkage of the HHP leading to the formation of hydroxyl radical, these results suggest that HHP decomposition is likely not an important source of tropospheric hydroxyl radical. Finally, transition state theory estimates indicate that the effective rate constants for the acid-catalyzed aldehyde- or ketone-forming HHP decomposition pathways are 2-3 orders of magnitude faster than those for the water-catalyzed reaction, indicating that an acid-catalyzed HHP decomposition is kinetically favored as well.

  11. Amine Oxidative N-Dealkylation via Cupric Hydroperoxide Cu–OOH Homolytic Cleavage Followed by Site-Specific Fenton Chemistry

    Science.gov (United States)

    Kim, Sunghee; Ginsbach, Jake W.; Lee, Jung Yoon; Peterson, Ryan L.; Liu, Jeffrey J.; Siegler, Maxime A.; Sarjeant, Amy A.; Solomon, Edward I.; Karlin, Kenneth D.

    2015-01-01

    Copper(II)-hydroperoxide species are significant intermediates in processes such as fuel cells and (bio)chemical oxidations, all involving stepwise reduction of molecular oxygen. We previously reported a CuII-OOH species that performs oxidative N-dealkylation on a dibenzylamino group that is appended to the 6-position of a pyridyl donor of a tripodal tetradentate ligand. To obtain insights into the mechanism of this process, reaction kinetics and products were determined employing ligand substrates with various para- substituent dibenzyl pairs (-H,-H; -H,-Cl; -H,-OMe and -Cl,-OMe), or with partially or fully deuterated dibenzyl N-(CH2Ph)2 moieties. A series of ligand-copper(II) bis-perchlorate complexes were synthesized, characterized, and the X-ray structures of the -H, -OMe analog was were determined. The corresponding metastable CuII-OOH species were generated by addition of H2O2/base in acetone at –90 °C. These convert (t1/2 ~ 53 s) to oxidatively N-dealkylated products, producing para-substituted benzaldehydes. Based on the experimental observations and supporting DFT calculations, a reaction mechanism involving dibenzylamine H-atom abstraction or electron-transfer oxidation by the CuII-OOH entity could be ruled out. It is concluded that the chemistry proceeds by rate limiting Cu–O homolytic cleavage of the CuII–(OOH) species, followed by site-specific copper Fenton chemistry. As a process of broad interest in copper as well as iron oxidative (bio)chemistries, a detailed computational analysis was performed, indicating that a CuIOOH species undergoes O–O homolytic cleavage to yield a hydroxyl radical and CuIIOH rather than heterolytic cleavage to yield water and a CuII-O•−. PMID:25706825

  12. UV absorption spectra and kinetics for alkyl and alkyl peroxy radicals originating from di-tert-butyl ether

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.; Langer, S.

    1995-01-01

    Alkyl, (CH3)(3)COC(CH3)(2)CH2, and alkyl peroxy, (CH3)(3)COC(CH3)(2)CH2O2, radicals from di-tert-butyl ether (DTBE), have been studied in the gas phase at 296 K. A pulse radiolysis UV absorption technique was used to measure the spectra and kinetics. Absorption cross sections were quantified over...

  13. Propargyl organometallic compounds. II. Alkylation of sodium derivatives of 1-alkyl-1-aryl-2-alkynes in liquid ammonia

    International Nuclear Information System (INIS)

    Libman, N.M.; Sevryukov, Yu.P.

    1987-01-01

    In most cases the alkylation of the sodium derivatives of 1-phenyl-1-alkyl-2-alkynes by methyl, ethyl, isopropyl, and tert-butyl bromides in liquid ammonia takes place preferentially at the sp 2 -hybridized carbon atom, and this leads to the formation of the corresponding acetylenes, The regioselectivity of the reaction is explained by the greater softness of the trigonal atom of the ambient propargyl anion and its smaller screening by the solvate shell compared with the diagonal atom

  14. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  15. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  16. Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima

    NARCIS (Netherlands)

    Loveridge, E Joel; Hroch, Lukas; Hughes, Robert L; Williams, Thomas; Davies, Rhidian L; Angelastro, Antonio; Luk, Louis Y P; Maglia, Giovanni; Allemann, Rudolf K

    2017-01-01

    Mammalian dihydrofolate reductases (DHFR) catalyse the reduction of folate more efficiently than the equivalent bacterial enzymes, despite typically having similar efficiencies for the reduction of their natural substrate dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic

  17. Aldose reductase inhibitory activity and antioxidant capacity of pomegranate extracts

    OpenAIRE

    Karasu, Çimen; Cumaoğlu, Ahmet; Gürpinar, Ali Rifat; Kartal, Murat; Kovacikova, Lucia; Milackova, Ivana; Stefek, Milan

    2012-01-01

    The pomegranate, Punica granatum L., has been the subject of current interest as a medicinal agent with wide-ranging therapeutic indications. In the present study, pomegranate ethanolic seed and hull extracts were tested, in comparison with a commercial sample, for the inhibition of aldose reductase, an enzyme involved in the etiology of diabetic complications. In vitro inhibition of rat lens aldose reductase was determined by a conventional method. Pomegranate ethanolic hull extract and comm...

  18. Depolymerization of coal by oxidation and alkylation; Sanka bunkai to alkyl ka ni yoru sekitan kaijugo

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, H.; Isoda, T.; Kusakabe, K.; Morooka, S. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hayashi, J. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    Change in depolymerization degree and coal structure was studied for depolymerization treatment of coal in various alcohol containing aqueous hydrogen peroxide. In experiment, the mixture of Yallourn coal, alcohol and aqueous hydrogen peroxide was agitated in nitrogen atmosphere of normal pressure at 70{degree}C for 12 hours. As the experimental result, the methanol solubility of only 5% of raw coal increased up to 35.2% by hydrogen peroxide treatment, while the yield of insoluble matters also decreased from 94% to 62%. Most of the gas produced during treatment was composed of inorganic gases such as CO and CO2, and its carbon loss was extremely decreased by adding alcohol. From the analytical result of carbon loss in hydrogen peroxide treatment, it was clarified that alkylation advances with introduction of alkyl group derived from alcohol into coal by hydrogen peroxide treatment under a coexistence of alcohol, and depolymerization reaction of coal itself is thus promoted by alcohol. 4 refs., 7 figs., 1 tab.

  19. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    Science.gov (United States)

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  20. Early Transition Metal Alkyl and Tetrahydroborate Complexes.

    Science.gov (United States)

    Jensen, James Allen

    1988-06-01

    An investigation of early transition metal alkyl and tetrahydroborate complexes as catalytic models and ceramic precursors has been initiated. The compounds MX _2 (dmpe)_2, dmpe = 1,2-bis(dimethylphosphino)ethane, for M = Ti, V, Cr, and X = Br, I, BH_4, have been prepared. These complexes are paramagnetic and have been shown by X-ray crystallography to have trans-octahedral structures. The BH_4^{-} groups in Ti(BH_4)_2(dmpe) _2 bond to the metal in a bidentate manner. This structure is in marked contrast to the structure of the vanadium analogue, V(BH_4)_2 (dmpe)_2, which displays two unidentate BH_4^{-} groups. Alkylation of Ti(BH_4)_2 (dmpe)_2 with LiMe results in the complex TiMe_2(dmpe) _2 which is diamagnetic in both solution and solid state. Single crystal X-ray and neutron diffraction studies show that there may be strong Ti-C pi -bonding. A tetragonal compression along the C -Ti-C bond vector accounts for the observed diamegnetism. A series of complexes of the formula Ti(BH _4)_3(PR_3)_2 has been prepared where PR_3 = PMe_3, PEt_3, PMe_3Ph, and P(OMe)_3 . The X-ray crystal structure of Ti(BH _4)_3(PMe_3)_2 reveals a pseudo trigonal bipyramidal geometry in which two BH_4^{-} groups display an unusual "side-on" bonding mode. The "side-on" ligation mode has been attributed to a Jahn-Teller distortion of the orbitally degenerate d^1 ground state. In contrast, the non-Jahn-Teller susceptible vanadium analogue, V(BH_4)_3 (PMe_3)_2, possesses a nearly ideal D_{rm 3h} >=ometry with three bidentate tetrahydroborate groups. Addition of excess PMe_3 to V(BH_4)_3(PMe _3)_2water forms the vanadium(III) oxo dimer (V(BH_4)_2 (PMe_3)_2]_2 [mu-O) which has been structurally characterized. The compound Ti(CH_2CMe _3)_4 can be prepared by addition of Ti(OEt)_4 to LiCH_2 CMe_3. Sublimation of Ti(CH _2CMe_3)_4 over a substrate heated to 250^ circC results in the chemical vapor deposition of amorphous TiC thin films. This CVD approach has been extended to the Group 4 borides: Ti

  1. Methylenetetrahydrofolate Reductase Activity and Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Nursen Keser

    2014-04-01

    Full Text Available Folate is a vital B vitamin which is easily water-soluble. It is a natural source which is found in the herbal and animal foods. Folate has important duties in the human metabolism, one of them is the adjustment of the level of plasma homocysteine. Reduction in MTHFR (methylenetetrahydrofolate reductase,which is in charge of the metabolism of homocysteine activity affects the level of homocysteine. Therefore MTHFR is an important enzyme in folate metabolism. Some of the mutations occurring in the MTHFR gene is a risk factor for various diseases and may be caused the hyperhomocysteinemia or the homocystinuria, and they also may lead to metabolic problems. MTHFR is effective in the important pathways such as DNA synthesis, methylation reactions and synthesis of RNA. C677T and A1298C are the most commonly occurring polymorphisms in the gene of MTHFR. The frequency of these polymorphisms show differences in the populations. MTHFR, folate distribution, metabolism of homocysteine and S-adenosylmethionine, by the MTHFR methylation the genetic defects have the potential of affecting the risk of disease in the negative or positive way.

  2. Interactions between inhibitors of dihydrofolate reductase.

    Science.gov (United States)

    Bowden, K; Hall, A D; Birdsall, B; Feeney, J; Roberts, G C

    1989-03-01

    The binding of substrates and inhibitors to dihydrofolate reductase was studied by steady-state kinetics and high-field 1H-n.m.r. spectroscopy. A series of 5-substituted 2,4-diaminopyrimidines were examined and were found to be 'tightly binding' inhibitors of the enzyme (Ki less than 10(-9) M). Studies on the binding of 4-substituted benzenesulphonamides and benzenesulphonic acids also established the existence of a 'sulphonamide-binding site' on the enzyme. Subsequent n.m.r. experiments showed that there are two binding sites for the sulphonamides on the enzyme, one of which overlaps the coenzyme (NADPH) adenine-ring-binding site. An examination of the pH-dependence of the binding of sulphonamides to the enzyme indicated the influence of an ionizable group on the enzyme that was not directly involved in the sulphonamide binding. The change in pKa value from 6.7 to 7.2 observed on sulphonamide binding suggests the involvement of a histidine residue, which could be histidine-28.

  3. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  4. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  5. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-07

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. NADH-Ferricyanide Reductase of Leaf Plasma Membranes 1

    Science.gov (United States)

    Askerlund, Per; Laurent, Pascal; Nakagawa, Hiroki; Kader, Jean-Claude

    1991-01-01

    Plasma membranes obtained by two-phase partitioning of microsomal fractions from spinach (Spinacea oleracea L. cv Medania) and sugar beet leaves (Beta vulgaris L.) contained relatively high NADH-ferricyanide reductase and NADH-nitrate reductase (NR; EC 1.6.6.1) activities. Both of these activities were latent. To investigate whether these activities were due to the same enzyme, plasma membrane polypeptides were separated with SDS-PAGE and analyzed with immunoblotting methods. Antibodies raised against microsomal NADH-ferricyanide reductase (tentatively identified as NADH-cytochrome b5 reductase, EC 1.6.2.2), purified from potato (Solanum tuberosum L. cv Bintje) tuber microsomes, displayed one single band at 43 kilodaltons when reacted with spinach plasma membranes, whereas lgG produced against NR from spinach leaves gave a major band at 110 kilodaltons together with a few fainter bands of lower molecular mass. Immunoblotting analysis using inside-out and right-side-out plasma membrane vesicles strongly indicated that NR was not an integral protein but probably trapped inside the plasma membrane vesicles during homogenization. Proteins from spinach plasma membranes were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio] 1-propane-sulfonate and separated on a Mono Q anion exchange column at pH 5.6 with fast protein liquid chromatography. One major peak of NADH-ferricyanide reductase activity was found after separation. The peak fraction was enriched about 70-fold in this activity compared to the plasma membrane. When the peak fractions were analyzed with SDS-PAGE the NADH-ferricyanide reductase activity strongly correlated with a 43 kilodalton polypeptide which reacted with the antibodies against potato microsomal NADH-ferricyanide reductase. Thus, our data indicate that most, if not all, of the truly membrane-bound NADH-ferricyanide reductase activity of leaf plasma membranes is due to an enzyme very similar to potato tuber

  7. General Allylic C–H Alkylation with Tertiary Nucleophiles

    Science.gov (United States)

    2015-01-01

    A general method for intermolecular allylic C–H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C–H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C–H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C–H reactivity are illustrated in an allylic C–H alkylation/Diels–Alder reaction cascade: a reactive diene is generated via intermolecular allylic C–H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids. PMID:24641574

  8. Effect of Amphiphilic Alkyl Chain Length Upon Purified LATEX Stability

    International Nuclear Information System (INIS)

    Amira Amir Hassan; Amir Hashim Mohd Yatim

    2015-01-01

    Rubber particles in purified latex (PL) are stabilized by a film of protein and fatty acid soap (surfactant). Saturated straight-chain fatty acid soaps can assist an enhancement of latex stability. However, whether the alkyl chain length plays an important role in increasing the stability is still an issue. The aim of this study is to investigate the effect of alkyl chain length of anionic surfactant on the stability of purified latex. The fatty acid soap of decanoate (9), laurate (11), sodium dodecyl sulphate (SDS) (12) and palmitate (15) were used. The numbers in parentheses indicating the number of carbon present in alkyl chain of the soap. The results showed that the impact of alkyl chain length on the stability of latex is in the order of laurate > decanoate > SDS > palmitate > purified latex accordingly. The alkyl chain length does giving a significant effect on latex stability after longer stirring time. The particle size of latex with the presence of surfactant is greater compare to a single particle itself due to extension of particles diameter. Thus suitable interaction of the nonpolar tail of surfactant with the hydrophobic regions of latex surface played a major role in maintaining a stable latex system. (author)

  9. General allylic C-H alkylation with tertiary nucleophiles.

    Science.gov (United States)

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  10. Effect of curcumin on the genotoxicity induced by alkylating agents

    Directory of Open Access Journals (Sweden)

    İbrahim Hakkı Ciğerci

    2015-06-01

    Full Text Available The protection of the structure of DNA is extremly important to transfer genetic information from generation to generation. DNA damage due to genotoxic ess is an important type of stress which organisms are exposed during their life. The factors that cause DNA damage can be endogenous and exogenous. Among exogenous sources, alkylating agents comes first to cause DNA damage. Alkylating exogenous agents are capable of adding bases to ethyl or methyl groups. The direct-acting alkylating agent methyl methanesulfonate (MMS, is covalently linked to DNA and cause DNA damage, creating an indirect effect of the alkylating agent. cyclophosphamide (CP causes the DNA damage by changing the function of cellular proteins. Both substances have been shown to induce gene mutations in prokaryotes and eukaryotes, chromosome effects, unscheduled DNA synthesis and sister chromatid exchange. Furthermore, cessation of cell growth arrest and DNA damage causing changes in gene expression have been observed by the stress due to alkylating agents exposure. In this study, the effects of curcumin on MMS and CP treated mice were investigated. Alkaline comet assay was used to detect DNA damage. Curcumin reduced the DNA damage, occurred by both MMS and CP induction. We could state that curcumin, a phenolic compound shows protective effects before the damage. In brief, curcumin has both antioxidant and antigenotoxic effects.

  11. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    Directory of Open Access Journals (Sweden)

    Yeon Bok Kim

    2014-01-01

    Full Text Available Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  12. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  13. Purification and Properties of an NADPH-Aldose Reductase (Aldehyde Reductase) from Euonymus japonica Leaves

    Science.gov (United States)

    Negm, Fayek B.

    1986-01-01

    The enzyme aldose (aldehyde) reductase was partially purified (142-fold) and characterized from Euonymus japonica leaves. The reductase, a dimer, had an average molecular weight of 67,000 as determined by gel filtration on Sephadex G-100. The enzyme was NADPH specific and reduced a broad range of substrates including aldoses, aliphatic aldehydes, and aromatic aldehydes. Maximum activity was observed at pH 8 in phosphate and Tris-HCl buffers and at pH 8.6 to 9.0 in glycine-NaOH buffer using dl-glyceraldehyde or 3-pyridinecarboxaldehyde as substrate. NADP was a competitive inhibitor with respect to NADPH with a Ki of 60 micromolar. Glycerol was an uncompetitive inhibitor to dl-glyceraldehyde (K′i = 460 millimolar). The Euonymus enzyme was inhibited by sulfhydryl inhibitor, phenobarbital, and high concentrations of Li2SO4. Pyrazol and metal chelating agents inhibited the enzyme slightly. Enzyme activity was detected in the leaves and berries of Celastrus orbiculatus and several species of Euonymus. Probable function of this enzyme is to reduce d-galactose to galactitol, a characteristic metabolite in phloem sap of members of the Celastraceae family. Images Fig. 1 PMID:16664750

  14. The coenzyme A disulfide reductase of Borrelia burgdorferi is important for rapid growth throughout the enzootic cycle and essential for infection of the mammalian host

    Science.gov (United States)

    Eggers, Christian H.; Caimano, Melissa J.; Malizia, Robert A.; Kariu, Toru; Cusack, Brian; Desrosiers, Daniel C.; Hazlett, Karsten R.O.; Claiborne, Al; Pal, Utpal; Radolf, Justin D.

    2011-01-01

    Summary In a microarray analysis of the RpoS regulon in mammalian host-adapted Borrelia burgdorferi, bb0728 (cdr) was found to be dually-transcribed by the sigma factors σ70 and RpoS. The cdr gene encodes a coenzyme A disulfide reductase (CoADR) that reduces CoA-disulfides to CoA in an NADH-dependent manner. Based on the abundance of CoA in B. burgdorferi and the biochemistry of the enzyme, CoADR has been proposed to play a role in the spirochete’s response to reactive oxygen species (ROS). To better understand the physiologic function(s) of Bb CoADR, we generated a B. burgdorferi mutant in which the cdr gene was disrupted. RT-PCR and 5′-RACE analysis revealed that cdr and bb0729 are co-transcribed from a single transcriptional start site upstream of the bb0729 coding sequence; a shuttle vector containing the bb0729-cdr operon and upstream promoter element was used to complement the cdr mutant. Although the mutant was no more sensitive to hydrogen peroxide than its parent, it did exhibit increased sensitivity to high concentrations of t -butyl-hydroperoxide, an oxidizing compound that damages spirochetal membranes. Characterization of the mutant during standard (15% oxygen, 6% CO2) and anaerobic (damage; one or more of these functions are essential for infection of the mammalian host by B. burgdorferi. PMID:21923763

  15. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  16. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    Energy Technology Data Exchange (ETDEWEB)

    Costarrosa, L. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Calvino-Casilda, V. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Ferrera-Escudero, S. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Duran-Valle, C.J. [Dpto. de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz (Spain); Martin-Aranda, R.M. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain)]. E-mail: rmartin@ccia.uned.es

    2006-06-30

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N{sub 2} adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  17. Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 16 alkyl ethylhexanoates for use in cosmetics, concluding that these ingredients are safe in cosmetic formulations in the present practices of use and concentrations when formulated to be nonirritating. The alkyl ethylhexanoates primarily function as skin-conditioning agents in cosmetics. The highest concentration of use reported for any of the alkyl ethylhexanoates is 77.3% cetyl ethylhexanoate in rinse-off formulations used near the eye, and the highest leave-on use reported is 52% cetyl ethylhexanoate in lipstick formulations. The Panel reviewed available animal and clinical data related to these ingredients, and the similarities in structure, properties, functions, and uses of ingredients from previous CIR assessments on constituent alcohols that allowed for extrapolation of the available toxicological data to assess the safety of the entire group. © The Author(s) 2015.

