WorldWideScience

Sample records for alkyl halide systems

  1. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    Directory of Open Access Journals (Sweden)

    Bálint Gál

    2016-11-01

    Full Text Available While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation.

  2. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  3. On the Boiling Points of the Alkyl Halides.

    Science.gov (United States)

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  4. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  5. Catalysis by desolvation: the catalytic prowess of SAM-dependent halide-alkylating enzymes.

    Science.gov (United States)

    Lohman, Danielle C; Edwards, David R; Wolfenden, Richard

    2013-10-02

    In the biological fixation of halide ions, several enzymes have been found to catalyze alkyl transfer from S-adenosylmethionine to halide ions. It proves possible to measure the rates of reaction of the trimethylsulfonium ion with I(-), Br(-), Cl(-), F(-), HO(-), and H2O in water at elevated temperatures. Comparison of the resulting second-order rate constants, extrapolated to 25 °C, with the values of k(cat)/K(m) reported for fluorinase and chlorinase indicates that these enzymes enhance the rates of alkyl halide formation by factors of 2 × 10(15)- and 1 × 10(17)-fold, respectively. These rate enhancements, achieved without the assistance of cofactors, metal ions, or general acid-base catalysis, are the largest that have been reported for an enzyme that acts on two substrates.

  6. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides

    Science.gov (United States)

    Cheung, Chi Wai; Hu, Xile

    2016-08-01

    (Hetero)Aryl amines, an important class of organic molecules in medicinal chemistry, are most commonly synthesized from anilines, which are in turn synthesized by hydrogenation of nitroarenes. Amine synthesis directly from nitroarenes is attractive due to improved step economy and functional group compatibility. Despite these potential advantages, there is yet no general method for the synthesis of (hetero)aryl amines by carbon-nitrogen cross-coupling of nitroarenes. Here we report the reductive coupling of nitroarenes with alkyl halides to yield (hetero)aryl amines. A simple iron catalyst enables the coupling with numerous primary, secondary and tertiary alkyl halides. Broad scope and high functional group tolerance are demonstrated. Mechanistic study suggests that nitrosoarenes and alkyl radicals are involved as intermediates. This new C-N coupling method provides general and step-economical access to aryl amines.

  7. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    Science.gov (United States)

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  8. Fragmentation mechanism and energetics of some alkyl halide ions

    Energy Technology Data Exchange (ETDEWEB)

    Rosenstock, H.M.; Buff, R.; Ferreira, M.A.; Lias, S.G.; Parr, A.C.; Stockbauer, R.L.; Holmes, J.L.

    1982-05-05

    Halogen loss from iodoethane, 1-bromopropane, 2-bromopropane, 1-iodopropane, and 2-iodopropane has been studied by means of electron-ion coincidence techniques and by observation of metastable transition. Analysis of the breakdown curves and the study of residence times gave the zero-kelvin thresholds for halogen loss and indicated the size of the kinetic shift. The fragmentation onset for iodoethane was located in a Franck-Condon gap. The zero-kelvin thresholds for the propyl halides were found to lie at or just above the upper spin-orbit level of the parent ion. All of the propyl halides exhibited a unimolecular metastable transition. At fragmentation onset the 2-halopropane ions have negligible fragment kinetic energy while the 1-halopropane produce secondary propyl ions wih 100-200 meV of kinetic energy. It was established that a potential barrier must be surmounted in this fragmentation-isomerization process and analysis suggests a dynamic mechanism other than conventional QET, for example, weak couplings of vibrational modes. Analysis of the 2-halopropane fragmentation thresholds leads to an accurate, absolute value for the proton affinity of propylene, 751.4 +/- 2.9 kJ/mol at room temperature. This value reconciles some differences inherent in the proton affinity scale based on various relative measurements.

  9. Metallaphotoredox-catalysed sp3-sp3 cross-coupling of carboxylic acids with alkyl halides

    Science.gov (United States)

    Johnston, Craig P.; Smith, Russell T.; Allmendinger, Simon; MacMillan, David W. C.

    2016-08-01

    In the past 50 years, cross-coupling reactions mediated by transition metals have changed the way in which complex organic molecules are synthesized. The predictable and chemoselective nature of these transformations has led to their widespread adoption across many areas of chemical research. However, the construction of a bond between two sp3-hybridized carbon atoms, a fundamental unit of organic chemistry, remains an important yet elusive objective for engineering cross-coupling reactions. In comparison to related procedures with sp2-hybridized species, the development of methods for sp3-sp3 bond formation via transition metal catalysis has been hampered historically by deleterious side-reactions, such as β-hydride elimination with palladium catalysis or the reluctance of alkyl halides to undergo oxidative addition. To address this issue, nickel-catalysed cross-coupling processes can be used to form sp3-sp3 bonds that utilize organometallic nucleophiles and alkyl electrophiles. In particular, the coupling of alkyl halides with pre-generated organozinc, Grignard and organoborane species has been used to furnish diverse molecular structures. However, the manipulations required to produce these activated structures is inefficient, leading to poor step- and atom-economies. Moreover, the operational difficulties associated with making and using these reactive coupling partners, and preserving them through a synthetic sequence, has hindered their widespread adoption. A generically useful sp3-sp3 coupling technology that uses bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be valuable. Here we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp3-sp3 bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. This metallaphotoredox protocol is suitable for

  10. Z-Selective Olefin Synthesis via Iron-Catalyzed Reductive Coupling of Alkyl Halides with Terminal Arylalkynes.

    Science.gov (United States)

    Cheung, Chi Wai; Zhurkin, Fedor E; Hu, Xile

    2015-04-22

    Selective catalytic synthesis of Z-olefins has been challenging. Here we describe a method to produce 1,2-disubstituted olefins in high Z selectivity via reductive cross-coupling of alkyl halides with terminal arylalkynes. The method employs inexpensive and nontoxic catalyst (iron(II) bromide) and reductant (zinc). The substrate scope encompasses primary, secondary, and tertiary alkyl halides, and the reaction tolerates a large number of functional groups. The utility of the method is demonstrated in the synthesis of several pharmaceutically relevant molecules. Mechanistic study suggests that the reaction proceeds through an iron-catalyzed anti-selective carbozincation pathway.

  11. Sequential One-Pot Ruthenium-Catalyzed Azide−Alkyne Cycloaddition from Primary Alkyl Halides and Sodium Azide

    KAUST Repository

    Johansson, Johan R.

    2011-04-01

    An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh 3) 2] and the alkyne yielded the desired cycloaddition product after further microwave irradiation. © 2011 American Chemical Society.

  12. Dielectric relaxation of alkyl chains in graphite oxide and n-alkylammonium halides

    Science.gov (United States)

    Ai, Xiaoqian; Tian, Yuchen; Gu, Min; Yu, Ji; Tang, Tong B.

    2016-05-01

    The dynamic of n-alkylammonium halides and n-alkylammonium cations (n = 12, 14, 16, 18) intercalated in graphite oxide (GO) have been investigated with complex impedance spectroscopy. X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, elemental analysis and thermogravimetry served to characterize the materials. The intercalated alkylammonium cations distributes as monolayers (when n = 12, 14 or 16) or bilayers (when n = 18), with their long axis parallel to GO layers, and with cations of headgroups bonded ionically to C-O- groups of GO; backbones of the confined molecules remain free. All halides and intercalation compounds suffer dielectric loss at low temperature. Arrhenius plots of the thermal dependence of the loss peaks, which are asymmetric, produce apparent activation energies that rise with increasing n. Ngai's correlated-state model helps to correct for effects of dipole-dipole interaction, leading to virtually identical values for actual activation energy of 110 meV ± 5%; the values are also almost the same as the barrier energy for internal rotation in the alkyl macromolecule. We conclude that the relaxation of the alkylammonium cations arises not from C3 reorientation of the CH3 at its headgroup, but from small-angle wobbling around its major axis, an intrinsic motion.

  13. Chemical derivatization for electrospray ionization mass spectrometry. 1. Alkyl halides, alcohols, phenols, thiols, and amines

    Energy Technology Data Exchange (ETDEWEB)

    Quirke, J.M.E.; Adams, C.L.; Van Berkel, G.J. (Oak Ridge National Lab., TN (United States))

    1994-04-15

    Derivatization strategies and specific derivatization reactions for conversion of simple alkyl halides, alcohols, phenols, thiols, and amines to ionic or solution-ionizable derivatives, that is [open quotes]electrospray active[close quotes] (ES-active) forms of the analyte, are presented. Use of these reactions allows detection of analytes among those listed that are not normally amenable to analysis by electrospray ionization mass spectrometry (ES-MS). In addition, these reactions provide for analysis specificity and flexibility through functional group specific derivatization and through the formation of derivatives that can be detected in positive ion or in negative ion mode. For a few of the functional groups, amphoteric derivatives are formed that can be analyzed in either positive or negative ion modes. General synthetic strategies for transformation of members of these five compound classes to ES-active species are presented along with illustrative examples of suitable derivatives. Selected derivatives were prepared using model compounds and the ES mass spectra obtained for these derivatives are discussed. The analytical utility of derivatization for ES-MS analysis is illustrated in three experiments: (1) specific detection of the major secondary alcohol in oil of peppermint, (2) selective detection of phenols within a synthetic mixture of phenols, and (3) identification of the medicinal amines within a commercially available cold medication as primary, secondary or tertiary. 65 refs., 3 figs., 3 tabs.

  14. UV-visible spectroscopy of macrocyclic alkyl, nitrosyl and halide complexes of cobalt and rhodium. Experiment and calculation.

    Science.gov (United States)

    Hull, Emily A; West, Aaron C; Pestovsky, Oleg; Kristian, Kathleen E; Ellern, Arkady; Dunne, James F; Carraher, Jack M; Bakac, Andreja; Windus, Theresa L

    2015-02-28

    Transition metal complexes (NH3)5CoX(2+) (X = CH3, Cl) and L(H2O)MX(2+), where M = Rh or Co, X = CH3, NO, or Cl, and L is a macrocyclic N4 ligand are examined by both experiment and computation to better understand their electronic spectra and associated photochemistry. Specifically, irradiation into weak visible bands of nitrosyl and alkyl complexes (NH3)5CoCH3(2+) and L(H2O)M(III)X(2+) (X = CH3 or NO) leads to photohomolysis that generates the divalent metal complex and ˙CH3 or ˙NO, respectively. On the other hand, when X = halide or NO2, visible light photolysis leads to dissociation of X(-) and/or cis/trans isomerization. Computations show that visible bands for alkyl and nitrosyl complexes involve transitions from M-X bonding orbitals and/or metal d orbitals to M-X antibonding orbitals. In contrast, complexes with X = Cl or NO2 exhibit only d-d bands in the visible, so that homolytic cleavage of the M-X bond requires UV photolysis. UV-Vis spectra are not significantly dependent on the structure of the equatorial ligands, as shown by similar spectral features for (NH3)5CoCH3(2+) and L(1)(H2O)CoCH3(2+).

  15. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    Science.gov (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  16. Computational studies on the reactivity of alkyl halides over (Al2O3)n nanoclusters: an approach towards room temperature dehydrohalogenation

    Science.gov (United States)

    Biswas, Santu; Pramanik, Anup; Sarkar, Pranab

    2016-05-01

    The role of alumina nanoclusters as a catalyst on the reactivity of alkyl halides has been explored. The thermochemical data obtained from Density Functional Theory (DFT) calculations and the analyses of the transition structures reveal that, between the two competing reactions, elimination (via E2) versus dissociative addition (via SN2), elimination is the kinetically controlled one and thus at room temperature, olefin is the major product. The results are in excellent agreement with the recent experimental observation where more than 97% of ethylene is formed at room temperature with the reaction of ethyl fluoride over an alumina surface, although the dissociative addition product is being thermodynamically more stable. We have tried to rationalize the fact by using alumina clusters of different sizes as well as different alkyl halides having β-H for elimination. It has been shown that, during the elimination (E2) pathway, the transition structure is oriented in such a way that the eliminating halogen and the β-H are in the interacting position with the three-centered Al and two-centered O atoms, respectively, where the Lewis acid/base interaction is the main guiding factor. We have also shown a possible pathway for regenerating the catalyst. Finally, the possibility of the reactions has been tested in the presence of H2O to mimic the same on the hydrated alumina surface.The role of alumina nanoclusters as a catalyst on the reactivity of alkyl halides has been explored. The thermochemical data obtained from Density Functional Theory (DFT) calculations and the analyses of the transition structures reveal that, between the two competing reactions, elimination (via E2) versus dissociative addition (via SN2), elimination is the kinetically controlled one and thus at room temperature, olefin is the major product. The results are in excellent agreement with the recent experimental observation where more than 97% of ethylene is formed at room temperature with the

  17. Efficient Synthesis of Complex Bridged 1,3-Oxazabicycles via Reactions of N-Alkyl-1,10-phenanthrolinium Halides with Cyclic 1,3-Diketones

    Institute of Scientific and Technical Information of China (English)

    WU Ping; HUI Li; GAO Xing; YAN Chao-guo

    2012-01-01

    Complex bridged 1,3-oxazabicycles and 1,4-disubstituted 1,10-phenanthroline derivatives were efficiently prepared by the reactions of N-methyl or N-benzylphenanthrolinium halides with cyclic 1,3-dicarbonyl compounds in a K2CO3/CH3CN system.

  18. Electrolytic systems and methods for making metal halides and refining metals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  19. Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts

    Directory of Open Access Journals (Sweden)

    Marites A. Guino-o

    2015-06-01

    Full Text Available The asymmetric units for the salts 4-(4-fluorophenyl-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3+·I−, (1, 1-isopropyl-4-(4-methylphenyl-1,2,4-triazol-1-ium iodide, C12H16N3+·I−, (2, 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3+·I−, (3, and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3+·I−, (4, contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3+·Br−·H2O, (5, there is an additional single water molecule. There is a predominant C—H...X(halide interaction for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π–anion interaction between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π–π interactions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.

  20. How alkyl halide structure affects E2 and SN2 reaction barriers: E2 reactions are as sensitive as SN2 reactions.

    Science.gov (United States)

    Rablen, Paul R; McLarney, Brett D; Karlow, Brandon J; Schneider, Jean E

    2014-02-07

    High-level electronic structure calculations, including a continuum treatment of solvent, are employed to elucidate and quantify the effects of alkyl halide structure on the barriers of SN2 and E2 reactions. In cases where such comparisons are available, the results of these calculations show close agreement with solution experimental data. Structural factors investigated include α- and β-methylation, adjacency to unsaturated functionality (allyl, benzyl, propargyl, α to carbonyl), ring size, and α-halogenation and cyanation. While the influence of these factors on SN2 reactivity is mostly well-known, the present study attempts to provide a broad comparison of both SN2 and E2 reactivity across many cases using a single methodology, so as to quantify relative reactivity trends. Despite the fact that most organic chemistry textbooks say far more about how structure affects SN2 reactions than about how it affects E2 reactions, the latter are just as sensitive to structural variation as are the former. This sensitivity of E2 reactions to structure is often underappreciated.

  1. Quantifying the Sigma and Pi interactions between U(V) f orbitals and halide, alkyl, alkoxide, amide and ketimide ligands

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lukens, Wayne W.; Edelstein, Norman M.; Magnani, Nicola; Hayton, Trevor W.; Fortier, Skye; Seaman, Lani A.

    2013-06-20

    f Orbital bonding in actinide and lanthanide complexes is critical to their behavior in a variety of areas from separations to magnetic properties. Octahedral f1 hexahalide complexes have been extensively used to study f orbital bonding due to their simple electronic structure and extensive spectroscopic characterization. The recent expansion of this family to include alkyl, alkoxide, amide, and ketimide ligands presents the opportunity to extend this study to a wider variety of ligands. To better understand f orbital bonding in these complexes, the existing molecular orbital (MO) model was refined to include the effect of covalency on spin orbit coupling in addition to its effect on orbital angular momentum (orbital reduction). The new MO model as well as the existing MO model and the crystal field (CF) model were applied to the octahedral f1 complexes to determine the covalency and strengths of the ? and ? bonds formed by the f orbitals. When covalency is significant, MO models more precisely determined the strengths of the bonds derived from the f orbitals; however, when covalency was small, the CF model was better than either MO model. The covalency determined using the new MO model is in better agreement with both experiment and theory than that predicted by the existing MO model. The results emphasize the role played by the orbital energy in determining the strength and covalency of bonds formed by the f orbitals.

  2. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Cao, Runan; Xu, Fei [Department of Physics, Shanghai University, Shanghai 200444 (China); Da, Peimei; Zheng, Gengfeng [Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Lu, Jian, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China)

    2016-01-11

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources.

  3. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    Science.gov (United States)

    Wang, Jun; Cao, Runan; Da, Peimei; Wang, Yafeng; Hu, Tao; Wu, Lin; Lu, Jian; Shen, Xuechu; Xu, Fei; Zheng, Gengfeng; Chen, Zhanghai

    2016-01-01

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources.

  4. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    Science.gov (United States)

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  5. Dehalogenation of Aryl Halides Catalyzed by Montmorillonite Immobilized Bimetal Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel bisupported bimetal catalyst PVP-PdCl2-FeSO4/Al-Mont-PEG600 was prepared by immobilization of PVP (poly (N-vinyl-2-pyrrolidone)) supported bimetallic catalyst using alumina pillared inartificial montmorillonite as the carrier. This catalyst has good dehalogenation activity and selectivity to aryl halides-o-chlorotoluene in aqueous system in the presence of phase transfer catalyst (PEG) and sodium formate as hydrogen source. The catalyst also shows good reusability.

  6. Amberlyst-15 catalyzed synthesis of alkyl/aryl/heterocyclic phosphonates

    Institute of Scientific and Technical Information of China (English)

    U.M. Rao Kunda; V.N. Reddy Mudumala; C.S. Reddy Gangireddy; B.R. Nemallapudi; K.N. Sandip; S.R. Cirandur

    2011-01-01

    A novel and efficient procedure for the synthesis of alkyl phosphonates through one pot condensation of alkyl halide and tri-alkyl/aryl phosphite in the presence of Amberlyst-15 as catalyst under solvent free conditions was applied. It demonstrated several advantages such as good yields of products, simple operation, convenient separation and inexpensive catalyst.

  7. Interplay between alkyl chain asymmetry and cholesterol addition in the rigid ion pair amphiphile bilayer systems

    Science.gov (United States)

    Huang, Fong-yin; Chiu, Chi-cheng

    2017-01-01

    Ion pair amphiphile (IPA), a molecular complex composed of a pair of cationic and anionic surfactants, has been proposed as a novel phospholipid substitute. Controlling the physical stability of IPA vesicles is important for its application developments such as cosmetic and drug deliveries. To investigate the effects of IPA alkyl chain combinations and the cholesterol additive on the structural and mechanical properties of IPA vesicular bilayers, we conducted a series of molecular dynamics studies on the hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS) and dodecyltrimethylammonium-hexadecylsulfate (DTMA-HS) IPA bilayers with cholesterol. We found that both IPA bilayers are in the gel phase at 298 K, consistent with experimental observations. Compared with the HTMA-DS system, the DTMA-HS bilayer has more disordered alkyl chains in the hydrophobic region. When adding cholesterol, it induces alkyl chain ordering around its rigid sterol ring. Yet, cholesterol increases the molecular areas for all species and disturbs the molecular packing near the hydrophilic region and the bilayer core. Cholesterol also promotes the alkyl chain mismatch between the IPA moieties, especially for the DTMA-HS bilayer. The combined effects lead to non-monotonically enhancement of the membrane mechanical moduli for both IPA-cholesterol systems. Furthermore, cholesterol can form H-bonds with the alkylsulfate and thus enhance the contribution of alkylsulfate to the overall mechanical moduli. Combined results provide valuable molecular insights into the roles of each IPA component and the cholesterol on modulating the IPA bilayer properties.

  8. Study of alkali halide/FHF - systems at 10 - 290 K, 0 - 8 kBAR

    Science.gov (United States)

    Chunnilall, C. J.; Sherman, W. F.; Wilkinson, G. R.

    1984-03-01

    The bifluoride ion FHF -, (and FDF -), has been substitutionally isolated within single crystal samples of several alkali halides. Infrared and Raman spectra of these crystals have been studied at variable temperature and pressure. The infrared absorptions are strong, whereas the Raman is weak. At low temperatures the bands are very sharp with halfwidths less than 1 cm -1. On applying pressure, ν3 increases in frequency whereas ν2 decreases. On reducing temperature, ν3 decreases in frequency whereas ν2 increases. Hence the effect of volume contraction is overridden in the temperature dependent case. The deuterated spectra confirm that the bifluoride ion is well isolated within the alkali halide matrix.

  9. Identification of isopropylbiphenyl, alkyl diphenylmethanes, diisopropylnaphthalene, linear alkyl benzenes and other polychlorinated biphenyl replacement compounds in effluents, sediments and fish in the Fox River System, Wisconsin

    Science.gov (United States)

    Peterman, Paul H.; Delfino, Joseph J.

    1990-01-01

    Five polychlorinated biphenyl replacement dye solvents and a diluent present in carbonless copy paper were identified by gas chromatography/mass spectrometry in the following matrices: effluents from a de-inking–recycling paper mill and a municipal wastewater treatment plant receiving wastewaters from a carbonless copy paper manufacturing plant; sediments; and fish collected near both discharges in the Fox River System, Wisconsin. An isopropylbiphenyl dye solvent mixture included mono-, di- and triisopropylbiphenyls. Also identified were two dye solvent mixtures marketed under the trade name Santosol. Santosol 100 comprised ethyl-diphenylmethanes (DPMs), benzyl-ethyl-DPMs, and dibenzyl-ethyl-DPMs. Similarly, Santosol 150 comprised dimethyl-DPMs, benzyl-dimethyl-DPMs, and dibenzyl-dimethyl-DPMs. Diisopropylnaphthalenes, widely used as a dye solvent in Japan, were identified for the first time in the US environment. sec-Butylbiphenyls and di-sec-butylbiphenyls, likely constituents of a sec-butylbiphenyl dye solvent mixture, were tentatively identified. Linear alkyl benzenes (C10 to C13-LABs) constituted the Alkylate 215 diluent mixture. Although known to occur as minor constituents in linear alkyl sulfonate detergents, LAB residues have not been previously attributed to commercial use of LABs.

  10. Iodine-xenon analysis of ordinary chondrite halide: implications for early solar system water

    Science.gov (United States)

    Busfield, A.; Gilmour, J. D.; Whitby, J. A.; Turner, G.

    2004-01-01

    We report the results of iodine-xenon analyses of irradiated halide grains extracted from the H-chondrite Monahans (1998) and compare them with those from Zag ( Whitby et al., 2000) to address the timing of aqueous processing on the H-chondrite parent body. Xe isotopic analyses were carried out using the RELAX mass spectrometer with laser stepped heating. The initial 129I/ 127I ratio in the Monahans halide was determined to be (9.37 ± 0.06) × 10 -5 with an iodine concentration of ˜400 ppb. Significant scatter, especially in the Zag data, indicates that a simple interpretation as a formation age is unreliable. Instead we propose a model whereby halide minerals in both meteorites formed ˜5 Ma after the enstatite achondrite Shallowater (at an absolute age of 4559 Ma). This age is in agreement with the timing of aqueous alteration on the carbonaceous chondrite parent bodies and ordinary chondrite metamorphism and is consistent with the decay of 26Al as a heat source for heating and mobilisation of brines on the H-chondrite parent body. Post accretion surface impact events may have also contributed to the heat source.

  11. Distribution coefficients of purine alkaloids in water-ammonium sulfate-alkyl acetate-dialkyl phthalate systems

    Science.gov (United States)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-12-01

    The distribution of purine alkaloids (caffeine, theobromine, theophylline) was studied in the systems: alkyl acetates-dialkyl phtalate-salting-out agent (ammonium sulfate). The quantitative characteristics of the extraction-distribution coefficients ( D) and the degree of extraction ( R, %) are calculated. The relationships between the distribution coefficients of alkaloids and the length of the hydrocarbon radical in the molecule of alkyl acetate (dialkyl phtalate) are determined. The possibility of predicting the distribution coefficients is demonstrated.

  12. Dynamic interfacial tension behavior of alkyl amino sulfonate in crude oil-brine system

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhao Hua; Luo, Yue [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering

    2013-09-15

    The compatibility of surfactants, a series of alkyl amino sulfonate containing various the length of alkyl chain (dodecyl, tetradecyl, hexadecyl and octadecyl, developed in our laboratory), with formation water matching the Xinjiang Oil Field reservoir water and the dynamic interfacial tensions (DIT) behaviors between the crude oil and the formation water for a number of alkaline flooding systems were measured. These surfactants are found to be well compatible with formation water up to 0.10g L{sup -1} surfactant concentration, especially Dodec-AS and Tetradec-AS show a good compatibility with formation water over the full range of surfactant concentration investigated (0.01-0.20g L{sup -1}). All surfactants exhibit the dynamic interfacial tension behavior, and can reach and maintain low interfacial tension at very low concentration. The time for reaching the equilibrium DIT (DIT{sub eq}) is longer for surfactant with stronger lipophilicity, e.g. octadecyl-AS. It is interestingly found that the ratio value between DIT{sub eq} and the tension at crude oil/reservoir water interface in the absence of surfactant is in the range of 10{sup -4}-10{sup -3} mN m{sup -1}, accordingly based on which and the previous results, four surfactants individually or with other additives together may become potent candidates for enhanced oil recovery. Fortunately, the alkyl amino sulfonate combinational systems without alkali designed by our group can reduce the interfacial tension even to 10{sup -4} mN m{sup -1} at very low surfactant concentration. These surfactants or their systems have characteristic of 'Green', in addition to the excellent salt-tolerance and the less expensive cost for enhanced oil recovery, and therefore they are good oil-displacing reagents for enhanced oil recovery. (orig.)

  13. Dehalogenation of Aryl Halides Catalyzed by MontK10 Immobilized PVP-Pd-Sn Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of PVP-Pd-Sn/MontK10 catalysts were prepared by immobilization of PVP[poly(N-vinyl-2-pyrrolidone)] supported bimetallic catalyst using MontK10 as carrier. This catalyst has good catalytic activity for hydrogen transfer dehalogenation of aryl halides. The catalytic reaction was carried out in aqueous system in the presence of phase transfer catalyst and sodium formate as hydrogen source. The catalyst with loading Pd 0.19wt% and molar ratio of Pd/Sn 8:1 gives the highest activity and good stability. This catalyst is more reducible with NaBH4. It is also found that the catalyst is easily separated from the reaction system.

  14. Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows: The calculation of the model parameters, λ11, λ12, λ21 and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems.In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the.calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.

  15. REGIOSELECTIVE REACTIONS OF 3-ALKYL-1-PHENYL-2-PYRAZOLIN-5-ONES WITH ACYL HALIDES IN THE PRECENCE OF NONOSIZED MAGNESIUM HYDROXIDE AS A HIGHLY EFFECTIVE HETEROGENOUS BASE CATALYST Regioselektive Reaktionen von 3-Alkyl-1-PHENYL-2-pyrazolin-5-ONES Mit Acylhalogeniden IN DER PRECENCE DER NONOSIZED MAGNESIUM HYDROXIDE als hochwirksame heterogene BASE CATALYST

    Directory of Open Access Journals (Sweden)

    Hassan Sheibani and Bahman Massomi Nejad

    2012-07-01

    Full Text Available 4-Acyl-3-alkyl-1-phenyl-2-pyrazolin-5-one derivatives were prepared by the regioselective acylation of 3-alkyl-1-phenyl-2-pyrazolin-5-ones in the presence of base catalysts such as calcium hydroxide [Ca(OH2], magnesium hydroxide [Mg(OH2] and nanosized magnesium hydroxide. In the presence of nanosized magnesium hydroxide, excellent yields of products were obtained and reaction times were significantly reduced.

  16. THE EFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Anton, D.; Gray, J.; Price, C.; Lascola, R.

    2011-07-20

    The effects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3} > ScCl{sub 3} > VCl{sub 3} > NiCL{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. X-ray diffraction and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

  17. THE AFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Erdy, C.; Gray, J.; Lascola, R.; Anton, D.

    2010-12-16

    In this present work, the affects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3}>ScCl{sub 3}>VCl{sub 3}>NiCl{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. XRD and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

  18. Extremely bulky amido first row transition metal(II) halide complexes: potential precursors to low coordinate metal-metal bonded systems.

    Science.gov (United States)

    Hicks, Jamie; Jones, Cameron

    2013-04-01

    Reactions of the extremely bulky potassium amide complexes, [KL'(η(6)-toluene)] or [KL"] (L'/L" = N(Ar*)(SiR3), Ar* = C6H2{C(H)Ph2}2Me-2,6,4; R = Me (L') or Ph (L")), with a series of first row transition metal(II) halides have yielded 10 rare examples of monodentate amido first row transition metal(II) halide complexes, all of which were crystallographically characterized. They encompass the dimeric, square-planar chromium complexes, [{CrL'(THF)(μ-Cl)}2] and [{CrL"(μ-Cl)}2], the latter of which displays intramolecular η(2)-Ph···Cr interactions; the dimeric tetrahedral complexes, [{ML'(THF)(μ-Br)}2] (M = Mn or Fe), [{ML"(THF)(μ-X)}2] (M = Mn, Fe or Co; X = Cl or Br) and [{CoL"(μ-Cl)}2] (which displays intramolecular η(2)-Ph···Co interactions); and the monomeric zinc amides, [L'ZnBr(THF)] (three-coordinate) and [L"ZnBr] (two-coordinate). Solution state magnetic moment determinations on all but one of the paramagnetic compounds show them to be high-spin systems. Throughout, comparisons are made with related bulky terphenyl transition metal(II) halide complexes, and the potential for the use of the prepared complexes as precursors to low-valent transition metal systems is discussed.

  19. Thermodynamic characterization of halide-π interactions in solution using "two-wall" aryl extended calix[4]pyrroles as model system.

    Science.gov (United States)

    Adriaenssens, Louis; Gil-Ramírez, Guzmán; Frontera, Antonio; Quiñonero, David; Escudero-Adán, Eduardo C; Ballester, Pablo

    2014-02-26

    Herein, we report our latest experimental investigations of halide-π interactions in solution. We base this research on the thermodynamic characterization of a series of 1:1 complexes formed between halides (Cl(-), Br(-), and I(-)) and several α,α-isomers of "two-wall" calix[4]pyrrole receptors bearing two six-membered aromatic rings in opposed meso positions. The installed aromatic systems feature a broad range of electron density as indicated by the calculated values for their electrostatic surface potentials at the center of the rings. We show that a correlation exists between the electronic nature of the aromatic walls and the thermodynamic stability of the X(-)⊂receptor complexes. We give evidence for the existence of both repulsive and attractive interactions between π systems and halide anions in solution (between 1 and -1 kcal/mol). We dissect the measured free energies of binding for chloride and bromide with the receptor series into their enthalpic and entropic thermodynamic quantities. In acetonitrile solution, the binding enthalpy values remain almost constant throughout the receptor series, and the differences in free energies are provoked exclusively by changes in the entropic term of the binding processes. Most likely, this unexpected behavior is owed to strong solvation effects that make up important components of the measured magnitudes for the enthalpies and entropies of binding. The use of chloroform, a much less polar solvent, limits the impact of solvation effects revealing the expected existence of a parallel trend between free energies and enthalpies of binding. This result indicates that halide-π interactions in organic solvents are mainly driven by enthalpy. However, the typical paradigm of enthalpy-entropy compensation is still not observed in this less polar solvent.

  20. Antioxidant activity of ferulic acid alkyl esters in a heterophasic system: a mechanistic insight.

    Science.gov (United States)

    Anselmi, Cecilia; Centini, Marisanna; Granata, Paola; Sega, Alessandro; Buonocore, Anna; Bernini, Andrea; Facino, Roberto Maffei

    2004-10-20

    The antioxidant activity of some esters of ferulic acid with the linear fatty alcohols C7, C8 (branched and linear), C9, C11, C12, C13, C15, C16, and C18 has been studied in homogeneous and heterogeneous phases. Whereas in homogeneous phase all of the alkyl ferulates possessed similar radical-scavenging abilities, in rat liver microsomes they showed striking differences, the more effective being C12 (7) (IC50 = 11.03 M), linear C8 (3) (IC50 = 12.40 microM), C13 (8) (IC50 = 18.60 microM), and C9 (5) (IC50 = 19.74 microM), followed by C7 (2), C15 (9), C11 (6), branched C8 (4), C16 (10), and C18 (11) (ferulic acid was the less active, IC50 = 243.84 microM). All of the molecules showed similar partition coefficients in an octanol-buffer system. Three-dimensional studies (NMR in solution, modeling in vacuo) indicate that this behavior might be due to a different anchorage of the molecules with the ester side chain to the microsomal phospholipid bilayer and to a consequent different orientation/positioning of the scavenging phenoxy group outside the membrane surface against the flux of oxy radicals.

  1. Epitaxial Halide Perovskite Lateral Double Heterostructure.

    Science.gov (United States)

    Wang, Yiping; Chen, Zhizhong; Deschler, Felix; Sun, Xin; Lu, Toh-Ming; Wertz, Esther A; Hu, Jia-Mian; Shi, Jian

    2017-03-28

    Epitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system. Pristine epitaxial mixed halide perovskites rods and films were synthesized via van der Waals epitaxy by chemical vapor deposition method. At room temperature, photon was applied as a knob to regulate the kinetics of spinodal decomposition and classic coarsening. By this approach, halide perovskite double heterostructures were created carrying epitaxial interfaces and outstanding optical properties. Reduced Fröhlich electron-phonon coupling was discovered in coherent halide double heterostructure, which is hypothetically attributed to the classic phonon confinement effect widely existing in III-V double heterostructures. As a proof-of-concept, our results suggest that halide perovskite-based epitaxial heterostructures may be promising for high-performance and low-cost optoelectronics, electro-optics, and microelectronics. Thus, ultimately, for practical device applications, it may be worthy to pursue these heterostructures via conventional vapor phase epitaxy approaches widely practised in III-V field.

  2. Mild Catalytic methods for Alkyl-Alkyl Bond Formation

    Energy Technology Data Exchange (ETDEWEB)

    Vicic, David A

    2009-08-10

    Overview of Research Goals and Accomplishments for the Period 07/01/06 – 06/30/07: Our overall research goal is to transform the rapidly emerging synthetic chemistry involving alkyl-alkyl cross-couplings into more of a mechanism-based field so that that new, rationally-designed catalysts can be performed under energy efficient conditions. Our specific objectives for the previous year were 1) to obtain a proper electronic description of an active catalyst for alkyl-alkyl cross-coupling reactions and 2) to determine the effect of ligand structure on the rate, scope, selectivity, and functional group compatibility of C(sp3)-C(sp3) cross-coupling catalysis. We have completed both of these initial objectives and established a firm base for further studies. The specific significant achievements of the current grant period include: 1) we have performed magnetic and computational studies on (terpyridine)NiMe, an active catalyst for alkyl-alkyl cross couplings, and have discovered that the unpaired electron resides heavily on the terpyridine ligand and that the proper electronic description of this nickel complex is a Ni(II)-methyl cation bound to a reduced terpyridine ligand; 2) we have for the first time shown that alkyl halide reduction by terpyridyl nickel catalysts is substantially ligand based; 3) we have shown by isotopic labeling studies that the active catalyst (terpyridine)NiMe is not produced via a mechanism that involves the formation of methyl radicals when (TMEDA)NiMe2 is used as the catalyst precursor; 4) we have performed an extensive ligand survey for the alkyl-alkyl cross-coupling reactions and have found that electronic factors only moderately influence reactivity in the terpyridine-based catalysis and that the most dramatic effects arise from steric and solubility factors; 5) we have found that the use of bis(dialkylphosphino)methanes as ligands for nickel does not produce active catalysts for cross-coupling but rather leads to bridging hydride

  3. STUDIES OF THE INITIATION MECHANISM OF VINYL POLYMERIZATION WITH THE SYSTEM PERSULFATE/N-ALKYL SUBSTITUTED ETHYLENEDIAMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    GUO Xinqiu; QIU Kunyuan; FENG Xinde

    1989-01-01

    Effects of N-alkyl substituted ethylenediamine derivatives on vinyl polymerization using persulfate as initiator were studied. The apparent kinetic equations and overall activation energies of acrylamide polymerization were determined using the above mentioned system as initiator. The promoting activities of diamine > primary diamine. Diamines having methyl groups as the substituent on their nitrogen atom possess higher promoting activity than that of having larger alkyl groups.The initialfree radicals produced through the redox reaction of persulfate and diamines were studied by spin strapping technique and ESR spectroscopy. The results obtained confirm the fact that the initial free radicals of the diamine species can initiate vinyl polymerization and become the amino end group of the resulting polymers.

  4. A facile and convenient method for synthesis of alkyl thiocyanates under homogeneous phase transfer catalyst conditions

    Institute of Scientific and Technical Information of China (English)

    Ali Reza Kiasat; Rashid Badri; Soheil Sayyahi

    2008-01-01

    A simple and environmentally friendly method is described for the efficient conversion of alkyl halide to alkyl thiocyanate using tetrabutylammonium bromide (TBAB) as a phase transfer catalyst.The reactions occur in water and furnish the corresponding alkyl thiocyanate in high yields.No evidence for the formation of isothiocyanates as by-product of the reaction was observed and the products were obtained in pure form without further purification.

  5. Alkylating enzymes.

    Science.gov (United States)

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  6. Potential biological sources of long chain alkyl diols in a lacustrine system

    NARCIS (Netherlands)

    Villanueva, Laura; Besseling, Marc; Rodrigo-Gámiz, Marta; Rampen, Sebastiaan W.; Verschuren, Dirk; Sinninghe Damsté, Jaap S.

    2014-01-01

    Long chain alkyl diols (LCDs) have been detected in a range of marine and lacustrine environments, as well as in several algal cultures. However, the identity of the producers, their preferred ecological niche and seasonality are uncertain. We applied a gene-based approach to determine the identity

  7. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  8. Molten salt phase diagram evaluation by pattern recognition:Part Ⅰ Divalent rare earth halide and alkali metal halide binary systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    At present CALPHAD (CALculation of PHAse Diagram) technique is not capable of predicting whether there exists intermediate compound, much less predicting the formulae, the number, and the melting congruence of intermediate compounds. To solve this problem, a new approach called the phase diagram evaluation by pattern recognition (PDEPR) was improved. The micro-parameters, such as the radius and the electronegativity of the element, were used as original features and then they were transformed and spanned to the different features in multi-dimensional space.Then a set of classifying functions were obtained to predict the information of intermediate compounds in REX2-AX systems (RE-rare earth element; A-Li, Na, K, Rb, and Cs; X F, Cl, Br, and 1). It is comparatively important for the design of materials.

  9. The self-organization and functional activity of binary system based on erucyl amidopropyl betaine - alkylated polyethyleneimine

    Science.gov (United States)

    Gaynanova, Gulnara A.; Valiakhmetova, Alsu R.; Kuryashov, Dmitry A.; Kudryashova, Yuliana R.; Lukashenko, Svetlana S.; Syakaev, Victor V.; Latypov, Shamil K.; Bukharov, Sergey V.; Bashkirtseva, Natalia Yu.; Zakharova, Lucia Ya.

    2013-11-01

    The self-organization in individual and binary aqueous solutions of a zwitterionic surfactant erucyl amidopropyl betaine and alkylated polyethyleneimine is carried out with a wide range of physical and chemical methods, including tensiometry, conductometry, dynamic light scattering, pH-metry, spectrophotometry, and fluorescence spectroscopy. The data obtained strongly support the formation of nanosized aggregates in the systems and provide information on their structure and probable morphological transitions. High solubilization capacity and data on the contact angle showed a possibility of the application of these systems as nanocontainers or oil wetting agents in the oil recovery.

  10. Modeling and investigation of heavy oxide and alkali-halide scintillators for potential use in neutron and gamma detection systems

    OpenAIRE

    Cadiente, Jeremy S.

    2015-01-01

    Approved for public release; distribution is unlimited Heavy inorganic oxide and alkali-halide crystals, which previous experimental research has indicated to have fast neutron detection efficiencies well over 40%, were investigated for potential use as highly efficient gamma-neutron radiation detectors. The Monte Carlo N-Particle radiation transport code (MCNP) was used to characterize the radiation interactions in a candidate set of crystals, including Bismuth Germanate (BGO), Lead Tungs...

  11. Tribromoisocyanuric acid/triphenylphosphine: a new system for conversion of alcohols into alkyl bromides

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Vitor S.C. de; Mattos, Marcio C.S. de, E-mail: mmattos@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica. Departamento de Quimica Organica

    2014-05-15

    An efficient and facile method has been developed for the conversion of alcohols into alkyl bromides under neutral conditions using tribromoisocyanuric acid and triphenylphosphine (molar ratio 1.0:0.7:2.0, alcohol/tribromoisocyanuric acid/triphenylphosphine) in dichloromethane at room temperature. This method can be applied for the conversion of primary, secondary, benzilic and allylic alcohols, and their corresponding bromides are obtained in 67-82 % yield. Tertiary alcohols do not react under these conditions. (author)

  12. Fast ion transport in silver halide solid solutions and multiphase systems

    Science.gov (United States)

    Shahi, K.; Wagner, J. B., Jr.

    1980-01-01

    The incorporation of homovalent ions, e.g., I(-) in AgBr, leads to a substantial increase in ionic conductivity sigma. The charge compensation concept does not explain the enhancement. AgBr + 30 mol. % AgI exhibits sigma approximately 7/omega/cm at 380 C, which is approximately 170% larger than that of alpha-AgI, the best known superionic conductor, at its melting point. The purely elastic displacement caused by the foreign ion is suggested to be the origin of such a unique behavior. Furthermore, AgI-AgBr two-phase systems display sigma approximately 10 to the 3rd times higher than predicted by the classical theories.

  13. Iodomethane-Mediated Organometal Halide Perovskite with Record Photoluminescence Lifetime.

    Science.gov (United States)

    Xu, Weidong; McLeod, John A; Yang, Yingguo; Wang, Yimeng; Wu, Zhongwei; Bai, Sai; Yuan, Zhongcheng; Song, Tao; Wang, Yusheng; Si, Junjie; Wang, Rongbin; Gao, Xingyu; Zhang, Xinping; Liu, Lijia; Sun, Baoquan

    2016-09-07

    Organometallic lead halide perovskites are excellent light harvesters for high-efficiency photovoltaic devices. However, as the key component in these devices, a perovskite thin film with good morphology and minimal trap states is still difficult to obtain. Herein we show that by incorporating a low boiling point alkyl halide such as iodomethane (CH3I) into the precursor solution, a perovskite (CH3NH3PbI3-xClx) film with improved grain size and orientation can be easily achieved. More importantly, these films exhibit a significantly reduced amount of trap states. Record photoluminescence lifetimes of more than 4 μs are achieved; these lifetimes are significantly longer than that of pristine CH3NH3PbI3-xClx films. Planar heterojunction solar cells incorporating these CH3I-mediated perovskites have demonstrated a dramatically increased power conversion efficiency compared to the ones using pristine CH3NH3PbI3-xClx. Photoluminescence, transient absorption, and microwave detected photoconductivity measurements all provide consistent evidence that CH3I addition increases the number of excitons generated and their diffusion length, both of which assist efficient carrier transport in the photovoltaic device. The simple incorporation of alkyl halide to enhance perovskite surface passivation introduces an important direction for future progress on high efficiency perovskite optoelectronic devices.

  14. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase.

    Science.gov (United States)

    Spalteholz, Holger; Panasenko, Oleg M; Arnhold, Juergen

    2006-01-15

    The formation of chloro- and bromohydrins from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine following incubation with myeloperoxidase or eosinophil peroxidase in the presence of hydrogen peroxide, chloride and/or bromide was analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. These products were only formed below a certain pH threshold value, that increased with increasing halide concentration. Thermodynamic considerations on halide and pH dependencies of reduction potentials of all redox couples showed that the formation of a given reactive halide species in halide oxidation coupled with the reduction of compound I of heme peroxidases is only possible below a certain pH threshold that depends on halide concentration. The comparison of experimentally derived and calculated data revealed that Cl(2), Br(2), or BrCl will primarily be formed by the myeloperoxidase-H(2)O(2)-halide system. However, the eosinophil peroxidase-H(2)O(2)-halide system forms directly HOCl and HOBr.

  15. Effect of the calcium halides, CaCl{sub 2} and CaBr{sub 2}, on hydrogen desorption in the Li–Mg–N–H system

    Energy Technology Data Exchange (ETDEWEB)

    Bill, Rachel F. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Reed, Daniel; Book, David [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • H{sub 2} desorption from 2LiNH{sub 2}–MgH{sub 2}–xCaX{sub 2} (x = 0, 0.1, 0.15; X = Cl, Br) samples studied. • Addition of calcium halides reduced the desorption temperature in all samples. • Peak H{sub 2} release was around 150 °C lower in ball-milled than in hand-ground samples. • The 2LiNH{sub 2}–MgH{sub 2}–0.15CaBr{sub 2} sample showed the lowest peak desorption temperature. • CaBr{sub 2} reduced the activation energy to 78.8 kJ mol{sup −1}, 24% less than the undoped sample. - Abstract: Calcium-halide-doped lithium amide–magnesium hydride samples were prepared both by hand-grinding and ball-milling 2LiNH{sub 2}–MgH{sub 2}–xCaX{sub 2} (x = 0, 0.1, and 0.15; X = Cl or Br). The addition of calcium halides reduced the hydrogen desorption temperature in all samples. The ball-milled undoped sample (2LiNH{sub 2}–MgH{sub 2}) began to desorb hydrogen at around 125 °C and peaked at 170 °C. Hydrogen desorption from the 0.15 mol CaCl{sub 2}-containing sample began ca 30 °C lower than that of the undoped sample and peaked at 150 °C. Both the onset and peak temperatures of the CaBr{sub 2} sample (x = 0.15) were reduced by 15 °C compared to the chloride. Kissinger’s method was used to calculate the effective activation energy (E{sub a}) for the systems: E{sub a} for the 0.15 mol CaCl{sub 2}-containing sample was found to be 91.8 kJ mol{sup −1} and the value for the 0.15 mol CaBr{sub 2}-containing sample was 78.8 kJ mol{sup −1}.

  16. Targeted delivery of a model immunomodulator to the lymphatic system: comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies.

    Science.gov (United States)

    Han, Sifei; Quach, Tim; Hu, Luojuan; Wahab, Anisa; Charman, William N; Stella, Valentino J; Trevaskis, Natalie L; Simpson, Jamie S; Porter, Christopher J H

    2014-03-10

    A lipophilic prodrug approach has been used to promote the delivery of a model immunomodulator, mycophenolic acid (MPA), to the lymphatic system after oral administration. Lymphatic transport was employed to facilitate enhanced drug uptake into lymphocytes, as recent studies demonstrate that targeted drug delivery to lymph resident lymphocytes may enhance immunomodulatory effects. Two classes of lymph-directing prodrugs were synthesised. Alkyl chain derivatives (octyl mycophenolate, MPA-C8E; octadecyl mycophenolate, MPA-C18E; and octadecyl mycophenolamide, MPA-C18AM), to promote passive partitioning into lipids in lymphatic transport pathways, and a triglyceride mimetic prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) to facilitate metabolic integration into triglyceride deacylation-reacylation pathways. Lymphatic transport, lymphocyte uptake and plasma pharmacokinetics were assessed in mesenteric lymph and carotid artery cannulated rats following intraduodenal infusion of lipid-based formulations containing MPA or MPA prodrugs. Patterns of prodrug hydrolysis in rat digestive fluid, and cellular re-esterification in vivo, were evaluated to examine the mechanisms responsible for lymphatic transport. Poor enzyme stability and low absorption appeared to limit lymphatic transport of the alkyl derivatives, although two of the three alkyl chain prodrugs - MPA-C18AM (6-fold) and MPA-C18E (13-fold) still increased lymphatic drug transport when compared to MPA. In contrast, 2-MPA-TG markedly increased lymphatic drug transport (80-fold) and drug concentrations in lymphocytes (103-fold), and this was achieved via biochemical incorporation into triglyceride deacylation-reacylation pathways. The prodrug was hydrolysed rapidly to 2-mycophenoloyl glycerol (2-MPA-MG) in the presence of rat digestive fluid, and 2-MPA-MG was subsequently re-esterified in the enterocyte with oleic acid (most likely originating from the co-administered formulation) prior to accessing the

  17. Nickel-catalyzed cross-electrophile coupling of 2-chloropyridines with alkyl bromides.

    Science.gov (United States)

    Everson, Daniel A; Buonomo, Joseph A; Weix, Daniel J

    2014-01-01

    The synthesis of 2-alkylated pyridines by the nickel-catalyzed cross-coupling of two different electrophiles, 2-chloropyridines with alkyl bromides, is described. Compared to our previously published conditions for aryl halides, this method uses the different, more rigid bathophenanthroline ligand and is conducted at high concentration in DMF solvent. The method displays promising functional group compatibility and the conditions are orthogonal to the Stille coupling.

  18. Spinodal Decomposition-Enabled Halide Perovskite Double Heterostructure with Reduced Fr\\"ohlich Electron-Phonon Coupling

    OpenAIRE

    Wang, Yiping; Chen, Zhizhong; Deschler, Felix; Sun, Xin; Lu, Toh-Ming; Wertz, Esther; Hu, Jia-Mian; Shi, Jian

    2016-01-01

    Epitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system. Pristine epitaxial mixed halide perovskites rods and films were synth...

  19. Visible-Light-Promoted Trifluoromethylthiolation of Styrenes by Dual Photoredox/Halide Catalysis.

    Science.gov (United States)

    Honeker, Roman; Garza-Sanchez, R Aleyda; Hopkinson, Matthew N; Glorius, Frank

    2016-03-18

    Herein, we report a new visible-light-promoted strategy to access radical trifluoromethylthiolation reactions by combining halide and photoredox catalysis. This approach allows for the synthesis of vinyl-SCF3 compounds of relevance in pharmaceutical chemistry directly from alkenes under mild conditions with irradiation from household light sources. Furthermore, alkyl-SCF3-containing cyclic ketone and oxindole derivatives can be accessed by radical-polar crossover semi-pinacol and cyclization processes. Inexpensive halide salts play a crucial role in activating the trifluoromethylthiolating reagent towards photoredox catalysis and aid the formation of the SCF3 radical.

  20. Electrophilic Metal Alkyl Chemistry in New Ligand Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Richard F. [University of Chicago

    2013-06-30

    The goals of this project were to design new electrophilic metal alkyl complexes and to exploit these systems in fundamental studies of olefin polymerization and other important and new catalytic reactions. A key target reaction is insertion copolymerization of olefins and polar CH2=CHX vinyl monomers such as vinyl halides and vinyl ethers. During the period covered by this report we (i) investigated the properties of ortho-alkoxy-arylphosphine ligands in Ni-based olefin polymerization catalysts, (ii) studied the synthesis of double-end-capped polyethylene using group 4 metal catalysts that contain tris-pyrazolylborate ligands, (iii) explored the ethylene insertion reactivity of group 4 metal tris-pyrazolyl-borate complexes, (iv) showed that (α-diimine)PdMe{sup +} species undergo multiple insertion of silyl vinyl ethers, (v) synthesized and explored the reactivity of base-free Ni benzyl complexes that contain ortho-phosphino-arene sulfonate ligands, (vi) established the mechanism of the reaction of vinyl chloride with (α-diimine)PdMe{sup +} catalysts, (vii) explored the role of cationic polymerization and insertion chemistry in the reactions of vinyl ethers with (α-diimine)PdMe{sup +} species, (viii) discovered a new class of self-assembled tetranuclear Pd catalysts that produce high molecular weight linear polyethylene and copolymerize ethylene and vinyl fluoride, and (ix) developed model systems that enabled investigation of cis-trans isomerization of {phosphine-sulfonate}Pd(II) complexes.

  1. EPR and DFT Study of the Polycyclic Aromatic Radical Cations from FriedeI-Crafts Alkylation Reactions

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; An-an Wu; Li-guo Gao; Han-qing Wang

    2009-01-01

    Electron paramagnetic resonance and electron-nuclear double resonance methods were used to study the polycyclic aromatic radical cations produced in a Friedel-Crafts alkylating sys-tem, with m-xylene, or p-xylene and alkyl chloride. The results indicate that the observed electron paramagnetic resonance spectra are due to polycyclic aromatic radicals formed from the parent hydrocarbons. It is suggested that benzyl halides produced in the Friedel-Crafts alkylation reactions undergo Scholl self-condensation to give polycyclic aromatic hydrocar-bons, which are converted into corresponding polycyclic aromatic radical cations in the presence of AlCl3. The identification of observed two radicals 2,6-dimethylanthracene and 1,4,5,8-tetramethylanthracene were supported by density functional theory calculations us-ing the B3LYP/6-31G(d,p)//B3LYP/6-31G(d) approach. The theoretical coupling constants support the experimental assignment of the observed radicals.

  2. Reduced Species(HSO-2,SO·-2)Promoted One-Pot Efficient Synthesis of Phenyl Alkyl Selenides

    Institute of Scientific and Technical Information of China (English)

    TANG,Ri-Yuan; ZHONG,Ping; LIN,Qiu-Lian

    2007-01-01

    Reduced species(HSO-2,SO·-2)promoted one-pot synthesis of phenyl alkyl selenides has been developed.This synthetic method was achieved by reactions of diphenyl diselenide with alkyl halides at room temperature.It is noteworthy that the reactions were operated under mild reaction conditions,required short time,and got good resuits.A single electron transfer reaction mechanism was proposed for the reaction.

  3. Nanoscale investigation of organic - inorganic halide perovskites

    Science.gov (United States)

    Cacovich, S.; Divitini, G.; Vrućinić, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  4. Selective and Serial Suzuki-Miyaura Reactions of Polychlorinated Aromatics with Alkyl Pinacol Boronic Esters.

    Science.gov (United States)

    Laulhé, Sébastien; Blackburn, J Miles; Roizen, Jennifer L

    2016-09-01

    Among cross-coupling reactions, the Suzuki-Miyaura transformation stands out because of its practical advantages, including the commercial availability and low toxicity of the required reagents, mild reaction conditions, and functional group compatibility. Nevertheless, few conditions can be used to cross-couple alkyl boronic acids or esters with aryl halides, especially 2-pyridyl halides. Herein, we describe two novel Suzuki-Miyaura protocols that enable selective conversion of polychlorinated aromatics, with a focus on reactions to convert 2,6-dichloropyridines to 2-chloro-6-alkylpyridines or 2-aryl-6-alkylpyridines.

  5. Thermodynamic reactivity, growth and characterization of mercurous halide crystals

    Science.gov (United States)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Singh, M.; Glicksman, M. E.; Paradies, C.

    1992-01-01

    Thermodynamic calculations were carried out for the Hg-X-O system (X = Cl, Br, I) to identify the potential sources of contamination and relative stability of oxides and oxy-halide phases. The effect of excess mercury vapor pressure on the optical quality of mercurous halide crystal was studied by growing several mercurous chloride crystals from mercury-rich composition. The optical quality of crystals was examined by birefringence interferometry and laser scattering studies. Crystals grown in slightly mercury-rich composition showed improved optical quality relative to stoichiometric crystals.

  6. Modeling and Investigation of Heavy Oxide and Alkali-Halide Scintillators for Potential Use in Neutron and Gamma Detection Systems

    Science.gov (United States)

    2015-06-01

    scintillators, MCNP, detection efficiency, neutron detection 15. NUMBER OF PAGES 71 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...have unusually high detection efficiency of fast neutrons as a result of inelastic scattering [4]. Much work has been done both at NPS and the... events . Detection systems currently being used to detect radioactive material (RM) rely on bulky assemblies consisting of components such as organic

  7. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  8. Environmental Friendly Azide-Alkyne Cycloaddition Reaction of Azides, Alkynes, and Organic Halides or Epoxides in Water: Efficient "Click" Synthesis of 1,2,3-Triazole Derivatives by Cu Catalyst

    Institute of Scientific and Technical Information of China (English)

    刘建明; 刘慕文; 岳园园; 姚美焕; 卓克垒

    2012-01-01

    An efficient click synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, epoxides, terminal alkynes, and sodium azides in the presence of copper salts and relative benzimidazole salts have been developed. This procedure eliminates the need to handle potentially organic azides, which are generated in situ. A broad spec- trum of substrates can participate in the process effectively to produce the desired products in good yields.

  9. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    KAUST Repository

    Ocakoǧlu, Kasim

    2014-01-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C 18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. © 2014 the Partner Organisations.

  10. Intriguing Optoelectronic Properties of Metal Halide Perovskites.

    Science.gov (United States)

    Manser, Joseph S; Christians, Jeffrey A; Kamat, Prashant V

    2016-11-09

    A new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewed with an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH3NH3PbI3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2-dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.

  11. Halogen versus halide electronic structure

    Institute of Scientific and Technical Information of China (English)

    Willem-Jan; van; Zeist; F.Matthias; Bickelhaupt

    2010-01-01

    Halide anions X-are known to show a decreasing proton affinity(PA),as X descends in the periodic table along series F,Cl,Br and I.But it is also well-known that,along this series,the halogen atom X becomes less electronegative(or more electropositive).This corresponds to an increasing energy of the valence np atomic orbital(AO) which,somewhat contradictorily,suggests that the electron donor capability and thus the PA of the halides should increase along the series F,Cl,Br,I.To reconcile these contradictory observations,we have carried out a detailed theoretical analysis of the electronic structure and bonding capability of the halide anions X-as well as the halogen radicals X-,using the molecular orbital(MO) models contained in Kohn-Sham density functional theory(DFT,at SAOP/TZ2P as well as OLYP/TZ2P levels) and ab initio theory(at the HF/TZ2P level).We also resolve an apparent intrinsic contradiction in Hartree-Fock theory between orbital-energy and PA trends.The results of our analyses are of direct relevance for understanding elementary organic reactions such as nucleophilic substitution(SN2) and base-induced elimination(E2) reactions.

  12. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  13. Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals

    NARCIS (Netherlands)

    Khoram, P.; Brittman, S.; Dzik, W.I.; Reek, J.N.H.; Garneett, E.C.

    2016-01-01

    Recently, halide perovskites have attracted considerable attention for optoelectronic applications, but further progress in this field requires a thorough understanding of the fundamental properties of these materials. Studying perovskites in their single-crystalline form provides a model system for

  14. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  15. Effect of the salting-out agent anion nature on the phase separation of a potassium salt-potassium bis(alkyl polyoxyethylene)phosphate-water systems

    Science.gov (United States)

    Elokhov, A. M.; Lesnov, A. E.; Kudryashova, O. S.

    2016-10-01

    The effect the salting-out agent anion nature has on the temperature and concentration intervals of the existence of the separation area is established by analyzing the phase diagrams of pseudoternary KCl (KBr, KI, KNO3, K2SO4, K4P2O7)-potassium bis(alkyl polyoxyethylene)phosphate (oxyphos B)-water systems. It is concluded that the anionic salting-out capability is reduced in the order P2O 7 4- > SO 4 2- > Cl- > Br‒> NO 7 4- > SO 3 - > I-. The thermodynamic parameters of phase separation used to interpret the results are calculated. The observed pattern of a change in the salting-out ability of the investigated salts relative to aqueous solutions of the surfactants is in good agreement with the lyotropic (Hofmeister) series.

  16. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    Science.gov (United States)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The

  17. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Directory of Open Access Journals (Sweden)

    Aiichiro Nagaki

    2011-08-01

    Full Text Available The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  18. N-pyridinyl-indole-3-(alkyl)carboxamides and derivatives as potential systemic and topical inflammation inhibitors.

    Science.gov (United States)

    Duflos, M; Nourrisson, M R; Brelet, J; Courant, J; LeBaut, G; Grimaud, N; Petit, J Y

    2001-06-01

    N-substituted-(indol-3-yl)carboxamides 10-15 and alkanamides 16-18 were prepared starting from the corresponding acids and submitted to screening for evaluation of their anti-inflammatory activity. None of the considered carboxamides exhibited significant inhibitory effect in the carrageenin-induced rat paw oedema after oral administration of 0.1 mM x kg(-1); nevertheless introduction of an alkyl chain, leading to alkanamides 16-18, induced moderate to high activity: 46-95% inhibition. The efficacy of these compounds in the inhibition of topical inflammation was confirmed by measuring reduction of ear thickness in the acute tetradecanoyl phorbol acetate (TPA)-induced mouse ear swelling assay. Preliminary pharmacomodulation brought to the fore that toxic effects induced, at 0.4 mM x kg(-1), by N-(pyridin-4-yl)(indol-3-yl)propanamide (17) could be attenuated or suppressed by 5-fluorination or introduction of a methoxycarbonylborane moiety, leading to 18 and 21.

  19. Tellurium halide IR fibers for remote spectroscopy

    Science.gov (United States)

    Zhang, Xhang H.; Ma, Hong Li; Blanchetiere, Chantal; Le Foulgoc, Karine; Lucas, Jacques; Heuze, Jean; Colardelle, P.; Froissard, P.; Picque, D.; Corrieu, G.

    1994-07-01

    The new family of IR transmitting glasses, the TeX glasses, based on the association of tellurium and halide (Cl, Br, or I) are characterized by a wide optical window extending from 2 to 18 micrometers and a strong stability towards devitrification. Optical fibers drawn from these glasses exhibit low losses in the 7 - 10 micrometers range (less than 1 dB/m for single index fibers, 1 - 2 dB/m for fibers having a core-clad structure). The TeX glass fibers have been used in a remote analysis set-up which is mainly composed of a FTIR spectrometer coupled with a HgCdTe detector. This prototype system permits qualitative and quantitative analysis in a wide wavelength region lying from 3 to 13 micrometers , covering the fundamental absorption of more organic species. The evolution of a lactic and an alcoholic fermentation has been monitored by means of this set-up.

  20. "Textbook" adsorption at "nontextbook" adsorption sites: Halogen atoms on alkali halide surfaces

    OpenAIRE

    Li, B.; Michaelides, A.; Scheffler, M.

    2006-01-01

    Density-functional theory (DFT) and second order Møller-Plesset perturbation theory calculations indicate that halogen atoms bond preferentially to halide substrate atoms on a series of alkali halide surfaces, rather than to the alkali atoms as might be anticipated. An analysis of the electronic structures in each system reveals that this novel adsorption mode is stabilized by the formation of textbook two-center three-electron covalent bonds. The implications of these findings to, for exampl...

  1. Solvent systems with n-hexane and/or cyclohexane in countercurrent chromatography--Physico-chemical parameters and their impact on the separation of alkyl hydroxybenzoates.

    Science.gov (United States)

    Englert, Michael; Vetter, Walter

    2014-05-16

    Countercurrent chromatography (CCC) is an efficient preparative separation technique based on the liquid-liquid distribution of compounds between two phases of a biphasic liquid system. The crucial parameter for the successful application is the selection of the solvent system. Especially for nonpolar analytes the selection options are limited. On the search for a suitable solvent system for the separation of an alkyl hydroxybenzoate homologous series, we noted that the substitution of cyclohexane with n-hexane was accompanied with unexpected differences in partitioning coefficients of the individual analytes. In this study, we investigated the influence of the subsequent substitution of n-hexane with cyclohexane in the n-hexane/cyclohexane/tert-butylmethylether/methanol/water solvent system family. Exact phase compositions and polarity, viscosity and density differences were determined to characterize the different mixtures containing n-hexane and/or cyclohexane. Findings were confirmed by performing CCC separations with different mixtures, which led to baseline resolution for positional isomers when increasing the amount of cyclohexane while the resolution between two pairs of structural isomers decreased. With the new methodology described, structurally similar compounds could be resolved by choosing a certain ratio of n-hexane to cyclohexane.

  2. Method of making alkyl esters

    Science.gov (United States)

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  3. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    Science.gov (United States)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  4. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    Science.gov (United States)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  5. Enthalpic Interaction for α-Amino Acid with Alkali Metal Halides in Water

    Institute of Scientific and Technical Information of China (English)

    LU,Yan(卢雁)

    2004-01-01

    The studies of the enthalpic interaction parameters, hxy, hxyy and hxxv, of alkali metal halides with glycine,α-alanine and α-aminobutyric acid were published. Synthetic considering of the results of the studies, some interesting behaviors of the interaction between alkali metal halides and the α-amino acids have been found. The values of hxy will increase with the increase of the number of carbon atoms in alkyl side chain of amino acid molecules and decrease with the increase of the radius of the ions. The increasing of the salt's effect on the hydrophobic hydration structure as the radii of anion is more obvious than as that of cation. The value of hxxy will regularly decrease with the increase of the number of carbon atoms in the alkyl chain of amino acids and linear increase with the increase of the radius. But the relation of hxxy with the radius of cations is not evident. The value of hxyy will increase with the increase of the radii of the ions. As the increase of the number of carbon atoms of amino acids, hxyy is decreas for the ions which have lager size and there is a maximum value at α-alanine for the ions which have small size. The behaviors of the interaction mentioned above were further discussed in view of electrostatic and structural interactions.

  6. Enzymatic Synthesis of Palm Alkyl Ester Using Dialkyl Carbonate as an Alkyl Donors

    Directory of Open Access Journals (Sweden)

    Roila Awang

    2010-01-01

    Full Text Available Problem statement: Though efficient in terms of reaction yield and time, the chemical approach to synthesizing alkyl ester has drawback such as difficulties in the recovery of glycerol and the need for removal of salt residue. On the other hand, biocatalyst allow for synthesis of specific alkyl esters and easy recovery of glycerol. However, the solvent-free alcoholysis, does not give high conversion. The same problem was also found when ethyl or methyl acetate was used as acyl acceptors. Approach: Lipase catalyzed transesterification of oil and dialkyl carbonate was predicted to give higher conversion in solvent free reaction system. Results: Alkyl esters were synthesized enzymatically to overcome the problems associated with chemical processes. In this study, dialkyl carbonates were used as an alkyl donor for the production of alkyl ester. Nine commercial lipases were tested for their suitability for the reaction system. Among the lipase tested, Novozym 435 was chosen for optimization study because of their higher activity. In a solvent-free reaction system, the ester formation using dialkyl carbonate was 6 times higher than using ethanol and methanol. The effect of various reaction parameters such as temperature, amount of enzyme, organic solvent and structure of substrates were studied to determine optimal condition. The optimal conditions of ester formation were reaction temperature at 60°C, reaction time at 8 h, enzyme amount of 10% (w/w of oil and 0.2% wt added water. Conclusion: Solvent-free lipase catalyzed transesterification of palm kernel oil and dialkyl carbonates gave higher conversion of ester compared to the reaction using short chain alcohol as an alkyl donors.

  7. Cs2CO3/[bmim]Br as an Efficient, Green, and Reusable Catalytic System for the Synthesis of N-Alkyl Derivatives of Phthalimide under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Alireza Hasaninejad

    2008-01-01

    Full Text Available Aza-conjugate addition of phthalimide to α,β-unsaturated esters efficiently achieves in the presence of catalytic amount of Cs2CO3 and ionic liquid 1-butyl-3-methylimidazolium bromide ([bmim]Br under mild reaction conditions (70°C to afford N-alkyl phthalimides in high yields and relatively short reaction times.

  8. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    A new model is proposed for correlation and prediction of thermodynamic properties of electrolyte solutions. In the proposed model, terms of a second virial coefficient-type and of a KT-UNIFAC model are used to account for a contribution of binary interactions between ion and ion, and water and ion...... on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  9. Alkyl chains acting as entropy reservoir in liquid crystalline materials.

    Science.gov (United States)

    Sorai, Michio; Saito, Kazuya

    2003-01-01

    The roles played by the conformational disordering of alkyl chains in determining the aggregation states of matter are reviewed for liquid crystalline materials from a thermodynamic perspective. Entropy, which is one of the most macroscopic concepts but which has a clear microscopic meaning, provides crucial microscopic information for complex systems for which a microscopic description is hard to establish. Starting from structural implication by absolute (third-law) entropy for crystalline solids, the existence of successive phase transitions caused by the successive conformational melting of alkyl chains in discotic mesogens is explained. An experimental basis is given for the "quasi-binary picture" of thermotropic liquid crystals, i.e., the highly disordered alkyl chains behave like a second component (solvent). A novel entropy transfer between the "components" of a molecule and the resulting "alkyl chains as entropy reservoir" mechanism are explained for cubic mesogens.

  10. Atomic Resolution Imaging of Halide Perovskites.

    Science.gov (United States)

    Yu, Yi; Zhang, Dandan; Kisielowski, Christian; Dou, Letian; Kornienko, Nikolay; Bekenstein, Yehonadav; Wong, Andrew B; Alivisatos, A Paul; Yang, Peidong

    2016-12-14

    The radiation-sensitive nature of halide perovskites has hindered structural studies at the atomic scale. We overcome this obstacle by applying low dose-rate in-line holography, which combines aberration-corrected high-resolution transmission electron microscopy with exit-wave reconstruction. This technique successfully yields the genuine atomic structure of ultrathin two-dimensional CsPbBr3 halide perovskites, and a quantitative structure determination was achieved atom column by atom column using the phase information of the reconstructed exit-wave function without causing electron beam-induced sample alterations. An extraordinarily high image quality enables an unambiguous structural analysis of coexisting high-temperature and low-temperature phases of CsPbBr3 in single particles. On a broader level, our approach offers unprecedented opportunities to better understand halide perovskites at the atomic level as well as other radiation-sensitive materials.

  11. Harmonic dynamical behaviour of thallous halides

    Indian Academy of Sciences (India)

    Sarvesh K Tiwari; L J Shukla; K S Upadhyaya

    2010-05-01

    Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of rigid shell model (RSM). Phonon dispersion curves (PDC), variations of Debye temperature with absolute temperature and phonon density of state (PDS) curves have been reported for thallous halides using VTSM. Comparison of experimental values with those of VTSM and TSM are also reported in the paper and a good agreement between experimental and VTSM values has been found, from which it may be inferred that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of thallous halides.

  12. Recent advances in technetium halide chemistry.

    Science.gov (United States)

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  13. A Strained Disilane-Promoted Carboxylation of Organic Halides with CO2 under Transition-Metal-Free Conditions.

    Science.gov (United States)

    Mita, Tsuyoshi; Suga, Kenta; Sato, Kaori; Sato, Yoshihiro

    2015-11-01

    By using a strained four-membered ring disilane (3,4-benzo-1,1,2,2-tetraethyldisilacyclobutene) and CsF, a wide range of aryl, alkenyl, alkynyl, benzyl, allyl, and alkyl halides was successfully carboxylated under an ambient CO2 atmosphere (CO2 balloon) at room temperature within 2 h. In this carboxylation, a highly reactive silyl anion, which is generated from the disilane and CsF, is a key to facilitating the formation of a carbanion equivalent. The resulting anionic species can be trapped with CO2 to produce carboxylic acids with high efficiency.