  18. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    Science.gov (United States)

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  19. Radiation-chemical alkylation of olefines with adamantane

    International Nuclear Information System (INIS)

    Podkhalyuzin, A.T.; Vikulin, V.V.; Morozov, V.A.; Nazarova, M.P.; Vereshchinskii, I.V.

    1977-01-01

    Radiation-chemical alkylation of C 2 to C 4 olefines with adamantane was studied in gas phase at temperatures 270 to 430 0 C. The main reaction product is monoalkyladamantane. The reaction proceeds by a free radical chain mechanism. The effective activation energy is of the order of 8 to 10 kcal/mole. Thermal alkylation was carried out for comparison and the contribution of the thermal component to the radiation-thermal process was estimated. Liquid phase alkylation of hexafluoropropylene with adamantane was studied in the presence of solvents. Under various conditions mono- and di-substituted adamantanes are produced containing fluorine in end groups. These compounds were converted to corresponding fluoroalkenyladamantanes by dehydrofluorination. The kinetic parameters were calculated and physical-chemical data concerning some of the resulting products were determined. (author)

  20. From old alkylating agents to new minor groove binders.

    Science.gov (United States)

    Puyo, Stéphane; Montaudon, Danièle; Pourquier, Philippe

    2014-01-01

    Alkylating agents represent the oldest class of anticancer agents with the approval of mechloretamine by the FDA in 1949. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in the treatment of specific malignancies, sometimes representing the unique option for the treatment of refractory tumors. Here, we are reviewing the major classes of alkylating agents, with a particular focus on the latest generations of compounds that specifically target the minor groove of the DNA. These naturally occurring derivatives have a unique mechanism of action that explains the recent regain of interest in developing new classes of alkylating agents that could be used in combination with other anticancer drugs to enhance tumor response in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    International Nuclear Information System (INIS)

    Costarrosa, L.; Calvino-Casilda, V.; Ferrera-Escudero, S.; Duran-Valle, C.J.; Martin-Aranda, R.M.

    2006-01-01

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N 2 adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation

  2. Selective mono-alkylation of N-methoxybenzamides.

    Science.gov (United States)

    Chen, Zenghua; Hu, Le'an; Zeng, Fanyun; Zhu, Ranran; Zheng, Shasha; Yu, Qingzhen; Huang, Jianhui

    2017-04-11

    We report our latest discovery of norbornene derivative modulated highly mono-selective ortho-C-H activation alkylation reactions on arenes bearing simple mono-dentate coordinating groups. The reaction features the use of readily available benzamides and alkyl halides. During the study, we prepared 30 mono-alkylated aryl amides in good yields with good mono-selectivity. We have also demonstrated that structurally rigid alkenes such as norbornene and its derivatives are a good class of ligand and could be used for future direct C-H functionalizations. The utilization of norbornene type ligands for assistance in C-H activation processes has opened a new window for future molecular design using direct C-H functionalization strategies.

  3. Pancreaticobiliary cancers with deficient methylenetetrahydrofolate reductase genotypes.

    Science.gov (United States)

    Matsubayashi, Hiroyuki; Skinner, Halcyon G; Iacobuzio-Donahue, Christine; Abe, Tadayoshi; Sato, Norihiro; Riall, Taylor Sohn; Yeo, Charles J; Kern, Scott E; Goggins, Michael

    2005-08-01

    Methyl group deficiency might promote carcinogenesis by inducing DNA breaks and DNA hypomethylation. We hypothesized that deficient methylenetetrahydrofolate reductase (MTHFR) genotypes could promote pancreatic cancer development. First, we performed a case-control study of germline MTHFR polymorphisms (C677T, A1298C) in 303 patients with pancreatic cancer and 305 matched control subjects. Pancreatic neoplasms frequently lose an MTHFR allele during tumorigenesis; we hypothesized that such loss could promote carcinogenesis. We therefore evaluated the cancer MTHFR genotypes of 82 patients with pancreaticobiliary cancers and correlated them to genome-wide measures of chromosomal deletion by using 386 microsatellite markers. Finally, MTHFR genotypes were correlated with global DNA methylation in 68 cancer cell lines. Germline MTHFR polymorphisms were not associated with an increased likelihood of having pancreatic cancer. Fractional allelic loss (a measure of chromosomal loss) trended higher in cancers with 677T genotypes than in cancers with other genotypes (P = .055). Among cancers with loss of an MTHFR allele, cancers with 677T MTHFR alleles had more deletions at folate-sensitive fragile sites (36.9%) and at tumor suppressor gene loci (68.5%) than 677C cancers (28.7% and 47.8%, P = .079 and .014, respectively). LINE1 methylation was lower in cancers with less functional 677T/TT genotypes (24.4%) than in those with 677CT (26.0%) and CC/C genotypes (32.5%) (P = .014). Cancers with defective MTHFR genotypes have more DNA hypomethylation and more chromosomal losses. Deficient MTHFR function due to loss of an MTHFR allele by an evolving neoplasm might, by promoting chromosomal losses, accelerate cancer development.

  4. Sulfite reductase protects plants against sulfite toxicity.

    Science.gov (United States)

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-02-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.

  5. Alkylation sensitivity screens reveal a conserved cross-species functionome

    Science.gov (United States)

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  6. Thermolabile defect of methylenetetrahydrofolate reductase in coronary artery disease.

    Science.gov (United States)

    Kang, S S; Passen, E L; Ruggie, N; Wong, P W; Sora, H

    1993-10-01

    To determine whether or not a moderate genetic defect of homocysteine metabolism is associated with the development of coronary artery disease, we studied the prevalence of thermolabile methylenetetrahydrofolate reductase, which is probably the most common genetic defect of homocysteine metabolism. Three hundred thirty-nine subjects who underwent coronary angiography were classified into three groups: (1) patients with severe coronary artery stenosis (> or = 70% occlusion in one or more coronary arteries or > or = 50% occlusion in the left main coronary artery), (2) patients with mild to moderate coronary artery stenosis (< 70% occlusion in one or more coronary arteries or < 50% occlusion in the left main coronary artery), and (3) patients with non-coronary heart disease or noncardiac chest pain (nonstenotic coronary arteries). The thermolability of methylenetetrahydrofolate reductase was prospectively determined in all subjects. Plasma homocyst(e)ine levels were then measured in those with thermolabile methylenetetrahydrofolate reductase. The traditional risk factors for coronary artery disease were thereafter ascertained by chart review of all subjects. The prevalence of thermolabile methylenetetrahydrofolate reductase was 18.1% in group 1, 13.4% in group 2, and 7.9% in group 3. There was a significant difference between the prevalence of thermolabile methylenetetrahydrofolate reductase in groups 1 and 3 (P < .04). All individuals with thermolabile methylenetetrahydrofolate reductase irrespective of their clinical grouping had higher plasma homocyst(e)ine levels than normal (group 1, 14.86 +/- 5.85; group 2, 15.36 +/- 5.70; group 3, 13.39 +/- 3.80; normal, 8.50 +/- 2.8 nmol/mL). Nonetheless, there was no statistically significant difference in the plasma homocyst(e)ine concentrations of these patients with or without coronary artery stenosis. Using discriminant function analysis, thermolabile methylenetetrahydrofolate reductase was predictive of angiographically

  7. Differential alkylation-based redox proteomics - Lessons learnt

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    -sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here...... is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original...

  8. Solid-Phase S-Alkylation Promoted by Molecular Sieves.

    Science.gov (United States)

    Calce, Enrica; Leone, Marilisa; Mercurio, Flavia Anna; Monfregola, Luca; De Luca, Stefania

    2015-11-20

    A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.

  9. The effect of alkylating agents on model supported metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. (Pittsburgh Univ., PA (USA). Dept. of Chemical and Petroleum Engineering); Oukaci, R. (CERHYD, Algiers (Algeria))

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  10. Synthesis and Characterization of 5-(hydrazino-alkyl) Tetrazoles

    Science.gov (United States)

    2014-07-01

    structure and 1H NMR spectrum of hydrazone 7 7 Synthesis of 5 - (hydrazino - alkyl) tetrazole via BOC hydrazine Amino acid- BOC Amino acid . HCl...Acidic medium Tetrazole-R-N2H2- BOC Acidic medium Tetrazole-R-N2H2 . HCl  Address solubility issues  Solid state structures of hydrochloride salt...hydrazino - alkyl) tetrazole via BOC hydrazine Removal of BOC protecting group 11, n = 1 12, n = 2 1H NMR and DSC of 5-(hydrazino-methyl)tetrazole

  11. Regeneration of zeolite catalysts of isobutane alkylation with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Manza, I.A.; Tsupryk, I.N.; Bartyshevskii, V.A.; Gaponenko, O.I.; Petrilyak, K.I.

    1986-12-10

    The industrial adoption of alkylation of isoalkanes with alkenes is held back by the rapid and irreversible deactivation of the zeolite catalysts appropriate to the process. This paper is aimed specifically at the restoration of the catalytic activity and increase in the service life of zeolite alkylation catalysts. The catalyst chosen for the investigation was HLaCaNaX zeolite both unmodified and modified with various multivalence cations. The thermochemical and oxidative regeneration process as well as the equipment utilized are described. Both the advantages and the drawbacks of the method are given; explanations for the possibly irreversible losses of the catalytic properties in the regenerated zeolites are also put forward.

  12. The role of biliverdin reductase in colorectal cancer

    International Nuclear Information System (INIS)

    Bauer, M.

    2010-01-01

    In recent years, the effects of biliverdin and bilirubin have been studied extensively, and an inhibitory effect of bile pigments in cancer progression has been proposed. In this study we focused on the effects of biliverdin reductase, the enzyme that converts biliverdin to bilirubin, in colorectal cancer. For in vitro experiments we used a human colorectal carcinoma cell line and transfected it with an expression construct of shRNA specific for biliverdin reductase, to create cells with stable knock-down of enzyme expression. Cell proliferation was analyzed using the CASY model TT cell counting device. Western blot protein analysis was performed to study intracellular signaling cascades. Samples of human colorectal cancer were analyzed using immunohistochemistry. We were able to confirm the antiproliferative effects of bile pigments on cancer cells in vitro. However, this effect was attenuated in biliverdin reductase knock down cells. ERK and Akt activation seen under biliverdin and bilirubin treatment was also reduced in biliverdin reductase deficient cells. Immunohistochemical analysis of tumor samples from patients with colorectal cancer showed elevated biliverdin reductase levels. High enzyme expression was associated with lower overall and disease free patient survival. We conclude that BVR is required for bile pigment mediated effects regarding cancer cell proliferation and modulation of intracellular signaling cascades. The role of BVR overexpression in vivo and its exact influence on cancer progression and patient survival need to be further investigated. (author) [de

  13. Experimental studies on toxicity of ethylene glycol alkyl ethers in Japan.

    OpenAIRE

    Nagano, K; Nakayama, E; Oobayashi, H; Nishizawa, T; Okuda, H; Yamazaki, K

    1984-01-01

    Past studies on the toxicological effects of ethylene glycol alkyl ethers as well as the recent data on these chemicals in Japan are reviewed. Only a few researchers have participated in the study of ethylene glycol alkyl ethers in Japan. The effects of ethylene glycol alkyl ethers on testis and embryotoxic effects of ethylene glycol monomethyl ether (EGM) have been studied, as has the teratogenicity of ethylene glycol dimethyl ether (EGdM). Studies on ethylene glycol alkyl ethers and related...

  14. Autoxidation versus biotransformation of alpha-pinene to flavors with Pleurotus sapidus: regioselective hydroperoxidation of alpha-pinene and stereoselective dehydrogenation of verbenol.

    Science.gov (United States)

    Krings, Ulrich; Lehnert, Nicole; Fraatz, Marco A; Hardebusch, Björn; Zorn, Holger; Berger, Ralf G

    2009-11-11

    The enzymatic conversion of alpha-pinene to verbenols, verbenone, and minor volatile flavors was studied using submerged cultured cells, lyophilisate, and microsomal fractions of the edible basidiomycete Pleurotus sapidus . The similarity of the product range obtained by the bioconversions with the range of products found after autoxidation of alpha-pinene at 100 degrees C suggested similar initial pinene radicals. Extracts of the bioconversions were analyzed using thin layer chromatography with hydroperoxide staining and cool on-column capillary gas chromatography-mass spectrometry. Two isomer alpha-pinene hydroperoxides were identified as the key intermediates and their structures confirmed by comparison with synthesized reference samples and by microchemical reduction to (Z)- and (E)-verbenol. When the biocatalysts were supplemented with one of the verbenols, only the (Z)-isomer was oxidized, indicating the activity of a highly stereospecific monoterpenol dehydrogenase. The structural comparison of subunits shows that fungal oxifunctionalization reactions of some common terpene substrates, such as (+)-limonene or (+)-valencene, might likewise be catalyzed by dioxygenases rather than by CYP450 enzymes, as previously assumed.

  15. Immobilization of Lipases on Alkyl Silane Modified Magnetic Nanoparticles: Effect of Alkyl Chain Length on Enzyme Activity

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R.

    2012-01-01

    Background Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Methodology/Principal Findings Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe3O4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. Conclusions/Significance The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization

  16. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  17. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  18. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  19. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  20. 40 CFR 721.10143 - Amines, bis (C11-14-branched and linear alkyl).

    Science.gov (United States)

    2010-07-01

    ... linear alkyl). 721.10143 Section 721.10143 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10143 Amines, bis (C11-14-branched and linear alkyl). (a) Chemical..., bis (C11-14-branched and linear alkyl) (PMN P-06-733; CAS No. 900169-60-0) is subject to reporting...

  1. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  2. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Science.gov (United States)

    2010-07-01

    ..., alkali and amine salts. 721.2565 Section 721.2565 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  3. Alkylation and dimerisation of 2,6-substituted phenols induced by cobalt-60 gamma radiation in hydrocarbons Part I. Alkylation

    Science.gov (United States)

    Chutný, B.; Brodilová, J.; Pospíšil, J.

    The behavior of 2, 6-substituted phenols in hydrocarbons under the influence of gamma radiation and in the absence of oxygen was studied. Thus 2-methyl-6-tert. butyl phenol in isooctane solution was alkylated in the position 4 and 2-methyl-4-/1, 1, 3, 3- tetramethylbutyl/ -6-tert. butylphenol was formed at a conversion 33%. Among the products also 3, 3-'dimethyl-5, 5-ditert. butyl-4, 4-'biphenyldiol was found. Radiation yields were calculated and some reactions of the alkylation mechanism were proposed.

  4. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    The cd(1) nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d(1). Heme-c is the electron entry site, whereas heme-d(1) constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa...... nitrite reductase has been determined in both fully oxidized and reduced states. Intramolecular electron transfer (ET), between c and d(1) hemes is an essential step in the catalytic cycle. In earlier studies of the Pseudomonas stutzeri enzyme, we observed that a marked negative cooperativity...... is controlling this internal ET step. In this study we have investigated the internal ET in the wild-type and His369Ala mutant of P. aeruginosa nitrite reductases and have observed similar cooperativity to that of the Pseudomonas stutzeri enzyme. Heme-c was initially reduced, in an essentially diffusion...

  5. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  6. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  7. Expression and site-directed mutagenesis of human dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-05-17

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 ..-->.. Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by ..cap alpha..-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme.

  8. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 9. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction. Sankaranarayanan Nagarajan Tanveer M Shaikh Elango Kandasamy. Volume 127 Issue 9 September 2015 pp 1539- ...

  9. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Science.gov (United States)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  10. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    , and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...

  11. A new route alpha-alkyl-alpha-fluoromethylenebisphosphonates

    Czech Academy of Sciences Publication Activity Database

    Beier, Petr; Opekar, Stanislav; Zibinsky, M.; Bychinskaya, I.; Prakash, G. K. S.

    2011-01-01

    Roč. 9, č. 11 (2011), s. 4035-4038 ISSN 1477-0520 R&D Projects: GA ČR GP203/08/P310 Institutional research plan: CEZ:AV0Z40550506 Keywords : fluorine * phosphonate * alkylation Subject RIV: CC - Organic Chemistry Impact factor: 3.696, year: 2011

  12. A Green Alternative to Aluminum Chloride Alkylation of Xylene

    Science.gov (United States)

    Sereda, Grigoriy A.; Rajpara, Vikul B.

    2007-01-01

    An acutely less toxic 2-bromobutane is used to develop a simple graphite-promoted procedure of alkylation of p-xylene. It is further demonstrated that aluminum chloride is not required, the need for aqueous workup is eliminated, waste solutions are not produced and the multiple use of the catalyst is allowed.

  13. An efficient, heterogeneous and reusable catalyst for -alkylation of ...

    Indian Academy of Sciences (India)

    Fe(HSO4)3(FHS) was used as an efficient catalyst for the heterogeneous addition of a series of benzylic and allylic alcohols to various -dicarbonyl compounds, which afforded moderate to excellent yields of -alkylated products in 1,2-dichloroethane. In comparison with the previous methods, the present research ...

  14. Ruthenium-Catalyzed Alkylation of Oxindole with Alcohols

    DEFF Research Database (Denmark)

    Jensen, Thomas; Madsen, Robert

    2009-01-01

    An atom-economical and solvent-free catalytic procedure for the mono-3-alkylation of oxindole with alcohols is described. The reaction is mediated by the in situ generated catalyst from RuCl3 center dot xH(2)O and PPh3 in the presence of sodium hydroxide, The reactions proceed in good to excellent...

  15. Synthesis of hydroxytyrosyl alkyl ethers from olive oil waste waters

    OpenAIRE

    Espartero Sánchez, José Luis; Madrona, Andrés; Pereira Cano, Gema; Mateos, Raquel; Rodríguez, Guillermo; Trujillo, Mariana; Fernández Bolaños, Juan

    2009-01-01

    The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  16. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    Directory of Open Access Journals (Sweden)

    Juan Fernández-Bolaños

    2009-05-01

    Full Text Available The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  17. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  18. Direct determination of adipic acid in urine by extractive alkylation.

    Science.gov (United States)

    Adinolfe, N A; Bicking, M K

    1985-09-01

    Extractive alkylation procedures are shown to be inhibited by low levels of Cl-. The chloride concentration may be reduced by mercury(II) complexation and dilution. The mercury(II) also enhances the reaction yield through some undetermined mechanism. Minor modifications of procedures for standards allow direct determination of adipic acid in urine.