  14. Synthetic N-Alkyl/aralkyl-4-methyl-N-(naphthalen-1-ylbenzenesulfonamides as Potent Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    *M. A. Abbasi

    2015-03-01

    Full Text Available The current research effort involved the reaction of napthalen-1-amine (1 with 4-methylbenzenesulfonyl chloride (2 under dynamic pH control at 9-10, maintained with 10% aqueous Na2CO3 to obtain 4-methyl-N-(naphthalen-1-yl benzenesulfonamide (3. The parent molecule 3 was further substituted at N-atom with alkyl/aralkyl halides (4a-f in polar aprotic solvent; N,N-dimethylformamide, and lithium hydride which acts as a base, to achieve N-alkyl/aralkyl-4-methyl-N-(naphthalen-1-ylbenzenesulfonamides (5a-f. All the synthesized compounds were structurally elucidated by IR, 1H-NMR and EIMS spectral techniques. All the derivatives were further screened for antibacterial and anti-enzymatic potential against various bacterial strains and enzymes, respectively, and were found to be potent antibacterial agents and moderate to weak enzyme inhibitors.

  15. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.

    2014-01-01

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat...... to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer...... electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage...

  16. Silicon-Carbon Bond Formation via Nickel-Catalyzed Cross-Coupling of Silicon Nucleophiles with Unactivated Secondary and Tertiary Alkyl Electrophiles

    OpenAIRE

    Chu, Crystal K.; Liang, Yufan; Fu, Gregory C.

    2016-01-01

    A wide array of cross-coupling methods for the formation of C–C bonds from unactivated alkyl electrophiles have been described in recent years. In contrast, progress in the development of methods for the construction of C–heteroatom bonds has lagged; for example, there have been no reports of metal-catalyzed cross-couplings of unactivated secondary or tertiary alkyl halides with silicon nucleophiles to form C–Si bonds. In this study, we address this challenge, establishing that a simple, comm...

  17. Studies on the anticonvulsant activity of 4-alkyl-1,2,4-triazole-3-thiones and their effect on GABAergic system.

    Science.gov (United States)

    Plech, Tomasz; Kaproń, Barbara; Luszczki, Jarogniew J; Paneth, Agata; Siwek, Agata; Kołaczkowski, Marcin; Żołnierek, Maria; Nowak, Gabriel

    2014-10-30

    A series of 4-alkyl-5-(3-chlorobenzyl/2,3-dichlorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones (1a-14a) were designed, synthesized and screened for their anticonvulsant properties. Moreover, the acute adverse-effect profile of the active compounds (1a-7a, 12a) with respect to impairment of motor performance was evaluated in the chimney test. Among 4-alkyl-5-(3-chlorobenzyl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones, ethyl, butyl, pentyl, hexyl, and heptyl derivatives administered intraperitoneally in a dose of 300 mg/kg protected 100% of the tested animals at four pretreatment times (i.e., 15, 30, 60, 120 min). Taking into account the median effective and toxic doses as well as the time-course profile of anticonvulsant activity, 5-(3-chlorobenzyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (4a) was proposed as the best tolerated and the most promising potential drug candidate. Finally, a radioligand binding assay was used to check whether the anticonvulsant activity of 4-alkyl-1,2,4-triazole-3-thiones was a result of their interactions (direct or allosteric) with GABAA receptor complex and/or their affinity to benzodiazepine (BDZ) binding sites.

  18. "Textbook" adsorption at "nontextbook" adsorption sites: halogen atoms on alkali halide surfaces.

    Science.gov (United States)

    Li, Bo; Michaelides, Angelos; Scheffler, Matthias

    2006-07-28

    Density-functional theory and second order Møller-Plesset perturbation theory calculations indicate that halogen atoms bond preferentially to halide substrate atoms on a series of alkali halide surfaces, rather than to the alkali atoms as might be anticipated. An analysis of the electronic structures in each system reveals that this novel adsorption mode is stabilized by the formation of textbook two-center three-electron covalent bonds. The implications of these findings to, for example, nanostructure crystal growth, are briefly discussed.

  19. 1, 3-Dipolar Cycloaddition Reaction between Vinyl Acetate and N-Alkyl Hydroxypyridinium Halide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    1, 3 Dipolar cycloaddition reaction between vinyl acetate and 3-hydroxypyridiniun betaine was performed under solid-liquid phase transfer catalytic condition. This reaction has been successfully used on the synthesis of an analogue of Bao-Gong-Teng A.

  20. Olefin metathesis and side reactions with the binary systems of WCl/sub 6/ and metal alkyls. [Bu/sub 4/Sn, Et/sub 2/Zn, Et/sub 3/Al, BuLi co-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, K.; Watanabe, O.; Takagi, T.; Fukuzumi, K.

    1976-09-01

    The comparison of the behaviors of the WCl/sub 6/-metal alkyl systems (metal alkyls are Bu/sub 4/Sn, Et/sub 2/Zn, Et/sub 3/Al, and BuLi) was carried out in the metathesis of 2-heptene in benzene. The WCl/sub 6/--Et/sub 2/Zn and the WCl/sub 6/--BuLi systems showed the sharp dependence of metathesis on the co-catalyst/WCl/sub 6/ ratio. The yield of the Friedel--Crafts products, heptylbenzenes, increased with a decrease in the co-catalyst/WCl/sub 6/ and the olefin/WCl/sub 6/ ratios, though the WCl/sub 6/--BuLi system barely catalyzed this side reaction. A proper amount of dicyclopentadiene, phenylacetylene, ethyl ether, ethanol, and esters repressed the Friedel--Crafts reaction, and the metathesis products were obtained in high yield and high selectivity in the metathesis of 2-heptene catalyzed by the WCl/sub 6/--Bu/sub 4/Sn system.

  1. Sodium-metal halide and sodium-air batteries.

    Science.gov (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems.

  2. 40 CFR 721.9892 - Alkylated urea.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  3. MICROWAVE IRRADIATED ALKYLATION OF DIETHYL ACETAMIDOMALONATE

    Institute of Scientific and Technical Information of China (English)

    张雅文; 沈宗旋; 陆军

    1995-01-01

    Ethyl acetamidomalonate was alkylated using three alkylating agents, both by microtwave irradiation of a mixture of the malonate,the alkylating agent, potassium carbonate,TEBA,and DMF for 0.5 to 1.5 min and by heating a solution of the malonate, sodium ethoxide, and the alkylatlng agent in ethanol for several hours. The two metlmds gave comparable results.

  4. Lanthanide-halide based humidity indicators

    Science.gov (United States)

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  5. Infrared spectra of FHF - in alkali halides

    Science.gov (United States)

    Chunnilall, C. J.; Sherman, W. F.

    1982-03-01

    The bifluoride ion, FHF -, has been substitutionally isolated within single crystal samples of several different alkali halides. Infrared spectra of these crystals have been studied for sample temperatures down to 8K when half-bandwidths of less than 1 cm -1 have been observed. (Note that at room temperature ν 3 is observed to have a half-bandwidth of about 40 cm -1). The frequency shifts and half-bandwidth changes caused by cooling are considered together with the frequency shifts caused by pressures up to 10 k bar. The low temperature spectra clearly indicate that FHF - is a linear symmetrical ion when substitutionally isolated within alkali halides of either the NaCl or CsCl structure.

  6. Anharmonic properties of potassium halide crystals

    OpenAIRE

    RAJU, Krishna Murti

    2011-01-01

    An effort has been made to obtain the anharmonic properties of potassium halides starting from primary physical parameters viz. nearest neighbor distance and hardness parameters assuming long- and short- range potentials at elevated temperatures. The elastic energy density for a deformed crystal can be expanded as power series of strains for obtaining coefficients of quadratic, cubic and quartic terms which are known as the second, third and fourth order elastic constants respectively...

  7. A Study on Alkyl Polyglycosides of the Starch

    Institute of Scientific and Technical Information of China (English)

    Wang Qing-ning; Li Chun-lei; Feng Hui-xia; Kang Wen-shu

    2004-01-01

    The alkyl polyglycosides (APG) is new type the surfactants that is made by regenerationresource of the starch and the grease, since the nineties of 20th century it is energetically exploited ininternational extent. APG not only good in surface activity, but also plenty on bubble, thin greasyand stabilization, there are good decontamination, compatibility, innocuity, not incitation and uniquefunction that organism decomposition of swiftness and downrightness, and so on.APG is to get production that loses one molecule water with half condensation aldehyde hydroxyand sebum alcohol hydroxy under acid catalysis. The production not is one simplicity compound, butis one of sugar polymerization degree, so it is mixture of the alkyl single glucoside, the alkyl twoglucoside and the alkyl three glucoside.Author synthesizes the surfactants of the alkyl polyglycosides, with the oleaster and potato starchand sebum alcohol, that was chosen to use duality system activator of plant acid and p-toluene-sulfoacid for the first time. The adoption way is that the lower alkyl polyglycosides is firstly formed byreaction of lower alcohol with starch then exchanged with high alcohol to obtain APG. The study isto make certain most technics condition, determining capillary tension and the pastern sheafdeepness of critical, calculating HLB value, determining construction by 1R.To synthesize principium:Peroration :[1]Duality system activator of plant acid and p-toluene-sulfo acid is compare idea activator that was the lower alkyl polyglycosides is firstly formed by reaction of lower alcohol with glucose then exchanged with high alcohol to obtain high alkyl polyglycosides. The advantage is that it overcomes agglomeration, there is reaction entirety, high of sugar transform ratio, reaction time short.[2]Most good reaction temperature is 90~ 170℃, the dosage of activator is 0.5%~0.9%, the mated ratio: The APG of glucose basic butane ratio starch is 5:1, the APG of potato starch basic glycol

  8. The Retention Behaviors of Benzene and Its Alkyl Homologues in Microemulsion Electrokinetic Chromatography

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The retention behaviors of benzene and its alkyl homologues in microemulsion electrokinetic chromatography were investigated in both anionic and cationic surfactant MEEKC systems. The effects of the composition of microemulsion on retention time and selectivity were studied. A good linear relationship was obtained between log k' and the carbon number of alkyl chain.

  9. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  10. Making and Breaking of Lead Halide Perovskites.

    Science.gov (United States)

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  11. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  12. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    Energy Technology Data Exchange (ETDEWEB)

    Costarrosa, L. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Calvino-Casilda, V. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Ferrera-Escudero, S. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Duran-Valle, C.J. [Dpto. de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz (Spain); Martin-Aranda, R.M. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain)]. E-mail: rmartin@ccia.uned.es

    2006-06-30

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N{sub 2} adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  13. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    Science.gov (United States)

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; de Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-08-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ~10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440-700 nm) with low pump thresholds down to 5+/-1 μJ cm-2 and high values of modal net gain of at least 450+/-30 cm-1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals.

  14. Methods of making alkyl esters

    Science.gov (United States)

    Elliott, Brian

    2010-08-03

    A method comprising contacting an alcohol, a feed comprising one or more glycerides and equal to or greater than 2 wt % of one or more free fatty acids, and a solid acid catalyst, a nanostructured polymer catalyst, or a sulfated zirconia catalyst in one or more reactors, and recovering from the one or more reactors an effluent comprising equal to or greater than about 75 wt % alkyl ester and equal to or less than about 5 wt % glyceride.

  15. Partitioning behavior of an acid-cleavable, 1,3-dioxolane alkyl ethoxylate, surfactant in single and binary surfactant mixtures for 2- and 3-phase microemulsion systems according to ethoxylate head group size

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Del Rio, Javier A [ORNL; Hayes, Douglas G [ORNL; Urban, Volker S [ORNL

    2010-01-01

    Partition coefficients for a pH-degradable 1,3-dioxolane alkyl ethoxylate surfactant, 4-CH{sub 3}O (CH{sub 2}CH{sub 2}O){sub 5.6}-CH{sub 2}, 2,2-(CH{sub 2}){sub 12}CH{sub 3}, 2-(CH{sub 2}) CH{sub 3}, 1,3-dioxolane or ''cyclic ketal'' surfactant, CK-2,13-E{sub 5.6,ave}, between isooctane- and water-rich phases of 2- and 3-phase microemulsion systems (K{sub n}) were determined as functions of the ethoxylate size, n, and temperature for the neat surfactant and its binary surfactant mixtures, to understand the partitioning of alkyl ethoxylates possessing a broad distribution of ethoxylate size and to determine conditions required for formation of 3-phase microemulsion systems at an optimal temperature where phase separation occurs rapidly, important for protein purification via proteins selective partitioning to the middle phase, driven by affinity to the second surfactant of the binary mixture. A semi-empirical thermodynamic mathematical model described the partitioning data well, provided optimal temperature values consistent with phase diagrams and theory, and demonstrated that the tail region of CK-2,13-E{sub 5.6,ave} is more polar than the hydrophobes of fatty alcohol ethoxylates. The addition of Aerosol-OT (AOT) removed the temperature sensitivity of CK-2,13-E{sub 5.6,ave}s partitioning, producing 3-phase microemulsion systems between 20 C and 40 C. Analysis of the bottom phases of the 2- and 3-phase microemulsion systems formed by CK-2,13-E{sub 5.6,ave} via small-angle neutron scattering demonstrated the presence of spherical, monodisperse oil-in-water microemulsions.

  16. Synergistic Effects of Petroleum Carboxylate/Alkyl Benzene Sulfonate Compound System and Its Structural Cause%石油羧酸盐与烷基苯磺酸盐的复配效果及其结构成因

    Institute of Scientific and Technical Information of China (English)

    黄宏度; 陈思雅; 秦少华; 吴一慧; 郑为; 陈亮; 陈友猛; 张群

    2016-01-01

    In order to reveal the performance of petroleum carboxylate and alkyl benzene sulfonate compound system,the effect of mixed micelle (supramolecular structure) formed from petroleum carboxylate and alkyl benzene sulfonate on the interfacial activity of compound system was investigated.The research results showed that the difference of hydrophilic lipophilic balance (HLB) value made petroleum carboxylate and alkyl benzene sulfonate having different insertion depth of molecules at oil-water interface.The distance of polar groups became far and polar group' s repulsion reduced.As a result,their mixed micelles arranged more closely,the interracial adsorption increased and the interfacial activity was better than that of a single surfactant.The structural characteristics of compound system made it having the advantages of interfacial activity.Compound system had ultra-low interfacial tension in a wide range of surfactant concentration and salinity.It had an excellent interfacial activity in weak base case (0.6%-1.2% Na2CO3),which avoided formation damage from strong base (NaOH).It took less surfactant to achieve ultra-low interfacial tension and could reduce the cost of surfactants for chemical flooding.After contacting with oil droplet,it could quickly achieve ultra-low interfacial tension,which was beneficial to the oil displacement process.The interfacial activity of compound system was good in strong base,weak base and none-alkali system.The molecular structure of alkyl benzene sulfonate which had a good synergistic effect with petroleum carboxylate should be linear so that they could form closed mixed micelle with a better interfacial activity.%为揭示石油羧酸盐与烷基苯磺酸盐复配体系的性能特征,考察了石油羧酸盐和烷基苯磺酸盐形成的混合胶束(超分子结构)对复配体系界面活性的影响.结果表明,亲水亲油平衡值(HLB值)的差别使石油羧酸盐分子和烷基苯磺酸盐分子在油水界面上插入

  17. Microwave-assisted synthesis of N-alkylated benzotriazole derivatives: antimicrobial studies.

    Science.gov (United States)

    Nanjunda Swamy, S; Basappa; Sarala, G; Priya, B S; Gaonkar, S L; Shashidhara Prasad, J; Rangappa, K S

    2006-02-15

    Synthesis and characterization of N-alkylated benzotriazole derivatives 2(a-g) bearing pharmaceutically important bioactive substituents and their antimicrobial studies in vitro are described. The syntheses of the compounds were achieved by N-alkylation of the benzotriazole with different bioactive alkyl halides in presence of powdered K2CO3 in DMF solution and by microwave irradiation method with good yield compared to conventional method. The crystal structure analysis shows that compound 4'-benzotriazol-1-yl-methyl-biphenyl-2-carbonitrile 2a crystallizes in the space group P1 with cell parameters a = 8.526 (3) A, b = 12.706 (3) A, c = 7.966 (2) A, alpha = 100.89 (2) degrees , beta = 101.63 (3) degrees , gamma = 102.20(2) degrees, Volume = 801.7(4) A degrees , Z = 2 and the final R factor is 0.0559 for 6130 reflections with 218 parameters and zero restraint. This structure exhibits intermolecular hydrogen bonding. Compounds 2e, 2a showed significant antimicrobial activity.

  18. A review of new developments in the Friedel–Crafts alkylation – From green chemistry to asymmetric catalysis

    Science.gov (United States)

    2010-01-01

    Summary The development of efficient Friedel–Crafts alkylations of arenes and heteroarenes using only catalytic amounts of a Lewis acid has gained much attention over the last decade. The new catalytic approaches described in this review are favoured over classical Friedel–Crafts conditions as benzyl-, propargyl- and allyl alcohols, or styrenes, can be used instead of toxic benzyl halides. Additionally, only low catalyst loadings are needed to provide a wide range of products. Following a short introduction about the origin and classical definition of the Friedel–Crafts reaction, the review will describe the different environmentally benign substrates which can be applied today as an approach towards greener processes. Additionally, the first diastereoselective and enantioselective Friedel–Crafts-type alkylations will be highlighted. PMID:20485588

  19. A review of new developments in the Friedel–Crafts alkylation – From green chemistry to asymmetric catalysis

    Directory of Open Access Journals (Sweden)

    Magnus Rueping

    2010-01-01

    Full Text Available The development of efficient Friedel–Crafts alkylations of arenes and heteroarenes using only catalytic amounts of a Lewis acid has gained much attention over the last decade. The new catalytic approaches described in this review are favoured over classical Friedel–Crafts conditions as benzyl-, propargyl- and allyl alcohols, or styrenes, can be used instead of toxic benzyl halides. Additionally, only low catalyst loadings are needed to provide a wide range of products. Following a short introduction about the origin and classical definition of the Friedel–Crafts reaction, the review will describe the different environmentally benign substrates which can be applied today as an approach towards greener processes. Additionally, the first diastereoselective and enantioselective Friedel–Crafts-type alkylations will be highlighted.

  20. How specific halide adsorption varies hydrophobic interactions.

    Science.gov (United States)

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  1. Research Update: Luminescence in lead halide perovskites

    Science.gov (United States)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-09-01

    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  2. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada

    2016-09-01

    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  3. Alkylation damage in DNA and RNA--repair mechanisms and medical significance

    DEFF Research Database (Denmark)

    Drabløs, Finn; Feyzi, Emadoldin; Aas, Per Arne

    2004-01-01

    Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions...... are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase......, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents...

  4. Recent progress and challenges of organometal halide perovskite solar cells

    Science.gov (United States)

    Yang, Liyan; Barrows, Alexander T.; Lidzey, David G.; Wang, Tao

    2016-02-01

    We review recent progress in the development of organometal halide perovskite solar cells. We discuss different compounds used to construct perovskite photoactive layers, as well as the optoelectronic properties of this system. The factors that affect the morphology of the perovskite active layer are explored, e.g. material composition, film deposition methods, casting solvent and various post-treatments. Different strategies are reviewed that have recently emerged to prepare high performing perovskite films, creating polycrystalline films having either large or small grain size. Devices that are constructed using meso-superstructured and planar architectures are summarized and the impact of the fabrication process on operational efficiency is discussed. Finally, important research challenges (hysteresis, thermal and moisture instability, mechanical flexibility, as well as the development of lead-free materials) in the development of perovskite solar cells are outlined and their potential solutions are discussed.

  5. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  6. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Science.gov (United States)

    2010-07-01

    ... alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... esters (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  7. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  8. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  9. Halide test agent replacement study

    Energy Technology Data Exchange (ETDEWEB)

    Banks, E.M.; Freeman, W.P.; Kovach, B.J. [and others

    1995-02-01

    The intended phaseout of the chlorofluorocarbons (CFCs) from commercial use required the evaluation of substitute materials for the testing for leak paths through both individual adsorbers and installed adsorbent banks. The American Society of Mechanical Engineers (ASME) Committee on Nuclear Air and Gas Treatment (CONAGT) is in charge of maintaining the standards and codes specifying adsorbent leak test methods for the nuclear safety related air cleaning systems. The currently published standards and codes cite the use of R-11, R-12 and R-112 for leak path test agents. All of these compounds are CFCs. There are other agencies and organizations (USDOE, USDOD and USNRC) also specifying testing for leak paths or in some cases for special life tests using the above compounds. The CONAGT has recently developed criteria for the suitability evaluation of substitute test agents. On the basis of these criteria, several compounds were evaluated for their acceptability as adsorbent bed leak and life test agents. The ASME CONAGT Test Agent Qualification Criteria. The test agent qualification is based on the following parameters: (1) Similar retention times on activated carbons at the same concentration levels as one of the following: R-11, R-12, R-112 or R-112a. (2) Similar lower detection limit sensitivity and precision in the concentration range of use as R-11, R-12, R-112 and R-112a. (3) Gives the same in-place leak test results as R-11, R-12, R-112, or R-112a. (4) Chemical and radiological stability under the use conditions. (5) Causes no degradation of the carbon and its impregnant or of the other NATS components under the use conditions. (6) Is listed in the USEPA Toxic Substances Control Act (TSCA) inventory for commercial use.

  10. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  11. Process for the preparation of alkyl glycosides

    NARCIS (Netherlands)

    De Goede, A.T.J.; Van der Leij, I.G.; Van der Heijden, A.M.; Van Rantwijk, F.; Van Bekkum, H.

    1996-01-01

    Abstract of WO 9636640 (A2) The present invention relates to a process for the preparation of alkyl glycosides by reacting an alcohol with a saccharide or a lower-alkyl glycoside in the presence of a catalyst, wherein the catalyst is a mesoporous silica-based molecular sieve material. This proce

  12. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations.

    Science.gov (United States)

    Sum, Tze Chien; Mathews, Nripan; Xing, Guichuan; Lim, Swee Sien; Chong, Wee Kiang; Giovanni, David; Dewi, Herlina Arianita

    2016-02-16

    Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation

  13. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  14. Temperature Sensitive Optical Phenomena in Heavy Metal Halide Films.

    Science.gov (United States)

    1979-01-08

    Heavy - metal halides such as Pb!2 and HgI2 exhibit a strongly tempera- ture dependent absorption edge at visible frequencies. The shift in the absorption...AOb9 537 ROCKWELL INTERNATIONAL ANAHEIM CA ELECTRONICS RESEAR—— ETC FIG L u G TEMPERATURE SENSITIVE OPTICAL PHENOMENA IN HEAVY METAL HALIDE F—— ETC (U...PHENOMENA IN HEAVY METAL HALIDE F — ET C( U) ,JAN 79 J D MC*LLEN, D M HEINZ. F S STEARNS DAAK7O— 77—C—01 6 5 UNCLASSIFIED C79 1501 _ _ U SB

  15. Three-Component Halo Aldol Condensation of Thioacrylates with Aldehydes Mediated by Titanium (IV Halide

    Directory of Open Access Journals (Sweden)

    Guigen Li

    2002-01-01

    Full Text Available a,b-Ethyl thioacrylate was difuctionalized by a tandem X-C/C=C bond formation reaction. The new system uses Ti (IV halide as both the Lewis acidic promoter and the halogen source for the Michael-type addition onto the thioacrylate. The titanium enolate species resulting from Michael-type addition react with aldehydes followed by dehydration to afford trisubstituted olefin products. Complete geometric selectivity (>95% and up to 72% yield have been obtained for 7 examples.

  16. Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites.

    Science.gov (United States)

    Deepa, Melepurath; Ramos, F Javier; Shivaprasad, S M; Ahmad, Shahzada

    2016-03-16

    The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances.

  17. A First-Principles Study on the Structural and Electronic Properties of Sn-Based Organic-Inorganic Halide Perovskites

    Science.gov (United States)

    Ma, Zi-Qian; Pan, Hui; Wong, Pak Kin

    2016-11-01

    Organic-inorganic halide perovskites have attracted increasing interest on solar-energy harvesting because of their outstanding electronic properties. In this work, we systematically investigate the structural and electronic properties of Sn-based hybrid perovskites MASnX3 and FASnX3 (X = I, Br) based on density-functional-theory calculations. We find that their electronic properties strongly depend on the organic molecules, halide atoms, and structures. We show that there is a general rule to predict the band gap of the Sn-based hybrid perovskite: its band gap increases as the size of halide atom decreases as well as that of organic molecule increase. The band gap of high temperature phase (cubic structure) is smaller than that of low temperature phase (orthorhombic structure). The band gap of tetragonal structure (medium-temperature phase) may be larger or smaller than that of cubic phase, depending on the orientation of the molecule. Tunable band gap within a range of 0.73-1.53 eV can be achieved by choosing halide atom and organic molecule, and controlling structure. We further show that carrier effective mass also reduces as the size of halide atom increases and that of molecule decreases. By comparing with Pb-based hybrid perovskites, the Sn-based systems show enhanced visible-light absorption and carrier mobility due to narrowed band gap and reduced carrier effective mass. These Sn-based organic-inorganic halide perovskites may find applications in solar energy harvesting with improved performance.

  18. Metal halide perovskites for energy applications

    Science.gov (United States)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  19. Thermoluminescence of alkali halides and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Gartia, R.K., E-mail: rkgartia02@yahoo.in [Physics Department, Manipur University, Imphal 795003 (India); Rey, L. [Aerial-CRT-parc d' Innovation, B.P. 40443, F-67412 Illkirch Cedex (France); Tejkumar Singh, Th. [Physics Department, Manipur University, Imphal 795003 (India); Basanta Singh, Th. [Luminescence Dating Laboratory, Manipur University, Imphal 795003 (India)

    2012-03-01

    Trapping levels present in some alkali halides namely NaCl, KCl, KBr, and KI are determined by deconvolution of the thermoluminescence (TL) curves. Unlike most of the studies undertaken over the last few decades, we have presented a comprehensive picture of the phenomenon of TL as an analytical technique capable of revealing the position of the trapping levels present in the materials. We show that for all practical purposes, TL can be described involving only the three key trapping parameters, namely, the activation energy (E), the frequency factor (s), and the order of kinetics (b) even for complex glow curves having a number of TL peaks. Finally, based on these, we logically infer the importance of TL in development and characterization of materials used in dosimetry, dating and scintillation.

  20. Enzymatic production of alkyl esters through alcoholysis: A critical evaluation of lipases and alcohols

    DEFF Research Database (Denmark)

    Li, Deng; Xu, Xuebing; Gudmundur G, Haraldsson

    2005-01-01

    This paper focuses on a detailed evaluation of commercially available immobilized lipases and simple monohydric alcohols for the production of alkyl esters from sunflower oil by enzymatic alcoholysis. Six lipases were tested with seven alcohols, including straight and branched-chain primary...... yield of FA alkyl esters, with yields well over 90% for methanol, absolute ethanol, and 1-propanol. Overall, 96% ethanol was the preferred alcohol for all lipases except Novozym 435, and ethanolysis reactions reached the maximal conversion efficiency. Increasing the water content in the system resulted...... commercial immobilized lipases are highly efficient and promising for the production of alkyl esters, offering high reaction yields and a simple operation process....

  1. Alkylation of organic aromatic compounds

    Science.gov (United States)

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  2. Halide-promoted reactions of alkynes with Ru sub 3 (CO) sub 12

    Energy Technology Data Exchange (ETDEWEB)

    Rivomanana, S.; Lavigne, G.; Lugan, N.; Bonnet, J.; Yanez, R.; Mathieu, R. (Universite Paul Sabatier, Toulouse (France))

    1989-11-22

    The promoter effect of anionic nucleophiles on reactions of metal carbonyl complexes is of high current interest. In particular, several novel catalytic processes of potential industrial relevance are based on Ru{sub 3}(CO){sub 12}/halide systems as catalyst precursors. The authors have found that the activated complex (PPN)(Ru{sub 3}({mu}-Cl)(CO){sub 10}) ((PPN)(3)), which is readily obtained from the initial halide adduct (PPN)(Ru{sub 3}({eta}{sup 1}-Cl)(CO){sub 11}) ((PPN)(2)) (PPN = bis(triphenylphosphine)iminium), reacts with alkynes at 25{degree}C in THF (reaction 1) to produce a labile species (PPN)(Ru{sub 3}({mu}-Cl)({mu}-{eta}{sup 2}-RCCR{prime})(CO){sub 9}) ((PPN)(4)) that serves as a convenient precursor to new and known alkyne-substituted derivatives of Ru{sub 3}(CO){sub 12}.

  3. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  4. Novel Silver Cobaltacarborane Complexes with a Linearly Bridging Halide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Seo; Bae, Hye Jin; Do, Youngkyu [KAIST, Daejeon (Korea, Republic of); Park, Youngwhan [LG Chem/Research Park, Daejeon (Korea, Republic of); Go, Min Jeong; Lee, Junseong [Chonnam National Univ., Gwangju (Korea, Republic of)

    2013-10-15

    The structural versatility of halides mainly originates from their coordinating abilities of adopting a bridging bond between two or more metal atoms, as well as a terminal bond. Moreover, a halide bridging bond angle is so flexible that thermodynamic stability can be endowed with proper geometry, which conceptually varies from acute to right, obtuse, and linear. In spite of innumerable reports on molecular metal halides, examples of the linearly bridging fashion are very scarce. The reason for the rarity of the linear M. X. M arrangement can be easily explained by the VSEPR (Valence Shell Electron Pair Repulsion) concept. The linear M. X. M formation has only been achieved by adopting a macrocyclic chelate ligand, which is structurally demanding, so that the VSEPR repulsions among lone-pair electrons on the halide atom could be overcome.

  5. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    Science.gov (United States)

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency.

  6. Synthesis, Central Nervous System Activity and Structure-Activity Relationships of Novel 1-(1-Alkyl-4-aryl-4,5-dihydro-1H-imidazo-3-substituted Urea Derivatives

    Directory of Open Access Journals (Sweden)

    Elżbieta Szacoń

    2015-02-01

    Full Text Available A series of 10 novel urea derivatives has been synthesized and evaluated for their central nervous system activity. Compounds 3a–3h were prepared in the reaction between the respective 1-alkyl-4-aryl-4,5-dihydro-1H-imidazol-2-amines 1a and 1b and appropriate benzyl-, phenethyl-isocyanate or ethyl 4-isocyanatobenzoate and ethyl isocyanatoacetate 2 in dichloromethane. Derivatives 4c and 4g resulted from the conversion of 3c and 3g into the respective amides due to action of an aqueous ammonia solution. The results obtained in this study, based on literature data suggest a possible involvement of serotonin system and/or the opioid system in the effects of tested compounds, and especially in the effect of compound 3h. The best activity of compound 3h may be primarily attributed to its favourable ADMET properties, i.e., higher lipophilicity (related to lower polar surface area and greater molecular surface, volume and mass than for other compounds and good blood-brain permeation. This compound has also the greatest polarizability and ovality. The HOMO and LUMO energies do not seem to be directly related to activity.

  7. International Symposium on Halide Glasses (2nd) (Extended Abstracts).

    Science.gov (United States)

    1983-08-05

    method in which Pyrex 7740 is the standard material. These results will be compared with our earlier results on a fluorozirconate glass ( ZBLAN glass ...AliS 215 INTERNATIONAL SYMPOSIUM ON HALIDE GLASSES 12ND) 1/1 (EXTENDED ABSTRACTS) (U) RENSSELAER POLY’TECHNIC INST TROY NY DEPT OF MATERIALS ENGINEE...Classification) Second International Symposium on Halide Glasses (Extended Abstracts) (U) 12. PERSONAL AUTHOR(S) Cornelius T. Moynihan Chairman 13a

  8. Combustion Pathways of the Alkylated Heteroaromatics: Bond Dissociation Enthalpies and Alkyl Group Fragmentations

    Science.gov (United States)

    Hayes, Carrigan J.; Hadad, Christopher M.

    2009-04-01

    The bond dissociation enthalpies (BDEs) of the alkyl groups of the alkyl-substituted heterocycles have been studied and compiled using DFT methodology, with the intent of modeling the larger heterocyclic functionalities found in coal. DFT results were calibrated against CBS-QB3 calculations, and qualitative trends were reproduced between these methods. Loss of hydrogen at the benzylic position provided the most favorable route to radical formation, for both the azabenzenes and five-membered heterocycles. The ethyl derivatives had lower BDE values than the methyl derivatives due to increased stabilization of the corresponding radicals. Calculated spin densities correlated well with bond dissociation enthalpies for these compounds, while geometric effects were minimal with respect to the heterocycles themselves. Temperature effects on the bond dissociation enthalpies were minor, ranging by about 5 kcal/mol from 298 to 2000 K; the free energies of reaction dropped significantly over the same range due to entropic effects. Monocyclic heteroaromatic rings were seen to replicate the chemistry of multicyclic heteroaromatic systems.

  9. Synthesis of methyl halides from biomass using engineered microbes.

    Science.gov (United States)

    Bayer, Travis S; Widmaier, Daniel M; Temme, Karsten; Mirsky, Ethan A; Santi, Daniel V; Voigt, Christopher A

    2009-05-13

    Methyl halides are used as agricultural fumigants and are precursor molecules that can be catalytically converted to chemicals and fuels. Plants and microorganisms naturally produce methyl halides, but these organisms produce very low yields or are not amenable to industrial production. A single methyl halide transferase (MHT) enzyme transfers the methyl group from the ubiquitous metabolite S-adenoyl methionine (SAM) to a halide ion. Using a synthetic metagenomic approach, we chemically synthesized all 89 putative MHT genes from plants, fungi, bacteria, and unidentified organisms present in the NCBI sequence database. The set was screened in Escherichia coli to identify the rates of CH(3)Cl, CH(3)Br, and CH(3)I production, with 56% of the library active on chloride, 85% on bromide, and 69% on iodide. Expression of the highest activity MHT and subsequent engineering in Saccharomyces cerevisiae results in productivity of 190 mg/L-h from glucose and sucrose. Using a symbiotic co-culture of the engineered yeast and the cellulolytic bacterium Actinotalea fermentans, we are able to achieve methyl halide production from unprocessed switchgrass (Panicum virgatum), corn stover, sugar cane bagasse, and poplar (Populus sp.). These results demonstrate the potential of producing methyl halides from non-food agricultural resources.

  10. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    Energy Technology Data Exchange (ETDEWEB)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl [Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Gomes, Henrique L. [Instituto de Telecomunicações, Av. Rovisco, Pais 1, 1049-001 Lisboa, Portugal and Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); De Leeuw, Dago M. [Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany and King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  11. Double-Diffusive Convection During Growth of Halides and Selenides

    Science.gov (United States)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of

  12. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

    Science.gov (United States)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs

    2014-09-28

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.

  13. Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids.

    Science.gov (United States)

    Guo, Xuming; Sturgeon, Ralph E; Mester, Zoltán; Gardner, Graeme J

    2003-12-15

    Using a flow-through photochemical reactor and a low pressure mercury lamp as a UV source, alkyl selenium species are formed from inorganic selenium(IV) in the presence of low molecular weight organic acids (LMW acids). The volatile alkyl Se species were cryogenically trapped and identified by GC-MS and GC-ICP-MS. In the presence of formic, acetic, propionic and malonic acids, inorganic selenium(IV) is converted by UV irradiation to volatile selenium hydride and carbonyl, dimethylselenide and diethylselenide, respectively. Se(IV) was successfully removed from contaminated agricultural drainage waters (California, U.S.A.) using a batch photoreactor system Se. Photochemical alkylation may thus offer a promising means of converting toxic selenium salts, present in contaminated water, to less toxic dimethylselenide. The LMW acids and photochemical alkylation process may also be key to understanding the source of atmospheric selenium and are likely involved in its mobility in the natural anaerobic environment.