  19. Microbial degradation of n-alkyl tetrahydrothiophenes found in petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Fedorak, P.M.; Payzant, J.D.; Montgomery, D.S.; Westlake, D.W.S.

    1988-05-01

    Although n-alkyl-substituted tetrahydrothiophenes are found in nonbiodegraded petroleums, they are not found in petroleums which have undergone biodegradation in their reservoirs. These observations suggested that this group of compounds with alkyl chain lengths from approximately C/sub 10/ to at least C/sub 30/ is biodegradable. Two of these sulfides, 2-n-dodecyltetrahydrothiophene (DTHT) and 2-n-undecyltetrahydrothiophene, were synthesized, and their biodegradabilities were tested by using five gram-positive, n-alkane-degrading bacterial isolates. The alkyl side chains of these compounds were oxidized, and the major intermediates found in 2-n-undecyltetrahydrothiophene- and DTHT-metabolizing cultures were 2-tetrahydrothiophenecarboxylic acid (THTC) and 2-tetrahydrothiopheneacetic acid (THTA), respectively. Four n-alkane-degrading fungi were also shown to degrade DTHT, yielding both THTA and THTC. Quantitation of tetrahydrothiophene ring-containing products in 28-day-old bacterial and fungal cultures suggested that THTC and THTA were metabolized further to unidentified products. In addition, two of the bacterial isolates were shown to degrade a mixture of n-alkyl tetrahydrothiophenes isolated from Bellshill Lake crude oil.

  20. Role of clay as catalyst in Friedel–Craft alkylation

    Indian Academy of Sciences (India)

    Role of clay as catalyst in Friedel–Craft alkylation. TANUSHREE CHOUDHURY. ∗ and NIRENDRA M MISRA†. Department of Chemistry, School of Advanced Sciences, VIT University Chennai Campus,. Vandalur- Kelambakkam Road, Chennai- 600048, India. †Department of Applied Chemistry, Indian School of Mines ...

  1. Leukemia after therapy with alkylating agents for childhood cancer

    International Nuclear Information System (INIS)

    Tucker, M.A.; Meadows, A.T.; Boice, J.D. Jr.

    1987-01-01

    The risk of leukemia was evaluated in 9,170 2-or-more-year survivors of childhood cancer in the 13 institutions of the Late Effects Study Group. Secondary leukemia occurred in 22 nonreferred individuals compared to 1.52 expected, based on general population rates [relative risk (RR) = 14; 95% confidence interval (CI), 9-22]. The influence of therapy for the first cancer on subsequent leukemia risk was determined by a case-control study conducted on 25 cases and 90 matched controls. Treatment with alkylating agents was associated with a significantly elevated risk of leukemia (RR = 4.8; 95% CI, 1.2-18.9). A strong dose-response relationship was also observed between leukemia risk and total dose of alkylating agents, estimated by an alkylator score. The RR of leukemia reached 23 in the highest dose category. Radiation therapy, however, did not increase risk. Although doxorubicin was also identified as a possible risk factor, the excess risk of leukemia following treatment for childhood cancer appears almost entirely due to alkylating agents

  2. Alkylation of isobutane with light olefins catalyzed by zeolite beta

    NARCIS (Netherlands)

    Nivarthy, G.S.; Feller, A.P.; Seshan, Kulathuiyer; Lercher, J.A.

    2000-01-01

    Alkylation of isobutane with ethene and propene was studied over an H-BEA catalyst in a well-stirred reactor. Under similar conditions of space velocity and paraffin-to-olefin feed ratio, lower initial olefin conversions were observed with ethene or propene than those reported earlier for butene.

  3. Isobutane/olefin alkylation - present state and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Feller, A.; Lercher, J.A. [Inst. fuer Technische Chemie, Technische Univ. Muenchen (Germany)

    2002-12-01

    Isobutane/alkene alkylation is reviewed with respect to recent process developments based on liquid and solid acid catalysts. The reaction mechanism and its consequences for both liquid and solid acid based processes is briefly discussed. Established liquid acid catalyzed processes are introduced followed by the description of new processes based on solid acids, which are currently under development. (orig.)

  4. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...... diacetyl (acetoin) reductase activity with NADH as coenzyme, but not with NADPH as coenzyme, suggesting the presence of another diacetyl (acetoin)-reducing activity in L. pseudomesenteroides. Plasmid-curing experiments demonstrated that the butA gene is carried on a 20-kb plasmid in L. pseudomesenteroides....

  5. Cyclophosphamide as a potent inhibitor of tumor thioredoxin reductase in vivo

    International Nuclear Information System (INIS)

    Wang Xufang; Zhang Jinsong; Xu Tongwen

    2007-01-01

    Cyclophosphamide (CTX) is in the nitrogen mustard group of alkylating antineoplastic chemotherapeutic agents. It is one of the most frequently used antitumor agents for the treatment of a broad spectrum of human cancers. Thioredoxin reductase (TrxR) catalyze the NADPH-dependent reduction of thioredoxin and play an important role in multiple cellular events related to carcinogenesis including cell proliferation, apoptosis, and cell signaling. This enzyme represents a promising target for the development of cytostatic agents. The purpose of this study is to determine whether CTX could target TrxR in vivo. Lewis lung carcinoma and solid H22 hepatoma treated with 50-250 mg/kg CTX for 3 h lost TrxR activity in a dose-dependent fashion. Over 75% and 95% of TrxR activity was lost at the dose of 250 mg/kg. There was, however, a recovery of TrxR activity such that it attained normal levels by 120 h after a dose of 250 mg/kg. In addition, we found that CTX caused a preferential TrxR inhibition over other antioxidant enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase. We also used ascites H22 cells to investigate cancer cells response after TrxR was inhibited by CTX in vivo since CTX is needed to be activated by liver cytochrome P450 enzymes. The time course and dose-dependent changes of cellular TrxR activity were similar with those in tumor tissue. CTX caused a dose-dependent cellular proliferation inhibition which was positively correlated with TrxR inhibition at 3 h. Furthermore, when 3 h CTX-treated cells with various TrxR backgrounds, harvested from ascites-bearing mice, were implanted into mice, the proliferations of these cells were again proportionally dependent on TrxR activity. The TrxR inhibition could thereby be considered as a crucial mechanism contributing to anticancer effect seen upon clinical use of CTX

  6. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

    Science.gov (United States)

    Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy

    2017-05-22

    Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Predicting Alkylate Yield and its Hydrocarbon Composition for Sulfuric Acid Catalyzed Isobutane Alkylation with Olefins Using the Method of Mathematical Modeling

    OpenAIRE

    Nurmakanova, А. Е.; Ivashkina, Elena Nikolaevna; Ivanchina, Emilia Dmitrievna; Dolganov, I. A.; Boychenko, S. S.

    2015-01-01

    The article provides the results of applied mathematical model of isobutane alkylation with olefins catalyzed by sulfuric acid to predict yield and hydrocarbon composition of alkylate caused by the changes in the feedstock composition and process parameters. It is shown that the alkylate produced from feedstock with less mass fraction of isobutane has lower octane value. Wherein the difference in composition of the feedstock contributes to antiknock index by the amount of 1.0-2.0 points.

  8. Design of novel antitumor DNA alkylating agents: the benzacronycine series.

    Science.gov (United States)

    David-Cordonnier, Marie-Hélène; Laine, William; Gaslonde, Thomas; Michel, Sylvie; Tillequin, Francois; Koch, Michel; Léonce, Stéphane; Pierré, Alain; Bailly, Christian

    2004-03-01

    Acronycine, a natural alkaloid originally extracted from the bark of the Australian ash scrub Acronychia baueri, has shown a significant antitumor activity in animal models. Acronycine has been tested against human cancers in the early 1980s, but the clinical trials showed modest therapeutic effects and its development was rapidly discontinued. In order to optimize the antineoplastic effect, different benzoacronycine derivatives were synthesized. Among those, the di-acetate compound S23906-1 was recently identified as a promising anticancer drug candidate and a novel alkylating agent specifically reacting with the exocylic 2-NH2 group of guanines in DNA. The study of DNA bonding capacity of acronycine derivatives leads to the identification of the structural requirements for DNA alkylation. In nearly all cases, the potent alkylating agents, such as S23906-1, were found to be much more cytotoxic than the unreactive analogs such as acronycine itself or diol derivatives. Alkylation of DNA by the monoacetate derivative S28687-1, which is a highly reactive hydrolysis metabolite of S23906-1, occurs with a marked preference for the N2 position of guanine. Other bionucleophiles can react with S23906-1. The benzacronycine derivatives, which efficiently alkylate DNA, also covalently bind to the tripeptide glutathione (GSH) but not to the oxidized product glutathione disulfide. Here we review the reactivity of S23906-1 and some derivatives toward DNA and GSH. The structure-activity relationships in the benzacronycine series validate the reaction mechanism implicating DNA as the main molecular target. S23906-1 stands as the most promising lead of a medicinal chemistry program aimed at discovering novel antitumor drugs based on the acronycine skeleton.

  9. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase

    Science.gov (United States)

    Van Alst, Nadine E.; Sherrill, Lani A.; Iglewski, Barbara H.; Haidaris, Constantine G.

    2009-01-01

    Nitrate serves as a terminal electron acceptor under anaerobic conditions in Pseudomonas aeruginosa. Reduction of nitrate to nitrite generates a transmembrane proton motive force allowing ATP synthesis and anaerobic growth. Inner membrane-bound nitrate reductase NarGHI is encoded within the narK1K2GHJI operon and the periplasmic nitrate reductase NapAB is encoded within the napEFDABC operon. The role of the two dissimilatory nitrate reductases in anaerobic growth, and the regulation of their expression were examined by using a set of deletion mutants in P. aeruginosa PAO1. NarGHI mutants were unable to grow anaerobically, but plate cultures remained viable up to 120 hr. In contrast, nitrate sensor-response regulator mutant ΔnarXL displayed growth arrest initially, but resumed growth after 72 hr and reached early stationary phase in liquid culture after 120 hr. Genetic, transcriptional, and biochemical studies demonstrated that anaerobic growth recovery by the NarXL mutant was the result of NapAB periplasmic nitrate reductase expression. A novel transcriptional start site for napEFDABC expression was identified in the NarXL mutant grown anaerobically. Furthermore, mutagenesis of a consensus NarL-binding site monomer upstream of the novel transcriptional start site restored anaerobic growth recovery in the NarXL mutant. The data suggest that during anaerobic growth of wild type P. aeruginosa PAO1, nitrate response regulator NarL directly represses expression of periplasmic nitrate reductase, while inducing maximal expression of membrane nitrate reductase. PMID:19935885

  10. Co-catalyzed cross-coupling of alkyl halides with tertiary alkyl Grignard reagents using a 1,3-butadiene additive.

    Science.gov (United States)

    Iwasaki, Takanori; Takagawa, Hiroaki; Singh, Surya P; Kuniyasu, Hitoshi; Kambe, Nobuaki

    2013-07-03

    The cobalt-catalyzed cross-coupling of alkyl (pseudo)halides with alkyl Grignard reagents in the presence of 1,3-butadiene as a ligand precursor and LiI is described. Sterically congested quaternary carbon centers could be constructed by using tertiary alkyl Grignard reagents. This reaction proceeds via an ionic mechanism with inversion of stereochemistry at the reacting site of the alkyl halide and is compatible with various functional groups. The use of both 1,3-butadiene and LiI was essential for achieving high yields and high selectivities.

  11. Study of hydrogen mobility by hydrogen-deuterium exchange. II. Theoretical kinetic study in alkyl and amino-alkyl pyrimidines

    International Nuclear Information System (INIS)

    Pompon, Alain

    1975-01-01

    Alkyl groups bound to the pyrimidine ring can be deuterium substituted on the carbon adjacent to the ring, in acidic D 2 O; kinetic equations corresponding to various exchange mechanism hypothesis are established. It is shown that theoretical and experimental results can be compared in order to precise the mechanism and to measure the characteristic parameters of the exchange reaction [fr

  12. 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines

    International Nuclear Information System (INIS)

    Lee, J.S.; Jacobsen, N.E.; Ortiz de Montellano, P.R.

    1988-01-01

    Rat liver microsomal cytochrome P-450 oxidizes the 4-methyl, 4-ethyl (DDEP), and 4-isopropyl derivatives of 3,5-bis(carbethoxy)-2,6-dimethyl-1,4,-dihydropyridine to mixtures of the corresponding 4-alkyl and 4-dealkyl pyridines. A fraction of the total microsomal enzyme is destroyed in the process. The 4-dealkyl to 4-alkyl pyridine metabolite ratio, the extent of cytochrome P-450 destruction, and the rate of spin-trapped radical accumulation are correlated in a linear inverse manner with the homolytic or heterolytic bond energies of the 4-alkyl groups of the 4-alkyl-1,4-dihydropyridines. No isotope effects are observed on the pyridine matabolite ratio, the destruction of cytochrome P-450, or the formation of ethyl radicals when [4- 2 H]DDEP is used instead of DDEP. N-Methyl- and N-ethyl-DDEP undergo N-dealkylation rather than aromatization but N-phenyl-DDEP is oxidized to a mixture of the 4-ethyl and 4-deethyl N-phenylpyridinium metabolites. In contrast to the absence of an isotope effect in the oxidation of DDEP, the 4-deethyl to 4-ethyl N-phenylpyridinium metabolite ratio increases 6-fold when N-phenyl[4- 2 H]DDEP is used. The results support the hypothesis that cytochrome P-450 catalyzes the oxidation of dihydropyridines to radical cations and show that the radical cations decay to nonradical products by multiple, substituent-dependent, mechanisms

  13. Determination of alkylation of bacterial DNA as a rapid test for toxicological evaluation of alkylating xenobiotic agents

    Energy Technology Data Exchange (ETDEWEB)

    Botzenhart, K.; Waldner-Sander, S.; Schweinsberg, F.

    1986-05-01

    Alkylated purine bases from hydrolized DNA can be separated by HPLC and quantified with a fluorescence detector. We applied this method to bacterial DNA. 7-methylguanine was detected after treatment of Serratia marcescens with iodoacetamide, dimethyl sulfate and with polluted air.

  14. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    Science.gov (United States)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production.

    Science.gov (United States)

    Furukawa, Tomohiro; Iimura, Kurin; Kimura, Taichi; Yamamoto, Toshiyoshi; Sakuda, Shohei

    2016-06-07

    Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control.

  16. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-06-01

    Full Text Available Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control.

  17. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    Conditions of nitrate reductase extraction and activity measurement should be adapted to plant species, and to the organs of the same plant, because of extreme weaknesses and instabilities of the enzyme. Different extraction and reaction media have been compared in order to define the best conditions for cotton callus ...

  18. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... in prostate cancer patients: a potential factor implicated in 5-alpha-reductase inhibitor treatment. LUIS ALBERTO HENRÍQUEZ-HERNÁNDEZ1,2,3∗, ALMUDENA VALENCIANO2, PALMIRA FORO-ARNALOT4,. MARÍA JESÚS ÁLVAREZ-CUBERO5,6, JOSÉ MANUEL COZAR7, JOSÉ FRANCISCO ...

  19. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... Herrera-Ramos E., Rodríguez-Gallego C. and Lara P. C. 2015 Intraethnic variation in steroid-5-alpha-reductase polymorphisms in prostate ... generation. This study was approved by the Research and. Ethics Committee of each institution participant in the study. DNA was isolated from 300 µL of ...

  20. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    ... 5 alpha helices and 8 beta-strands. Twelve binding site residues were predicted in KCA1_1610 relative to the template protein 2zzaA in protein database (PDB). The predicted structure of KCA1_1610 dihydrofolate reductase can serve as a new template as an addition to structural genomics and generation of models for ...

  1. Dizygotic twinning is not associated with methylenetetrahydrofolate reductase haplotypes

    NARCIS (Netherlands)

    Montgomery, GW; Zhao, Z.Z.; Morley, K.I.; Marsh, A.J.; Boomsma, D.I.; Martin, N.G.; Duffy, DL

    2003-01-01

    Background: Folate metabolism is critical to embryonic development, influencing neural tube defects (NTD) and recurrent early pregnancy loss. Polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR) have been associated with dizygotic (DZ) twinning through pregnancy loss. Methods: The C677T

  2. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    GREGO

    mM of glutamine in the extraction buffer stimulates significantly, in vitro, the reduction of nitrate. Enzyme activity is moreover optimal when 1 M of exogenous nitrate, as substrate, is added to the reaction medium. At these optimum conditions of nitrate reductase activity determination, the substrate was completely reduced ...

  3. Cloning and expression analysis of dihydroxyflavonol 4-reductase ...

    African Journals Online (AJOL)

    Southern blot analysis indicate that DFR is presented as a single copy in the Ascocenda spp. genome. The AscoDFR gene was highly expressed in the flower stages 2 and 3 of development as well as in the sepal and petal of the orchid flower. Keywords: Orchid, dihydroxyflavonol 4-reductase, anthocyanins, gene cloning ...

  4. Crystallographic analysis of tricolosan bound to enoyl reductase.

    NARCIS (Netherlands)

    Roujeinikova, A.; Levy, C.W.; Rowsell, S.; Sedelnikova, S.; Baker, P.J.; Minshull, C.A.; Mistry, A.; Colls, J.G.; Camble, R.; Stuitje, A.R.; Slabas, A.R.; Rafferty, J.B.; Pauptit, R.A.; Viner, A; Rice, D.W.

    1999-01-01

    Molecular genetic studies with strains of Escherichia coli resistant to triclosan, an ingredient of many anti-bacterial household goods, have suggested that this compound works by acting as an inhibitor of enoyl reductase (ENR) and thereby blocking lipid biosynthesis. We present structural analyses

  5. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr). Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and ...

  6. Aldose reductase inhibitory activity and antioxidant capacity of pomegranate extracts.

    Science.gov (United States)

    Karasu, Cimen; Cumaoğlu, Ahmet; Gürpinar, Ali Rifat; Kartal, Murat; Kovacikova, Lucia; Milackova, Ivana; Stefek, Milan

    2012-03-01

    The pomegranate, Punica granatum L., has been the subject of current interest as a medicinal agent with wide-ranging therapeutic indications. In the present study, pomegranate ethanolic seed and hull extracts were tested, in comparison with a commercial sample, for the inhibition of aldose reductase, an enzyme involved in the etiology of diabetic complications. In vitro inhibition of rat lens aldose reductase was determined by a conventional method. Pomegranate ethanolic hull extract and commercial pomegranate hull extract exhibited similar aldose reductase inhibitory activity characterized by IC(50) values ranging from 3 to 33.3 μg/ml. They were more effective than pomegranate ethanolic seed extract with IC(50) ranging from 33.3 to 333 μg/ml. Antioxidant action of the novel compounds was documented in a DPPH test and in a liposomal membrane model, oxidatively stressed by peroxyl radicals. All the plant extracts showed considerable antioxidant potential in the DPPH assay. Pomegranate ethanolic hull extract and commercial pomegranate hull extract executed similar protective effects on peroxidatively damaged liposomal membranes characterized by 10ethanolic seed extract showed significantly lower antioxidant activity compared to both hull extracts studied. Pomegranate extracts are thus presented as bifunctional agents combining aldose reductase inhibitory action with antioxidant activity and with potential therapeutic use in prevention of diabetic complications.

  7. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the.