  14. Prenyl sulfates as alkylating reagents for mercapto amino acids.

    Science.gov (United States)

    Maltsev, Sergey; Sizova, Olga; Utkina, Natalia; Shibaev, Vladimir; Chojnacki, Tadeusz; Jankowski, Wieslaw; Swiezewska, Ewa

    2008-01-01

    A new methodology for prenylation of thiol compounds has been developed. The approach is based on the use of prenyl sulfates as new reagents for S-prenylation of benzenethiol and cysteamine in aqueous systems. The C(10)-prenols geraniol and nerol that differ in the configuration (E or Z, correspondingly) of the alpha-isoprene unit were efficiently O-sulfated in the presence of a pyridine-SO(3') complex. The obtained geranyl and neryl sulfates were tested as alkylating agents. These compounds were chosen to reveal the influence of the alpha-isoprene unit configuration on their alkylation (prenylation) ability. S-Geranyl cysteine was prepared to demonstrate the applicability of this method for prenylation of peptides containing mercapto amino acids.

  15. Perspectives on organolead halide perovskite photovoltaics

    Science.gov (United States)

    Hariz, Alex

    2016-07-01

    A number of photovoltaic technologies have been developed for large-scale solar-power production. The single-crystal first-generation photovoltaic devices were followed by thin-film semiconductor absorber layers layered between two charge-selective contacts, and more recently, by nanostructured or mesostructured solar cells that utilize a distributed heterojunction to generate charge carriers and to transport holes and electrons in spatially separated conduits. Even though a number of materials have been trialed in nanostructured devices, the aim of achieving high-efficiency thin-film solar cells in such a manner as to rival the silicon technology has yet to be attained. Organolead halide perovskites have recently emerged as a promising material for high-efficiency nanoinfiltrated devices. An examination of the efficiency evolution curve reveals that interfaces play a paramount role in emerging organic electronic applications. To optimize and control the performance in these devices, a comprehensive understanding of the contacts is essential. However, despite the apparent advances made, a fundamental theoretical analysis of the physical processes taking place at the contacts is still lacking. However, experimental ideas, such as the use of interlayer films, are forging marked improvements in efficiencies of perovskite-based solar cells. Furthermore, issues of long-term stability and large-area manufacturing have some way to go before full commercialization is possible.

  16. NHC-Copper(I) Halide-Catalyzed Direct Alkynylation of Trifluoromethyl Ketones on Water

    KAUST Repository

    Czerwiński, Paweł

    2016-05-04

    An efficient and easily scalable NHC-copper(I) halide-catalyzed addition of terminal alkynes to 1,1,1-trifluoromethyl ketones, carried out on water for the first time, is reported. A series of addition reactions were performed with as little as 0.1-2.0mol% of [(NHC)CuX] (X=Cl, Br, I, OAc, OTf) complexes, providing tertiary propargylic trifluoromethyl alcohols in high yields and with excellent chemoselectivity from a broad range of aryl- and more challenging alkyl-substituted trifluoromethyl ketones (TFMKs). DFT calculations were performed to rationalize the correlation between the yield of catalytic alkynylation and the sterics of N-heterocyclic carbenes (NHCs), expressed as buried volume (%VBur), indicating that steric effects dominate the yield of the reaction. Additional DFT calculations shed some light on the differential reactivity of [(NHC)CuX] complexes in the alkynylation of TFMKs. The first enantioselective version of a direct alkynylation in the presence of C1-symmetric NHC-copper(I) complexes is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    Science.gov (United States)

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.

  18. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    Science.gov (United States)

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature.

  19. Magnetic properties of nickel halide hydrates including deuteration effects

    Science.gov (United States)

    DeFotis, G. C.; Van Dongen, M. J.; Hampton, A. S.; Komatsu, C. H.; Trowell, K. T.; Havas, K. C.; Davis, C. M.; DeSanto, C. L.; Hays, K.; Wagner, M. J.

    2017-01-01

    Magnetic measurements on variously hydrated nickel chlorides and bromides, including deuterated forms, are reported. Results include locations and sizes of susceptibility maxima, Tmax and χmax, ordering temperatures Tc, Curie constants and Weiss theta in the paramagnetic regime, and primary and secondary exchange interactions from analysis of low temperature data. For the latter a 2D Heisenberg model augmented by interlayer exchange in a mean-field approximation is applied. Magnetization data to 16 kG as a function of temperature show curvature and hysteresis characteristics quite system dependent. For four materials high field magnetization data to 70 kG at 2.00 K are also obtained. Comparison is made with theoretical relations for spin-1 models. Trends are apparent, primarily that Tmax of each bromide hydrate is less than for the corresponding chloride, and that for a given halide nD2O (n=1 or 2) deuterates exhibit lesser Tmax than do nH2O hydrates. A monoclinic unit cell determined from powder X-ray diffraction data on NiBr2·2D2O is different from and slightly larger than that of NiBr2·2H2O. This provides some rationale for the difference in magnetic properties between these.

  20. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    Science.gov (United States)

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  1. Biodegradation of alkylates under less agitated aquifer conditions

    Institute of Scientific and Technical Information of China (English)

    Jay J.Cho; Makram T.Suidan; Albert D.Venosa

    2013-01-01

    The biodegradability of three alkylates (2,3-dimethylpentane,2,4-dimethylpentane and 2,2,4-trimethylpentane) under less agitated aquifer conditions was investigated in this study.All three alkylates biodegraded completely under these conditions regardless of the presence or absence of ethanol or benzene,toluene,ethylbenzene,and xylenes (BTEX) in the feed.In the presence of ethanol,alkylates degradation was not inhibited by ethanol.However,alkylates degraded more slowly in the presence of BTEX suggesting competitive inhibition to microbial utilization of alkylates.In the sterile controls,alkylates concentrations remained unchanged throughout the experiments.

  2. Alkyl polyglycoside-sorbitan ester formulations for improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Iglauer, S.; Shuler, P.; Tang, Y. [Power Environmental Energy Research Institute (PEERI), Covina, CA (United States); Goddard, W.A. III [California Inst. of Technology, Pasadena, CA (US). Div. of Chemistry and Chemical Engineering, Materials and Process Simulation Center (MSC)

    2010-09-15

    We measured interfacial tensions (IFT) of aqueous alkyl polyglucoside (APG) systems formulated with sorbitan ester-type cosurfactants against n-octane. The study focused on low to ultra-low IFT systems which are relevant for enhanced oil recovery (EOR). In addition, we measured equilibrium adsorption concentrations of these surfactants and cosurfactants onto kaolinite clay, commonly found in oil reservoirs. We present one surfactant EOR laboratory flood experiment with one selected APG-sorbitan ester formulation with which we recovered 94% of initial oil in place (IOIP). (orig.)

  3. Alkylation of Chitosan as Nerve Conduit Biomaterial

    Institute of Scientific and Technical Information of China (English)

    邓劲光; 公衍道; 程明愚; 赵南明; 张秀芳

    2002-01-01

    Chitosan under physiological conditions is a degradable and biocompatible biomaterial with a wide variety of useful physicochemical properties. However, as a nerve conduit biomaterial, its solubility was very low, so chitosan was modified chemically to enhance its solubility. The free amino groups of long molecular chains in chitosan are responsible for its solubility, and the solubility could be adjusted by controlling the free amidogen capacity with N-alkylation. The results show that the solubility of N-alkylation chitosan is increased to 10%, which is an increase of 500%.

  4. The effects of halide anions on the dielectric response of potassium halide solutions in visible, UV and far UV region.

    Science.gov (United States)

    Shagieva, F M; Boinovich, L B

    2013-06-07

    Based on the experimentally measured dispersion of refractive indices, we studied the effects of halide anions on the dielectric response of potassium halide solutions in the visible, UV and far UV regions. It was shown that a specific ion effect according to the Hofmeister series is clearly demonstrated for the visible range of spectra. For the near-, mid-, and far UV ranges of spectra, the specific ion effect essentially depends on solution concentration and temperature. The influence of ions on the behavior of dynamic dielectric permittivity of a solution is discussed on the basis of ion/water and ion/ion electrostatic and electrodynamic interactions and hydration shell structure.

  5. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  6. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application.

    Science.gov (United States)

    Chen, Lin-Jer; Lee, Chia-Rong; Chuang, Yu-Ju; Wu, Zhao-Han; Chen, Chienyi

    2016-12-15

    Herein, the fabrication of a lead-free cesium tin halide perovskite produced via a simple solvothermal process is reported for the first time. The resulting CsSnX3 (X = Cl, Br, and I) quantum rods show composition-tunable photoluminescence (PL) emissions over the entire visible spectral window (from 625 to 709 nm), as well as significant tunability of the optical properties. In this study, we demonstrate that through hybrid materials (CsSnX3) with different halides, the system can be tunable in terms of PL. By replacing the halide of the CsSnX3 quantum rods, a power conversion efficiency of 12.96% under AM 1.5 G has been achieved. This lead-free quantum rod replacement has demonstrated to be an effective method to create an absorber layer that increases light harvesting and charge collection for photovoltaic applications in its perovskite phase.

  7. Isobutane/2-butene alkylation over potential heterogeneous catalysts in a slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, T.

    1996-12-31

    The trend towards more effective use of fossil fuels and reduced environmental pollution represents a major task of improvement within the refinery processes. The highly isomerized and high octane paraffins produced from isobutane and light olefins by alkylation fulfill all the requirements for reformulated gasoline. This doctoral thesis discusses new catalyst systems because of their potential in alkylation. A slurry reactor apparatus for solid-acid catalysed isobutane/butene alkylation was developed and used to investigate the performance of various heterogeneous catalysts. The selected materials were mainly zeolite types with faujasite structures. The samples were characterized by various methods before alkylation. In general, the order of decreasing catalyst activity after 3 h of reaction at 80{sup o}C was found to be: H-EMT >> H-FAU, dealuminated H-FAU >> NS.500, TA-Y, CeY-98 > Nafion-H. The order of decreasing alkylate selectivity of the catalysts was: H-EMT >> dealuminated H-FAU > H-FAU >> Nafion-H > CeY-98 > TA-Y > H-SAPO-37, NS.500. H-EMT was the most promising system for further development, also because of the very low formation of the undesirable isooctenes and a high selectivity towards isooctanes among the alkylates. A high density of accessible strong acid sites was found to be essential for a high alkylation activity and selectivity. Open structure, like hexagonal faujasite, was advantageous. The distribution of trimethylpentanes formed in zeolites was ascribed to pore restrictions as a major factor. The effect of operating conditions on catalyst performance was investigated statistically, and a high dilution of butene in the slurry reactor was found to be very important. 153 refs., 40 figs., 12 tabs.

  8. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    Science.gov (United States)

    Carraher, Jack McCaslin

    leads to the dissociation of H2O2 from Cr(III), while in the H+-independent reaction, CraqOOH2+ is transformed to Cr(V). Both scavengers rapidly remove Cr(V) and simplify both the kinetics and products by impeding formation of Cr(IV, V, VI). Syntheses, Reactivity, and Thermodynamic Considerations LRhR2+. Macrocyclic rhodium(II) complexes LRh(H 2O)2+ (L = L1= cyclam and L2 = meso-Me6-cyclam) react with alkyl hydroperoxides R(CH3)2COOH to generate the corresponding rhodium(III) alkyls LRh(H2O)R2+ (R = CH3, C2 H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgX) 2(H2O)CoR (where R = CH3, CH2Ph and dmgX is either dimethylglyoxime or a BF2-capped derivative of dmg) to LRh(H2O)2+. When R = C2H5, C3H7 or C4H9, the mechanism changes from group transfer to hydrogen atom abstraction from the coordinated alkyl and produces LRh(H2O)H2+ and an a-olefin. The new LRh(H2O)R2+ complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis. 'Green' Model for Decarboxylation of Biomass Derived Acids via Photolysis of in situ formed Metal-Carboxylate Complexes. Photolysis of aqueous solutions containing propionic acid and Fe 3+ aq in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. Photolysis in the presence of O2 yields catalytic amounts of hydrocarbon products. When halide ions are present during photolysis; nearly quantitative yields of ethyl halides are produced via extraction of a halide atom from FeX2+ by ethyl radical. The rate constants for ethyl radical reactions with FeCl2+ (k = 4.0 (+/- 0.5) x 106 M-1s-1) and with FeBr 2+ (k = 3.0 (+/- 0.5) x 107 M-1s -1) were determined via competition reactions. Irradiation of solutions containing aqueous Cu2+ salts and linear carboxylic acids yield alpha

  9. Kinetic Studies of the Solvolysis of Two Organic Halides

    Science.gov (United States)

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  10. Methyl halide emissions from savanna fires in southern Africa

    Science.gov (United States)

    Andreae, M. O.; Atlas, E.; Harris, G. W.; Helas, G.; de Kock, A.; Koppmann, R.; Maenhaut, W.; Manø, S.; Pollock, W. H.; Rudolph, J.; Scharffe, D.; Schebeske, G.; Welling, M.

    1996-10-01

    The methyl halides, methyl chloride (CH3Cl), methyl bromide (CH3Br), and methyl iodide (CH3I), were measured in regional air samples and smoke from savanna fires in southern Africa during the Southern Africa Fire-Atmosphere Research Initiative-92 (SAFARI-92) experiment (August-October 1992). All three species were significantly enhanced in the smoke plumes relative to the regional background. Good correlations were found between the methyl halides and carbon monoxide, suggesting that emission was predominantly associated with the smoldering phase of the fires. About 90% of the halogen content of the fuel burned was released to the atmosphere, mostly as halide species, but a significant fraction (3-38%) was emitted in methylated form. On the basis of comparison with the composition of the regional background atmosphere, emission ratios to carbon dioxide and carbon monoxide were determined for the methyl halide species. The emission ratios decreased in the sequence CH3Cl > CH3Br > CH3I. Extrapolation of these results in combination with data from other types of biomass burning, e.g. forest fires, suggests that vegetation fires make a significant contribution to the atmospheric budget of CH3Cl and CH3Br. For tropospheric CH3I, on the other hand, fires appear to be a minor source. Our results suggest that pyrogenic emissions of CH3Cl and CH3Br need to be considered as significant contributors to stratospheric ozone destruction.

  11. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors

    NARCIS (Netherlands)

    Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D.; Katan, Claudine; Even, Jacky; Kepenekian, Mikael

    2016-01-01

    Layered halide hybrid organic inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells

  12. A new mechanism for radiation damage processes in alkali halides

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution o

  13. Iron-catalysed Negishi coupling of benzyl halides and phosphates.

    Science.gov (United States)

    Bedford, Robin B; Huwe, Michael; Wilkinson, Mark C

    2009-02-01

    Iron-based catalysts containing either 1,2-bis(diphenylphosphino)benzene or 1,3-bis(diphenylphosphino)propane give excellent activity and good selectivity in the Negishi coupling of aryl zinc reagents with a range of benzyl halides and phosphates.

  14. UV-VIS absorption spectra of molten AgCl and AgBr and of their mixtures with group I and II halide salts

    Energy Technology Data Exchange (ETDEWEB)

    Greening, Giorgio G.W. [Technische Universitaet Darmstadt (Germany). Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie

    2015-07-01

    The UV-VIS absorption spectra of (Ag{sub 1-X}[Li-Cs, Ba]{sub X})Cl and of (Ag{sub 1-X}[Na, K, Cs]{sub X})Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  15. The Synthesis of 6-Alkyl-5-Fluorouracil Derivatives

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    6-alkyl-5-fluorouracil derivatives (5a~5f) were synthesized by facile alkylation of lithiation of 5-fluorouracil derivatives with mthyl iodide (MeI) or alkyl trifluoromethanesulfonate (ROTf) in yield of 42~58%. We found that the methylated product was ethyl-substituted derivatives, not methyl-substituted derivatives.

  16. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide... Specific Chemical Substances § 721.10087 Substituted alkyl phosphine oxide (generic). (a) Chemical... as substituted alkyl phosphine oxide (PMN P-06-332) is subject to reporting under this section...

  17. 40 CFR 721.5769 - Mixture of nitrated alkylated phenols.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of nitrated alkylated phenols... Substances § 721.5769 Mixture of nitrated alkylated phenols. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a mixture of nitrated alkylated...

  18. 40 CFR 721.2825 - Alkyl ester (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl ester (generic name). 721.2825... Substances § 721.2825 Alkyl ester (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkyl ester (PMN P-84-968) is subject to reporting under this...

  19. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkyl pyridine. 721.8700... Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkyl pyridine (PMN P-83-237)...

  20. Polypyrrole Doped with Alkyl Benzene Sulphonates

    DEFF Research Database (Denmark)

    Bay, Lasse; Mogensen, Naja; Skaarup, Steen;

    2002-01-01

    The properties of polypyrrole (PPy) are to a large extent determined by the condition of synthesis and especially by the counterion incorporated as dopant during synthesis. In this work, PPy doped with different alkyl benzenesulfonates are compared. The polymer films are prepared by constant curr...

  1. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    Science.gov (United States)

    Wang, Shu; Robertson, Megan L

    2015-06-10

    polystyrene and short-chain polyacrylates (n ≤ 10). To our knowledge, this is the first study to explore the thermodynamic interactions between polystyrene and long-chain poly(n-alkyl acrylates) with n > 10. This work lays the groundwork for the development of multicomponent structured systems (i.e., blends and copolymers) in this class of sustainable materials.

  2. Composite Hybrid Cluster Built from the Integration of Polyoxometalate and a Metal Halide Cluster: Synthetic Strategy, Structure, and Properties.

    Science.gov (United States)

    Li, Xin-Xiong; Ma, Xiang; Zheng, Wen-Xu; Qi, Yan-Jie; Zheng, Shou-Tian; Yang, Guo-Yu

    2016-09-06

    A step-by-step synthetic strategy, setting up a bridge between the polyoxometalate (POM) and metal halide cluster (MHC) systems, is demonstrated to construct an unprecedented composite hybrid cluster built up from one high-nuclearity cationic MHC [Cu8I6](2+) and eight Anderson-type anionic POMs [HCrMo6O18(OH)6](2-) cross-linked by a tripodal alcohol derivative.

  3. Structural and chemical analysis of gadolinium halides encapsulated within WS2 nanotubes

    Science.gov (United States)

    Anumol, E. A.; Enyashin, Andrey N.; Batra, Nitin M.; Costa, Pedro M. F. J.; Deepak, Francis Leonard

    2016-06-01

    The hollow cavities of nanotubes serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of WS2 nanotubes by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is non-trivial due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.The hollow cavities of nanotubes serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of WS2 nanotubes by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is non-trivial due to the

  4. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Science.gov (United States)

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.

  5. Size distributions and geometries of alkali halide nanoclusters probed using ESI FT-ICR mass spectrometry and quantum chemistry

    Science.gov (United States)

    Lemke, K.; Sadjadi, S.; Seward, T.

    2010-12-01

    The structures and energetic properties of ionic alkali metal halide clusters play a significant role in our understanding of aqueous geochemical processes such as salt dissolution, precipitation and neutralization reactions. Mass spectrometric and quantum chemical studies of such systems offer new opportunities to study the size-dependent evolution of cluster structures, the occurrence of magic number species as well as their fundamental properties. The work here presents new results for the stability, abundance and structure of pure [Na(NaClm)]+ , [K(KCl)m]+ and mixed [Na(NaCl)p(KCl)q]+ metal halide clusters with mQB3 and G4 methods and comment on the onset of the doubly charged cluster series. FT-ICR mass spectra for [Na(NaCl)n]+ clusters generated from 1mM NaCl in 20%H2O 80% acetonitrile in positive ion mode.

  6. Influences of Alkyl and Aryl Substituents on Iminopyridine Fe(II- and Co(II-Catalyzed Isoprene Polymerization

    Directory of Open Access Journals (Sweden)

    Lihua Guo

    2016-11-01

    Full Text Available A series of alkyl- and aryl-substituted iminopyridine Fe(II complexes 1a–7a and Co(II complexes 2b, 3b, 5b, and 6b were synthesized. The activator effect, influence of temperature, and, particularly, the alkyl and aryl substituents’ effect on catalytic activity, polymer molecular weight, and regio-/stereoselectivity were investigated when these complexes were applied in isoprene polymerization. All of the Fe(II complexes afforded polyisoprene with high molecular weight and moderate cis-1,4 selectivity. In contrast, the Co(II complexes produced polymers with low molecular weight and relatively high cis-1,4 selectivity. In the iminopyridine Fe(II system, the alkyl and aryl substituents’ effect exhibits significant variation on the isoprene polymerization. In the iminopyridine Co(II system, there is little influence observed on isoprene polymerization by alkyl and aryl substituents.

  7. Ab initio modeling of the optical properties in organometallic halide perovskites for photovoltaic applications

    Science.gov (United States)

    Neukirch, Amanda; Nei, Wanyi; Pedesseau, Laurent; Even, Jacky; Katan, Claudine; Mohite, Aditya; Tretiak, Segrei

    2015-03-01

    The need for an inexpensive, clean, and plentiful source of energy has generated large amounts of research in an assortment of solution processed organic and hybrid organic-inorganic solar cells. A relative newcomer to the field of solution processed photovoltaics is the lead halide perovskite solar cell. In the past 5 years, the efficiencies of devices made from this material have increased from 3.5% to nearly 20%. Despite the rapid development of organic-inorganic perovskite solar cells, a thorough understanding of the fundamental photophysical processes driving the high performance of these devices is not well understood. I am using state-of-the-art ab initio computational techniques in order to characterize the properties at the interface of perovskite devices in order to aide in materials design and device engineering. I will present an in-depth analysis of the electronic and optical properties of bulk and surface states of pure and mixed halide systems. The high-level static quantum mechanical calculations, including spin-orbit-coupling and the many body GW approach, identify the key electronic states involved in photoinduced dynamics. This knowledge provides important information on how the optical properties change with variations to the system. Supported by the DOE, the LANL LDRD program XW11, and CNLS.

  8. Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

    Science.gov (United States)

    Cha, Hye Jin; Kim, Yun Ji; Jeon, Seo Young; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo

    2016-04-21

    Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function.

  9. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma).

    Science.gov (United States)

    Mu, Jingli; Wang, Juying; Jin, Fei; Wang, Xinhong; Hong, Huasheng

    2014-08-30

    Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are the predominant form of PAHs in oil, comprising 85-95% of total PAHs. However, little attention has been paid to these chemicals in ecological risk assessment of marine oil spill. A comparative study of the toxic effects of phenanthrene and retene (7-isopropyl-1-methylphenanthrene, an alkyl-phenanthrene) on the early life stage of marine medaka (Oryzias melastigma) was conducted. Results showed that retene was significantly more toxic than phenanthrene, and marine medaka could be more sensitive to retene than some freshwater fishes. Retene had a higher excretion rate than phenanthrene during the larvae stage. Both of compounds resulted in developmental malformation of marine medaka embryos, with phenanthrene affecting on peripheral vascular system and yolk sac, while retene affecting on cardiac tissues. The toxicity of phenanthrene might be mainly related to its anesthetic effects, and that of retene might be related to the CYP1A-mediated toxicity of its metabolites.

  10. Alkyl- and fluoroalkyltrialkoxysilanes for wettability modification

    Energy Technology Data Exchange (ETDEWEB)

    Dopierala, Katarzyna, E-mail: katarzyna.dopierala@put.poznan.pl [Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 2, Poznań 60-965 (Poland); Maciejewski, Hieronim [Poznań Science and Technology Park, Rubież 46, Poznań 61-612 (Poland); Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, Poznań 60-780 (Poland); Karasiewicz, Joanna [Poznań Science and Technology Park, Rubież 46, Poznań 61-612 (Poland); Prochaska, Krystyna [Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 2, Poznań 60-965 (Poland)

    2013-10-15

    Alkyl- and fluoroalkyltriethoxysilanes were investigated as potential surface modifiers. Many aspects concerning trialkoxysilanes were discussed, starting from hydrolysis of silanes in water solutions, the effect of this hydrolysis on the surface tension, wettability of the modified surface to the morphology of the modified surface. Surface tension and contact angle measurements as well as scanning electron microscopy were used to characterise alkyl- and fluoroalkyltriethoxysilanes and their ability to modify the wettability of glass. The effect of such modification was superhydrophobic surface with high values of contact angles. Superhydrophobic behaviour was observed as a result of two-step modification providing increased surface roughness thanks to the use of different size silica particles and surface chemical modification with fluorosilane molecules.

  11. Studies on Phase Behavior of Alkyl Polyglucoside Based on Microemulsions with Modified Fishlike Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    Jin Ling CHAI; Gan Zuo LI; Zhao Yu DIAO; Gao Yong ZHANG

    2004-01-01

    The three-phase behavior in the quaternary system of an alkyl (C8/10- or C12/14-) polyglucoside / 1-butanol / n-octane / water has been studied at 40 ℃ with the modified fishlike phase diagram, which is presented by us for the first time. The mass fraction of 1-butanol in the hydrophile-lipophile balanced interfacial layer, AS, the coordinates of the start point B and the end point E of the phase diagram, and the solubilities of alkyl polyglucoside and 1-butanol in n-octane phase were calculated. The solubilization of the microemulsion was also discussed.

  12. Chemical Reactivity Perspective into the Group 2B Metals Halides.

    Science.gov (United States)

    Özen, Alimet Sema; Akdeniz, Zehra

    2016-06-30

    Chemical reactivity descriptors within the conceptual density functional theory can be used to understand the nature of the interactions between two monomers of the Group 2B metal halides. This information might be valuable in the development of adequate force law parameters for simulations in the liquid state. In this study, MX2 monomers and dimers, where M = Zn, Cd, Hg and X = F, Cl, Br, I, were investigated in terms of chemical reactivity descriptors. Relativistic effects were taken into account using the effective core potential (ECP) approach. Correlations were produced between global and local reactivity descriptors and dimerization energies. Results presented in this work represent the first systematic investigation of Group 2B metal halides in the literature from a combined point of view of both relativistic effects and chemical reactivity descriptors. Steric effects were found to be responsible for the deviation from the chemical reactivity principles. They were introduced into the chemical reactivity descriptors such as local softness.

  13. Facile Preparation of Silver Halide Nanoparticles as Visible Light Photocatalysts

    Directory of Open Access Journals (Sweden)

    Linfan Cui

    2015-07-01

    Full Text Available In this study, highly efficient silver halide (AgX-based photocatalysts were successfully fabricated using a facile and template-free direct-precipitation method. AgX nanoparticles, which included silver chloride (AgCl, silver bromide (AgBr and silver iodide (AgI, were synthesized using different potassium halides and silver acetate as reactive sources. The size distribution of the AgX nanopar‐ ticles was determined by the reaction time and ratio of the reagents, which were monitored by UV-vis spectra. The as- prepared AgX nanoparticles exhibited different photoca‐ talytic properties. This shows the differences for the photodegradation of methyl orange and Congo red dyes. In addition, the AgCl nanoparticle-based photocatalyst exhibited the best photocatalytic property among all three types of AgX nanoparticles that are discussed in this study. Therefore, it is a good candidate for removing organic pollutants.

  14. Alkali halide microstructured optical fiber for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    DeHaven, S. L., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov [NASA Langley Research Center, Hampton, VA 23681 (United States); Albin, S., E-mail: salbin@nsu.edu [Norfolk State University, Norfolk, VA 23504 (United States)

    2015-03-31

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  15. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  16. Structural and Chemical Analysis of Gadolinium Halides Encapsulated within WS 2 Nanotubes

    KAUST Repository

    Anumol, E A

    2016-05-18

    The hollow cavities of nanotubes could serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of inorganic nanotubes of WS2 by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is a non-trivial matter due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.

  17. Ultrabroad Photoluminescence and Electroluminescence at New Wavelengths from Doped Organometal Halide Perovskites.

    Science.gov (United States)

    Zhou, Yang; Yong, Zi-Jun; Zhang, Kai-Cheng; Liu, Bo-Mei; Wang, Zhao-Wei; Hou, Jing-Shan; Fang, Yong-Zheng; Zhou, Yi; Sun, Hong-Tao; Song, Bo

    2016-07-21

    Doping of semiconductors by introducing foreign atoms enables their widespread applications in microelectronics and optoelectronics. We show that this strategy can be applied to direct bandgap lead-halide perovskites, leading to the realization of ultrawide photoluminescence (PL) at new wavelengths enabled by doping bismuth (Bi) into lead-halide perovskites. Structural and photophysical characterization reveals that the PL stems from one class of Bi doping-induced optically active center, which is attributed to distorted [PbI6] units coupled with spatially localized bipolarons. Additionally, we find that compositional engineering of these semiconductors can be employed as an additional way to rationally tune the PL properties of doped perovskites. Finally, we accomplished the electroluminescence at cryogenic temperatures by using this system as an emissive layer, marking the first electrically driven devices using Bi-doped photonic materials. Our results suggest that low-cost, earth-abundant, solution-processable Bi-doped perovskite semiconductors could be promising candidate materials for developing optical sources operating at new wavelengths.

  18. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis

    Science.gov (United States)

    Koh, Ming Joo; Nguyen, Thach T.; Zhang, Hanmo; Schrock, Richard R.; Hoveyda, Amir H.

    2016-03-01

    Olefin metathesis has had a large impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is limited. Here we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of a catalyst that is generated in situ and used with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents, and proceed to high conversion at ambient temperature within four hours. We obtain many alkenyl chlorides, bromides and fluorides in up to 91 per cent yield and complete Z selectivity. This method can be used to synthesize biologically active compounds readily and to perform site- and stereoselective fluorination of complex organic molecules.

  19. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.

    Science.gov (United States)

    Makarov, Nikolay S; Guo, Shaojun; Isaienko, Oleksandr; Liu, Wenyong; Robel, István; Klimov, Victor I

    2016-04-13

    Organic-inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs-Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton-exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs-Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the "universal volume scaling" previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. This points toward the need for the development of approaches for effective suppression of Auger

  20. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    Science.gov (United States)

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  1. Influence of the Print Run on Silver Halide Printing Plates

    Directory of Open Access Journals (Sweden)

    Tomislav Cigula

    2010-09-01

    Full Text Available The most common printing technique today is lithography. The difference between printing and nonprinting areason a printing plate is accomplished by opposite physical and chemical properties of those areas (MacPhee, 1998.The printing areas are made of photoactive layer that attracts oil and chemical substances with oil solvent – printinginks. The nonprinting areas are made of aluminium-oxide which attracts water based substances – the fountainsolution.There are many of various types of photoactive layer which are used for production of offset printing plates, amongothers is silver halide layer. The usage of the silver halide technology in the graphic reproduction is not a novelty.The filmmaking phase is based on the usage of the silver halide as the photographically active ingredient, for instance,AgBr (silver bromide. The new, digital plate making technology (Computer to Plate, CtP eliminates thefilmmaking phase and therefore enables control of the printing plate’s exposure made by computer. CtP technologyeliminates the filmmaking phase, but it also results with the reduction of needed material quantities and requiredtime for the production (Limburg, 1994; Seydel, 1996.In this paper the basis of the graphic reproduction by using the silver halide digital printing plates was described.The changes of the AgX copying layer and the surface of the aluminium base in the printing process have beenobserved. The surface characteristics were determined by measuring the relevant surface roughness parameters. Inaddition, measurements of coverage values on the prints, detailed at smaller print run, were conducted.Results showed that surface changes on the printing plate are changing during printing process and that thesechanges influence transfer of the printing ink on the printing substrate. These measurements proved to be of greatinterest in the graphic reproduction as they enable us to determine consistency of the printing plates during theprinting

  2. Symmetry-Based Tight Binding Modeling of Halide Perovskite Semiconductors

    OpenAIRE

    Boyer-Richard, Soline; Katan, Claudine; Traoré, Boubacar; Scholz, Reinhard; Jancu, Jean-Marc; Even, Jacky

    2016-01-01

    International audience; On the basis of a general symmetry analysis, this paper presents an empirical tight-binding (TB) model for the reference Pm-3m perovskite cubic phase of halide perovskites of general formula ABX3. The TB electronic band diagram, with and without spin orbit coupling effect of MAPbI3 has been determined based on state of the art density functional theory results including many body corrections (DFT+GW). It affords access to various properties, including distorted structu...

  3. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    Science.gov (United States)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31P-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  4. Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching.

    Science.gov (United States)

    Choi, Jaeho; Park, Sunghak; Lee, Joohee; Hong, Kootak; Kim, Do-Hong; Moon, Cheon Woo; Park, Gyeong Do; Suh, Junmin; Hwang, Jinyeon; Kim, Soo Young; Jung, Hyun Suk; Park, Nam-Gyu; Han, Seungwu; Nam, Ki Tae; Jang, Ho Won

    2016-08-01

    Organolead halide perovskites are used for low-operating-voltage multilevel resistive switching. Ag/CH3 NH3 PbI3 /Pt cells exhibit electroforming-free resistive switching at an electric field of 3.25 × 10(3) V cm(-1) for four distinguishable ON-state resistance levels. The migration of iodine interstitials and vacancies with low activation energies is responsible for the low-electric-field resistive switching via filament formation and annihilation.

  5. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    OpenAIRE

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  6. 苯酚与碳酸二甲酯烷基化反应体系的热力学分析%THERMODYNAMICS ANALYSIS FOR THE REACTION SYSTEM OF THE ALKYLATION OF PHENOL WITH DIMETHYL CARBONATE

    Institute of Scientific and Technical Information of China (English)

    胡海生; 薛冰; 许杰; 徐崇福; 李永昕

    2012-01-01

    By using the Benson group contribution method, the related thermodynamics data of anisole are calculated. For alkylation of phenol with dimethyl carbonate (DMC) to produce anisole and cre-sols, the enthalpy change Ar Hm , free energy change ArGm and equilibrium constant Ka of each reaction at 300 - 1 000 K and 5-30 Mpa are also calculated and then discussed according to the principles of chemical thermodynamics. The results show that the alkylation of phenol with DMC is thermodynami-cally feasible, and the equilibrium constant of Oalkylation is much higher than that of Oalkylation. Among the three C-alkylation reactions? The equilibrium constant of the reaction producing m-cresol is the highest and that of the reaction producing />-cresol is the lowest. With the increase in pressure, a slight increase in the free energy is observed, which indicates that higher pressure is not in favor of the alkylation of phenol with DMC. Under the same pressure, the equilibrium constants of C-alkylation are much higher than that of Oalkylation. The results provide a set of basic thermodynamic data for studying alkylation of phenol with DMC and developing catalysts for the reaction.%采用Benson基团贡献法,计算了苯甲醚(MPE)的相关热力学数据.在300~1 000 K和5~30MPa范围内,计算了苯酚与碳酸二甲酯烷基化反应生成甲基苯酚异构体和苯甲醚各反应的焓变△rHm、吉布斯自由能变△rGm和平衡常数Kθ.结果表明:苯酚与DMC的烷基化反应是可以自发进行的,且碳烷基化反应平衡常数远高于氧烷基化反应平衡常数,在3个碳上烷基化反应中,生成间甲酚的平衡常数最大,生成对甲酚的平衡常数最小;随着压力的升高,各反应的自由能均略有增加,表明升高压力不利于烷基化反应的进行,在同一压力下,碳烷基化反应的平衡常数远高于氧烷基化反应,为苯酚与碳酸二甲酯烷基化反应条件的控制和催化剂的探索研究提供了热力学依据.