  8. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  9. Evaluation of the conserve flavin reductase gene from three ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... means of PCR technique. The nucleic acid sequences of the PCR primers were designed using conserved nucleic acid sequences of the flavin reductase enzyme from. Rhodococcus sp. strain IGTS8. The oligonucleotide primers were as follows: 5'-GAA TTC ATG TCT GAC. AAG CCG AAT GCC-3' (forward) ...

  10. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    Science.gov (United States)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  11. The intramolecular electron transfer between copper sites of nitrite reductase

    DEFF Research Database (Denmark)

    Farver, O; Eady, R R; Abraham, Z H

    1998-01-01

    The intramolecular electron transfer (ET) between the type 1 Cu(I) and the type 2 Cu(II) sites of Alcaligenes xylosoxidans dissimilatory nitrite reductase (AxNiR) has been studied in order to compare it with the analogous process taking place in ascorbate oxidase (AO). This internal process is in...

  12. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  13. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    Science.gov (United States)

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  14. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide

    Science.gov (United States)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.

    2018-05-01

    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  15. Identification of 5α-reductase isoenzymes in canine skin.

    Science.gov (United States)

    Bernardi de Souza, Lucilene; Paradis, Manon; Zamberlam, Gustavo; Benoit-Biancamano, Marie-Odile; Price, Christopher

    2015-10-01

    Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT. However, which 5α-reductases are present in canine skin has not yet been described. The main objective of this study was to determine the pattern of expression of 5α-reductase genes in canine skin. Skin biopsies were obtained from healthy, intact young-mature beagles (three males, four females) at three anatomical sites normally affected by alopecia X (dorsal neck, back of thighs and base of tail) and two sites generally unaffected (dorsal head and ventral thorax). Prostate samples (n = 3) were collected as positive controls for 5α-reductase mRNA abundance measurement by real-time PCR. We detected mRNA encoding 5αR1 and 5αR3 but not 5αR2. There were no significant differences in 5αR1 and 5αR3 mRNA levels between the different anatomical sites, irrespective of gender (P > 0.05). Moreover, the mean mRNA abundance in each anatomical site did not differ between males and females (P > 0.05). To the best of the authors' knowledge, this is the first study demonstrating the expression of 5α-reductases in canine skin and the expression of 5αR3 in this tissue. These results may help to elucidate the pathogenesis of alopecia X and to determine more appropriate treatments for this disorder. © 2015 ESVD and ACVD.

  16. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept.

    Science.gov (United States)

    Kuresepi, Salen; Vileno, Bertrand; Turek, Philippe; Lepoittevin, Jean-Pierre; Giménez-Arnau, Elena

    2018-02-01

    The first step in the development of skin sensitisation to a chemical, and in the elicitation of further allergic contact dermatitis (ACD), is the binding of the allergen to skin proteins after penetrating into the epidermis. The so-formed antigenic adduct is then recognised by the immune system as foreign to the body. Sensitising organic hydroperoxides derived from autoxidation of natural terpenes are believed to form antigens through radical-mediated mechanisms, although this has not yet been established. So far, in vitro investigations on reactive radical intermediates derived from these skin sensitisers have been conducted in solution, yet with experimental conditions being far away from real-life sensitisation. Herein, we report for the first time, the potential use of EPR spin-trapping to study the in situ generation of free radicals derived from cumene hydroperoxide CumOOH in a 3D reconstructed human epidermis (RHE) model, thus much closer to what may happen in vivo. Among the undesirable effects associated with dermal exposure to CumOOH, it is described to cause allergic and irritant dermatitis, being reported as a significant sensitiser. We considered exploiting the usage of spin-trap DEPMPO as an extensive view of all sort of radicals derived from CumOOH were observed all at once in solution. We showed that in the Episkin TM RHE model, both by incubating in the assay medium and by topical application, carbon radicals are mainly formed by redox reactions suggesting the key role of CumOOH-derived carbon radicals in the antigen formation process.

  17. Detection and Identification of the Keto-Hydroperoxide (HOOCH 2 OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2015-07-16

    In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + CH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OCHOOH intermediate, which predominantly leads to the HPMF. © 2015 American Chemical Society.

  18. Free radical-derived quinone methide mediates skin tumor promotion by butylated hydroxytoluene hydroperoxide: expanded role for electrophiles in multistage carcinogenesis.

    Science.gov (United States)

    Guyton, K Z; Bhan, P; Kuppusamy, P; Zweier, J L; Trush, M A; Kensler, T W

    1991-01-01

    Free radical derivatives of peroxides, hydroperoxides, and anthrones are thought to mediate tumor promotion by these compounds. Further, the promoting activity of phorbol esters is attributed, in part, to their ability to stimulate the cellular generation of oxygen radicals. A hydroperoxide metabolite of butylated hydroxytoluene, 2,6-di-tert-butyl-4-hydroperoxyl-4-methyl-2,5-cyclohexadienone (BHTOOH), has previously been shown to be a tumor promoter in mouse skin. BHTOOH is extensively metabolized by murine keratinocytes to several radical species. The primary radical generated from BHTOOH is a phenoxyl radical that can disproportionate to form butylated hydroxytoluene quinone methide, a reactive electrophile. Since electrophilic species have not been previously postulated to mediate tumor promotion, the present study was undertaken to examine the role of this electrophile in the promoting activity of BHTOOH. The biological activities of two chemical analogs of BHTOOH, 4-trideuteromethyl-BHTOOH and 4-tert-butyl-BHTOOH, were compared with that of the parent compound. 4-Trideuteromethyl-BHTOOH and 4-tert-butyl-BHTOOH have a reduced ability or inability, respectively, to form a quinone methide; however, like the parent compound, they both generate a phenoxyl radical when incubated with keratinocyte cytosol. The potency of BHTOOH, 4-trideuteromethyl-BHTOOH, and 4-tert-butyl-BHTOOH as inducers of ornithine decarboxylase, a marker of tumor promotion, was commensurate with their capacity for generating butylated hydroxytoluene quinone methide. These initial results were confirmed in a two-stage tumor promotion protocol in female SENCAR mice. Together, these data indicate that a quinone methide is mediating tumor promotion by BHTOOH, providing direct evidence that an electrophilic intermediate can elicit this stage of carcinogenesis. PMID:1846971

  19. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    Science.gov (United States)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; hide

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  20. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase.

    Science.gov (United States)

    Chen, Baosong; Tian, Jin; Zhang, Jinjin; Wang, Kai; Liu, Li; Yang, Bo; Bao, Li; Liu, Hongwei

    2017-07-01

    Seven new compounds including four lanostane triterpenoids, lucidenic acids Q-S (1-3) and methyl ganoderate P (4), and three triterpene-farnesyl hydroquinone conjugates, ganolucinins A-C (5-7), one new natural product ganomycin J (8), and 73 known compounds (9-81) were isolated from fruiting bodies of Ganoderma lucidum. The structures of the compounds 1-8 were determined by spectroscopic methods. Bioactivities of compounds isolated were assayed against HMG-CoA reductase, aldose reductase, α-glucosidase, and PTP1B. Ganolucidic acid η (39), ganoderenic acid K (44), ganomycin J (8), and ganomycin B (61) showed strong inhibitory activity against HMG-CoA reductase with IC 50 of 29.8, 16.5, 30.3 and 14.3μM, respectively. Lucidumol A (67) had relatively good effect against aldose reductase with IC 50 of 19.1μM. Farnesyl hydroquinones ganomycin J (8), ganomycin B (61), ganomycin I (62), and triterpene-farnesyl hydroquinone conjugates ganoleuconin M (76) and ganoleuconin O (79) possessed good inhibitory activity against α-glucosidase with IC 50 in the range of 7.8 to 21.5μM. This work provides chemical and biological evidence for the usage of extracts of G. lucidum as herbal medicine and food supplements for the control of hyperglycemic and hyperlipidemic symptoms. Copyright © 2017. Published by Elsevier B.V.

  1. Polycyclic aromatic acids are primary metabolites of alkyl-PAHs - a case study with Nereis diversicolor

    DEFF Research Database (Denmark)

    Malmquist, Linus Mattias Valdemar; Selck, Henriette; Jørgensen, Kåre Bredeli

    2015-01-01

    Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl...... that carboxylic acid metabolites of alkyl-PAHs have the potential of constituting a new class of contaminants in marine waters that needs attention in relation to ecological risk assessments....

  2. Production of high-octane, unleaded motor fuel by alkylation of isobutane with isoamylenes obtained by dehydrogenation of isopentane

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, T. Jr.; Hann, P.D.

    1981-01-31

    A process combination, with inter-cooperation, for producing high-octane alkylates comprising (a) dehydrogenating isopentane to isopentenes (amylenes), (b) introducing the mixture of said amylenes and unconverted isopentane into an HF alkylation unit for reaction with fresh or recycled isobutane, (c) separating the alkylation products into high octane alkylates, isopentane (for recycling to the dehydrogenation reactor) and isobutane (for recycling to the alkylation reactor).

  3. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  4. Alkylating agent (MNU)-induced mutation in space environment.

    Science.gov (United States)

    Ohnishi, T; Takahashi, A; Ohnishi, K; Takahashi, S; Masukawa, M; Sekikawa, K; Amano, T; Nakano, T; Nagaoka, S

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  5. Safety Assessment of Alkyl Esters as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 237 alkyl esters for use in cosmetics. The alkyl esters included in this assessment have a variety of reported functions in cosmetics, with skin-conditioning agent being the most common function. The Panel reviewed available animal and clinical data in making its determination of safety on these ingredients, and where there were data gaps, similarity in structure, properties, functions, and uses of these ingredients allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that these ingredients are safe in cosmetic formulations in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  6. Conformational Restriction of Peptides Using Dithiol Bis-Alkylation.

    Science.gov (United States)

    Peraro, L; Siegert, T R; Kritzer, J A

    2016-01-01

    Macrocyclic peptides are highly promising as inhibitors of protein-protein interactions. While many bond-forming reactions can be used to make cyclic peptides, most have limitations that make this chemical space challenging to access. Recently, a variety of cysteine alkylation reactions have been used in rational design and library approaches for cyclic peptide discovery and development. We and others have found that this chemistry is versatile and robust enough to produce a large variety of conformationally constrained cyclic peptides. In this chapter, we describe applications, methods, mechanistic insights, and troubleshooting for dithiol bis-alkylation reactions for the production of cyclic peptides. This method for efficient solution-phase macrocyclization is highly useful for the rapid production and screening of loop-based inhibitors of protein-protein interactions. © 2016 Elsevier Inc. All rights reserved.

  7. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  8. Synthesis and Antioxidant Activity of Alkyl Nitroderivatives of Hydroxytyrosol

    Directory of Open Access Journals (Sweden)

    Elena Gallardo

    2016-05-01

    Full Text Available A series of alkyl nitrohydroxytyrosyl ether derivatives has been synthesized from free hydroxytyrosol (HT, the natural olive oil phenol, in order to increase the assortment of compounds with potential neuroprotective activity in Parkinson’s disease. In this work, the antioxidant activity of these novel compounds has been evaluated using Ferric Reducing Antioxidant Power (FRAP, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS, and Oxygen Radical Scavenging Capacity (ORAC assays compared to that of nitrohydroxytyrosol (NO2HT and free HT. New compounds showed variable antioxidant activity depending on the alkyl side chain length; compounds with short chains (2–4 carbon atoms maintained or even improved the antioxidant activity compared to NO2HT and/or HT, whereas those with longer side chains (6–8 carbon atoms showed lower activity than NO2HT but higher than HT.

  9. Rapid NIR determination of alkyl esters in virgin olive oil

    International Nuclear Information System (INIS)

    Cayuela, J.A.

    2017-01-01

    The regulation of The European Union for olive oil and olive pomace established the limit of 35 mg·kg-1 for fatty acids ethyl ester contents in extra virgin olive oils, from grinding seasons after 2016. In this work, predictive models have been established for measuring fatty acid ethyl and methyl esters and to measure the total fatty acid alkyl esters based on near infrared spectroscopy (NIRS), and used successfully for this purpose. The correlation coefficients from the external validation exercises carried out with these predictive models ranged from 0.84 to 0.91. Different classification tests using the same models for the thresholds 35 mg·kg-1 for fatty acid ethyl esters and 75 mg·kg-1 for fatty acid alkyl esters provided success percentages from 75.0% to 95.2%. [es

  10. New unit for sulfuric acid alkylation of isobutane by olefins

    Energy Technology Data Exchange (ETDEWEB)

    Khadzhiev, S.N.; Baiburskii, V.L.; Deineko, P.S.; Gruzdev, A.S.; Tagavov, I.T.

    1987-01-01

    The authors describe and illustrate a sulfuric acid alkylation unit with a horizontal contact. As a result of the use of this design solution, the isobutane/olefin ratio is 10/1 in comparison with 4/1 to 5/1 in the other types of units, namely vertical reactors and cascade tank reactors. The unit was designed to process the butane-butylene cut (BBC) and part of the propane-propylene cut (PPC) from the G-43-107 cat cracker. The unit design includes provisions for controlled caustic washing of the feed and dehydration in an electric field. The authors present the basic data obtained in the three months of unit operation after startup, in comparison with the operating indexes of a sulfuric acid alkylation unit.

  11. Alkylation of isobutane by ethylene: A thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Goupil, J.M.; Poirier, J.L.; Cornet, D. (Univ. of Caen (France). Lab. Catalyse et Spectrochimie)

    1994-03-01

    Alkylation of isobutane by ethylene produces mainly hexanes, but a variety of other compounds, alkanes or alkenes, may be formed by secondary reactions such as successive alkylations, isomerization, and ethylene polymerization. The equilibrium distribution of products is evaluated in the temperature range 280--680 K and at various initial compositions and pressures. Isomer groups are treated using Alberty's formulation. Calculations show that alkenes are thermodynamically unstable under usual reaction conditions. The equilibrium amounts of alkanes are such that C[sub 6] [much gt] C[sub 8] [much gt] C[sub 10] and heavy alkanes also appear unstable. The selective formation of particular isomers (dimethylbutanes, trimethylpentanes) is also integrated in the equilibrium equations. The calculated compositions (C[sub 6]:C[sub 8]:C[sub 10]) are compared with experimental data.

  12. Benign and efficient preparation of thioethers by solvent-free S-alkylation of thiols with alkyl halides catalyzed by potassium fluoride on alumina

    DEFF Research Database (Denmark)

    Nguyen, Kha Ngoc; Duus, Fritz; Luu, Thi Xuan Thi

    2016-01-01

    The preparation of thioethers by S-alkylation of various thiols with alkyl halides under solvent-free reaction conditions using potassium fluoride on alumina (KF/Al2O3) as a solid catalyst has been investigated in detail with respect to three different modes of reaction activation (ultrasound...

  13. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    Science.gov (United States)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  14. 3-alkyl fentanyl analogues: Structure-activity-relationship study

    OpenAIRE

    Vučković, Sonja; Savić-Vujović, Katarina; Srebro, Dragana; Ivanović, Milovan; Došen-Mićović, Ljiljana; Stojanović, Radan; Prostran, Milica

    2012-01-01

    Introduction. Fentanyl belongs to 4-anilidopiperidine class of synthetic opioid analgesics. It is characterized by high potency, rapid onset and short duration of action. A large number of fentanyl analogues have been synthesized so far, both to establish the structure-activity-relationship (SAR) and to find novel, clinically useful analgesic drugs. Objective. In this study, newly synthesized 3-alkyl fentanyl analogues were examined for analgesic activity and compared with fentanyl. Methods. ...

  15. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids ...

    Indian Academy of Sciences (India)

    Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli ... ods involved use of a number of metal salts, such as Li,6 Fe,7–10 Cu,11,12 Ce,13 Zr,14 In,16 Bi,17 Yb, ..... in moderate yield, which might be due to poor solubility of starting materials. After extensive ...

  16. Iron-Catalyzed Alkylations of Aryl Sulfamates and Carbamates

    Science.gov (United States)

    Silberstein, Amanda L.; Ramgren, Stephen D.; Garg, Neil K.

    2012-01-01

    The alkylation of aryl sulfamates and carbamates using iron catalysis is reported. The method constructs sp2–sp3 carbon–carbon bonds and provides synthetically useful yields across a range of substrates (>35 examples). The directing group ability of sulfamates and carbamates, accompanied by their low reactivity toward conventional cross-couplings, render these substrates useful for the synthesis of polyfunctionalized arenes. PMID:22758657

  17. New potential of the reductive alkylation of amines

    International Nuclear Information System (INIS)

    Gusak, K N; Ignatovich, Zh V; Koroleva, E V

    2015-01-01

    Available data on the reductive alkylation of amines with carbonyl compounds — a key method for the preparation of secondary and tertiary amines — are described systematically. The review provides information on the relevant reducing agents and catalysts and on the use of chiral catalysts in stereo- and enantiocontrolled reactions of amine synthesis. The effect of the reactant and catalyst structures on the reaction rates and chemo- and stereo(enantio)selectivity is considered. The bibliography includes 156 references

  18. A new phenylethyl alkyl amide from the Ambrostoma quadriimpressum Motschulsky

    Directory of Open Access Journals (Sweden)

    Guolei Zhao

    2011-09-01

    Full Text Available A new phenylethyl alkyl amide, (10R-10-hydroxy-N-phenethyloctadecanamide (1, was isolated from the beetle Ambrostoma quadriimpressum Motschulsky. The structure of the amide was determined by NMR and MS. The absolute configuration of compound 1 was confirmed by an asymmetric total synthesis, which was started from L-glutamic acid. The construction of the aliphatic chain was accomplished by the selective protection of the hydroxy groups and two-time implementation of the Wittig olefination reaction.

  19. Alkylation of isobutane by butenes on zirconium sulfate catalysts

    International Nuclear Information System (INIS)

    Lavrenov, A.V.; Perelevskij, E.V.; Finevich, V.P.; Zajkovskij, V.I.; Paukshtis, E.A.; Duplyakiv, V.K.; Bal'zhinimaev, B.S.

    2003-01-01

    Preparation of applied zirconium sulfate catalysts obtained by the method of impregnation is investigated. Results of comparative study of structural, acid-base and catalytic properties of sulfated zirconium dioxide applied on silica gel and aluminium oxide are represented. Intervals of values of synthesis basic parameters and characteristics of catalysts properties providing achievement of high activity and selectivity in isobutane alkylation by butenes in liquid phase are determined [ru

  20. Effects of alkylating carcinogens on human tumor cells in culture

    International Nuclear Information System (INIS)

    Goth-Goldstein, R.; Hughes, M.