  7. Fluorescent Properties of Manganese Halide Benzothiazole Inorganic-Organic Hybrids.

    Science.gov (United States)

    Yu, Hui; Mei, YingXuan; Wei, ZhenHong; Mei, GuangQuan; Cai, Hu

    2016-11-01

    The reaction of manganese (II) halides MnX2 and benzothiazole (btz) in the concentrated acids HX (X = Cl, Br) at 80 °C resulted in the formation of two inorganic-organic hybrid complexes: [(btz)2(MnX4)]·2H2O (X = Cl, 1; X = Br, 2). Both compounds showed green luminescence and exhibited moderate quantum yields of 43.17 % for 1 and 26.18 % for 2, which were directly originated from the tetrahedral coordination of Mn(2+) ion. Two organic - inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light. Graphical abstract Two organic-inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light.

  8. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    Science.gov (United States)

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices.

  9. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    Science.gov (United States)

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.

  10. Determination of Halide Impurities in Ionic Liquids by Ion Chromatography with Direct Conductivity Detection%离子液体中卤素离子杂质的离子色谱-直接电导检测法分析

    Institute of Scientific and Technical Information of China (English)

    周爽; 高微; 于泓

    2009-01-01

    A method was developed for the determination of halide impurities including fluoride, chloride and bromide, in ionic liquids by ion chromatography coupled with direct conductivity detec-tion. The separation of analytes was performed on a Shim-pack IC-A3 anion-exchange column using potassium biphthalate as eluent. Influences of type, concentration and flow rate of eluent, and col-umn temperature on separation efficiency of halide ions were investigated. The optimized chromato-graphic conditions for determination of halide ions were using 1. 25 mmol/L potassium biphthalate as eluent with a flow rate of 1. 5 mL/min at 45 ℃. Under the optimal conditions, a good baseline separation of halide ions was achieved. Nitrate, tetrafluoroborate and sulfate did not interfere with the determination of halide ions. The detection limits ( S/N = 3 ) of halide ions by the method were in the range of 0. 02 - 0. 11 mg/L. The linear ranges of calibration curves between chromatographic peak area and concentration of analytes for fluoride, chloride and bromide were 0. 1 - 50, 0. 1 - 50 and 0. 5 - 100 mg/L, respectively. The relative standard deviations(RSDs) of chromatographic peak ar-eas for halide ions were less than 0. 7% (n = 5). The method was successfully applied to determine halide impurities in alkyl-imidazolium terafluoroborate ionic liquids. The spiked recoveries of halide ions ranged from 98% to 102% . The good linearity, repeatability and low detection limits of the method made it meet the requirements of quantitative analysis of halide impurities in ionic liquids.%研究了离子色谱-直接电导检测法分离测定离子液体中的卤素离子(F~-、Cl~-、Br~-)杂质.采用Shim-pack IC-A3阴离子交换色谱柱,考察了淋洗液种类及浓度、流速和色谱柱温度对分离测定的影响.最佳色谱条件为:以1.25 mmol/L邻苯二甲酸氢钾为淋洗液,流速1.5 mL/min,色谱柱温45 ℃.在此条件下可以基线分离卤素离子,且NO_3~-、BF_4~-

  11. Experimental versus expected halide-ion size differences; structural changes in three series of isotypic bismuth chalcogenide halides.

    Science.gov (United States)

    Keller, Egbert; Krämer, Volker

    2006-06-01

    Experimentally determined halide-ion size differences are compared with expected size differences in the three series of isotypic bismuth chalcogenide halide compounds, KBi(6)O(9)X (X = Cl, Br and I), BiOX (X = F, Cl, Br and I) and BiSX (X = Cl, Br and I). The strong deviations observed can be assigned to steric strain caused by the heterogeneity of the bond-valence pattern and (for BiOX) to anion-anion repulsion and a change in the connectivity scheme. Some special features of the BiOF structure and the question of "isotypism" within the BiOX series are briefly discussed. Structural changes within the BiSX series are analysed.

  12. The acid free asymmetric intermolecular α-alkylation of aldehydes in fluorinated alcohols.

    Science.gov (United States)

    Xiao, Jian; Zhao, Kai; Loh, Teck-Peng

    2012-04-11

    The acid free asymmetric intermolecular α-alkylation of aldehydes with alcohols has been discovered using trifluoroethanol as solvent. This unprecedented system affords the enantioenriched functionalized primary alcohols (after NaBH(4) reduction) in high yields and good to excellent enantioselectivities with wide substrate scope in the absence of any acid additive.

  13. Effects of alkyl parabens on plant pathogenic fungi.

    Science.gov (United States)

    Ito, Shinsaku; Yazawa, Satoru; Nakagawa, Yasutaka; Sasaki, Yasuyuki; Yajima, Shunsuke

    2015-04-15

    Alkyl parabens are used as antimicrobial preservatives in cosmetics, food, and pharmaceutical products. However, the mode of action of these chemicals has not been assessed thoroughly. In this study, we determined the effects of alkyl parabens on plant pathogenic fungi. All the fungi tested, were susceptible to parabens. The effect of linear alkyl parabens on plant pathogenic fungi was related to the length of the alkyl chain. In addition, the antifungal activity was correlated with the paraben-induced inhibition of oxygen consumption. The antifungal activity of linear alkyl parabens likely originates, at least in part, from their ability to inhibit the membrane respiratory chain, especially mitochondrial complex II. Additionally, we determined that some alkyl parabens inhibit Alternaria brassicicola infection of cabbage.

  14. The effects of halides on the performance of coal gas-fueled molten carbonate fuel cells: Final report, October 1986-October 1987

    Energy Technology Data Exchange (ETDEWEB)

    Magee, T.P.; Kunz, H.R.; Krasij, M.; Cote, H.A.

    1987-10-01

    This report presents the results of a program to determine the probable tolerable limits of hydrogen chloride and hydrogen fluoride present in the fuel and oxidant streams of molten carbonate fuel cells that are operating on gasified coal. A literature survey and thermodynamic analyses were performed to determine the likely effects of halides on cell performance and materials. Based on the results of these studies, accelerated corrosion experiments and electrode half-cell performance tests were conducted using electrolyte which contained chloride and fluoride. These data and the results of previous in-cell tests were used to develop a computer for predicting the performance decay due to these halides. The tolerable limits were found to be low (less than 1 PPM) and depend on the power plant system configuration, the operating conditions of the fuel cell stack, the cell design and initial electrolyte inventory, and the ability of the cell to scrub low levels of halide from the reactant streams. The primary decay modes were conversion of the electrolyte from pure carbonate to a carbonate-halide mixture and accelerated electrolyte evaporation. 75 figs., 16 tabs.

  15. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.

    Science.gov (United States)

    Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H; Yang, Ruo Xi; Walsh, Aron; Kovalenko, Maksym V

    2015-06-10

    Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

  16. Oxidative Umpolung α‐Alkylation of Ketones

    DEFF Research Database (Denmark)

    Shneider, O. Svetlana; Pisarevsky, Evgeni; Fristrup, Peter;

    2015-01-01

    We disclose a hypervalent iodine mediated α-alkylative umpolung reaction of carbonyl compounds with dialkylzinc as the alkyl source. The reaction is applicable to all common classes of ketones including 1,3-dicarbonyl compounds and regular ketones via their lithium enolates. The α......-alkylated carbonyl products are formed in up to 93% yield. An ionic mechanism is inferred based on meticulous analysis, NMR studies, trapping and crossover experiments, and computational studies....

  17. On the Importance of the Aromatic Ring Parameter in Studies of the Solvolyses of Cinnamyl and Cinnamoyl Halides

    Directory of Open Access Journals (Sweden)

    Malcolm J. D'Souza

    2010-01-01

    Full Text Available In solvolysis studies using Grunwald-Winstein plots, dispersions were observed for substrates with aromatic rings at the α-carbon. Several examples for the unimolecular solvolysis of monoaryl benzylic derivatives and related diaryl- or naphthyl-substituted derivatives have now been reported, where the application of the aromatic ring parameter (I removes this dispersion. A recent claim suggesting the presence of an appreciable nucleophilic component to the I scale has now been shown, in a review of the solvolysis of highly-hindered alkyl halides, to be unlikely to be correct. Attention is now focused on the application of the hI term for the solvolysis of compounds containing a double bond in the vicinity of any developing carbocation. Available specific rates of solvolysis (plus some new values at 25°C of cinnamyl chloride, cinnamyl bromide, cinnamoyl chloride, p-chlorocinnamoyl chloride, and p-nitrocinnamoyl chloride are analyzed using the simple and extended (including the hI term Grunwald-Winstein equations.

  18. Solid-phase extraction-gas chromatography and solid-phase extraction-gas chromatography-mass spectrometry determination of corrosion inhibiting long-chain primary alkyl amines in chemical treatment of boiler water in water-steam systems of power plants.

    Science.gov (United States)

    Kusch, Peter; Knupp, Gerd; Hergarten, Marcus; Kozupa, Marian; Majchrzak, Maria

    2006-04-28

    Gas chromatography with simultaneous flame-ionization detection (FID) and a nitrogen-phosphorus detection (NPD) as well as gas chromatography-mass spectrometry (GC/MS) has been used to characterize long-chain primary alkyl amines after derivatization with trifluoroacetic anhydride (TFAA). Electron impact ionization- (EI) and negative chemical ionization (NCI) mass spectra of trifluoroacetylated derivatives of the identified tert-octadecylamines are presented for the first time. The corrosion inhibiting alkyl amines were applied in a water-steam circuit of energy systems in the power industry. Solid-phase extraction (SPE) with octadecyl bonded silica (C18) sorbents followed by gas chromatography were used for quantification of the investigated tert-octadecylamines in boiler water, superheated steam and condensate samples from the power plant. The estimated values were: 89 microg l(-1)(n = 5, RSD = 7.8%), 45 microg l(-1) (n = 5, RSD = 5.4%) and 37 microg l(-1)(n = 5, RSD = 2.3%), respectively.

  19. Isolation of a Cyclic (Alkyl(aminogermylene

    Directory of Open Access Journals (Sweden)

    Liliang Wang

    2016-07-01

    Full Text Available A 1,4-addition of a dichlorogermylene dioxane complex with α,β-unsaturated imine 1 gave a dichlorogermane derivative 2 bearing a GeC3N five-membered ring skeleton. By reducing 2 with KC8, cyclic (alkyl(aminogermylene 3 was synthesized and fully characterized. Germylene 3 readily reacted with TEMPO, N2O and S8, producing the 1:2 adduct 4, the oxo-bridged dimer 5 and the sulfido-bridged dimer 6, respectively.

  20. New Bioactive Alkyl Sulfates from Mediterranean Tunicates

    Directory of Open Access Journals (Sweden)

    Marialuisa Menna

    2012-10-01

    Full Text Available Chemical investigation of two species of marine ascidians, Aplidium elegans and Ciona edwardsii, collected in Mediterranean area, led to isolation of a series of alkyl sulfates (compounds 1–5 including three new molecules 1–3. Structures of the new metabolites have been elucidated by spectroscopic analysis. Based on previously reported cytotoxic activity of these type of molecules, compounds 1–3 have been tested for their effects on the growth of two cell lines, J774A.1 (BALB/c murine macrophages and C6 (rat glioma in vitro. Compounds 1 and 2 induced selective concentration-dependent mortality on J774A.1 cells.

  1. 40 CFR 721.530 - Substituted aliphatic acid halide (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted aliphatic acid halide... Specific Chemical Substances § 721.530 Substituted aliphatic acid halide (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance substituted...

  2. Palladium-catalyzed cross-coupling reactions of allylic halides and acetates with indium organometallics.

    Science.gov (United States)

    Rodríguez, David; Pérez Sestelo, José; Sarandeses, Luis A

    2004-11-12

    The palladium(0)-catalyzed cross-coupling reaction of allylic halides and acetates with indium organometallics is reported. In this synthetic transformation, triorganoindium compounds and tetraorganoindates (aryl, alkenyl, and methyl) react with cinnamyl and geranyl halides and acetates to afford the S(N)2 product regioselectively and in good yield. The reaction proceeds with net inversion of the stereochemical configuration.

  3. Insights into the formation of inorganic heterocycles via cyclocondensation of primary amines with group 15 and 16 halides.

    Science.gov (United States)

    Chivers, Tristram; Laitinen, Risto S

    2017-01-31

    Cyclocondensation is a major preparative route for the generation of inorganic heterocycles especially in the case of ring systems involving a Group 15 or 16 element linked to nitrogen. This Perspective will consider recent experimental and computational studies involving the reactions of primary amines (or their synthetic equivalents) with pnictogen and chalcogen halides. The major focus will be a discussion of the identity and role of acyclic intermediates in the reaction pathways to ring formation, as well as the nature of the heterocycles so formed. The similarities and differences between the chemistry of group 15 and 16 systems are emphasised with a view to providing signposts for further investigations.

  4. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    KAUST Repository

    Moore, David T.

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt\\'s anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films. © 2014 Author(s).

  5. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    David T. Moore

    2014-08-01

    Full Text Available The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  6. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    Science.gov (United States)

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-03

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes.

  7. X-ray Scintillation in Lead Halide Perovskite Crystals

    OpenAIRE

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; K. Brylew; Łachmański, W.; A. Bruno; Soci, C.

    2016-01-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (...

  8. Dissociative electron capture by. pi. -allyliron tricarbonyl halide molecules

    Energy Technology Data Exchange (ETDEWEB)

    Nekrasov, Y.S.; Avakyan, N.P.; Khvostenko, V.I.; Kritskaya, I.I.; Maurodiev, V.K.; Mazunov, V.A.

    1985-12-20

    Result are given for a study of dissociative electron impact by complexes (I)-(III), C/sub 3/H/sub 5/Fe (CO)/sub 3/ /SUP X/ , where X - C1 (I), Br (II), and of -allyliron tricarbonyl halides upon dissociative electron capture. The mechanisms for the formation of C/sub 3/H/sub 5/Fe (CO)/sup -//sub 3/ anions in the gas phase and under electrochemical reduction conditions on a dropping mercury electrode were shown to differ. A predominant effect was proposed for solvation factors on the electrochemical reduction in the condensed phase.

  9. Change of the work function of platinum electrodes induced by halide adsorption.

    Science.gov (United States)

    Gossenberger, Florian; Roman, Tanglaw; Forster-Tonigold, Katrin; Groß, Axel

    2014-01-01

    The properties of a halogen-covered platinum(111) surface have been studied by using density functional theory (DFT), because halides are often present at electrochemical electrode/electrolyte interfaces. We focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine. For electronegative adsorbates, an adsorption-induced increase of the work function is usually expected, yet we find a decrease of the work function for Cl, Br and I, which is most prominent at a coverage of approximately 0.25 ML. This coverage-dependent behavior can be explained by assuming a combination of charge transfer and polarization effects on the adsorbate layer. The results are contrasted to the adsorption of fluorine on calcium, a system in which a decrease in the work function is also observed despite a large charge transfer to the halogen adatom.

  10. Zero-Dimensional Hybrid Organic-Inorganic Halide Perovskite Modeling: Insights from First Principles.

    Science.gov (United States)

    Giorgi, Giacomo; Yamashita, Koichi

    2016-03-03

    We discuss the properties of zero dimensional (cluster) hybrid organic-inorganic halide perovskite in view of their possible applicability in photovoltaics, light-emitting, and lasing devices. To support the need of theoretical investigations of such systems and pave the way for future investigations of clusters with different orientations, terminations, and compositions, we have assembled and characterized some zero dimensional models of methylammonium lead iodide, MAPbI3, by "cutting" its bulk. Interesting properties of such clusters that have been here theoretically investigated include their charge distribution, bandgap, wave function localization, and reduced effective mass. The surface orientation/termination and the organic/inorganic cation ratios have been discussed together with the roles they play in determining the electronic properties of such clusters. Also in agreement with experiments, it emerges that surface termination is crucial in determining the structural and optoelectronic properties of this largely overlooked, dimensionally reduced class of materials. Analogies and differences between clusters and bulk are discussed.

  11. Chemistry of lower valent actinide halides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.H.; Hildenbrand, D.L.

    1992-01-01

    This research effort was concerned almost entirely with the first two members of the actinide series, thorium and uranium, although the work was later extended to some aspects of the neptunium-fluorine system in a collaborative program with Los Alamos National Laboratory. Detailed information about the lighter actinides will be helpful in modeling the properties of the heavier actinide compounds, which will be much more difficult to study experimentally. In this program, thermochemical information was obtained from high temperature equilibrium measurements made by effusion-beam mass spectrometry and by effusion-pressure techniques. Data were derived primarily from second-law analysis so as to avoid potential errors in third-law calculations resulting from uncertainties in spectroscopic and molecular constants. This approach has the additional advantage of yielding reaction entropies that can be checked for consistency with various molecular constant assignments for the species involved. In the U-F, U-Cl, and U-Br systems, all of the gaseous species UX, UX{sub 2}, UX{sub 3}, UX{sub 4}, and UX{sub 5}, where X represents the halogen, were identified and characterized; the corresponding species ThX, ThX{sub 2}, ThX{sub 3}, and ThX{sub 4} were studied in the Th-F, Th-Cl, and Th-Br systems. A number of oxyhalide species in the systems U-0-F, U-0-Cl, Th-0-F, and Th-O-Cl were studied thermochemically. Additionally, the sublimation thermodynamics of NpF{sub 4}(s) and NpO{sub 2}F{sub 2}(s) were studied by mass spectrometry.

  12. An overview of the properties of fatty acid alkyl esters

    Science.gov (United States)

    Fatty acid alkyl esters of plant oils, especially in the form of methyl esters, have numerous applications with fuel use having received the most attention in recent times due to the potential high volume. Various properties imparted by neat fatty acid alkyl esters have been shown to influence fuel ...

  13. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Science.gov (United States)

    2010-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  14. 40 CFR 721.2155 - Alkoxyamino-alkyl-coumarin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxyamino-alkyl-coumarin (generic... Substances § 721.2155 Alkoxyamino-alkyl-coumarin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  15. 40 CFR 721.10073 - Modified alkyl acrylamide (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified alkyl acrylamide (generic... Specific Chemical Substances § 721.10073 Modified alkyl acrylamide (generic). (a) Chemical substance and... acrylamide (PMN P-05-536) is subject to reporting under this section for the significant new uses...

  16. Polyfluorinated alkyl phosphate ester surfactants - current knowledge and knowledge gaps

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Rosenmai, Anna Kjerstine; Vinggaard, Anne Marie

    2014-01-01

    information on fluorochemicals. Polyfluorinated alkyl phosphate ester surfactants (PAPs) belong to the group of polyfluorinated alkyl surfactants. They have been detected in indoor dust and are widely used in food-contact materials, from which they have the ability to migrate into food. Toxicological data...

  17. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    Science.gov (United States)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  18. On the Nature of the Intermediates and the Role of Chloride Ions in Pd-Catalyzed Allylic Alkylations: Added Insight from Density Functional Theory

    DEFF Research Database (Denmark)

    Fristrup, Peter; Ahlquist, Mårten Sten Gösta; Tanner, David Ackland

    2008-01-01

    The reactivity of intermediates in palladium-catalyzed allylic alkylation was investigated using DFT (B3LYP) calculations including a PB-SCRF solvation model. In the presence of both phosphine and chloride ligands, the allyl intermediate is in equilibrium between a cationic eta(3)-allylPd complex...... with two phosphine ligands, the corresponding neutral complex with one phosphine and one chloride ligand, and a neutral eta(1)-allylPd complex with one chloride and two phosphine ligands. The eta(1)-complex is unreactive toward nucleophiles. The cationic eta(3)-complex is the intermediate most frequently...... invoked in the title reaction, but in the presence of halides, the neutral, unsymmetrically substituted eta(3)-CoMplex will be formed rapidly from anionic Pd(0) complexes in solution. Since the latter will prefer both leaving group ionization and reaction with nucleophiles in the position trans...

  19. One-step selective synthesis of branched 1-O-alkyl-glycerol/diglycerol monoethers by catalytic reductive alkylation of ketones

    Institute of Scientific and Technical Information of China (English)

    DAYOUB; Wissam; LEMAIRE; Marc

    2010-01-01

    Branched 1-O-alkyl glycerol and diglycerol monoethers were obtained in good yields and high selectivity by a straightforward catalytic reductive alkylation of glycerol with relevant ketones in the presence of 0.5 mol% of Pd/C under 10 bar of hydrogen pressure using a Brφnsted acid as the co-catalyst.

  20. Structure and Bonding in Small Neutral Alkali-Halide Clusters

    CERN Document Server

    Aguado, A; López, J M; Alonso, J A

    1997-01-01

    The structural and bonding properties of small neutral alkali-halide clusters (AX)n, with n less than or equal to 10, A=Li, Na, K, Rb and X=F, Cl, Br, I, are studied using the ab initio Perturbed Ion (aiPI) model and a restricted structural relaxation criterion. A trend of competition between rock-salt and hexagonal ring-like isomers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate value of r_C/r_A=0.5 (where r_C and r_A are the cationic and anionic radii) separates the hexagonal from the rock-salt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to explain these trends. The magic numbers in the size range studied are n= 4, 6 and 9, and these are universal since they occur for all alkali-halides and do not depend on the specific ground state geometry. Instead those numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)n (n=3-7) and (AX)_3 clusters, an...

  1. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    Science.gov (United States)

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang

    2016-07-21

    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications.

  2. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    Science.gov (United States)

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.

  3. Dislocation unpinning model of acoustic emission from alkali halide crystals

    Indian Academy of Sciences (India)

    B P Chandra; Anubha S Gour; Vivek K Chandra; Yuvraj Patil

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emission (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant $_{\\text{s}}$ for surface annihilation of dislocations and the pinning time $_{\\text{p}}$ of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  4. X-ray Scintillation in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-11-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications.

  5. Carbonyl Alkyl Nitrates as Trace Constituents in Urban Air

    Science.gov (United States)

    Woidich, S.; Gruenert, A.; Ballschmiter, K.

    2003-04-01

    Organic nitrates, esters of nitric acid, significantly contribute to the entire pool of odd nitrogen (NOY) in the atmosphere. Organic nitrates are formed in NO rich air by degradation of alkanes and alkenes initiated by OH and NO3 radicals during daytime and nighttime, respectively. Bifunctional organonitrates like the alkyl dinitrates and hydroxy alkyl nitrates are formed primarily from alkenes. The two main sources for Alkenes are traffic emissions and naturally occurring terpenes. So far a broad spectrum of alkyl dinitrates and hydroxy alkyl nitrates including six different isoprene nitrates has been identified in urban and marine air (1-3). We report here for the first time about the group of C4 C7 carbonyl alkyl nitrates as trace constituents in urban air collected on the campus of the University of Ulm Germany, and in the downtown area of Salt Lake City, Utah. Air sampling was done by high volume sampling (flow rate 25 m3/h) using a layer of 100 g silica gel (particle diameter 0.2 - 0.5 mm) as adsorbent. The organic nitrates were eluted from the silica gel by pentane/acetone (4:1, w/w) and the extract was concentrated to a volume of 500 µL for a group separation using normal phase HPLC. Final analysis was performed by high resolution capillary gas chromatography with electron capture detection as well as by mass selective detection in the (CH4)NCI mode using NO2- = m/e 46 as the indicator mass. The carbonyl alkyl nitrates were identified by self synthesized reference standards . So far we have identified eight non-branched a-carbonyl alkyl nitrates (vicinal carbonyl alkyl nitrates), two b-carbonyl alkyl nitrates and one g-carbonyl alkyl nitrate with carbon chains ranging from C4 to C7. The mixing ratios are between 0.05 and 0.30 ppt(v) for daytime samples and are two to three times higher for samples taken at night. (1) M. Schneider, O. Luxenhofer, Angela Deißler, K. Ballschmiter: 2C1-C15 Alkyl Nitrates, Benzyl Nitrate, and Bifunctional Nitrates

  6. Charge-carrier dynamics in hybrid metal halide perovskites (Conference Presentation)

    Science.gov (United States)

    Milot, Rebecca L.; Rehman, Waqaas; Eperon, Giles E.; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.

    2016-09-01

    Hybrid metal halide perovskites are attractive components for many optoelectronic applications due to a combination of their superior charge transport properties and relative ease of fabrication. A complete understanding of the nature of charge transport in these materials is therefore essential for current and future device development. We have evaluated two systems - the standard perovskite methylammonium lead triiodide (CH3NH3PbI3) and a series of mixed-iodide/bromide formamidinium lead perovskites - in an effort to determine what effect structural and chemical composition have on optoelectronic properties including mobility, charge-carrier recombination dynamics, and charge-carrier diffusion length. The photoconductivity in thin films of CH3NH3PbI3was investigated from 8 K to 370 K across three structural phases [1]. While the monomolecular charge-carrier recombination rate was found to increase with rising temperature indicating a mechanism dominated by ionized impurity mediated recombination, the bimolecular rate constant decreased with rising temperature as charge-carrier mobility declined. The Auger rate constant was highly phase specific, suggesting a strong dependence on electronic band structure. For the mixed-halide formamidinuim lead bromide-iodide perovskites, HC(NH2)2Pb(BryI1-y)3, bimolecular and Auger charge-carrier recombination rate constants strongly correlated with bromide content, which indicated a link with electronic structure [2]. Although HC(NH2)2PbBr3 and HC(NH2)2PbI3 exhibited high charge-carrier mobilities and diffusion lengths exceeding 1 μm, mobilities for mixed Br/I perovskites were all lower as a result of crystalline phase disorder.

  7. Phase behavior for the poly(alkyl methacrylate)+supercritical CO{sub 2}+DME mixture at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Seok; Chio, Sang-Won; Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-01-15

    The phase behavior curves of binary and ternary system were measured for poly(alkyl methacrylate) in supercritical CO{sub 2}, as well as for the poly(alkyl methacrylate)+dimethyl ether (DME) (or 1-butene) in CO{sub 2}. The solubility curves are reported for the poly(alkyl methacrylate)+DME in supercritical CO{sub 2} at temperature from (300 to 465) K and a pressure from (3.66 to 248) MPa. Also, The high-pressure static-type apparatus of cloud-point curve was tested by comparing the measured phase behavior data of the poly(methyl methacrylate) [PMMA]+CO{sub 2}+20.0 and 30.4 wt% methyl methacrylate (MMA) system with literature data of 10.4, 28.8 and 48.4 wt% MMA concentration. The phase behavior data for the poly(alkyl methacrylate)+CO{sub 2}+DME mixture were measured in changes of the pressure-temperature (p, T) slope and with DME concentrations. Also, the cloud-point pressure for the poly(alkyl methacrylate)+1- butene solution containing supercritical CO{sub 2} shows from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region at concentration range from (0.0 to 95) wt% 1-butene at below 455 K and at below 245MPa.

  8. Organomontmorillonites Modified with 2-Methacryloyloxy Ethyl Alkyl Dimethyl Ammonium Bromide

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-quan; WU Wen-hui

    2007-01-01

    Organomontmorillonites (organo-MMT) were synthesized by means of montmorillonites (MMT) modified with a series of 2-methacryloyloxy ethyl alkyl dimethyl ammonium bromide (MAAB) having different alkyl chain lengths as cationic surfactants through a cationic exchanging reaction, and were characterized by FTIR, TG, elemental analysis, and XRD. The microenvironment of the organic interlayer such as the orientation and arrangement of the alkyl chains of MAAB, as well as the properties of nanocomposite hydrogels, were also investigated. The amount of organic components absorbed on interlayer and the basal spacing of organo-MMT both increase with the increasing of alkyl length of MAAB. When carbon number of alkyl chain is in the region of 8 to 14, the alkyl chains between layers would adopt a disordered gauche conformation; while the carbon number is 16, an ordered all-trans conformation with a vertical orientation would be found together with the disordered gauche conformation according to the results of XRD and FTIR. Due to the difference of microenvironment of organic interlayer, the Young's moduli of the nanocomposite hydrogels increased as the alkyl chains of MAAB became longer.

  9. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    Science.gov (United States)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  10. Photophysical behavior and fluorescence quenching by halides of quinidine dication: Steady state and time resolved study

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Neeraj Kumar; Tewari, Neeraj; Arora, Priyanka; Rautela, Ranjana; Pant, Sanjay [Photophysics Laboratory, Department of Physics, DSB Campus, Kumaun University, Nainital 263002, Uttarakhand (India); Joshi, Hem Chandra, E-mail: hem_sup@yahoo.co.uk [Institute for Plasma Research, Laser Diagnostics Division, Bhat, Near Indira Bridge, Gandhinagar 382428, Gujarat (India)

    2015-02-15

    The fluorescence quenching of quinidine in acidified aqueous solution by various halides (Cl{sup −}, Br{sup −} and I{sup −}) was studied using steady state and time resolved fluorescence techniques. The quenching process was characterized by Stern–Volmer (S–V) plots. Possibility of conformers (one is not quenched by halide and the other is quenched) is invoked to explain the observed results. - Highlights: • Fluorescence quenching of quinidine in acidified aqueous solution by halides. • Various quenching parameters have been estimated. • Possibility of conformers is invoked to explain the observed results.

  11. Evaluation of Low Melting Halide Systems for Battery Applications.

    Science.gov (United States)

    1983-04-01

    spectrometer consisted of a Spectra Physics Model 171 argon ion laser and a Johin Yvon Ramanor 2000M double pass monochromator controlled by a ISA Model...provided by NQR spectra reported by such a way as to cause the maxima of conductivity iso- Okuda et al.21 They concluded that the structural entities

  12. Effects of halides and related ligands on reactions of carbonylruthenium complexes (RU{sup O}-RU{sup II})

    Energy Technology Data Exchange (ETDEWEB)

    Lavigne, G. [Laboratoire de Chimie de Coordination du CNRS, 31 - Toulouse (France)

    1999-06-01

    While the primary motivation of fundamental studies on carbonylhalotriruthenium complexes was to understand the promoter effect of halides on certain ruthenium-based catalytic systems of industrial relevance, such complexes have gained significance in their own right due to their remarkable ability to provide low-activation energy pathways for the coordination of organic substrates. Limitations inherent to the fragility of these prototypes led to the design and development of a related family of more sophisticated derivatives where an aminopyridyl group serves as an alternate hemilabile ancillary ligand. Studies of their reactivity have revealed the possibility of achieving a number of stoichiometric or moderately catalytic `cluster-mediated` transformations of organic substrates under very mild conditions. Yet, the viability of these systems is still limited to a narrow low-energy domains. By contrast, halotriruthenium derivatives are still seen to function as catalyst precursors under the actual conditions of certain catalytic reactions where they act as sources of ruthenium(II) halide complexes that become the active components of the system. The second part of the review focuses on novel aspects of their fascinating chemistry. (orig.)

  13. Palladium-catalyzed regioselective decarboxylative alkylation of arenes and heteroarenes with aliphatic carboxylic acids.

    Science.gov (United States)

    Premi, Chanchal; Dixit, Ankit; Jain, Nidhi

    2015-06-05

    An unprecedented Pd(OAc)2-catalyzed decarboxylative alkylation of unactivated arenes, with aliphatic carboxylic acids as inexpensive alkyl sources, is reported. The alkylation, controlled by the directing group, is regioselective, shows high functional group tolerance, and provides mild access to alkylated indolines, 2-phenylpyridines, and azobenzenes under solvent-free conditions in moderate to high yields.

  14. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    Science.gov (United States)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  15. Interactions between halide anions and a molecular hydrophobic interface.

    Science.gov (United States)

    Rankin, Blake M; Hands, Michael D; Wilcox, David S; Fega, K Rebecca; Slipchenko, Lyudmila V; Ben-Amotz, Dor

    2013-01-01

    Interactions between halide ions (fluoride and iodide) and t-butyl alcohol (TBA) dissolved in water are probed using a recently developed hydration-shell spectroscopic technique and theoretical cluster and liquid calculations. High ignal-to-noise Raman spectroscopic measurements are combined with multivariate curve resolution (Raman-MCR) to reveal that while there is little interaction between aqueous fluoride ions and TBA, iodide ions break down the tetrahedral hydration-shell structure of TBA and produce a red-shift in its CH stretch frequency, in good agreement with the theoretical effective fragment potential (EFP) molecular dynamics simulations and hybrid quantum/EFP frequency calculations. The results imply that there is a significantly larger probability of finding iodide than fluoride in the first hydration shell of TBA, although the local iodide concentration is apparently not as high as in the surrounding bulk aqueous NaI solution.

  16. Fast Photoconductive Responses in Organometal Halide Perovskite Photodetectors.

    Science.gov (United States)

    Wang, Fei; Mei, Jingjing; Wang, Yunpeng; Zhang, Ligong; Zhao, Haifeng; Zhao, Dongxu

    2016-02-03

    Inorganic semiconductor-based photodetectors have been suffering from slow response speeds, which are caused by the persistent photoconductivity of semiconductor materials. For realizing high speed optoelectronic devices, the organometal halide perovskite thin films were applied onto the interdigitated (IDT) patterned Au electrodes, and symmetrical structured photoconductive detectors were achieved. The detectors were sensitive to the incident light signals, and the photocurrents of the devices were 2-3 orders of magnitude higher than dark currents. The responsivities of the devices could reach up to 55 mA W(1-). Most importantly, the detectors have a fast response time of less than 20 μs. The light and bias induced dipole rearrangement in organometal perovskite thin films has resulted in the instability of photocurrents, and Ag nanowires could quicken the process of dipole alignment and stabilize the photocurrents of the devices.

  17. Enhanced Quantum Efficiency From Hybrid Cesium Halide/Copper Photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction, surface cleanliness and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  18. Quasielastic neutron scattering study of silver selenium halides

    CERN Document Server

    Major, A G; Barnes, A C; Howells, W S

    2002-01-01

    Both silver chalcogenides (Ag sub 2 S, Ag sub 2 Se, and Ag sub 2 Te) and silver halides (AgCl, AgBr, and AgI) are known to be fast-ion solids in which the silver ions can diffuse quickly in a sublattice formed by the other ions. To clarify whether mixtures of these materials (such as Ag sub 3 SeI) possess comparable properties and whether a systematic dependence on the cation-to-anion ratio can be observed, some of these mixtures were studied by quasielastic neutron scattering both in the solid and the liquid phases. To identify the diffusion mechanisms and constants, a new data-analysis method based on a two-dimensional maximum-likelihood fit is proposed. This method has the potential to give more reliable information on the diffusion mechanism than the traditional Bayesian method. (orig.)

  19. Theory of hydrogen migration in organic-inorganic halide perovskites.

    Science.gov (United States)

    Egger, David A; Kronik, Leeor; Rappe, Andrew M

    2015-10-12

    Solar cells based on organic-inorganic halide perovskites have recently been proven to be remarkably efficient. However, they exhibit hysteresis in their current-voltage curves, and their stability in the presence of water is problematic. Both issues are possibly related to a diffusion of defects in the perovskite material. By using first-principles calculations based on density functional theory, we study the properties of an important defect in hybrid perovskites-interstitial hydrogen. We show that differently charged defects occupy different crystal sites, which may allow for ionization-enhanced defect migration following the Bourgoin-Corbett mechanism. Our analysis highlights the structural flexibility of organic-inorganic perovskites: successive iodide displacements, combined with hydrogen bonding, enable proton diffusion with low migration barriers. These findings indicate that hydrogen defects can be mobile and thus highly relevant for the performance of perovskite solar cells.