    1987-01-01

    In Escherichia coli 3-methyladenine and 3-methylguanine have been identified as lethal lesions, since two types of alkylating agent-sensitive mutants were deficient in repair of either of these lesions. Similar alkylation-sensitive human cell lines exist. These are the tumor cell lines of the complex Mer - phenotype. All Mer - cells examined were hypersensitive to killing by MNNG and other alkylating agents, and failed to repair O 6 -methylguanine. The widely studied HeLa S3 cell line has the Mer + phenotype, but a Mer - variant (HeLa MR) has arisen. This offers the possibility to study Mer - and Mer + cells of otherwise similar genetic background. We are using these two variants to analyze the Mer - phenotype further. When HeLa S3 and HeLa MR were treated with a highly dose of MNNG, and the surviving population exposed to a second dose of MNNG 2-3 weeks later, HeLa S3 (Mer + ) cells were equally or even slightly more sensitive to a second exposure of MNNG, whereas the surviving HeLa MR (Mer - ) population was much more resistant to MNNG. 1 fig., 1 tab

  1. Decreased stability of DNA in cells treated with alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Frankfurt, O.S. (Cedars Medical Center, Miami, FL (United States))

    1990-12-01

    A modified highly sensitive procedure for the evaluation of DNA damage in individual cells treated with alkylating agents is reported. The new methodology is based on the amplification of single-strandedness in alkylated DNA by heating in the presence of Mg{sup 2+}. Human ovarian carcinoma cells A2780 were treated with nitrogen mustard (HN2), fixed in methanol, and stained with monoclonal antibody (MOAB) F7-26 generated against HN2-treated DNA. Binding of MOAB was measured by flow cytometry with indirect immunofluorescence. Intensive binding of MOAB to control and drug-treated cells was observed after heating in Tris buffer supplemented with MgCl{sub 2}. Thus, the presence of phosphates and MgCl{sub 2} during heating was necessary for the detection of HN2-induced changes in DNA stability. Fluorescence of HN2-treated cells decreased to background levels after treatment with single-strand-specific S{sub 1} nuclease. MOAB F7-26 interacted with single-stranded regions in DNA and did not bind to dsDNA or other cellular antigens. It is suggested that alkylation of guanines decreased the stability of the DNA molecule and increased the access of MOAB F7-26 to deoxycytidines on the opposite DNA strand.

  2. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    Science.gov (United States)

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Separation of products of alkylation of isobutane by olefins

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.

    1979-03-15

    The alkylation (A1) of isobutane (I) by propylene, butylene and amylenes is carried out at 24-52 degrees, pressure sufficient to maintain the liquid phase, and a molar ratio of I to olefins (O1) 10:1-15:1. The bulk ratio of catalysts to hydrocarbons in the reaction zone was 0.5:1-10:1; when using HF-K-T as the catalysts, it should contain less than 5 percent water and greater than or equal to 65 percent titrated HF. The hydrocarbon products (UP) from the alkylation zone are added after separating the catalyst in a fractionation tower; distillation is carried out at 38-49 degrees and 1.03-1.3 NPa. The head fraction containing I and less than 50 molar percent C3H8 and also fraction I at the point below the input side of the UP which contains less than 8 molar percent C3H8 and fraction n-C4H10 at the point below the point of discharge of fraction I is drained from the tower. The alkylate is discharged at the bottom of the tower. According to the patent the tower operates at low pressure. This improves relative volatility of individual components and reduces heat consumption. The best results are obtained when a head fraction or the concentration C3H8 approximately 25 molar percent is discharged.

  4. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR......) and k(HOC(CH3)2CH2O2. + NO2) were determined to be (4.9 +/- 0.9) X 10(-12) and (6.7 +/- 0.9) x 10(-12) cm3 molecule-1 s-1, respectively. In the FTIR experiments products were studied using chlorine-initiated oxidation in TBA/N2/Cl2 and TBA/N2/O2/Cl2 mixtures....

  5. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    Science.gov (United States)

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  6. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes

    OpenAIRE

    Tran, Thai Q.; Ishak Gabra, Mari B.; Lowman, Xazmin H.; Yang, Ying; Reid, Michael A.; Pan, Min; O’Connor, Timothy R.; Kong, Mei

    2017-01-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damag...

  7. Efficient synthesis of N-alkyl-2,7-dihalocarbazoles by simultaneous carbazole ring closure and N-alkylation

    Czech Academy of Sciences Publication Activity Database

    Výprachtický, Drahomír; Kmínek, Ivan; Pokorná, Veronika; Cimrová, Věra

    2012-01-01

    Roč. 68, č. 25 (2012), s. 5075-5080 ISSN 0040-4020 R&D Projects: GA MŠk(CZ) 1M06031; GA ČR GAP106/12/0827 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : carbazole ring closure * carbazole alkylation * heterocycles Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.803, year: 2012

  8. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  9. Recent structural insights into the function of copper nitrite reductases.

    Science.gov (United States)

    Horrell, Sam; Kekilli, Demet; Strange, Richard W; Hough, Michael A

    2017-11-15

    Copper nitrite reductases (CuNiR) carry out the first committed step of the denitrification pathway of the global nitrogen cycle, the reduction of nitrite (NO 2 - ) to nitric oxide (NO). As such, they are of major agronomic and environmental importance. CuNiRs occur primarily in denitrifying soil bacteria which carry out the overall reduction of nitrate to dinitrogen. In this article, we review the insights gained into copper nitrite reductase (CuNiR) function from three dimensional structures. We particularly focus on developments over the last decade, including insights from serial femtosecond crystallography using X-ray free electron lasers (XFELs) and from the recently discovered 3-domain CuNiRs.

  10. The evolution of the ribonucleotide reductases: much ado about oxygen.

    Science.gov (United States)

    Poole, Anthony M; Logan, Derek T; Sjöberg, Britt-Marie

    2002-08-01

    Ribonucleotide reduction is the only known biological means for de novo production of deoxyribonucleotides, the building blocks of DNA. These are produced from ribonucleotides, the building blocks of RNA, and the direction of this reaction has been taken to support the idea that, in evolution, RNA preceded DNA as genetic material. However, an understanding of the evolutionary relationships among the three modern-day classes of ribonucleotide reductase and how the first reductase arose early in evolution is still far off. We propose that the diversification of this class of enzymes is inherently tied to microbial colonization of aerobic and anaerobic niches. The work is of broader interest, as it also sheds light on the process of adaptation to oxygenic environments consequent to the evolution of atmospheric oxygen.

  11. Cytotoxicity of alkylating agents towards sensitive and resistant strains of Escherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acids.

    Science.gov (United States)

    Lawley, P D; Brookes, P

    1968-09-01

    1. A quantitative study was made of the relationship between survival of colony-forming ability in Escherichia coli strains B/r and B(s-1) and the extents of alkylation of cellular DNA, RNA and protein after treatment with mono- or di-functional sulphur mustards, methyl methanesulphonate or iodoacetamide. 2. The mustards and methyl methanesulphonate react with nucleic acids in the cells, in the same way as found previously from chemical studies in vitro, and with proteins. Iodoacetamide reacts only with protein, principally with the thiol groups of cysteine residues. 3. The extents of alkylation of cellular constituents required to prevent cell division vary widely according to the strain of bacteria and the nature of the alkylating agent. 4. The extents of alkylation of the sensitive and resistant strains at a given dose of alkylating agent do not differ significantly. 5. Removal of alkyl groups from DNA of cells of the resistant strains B/r and 15T(-) after alkylation with difunctional sulphur mustard was demonstrated; the product di(guanin-7-ylethyl) sulphide, characteristic of di- as opposed to mono-functional alkylation, was selectively removed; the time-scale of this effect suggests an enzymic rather than a chemical mechanism. 6. The sensitive strain B(s-1) removed alkyl groups from DNA in this way only at very low extents of alkylation. When sensitized to mustard action by treatment with iodoacetamide, acriflavine or caffeine, the extent of alkylation of cellular DNA corresponding to a mean lethal dose was decreased to approximately 3 molecules of di(guanin-7-ylethyl) sulphide in the genome of this strain. 7. Relatively large numbers of monofunctional alkylations per genome can be withstood by this sensitive strain. Iodoacetamide had the weakest cytotoxic action of the agents investigated; methyl methanesulphonate was significantly weaker in effect than the monofunctional sulphur mustard, which was in turn weaker than the difunctional sulphur mustard. 8

  12. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase.

    OpenAIRE

    Ellis, E M; Hayes, J D

    1995-01-01

    The enzyme from rat liver that reduces aflatoxin B1-dialdehyde exhibits a unique catalytic specificity distinct from that of other aldo-keto reductases. This enzyme, designated AFAR, displays high activity towards dicarbonyl-containing compounds with ketone groups on adjacent carbon atoms; 9,10-phenanthrenequinone, acenaphthenequinone and camphorquinone were found to be good substrates. Although AFAR can also reduce aromatic and aliphatic aldehydes such as succinic semialdehyde, it is inactiv...

  13. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    in prostate cancer patients: a potential factor implicated in. 5-alpha-reductase inhibitor treatment. Luis Alberto Henríquez-Hernández, Almudena Valenciano, Palmira Foro-Arnalot, María Jesús Álvarez-Cubero,. José Manuel Cozar, José Francisco Suárez-Novo, Manel Castells-Esteve, Pablo Fernández-Gonzalo,.

  14. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... BL21 (DE3) strain with the recombinant expression vector pET-28A-GhNiR. NiR activity assay showed that the crude GhNiR protein had obvious activity to NaNO2 substrate. Key words: Cotton, nitrite reductase, prokaryotic expression, semi-quantitative RT-PCR, GenBank Accession. No: GQ389691.

  15. Xylose reductase from the thermophilic fungus Talaromyces emersonii

    Indian Academy of Sciences (India)

    Prakash

    action of xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) is required to convert D-xylose to D-xylulose and all enzymes of the D-xylose pathway can be used in the L-arabinose pathway, where arabitol is oxidized by NAD+-dependent arabitol dehydrogenase (EC. 1.1.1.12) producing L-xylulose. This is ...

  16. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  17. Effects of Photo-chemically Activated Alkylating Agents of the FR900482 Family on Chromatin

    OpenAIRE

    Subramanian, Vidya; Ducept, Pascal; Williams, Robert M.; Luger, Karolin

    2007-01-01

    Bioreductive alkylating agents are an important class of clinical antitumor antibiotics that cross-link and mono-alkylate DNA. Here we use a synthetic photochemically activated derivative of FR400482 to investigate the molecular mechanism of this class of drugs in a biologically relevant context. We find that the organization of DNA into nucleosomes effectively protects it against drug-mediated cross-linking, while permitting mono-alkylation. This modification has the potential to form covale...

  18. Protonation of 1-alkyl-2-allyllithium-0-carboranes and 1-methyl-2-allylmaonesium chloride-0-carborane

    International Nuclear Information System (INIS)

    Ivanova, N.N.; Kazantsev, A.V.; Zakharkin, L.I.

    1975-01-01

    The ratio of 1-alkyl-2-allyl and 1-alkyl-2-propenyl-0-carboranes generated in protonation of 1-alkyl-2-lithium allyl-0-carboranes with various protolytic agents in ether, THF and liquid ammonia depends on the nature of protolytic agent and solvent. The rat:o of these allyl and propenyl isomers is also affected by steric effects of the protolytic agent and 0-carborane nucleus

  19. Gold-catalyzed alkylation of silyl enol ethers with ortho-alkynylbenzoic acid esters

    Directory of Open Access Journals (Sweden)

    Yoshinori Yamamoto

    2011-05-01

    Full Text Available Unprecedented alkylation of silyl enol ethers has been developed by the use of ortho-alkynylbenzoic acid alkyl esters as alkylating agents in the presence of a gold catalyst. The reaction probably proceeds through the gold-induced in situ construction of leaving groups and subsequent nucleophilic attack on the silyl enol ethers. The generated leaving compound abstracts a proton to regenerate the silyl enol ether structure.

  20. Quantum molecular modeling of the interaction between guanine and alkylating agents--2--nitrogen mustard.

    Science.gov (United States)

    Hamza, A; Broch, H; Vasilescu, D

    1996-06-01

    The alkylation mechanism of guanine by nitrogen mustard (HN2) was studied by using a supermolecular modeling at the ab initio 6-31G level. Our computations show that interaction of guanine with the aziridinium form of HN2 necessitates a transition state for the N7 alkylation route. The pathway of N7-guanine alkylation by nitrogen and sulfur mustards is discussed on the basis of the Molecular Electrostatic Potential and HOMO-LUMO properties of these molecules.

  1. Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D.

    2012-01-01

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial ...

  2. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2012-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial fo...

  3. Hydride Transfer versus Deprotonation Kinetics in the Isobutane–Propene Alkylation Reaction: A Computational Study

    OpenAIRE

    Liu, Chong; van Santen, Rutger A.; Poursaeidesfahani, Ali; Vlugt, Thijs J. H.; Pidko, Evgeny A.; Hensen, Emiel J. M.

    2017-01-01

    The alkylation of isobutane with light alkenes plays an essential role in modern petrochemical processes for the production of high-octane gasoline. In this study we have employed periodic DFT calculations combined with microkinetic simulations to investigate the complex reaction mechanism of isobutane–propene alkylation catalyzed by zeolitic solid acids. Particular emphasis was given to addressing the selectivity of the alkylate formation versus alkene formation, which requires a high rate o...

  4. DIHYDROFOLATE REDUCTASE AS A VERSATILE DRUG TARGET IN HEALTHCARE

    Directory of Open Access Journals (Sweden)

    Naira Rashid

    2016-09-01

    Full Text Available Dihydrofolate reductase is one of the important enzymes for thymidylate and purine synthesis. It has been used as a drug target for treatment of various diseases. A large number of pharmaceutical drugs have been designed to inhibit the activity of dihydrofolate reductase. However, over the period of time some organisms have developed resistance against some of these drugs. There is also a chance of cross reactivity for these drugs, as they may target the dihydrofolate reductase enzyme of other organisms. Although using NMR spectroscopy, phylogenetic sequence analysis, comparative sequence analysis between dihydrofolate enzymes of various organisms and molecular modeling studies, a lot has been unraveled about the difference in the structure of this enzyme in various organisms, yet there is a need for deeper understanding of these differences so as to design drugs that are specific to their targets and reduce the chance for cross reactivity. The dihydrofolate enzyme can also be explored for treatment of various other diseases that are associated with the folate cycle.

  5. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    De, Supriyo; Perkins, Michael; Dutta, Sisir K.

    2006-01-01

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity

  6. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  7. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  8. Liquid phase alkylation of anisole and phenol catalyzed by niobium phosphate

    OpenAIRE

    Pereira, Cynthia C. M.; de la Cruz, Marcus H. C.; Lachter, Elizabeth R.

    2010-01-01

    The catalytic activity of niobium phosphate was evaluated in the liquid phase alkylation reaction of anisole with 1-dodecene, 1- octene, 2-octanol and 1-octen-3-ol and in the reaction of phenol with 1-octen-3-ol. Best results were achieved in the alkylation of anisole and phenol with 1-octen-3-ol that produced mainly monoalkylate products. In the reaction with phenol the major products formed were octenylphenols (C-alkylation) and phenyl-octenyl ether (O-alkylates). The reaction favors the fo...

  9. Subcellular localisation of Medicago truncatula 9/13-hydroperoxide lyase reveals a new localisation pattern and activation mechanism for CYP74C enzymes

    Directory of Open Access Journals (Sweden)

    Hughes Richard K

    2007-11-01

    Full Text Available Abstract Background Hydroperoxide lyase (HPL is a key enzyme in plant oxylipin metabolism that catalyses the cleavage of polyunsaturated fatty acid hydroperoxides produced by the action of lipoxygenase (LOX to volatile aldehydes and oxo acids. The synthesis of these volatile aldehydes is rapidly induced in plant tissues upon mechanical wounding and insect or pathogen attack. Together with their direct defence role towards different pathogens, these compounds are believed to play an important role in signalling within and between plants, and in the molecular cross-talk between plants and other organisms surrounding them. We have recently described the targeting of a seed 9-HPL to microsomes and putative lipid bodies and were interested to compare the localisation patterns of both a 13-HPL and a 9/13-HPL from Medicago truncatula, which were known to be expressed in leaves and roots, respectively. Results To study the subcellular localisation of plant 9/13-HPLs, a set of YFP-tagged chimeric constructs were prepared using two M. truncatula HPL cDNAs and the localisation of the corresponding chimeras were verified by confocal microscopy in tobacco protoplasts and leaves. Results reported here indicated a distribution of M.truncatula 9/13-HPL (HPLF between cytosol and lipid droplets (LD whereas, as expected, M.truncatula 13-HPL (HPLE was targeted to plastids. Notably, such endocellular localisation has not yet been reported previously for any 9/13-HPL. To verify a possible physiological significance of such association, purified recombinant HPLF was used in activation experiments with purified seed lipid bodies. Our results showed that lipid bodies can fully activate HPLF. Conclusion We provide evidence for the first CYP74C enzyme, to be targeted to cytosol and LD. We also showed by sedimentation and kinetic analyses that the association with LD or lipid bodies can result in the protein conformational changes required for full activation of the enzyme

  10. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    International Nuclear Information System (INIS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-01-01

    Highlights: • Cu and Au on γ-Al 2 O 3 catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k app was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al 2 O 3 supported copper and gold nanoparticles. Li 2 O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N 2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of

  11. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  12. Indium-silver- and zinc-silver-mediated barbier-grignard-type alkylation reactions of imines by using unactivated alkyl halides in aqueous media.

    Science.gov (United States)

    Shen, Zhi-Liang; Cheong, Hao-Lun; Loh, Teck-Peng

    2008-01-01

    In the presence of In or Zn/AgI/InCl(3), an efficient and practical method for the Barbier-Grignard-type alkylation reactions of simple imines by using a one-pot condensation of various aldehydes, amines (including the aliphatic and chiral version), and secondary alkyl iodides has been developed. The reaction proceeded more efficiently in water than in organic solvents. Without the use of CuI, it mainly gave the imine self-reductive coupling product, which was not the alkylated product. Good diastereoselectivities (up to 92:8 dr) were obtained when L-valine methyl ester was used as the substrate.

  13. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  14. Immunological comparison of the NADH:nitrate reductase from different cucumber tissues

    Directory of Open Access Journals (Sweden)

    Jolanta Marciniak

    2014-01-01

    Full Text Available Soluble nitrate reductase from cucumber roots (Cucumis sativus L. was isolated and purified with blue-Sepharose 4B. Specific antibodies against the NR protein were raised by immunization of a goat. Using polyclonal antibodies anti-NR properties of the nitrate reductase from various cucumber tissues were examined. Experiments showed difference in immuno-logical properties of nitrate reductase (NR from cotyledon roots and leaves.

  15. Treatment of Perfluorinated Alkyl Substances in Wash Water ...

    Science.gov (United States)

    Report The U.S. Environmental Protection Agency’s (EPA) National Homeland Security Research Center partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. This report summarizes the results from testing conducted to evaluate the treatment of large volumes of water containing perfluorinated alkyl substances (PFAS). This summary of conclusions and observations about the performance and implementation of adsorptive treatment of AFFF contaminated water, based on the testing performed at the INL WSTB.

  16. Alkylating HIV-1 Nef - a potential way of HIV intervention

    Directory of Open Access Journals (Sweden)

    Cai Catherine

    2010-07-01

    Full Text Available Abstract Background Nef is a 27 KDa HIV-1 accessory protein. It downregulates CD4 from infected cell surface, a mechanism critical for efficient viral replication and pathogenicity. Agents that antagonize the Nef-mediated CD4 downregulation may offer a new class of drug to combat HIV infection and disease. TPCK (N-α-p-tosyl-L-phenylalanine chloromethyl ketone and TLCK (N-α-p-tosyl-L-lysine chloromethyl ketone are alkylation reagents that chemically modify the side chain of His or Cys residues in a protein. In search of chemicals that inhibit Nef function, we discovered that TPCK and TLCK alkylated HIV Nef. Methods Nef modification by TPCK was demonstrated on reducing SDS-PAGE. The specific cysteine residues modified were determined by site-directed mutagenesis and mass spectrometry (MS. The effect of TPCK modification on Nef-CD4 interaction was studied using fluorescence titration of a synthetic CD4 tail peptide with recombinant Nef-His protein. The conformational change of Nef-His protein upon TPCK-modification was monitored using CD spectrometry Results Incubation of Nef-transfected T cells, or recombinant Nef-His protein, with TPCK resulted in mobility shift of Nef on SDS-PAGE. Mutagenesis analysis indicated that the modification occurred at Cys55 and Cys206 in Nef. Mass spectrometry demonstrated that the modification was a covalent attachment (alkylation of TPCK at Cys55 and Cys206. Cys55 is next to the CD4 binding motif (A56W57L58 in Nef required for Nef-mediated CD4 downregulation and for AIDS development. This implies that the addition of a bulky TPCK molecule to Nef at Cys55 would impair Nef function and reduce HIV pathogenicity. As expected, Cys55 modification reduced the strength of the interaction between Nef-His and CD4 tail peptide by 50%. Conclusions Our data suggest that this Cys55-specific alkylation mechanism may be exploited to develop a new class of anti HIV drugs.

  17. Radioprotective action of 3-(imidazoline-2-alkyl)-5-methoxyindoles

    International Nuclear Information System (INIS)

    Bitny-Szlachto, S.; Kwiek, S.; Piotrowska, H.; Serafin, B.; Wejroch-Matacz, K.

    1977-01-01

    Radioprotective action in mice of four 3-(imidazoline-2'-alkyl)-5-methoxyindoles was examined and compared with that of 3-(2'-aminoethyl)-5-hydroxyindole (serotonine). The imidazoline-2-methyl derivatives (S 3 , S 4 ), applied in doses of 50 μmole/kg 10 min prior to irrdiation were found to reduce mortality of mice with LD 50 DRF of 1.14-1.15, while serotonine displayed DRF of 1.45. The imidazoline-2-ethyl derivatives (S 7 , S 8 ) have turned out to be ineffective. (author)

  18. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Phillips, T.K.; Clarke, S.M.; Bhinde, T.; Castro, M.A.; Millan, C.; Medina, S.

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7 , C 9 and C 11 ) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C 7 homologue the p2 plane group is preferred.

  19. PARP inhibitors protect against sex- and AAG-dependent alkylation-induced neural degeneration.

    Science.gov (United States)

    Allocca, Mariacarmela; Corrigan, Joshua J; Fake, Kimberly R; Calvo, Jennifer A; Samson, Leona D

    2017-09-15

    Alkylating agents are commonly used to treat cancer. Although base excision repair (BER) is a major pathway for repairing DNA alkylation damage, under certain conditions, the initiation of BER produces toxic repair intermediates that damage healthy tissues. The initiation of BER by the alkyladenine DNA glycosylase (AAG, a.k.a. MPG) can mediate alkylation-induced cytotoxicity in specific cells in the retina and cerebellum of male mice. Cytotoxicity in both wild-type and Aag -transgenic ( AagTg ) mice is abrogated in the absence of Poly(ADP-ribose) polymerase-1 (PARP1). Here, we tested whether PARP inhibitors can also prevent alkylation-induced retinal and cerebellar degeneration in male and female WT and AagTg mice. Importantly, we found that WT mice display sex-dependent alkylation-induced retinal damage (but not cerebellar damage), with WT males being more sensitive than females. Accordingly, estradiol treatment protects males against alkylation-induced retinal degeneration. In AagTg male and female mice, the alkylation-induced tissue damage in both the retina and cerebellum is exacerbated and the sex difference in the retina is abolished. PARP inhibitors, much like Parp1 gene deletion, protect against alkylation-induced AAG-dependent neuronal degeneration in WT and AagTg mice, regardless of the gender, but their efficacy in preventing alkylation-induced neuronal degeneration depends on PARP inhibitor characteristics and doses. The recent surge in the use of PARP inhibitors in combination with cancer chemotherapeutic alkylating agents might represent a powerful tool for obtaining increased therapeutic efficacy while avoiding the collateral effects of alkylating agents in healthy tissues.

  20. Histochemical localization of glutathione dependent NBT-reductase in mouse skin.

    Science.gov (United States)

    Shukla, Y

    2001-09-01

    Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. The fresh frozen tissue sections (8 m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  1. Effects of Consumption of Rooibos (Aspalathus linearis and a Rooibos-Derived Commercial Supplement on Hepatic Tissue Injury by tert-Butyl Hydroperoxide in Wistar Rats

    Directory of Open Access Journals (Sweden)

    B. D. Canda

    2014-01-01

    Full Text Available This study investigated the antioxidative effect of rooibos herbal tea and a rooibos-derived commercial supplement on tert-butyl hydroperoxide- (t-BHP- induced oxidative stress in the liver. Forty male Wistar rats consumed fermented rooibos, unfermented rooibos, a rooibos-derived commercial supplement, or water for 10 weeks, while oxidative stress was induced during the last 2 weeks via intraperitoneal injection of 30 µmole of t-BHP per 100 g body weight. None of the beverages impaired the body weight gain of the respective animals. Rats consuming the rooibos-derived commercial supplement had the highest (P<0.05 daily total polyphenol intake (169 mg/day followed by rats consuming the unfermented rooibos (93.4 mg/day and fermented rooibos (73.1 mg/day. Intake of both the derived supplement and unfermented rooibos restored the t-BHP-induced reduction and increased (P<0.05 the antioxidant capacity status of the liver, while not impacting on lipid peroxidation. The rooibos herbal tea did not affect the hepatic antioxidant enzymes, except fermented rooibos that caused a decrease (P<0.05 in superoxide dismutase activity. This study confirms rooibos herbal tea as good dietary antioxidant sources and, in conjunction with its many other components, offers a significantly enhanced antioxidant status of the liver in an induced oxidative stress situation.

  2. Statin action enriches HDL3 in polyunsaturated phospholipids and plasmalogens and reduces LDL-derived phospholipid hydroperoxides in atherogenic mixed dyslipidemia

    Science.gov (United States)

    Tan, Ricardo; Giral, Philippe; Robillard, Paul; Kontush, Anatol; Chapman, M. John

    2016-01-01

    Atherogenic mixed dyslipidemia associates with oxidative stress and defective HDL antioxidative function in metabolic syndrome (MetS). The impact of statin treatment on the capacity of HDL to inactivate LDL-derived, redox-active phospholipid hydroperoxides (PCOOHs) in MetS is indeterminate. Insulin-resistant, hypertriglyceridemic, hypertensive, obese males were treated with pitavastatin (4 mg/day) for 180 days, resulting in marked reduction in plasma TGs (−41%) and LDL-cholesterol (−38%), with minor effects on HDL-cholesterol and apoAI. Native plasma LDL (baseline vs. 180 days) was oxidized by aqueous free radicals under mild conditions in vitro either alone or in the presence of the corresponding pre- or poststatin HDL2 or HDL3 at authentic plasma mass ratios. Lipidomic analyses revealed that statin treatment i) reduced the content of oxidizable polyunsaturated phosphatidylcholine (PUPC) species containing DHA and linoleic acid in LDL; ii) preferentially increased the content of PUPC species containing arachidonic acid (AA) in small, dense HDL3; iii) induced significant elevation in the content of phosphatidylcholine and phosphatidylethanolamine (PE) plasmalogens containing AA and DHA in HDL3; and iv) induced formation of HDL3 particles with increased capacity to inactivate PCOOH with formation of redox-inactive phospholipid hydroxide. Statin action attenuated LDL oxidability Concomitantly, the capacity of HDL3 to inactivate redox-active PCOOH was enhanced relative to HDL2, consistent with preferential enrichment of PE plasmalogens and PUPC in HDL3. PMID:27581680

  3. Protective effect of black garlic extracts on tert-Butyl hydroperoxide-induced injury in hepatocytes via a c-Jun N-terminal kinase-dependent mechanism.

    Science.gov (United States)

    Lee, Ko-Chao; Teng, Chih-Chuan; Shen, Chien-Heng; Huang, Wen-Shih; Lu, Chien-Chang; Kuo, Hsing-Chun; Tung, Shui-Yi

    2018-03-01

    Black garlic has been reported to show multiple bioactivities against the development of different diseases. In the present study, the hepatoprotective effect of black garlic on injured liver cells was investigated. Rat clone-9 hepatocytes were used for all experiments; tert-Butyl hydroperoxide (tBHP) was used to induce injury of rat clone-9 hepatocytes. The contents of malondialdehyde (MDA) and glutathione (GSH); anti-oxidative enzyme activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx); and mRNA expression levels of interleukin (IL)-6 and IL-8 in rat clone-9 hepatocytes were determined to evaluate the level of cell damage. Black garlic extracts were demonstrated to significantly attenuate tBHP-induced cell death of rat clone-9 hepatocytes (P<0.05). Pretreatment with black garlic extracts antagonized GSH depletion, tBHP-increased MDA accumulation and the mRNA expression level of IL-6/IL-8, and tBHP-decreased antioxidative enzyme activities (all P<0.05). Moreover, the present study revealed that c-Jun N-terminal kinase signaling regulated black garlic-inhibited tBHP effects in rat clone-9 hepatocytes. Our findings demonstrate that black garlic has the hepatoprotective potential to block tBHP-damaged effects on cell death, lipid peroxidation, oxidative stress, and inflammation in rat clone-9 hepatocytes. Thus, the present study indicates that black garlic may be an excellent natural candidate in the development of adjuvant therapy and healthy foods for liver protection.

  4. Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions

    DEFF Research Database (Denmark)

    Fan, Z.H.; Weschler, Charles J.; Han, IK

    2005-01-01

    In this study we examined the co-formation of hydrogen peroxide and other hydroperoxides (collectively presented as H2O2*) as well as submicron particles, including ultra-fine particles (UFP), resulting from the reactions of ozone (O-3) with a complex mixture of volatile organic compounds (VOCs...... higher than typical indoor levels. When O-3 was added to a 25-m(3) controlled environmental facility (CEF) containing the 23 VOC mixture, both H2O2* and submicron particles were formed. The 2-h average concentration of H2O2* was 1.89 +/- 0.30ppb, and the average total particle number concentration was 46...... to achieve saturated concentrations of the condensable organics. When the 2 terpenes were removed from the O-3/23 VOCs mixture, no H2O2* or particles were formed, indicating that the reactions of O-3 With the two terpenes were the key processes contributing to the formation of H2O2* and submicron particles...

  5. Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2016-09-17

    This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015, 119, 7361–7374] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450–1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

  6. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    Science.gov (United States)

    Carraher, Jack McCaslin

    leads to the dissociation of H2O2 from Cr(III), while in the H+-independent reaction, CraqOOH2+ is transformed to Cr(V). Both scavengers rapidly remove Cr(V) and simplify both the kinetics and products by impeding formation of Cr(IV, V, VI). Syntheses, Reactivity, and Thermodynamic Considerations LRhR2+. Macrocyclic rhodium(II) complexes LRh(H 2O)2+ (L = L1= cyclam and L2 = meso-Me6-cyclam) react with alkyl hydroperoxides R(CH3)2COOH to generate the corresponding rhodium(III) alkyls LRh(H2O)R2+ (R = CH3, C2 H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgX) 2(H2O)CoR (where R = CH3, CH2Ph and dmgX is either dimethylglyoxime or a BF2-capped derivative of dmg) to LRh(H2O)2+. When R = C2H5, C3H7 or C4H9, the mechanism changes from group transfer to hydrogen atom abstraction from the coordinated alkyl and produces LRh(H2O)H2+ and an a-olefin. The new LRh(H2O)R2+ complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis. 'Green' Model for Decarboxylation of Biomass Derived Acids via Photolysis of in situ formed Metal-Carboxylate Complexes. Photolysis of aqueous solutions containing propionic acid and Fe 3+ aq in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. Photolysis in the presence of O2 yields catalytic amounts of hydrocarbon products. When halide ions are present during photolysis; nearly quantitative yields of ethyl halides are produced via extraction of a halide atom from FeX2+ by ethyl radical. The rate constants for ethyl radical reactions with FeCl2+ (k = 4.0 (+/- 0.5) x 106 M-1s-1) and with FeBr 2+ (k = 3.0 (+/- 0.5) x 107 M-1s -1) were determined via competition reactions. Irradiation of solutions containing aqueous Cu2+ salts and linear carboxylic acids yield alpha

  7. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  8. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  9. REVISITING CLASSICAL NUCLEOPHILIC SUBSTITUTIONS IN AQUEOUS MEDIUM: MICROWAVE-ASSISTED SYNTHESIS OF ALKYL AZIDES

    Science.gov (United States)

    An efficient and clean synthesis of alkyl azides using microwave (MW) radiation is described in aqueous medium by reacting alkyl halides or tosylates with alkali azides. This general and expeditious MW-enhanced approach to nucleophilic substitution reactions is applicable to the ...

  10. Sources and proxy potential of long chain alkyl diols in lacustrine environments.

    NARCIS (Netherlands)

    Rampen, Sebastiaan W.; Datema, Mariska; Rodrigo-Gámiz, M.; Schouten, Stefan; Reichart, Gert-Jan; Sinninghe Damste, Jaap S.

    2014-01-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD)

  11. Sources and proxy potential of long chain alkyl diols in lacustrine environments

    NARCIS (Netherlands)

    Rampen, S.; Datema, M.; Rodrigo-Gámiz, M.; Schouten, S.; Reichart, G.-J.; Sinninghe Damsté, J.S.

    2014-01-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD)

  12. 40 CFR 721.5860 - Methylphenol, bis(sub-sti-tuted)alkyl.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methylphenol, bis(sub-sti-tuted)alkyl... Substances § 721.5860 Methylphenol, bis(sub-sti-tuted)alkyl. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylphenol, bis-(sub-sti-tut...

  13. Modification with alkyl chains and the influence on thermal and mechanical properties of aromatic hyperbranched polyesters

    NARCIS (Netherlands)

    Schmaljohann, Dirk; Häußler, Liane; Pötschke, Petra; Voit, Brigitte I.; Loontjens, Ton J.A.

    2000-01-01

    All-aromatic hyperbranched polyesters with hydroxy endgroups were functionalized with aliphatic n-alkyl carboxylic acids. The length of the n-alkyl chain as well as the degree of modification were varied and the resulting, partially amphiphilic polymers were characterized by differential scanning

  14. Synthesis of 2-substituted tryptophans via a C3- to C2-alkyl migration

    Directory of Open Access Journals (Sweden)

    Michele Mari

    2014-08-01

    Full Text Available The reaction of 3-substituted indoles with dehydroalanine (Dha derivatives under Lewis acid-mediated conditions has been investigated. The formation of 2-substituted tryptophans is proposed to occur through a selective alkylative dearomatization–cyclization followed by C3- to C2-alkyl migration and rearomatization.

  15. Selective alkylation of T–T mismatched DNA using vinyldiaminotriazine–acridine conjugate

    Science.gov (United States)

    Onizuka, Kazumitsu; Usami, Akira; Yamaoki, Yudai; Kobayashi, Tomohito; Hazemi, Madoka E; Chikuni, Tomoko; Sato, Norihiro; Sasaki, Kaname; Katahira, Masato

    2018-01-01

    Abstract The alkylation of the specific higher-order nucleic acid structures is of great significance in order to control its function and gene expression. In this report, we have described the T–T mismatch selective alkylation with a vinyldiaminotriazine (VDAT)–acridine conjugate. The alkylation selectively proceeded at the N3 position of thymidine on the T–T mismatch. Interestingly, the alkylated thymidine induced base flipping of the complementary base in the duplex. In a model experiment for the alkylation of the CTG repeats DNA which causes myotonic dystrophy type 1 (DM1), the observed reaction rate for one alkylation increased in proportion to the number of T–T mismatches. In addition, we showed that primer extension reactions with DNA polymerase and transcription with RNA polymerase were stopped by the alkylation. The alkylation of the repeat DNA will efficiently work for the inhibition of replication and transcription reactions. These functions of the VDAT–acridine conjugate would be useful as a new biochemical tool for the study of CTG repeats and may provide a new strategy for the molecular therapy of DM1. PMID:29309639

  16. Selective alkylation of T-T mismatched DNA using vinyldiaminotriazine-acridine conjugate.

    Science.gov (United States)

    Onizuka, Kazumitsu; Usami, Akira; Yamaoki, Yudai; Kobayashi, Tomohito; Hazemi, Madoka E; Chikuni, Tomoko; Sato, Norihiro; Sasaki, Kaname; Katahira, Masato; Nagatsugi, Fumi

    2018-02-16

    The alkylation of the specific higher-order nucleic acid structures is of great significance in order to control its function and gene expression. In this report, we have described the T-T mismatch selective alkylation with a vinyldiaminotriazine (VDAT)-acridine conjugate. The alkylation selectively proceeded at the N3 position of thymidine on the T-T mismatch. Interestingly, the alkylated thymidine induced base flipping of the complementary base in the duplex. In a model experiment for the alkylation of the CTG repeats DNA which causes myotonic dystrophy type 1 (DM1), the observed reaction rate for one alkylation increased in proportion to the number of T-T mismatches. In addition, we showed that primer extension reactions with DNA polymerase and transcription with RNA polymerase were stopped by the alkylation. The alkylation of the repeat DNA will efficiently work for the inhibition of replication and transcription reactions. These functions of the VDAT-acridine conjugate would be useful as a new biochemical tool for the study of CTG repeats and may provide a new strategy for the molecular therapy of DM1.

  17. Detection and identification of alkylating agents by using a bioinspired "chemical nose".

    Science.gov (United States)

    Hertzog-Ronen, Carmit; Borzin, Elena; Gerchikov, Yulia; Tessler, Nir; Eichen, Yoav

    2009-10-12

    Alkylating agents are simple and reactive molecules that are commonly used in many and diverse fields such as organic synthesis, medicine, and agriculture. Some highly reactive alkylating species are also being used as blister chemical-warfare agents. The detection and identification of alkylating agents is not a trivial issue because of their high reactivity and simple structure. Herein, we report on a new multispot luminescence-based approach to the detection and identification of alkylating agents. In order to demonstrate the potential of the approach, seven pi-conjugated oligomers and polymers bearing nucleophilic pyridine groups, 1-7, were adsorbed onto a solid support and exposed to vapors of alkylators 8-15. The alkylation-induced color-shift patterns of the seven-spot array allow clear discrimination of the different alkylators. The spots are sensitive to minute concentrations of alkylators and, because the detection is based on the formation of new covalent bonds, these spots saturate at about 50 ppb.

  18. Synthesis of alkylated deoxyno irimycin and 1,5-dideoxy-1,5-iminoxylitol analogues:

    DEFF Research Database (Denmark)

    Szczepina, M.G.; Johnston, B.D; Yuan, Y.

    2004-01-01

    The syntheses of N-alkylated deoxynojirimycin and 1,5-dideoxy-1,5-iminoxylitol derivatives having either a D- or an L-erythritol-3-sulfate functionalized N-substituent are reported. The alkylating agent used was a cyclic sulfate derivative, whereby selective attack of the nitrogen atom at the least...

  19. Alkylation damage causes MMR-dependent chromosomal instability in vertebrate embryos.

    NARCIS (Netherlands)

    Feitsma, H.; Akay, A.; Cuppen, E.