  20. Two-photon pumped lead halide perovskite nanowire lasers

    CERN Document Server

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  1. Giant photostriction in organic-inorganic lead halide perovskites

    Science.gov (United States)

    Zhou, Yang; You, Lu; Wang, Shiwei; Ku, Zhiliang; Fan, Hongjin; Schmidt, Daniel; Rusydi, Andrivo; Chang, Lei; Wang, Le; Ren, Peng; Chen, Liufang; Yuan, Guoliang; Chen, Lang; Wang, Junling

    2016-04-01

    Among the many materials investigated for next-generation photovoltaic cells, organic-inorganic lead halide perovskites have demonstrated great potential thanks to their high power conversion efficiency and solution processability. Within a short period of about 5 years, the efficiency of solar cells based on these materials has increased dramatically from 3.8 to over 20%. Despite the tremendous progress in device performance, much less is known about the underlying photophysics involving charge-orbital-lattice interactions and the role of the organic molecules in this hybrid material remains poorly understood. Here, we report a giant photostrictive response, that is, light-induced lattice change, of >1,200 p.p.m. in methylammonium lead iodide, which could be the key to understand its superior optical properties. The strong photon-lattice coupling also opens up the possibility of employing these materials in wireless opto-mechanical devices.

  2. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    Science.gov (United States)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).

  3. Bright light-emitting diodes based on organometal halide perovskite.

    Science.gov (United States)

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J; Friend, Richard H

    2014-09-01

    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.

  4. The Structure and Thermodynamics of Alkali Halide Vapors.

    Science.gov (United States)

    Hartley, John George

    A comprehensive set of electron diffraction experiments were performed on 16 of the alkali halides in the vapor phase. A 40kev electron beam was scattered from the vapor effusing out of the nozzle of a temperature controlled gas cell. The resulting data were analyzed at the University of Edinburgh with the program ED80. This resulted in values for the bond lengths of monomers and the dimers, the bond angle of the dimers and the monomer-dimer ratios. In several cases, it was possible to further refine the data to obtain information on the mean amplitudes of vibration. As a check on the accuracy of the results, the monomer bond distances obtained by electron diffraction were compared to values obtained previously by microwave spectroscopy. The average monomer bond length r_{a} is corrected to obtain the equilibrium bond distance r_{e}. This value is then compared to the value of r_{e } obtained from microwave spectroscopy and found to be in excellent agreement. The bond lengths and angles of the dimers were compared against model calculations. While no one model was found to accurately predict the dimer structure parameters of all of the alkali halides, the Rittner model of Gowda et al was found to accurately predict the structure of six of the dimers. Thermodynamical calculations were performed on the model data which resulted in theoretical curves of the monomer-dimer ratios. Comparison of these curves with the experimental monomer-dimer ratio permits an evaluation of the model vibration frequencies. The enthalpy of formation of the dimer, Delta H_sp{2}{f}(298) is examined with regard to the size of the variation necessary to bring about agreement of the experimental and model monomer-dimer ratios.

  5. Synthesis of 1-/sup 11/C-labelled ethyl, propyl, butyl and isobutyl iodides and examples of alkylation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Laangstroem, B.; Antoni, G.; Gullberg, P.; Halldin, C.; Naagren, K.; Rimland, A.; Svaerd, H.

    1986-01-01

    New /sup 11/C-labelled precursors (1-/sup 11/C)ethyl,(1-/sup 11/C)propyl, (1-/sup 11/C)butyl, and (1-/sup 11/C)isobutyl iodides have been prepared by a 3-step reaction route using a one-pot system. The labelled iodides were obtained in 20-55% radiochemical yields and 65-95% radiochemical purities, with a total time for synthesis of the order of 10-14 min. The labelled iodides have been used in alkylation reactions with nitrogen, oxygen and carbon nucleophiles. The nitrogen alkylation reactions are exemplified by the synthesis of the analgetics N-(1-/sup 11/C-ethyl)iodocaine and N-(1-/sup 11/C-butyl) bupivacaine. The synthesis of 3-nitrophenyl(1-/sup 11/C)propyl ether is also presented in this paper as an example of an oxygen alkylation.

  6. 21 CFR 176.120 - Alkyl ketene dimers.

    Science.gov (United States)

    2010-04-01

    ... derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as... HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: PAPER AND PAPERBOARD COMPONENTS Substances...

  7. Alkyl resorcinols in grains from plants from the family Gramineae

    Directory of Open Access Journals (Sweden)

    Grzegorz Kubus

    2014-02-01

    Full Text Available 5-n-alkylresorcinols were found in 22 of the 27 studied species of grasses. In Agropyron caninum and Bromus macrostachys only the content of alkyl resorcinols was determined, in Agropyron repens, Bromus mollis and Elymus arenarius the composition of alkyl resorcinol homologues was also established. When calculated per gram of dry mass of air-dried grains, the content of alkyl resorcinols was found to be: in the genus Agropyron - approximately 715 µg, in the genus Bromus approximately 60 µg and in Elymus arenarius, 272 µg. The homologues of alkyl resorcinods in the studied genera of grasses differ from the homologues found in wheat or rye by their greater content of long-chain fractions.

  8. Safety assessment of alkyl benzoates as used in cosmetics.

    Science.gov (United States)

    'Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2012-01-01

    The functions of alkyl benzoates in cosmetics include fragrance ingredients, skin-conditioning agents--emollient, skin-conditioning agents--miscellaneous, preservatives, solvents, and plasticizers. The Cosmetic Ingredient Review Expert Panel reviewed the relevant animal and human data and noted gaps in the available safety data for some of the alkyl benzoates. Similar structure activity relationships, biologic functions, and cosmetic product usage allowed the available data of many of the alkyl benzoates to be extended to the entire group. Carcinogenicity data were not available, but available data indicated that these alkyl benzoate cosmetic ingredients are not genotoxic. Also benzoic acid and tested component alcohols were not reproductive or developmental toxicants, are not genotoxic in almost all assays, and are not carcinogenic. These ingredients were determined to be safe in the present practices of use and concentration.

  9. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    Science.gov (United States)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  10. Main-Group Halide Semiconductors Derived from Perovskite: Distinguishing Chemical, Structural, and Electronic Aspects.

    Science.gov (United States)

    Fabini, Douglas H; Labram, John G; Lehner, Anna J; Bechtel, Jonathon S; Evans, Hayden A; Van der Ven, Anton; Wudl, Fred; Chabinyc, Michael L; Seshadri, Ram

    2017-01-03

    Main-group halide perovskites have generated much excitement of late because of their remarkable optoelectronic properties, ease of preparation, and abundant constituent elements, but these curious and promising materials differ in important respects from traditional semiconductors. The distinguishing chemical, structural, and electronic features of these materials present the key to understanding the origins of the optoelectronic performance of the well-studied hybrid organic-inorganic lead halides and provide a starting point for the design and preparation of new functional materials. Here we review and discuss these distinguishing features, among them a defect-tolerant electronic structure, proximal lattice instabilities, labile defect migration, and, in the case of hybrid perovskites, disordered molecular cations. Additionally, we discuss the preparation and characterization of some alternatives to the lead halide perovskites, including lead-free bismuth halides and hybrid materials with optically and electronically active organic constituents.

  11. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites.

    Science.gov (United States)

    Glaser, Tobias; Müller, Christian; Sendner, Michael; Krekeler, Christian; Semonin, Octavi E; Hull, Trevor D; Yaffe, Omer; Owen, Jonathan S; Kowalsky, Wolfgang; Pucci, Annemarie; Lovrinčić, Robert

    2015-08-06

    The organic cation and its interplay with the inorganic lattice underlie the exceptional optoelectronic properties of organo-metallic halide perovskites. Herein we report high-quality infrared spectroscopic measurements of methylammonium lead halide perovskite (CH3NH3Pb(I/Br/Cl)3) films and single crystals at room temperature, from which the dielectric function in the investigated spectral range is derived. Comparison with electronic structure calculations in vacuum of the free methylammonium cation allows for a detailed peak assignment. We analyze the shifts of the vibrational peak positions between the different halides and infer the extent of interaction between organic moiety and the surrounding inorganic cage. The positions of the NH3(+) stretching vibrations point to significant hydrogen bonding between the methylammonium and the halides for all three perovskites.

  12. Palladium-catalyzed Cascade Cyclization-Coupling Reaction of Benzyl Halides with N,N-Diallylbenzoylamide

    Institute of Scientific and Technical Information of China (English)

    Yi Min HU; Yu ZHANG; Jian Lin HAN; Cheng Jian ZHU; Yi PAN

    2003-01-01

    A novel type of palladium-catalyzed cascade cyclization-coupling reaction has been found. Reaction of N, N-diallylbenzoylamide 1 with benzyl halides 2 afforded the corresponding dihydropyrroles 3 in moderate to excellent yields.

  13. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  14. A ruthenium-grafted hydrotalcite as a multifunctional catalyst for direct alpha-alkylation of nitriles with primary alcohols.

    Science.gov (United States)

    Motokura, Ken; Nishimura, Daisuke; Mori, Kohsuke; Mizugaki, Tomoo; Ebitani, Kohki; Kaneda, Kiyotomi

    2004-05-12

    Treatment of a hydrotacite, Mg6Al2(OH)16CO3, with an aqueous solution of RuCl3.nH2O afforded a monomeric Ru(IV) species on the surface of the hydrotalcite. This novel Ru-grafted hydrotalcite (Ru/HT) efficiently catalyzed alpha-alkylation of nitriles with primary alcohols through the cooperative catalysis between the Ru species and the surface base sites. The catalyst system could be further extended for the one-pot synthesis of alpha,alpha-dialkylated phenylacetonitriles via the base-catalyzed Michael reaction of alpha-alkylated phenylacetonitrile with activate olefins.

  15. Iminium Salts by Meerwein Alkylation of Ehrlich’s Aldehyde

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2013-03-01

    Full Text Available 4-(Dimethylaminobenzaldehyde is alkylated at the N atom by dialkyl sulfates, MeI, or Me3O BF4. In contrast, ethylation by Et3O BF4 occurs selectively at the O atom yielding a quinoid iminium ion. 4-(Diethylaminobenzaldehyde is alkylated only at O by either Et or Me oxonium reagent. The iminium salts are prone to hydrolysis giving the corresponding hydrotetrafluoroborates. Five crystal structures were determined.

  16. Isobutane/2-butene alkylation in Y zeolite exchange with metallic ions; Alquilacao de isobutano com 2-buteno em zeolita Y trocada com ions metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbach Junior, Nilton; Mota, Claudio J.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica]. E-mail: cmota@iq.ufrj.br

    2003-07-01

    In industrial scale-process, isobutane/2-butene alkylation has been normally achieved under strong acids conditions, using HF or H{sub 2}SO{sub 4} as catalysts. Nevertheless, this acids present problems such as high consumption and environmental risk. Therefore, there is a strong interest in substituting them by solid catalysts. However, over solid acids, there is a fast deactivation, usually attributed to oligomerization, occurring on Broensted sites, that preferentially adsorb the unsaturated hydrocarbons. This study shows that the reaction can occur on zeolites Y without Broensted acid sites, using an alkyl halide as initiator, added to the feed in the initial moments of the reaction. In this approach the oligomerization problem is minimized. The reactions were carried out in liquid phase at 50 deg C and 450 lb/in{sup 2}, using a mixture of isobutene/2-butene with a molar fraction of 10:1. Catalyst activity and selectivity to trimethylpentane and dimethylhexane for the Y zeolite exchange with Ag{sup +}, Cu{sup ++} and Fe{sup +++} were followed by on line capillary gas chromatography. For comparison purpose, the reaction was also carried out on a HUSY zeolite. All cation-exchanged zeolite presented a better performance than the protonic zeolite. The best performance was of the Y zeolite exchange with Ag{sup +}, followed by Cu{sup ++} and Fe{sup +++} exchanged zeolites. (author)

  17. Alkyl and phenolic glycosides from Saussurea stella.

    Science.gov (United States)

    Wang, Tian-Min; Wang, Ru-Feng; Chen, Hu-Biao; Shang, Ming-Ying; Cai, Shao-Qing

    2013-07-01

    One alkyl glycoside, saussurostelloside A (1), two phenolic glycosides, saussurostellosides B1 (2) and B2 (3), and 27 known compounds, including eleven flavonoids, seven phenolics, six lignans, one neolignan, one phenethyl glucoside and one fatty acid, were isolated from an ethanol extract of Saussurea stella (Asteraceae). Their structures were elucidated by NMR, MS, UV, and IR spectroscopic analysis. Of the known compounds, (+)-medioresinol-di-O-β-D-glucoside (7), picraquassioside C (10), and diosmetin-3'-O-β-D-glucoside (27) were isolated from the Asteraceae family for the first time, while (+)-pinoresinol-di-O-β-D-glucoside (6), di-O-methylcrenatin (11), protocatechuic acid (14), 1,5-di-O-caffeoylquinic acid (17), formononetin (28), and phenethyl glucoside (29) were isolated from the Saussurea genus for the first time. The anti-inflammatory activities of three new compounds (1-3), five lignans ((-)-arctiin (4), (+)-pinoresinol-4-O-β-D-glucoside (5), (+)-pinoresinol-di-O-β-D-glucoside (6), (+)-medioresinol-di-O-β-D-glucoside (7) and (+)-syringaresinol-4-O-β-D-glucoside (8)), one neolignan (picraquassioside C (10)), and one phenolic glycoside (di-O-methylcrenatin (11)) were evaluated by testing their inhibition of the release of β-glucuronidase from PAF-stimulated neutrophils. Only compound 5 showed moderate inhibition of the release of β-glucuronidase, with an inhibition ratio of 39.1%.

  18. Arsine oxidation with heteropoly acid in the presence of halide ions

    Energy Technology Data Exchange (ETDEWEB)

    Dorfman, Ya.A.; Aleshkova, M.M.; Doroshkevich, D.M.; Kel' man, I.V. (AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii)

    1984-12-01

    Kinetics and mechanism of arsine oxidation by phosphomolybdovanadium heteropoly acid are studied in the presense of halide ions as catalysts. It is established that intrasphere arsine oxidation in an intermediate V(5) complex with AsH/sub 3/ and halide-ion is a limiting stage of the proposed mechanism. The quantum-chemical calculation of the electronic structure of intermediate complexes, which supports the above mechanism is carried out. The method of theoretical estimation of the activation energy is proposed.

  19. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2016-02-18

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu, and X is a halide. The method comprises the use of two reservoirs containing different precursors and allowing the vapor diffusion from one reservoir to the other one. A solar cell comprising said crystal is also disclosed.

  20. Spectroscopic Investigation of Indium Halides as Substitutes of Mercury in Low Pressure Discharges for Lighting Applications

    OpenAIRE

    Briefi, Stefan

    2012-01-01

    Low pressure discharges with indium halides as radiator are discussed as substitutes for hazardous mercury in conventional fluorescent lamps. In this work, the applicability of InBr and InCl in a low pressure discharge light source is investigated. The aim is to identify and understand the physical processes which determine the discharge characteristics and the efficiency of the generated near-UV emission of the indium halide molecule and of the indium atom which is created due to dissociatio...

  1. Unique properties of halide perovskites as possible origins of the superior solar cell performance.

    Science.gov (United States)

    Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa

    2014-07-16

    Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries.

  2. An optical criterion to obtain miscible mixed crystals in alkali halides

    OpenAIRE

    2008-01-01

    This work gives a novel criterion to predict the formation of alkali halide solid solutions and discusses some results obtained in the development of ternary and quaternary miscible crystalline dielectric mixtures of alkali halides. These mixtures are miscible in any concentration of their components. The miscibility of these mixed crystals is quite related to the F center through the behavior observed in the spectral position of the optical absorption F band as a function of the lattice cons...

  3. Effects of alkyl substituents of xanthine on phosphodiesterase isoenzymes.

    Science.gov (United States)

    Miyamoto, K; Sakai, R; Kurita, M; Ohmae, S; Sanae, F; Sawanishi, H; Hasegawa, T; Takagi, K

    1995-03-01

    The structure-activity relationships of a series of alkylxanthine derivatives were investigated. The partition coefficient of alkylxanthines enlarged with an elongation of the alkyl chain at the 1-, 3-, or 7-position of xanthine. There was a mild correlation between the apparent partition coefficient and the tracheal relaxant activity or the inhibitory activity on phosphodiesterase (PDE) IV isoenzyme, while the tracheal relaxant activity closely correlated with the PDE IV inhibitory activity. Regarding substituents at different positions, the alkylation at the 3-position increased the inhibitory activity on every PDE isoenzyme. The alkylation at the 1-position potentiated the inhibitory activity on PDE IV with the alkyl chain length, but decreased the activities on other PDE isoenzymes. The alkylation at the 7-position was characteristic in its decrease in inhibitory activity on PDE III. These results suggested that the potency of the inhibitory activity of xanthine derivatives on PDE isoenzymes is not dependent simply upon their hydrophobicity but upon change in the affinity for the active sites on PDE isoenzymes by the introduction of the alkyl group at particular positions of the xanthine skeleton.

  4. Final Technical Report [Development of Catalytic Alkylation and Fluoroalkylation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vicic, David A.

    2014-05-01

    In the early stages of this DOE-funded research project, we sought to prepare and study a well-defined nickel-alkyl complex containing tridentate nitrogen donor ligands. We found that reaction of (TMEDA)NiMe2 (1) with terpyridine ligand cleanly led to the formation of (terpyridyl)NiMe (2), which we also determined to be an active alkylation catalyst. The thermal stability of 2 was unlike that seen for any of the active pybox ligands, and enabled a number of key studies on alkyl transfer reactions to be performed, providing new insights into the mechanism of nickel-mediated alkyl-alkyl cross-coupling reactions. In addition to the mechanistic studies, we showed that the terpyridyl nickel compounds can catalytically cross-couple alkyl iodides in yields up to 98% and bromides in yields up to 46 %. The yields for the bromides can be increased up to 67 % when the new palladium catalyst [(tpy’)Pd-Ph]I is used. The best route to the targeted [(tpy)NiBr] (1) was found to involve the comproportionation reaction of [(dme)NiBr{sub 2}] and [Ni(COD){sub 2}] in the presence of two equivalents of terpyridine. This reaction was driven to high yields of product formation (72 % isolated) by the precipitation of 1 from THF solvent.

  5. Recent Advances in the Application of Chiral Phosphine Ligands in Pd-Catalysed Asymmetric Allylic Alkylation

    Directory of Open Access Journals (Sweden)

    Erika Martin

    2011-01-01

    Full Text Available One of the most powerful approaches for the formation of simple and complex chiral molecules is the metal-catalysed asymmetric allylic alkylation. This reaction has been broadly studied with a great variety of substrates and nucleophiles under different reaction conditions and it has promoted the synthesis of new chiral ligands to be evaluated as asymmetric inductors. Although the mechanism as well as the active species equilibria are known, the performance of the catalytic system depends on the fine tuning of factors such as type of substrate, nucleophile nature, reaction medium, catalytic precursor and type of ligand used. Particularly interesting are chiral phosphines which have proved to be effective asymmetric inductors in several such reactions. The present review covers the application of phosphine-donor ligands in Pd-catalysed asymmetric allylic alkylation in the last decade.

  6. Mechanistic Aspects of Aryl-Halide Oxidative Addition, Coordination Chemistry, and Ring-Walking by Palladium.

    Science.gov (United States)

    Zenkina, Olena V; Gidron, Ori; Shimon, Linda J W; Iron, Mark A; van der Boom, Milko E

    2015-11-01

    This contribution describes the reactivity of a zero-valent palladium phosphine complex with substrates that contain both an aryl halide moiety and an unsaturated carbon-carbon bond. Although η(2) -coordination of the metal center to a C=C or C≡C unit is kinetically favored, aryl halide bond activation is favored thermodynamically. These quantitative transformations proceed under mild reaction conditions in solution or in the solid state. Kinetic measurements indicate that formation of η(2) -coordination complexes are not nonproductive side-equilibria, but observable (and in several cases even isolated) intermediates en route to aryl halide bond cleavage. At the same time, DFT calculations show that the reaction with palladium may proceed through a dissociation-oxidative addition mechanism rather than through a haptotropic intramolecular process (i.e., ring walking). Furthermore, the transition state involves coordination of a third phosphine to the palladium center, which is lost during the oxidative addition as the C-halide bond is being broken. Interestingly, selective activation of aryl halides has been demonstrated by adding reactive aryl halides to the η(2) -coordination complexes. The product distribution can be controlled by the concentration of the reactants and/or the presence of excess phosphine.

  7. Preliminary Study on Synthesis of Organolead Halide with Lead Derived from Solder Wire

    Science.gov (United States)

    Pratiwi, P.; Rahmi, G. N.; Aimon, A. H.; Iskandar, F.; Abdullah, M.; Nuryadin, B. W.

    2016-08-01

    Organolead halide has attracted great attention for application in perovskite solar cells due to its high power conversion efficiency (PCE) of up to 20.1%. One of the most common perovskite materials is lead based reagent. In this research, we have synthesized organolead halide with lead extracted from solder wire. In the preparation procedure, first PbCl2 and PbI2 are produced by reacting lead from the solder wire with NaCl and KI, which are used as the basic substance for the perovskite material. Then, in order to get perovskite solution, the powders are reacted with methylamine iodide (MAI) in dimethylformamide (DMF) using a solution based method. Further, the spin coating method is used to fabricate perovskite thin film. The XRD peak results agreed with JCPDS Powder Diffraction of PbCl2 and PbI2. Based on FTIR, the transmittance spectra of the organolead mixed halide that was prepared using solder wire lead exhibited absorption peaks identical to organolead mixed halide using commercial lead. The UV-Vis absorbance spectra of the organolead mixed halide from solder wire lead also exhibited the same absorption ability as from commercial lead. Morever, EDS measurement showed that the element composition of the perovskite thin film using lead from solder wire identical to that from commercial lead. This indicates that solder wire lead is suitable enough for organolead halide material synthesis.

  8. Depolymerization of coal by oxidation and alkylation; Sanka bunkai to alkyl ka ni yoru sekitan kaijugo

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, H.; Isoda, T.; Kusakabe, K.; Morooka, S. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hayashi, J. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    Change in depolymerization degree and coal structure was studied for depolymerization treatment of coal in various alcohol containing aqueous hydrogen peroxide. In experiment, the mixture of Yallourn coal, alcohol and aqueous hydrogen peroxide was agitated in nitrogen atmosphere of normal pressure at 70{degree}C for 12 hours. As the experimental result, the methanol solubility of only 5% of raw coal increased up to 35.2% by hydrogen peroxide treatment, while the yield of insoluble matters also decreased from 94% to 62%. Most of the gas produced during treatment was composed of inorganic gases such as CO and CO2, and its carbon loss was extremely decreased by adding alcohol. From the analytical result of carbon loss in hydrogen peroxide treatment, it was clarified that alkylation advances with introduction of alkyl group derived from alcohol into coal by hydrogen peroxide treatment under a coexistence of alcohol, and depolymerization reaction of coal itself is thus promoted by alcohol. 4 refs., 7 figs., 1 tab.

  9. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites

    Science.gov (United States)

    Yang, Jianfeng; Wen, Xiaoming; Xia, Hongze; Sheng, Rui; Ma, Qingshan; Kim, Jincheol; Tapping, Patrick; Harada, Takaaki; Kee, Tak W.; Huang, Fuzhi; Cheng, Yi-Bing; Green, Martin; Ho-Baillie, Anita; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Conibeer, Gavin

    2017-01-01

    The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA+/MA+/Cs+, X=I−/Br−) are compared in this study to reveal the carrier-phonon dynamics within. Here we show a stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts. Compared with the caesium-based system, a 10 times slower carrier-phonon relaxation rate is observed in FAPbI3. The up-conversion of low-energy phonons is proposed to be responsible for the bottleneck effect. The presence of organic cations introduces overlapping phonon branches and facilitates the up-transition of low-energy modes. The blocking of phonon propagation associated with an ultralow thermal conductivity of the material also increases the overall up-conversion efficiency. This result also suggests a new and general method for achieving long-lived hot carriers in materials. PMID:28106061

  10. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites.

    Science.gov (United States)

    Yang, Jianfeng; Wen, Xiaoming; Xia, Hongze; Sheng, Rui; Ma, Qingshan; Kim, Jincheol; Tapping, Patrick; Harada, Takaaki; Kee, Tak W; Huang, Fuzhi; Cheng, Yi-Bing; Green, Martin; Ho-Baillie, Anita; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Conibeer, Gavin

    2017-01-20

    The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA(+)/MA(+)/Cs(+), X=I(-)/Br(-)) are compared in this study to reveal the carrier-phonon dynamics within. Here we show a stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts. Compared with the caesium-based system, a 10 times slower carrier-phonon relaxation rate is observed in FAPbI3. The up-conversion of low-energy phonons is proposed to be responsible for the bottleneck effect. The presence of organic cations introduces overlapping phonon branches and facilitates the up-transition of low-energy modes. The blocking of phonon propagation associated with an ultralow thermal conductivity of the material also increases the overall up-conversion efficiency. This result also suggests a new and general method for achieving long-lived hot carriers in materials.

  11. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites

    Science.gov (United States)

    Yang, Jianfeng; Wen, Xiaoming; Xia, Hongze; Sheng, Rui; Ma, Qingshan; Kim, Jincheol; Tapping, Patrick; Harada, Takaaki; Kee, Tak W.; Huang, Fuzhi; Cheng, Yi-Bing; Green, Martin; Ho-Baillie, Anita; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Conibeer, Gavin

    2017-01-01

    The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA+/MA+/Cs+, X=I-/Br-) are compared in this study to reveal the carrier-phonon dynamics within. Here we show a stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts. Compared with the caesium-based system, a 10 times slower carrier-phonon relaxation rate is observed in FAPbI3. The up-conversion of low-energy phonons is proposed to be responsible for the bottleneck effect. The presence of organic cations introduces overlapping phonon branches and facilitates the up-transition of low-energy modes. The blocking of phonon propagation associated with an ultralow thermal conductivity of the material also increases the overall up-conversion efficiency. This result also suggests a new and general method for achieving long-lived hot carriers in materials.

  12. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system.

    Science.gov (United States)

    Chen, Yiyun; Kamlet, Adam S; Steinman, Jonathan B; Liu, David R

    2011-02-01

    Using a system that accelerates the serendipitous discovery of new reactions by evaluating hundreds of DNA-encoded substrate combinations in a single experiment, we explored a broad range of reaction conditions for new bond-forming reactions. We discovered reactivity that led to a biomolecule-compatible, Ru(II)-catalysed azide-reduction reaction induced by visible light. In contrast to current azide-reduction methods, this reaction is highly chemoselective and is compatible with alcohols, phenols, acids, alkenes, alkynes, aldehydes, alkyl halides, alkyl mesylates and disulfides. The remarkable functional group compatibility and mild conditions of the reaction enabled the azide reduction of nucleic acid and oligosaccharide substrates, with no detectable occurrence of side reactions. The reaction was also performed in the presence of a protein enzyme without the loss of enzymatic activity, in contrast to two commonly used azide-reduction methods. The visible-light dependence of this reaction provides a means of photouncaging functional groups, such as amines and carboxylates, on biological macromolecules without using ultraviolet irradiation.

  13. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure.

    Science.gov (United States)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-03-15

    Since the first reports on high efficiency, solution processed solar cells based on hybrid lead halide perovskites, there has been an explosion of activities on these materials. Researchers with interests spanning the full range from conventional inorganic to emerging organic and hybrid optoelectronic technologies have been contributing to the prolific research output. This has led to solar cell power conversion efficiencies now exceeding 20% and the demonstration of proofs of concept for electroluminescent and lasing devices. Hybrid perovskites can be self-assembled by a simple chemical deposition of the constituent units, with the possibility of integrating the useful properties of organic and inorganic compounds at the molecular scale within a single crystalline material, thus enabling a fine-tuning of the electronic properties. Tellingly, the fundamental properties of these materials may make us think of a new, solution processable, GaAs-like semiconductor. While this can be true to a first approximation, hybrid perovskites are intrinsically complex materials, where the presence of various types of interactions and structural disorder may strongly affect their properties. In particular, a clear understanding and control of the relative interactions between the organic and inorganic moieties is of paramount importance to properly disentangle their innate physics. In this Account we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at the molecular level by using Raman spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and luminescence properties of the semiconductor. Finally we address the controversy surrounding electron-hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local

  14. Alkyl chain length-dependent surface reaction of dodecahydro-N-alkylcarbazoles on Pt model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gleichweit, Christoph; Amende, Max; Bauer, Udo; Schernich, Stefan; Höfert, Oliver; Lorenz, Michael P. A.; Zhao, Wei; Bachmann, Philipp; Papp, Christian, E-mail: christian.papp@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Müller, Michael; Koch, Marcus [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Wasserscheid, Peter [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Libuda, Jörg; Steinrück, Hans-Peter [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)

    2014-05-28

    The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H{sub 12}-NEC), dodecahydro-N-propylcarbazole (H{sub 12}-NPC), and dodecahydro-N-butylcarbazole (H{sub 12}-NBC), on Pt(111) and on Al{sub 2}O{sub 3}-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C–N bond of the alkyl chain starting at 380–390 K. On Pt/Al{sub 2}O{sub 3}, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.

  15. Fatty acid alkyl esters: perspectives for production of alternative biofuels.

    Science.gov (United States)

    Röttig, Annika; Wenning, Leonie; Bröker, Daniel; Steinbüchel, Alexander

    2010-02-01

    The global economy heads for a severe energy crisis: whereas the energy demand is going to rise, easily accessible sources of crude oil are expected to be depleted in only 10-20 years. Since a serious decline of oil supply and an associated collapse of the economy might be reality very soon, alternative energies and also biofuels that replace fossil fuels must be established. In addition, these alternatives should not further impair the environment and climate. About 90% of the biofuel market is currently captured by bioethanol and biodiesel. Biodiesel is composed of fatty acid alkyl esters (FAAE) and can be synthesized by chemical, enzymatic, or in vivo catalysis mainly from renewable resources. Biodiesel is already established as it is compatible with the existing fuel infrastructure, non-toxic, and has superior combustion characteristics than fossil diesel; and in 2008, the global production was 12.2 million tons. The biotechnological production of FAAE from low cost and abundant feedstocks like biomass will enable an appreciable substitution of petroleum diesel. To overcome high costs for immobilized enzymes, the in vivo synthesis of FAAE using bacteria represents a promising approach. This article points to the potential of different FAAE as alternative biofuels, e.g., by comparing their fuel properties. In addition to conventional production processes, this review presents natural and genetically engineered biological systems capable of in vivo FAAE synthesis.

  16. Middle-phase microemulsions of green surfactant alkyl polyglucosides

    Institute of Scientific and Technical Information of China (English)

    CHAI; Jinling; (柴金岭); LI; Ganzuo; (李干佐); ZHANG; Gaoyong; (张高勇); LOU; Anjing; ZHANG; Jian; (张剑); ZHANG; Yue; (张越)

    2003-01-01

    The microemulsion behavior in the quaternary system alkyl polyglucoside (C8G1.46 , C10G1.54)/1-butanol/cyclohexane/water has been studied at 40℃ with the alcohol concentration scanning and the fishlike phase diagram methods. Increasing δat a constant γ causes a phase inversion from an oil-in-water microemulsion in contact with excess oil (Winsor I or 2 ) to a water-in-oil microemulsion in contact with excess water (Winsor Ⅲ or ) via a middle-phase microemulsionin contact with excess oil and water (Winsor Ⅲ or 3). By using the simple mass balance equation and the HLB plane equation, the mass fraction of 1-butanol in the interfacial layer, S s2, the monomeric solubilities of APG and 1-butanol, S1 and S2, in the oil phase, and the mass fractions of APG and 1-butanol in the interfacial layer (C1 and C2 ) have been calculated, respectively. The effects of different alcohols, aqueous media and oils on the phase behavior and the composition of the interfacial layer are also investigated. It is found that the alcohols with longer hydrocarbon chain, oil molecules with smaller molecular volume and the addition of inorganic salt can increase the solubilization of the microemulsions .

  17. 无溶剂体系中固定化脂肪酶Candida sp.99-125催化合成油酸低碳醇酯%Immobilized-Lipase (Candida sp.99-125)-Catalyzed Esterification of Alkyl Oleates in Solvent-free Systems

    Institute of Scientific and Technical Information of China (English)

    仲蕙; 方正; 邹宝华; 李昕; 郭凯

    2013-01-01

    采用固定化脂肪酶Candida sp.99-125在无溶剂体系中催化合成油酸低碳醇酯,考察了加酶量、温度、酸醇摩尔比和醇结构对油酸酯化率的影响.结果表明,加酶量为底物质量的3%,最适温度为20℃,酸与醇摩尔比为1∶1,甲醇对该酶有一定的毒性,由于空间位阻效应,该酶对伯醇具有高选择性,对仲醇、叔醇的选择性低,且对长链脂肪酸催化活性高,对带支链的多元酸、多元醇活性低.该酶重复使用5次,酶活性基本没有降低.与传统的化学法相比,用该酶催化合成酯类化合物的色泽更浅.%The esterification between oleic acid and alkyl alcohols in solvent-free systems were catalyzed by an immobilized lipase from Candida sp.99-125.The effects of several factors including enzyme concentration,temperature,molar ratio of oleic acid to alkyl alcohols,and structure of alcohols have been also investigated.The results indicated that the reactions catalyzed by lipase at 20 ℃ with the presence of 3 % (mass fraction)lipase,a 1 ∶ 1 molar ratio of oleic acid to alcohols,afforded products in high yields.Methanol has certain toxicity on the activity of the lipase.The enzyme showed high selectivity to primary alcohols and low selectivity to secondary and tertiary alcohols because of the sterical effect.It showed high activity to long chain fatty acids and low activity to polybasic acids and polyhydric alcohols with branched chain.The lipase showed no appreciable loss in activity after being continuously operated for 5 times.The enzymatic synthesis gave purer products,compared with the conventional chemical system.

  18. Interaction between alkyl radicals and single wall carbon nanotubes.

    Science.gov (United States)

    Denis, Pablo A

    2012-06-30

    The addition of primary, secondary, and tertiary alkyl radicals to single wall carbon nanotubes (SWCNTs) was studied by means of dispersion corrected density functional theory. The PBE, B97-D, M06-L, and M06-2X functionals were used. Consideration of Van der Waals interactions is essential to obtain accurate addition energies. In effect, the enthalpy changes at 298 K, for the addition of methyl, ethyl, isopropyl, and tert-butyl radicals onto a (5,5) SWCNT are: -25.7, -25.1, -22.4, and -16.6 kcal/mol, at the M06-2X level, respectively, whereas at PBE/6-31G* level they are significantly lower: -25.0, -19.0, -16.7, and -5.0 kcal/mol respectively. Although the binding energies are small, the attached alkyl radicals are expected to be stable because of the large desorption barriers. The importance of nonbonded interactions was more noticeable as we moved from primary to tertiary alkyl radicals. Indeed, for the tert-butyl radical, physisorption onto the (11,0) SWCNT is preferred rather than chemisorption. The bond dissociation energies determined for alkyl radicals and SWCNT follow the trend suggested by the consideration of radical stabilization energies. However, they are in disagreement with some degrees of functionalization observed in recent experiments. This discrepancy would stem from the fact that for some HiPco nanotubes, nonbonded interactions with alkyl radicals are stronger than covalent bonds.