    2008-01-01

    S(N)1-type alkylating agents, like N-methyl-N-nitrosourea (MNU) and N-ethyl-N-nitrosourea (ENU), are potent mutagens. Exposure to alkylating agents gives rise to O(6)-alkylguanine, a modified base that is recognized by DNA mismatch repair (MMR) proteins but is not repairable, resulting in

  20. Chemistry of the pyrazolidines. 26. Alkylation of 4-benzyliden-1-phenyl-3,5-dioxopyrazolidines

    International Nuclear Information System (INIS)

    Moldarev, B.L.; Aronzon, M.E.; Adanin, V.M.; Zyakun, A.M.

    1986-01-01

    The reaction of 4-benzyliden-1-phenyl-3,5-dioxopyrazolidines with alkyl halides in the presence of sodium alkoxide gave 1-phenyl-2-alkyl-4-benzyliden- and 1-phenyl-2,4-dialkyl-4-(α-alkoxybenzyl)-3,4-dioxopyrazolines. The structures of these compounds were confirmed by UV, IR, and PMR spectroscopy, and by mass-spectrometry

  1. RELATION BETWEEN SURFACTANT STRUCTURE AND PROPERTIES OF SPHERICAL MICELLES - 1-ALKYL-4-ALKYLPYRIDINIUM HALIDE SURFACTANTS

    NARCIS (Netherlands)

    NUSSELDER, JJH; ENGBERTS, JBFN

    1991-01-01

    This paper describes a detailed study of the properties of spherical micelles formed from 18 1-alkyl-4-alkylpyridinium iodides. Structural variations in the surfactants include (i) branching of the 4-alkyl chain while keeping the number of carbons in the chain invariant and (ii) variation of the

  2. Rh(III-Catalyzed, Highly Selectively Direct C–H Alkylation of Indoles with Diazo Compounds

    Directory of Open Access Journals (Sweden)

    Kang Wan

    2016-06-01

    Full Text Available Rh(III-catalyzed regioselective alkylation of indoles with diazo compounds as a highly efficient and atom-economic protocol for the synthesis of alkyl substituted indoles has been developed. The reaction could proceed under mild conditions and afford a series of desired products in good to excellent yields.

  3. Comparative study of oxidative stress caused by anthracene and alkyl-anthracenes in

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Roh

    2018-02-01

    Full Text Available Oxidative stress was evaluated for anthracene (Ant and alkyl-Ants (9-methylanthracene [9-MA] and 9,10-dimethylanthracene [9,10-DMA] in Caenorhabditis elegans to compare changes in toxicity due to the degree of alkylation. Worms were exposed at 1 the same external exposure concentration and 2 the maximum water-soluble concentration. Formation of reactive oxygen species, superoxide dismutase activity, total glutathione concentration, and lipid peroxidation were determined under constant exposure conditions using passive dosing. The expression of oxidative stress-related genes (daf-2, sir-2.1, daf-16, sod-1, sod-2, sod-3 and cytochrome 35A/C family genes was also investigated to identify and compare changes in the genetic responses of C. elegans exposed to Ant and alkyl-Ant. At the same external concentration, 9,10-DMA induced the greatest oxidative stress, as evidenced by all indicators, except for lipid peroxidation, followed by 9-MA and Ant. Interestingly, 9,10-DMA led to greater oxidative stress than 9-MA and Ant when worms were exposed to the maximum water-soluble concentration, although the maximum water-soluble concentration of 9,10-DMA is the lowest. Increased oxidative stress by alkyl-Ants would be attributed to higher lipid-water partition coefficient and the π electron density in aromatic rings by alkyl substitution, although this supposition requires further confirmation.

  4. Industrial tests of a new technology for sulfuric acid alkylation of isobutane by olefines

    Energy Technology Data Exchange (ETDEWEB)

    Tarakanov, V.S.; Karamyshev, M.S.; Khadzhiyev, S.N.; Mel' man, A.Z.

    1971-01-01

    A complex of elements of a new technology for sulfuric acid alkylation of isobutane by alkenes with the use of a KSG-2 reactor and an acetic settler of a new design is realized as a result of the joint work of the Novo-Yaroslav oil refinery, GrozNII, VNIIOINeft and VNIINeftemash in an alkylation installation.

  5. Mechanism of alkylation of isobutane by olefins in the presence of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Baiburskii, V.L.; Khadzhiev, S.N.; Ovsyannikov, V.P.

    1992-05-10

    The authors attempted here to examine the mechanism of alkylation of isobutane by olefins in the presence of sulfuric acid in terms of an initial stage of activation of isoparaffin. The version of formation of tert-alkyl cations and the role of the catalyst in this stage were analyzed. 10 refs., 1 fig., 1 tab.

  6. Differential alkylation-based redox proteomics – Lessons learnt

    Science.gov (United States)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms. PMID:26282677

  7. Differential alkylation-based redox proteomics--Lessons learnt.

    Science.gov (United States)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-12-01

    Cysteine is one of the most reactive amino acids. This is due to the electronegativity of sulphur atom in the side chain of thiolate group. It results in cysteine being present in several distinct redox forms inside the cell. Amongst these, reversible oxidations, S-nitrosylation and S-sulfenylation are crucial mediators of intracellular redox signalling, with known associations to health and disease. Study of their functionalities has intensified thanks to the development of various analytical strategies, with particular contribution from differential alkylation-based proteomics methods. Presented here is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original research articles published since 2010 and analysed them considering the following parameters, (i) resolution of modification site, (ii) quantitative information, including correction of modification levels by protein abundance changes and determination of modification site occupancy, (iii) throughput, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine oxoforms. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. The isobutylene-isobutane alkylation process in liquid HF revisited.

    Science.gov (United States)

    Esteves, P M; Araújo, C L; Horta, B A C; Alvarez, L J; Zicovich-Wilson, C M; Ramírez-Solís, A

    2005-07-07

    Details on the mechanism of HF catalyzed isobutylene-isobutane alkylation were investigated. On the basis of available experimental data and high-level quantum chemical calculations, a detailed reaction mechanism is proposed taking into account solvation effects of the medium. On the basis of our computational results, we explain why the density of the liquid media and stirring rates are the most important parameters to achieve maximum yield of alkylate, in agreement with experimental findings. The ab initio Car-Parrinello molecular dynamics calculations show that isobutylene is irreversibly protonated in the liquid HF medium at higher densities, leading to the ion pair formation, which is shown to be a minimum on the potential energy surface after optimization using periodic boundary conditions. The HF medium solvates preferentially the fluoride anion, which is found as solvated [FHF](-) or solvated F(-.)(HF)(3). On the other hand, the tert-butyl cation is weakly solvated, where the closest HF molecules appear at a distance of about 2.9 Angstrom with the fluorine termination of an HF chain.

  9. Quantitative structure-activity relationships for chronic toxicity of alkyl-chrysenes and alkyl-benz[a]anthracenes to Japanese medaka embryos (Oryzias latipes).

    Science.gov (United States)

    Lin, Hongkang; Morandi, Garrett D; Brown, R Stephen; Snieckus, Victor; Rantanen, Toni; Jørgensen, Kåre B; Hodson, Peter V

    2015-02-01

    Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are a class of compounds found at significant concentrations in crude oils, and likely the main constituents responsible for the chronic toxicity of oil to fish. Alkyl substituents at different locations on the aromatic rings change the size and shape of PAH molecules, which results in different interactions with tissue receptors and different severities of toxicity. The present study is the first to report the toxicity of several alkylated derivatives of chrysene and benz[a]anthracene to the embryos of Japanese medaka (Oryzias latipes) using the partition controlled delivery (PCD) method of exposure. The PCD method maintained the desired exposure concentrations by equilibrium partitioning of hydrophobic test compounds from polydimethylsiloxane (PDMS) films. Test concentrations declined by only 13% over a period of 17 days. Based on the prevalence of signs of blue sac disease (BSD), as expressed by median effective concentrations (EC50s), benz[a]anthracene (B[a]A) was more toxic than chrysene. Alkylation generally increased toxicity, except at position 2 of B[a]A. Alkyl-PAHs substituted in the middle region had a lower EC50 than those substituted at the distal region. Except for B[a]A and 7-methylbenz[a]anthracene (7-MB), estimated EC50 values were higher than their solubility limits, which resulted in limited toxicity within the range of test concentrations. The regression between log EC50s and logKow values provided a rough estimation of structure-activity relationships for alkyl-PAHs, but Kow alone did not provide a complete explanation of the chronic toxicity of alkyl PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Thermophilic archaea activate butane via alkyl-coenzyme M formation.

    Science.gov (United States)

    Laso-Pérez, Rafael; Wegener, Gunter; Knittel, Katrin; Widdel, Friedrich; Harding, Katie J; Krukenberg, Viola; Meier, Dimitri V; Richter, Michael; Tegetmeyer, Halina E; Riedel, Dietmar; Richnow, Hans-Hermann; Adrian, Lorenz; Reemtsma, Thorsten; Lechtenfeld, Oliver J; Musat, Florin

    2016-11-17

    The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C 1 -compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C 4 hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding β-oxidation enzymes, carbon monoxide dehydrogenase and reversible C 1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.

  11. Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino-pyrazine-2-carboxamides

    Directory of Open Access Journals (Sweden)

    Lucia Semelkova

    2015-05-01

    Full Text Available A series of N-alkyl-3-(alkylaminopyrazine-2-carboxamides and their N-alkyl-3-chloropyrazine-2-carboxamide precursors were prepared. All compounds were characterized by analytical methods and tested for antimicrobial and antiviral activity. The antimycobacterial MIC values against Mycobacterium tuberculosis H37Rv of the most effective compounds, 3-(hexylamino-, 3-(heptylamino- and 3-(octylamino-N-methyl-pyrazine-2-carboxamides 14‒16, was 25 μg/mL. The compounds inhibited photosystem 2 photosynthetic electron transport (PET in spinach chloroplasts. This activity was strongly connected with the lipophilicity of the compounds. For effective PET inhibition longer alkyl chains in the 3-(alkylamino substituent in the N-alkyl-3-(alkylaminopyrazine-2-carboxamide molecule were more favourable than two shorter alkyl chains.

  12. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  13. Thermochemical investigation into coordination ability of zinc and cadmium alkyl compounds in solutions

    International Nuclear Information System (INIS)

    Aleksandrov, Yu.A.; Fedostseva, G.A.; Tsvetkov, V.G.; Lebedev, S.A.; Kozyrkin, B.I.

    1983-01-01

    Enthalpies of zinc alkyl compounds mixing, as well as those of dimethyl cadmium mixing with hexane, previously used as a solvent during the study of liquid-phase autooxidation of Me 2 Cd and Me 2 Zn, and with a series of organic bases at 298 K and at components ratio 1:1 or 1:2, are determined. Using calorimetric method dimethyl cadmium association in liquid state has been evaluated. Coordination ability of zinc alkyl compounds is higher than for the corresponding cadmium compounds. With the increase of alkyl radical length the electron seeking ability of zinc compounds decreases. On the basis of thermochemical data relative stability of coordination compounds of zinc and cadmium alkyl compounds with certain alkyl compounds of group 6 elements is evaluated: it has the maximum value for sulfur compounds

  14. Elementary steps and reaction pathways in the aqueous phase alkylation of phenol with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Sebastian; Hintermeier, Peter H.; Olarte, Mariefel V.; Liu, Yue; Baráth, Eszter; Lercher, Johannes A.

    2017-08-01

    The hydronium ion normalized reaction rate in aqueous phase alkylation of phenol with ethanol on H-MFI zeolites increases with decreasing concentration of acid sites. Higher rates are caused by higher concentrations of phenol in the zeolite pores, as the concentration of hydronium ions generated by zeolite Brønsted acid sites decreases. Considering the different concentrations of reacting species it is shown that the intrinsic rate constant for alkylation is independent of the concentration of hydronium ions in the zeolite pores. Alkylation at the aromatic ring of phenol and of toluene as well as O-alkylation of phenol have the same activation energy, 104 ± 5 kJ/mol. This is energetic barrier to form the ethyl carbenium ion from ethanol associated to the hydronium ion. Thus, in both the reaction pathways the catalyst involves a carbenium ion, which forms a bond to a nucleophilic oxygen (ether formation) or carbon (alkylation).

  15. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification.

    Science.gov (United States)

    Hains, Peter G; Robinson, Phillip J

    2017-09-01

    Iodoacetamide is by far the most commonly used agent for alkylation of cysteine during sample preparation for proteomics. An alternative, 2-chloroacetamide, has recently been suggested to reduce the alkylation of residues other than cysteine, such as the N-terminus, Asp, Glu, Lys, Ser, Thr, and Tyr. Here we show that although 2-chloroacetamide reduces the level of off-target alkylation, it exhibits a range of adverse effects. The most significant of these is methionine oxidation, which increases to a maximum of 40% of all Met-containing peptides, compared with 2-5% with iodoacetamide. Increases were also observed for mono- and dioxidized tryptophan. No additional differences between the alkylating reagents were observed for a range of other post-translational modifications and digestion parameters. The deleterious effects were observed for 2-chloroacetamide from three separate suppliers. The adverse impact of 2-chloroacetamide on methionine oxidation suggests that it is not the ideal alkylating reagent for proteomics.

  16. Alkylation damage in DNA and RNA--repair mechanisms and medical significance

    DEFF Research Database (Denmark)

    Drabløs, Finn; Feyzi, Emadoldin; Aas, Per Arne

    2004-01-01

    Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions......, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents...... are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase...

  17. Methylenetetrahydrofolate reductase (MTHFR) deficiency presenting as a rash.

    LENUS (Irish Health Repository)

    Crushell, Ellen

    2012-09-01

    We report on the case of a 2-year-old girl recently diagnosed with Methylenetetrahydrofolate reductase (MTHFR) deficiency who originally presented in the neonatal period with a distinctive rash. At 11 weeks of age she developed seizures, she had acquired microcephaly and developmental delay. The rash deteriorated dramatically following commencement of phenobarbitone; both rash and seizures abated following empiric introduction of pyridoxine and folinic acid as treatment of possible vitamin responsive seizures. We postulate that phenobarbitone in combination with MTHFR deficiency may have caused her rash to deteriorate and subsequent folinic acid was helpful in treating the rash and preventing further acute neurological decline as commonly associated with this condition.

  18. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  19. Synthesis, structure and cytotoxicity of cyclic (alkyl)(amino) carbene and acyclic carbene complexes of group 11 metals.

    Science.gov (United States)

    Bertrand, Benoît; Romanov, Alexander S; Brooks, Mark; Davis, Josh; Schmidt, Claudia; Ott, Ingo; O'Connell, Maria; Bochmann, Manfred

    2017-11-21

    A series of complexes of cyclic (alkyl)(amino)carbene (CAAC) complexes of copper, silver and gold have been investigated for their antiproliferative properties. A second series of acyclic carbene (ACC) complexes of gold(i) were prepared by nucleophilic attack on isocyanide complexes by amines and amino esters, to give (ACC)AuCl, [(ACC)Au(PTA)] + (PTA = triazaphosphaadamantane), as well as mixed-carbene compounds [(CAAC)Au(ACC)] + . Representative complexes were characterised by X-ray diffraction which confirmed the mononuclear linear structures without close intermolecular contacts or aurophilic interactions. The redox properties of these complexes have been determined. The compounds were tested against a panel of human cancer cell lines including leukemia (HL 60), breast adenocarcinoma cells (MCF-7) and human lung adenocarcinoma epithelial cell lines (A549), which show varying degrees of cisplatin resistance. The pro-ligand iminium salts and the PTA complexes were non-toxic. By contrast, the CAAC complexes show high cytotoxicity, with IC 50 values in the sub-micromolar to ∼100 nanomolar range, even against cisplatin-insensitive MCF-7 and A549 cells. Cationic bis-carbene complexes [( Me2 CAAC) 2 M] + (6-8, M = Cu, Ag and Au) proved particularly effective. The mechanism of cell growth control by these complexes remains to be established, although possible modes of action such as inhibition of thioredoxin reductase (TrxR), which is a common pathway for gold NHC compounds, or the formation of reactive oxygen species (ROS) through redox processes, could be ruled out as primary pathways.

  20. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    Directory of Open Access Journals (Sweden)

    Thai Q Tran

    2017-11-01

    Full Text Available Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  1. Antimicrobial and diffusional correlation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides from semisolids.

    Science.gov (United States)

    Birnie, C R; Malamud, D; Thomulka, K W; Schwartz, J B; Schnaare, R L

    2001-09-01

    Previous studies have shown that two classes of amphoteric surfactants, N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides, exhibit pronounced antimicrobial activity in combination and have potential for use in a semisolid formulation for topical or vaginal delivery. In this work, several potential delivery systems were prepared and evaluated for antimicrobial activity and diffusional properties. A novel antimicrobial test for semisolids was proposed that determined the contact time needed to kill microorganisms. The unformulated agents in solution exhibited the faster kill within 60 min, followed by the hydroxyethylcellulose gel formulation in 90 min, and the poloxamer gel and a cream that required several hours. Diffusion from the dosage form utilized a Slide-A-Lyzer diffusion cassette with a 10,000 MWCO membrane with (14)C-labeled active species added to the aforementioned antimicrobial formulations. Diffusion of the individual betaine and amine oxide derivatives were tracked over time to determine the diffusion rates and profiles of the components in each formulation and in solution. The betaine derivative diffused up to three times faster than the amine oxide derivative within the first 2 h, but the amount diffused was approximately equivalent at 24 h. The formulations delayed release in the same rank order as the contact time kill analysis: hydroxyethylcellulose gel > poloxamer gel > cream. Copyright 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association

  2. Functions of Flavin Reductase and Quinone Reductase in 2,4,6-Trichlorophenol Degradation by Cupriavidus necator JMP134▿

    OpenAIRE

    Belchik, Sara Mae; Xun, Luying

    2007-01-01

    The tcpRXABCYD operon of Cupriavidus necator JMP134 is involved in the degradation of 2,4,6-trichlorophenol (2,4,6-TCP), a toxic pollutant. TcpA is a reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase that converts 2,4,6-TCP to 6-chlorohydroxyquinone. It has been implied via genetic analysis that TcpX acts as an FAD reductase to supply TcpA with FADH2, whereas the function of TcpB in 2,4,6-TCP degradation is still unclear. In order to provide direct biochemical evidence for t...

  3. Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply

    OpenAIRE

    Gholamreza Kavoosi; Sadegh Balotf; Homeira Eshghi; Hasan Hasani

    2014-01-01

    Nitrate is one of the major sources of nitrogen for the growth of plants. It is taken up by plant roots and transported to the leaves where it is reduced to nitrite in the. The main objective of this research was to investigate stimulatory effects of sodium nitrate, potassium nitrate, ammonia and urea on the production/generation of the nitrate reductase mRNA in Triticum aestivum plants. The plants were grown in standard nutrient solution for 21 days and then starved in a media without nitrat...

  4. THE EFFECTS OF AN ALDOSE REDUCTASE INHIBITOR ON THE PROGRESSION OF DIABETIC-RETINOPATHY

    NARCIS (Netherlands)

    TROMP, A; HOOYMANS, JMM; BARENDSEN, BC; VONDOORMAAL, JJ

    1991-01-01

    The polyol pathway has long been associated with diabetic retinopathy. Glucose is converted to sorbitol with the aid of the enzyme aldose reductase. Aldose reductase inhibitors can prevent changes induced by diabetes. A total of 30 patients with minimal background retinopathy were randomly divided

  5. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R

    2000-01-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from L...