  19. Effects of alkyl substitutions of xanthine skeleton on bronchodilation.

    Science.gov (United States)

    Sakai, R; Konno, K; Yamamoto, Y; Sanae, F; Takagi, K; Hasegawa, T; Iwasaki, N; Kakiuchi, M; Kato, H; Miyamoto, K

    1992-10-30

    Structure-activity relationships in a series of 1,3,7-trialkyl-xanthine were studied with guinea pigs. Relaxant actions in the tracheal muscle were increased with alkyl chain length at the 1- and 3-positions of the xanthine skeleton, but decreased by alkylation at the 7-position. Positive chronotropic actions in the right atrium were potentiated with 3-alkyl chain length but tended to decrease with 1-alkylation and diminish by 7-substitution. Consequently, while the 1- and 3-substitutions were equally important for the tracheal smooth muscle relaxation, the substitution at the 1-position was more important than the 3-substitution for bronchoselectivity. The 7-alkylation may be significant to cancel heart stimulation. There were good correlations between the smooth muscle relaxant action and the cyclic AMP-PDE inhibitory activity in 3-substituents and the affinity for adenosine (A1) receptors in 1-, 3-, and 7-substituents. This suggests that not only the cyclic AMP-PDE inhibitory activity but also the adenosine antagonistic activity is important in the bronchodilatory effects of alkylxanthines. Among these xanthine derivatives, 1-butyl-3-propylxanthine and its 7-methylated derivative showed high bronchoselectivity in the in vitro and in vivo experiments compared to theophylline and enprofylline and may be new candidates for bronchodilator.

  20. Robust quantum anomalous Hall effect in ferromagnetic transition metal halides

    CERN Document Server

    Huang, Chengxi; Wu, Haiping; Deng, Kaiming; Jena, Puru; Kan, Erjun

    2016-01-01

    The quantum anomalous Hall (QAH) effect is a novel topological spintronic phenomenon arising from inherent magnetization and spin-orbit coupling. Various theoretical and experimental efforts have been devoted in search of robust intrinsic QAH insulators. However, up to now, it has only been observed in Cr or V doped (Bi,Sb)2Te3 film in experiments with very low working temperature. Based on the successful synthesis of transition metal halides, we use first-principles calculations to predict that RuI3 monolayer is an intrinsic ferromagnetic QAH insulator with a topologically nontrivial global band gap of 11 meV. This topologically nontrivial band gap at the Fermi level is due to its crystal symmetry, thus the QAH effect is robust. Its Curie temperature, estimated to be ~360 K using Monte-Carlo simulation, is above room temperature and higher than most of two-dimensional ferromagnetic thin films. We also discuss the manipulation of its exchange energy and nontrivial band gap by applying in-plane strain. Our wor...

  1. Coordination Chemistry Dictates the Structural Defects in Lead Halide Perovskites.

    Science.gov (United States)

    Rahimnejad, Sara; Kovalenko, Alexander; Forés, Sergio Martí; Aranda, Clara; Guerrero, Antonio

    2016-09-19

    We show the influence of species present in precursor solution during formation of lead halide perovskite materials on the structural defects of the films. The coordination of lead by competing solvent molecules and iodide ions dictate the type of complexes present in the films. Depending on the processing conditions all PbIS5 (+) , PbI2 S4, PbI3 S3 (-) , PbI4 S2 (2-) , PbI5 S2 (3-) , PbI6 (4-) and 1D (Pb2 I4 )n chains are observed by absorption measurements. Different parameters are studied such as polarity of the solvent, concentration of iodide ions, concentration of solvent molecules and temperature. It is concluded that strongly coordinating solvents will preferentially form species with a low number of iodide ions and less coordinative solvents generate high concentration of PbI6 (-) . We furthermore propose that all these plumbate ions may act as structural defects determining electronic properties of the photovoltaic films.

  2. Symmetry-Based Tight Binding Modeling of Halide Perovskite Semiconductors.

    Science.gov (United States)

    Boyer-Richard, Soline; Katan, Claudine; Traoré, Boubacar; Scholz, Reinhard; Jancu, Jean-Marc; Even, Jacky

    2016-10-06

    On the basis of a general symmetry analysis, this paper presents an empirical tight-binding (TB) model for the reference Pm-3m perovskite cubic phase of halide perovskites of general formula ABX3. The TB electronic band diagram, with and without spin orbit coupling effect of MAPbI3 has been determined based on state of the art density functional theory results including many body corrections (DFT+GW). It affords access to various properties, including distorted structures, at a significantly reduced computational cost. This is illustrated with the calculation of the band-to-band absorption spectrum, the variation of the band gap under volumetric strain, as well as the Rashba effect for a uniaxial symmetry breaking. Compared to DFT approaches, this empirical model will help to tackle larger issues, such as the electronic band structure of large nanostructures, including many-body effects, or heterostructures relevant to perovskite device modeling suited to the description of atomic-scale features.

  3. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors.

    Science.gov (United States)

    Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D; Katan, Claudine; Even, Jacky; Kepenekian, Mikaël

    2016-11-22

    Layered halide hybrid organic-inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells and revisited for light-emitting devices. In this review, we combine classical solid-state physics concepts with simulation tools based on density functional theory to overview the main features of the optoelectronic properties of layered HOP. A detailed comparison between layered and 3D HOP is performed to highlight differences and similarities. In the same way as the cubic phase was established for 3D HOP, here we introduce the tetragonal phase with D4h symmetry as the reference phase for 2D monolayered HOP. It allows for detailed analysis of the spin-orbit coupling effects and structural transitions with corresponding electronic band folding. We further investigate the effects of octahedral tilting on the band gap, loss of inversion symmetry and possible Rashba effect, quantum confinement, and dielectric confinement related to the organic barrier, up to excitonic properties. Altogether, this paper aims to provide an interpretive and predictive framework for 3D and 2D layered HOP optoelectronic properties.

  4. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2016-08-01

    Full Text Available Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH3NH3PbI3−xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices.

  5. Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics.

    Science.gov (United States)

    Miyano, Kenjiro; Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2016-06-16

    Ion migration has been suspected as the origin of various irreproducible and unstable properties, most notably the hysteresis, of lead halide perovskite photovoltaic (PV) cells since the early stage of the research. Although many evidence of ionic movement have been presented both numerically and experimentally, a coherent and quantitative picture that accounts for the observed irreproducible phenomena is still lacking. At the same time, however, it has been noticed that in certain types of PV cells, the hysteresis is absent or at least within the measurement reproducibility. We have previously shown that the electronic properties of hysteresis-free cells are well represented in terms of the conventional inorganic semiconductors. The reproducibility of these measurements was confirmed typically within tens of minutes under the biasing field of -1 V to +1.5 V. In order to probe the effect of ionic motion in the hysteresis-free cells, we extended the time scale and the biasing rage in the electronic measurements, from which we conclude the following: (1) From various evidence, it appears that ion migration is inevitable. However, it does not cause detrimental effects to the PV operation. (2) We propose, based on the quantitative characterization, that the degradation is more likely due to the chemical change at the interfaces between the carrier selective layers and perovskite rather than the compositional change of the lead iodide perovskite bulk. Together, they give much hope in the use of the lead iodide perovskite in the use of actual application.

  6. Electron-phonon coupling in hybrid lead halide perovskites.

    Science.gov (United States)

    Wright, Adam D; Verdi, Carla; Milot, Rebecca L; Eperon, Giles E; Pérez-Osorio, Miguel A; Snaith, Henry J; Giustino, Feliciano; Johnston, Michael B; Herz, Laura M

    2016-05-26

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.

  7. Electron-phonon coupling in hybrid lead halide perovskites

    Science.gov (United States)

    Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.

    2016-05-01

    Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ~40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.

  8. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  9. Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells.

    Science.gov (United States)

    Colella, Silvia; Mosconi, Edoardo; Pellegrino, Giovanna; Alberti, Alessandra; Guerra, Valentino L P; Masi, Sofia; Listorti, Andrea; Rizzo, Aurora; Condorelli, Guglielmo Guido; De Angelis, Filippo; Gigli, Giuseppe

    2014-10-16

    The role of chloride in the MAPbI3-xClx perovskite is still limitedly understood, albeit subjected of much debate. Here, we present a combined angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and first-principles DFT modeling to investigate the MAPbI3-xClx/TiO2 interface. AR-XPS analyses carried out on ad hoc designed bilayers of MAPbI3-xClx perovskite deposited onto a flat TiO2 substrate reveal that the chloride is preferentially located in close proximity to the perovskite/TiO2 interface. DFT calculations indicate the preferential location of chloride at the TiO2 interface compared to the bulk perovskite due to an increased chloride-TiO2 surface affinity. Furthermore, our calculations clearly demonstrate an interfacial chloride-induced band bending, creating a directional "electron funnel" that may improve the charge collection efficiency of the device and possibly affecting also recombination pathways. Our findings represent a step forward to the rationalization of the peculiar properties of mixed halide perovskite, allowing one to further address material and device design issues.

  10. X-ray Scintillation in Lead Halide Perovskite Crystals

    CERN Document Server

    Birowosuto, M D; Drozdowski, W; Brylew, K; Lachmanski, W; Bruno, A; Soci, C

    2016-01-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yie...

  11. Quantum anomalous Hall effect in ferromagnetic transition metal halides

    Science.gov (United States)

    Huang, Chengxi; Zhou, Jian; Wu, Haiping; Deng, Kaiming; Jena, Puru; Kan, Erjun

    2017-01-01

    The quantum anomalous Hall (QAH) effect is a novel topological spintronic phenomenon arising from inherent magnetization and spin-orbit coupling. Various theoretical and experimental efforts have been devoted in search of intrinsic QAH insulators. However, up to now, it has only been observed in Cr or V doped (Bi,Sb ) 2T e3 film in experiments with very low working temperature. Based on the successful synthesis of transition metal halides, we use first-principles calculations to predict that the Ru I3 monolayer is an intrinsic ferromagnetic QAH insulator with a topologically nontrivial global band gap of 11 meV. This topologically nontrivial band gap at the Fermi level is due to its crystal symmetry, thus the QAH effect is robust. Its Curie temperature, estimated to be ˜360 K using Monte Carlo simulation, is above room temperature and higher than most two-dimensional ferromagnetic thin films. The inclusion of Hubbard U in the Ru-d electrons does not affect this result. We also discuss the manipulation of its exchange energy and nontrivial band gap by applying in-plane strain. Our work adds an experimentally feasible member to the QAH insulator family, which is expected to have broad applications in nanoelectronics and spintronics.

  12. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    Science.gov (United States)

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating.

  13. Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 16 alkyl ethylhexanoates for use in cosmetics, concluding that these ingredients are safe in cosmetic formulations in the present practices of use and concentrations when formulated to be nonirritating. The alkyl ethylhexanoates primarily function as skin-conditioning agents in cosmetics. The highest concentration of use reported for any of the alkyl ethylhexanoates is 77.3% cetyl ethylhexanoate in rinse-off formulations used near the eye, and the highest leave-on use reported is 52% cetyl ethylhexanoate in lipstick formulations. The Panel reviewed available animal and clinical data related to these ingredients, and the similarities in structure, properties, functions, and uses of ingredients from previous CIR assessments on constituent alcohols that allowed for extrapolation of the available toxicological data to assess the safety of the entire group.

  14. Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gastón A; Ghahraman Afshar, Majid; Bakker, Eric

    2014-11-18

    Water analysis is one of the greatest challenges in the field of environmental analysis. In particular, seawater analysis is often difficult because a large amount of NaCl may mask the determination of other ions, i.e., nutrients, halides, and carbonate species. We demonstrate here the use of thin-layer samples controlled by cyclic voltammetry to analyze water samples for chloride, bromide, and iodide. The fabrication of a microfluidic electrochemical cell based on a Ag/AgX wire (working electrode) inserted into a tubular Nafion membrane is described, which confines the sample solution layer to less than 15 μm. By increasing the applied potential, halide ions present in the thin-layer sample (X(-)) are electrodeposited on the working electrode as AgX, while their respective counterions are transported across the perm-selective membrane to an outer solution. Thin-layer cyclic voltammetry allows us to obtain separated peaks in mixed samples of these three halides, finding a linear relationship between the halide concentration and the corresponding peak area from about 10(-5) to 0.1 M for bromide and iodide and from 10(-4) to 0.6 M for chloride. This technique was successfully applied for the halide analysis in tap, mineral, and river water as well as seawater. The proposed methodology is absolute and potentially calibration-free, as evidenced by an observed 2.5% RSD cell to cell reproducibility and independence from the operating temperature.

  15. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism

    Science.gov (United States)

    Paula, S.; Volkov, A. G.; Deamer, D. W.

    1998-01-01

    Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.

  16. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    Science.gov (United States)

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients.

  17. Palladium-catalyzed reductive homocoupling of aromatic halides and oxidation of alcohols.

    Science.gov (United States)

    Zeng, Minfeng; Du, Yijun; Shao, Linjun; Qi, Chenze; Zhang, Xian-Man

    2010-04-16

    Palladium-catalyzed reductive homocoupling of aromatic halides can be performed in alcohol solutions without any auxiliary reducing reagents. Pd(dppf)Cl(2) [dppf = 1,1'-bis(diphenylphosphino)ferrocene] has been shown as the most effective catalyst among the palladium catalysts screened for the model reductive homocoupling of iodobenzene in alcoholic solutions. The reduction of iodobenzene is stoichiometrically coupled with the oxidation of solvent alcohol (3-pentanol). The X-ray photoelectron spectroscopic (XPS) studies clearly indicate that the oxidation of solvent alcohol molecules is involved with the in situ regeneration of the reductive Pd(0)(dppf) active species, indicating that the solvent alcohol also reacts as a reducing reagent for the reductive homocoupling of aromatic halides. Elimination of the external reducing reagents will simplify the product separation and purification. Base is essential for the success of the Pd(dppf)Cl(2)-catalyzed redox reaction as 2 molar equiv of base is needed to neutralize the acid byproduct formed. Biaryls are the predominant products for the Pd(dppf)Cl(2)-catalyzed reductions of the unsubstituted aromatic halides in 3-pentanol solution, whereas the dehalogenation products are predominant for the Pd(dppf)Cl(2)-catalyzed reductions of the substituted aromatic halides. The reaction mechanisms have been discussed for the palladium-mediated concomitant reduction of aromatic halides and oxidation of alcohols without any auxiliary reductants and oxidants.

  18. Computational and Experimental Studies of Regioselective SNAr Halide Exchange (Halex) Reactions of Pentachloropyridine.

    Science.gov (United States)

    Froese, Robert D J; Whiteker, Gregory T; Peterson, Thomas H; Arriola, Daniel J; Renga, James M; Shearer, Justin W

    2016-11-18

    The Halex reaction of pentachloropyridine with fluoride ion was studied experimentally and computationally with a modified ab initio G3MP2B3 method. The G3 procedure was altered, as the anionic transition state optimizations failed due to the lack of diffuse functions in the small 6-31G* basis set. Experimental Halex regioselectivities were consistent with kinetic control at the 4-position. The reverse Halex reaction of fluoropyridines with chloride sources was demonstrated using precipitation of LiF in DMSO as a driving force. Reverse Halex regioselectivity at the 4-position was predicted by computations and was consistent with kinetic control. Scrambling of halide ions between chlorofluoropyridines was catalyzed by n-Bu4PCl, and the products of these reactions were shown to result from a combination of kinetic and thermodynamic control. Comparison of the C-F and C-Cl homolytic bond dissociation energies suggests that an important thermodynamic factor which controls regioselectivity in this system is the weak C2-Cl bond. The differences between ΔH° values of chlorofluoropyridines can be explained by a combination of three factors: (1) the number of fluorine atoms in the molecule, (2) the number of fluorine atoms at the C2 and C6 positions, and (3) the number of pairs of fluorine atoms which are ortho to one another.

  19. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    Science.gov (United States)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  20. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

    Science.gov (United States)

    Zhao, Yixin; Zhu, Kai

    2016-02-07

    Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities.

  1. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    Science.gov (United States)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092

  2. All-Vacuum-Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11.

    Science.gov (United States)

    Chen, Chien-Yu; Lin, Hung-Yu; Chiang, Kai-Ming; Tsai, Wei-Lun; Huang, Yu-Ching; Tsao, Cheng-Si; Lin, Hao-Wu

    2017-03-01

    Vacuum-sublimed inorganic cesium lead halide perovskite thin films are prepared and integrated in all-vacuum-deposited solar cells. Special care is taken to determine the stoichiometric balance of the sublimation precursors, which has great influence on the device performance. The mixed halide devices exhibit exceptional stabilized power conversion efficiency (11.8%) and promising thermal and long-term stabilities.

  3. Phosphine-free conversion of alcohols into alkyl thiocyanates using trichloroisocyanuric acid/NH4SCN

    Institute of Scientific and Technical Information of China (English)

    Roya Azadi; Babak Mokhtari; Mohamad-Ali Makaremi

    2012-01-01

    A convenient and efficient phosphine-free procedure for the one-pot conversion of primary,secondary and tertiary alcohols into the corresponding alkyl thiocyanates or alkyl isothiocyanates is described using trichloroisocyanuric acid/NH4SCN.

  4. Regenerable Contaminant Removal System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regenerable Contaminant Removal System (RCRS) is an innovative method to remove sulfur and halide compounds from contaminated gas streams to part-per-billion...

  5. Origins and Mechanisms of Hysteresis in Organometal Halide Perovskites.

    Science.gov (United States)

    Li, Cheng; Guerrero, Antonio; Zhong, Yu; Huettner, Sven

    2017-02-23

    Inorganic-organic organometal halide perovskites, such as CH3NH3PbI3 or CsPbI3, etc., are an unprecedented rising star in the field of photovoltaics since 2009, owing to its exceptionally high power conversion efficiency (PCE) and simple fabrication processability. Despite its relatively short history of development, intensive investigations have been concentrating on this material, ranging from crystal structure analysis and photophysical characterization, to performance optimization and device integration, etc. Yet, applied in photovoltaic devices, this material is suffering from hysteresis, that is, the difference of the current-voltage (I-V) curve during sweeping in two directions (from short-circuit towards open-circuit and vice versa). This behavior may significantly impede the large-scale commercial application. This Review will focus on the recent theoretical and experimental efforts to reveal the origin and mechanism of hysteresis. The proposed origins include (1) ferroelectric polarization, (2) charge trapping/detrapping and (3) ion migration. Among them, recent evidences consistently support that ion migration plays a key role for the hysteretic behavior in perovskite solar cells (PSC). Hence, this Review will summarize the recent results on ion migration, such as the migrating ion species, activation energy measurement, capacitive characterization and internal electrical field modulation, etc. In addition, this Review will also present the devices with alleviation/elimination of hysteresis by incorporating either large size grains or phenyl-C61-butyric acid methyl ester (PCBM) molecules. In a different application, the hysteretic property has been utilized in photovoltaic and memristive switching devices. In sum, by examining above three possible mechanisms, it is concluded that the origin of hysteresis of PSCs is associated with a combination of effects, both ion/defect migration and charge trapping/detrapping. This strong interaction between ion

  6. Solubility and permeability of steroids in water in the presence of potassium halides.

    Science.gov (United States)

    Messner, M; Loftsson, T

    2010-02-01

    Water forms a network of hydrogen bonded water molecules that gives liquid water unique physicochemical properties. Ions that affect the network structure, e.g. potassium halides, are known to either increase or decrease aqueous solubilities of drugs. Most biological membranes consist of hydrophilic exterior and a lipophilic interior. Mathematically they can be treated as two-layer membranes, i.e. a hydrophilic water layer that is referred to as unstirred water layer (UWL) and a lipophilic membrane. The purpose of this study was to investigate if and then how ions affect drug permeation through the UWL. The effects of potassium halides on the solubility and permeability of dexamethasone and hydrocortisone was investigated. The potassium halides had either increasing or decreasing effect on their aqueous solubility but did not have any effect on their permeability through UWL.

  7. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.

    Science.gov (United States)

    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato

    2015-08-19

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.

  8. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part I. Transmission holographic optical elements.

    Science.gov (United States)

    Kim, J M; Choi, B S; Kim, S I; Kim, J M; Bjelkhagen, H I; Phillips, N J

    2001-02-10

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE's). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE's recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE's.

  9. Solvolysis of benzoyl halides in water/NH4DEHP/isooctane microemulsions.

    Science.gov (United States)

    García-Río, L; Hervella, P; Rodríguez-Dafonte, P

    2006-08-29

    A study was carried out on the solvolysis reactions of different benzoyl halides in microemulsions of water/NH4DEHP/isooctane, where NH4DEHP is ammonium bis(2-ethylhexyl) phosphate. Because of the low solubility of benzoyl halides in water, they are distributed between the continuous medium and the interface of the microemulsion, where the reaction takes place. The application of the pseudophase model has allowed us to obtain the distribution constants and the rate constants at the interface for the benzoyl halides. Reaction mechanisms and the changes in these mechanisms in terms of the water content of the microemulsion have been determined on the basis of kinetic data. The influence of the substituent and the leaving group on the reaction rate has been investigated. A comparison of kinetic results with those previously obtained in water/AOT/isooctane microemulsions allows a kinetic evaluation of the change in the microemulsion properties with the surfactant.

  10. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Energy Technology Data Exchange (ETDEWEB)

    Ding Yuan, Paul Guss, and Sanjoy Mukhopadhyay

    2009-04-01

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector’s self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  11. Topological Model on the Inductive Effect in Alkyl Halides Using Local Quantum Similarity and Reactivity Descriptors in the Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Alejandro Morales-Bayuelo

    2014-01-01

    Full Text Available We present a topological analysis to the inductive effect through steric and electrostatic scales of quantitative convergence. Using the molecular similarity field based in the local guantum similarity (LQS with the Topo-Geometrical Superposition Algorithm (TGSA alignment method and the chemical reactivity in the density function theory (DFT context, all calculations were carried out with Amsterdam Density Functional (ADF code, using the gradient generalized approximation (GGA and local exchange correlations PW91, in order to characterize the electronic effect by atomic size in the halogens group using a standard Slater-type-orbital basis set. In addition, in this study we introduced news molecular bonding relationships in the inductive effect and the nature of the polar character in the C–H bond taking into account the global and local reactivity descriptors such as chemical potential, hardness, electrophilicity, and Fukui functions, respectively. These descriptors are used to find new alternative considerations on the inductive effect, unlike to the binding energy and dipole moment performed in the traditional organic chemical.

  12. 卤代烷的SN 2反应的研究%Study on SN2 reaction of alkyl halide

    Institute of Scientific and Technical Information of China (English)

    涂文通; 干作飞; 赵丹

    2015-01-01

    双分子亲核取代(SN2)反应是重要的基本有机反应之一,其中电子从亲核基团向离去基团的转移发挥着关键作用。利用密度泛函理论(DFT)计算方法分别在B3LYP/6-311++G(d ,p)以及 B3LYP/LanL2DZ 水平上对 SN2反应进行了研究,计算出了反应物﹑中间态或复合物﹑过度态的能量以及活化能和优化结构数据﹑Mulliken电荷布居﹑NBO分析的键级﹑SCAN扫描的势能面等。结果表明介电常数﹑离去基团的碱性﹑支链基团(空间位阻效应和推吸电子效应)﹑溶剂效应等都对 SN2反应有影响。本文以简单经典反应为计算依据,得出计算的方法和思路,为以后的复杂反应提供理论指导。%bimolecular nucleoplilic‐substitution (SN2 ) reaction is one of the basic organic reac‐tions ,the electron transfer from the parent group to the leaving group plays a key role .The SN2 reac‐tion at B3LYP/6‐311+ + G(d ,p) and B3LYP/LanL2DZ levels were studied by using density func‐tional theory (DFT) .The energy of reactants ,the intermediate state or complex and the transition state are calculated ,and activation energy and optimized structure data ,M ulliken charge distribution , NBO analysis ,SCAN scanning potential energy surface ,etc .The results show that the permittivity , the basicity of the leaving group ,branched groups(steric effect and push‐pull electron effect) and the solvent effect have the effect on the SN2 reaction .This article based on the simple classical reaction , the method and the method of calculation are obtained ,w hich can provide the guidance for the compli‐cated reaction in the future .

  13. Genetic training of network using chaos concept: application to QSAR studies of vibration modes of tetrahedral halides.

    Science.gov (United States)

    Lu, Qingzhang; Shen, Guoli; Yu, Ruqin

    2002-11-15

    The chaotic dynamical system is introduced in genetic algorithm to train ANN to formulate the CGANN algorithm. Logistic mapping as one of the most important chaotic dynamic mappings provides each new generation a high chance to hold GA's population diversity. This enhances the ability to overcome overfitting in training an ANN. The proposed CGANN has been used for QSAR studies to predict the tetrahedral modes (nu(1)(A1) and nu(2)(E)) of halides [MX(4)](epsilon). The frequencies predicted by QSAR were compared with those calculated by quantum chemistry methods including PM3, AM1, and MNDO/d. The possibility of improving the predictive ability of QSAR by including quantum chemistry parameters as feature variables has been investigated using tetrahedral tetrahalide examples.

  14. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl polyethylene glycol phosphate... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  15. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section...

  16. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  17. The influence of trapping centres on the photoelectron decay in silver halide

    Institute of Scientific and Technical Information of China (English)

    Li Xiao-Wei; Zhang Rong-Xiang; Liu Rong-Juan; Yang Shao-Peng; Han Li; Fu Guang-Sheng

    2006-01-01

    Photoelectron is the foundation of latent image formation, the decay process of photoelectrons is influenced by all kinds of trapping centres in silver halide. By analysing the mechanism of latent image formation it is found that electron trap, hole trap, and one kind of recombination centre where free electron and trapped hole recombine are the main trapping centres in silver halide. Different trapping centres have different influences on the photoelectron behaviour. The effects of all kinds of typical trapping centres on the decay of photoelectrons are systematically investigated by solving the photoelectron decay kinetic equations. The results are in agreement with those obtained in the microwave absorption dielectric spectrum experiment.

  18. The silver ions contribution into the cytotoxic activity of silver and silver halides nanoparticles

    Science.gov (United States)

    Klimov, A. I.; Zherebin, P. M.; Gusev, A. A.; Kudrinskiy, A. A.; Krutyakov, Y. A.

    2015-11-01

    The biocidal action of silver nanoparticles capped with sodium citrate and silver halides nanoparticles capped with non-ionic surfactant polyoxyethylene(20)sorbitan monooleate (Tween 80®) against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells. The cytotoxicity of the obtained colloids was strongly correlated with silver ion content in the dispersions. The results clearly indicated that silver and silver halides nanoparticles destroyed yeast cells through the intermediate producing of silver ions either by dissolving of salts or by oxidation of silver.

  19. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Directory of Open Access Journals (Sweden)

    Simon A. Bretschneider

    2014-04-01

    Full Text Available The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

  20. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    Science.gov (United States)

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed.

  1. Vibrational energy relaxation of liquid aryl-halides X-C6H5 (X = F, Cl, Br, I).

    Science.gov (United States)

    Pein, Brandt C; Seong, Nak-Hyun; Dlott, Dana D

    2010-10-07

    Anti-Stokes Raman spectroscopy was used to probe vibrational energy dynamics in liquid ambient-temperature aryl-halides, X-Ph (X = F, Cl, Br, I; -Ph = C(6)H(5)), following IR excitation of a 3068 cm(-1) CH-stretching transition. Five ring vibrations and two substituent-dependent vibrations were monitored in each aryl-halide. Overall, the vibrational relaxation (VR) lifetimes in aryl-halides were shorter than those in normal benzene (H-Ph). The aryl-halide CH-stretch lifetimes increased in the order F, Cl, Br, I, ranging from 2.5 to 3.4 ps, compared with 6.2 ps in H-Ph. The aryl-halide energy transfer processes were similar overall with four exceptions. Three of the four exceptions could be explained as a result of faster VR of midrange vibrations (1000-1600 cm(-1)) in the heavier aryl-halides. The fourth appeared to result from a coincidental resonance in chlorobenzene that does not occur in the other aryl-halides. Among the aryl-halides, the decay of CH-stretching excitations (∼3070 cm(-1)) was slower in the heavier species, but the decay of midrange vibrations was faster in the heavier species. This seeming contradiction could be explained if VR depended primarily on the density of states (DOS) of the lower tiers of vibrational excitations. The DOS for the first few (1-4) tiers is similar for all aryl-halides in the CH-stretch region, but DOS increases with increasing halide mass in the midrange region.

  2. Synthesis and Performance of a Biomimetic Indicator for Alkylating Agents.

    Science.gov (United States)

    Provencher, Philip A; Love, Jennifer A

    2015-10-02

    4-(4-Nitrobenzyl)pyridine (NBP) is a colorimetric indicator compound for many types of carcinogenic alkylating agents. Because of the similar reactivity of NBP and guanine in DNA, NBP serves as a DNA model. NBP assays are used in the toxicological screening of pharmaceutical compounds, detection of chemical warfare agents, environmental hygiene technology, preliminary toxicology tests, mutagenicity of medicinal compounds, and other chemical analyses. Nevertheless, the use of NBP as a DNA model suffers from the compound's low water solubility, its lack of reactive oxygen sites, and dissimilar steric encumbrance compared to DNA. We report herein the design and synthesis of NBP derivatives that address some of these issues. These derivatives have been tested in solution and found to be superior in the colorimetric assay of the alkylating anticancer drug cyclophosphamide. The derivatives have also been integrated into a polymeric silica material which changes color upon the exposure to dangerous alkylating agents, such as iodomethane vapor, without the need for an exogenous base. This material modernizes the NBP assay from a time-consuming laboratory analysis to a real-time solid state sensor, which requires neither solvent nor additional reagents and can detect both gas- and solution-phase alkylating agents.

  3. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  4. Ruthenium-Catalyzed Alkylation of Oxindole with Alcohols

    DEFF Research Database (Denmark)

    Jensen, Thomas; Madsen, Robert

    2009-01-01

    An atom-economical and solvent-free catalytic procedure for the mono-3-alkylation of oxindole with alcohols is described. The reaction is mediated by the in situ generated catalyst from RuCl3 center dot xH(2)O and PPh3 in the presence of sodium hydroxide, The reactions proceed in good to excellent...

  5. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    Directory of Open Access Journals (Sweden)

    Juan Fernández-Bolaños

    2009-05-01

    Full Text Available The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  6. Effect of alkyl substitutions on self-assembly

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The self-assemblies of 4-hexadecyloxybenzoic acid and 3,4,5-trihexadecyloxybenzoic acid have been studied by using scanning tunneling microscopy (STM). The well-ordered assemblies with different arrangement have been investigated. The structural change is attributed to the different number of substituted alkyl chains on periphery.

  7. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    , and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...

  8. Research progress in ionic liquids catalyzed isobutane/butene alkylation

    Institute of Scientific and Technical Information of China (English)

    Panxue Gan; Shengwei Tang

    2016-01-01

    The complicated reaction mechanism and the character of competitive reactions lead to a stringent requirement for the catalyst of C4 alkylation process. Due to their unique properties, ionic liquids (ILs) are thought to be new potential acid catalysts for C4 alkylation. An analysis of the regular and modified chloroaluminate ILs, novel Brønsted ILs and composite ILs used in isobutane/butene alkylation shows that the use of either ILs or ILs coupled with mineral acid as homogeneous catalysts can help to greatly adjust the acid strength. By modifying the struc-tural parameters of the cations and anions of the ILs, the solubility of the reactants could also be adjusted, which in turn displays a positive effect on improving the activity of ILs. Immobilization of ILs is an effective way to mod-ulate the surface adsorption/desorption properties and acid strength distribution of the solid acid catalysts. Such a process has a tremendous potential to reduce the deactivation of catalyst and enhance the activity of the solid acid catalyst. The development of novel acid catalysts for C4 alkylation is a comprehensive consideration of acid strength and its distribution, interfacial properties and transport characteristics.

  9. EFFECT OF ALKYL CHAIN ASYMMETRY ON THE FUSION AND CRYSTALLIZATION BEHAVIOR OF VESICLES FORMED FROM DI-N-ALKYL PHOSPHATES

    NARCIS (Netherlands)

    STREEFLAND, L; WAGENAAR, A; HOEKSTRA, D; ENGBERTS, JBFN

    1993-01-01

    Fusion of vesicles formed from synthetic, asymmetric (i.e mixed-chain) sodium di-n-alkyl phosphates (1-6) has been studied with a resonance energy transfer assay for lipid mixing and with transmission electron microscopy. Fusion was induced by Ca2+ ions above the Lalpha --> Lbeta phase transition te

  10. Assessing the reactivity of sodium alkyl-magnesiates towards quinoxaline: single electron transfer (SET) vs. nucleophilic alkylation processes.

    Science.gov (United States)

    Livingstone, Zoe; Hernán-Gómez, Alberto; Baillie, Sharon E; Armstrong, David R; Carrella, Luca M; Clegg, William; Harrington, Ross W; Kennedy, Alan R; Rentschler, Eva; Hevia, Eva

    2016-04-14

    By exploring the reactivity of sodium butyl-magnesiate (1) supported by the bulky chelating silyl(bisamido) ligand {Ph2Si(NAr*)2}(2-) (Ar* = 2,6-iPr2-C6H3) towards Quinoxaline (Qx), the ability of this bimetallic system to effectively promote SET processes has been disclosed. Thus 1 executes the single-electron reduction of Qx affording complex (2) whose structure in the solid state contains two quinaxolyl radical anions Qx˙ stabilised within a dimeric magnesiate framework. Combining multinuclear NMR and EPR measurements with DFT calculations, new insights into the constitution of 2 in solution and its magnetic behaviour have been gained. Further evidence on the SET reactivity of 1 was found when it was reacted with nitroxyl radical TEMPO which furnished contacted ion pair sodium magnesiate [(Ph2Si(NAr*)2)Mg(TEMPO(-))Na(THF)3] (4) where both metals are connected by an alkoxide bridge, resulting from reduction of TEMPO. The role that the different ligands present in 1 can play in these new SET reactions has also been assessed. Using an amination approach, the Bu group in 1 can be replaced by the more basic amide TMP allowing the isolation of (3) which was characterised by multinuclear NMR and X-ray crystallography. (1)H NMR monitoring of the reaction of 3 with Qx showed its conversion to 2, leaving the hydrogen atoms of the heterocycle untouched. Contrastingly, using sodium homoalkyl magnesiate [NaMg(CH2SiMe3)3] (5) led to the chemoselective C2 alkylation of this heterocycle, suggesting that the presence of the steric stabiliser {Ph2Si(NAr*)2}(2-) on the mixed-metal reagent is required in order to facilitate the Qx reduction.

  11. Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids.

    Science.gov (United States)

    Megaw, Julianne; Thompson, Thomas P; Lafferty, Ryan A; Gilmore, Brendan F

    2015-11-01

    The larval form of the Greater Wax Moth (Galleria mellonella) was evaluated as a model system for the study of the acute in vivo toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. 24-h median lethal dose (LD50) values for nine of these ionic liquids bearing alkyl chain substituents ranging from 2 to 18 carbon atoms were determined. The in vivo toxicity of the ionic liquids was found to correlate directly with the length of the alkyl chain substituent, and the pattern of toxicity observed was in accordance with previous studies of ionic liquid toxicity in other living systems, including a characteristic toxicity 'cut-off' effect. However, G. mellonella appeared to be more susceptible to the toxic effects of the ionic liquids tested, possibly as a result of their high body fat content. The results obtained in this study indicate that G. mellonella represents a sensitive, reliable and robust in vivo model organism for the evaluation of ionic liquid toxicity.

  12. Revisiting AI-2 quorum sensing inhibitors: direct comparison of alkyl-DPD analogues and a natural product fimbrolide.