  6. HMG-CoA-reductase inhibitors and neuropathy : reports to the Netherlands Pharmacovigilance Centre

    NARCIS (Netherlands)

    de Langen, J J; van Puijenbroek, E P

    2006-01-01

    The number of patients taking HMG-CoA-reductase inhibitors for hypercholesterolaemia is growing rapidly. Treatment with HMG-CoA-reductase inhibitors significantly reduces the risk of cardiovascular morbidity and mortality, but may rarely cause serious adverse drug reactions (ADRs). The most serious

  7. Bioactivation of lapachol responsible for DNA scission by NADPH-cytochrome P450 reductase.

    Science.gov (United States)

    Kumagai, Y; Tsurutani, Y; Shinyashiki, M; Homma-Takeda, S; Nakai, Y; Yoshikawa, T; Shimojo, N

    1997-09-01

    The reduction of the naphthoquinone derivative, lapachol, which is responsible for its bioactivation was examined using microsomal preparations and NADPH-cytochrome P450 reductase (P450 reductase). Phenobarbital (PB) pretreatment resulted in an induction of enzyme activities for cytochrome c reduction (1.54 times) and lapachol reduction (1.20 times) by hepatic microsomal preparation of rats. The specific activity of lapachol reduction by purified P450 reductase showed 56-fold higher than that by untreated liver microsomes. Addition of antibody against P450 reductase (2 mg of IgG/mg of protein) to the microsomal incubation mixture caused an immunoinhibition of cytochrome c (32%) and lapachol (19%) reduction activities, suggesting that P450 reductase catalyzes lapachol reduction. Generation of superoxide anion radical (1321 nmol/mg per min) in approximately equivalent amounts of with NADPH consumption (941 nmol/mg per min) was detected during metabolism of lapachol by P450 reductase. Electron spin resonance (ESR) experiments confirmed generation of superoxide anion radical and hydroxyl radical as these 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) adducts. Incubation of lapachol with P450 reductase caused a cleavage of DNA which was reduced in the presence of Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase(1), and hydroxyl radical scavengers such as dimethyl sulfoxide (DMSO) and thiourea. Taken together, these results indicate that lapachol is bioactivated by P450 reductase to reactive species, which promote DNA scission through the redox cycling based generation of superoxide anion radical.

  8. Bioinformatics approach of three partial polyprenol reductase genes in Kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Wati, R.; Sagami, H.; Oku, H.; Baba, S.

    2018-03-01

    This present study describesthe bioinformatics approach to analyze three partial polyprenol reductase genes from mangrove plant, Kandeliaobovataas well aspredictedphysical and chemical properties, potential peptide, subcellular localization, and phylogenetic. The diversity was noted in the physical and chemical properties of three partial polyprenol reductase genes. The values of chloroplast were relatively high, showed that chloroplast transit peptide occurred in mangrove polyprenol reductase. The target peptide value of mitochondria varied from 0.088 to 0.198 indicated it was possible to be present. These results suggested the importance of understanding the diversity of physicochemical properties of the different amino acids in polyprenol reductase. The subcellular localization of two partial genes located in the plasma membrane. To confirm the homology among the polyprenol reductase in the database, a dendrogram was drawn. The phylogenetic tree depicts that there are three clusters, the partial genes of K. obovata joined the largest one: C23157 was close to Ricinus communis polyprenol reductase. Whereas, C23901 and C24171 were grouped with Ipomoea nil polyprenol reductase, suggested that these polyprenol reductase genes form distinct separation into tropical habitat plants.

  9. Quantitative structure–activity relationships for chronic toxicity of alkyl-chrysenes and alkyl-benz[a]anthracenes to Japanese medaka embryos (Oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongkang [Department of Biology, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Morandi, Garrett D. [School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Brown, R. Stephen [School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Department of Chemistry, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Snieckus, Victor; Rantanen, Toni [Department of Chemistry, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Jørgensen, Kåre B. [Department of Mathematics and Natural Sciences, University of Stavanger, 4036 Stavanger (Norway); Hodson, Peter V., E-mail: peter.hodson@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada)

    2015-02-15

    Highlights: • Medaka embryos were exposed to alkyl chrysenes and benzo[a]anthracenes (BAA). • Concentrations were kept constant by partition controlled delivery. • Chrysene was not toxic within solubility limits, in contrast to BAA. • Alkylation increased the toxicity of chrysene and BAA. • Toxicity was related to hydrophobicity and to specific modes of action. - Abstract: Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are a class of compounds found at significant concentrations in crude oils, and likely the main constituents responsible for the chronic toxicity of oil to fish. Alkyl substituents at different locations on the aromatic rings change the size and shape of PAH molecules, which results in different interactions with tissue receptors and different severities of toxicity. The present study is the first to report the toxicity of several alkylated derivatives of chrysene and benz[a]anthracene to the embryos of Japanese medaka (Oryzias latipes) using the partition controlled delivery (PCD) method of exposure. The PCD method maintained the desired exposure concentrations by equilibrium partitioning of hydrophobic test compounds from polydimethylsiloxane (PDMS) films. Test concentrations declined by only 13% over a period of 17 days. Based on the prevalence of signs of blue sac disease (BSD), as expressed by median effective concentrations (EC50s), benz[a]anthracene (B[a]A) was more toxic than chrysene. Alkylation generally increased toxicity, except at position 2 of B[a]A. Alkyl-PAHs substituted in the middle region had a lower EC50 than those substituted at the distal region. Except for B[a]A and 7-methylbenz[a]anthracene (7-MB), estimated EC50 values were higher than their solubility limits, which resulted in limited toxicity within the range of test concentrations. The regression between log EC50s and log K{sub ow} values provided a rough estimation of structure–activity relationships for alkyl-PAHs, but K{sub ow} alone did not provide

  10. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    Jones, W.D. II.

    1979-05-01

    The complex PPN + CpV(CO) 3 H - (Cp=eta 5 -C 5 H 5 and PPN = (Ph 3 P) 2 ) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN + CpV(CO) 3 H - reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN + [CpV(C) 3 X] - and in some cases the binuclear bridging hydride PPN + [CpV(CO) 3 ] 2 H - . The borohydride salt PPN + [CpV(CO) 3 BH 4 ] - has also been prepared. The reaction between CpV(CO) 3 H - and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO) 3 H - . Sodium amalgam reduction of CpRh(CO) 2 or a mixture of CpRh(CO) 2 and CpCo(CO) 2 affords two new anions, PPN + [Cp 2 Rh 3 (CO) 4 ] - and PPN + [Cp 2 RhCo(CO) 2 ] - . CpMo(CO) 3 H reacts with CpMo(CO) 3 R (R=CH 3 ,C 2 H 5 , CH 2 C 6 H 5 ) at 25 to 50 0 C to produce aldehyde RCHO and the dimers [CpMo(CO) 3 ] 2 and [CpMo(CO) 2 ] 2 . In general, CpV(CO) 3 H - appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO) 3 H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO) 3 H - generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO) 3 H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species

  11. The role of thioredoxin reductases in brain development.

    Directory of Open Access Journals (Sweden)

    Jonna Soerensen

    Full Text Available The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS-specific deletion of cytosolic (Txnrd1 and mitochondrial (Txnrd2 thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells.

  12. Interspecific variation for thermal dependence of glutathione reductase in sainfoin.

    Science.gov (United States)

    Kidambi, S P; Mahan, J R; Matches, A G

    1990-05-01

    Understanding the biochemical and physiological consequences of species variation would expedite improvement in agronomically useful genotypes of sainfoin (Onobrychis spp.) Information on variation among sainfoin species is lacking on thermal dependence of glutathione reductase (B.C. 1.6.4.2.), which plays an important role in the protection of plants from both high and low temperature stresses by preventing harmful oxidation of enzymes and membranes. Our objective was to investigate the interspecific variation for thermal dependency of glutathione reductase in sainfoin. Large variation among species was found for: (i) the minimum apparent Km (0.4-2.5 μM NADPH), (ii) the temperature at which the minimum apparent Km was observed (15°-5°C), and (iii) the thermal kinetic windows (2°-30°C width) over a 15°-45°C temperature gradient. In general, tetraploid species had narrower (≤17°C) thermal kinetic windows than did diploid species (∼30°C), with one exception among the diploids. Within the tetraploid species, the cultivars of O. viciifolia had a broader thermal kinetic window (≥7°C) than the plant introduction (PI 212241, >2 °C) itself.

  13. Optimisation of nitrate reductase enzyme activity to synthesise silver nanoparticles.

    Science.gov (United States)

    Khodashenas, Bahareh; Ghorbani, Hamid Reza

    2016-06-01

    Today, the synthesis of silver nanoparticles (Ag NPs) is very common since it has many applications in different areas. The synthesis of these nanoparticles is done by means of physical, chemical, or biological methods. However, due to its inexpensive and environmentally friendly features, the biological method is more preferable. In the present study, using nitrate reductase enzyme available in the Escherichia coli (E. coli) bacterium, the biosynthesis of Ag NPs was investigated. In addition, the activity of the nitrate reductase enzyme was optimised by changing its cultural conditions, and the effects of silver nitrate (AgNO(3)) concentration and enzyme amount on nanoparticles synthesis were studied. Finally, the produced nanoparticles were studied using ultraviolet -visible (UV-Vis) spectrophotometer, dynamic light scattering technique, and transmission electron microscopy. UV-Visible spectrophotometric study showed the characteristic peak for Ag NPs at wavelength 405-420 nm for 1 mM metal precursor solution (AgNO(3)) with 1, 5, 10, and 20 cc supernatant and 435 nm for 0.01M AgNO(3) with 20 cc supernatant. In this study, it was found that there is a direct relationship between the AgNO(3) concentration and the size of produced Ag NPs.

  14. A ferric-chelate reductase for iron uptake from soils.

    Science.gov (United States)

    Robinson, N J; Procter, C M; Connolly, E L; Guerinot, M L

    1999-02-25

    Iron deficiency afflicts more than three billion people worldwide, and plants are the principal source of iron in most diets. Low availability of iron often limits plant growth because iron forms insoluble ferric oxides, leaving only a small, organically complexed fraction in soil solutions. The enzyme ferric-chelate reductase is required for most plants to acquire soluble iron. Here we report the isolation of the FRO2 gene, which is expressed in iron-deficient roots of Arabidopsis. FRO2 belongs to a superfamily of flavocytochromes that transport electrons across membranes. It possesses intramembranous binding sites for haem and cytoplasmic binding sites for nucleotide cofactors that donate and transfer electrons. We show that FRO2 is allelic to the frd1 mutations that impair the activity of ferric-chelate reductase. There is a nonsense mutation within the first exon of FRO2 in frd1-1 and a missense mutation within FRO2 in frd1-3. Introduction of functional FRO2 complements the frd1-1 phenotype in transgenic plants. The isolation of FRO2 has implications for the generation of crops with improved nutritional quality and increased growth in iron-deficient soils.

  15. Crystal structure of human quinone reductase type 2, a metalloflavoprotein.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Zhao, Q; Amzel, L M

    1999-08-03

    In mammals, two separate but homologous cytosolic quinone reductases have been identified: NAD(P)H:quinone oxidoreductase type 1 (QR1) (EC 1.6.99.2) and quinone reductase type 2 (QR2). Although QR1 and QR2 are nearly 50% identical in protein sequence, they display markedly different catalytic properties and substrate specificities. We report here two crystal structures of QR2: in its native form and bound to menadione (vitamin K(3)), a physiological substrate. Phases were obtained by molecular replacement, using our previously determined rat QR1 structure as the search model. QR2 shares the overall fold of the major catalytic domain of QR1, but lacks the smaller C-terminal domain. The FAD binding sites of QR1 and QR2 are very similar, but their hydride donor binding sites are considerably different. Unexpectedly, we found that QR2 contains a specific metal binding site, which is not present in QR1. Two histidine nitrogens, one cysteine thiol, and a main chain carbonyl group are involved in metal coordination. The metal binding site is solvent-accessible, and is separated from the FAD cofactor by a distance of about 13 A.

  16. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  17. Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself.

    Science.gov (United States)

    Gachhui, R; Presta, A; Bentley, D F; Abu-Soud, H M; McArthur, R; Brudvig, G; Ghosh, D K; Stuehr, D J

    1996-08-23

    Rat neuronal NO synthase (nNOS) is comprised of a flavin-containing reductase domain and a heme-containing oxygenase domain. Calmodulin binding to nNOS increases the rate of electron transfer from NADPH into its flavins, triggers electron transfer from flavins to the heme, activates NO synthesis, and increases reduction of artificial electron acceptors such as cytochrome c. To investigate what role the reductase domain plays in calmodulin's activation of these functions, we overexpressed a form of the nNOS reductase domain (amino acids 724-1429) in the yeast Pichia pastoris that for the first time exhibits a complete calmodulin response. The reductase domain was purified by 2',5'-ADP affinity chromatography yielding 25 mg of pure protein per liter of culture. It contained 1 FAD and 0.8 FMN per molecule. Most of the protein as isolated contained an air-stable flavin semiquinone radical that was sensitive to FeCN6 oxidation. Anaerobic titration of the FeCN6-oxidized reductase domain with NADPH indicated the flavin semiquinone re-formed after addition of 1-electron equivalent and the flavins could accept up to 3 electrons from NADPH. Calmodulin binding to the recombinant reductase protein increased its rate of NADPH-dependent flavin reduction and its rate of electron transfer to cytochrome c, FeCN6, or dichlorophenolindophenol to fully match the rate increases achieved when calmodulin bound to native full-length nNOS. Calmodulin's activation of the reductase protein was associated with an increase in domain tryptophan and flavin fluorescence. We conclude that many of calmodulin's actions on native nNOS can be fully accounted for through its interaction with the nNOS reductase domain itself.

  18. Increased Levels of Human Carotid Lesion Linoleic Acid Hydroperoxide in Symptomatic and Asymptomatic Patients Is Inversely Correlated with Serum HDL and Paraoxonase 1 Activity

    Directory of Open Access Journals (Sweden)

    Elad Cohen

    2012-01-01

    Full Text Available Human carotid plaque components interact directly with circulating blood elements and thus they might affect each other. We determined plaque paraoxonase1 (PON1 hydrolytic-catalytic activity and compared plaque and blood levels of lipids, HDL, PON1, and HbA1c, as well as plaque-oxidized lipids in symptomatic and asymptomatic patients. Human carotid plaques were obtained from symptomatic and asymptomatic patients undergoing routine endarterectomy, and the lesions were ground and extracted for PON activity and lipid content determinations. Plaque PONs preserved paraoxonase, arylesterase, and lactonase activities. The PON1-specific inhibitor 2-hydroxyquinoline almost completely inhibited paraoxonase and lactonase activities, while only moderately inhibiting arylesterase activity. Oxysterol and triglyceride levels in plaques from symptomatic and asymptomatic patients did not differ significantly, but plaques from symptomatic patients had significantly higher (135% linoleic acid hydroperoxide (LA-13OOH levels. Their serum PON1 activity, cholesterol and triglyceride levels did not differ significantly, but symptomatic patients had significantly lower (28% serum HDL levels and higher (18% HbA1c levels. Thus LA-13OOH, a major atherogenic plaque element, showed significant negative correlations with serum PON1 activity and HDL levels, and a positive correlation with the prodiabetic atherogenic HbA1c. Plaque PON1 retains its activity and may decrease plaque atherogenicity by reducing specific oxidized lipids (e.g., LA-13OOH. The inverse correlation between plaque LA-13OOH level and serum HDL level and PON1 activity suggests a role for serum HDL and PON1 in LA-13OOH accumulation.

  19. Docosahexaenoic (DHA modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4 gene expression to ensure self-protection from oxidative damage in hippocampal cells

    Directory of Open Access Journals (Sweden)

    Veronica eCasañas-Sanchez

    2015-07-01

    Full Text Available Docosahexaenoic acid (DHA, 22:6n-3 is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma. We have recently reported the ability of DHA to regulate the transcriptional program controlling neuronal antioxidant defenses in a hippocampal cell line, especially the glutathione/glutaredoxin system. Within this antioxidant system, DHA was particularly efficient in triggering the upregulation of Gpx4 gene, which encodes for the nuclear, cytosolic and mitochondrial isoforms of phospholipid-hydroperoxide glutathione peroxidase (PH-GPx/GPx4, the main enzyme protecting cell membranes against lipid peroxidation and capable to reduce oxidized phospholipids in situ. We show here that this novel property of DHA is also significant in the hippocampus of wild-type mice and APP/PS1 transgenic mice, a familial model of Alzheimer’s disease. By doing this, DHA stimulates a mechanism to self-protect from oxidative damage even in the neuronal scenario of high aerobic metabolism and in the presence of elevated levels of transition metals, which inevitably favor the generation of reactive oxygen species. Noticeably, DHA also upregulated a novel Gpx4 splicing variant, harboring part of the first intronic region, which according to the ‘sentinel RNA hypothesis’ would expand the ability of Gpx4 (and DHA to provide neuronal antioxidant defense independently of conventional nuclear splicing in cellular compartments, like dendritic zones, located away from nuclear

  20. Effect of melatonin supplementation on plasma lipid hydroperoxides, homocysteine concentration and chronic fatigue syndrome in multiple sclerosis patients treated with interferons-beta and mitoxantrone.

    Science.gov (United States)

    Adamczyk-Sowa, M; Sowa, P; Adamczyk, J; Niedziela, N; Misiolek, H; Owczarek, M; Zwirska-Korczala, K

    2016-04-01

    Multiple sclerosis (MS) prevalence is higher in geographic regions with less sunlight exposure. Melatonin participates in the effects of sunlight in healthy individuals and could play a role in MS pathophysiology. Melatonin crosses the blood-brain barrier and exerts antioxidative, immunomodulatory, and anti-inflammatory effects. Chronic fatigue syndrome concerns 80 - 90% MS patients. The pathophysiology of chronic fatigue syndrome is unknown, however activation of immune, inflammatory, oxidative and nitrosative stress mechanisms and plasma lipid peroxide elevation was reported. Homocysteine increases plasma lipid hydroperoxides levels. The aim was to determine the effect of melatonin supplementation on chronic fatigue syndrome in MS patients and evaluate plasma lipid hydroxyperoxides (LHP) and homocysteine concentrations as a potential biochemical fatigue biomarkers. Into a case-control prospective study 102 MS patients divided according receiving immunomodifying MS treatment into groups: RRMS-pretreated, RRMS-INF-beta, SP/PPMS-mitoxantrone, RRMS-relapse were enrolled. Patients were supplemented with melatonin over 90 days. Plasma LHP, homocysteine concentration, brain MRI and fatigue score were examined. Results show that LHP concentrations were significantly higher in all studied MS groups vs. In all MS patient groups melatonin application resulted in significant decrease in plasma LHP concentrations. Plasma homocysteine concentration was similar in healthy people, RRMS-pretreated, RRMS-INF-beta and SP/PP-MS-mitoxantrone groups. However, in the RRMS-relapse group plasma levels of homocysteine were significantly higher compared to the RRMS-pretreated group. There were no significant differences in plasma homocysteine concentration in the studied groups before and after melatonin application. The fatigue score was significantly lower in RRMS pretreated group compared to RRMS-INF-beta and SP/PP MS-mitoxantrone treated patients. Plasma lipid hydroxyperoxides could be