    Science.gov (United States)

    Lowery, Colin A; Abe, Takumi; Park, Junguk; Eubanks, Lisa M; Sawada, Daisuke; Kaufmann, Gunnar F; Janda, Kim D

    2009-11-04

    Quorum sensing (QS) systems have been discovered in a wide variety of bacteria, and mediate both intra- and interspecies communication. The AI-2-based QS system represents the most studied of these proposed interspecies systems and has been shown to regulate diverse functions such as bioluminescence, expression of virulence factors, and biofilm formation. As such, the development of modulatory compounds, both agonists and antagonists, is of great interest for the study of unknown AI-2-based QS systems and the potential treatment of bacterial infections. The fimbrolide class of natural products has exhibited excellent inhibitory activity against AI-2-based QS and as such may be considered the "gold standard" of AI-2 inhibitors. Thus, we sought to include a fimbrolide as a control compound for our recently developed alkyl-DPD panel of AI-2 modulators. Herein, we present a revised synthesis of a commonly studied fimbrolide as well as a direct comparison between the fimbrolide and alkyl-DPD analogues. We demonstrate that our alkyl-DPD analogues are more potent inhibitors of QS in both Vibrio harveyi and Salmonella typhimurium, the two organisms with defined AI-2 QS systems, and in doing so call into question the widely accepted use of fimbrolide-derived compounds as the "gold standard" of AI-2 inhibition.

  13. Levels and pattern of alkyl nitrates, multifunctional alkyl nitrates, and halocarbons in the air over the Atlantic Ocean

    Science.gov (United States)

    Fischer, Ralf G.; Kastler, Jürgen; Ballschmiter, Karlheinz

    2000-06-01

    The Albatross Campaign was a research cruise of the German research vessel RV Polarstern (cruise ANT XFV/1) in October and November 1996 across the Atlantic Ocean. The cruise started in Bremerhaven, Germany, reached the polar region at 67°N, followed the 30°W meridian longitude, crossed the equatorial region, and ended at 50°S at Punta Quilla, Argentina. A second cruise leg closer to the African continent started from Capetown, South Africa, passed the Canary Island, and ended through the English Channel at Bremerhaven, Germany, in May/June 1998. Measurements of atmospheric levels of C1-C13 alkyl mononitrates, 24 alkyl dinitrates (C3-C6), 19 hydroxy alkyl nitrates (C2-C6), and benzyl nitrate, as well as the halocarbons tetrachloroethene, hexachloroethane, and bromoform are presented in this work. The halocarbons are used to assess the origin of the air parcels analyzed. Levels and patterns of multifunctional alkyl nitrates in the marine air are described here for the first time. The air masses include polluted air from the northern Europe, as well as highly degraded air masses of the South Atlantic trade wind region that represent global baseline levels. Two independent analytical methods were used in combination to cover the whole range of organic nitrates. First, the low-volume adsorptive enrichment of organic traces on Tenax, followed by thermodesorption cold trap HRGC-ECD and thermodesorption cold trap HRGC-(EI)MSD was used. Second, high-volume adsorptive enrichment of organic traces on silica gel was applied followed by solvent desorption, NP-HPLC group separation, and HRGC-(EI)-MSD. Short-chain alkyl nitrates (C4-C6) showed mixing ratios in the range of 0.2-2.5 parts per trillion by volume (pptv), with a local minimum for the tropical regions and significantly lower ratios for the Southern Hemisphere. The mixing ratio of the sum of 36 long-chain alkyl mononitrates (C7-C13) ranged from 0.02-0.43 pptv, the mixing ratio of the sum of 23 alkyl dinitrates (C3-C

  14. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    Directory of Open Access Journals (Sweden)

    Christian Wehrenfennig

    2014-08-01

    Full Text Available The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3−xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL emission of vapor-deposited CH3NH3PbI3−xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  15. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻.

    Science.gov (United States)

    Beck, Andreas; Li-Blatter, Xiaochun; Seelig, Anna; Seelig, Joachim

    2010-12-09

    makes almost no contribution to membrane binding. The chemical nature of the headgroup influences the packing density of the hydrocarbon chains in the lipid bilayer with (+)N(CH₃)₃ eliciting the weakest chain-chain interaction. The minimum repulsive interaction of the SO₄⁻ polar group makes the sodium n-alkyl-sulfates much stronger detergents than the nonionic or cationic counterparts, the binding constants, K(D)(0), being 10-50 times larger than those of the corresponding n-alkyl-trimethylammonium chlorides. The membrane insertion was further compared with micelle formation of the same detergent. A cooperative aggregation model which includes all possible aggregation states is proposed to analyze micelle formation. The partition function can be defined in closed form, and it is straightforward to predict the thermodynamic properties of the micellar system. When aggregated in micelles, the detergent polar groups are in direct interaction and are not separated by lipid molecules. Under these conditions the SO₄⁻ group exhibits a strong electrostatic repulsive effect of 3.2 kcal/mol, while the contributions of the maltose and (+)N(CH₃)₃ headgroups are very similar to those in the lipid bilayer.

  16. Comparison of UV/hydrogen peroxide and UV/peroxydisulfate processes for the degradation of humic acid in the presence of halide ions.

    Science.gov (United States)

    Lou, Xiaoyi; Xiao, Dongxue; Fang, Changling; Wang, Zhaohui; Liu, Jianshe; Guo, Yaoguang; Lu, Shuyu

    2016-03-01

    This study compared the behaviors of two classic advanced oxidation processes (AOPs), hydroxyl radical-based AOPs ((•)OH-based AOPs) and sulfate radical-based AOPs (SO4 (•-)-based AOPs), represented by UV/ hydrogen peroxide (H2O2) and UV/peroxydisulfate (PDS) systems, respectively, to degrade humic acid (HA) in the presence of halide ions (Cl(-) and Br(-)). The effects of different operational parameters, such as oxidant dosages, halide ions concentration, and pH on HA degradation were investigated in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes. It was found that the oxidation capacity of H2O2 and PDS to HA degradation in the presence of halides was nearly in the same order. High dosage of peroxides would lead to an increase in HA removal while excess dosage would slightly inhibit the efficiency. Both Cl(-) and Br(-) would have depressing impact on the two AOPs, but the inhibiting effect of Br(-) was more obvious than that of Cl(-), even the concentration of Cl(-) was far above that of Br(-). The increasing pH would have an adverse effect on HA decomposition in UV/H2O2 system, whereas there was no significant impact of pH in UV/PDS process. Furthermore, infrared spectrometer was used to provide the information of degraded HA in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes, and halogenated byproducts were identified in using GC-MS analysis in the four processes. The present research might have significant technical implications on water treatment using advanced oxidation technologies.

  17. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-06-01

    Full Text Available Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control.

  18. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production

    Science.gov (United States)

    Furukawa, Tomohiro; Iimura, Kurin; Kimura, Taichi; Yamamoto, Toshiyoshi; Sakuda, Shohei

    2016-01-01

    Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control. PMID:27338472

  19. Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning.

    Science.gov (United States)

    Jang, Dong Myung; Park, Kidong; Kim, Duk Hwan; Park, Jeunghee; Shojaei, Fazel; Kang, Hong Seok; Ahn, Jae-Pyung; Lee, Jong Woon; Song, Jae Kyu

    2015-08-12

    In recent years, methylammonium lead halide (MAPbX3, where X = Cl, Br, and I) perovskites have attracted tremendous interest caused by their outstanding photovoltaic performance. Mixed halides have been frequently used as the active layer of solar cells, as a result of their superior physical properties as compared to those of traditionally used pure iodide. Herein, we report a remarkable finding of reversible halide-exchange reactions of MAPbX3, which facilitates the synthesis of a series of mixed halide perovskites. We synthesized MAPbBr3 plate-type nanocrystals (NCs) as a starting material by a novel solution reaction using octylamine as the capping ligand. The synthesis of MAPbBr(3-x)Clx and MAPbBr(3-x)Ix NCs was achieved by the halide exchange reaction of MAPbBr3 with MACl and MAI, respectively, in an isopropyl alcohol solution, demonstrating full-range band gap tuning over a wide range (1.6-3 eV). Moreover, photodetectors were fabricated using these composition-tuned NCs; a strong correlation was observed between the photocurrent and photoluminescence decay time. Among the two mixed halide perovskite series, those with I-rich composition (x = 2), where a sole tetragonal phase exists without the incorporation of a cubic phase, exhibited the highest photoconversion efficiency. To understand the composition-dependent photoconversion efficiency, first-principles density-functional theory calculations were carried out, which predicted many plausible configurations for cubic and tetragonal phase mixed halides.

  20. A Simple Empirical Analysis of the Enthalpies of Formation of Lanthanide Halides and Oxides.

    Science.gov (United States)

    Smith, Derek W.

    1986-01-01

    Proposes a simple and general method whereby the lattice energies of lanthanide(II) and (IV) compounds are derived directly from those found experimentally for the corresponding lanthanide(III) compounds. The method is applicable to all lanthanide halides and oxides and involves calculations which can be easily and quickly performed by students.…

  1. Regioselective chlorination and bromination of unprotected anilines under mild conditions using copper halides in ionic liquids

    Directory of Open Access Journals (Sweden)

    Han Wang

    2012-05-01

    Full Text Available By using ionic liquids as solvents, the chlorination or bromination of unprotected anilines at the para-position can be achieved in high yields with copper halides under mild conditions, without the need for potentially hazardous operations such as supplementing oxygen or gaseous HCl.

  2. Concentration dependence of halide fluxes and selectivity of the anion pathway in toad skin

    DEFF Research Database (Denmark)

    Harck, A F; Larsen, Erik Hviid

    1986-01-01

    mV (apical bath negative). The active sodium currents were eliminated by replacing external Na+ with K+. With [Cl-]o varying between 1.45 mM and 110 mM (gluconate substitution) and [I-]o = 3 mM, the total clamping current (y) and the sum of halide currents (x), estimated from flux measurements, were...

  3. Vibrational spectra of discrete UO22+ halide complexes in the gas phase

    NARCIS (Netherlands)

    Groenewold, G. S.; van Stipdonk, M. J.; Oomens, J.; de Jong, W. A.; Gresham, G. L.; McIlwain, M. E.

    2010-01-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases are frequently obfuscated by solvent interactions that can alter l

  4. Synthesis of Cyclic Carbonates from CO2 and Epoxides Catalyzed by Hexaalkylguanidinium Halides

    Institute of Scientific and Technical Information of China (English)

    DUAN Hai-feng; LI Sheng-hai; LIN Ying-jie; XIE Hai-bo; ZHANG Suo-bo; WANG Zong-mu

    2004-01-01

    Hexaalkylguanidinium halides exhibit an efficient catalytic activity in the synthesis of cyclic carbonates from epoxides and carbon dioxide. By this method cyclic carbonates can be obtained in a high yield and a high selectivity at a low temperature and atmospheric pressure. This procedure is easy for the product isolation and recycling of the catalyst.

  5. Halomethane production in plants: Structure of the biosynthetic SAM-dependent halide methyltransferase from Arabidopsis thaliana**

    Science.gov (United States)

    Schmidberger, Jason W.; James, Agata B.; Edwards, Robert; Naismith, James H.; O’Hagan, David

    2012-01-01

    A product structure of the halomethane producing enzyme in plants (Arabidopsis thaliana) is reported and a model for presentation of chloride/bromide ion to the methyl group of S-adenosyl-L-methionine (SAM) is presented to rationalise nucleophilic halide attack for halomethane production, gaseous natural products that are produced globally. PMID:20376845

  6. REPLACEMENT OF TRYPTOPHAN RESIDUES IN HALOALKANE DEHALOGENASE REDUCES HALIDE BINDING AND CATALYTIC ACTIVITY

    NARCIS (Netherlands)

    KENNES, C; PRIES, F; KROOSHOF, GH; BOKMA, E; Kingma, Jacob; JANSSEN, DB

    1995-01-01

    Haloalkane dehalogenase catalyzes the hydrolytic cleavage of carbon-halogen bonds in short-chain haloalkanes. Two tryptophan residues of the enzyme (Trp125 and Trp175) form a halide-binding site in the active-site cavity, and were proposed to play a role in catalysis. The function of these residues

  7. Correlation between standard enthalpy of formation, structural parameters and ionicity for alkali halides

    Directory of Open Access Journals (Sweden)

    Nasar Abu

    2013-01-01

    Full Text Available The standard enthalpy of formation (ΔHo has been considered to be an interesting and useful parameter for the correlation of various properties of alkali halides. The interrelation between ΔHo and structural parameters for the halides of Li, Na, K and Rb has been thoroughly analyzed. When cationic component element is kept constant in a homologous series of alkali halides, the negative value of ΔHo has been observed to decrease linearly with increase of interionic distance (d and accordingly following empirical equation ΔHo = α + βd (where α and β are empirical constants has been established. However, for common anionic series of alkali halides an opposite nonlinear trend has been observed with the exception of common fluorides. The correlation study on the standard enthalpy of formation has been extended in term of radius ratio and also discussed in the light of ionization energy of the metal, electron affinity of the halogen, size of the ions, ionic character of bond and lattice energy of the compound.

  8. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    KAUST Repository

    Chen, Tao

    2012-08-01

    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  9. The Role of Excitons on Light Amplification in Lead Halide Perovskites.

    Science.gov (United States)

    Lü, Quan; Wei, Haohan; Sun, Wenzhao; Wang, Kaiyang; Gu, Zhiyuan; Li, Jiankai; Liu, Shuai; Xiao, Shumin; Song, Qinghai

    2016-12-01

    The role of excitons on the amplifications of lead halide perovskites has been explored. Unlike the photoluminescence, the intensity of amplified spontaneous emission is partially suppressed at low temperature. The detailed analysis and experiments show that the inhibition is attributed to the existence of exciton and a quantitative model has been built to explain the experimental observations.

  10. Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing.

    Science.gov (United States)

    Era, Masanao; Komatsu, Yumeko; Sakamoto, Naotaka

    2016-04-01

    Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, Ca2, Cdl2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of Pbl-based layered perovskite mixed with Cal-based layered perovskite (20 molar%) is about 5 times large that of the pristine Pbl-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature.

  11. Palladium-catalyzed Coupling between Aryl Halides and Trimethylsilylacetylene Assisted by Dimethylaminotrimethyltin

    Institute of Scientific and Technical Information of China (English)

    Cai Liangzhen; Yang Dujuan; Sun Zhonghua; Tao Xiaochun; Cai Lisheng; Pike Victor W

    2011-01-01

    Palladium-catalyzed coupling between aryl halides, especially less reactive ones or N-heteroaryls, and trimethylsilylacetylene in the presence of dimethylaminotrimethyltin generated the coupled products in high yields. The reaction does not need CuI and base as auxiliary agents.

  12. Direct synthesis of diaryl sulfides by copper-catalyzed coupling of aryl halides with aminothiourea

    Institute of Scientific and Technical Information of China (English)

    Xiang Mei Wu; Wei Ya Hu

    2012-01-01

    An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthesized in good to excellent yields up to 94% with the advantage of avoiding foul-smelling thiols.

  13. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Science.gov (United States)

    2013-08-20

    ... August 20, 2013 Part V Department of Energy 10 CFR Part 431 Energy Conservation Program: Energy... Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office... rulemaking (NOPR) and public meeting. SUMMARY: The Energy Policy and Conservation Act of 1975 (EPCA),...

  14. 75 FR 5544 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public...

    Science.gov (United States)

    2010-02-03

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC00 Energy Conservation Program: Energy Conservation Standards...: Any comments submitted must identify the Framework Document for energy conservation standards for... energy conservation standards for metal halide lamp fixtures. The notice provided for the submission...

  15. Non-conventional halide oxidation pathways : oxidation by imidazole triplet and surface specific oxidation by ozone

    Science.gov (United States)

    Ammann, Markus; Corral-Arroyo, Pablo; Aellig, Raphael; Orlando, Fabrizio; Lee, Ming-Tao; Artiglia, Luca

    2016-04-01

    Oxidation of halide ions (chloride, bromide, iodide) are the starting point of halogen release mechanisms out of sea water, marine aerosol or other halide containing continental aerosols. Slow oxidation of chloride and bromide by ozone in the bulk aqueous phase is of limited relevance. Faster surface specific oxidation has been suggested based on heterogeneous kinetics experiments. We provide first insight into very efficient bromide oxidation by ozone at the aqueous solution - air interface by surface sensitive X-ray photoelectron spectroscopy indicating significant build-up of an oxidized intermediate at the surface within millisecond time scales. The second source of oxidants in the condensed we have considered is the absorption of light by triplet forming photosensitizers at wavelengths longer than needed for direct photolysis and radical formation. We have performed coated wall flow tube experiments with mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) to represent secondary organic material rich marine aerosol. The halide ions bromide and iodide have been observed to act as efficient electron donors leading to their oxidation, HO2 formation and finally release of molecular halogen compounds. The photosensitization of imidazole-2-carboxaldehyde (IC) involves a well-known mechanism where the triplet excited state of IC is reduced by citric acid to a reduced ketyl radical that reacts with halide ions. A competition kinetics approach has been used to evaluate the rate limiting steps and to assess the significance of this source of halogens to the gas phase.

  16. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Sun, Rong; Parisi, Jürgen

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  17. Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?

    NARCIS (Netherlands)

    Sherkar, Tejas; Koster, L. Jan Anton

    2016-01-01

    The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower c

  18. U-shaped conformation of alkyl chains bound to a synthetic receptor cucurbit[8]uril.

    Science.gov (United States)

    Ko, Young Ho; Kim, Youngkook; Kim, Hyunuk; Kim, Kimoon

    2011-02-01

    The behavior of a series of alkanes bound to the molecular host cucurbit[8]uril (CB[8]) has been systematically studied by 2D (1)H NMR spectroscopy and isothermal titration calorimetry (ITC). CB[8] and alkyltrimethylammonium (C(m) TA(+), (CH(3))(3)N(+)C(m)H(2m+1), m=6-16) form 1:1 host-guest complexes with a high binding constant (K≈10(6) m(-1)). The shortest hexyl chain of C(6)TA(+) can be fully encapsulated in an extended conformation inside the CB[8] cavity, which is driven by both enthalpy and entropy. However, for the longer aliphatic chains, C(8)-C(16), the long alkyl tails take a U-shaped conformation inside the cavity, and their complexation is dominantly or almost exclusively enthalpy-driven, owing to the increased van der Waals contact between the folded aliphatic chain and the inner wall of the host cavity. As the chain length increases from C(8) to C(16), the ammonium head group of the guests moves away from the portal of CB[8] while the long aliphatic tails maintain the U-shaped conformation inside the cavity. The complexation of C(m)TA(+) with CB[8] follows the enthalpy-entropy compensation rule commonly observed in molecular recognition systems. For example, among the guest molecules, C(12)TA(+) shows the highest enthalpic gain (most favorable), owing to the large van der Waals contact between the guest and the host cavity, and at the same time the most unfavorable entropic contribution, owing to the severe conformational restriction of the U-shaped alkyl chain inside the host. The enthalpy-entropy compensation plot for the complexation suggests large conformational changes of the long alkyl chains and extensive dehydration associated with the inclusion complex formation.

  19. 烷基糖苷与醇醚羧酸盐的复配性能及其在泡泡水中的应用%Performance of alkyl polyglucoside/alcohol ether carboxylate blend system and its application in bubbly water

    Institute of Scientific and Technical Information of China (English)

    韩建英; 马丽娜; 杨庆利; 张威

    2015-01-01

    Alkyl polyglucoside (APG0810 ) was blended with alcohol ether carboxylate (AEC -9 H ) that prepared by oxidation method. Stability at low temperature,surface activity and foaming performance of the blend system were investigated. Then the blend system was applied in the bubbly water of toys for children. Results showed that as a small amount of AEC-9H is added,stability at low temperature of APG0810 aqueous solution is greatly improved. When the mass ratio between APG0810 and AEC-9H is 9∶1,the value of cmc of the blend system is much lower than that of APG0810 ,and the foaming properties of the blend system is similar to APG0810 . The blend system with mass ratio between APG0810 and AEC 9∶1 was applied in formulation of bubbly water of toys for children and good result was obtained.%将烷基糖苷(APG0810)与氧化法制得的醇醚羧酸盐(AEC-9H)进行复配,考察了不同质量比的复配体系的低温稳定性、表面活性和发泡性能,并将复配体系用于儿童玩具用泡泡水配方中。结果表明:向 APG0810中添加少量的AEC-9H,对APG0810水溶液的低温稳定性有极大地改善;当m(APG0810)∶m(AEC-9H)=9∶1时,复配体系的临界胶束浓度较APG0810有显著下降,并且泡沫性能与APG0810单独使用时相近;将此复配体系应用于儿童玩具用泡泡水配方中,表现出很好的效果。

  20. Effects of Alloying on the Optical Properties of Organic-Inorganic Lead Halide Perovskite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Ndione, Paul F.; Li, Zhen; Zhu, Kai

    2016-09-07

    Complex refractive index and dielectric function spectra of organic-inorganic lead halide perovskite alloy thin films are presented, together with the critical-point parameter analysis (energy and broadening) of the respective composition. Thin films of methylammonium lead halide alloys (MAPbI3, MAPbBr3, MAPbBr2I, and MAPbBrI2), formamidinium lead halide alloys (FAPbI3, FAPbBr3, and FAPbBr2I), and formamidinium cesium lead halide alloys [FA0.85Cs0.15PbI3, FA0.85Cs0.15PbBrI2, and FA0.85Cs0.15Pb(Br0.4I0.6)3] were studied. The complex refractive index and dielectric functions were determined by spectroscopic ellipsometry (SE) in the photon energy range of 0.7-6.5 eV. Critical point energies and optical transitions were obtained by lineshape fitting to the second-derivative of the complex dielectric function data of these thin films as a function of alloy composition. Absorption onset in the vicinity of the bandgap, as well as critical point energies and optical band transition shift toward higher energies as the concentration of Br in the films increases. Cation alloying (Cs+) has less effect on the optical properties of the thin films compared to halide mixed alloys. The reported optical properties can help to understand the fundamental properties of the perovskite materials and also be used for optimizing or designing new devices.

  1. Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Dong; Meng Dong-Dong; Hagihala Masato; Zheng Xu-Guang

    2011-01-01

    Raman vibrational spectra of the selected basic(hydroxyl OH and deuteroxyl OD)transition-metal halides,geometrically frustrated material series α-,β-,γ-Cu2(OH)3Cl,α-Cu2(OH)3Br,β-Ni2(OH)3Cl,β-Co2(OH)3Cl,β-Co2(OH)3Br,γ-Cu2(OD)3Cl,and β-Co2(OD)3Cl are measured at room temperature and analysed to investigate the relationship between the microstructured OH environments and their respective Raman spectra.Among these selected samples,the last two are used to determine the OH stretching vibration region(3600 cm-1-3300 cm-1)and OH bending vibration region(1000 cm-1-600 cm-1)of OH systems in the spectra.Through the comparative analysis of the distances d(metal-O),d(O-halogen),and d(OH),the strong metal-O interaction and trimeric hydrogen bond(C3υ,Cs,or C1 symmetry)are found in every material,but both determine simultaneously an ultimate d(OH),and therefore an OH stretching vibration frequency.According to the approximately linear relationship between the OH stretching vibration frequency and d(OH),some unavailable d(OH)are guessed and some doubtful d(OH)are suggested to be corrected.In addition,it is demonstrated in brief that the OH bending vibration frequency is also of importance to check the more detailed crystal microstructure relating to the OH group.

  2. Medical imaging scintillators from glass-ceramics using mixed rare-earth halides

    Science.gov (United States)

    Beckert, M. Brooke; Gallego, Sabrina; Ding, Yong; Elder, Eric; Nadler, Jason H.

    2016-10-01

    Recent years have seen greater interest in developing new luminescent materials to replace scintillator panels currently used in medical X-ray imaging systems. The primary areas targeted for improvement are cost and image resolution. Cost reduction is somewhat straightforward in that less expensive raw materials and processing methods will yield a less expensive product. The path to improving image resolution is more complex because it depends on several properties of the scintillator material including density, transparency, and composition, among others. The present study focused on improving image resolution using composite materials, known as glass-ceramics that contain nanoscale scintillating crystallites formed within a transparent host glass matrix. The small size of the particles and in-situ precipitation from the host glass are key to maintaining transparency of the composite scintillator, which ensures that a majority of the light produced from absorbed X-rays can actually be used to create an image of the patient. Because light output is the dominating property that determines the image resolution achievable with a given scintillator, it was used as the primary metric to evaluate performance of the glass-ceramics relative to current scintillators. Several glass compositions were formulated and then heat treated in a step known as "ceramization" to grow the scintillating nanocrystals, whose light output was measured in response to a 65 kV X-ray source. Performance was found to depend heavily on the thermal history of the glass and glass-ceramic, and so additional studies are required to more precisely determine optimal process temperatures. Of the compositions investigated, an alumino-borosilicate host glass containing 56mol% scintillating rare-earth halides (BaF2, GdF3, GdBr3, TbF3) produced the highest recorded light output at nearly 80% of the value recorded using a commercially-available GOS:Tb panel as a reference.

  3. Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications.

    Science.gov (United States)

    Tidhar, Yaron; Edri, Eran; Weissman, Haim; Zohar, Dorin; Hodes, Gary; Cahen, David; Rybtchinski, Boris; Kirmayer, Saar

    2014-09-24

    Hybrid organic/lead halide perovskites are promising materials for solar cell fabrication, resulting in efficiencies up to 18%. The most commonly studied perovskites are CH3NH3PbI3 and CH3NH3PbI3-xClx where x is small. Importantly, in the latter system, the presence of chloride ion source in the starting solutions used for the perovskite deposition results in a strong increase in the overall charge diffusion length. In this work we investigate the crystallization parameters relevant to fabrication of perovskite materials based on CH3NH3PbI3 and CH3NH3PbBr3. We find that the addition of PbCl2 to the solutions used in the perovskite synthesis has a remarkable effect on the end product, because PbCl2 nanocrystals are present during the fabrication process, acting as heterogeneous nucleation sites for the formation of perovskite crystals in solution. We base this conclusion on SEM studies, synthesis of perovskite single crystals, and on cryo-TEM imaging of the frozen mother liquid. Our studies also included the effect of different substrates and substrate temperatures on the perovskite nucleation efficiency. In view of our findings, we optimized the procedures for solar cells based on lead bromide perovskite, resulting in 5.4% efficiency and Voc of 1.24 V, improving the performance in this class of devices. Insights gained from understanding the hybrid perovskite crystallization process can aid in rational design of the polycrystalline absorber films, leading to their enhanced performance.

  4. Safety Assessment of Alkyl Esters as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 237 alkyl esters for use in cosmetics. The alkyl esters included in this assessment have a variety of reported functions in cosmetics, with skin-conditioning agent being the most common function. The Panel reviewed available animal and clinical data in making its determination of safety on these ingredients, and where there were data gaps, similarity in structure, properties, functions, and uses of these ingredients allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that these ingredients are safe in cosmetic formulations in the present practices of use and concentration when formulated to be nonirritating.

  5. Synthesis and Antioxidant Activity of Alkyl Nitroderivatives of Hydroxytyrosol

    Directory of Open Access Journals (Sweden)

    Elena Gallardo

    2016-05-01

    Full Text Available A series of alkyl nitrohydroxytyrosyl ether derivatives has been synthesized from free hydroxytyrosol (HT, the natural olive oil phenol, in order to increase the assortment of compounds with potential neuroprotective activity in Parkinson’s disease. In this work, the antioxidant activity of these novel compounds has been evaluated using Ferric Reducing Antioxidant Power (FRAP, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS, and Oxygen Radical Scavenging Capacity (ORAC assays compared to that of nitrohydroxytyrosol (NO2HT and free HT. New compounds showed variable antioxidant activity depending on the alkyl side chain length; compounds with short chains (2–4 carbon atoms maintained or even improved the antioxidant activity compared to NO2HT and/or HT, whereas those with longer side chains (6–8 carbon atoms showed lower activity than NO2HT but higher than HT.

  6. Molecular simulation of alkyl monolayers on the Si(111)surface

    Institute of Scientific and Technical Information of China (English)

    YUAN; Shiling; (苑世领); CAI; Zhengting; (蔡政亭); XIAO; Li; (肖莉); XU; Guiying; (徐桂英); LIU; Yongjun; (刘永军)

    2003-01-01

    The structure of twelve-carbon monolayers on the H-terminated Si(111) surface is investigated by molecular simulation method. The best substitution percent on Si(111) surface obtained via molecular mechanics calculation is equal to 50%, and the (8×8) simulated cell can be used to depict the structure of alkyl monolayer on Si surface. After two-dimensional cell containing alkyl chains and four-layer Si(111) crystal at the substitution 50% is constructed, the densely packed and well-ordered monolayer on Si(111) surface can be shown through energy minimization in the suitable-size simulation cell. These simulation results are in good agreement with the experiments. These conclusions show that molecular simulation can provide otherwise inaccessible mesoscopic information at the molecular level, and can be considered as an adjunct to experiments.

  7. Regioselective alkylation of 1,3,4,5-tetrahydrobenzo[d]azepin-2-one and biological evaluation of the resulting alkylated products as potentially selective [Formula: see text] agonists.

    Science.gov (United States)

    Prajapati, Navnit; Giridhar, Rajani; Sinha, Anshuman; Kanhed, Ashish M; Yadav, Mange Ram

    2015-11-01

    The benzazepine ring system has offered interesting CNS-active medicinal agents. Taking this privileged structure as the basic scaffold, [Formula: see text] and/or [Formula: see text]-alkylated benzazepin-2-one derivatives and their reduced analogs have been prepared as potential [Formula: see text] receptor agonists. The selective alkylation at the [Formula: see text] and/or [Formula: see text] positions of this seven-membered lactam ring is here reported for the first time under different reaction conditions. The synthesized compounds were evaluated for their biological profile as potential [Formula: see text] agonists using a classic pharmacological approach. Three derivatives (15, 17, and 20) have shown promising [Formula: see text] agonistic activity which can be further optimized as anti-obesity agents for the treatment of male sexual dysfunction. Further, a homology model for [Formula: see text] receptor was generated using MODELLER, and ligand-receptor interactions for these potential molecules were studied.

  8. Isolation of a Cyclic (Alkyl)(amino)germylene.

    Science.gov (United States)

    Wang, Liliang; Lim, Yi Shan; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2016-07-29

    A 1,4-addition of a dichlorogermylene dioxane complex with α,β-unsaturated imine 1 gave a dichlorogermane derivative 2 bearing a GeC₃N five-membered ring skeleton. By reducing 2 with KC₈, cyclic (alkyl)(amino)germylene 3 was synthesized and fully characterized. Germylene 3 readily reacted with TEMPO, N₂O and S₈, producing the 1:2 adduct 4, the oxo-bridged dimer 5 and the sulfido-bridged dimer 6, respectively.

  9. Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model

    OpenAIRE

    Pinkas, Adi; Slotkin, Theodore A.; Brick-Turin, Yael; Van der Zee, Eddy A.; Yanai, Joseph

    2010-01-01

    Perfluorinated alkyls are widely-used agents that accumulate in ecosystems and organisms because of their slow rate of degradation. There is increasing concern that these agents may be developmental neurotoxicants and the present study was designed to develop an avian model for the neurobehavioral teratogenicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Fertilized chicken eggs were injected with 5 or 10 mg/kg of either compound on incubation day 0. On the day of h...

  10. New potential of the reductive alkylation of amines

    Science.gov (United States)

    Gusak, K. N.; Ignatovich, Zh V.; Koroleva, E. V.

    2015-03-01

    Available data on the reductive alkylation of amines with carbonyl compounds — a key method for the preparation of secondary and tertiary amines — are described systematically. The review provides information on the relevant reducing agents and catalysts and on the use of chiral catalysts in stereo- and enantiocontrolled reactions of amine synthesis. The effect of the reactant and catalyst structures on the reaction rates and chemo- and stereo(enantio)selectivity is considered. The bibliography includes 156 references.

  11. The Cloud Point of Alkyl Ethoxylates and Its Prediction with the Hydrophilic-Lipophilic Difference (HLD) Framework.

    Science.gov (United States)

    Zarate-Muñoz, Silvia; Boza Troncoso, Americo; Acosta, Edgar

    2015-11-10

    The hydrophobicity of surfactants has been described through different concepts used to guide the formulation of surfactant-water (SW) and surfactant-oil-water (SOW) systems. An integrated framework of hydrophobicity indicators could provide a complete tool for surfactant characterization, and insights on how their relationship may influence the overall phase behavior of the system. The hydrophilic-lipophilic difference (HLD) and the characteristic curvature (Cc) parameter, included in the HLD, have been shown to correlate with different hydrophobicity indicators including the hydrophilic-lipophilic balance (HLB), packing factor (Pf), phase inversion temperature (PIT), spontaneous curvature (Ho), surfactant partition (K(o-w)), and the critical micelle concentration (CMC). This work aims to investigate whether the HLD can further describe a concomitant hydrophobicity parameter, the cloud point (CP) of alkyl ethoxylates. After applying group contribution models to calculate the Cc of monodisperse (pure) nonionic alkyl ethoxylates, a linear correlation between the calculated Cc and the CP was observed for pure surfactants with 8 ethylene oxide (EO) units or less. Furthermore, using an apparent equivalent alkane carbon number (EACN) to represent the hydrophobicity of the micelle core, the HLD equation was capable of predicting cloud point temperatures of pure alkyl ethoxylates, typically within 5 °C. Polydisperse surfactants did not follow the linear CP-Cc correlation found for pure surfactants. After treating polydisperse samples using a liquid-liquid extraction procedure used to remove the most hydrophobic components in the mixture, the resulting treated surfactants fell in the correlation line of pure alkyl ethoxylates. A closer look at the partition behavior of these treated surfactants showed that their partition, Cc and cloud point are dominated by the most abundant ethoxymers in the treated surfactant. The HLD also predicted the cloud point depression of

  12. Alkylation of Benzene with Propylene Catalyzed by Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Sun Xuewen; Zhao Suoqi

    2006-01-01

    The alkylation of benzene with propylene catalyzed by ionic liquids to obtain cumene was investigated. Propylene conversion and cumene selectivity under mild reaction conditions were improved greatly after the ionic liquid was modified with HCl. Under the conditions of 20 oC, 0.1MPa, 5 min of reaction time, and a molar ratio of benzene to propylene of 10:1, propylene conversion increased from 83.6% to 100%, and cumene selectivity increased from 90.86% to 98.47%. In addition, it was found that the reaction could be carried out in two different stages so as to obtain a better result. At the first stage, the key reaction was alkylation and a higher propylene conversion was obtained at a lower temperature;At the second stage, the key reaction was transalkylation and a higher temperature was used to improve cumene selectivity. The reaction temperature, pressure and the amount of catalyst used in this work were lower than those used in traditional alkylation processes.

  13. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    Science.gov (United States)

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents.

  14. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives.

    Science.gov (United States)

    Fernandez-Pastor, Ignacio; Fernandez-Hernandez, Antonia; Rivas, Francisco; Martinez, Antonio; Garcia-Granados, Andres; Parra, Andres

    2016-07-22

    Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.

  15. Polycyclic aromatic acids are primary metabolites of alkyl-PAHs - a case study with Nereis diversicolor

    DEFF Research Database (Denmark)

    Malmquist, Linus Mattias Valdemar; Selck, Henriette; Jørgensen, Kåre Bredeli;

    2015-01-01

    Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl-PA...... that carboxylic acid metabolites of alkyl-PAHs have the potential of constituting a new class of contaminants in marine waters that needs attention in relation to ecological risk assessments....

  16. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR......) to identify and quantify the reaction products. Absorption cross sections were quantified over the wavelength range 220-320 nm. At 240 nm, sigma(HOC(CH3)2CH2) = (2.4 +/- 0.3) x 10(-18) and sigma(HOC(CH3)2CH2O2) = (3.4 +/- 0.5) X 10(-18) cm2 molecule-1 have been obtained. Observed rate constants for the self...

  17. Scanning probe microscopies for the creation and characterization of interfacial architectures: Studies of alkyl thiolate monolayers at gold

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.

    1997-01-10

    Scanning probe microscopy (SPM) offers access to the structural and material properties of interfaces, and when combined with macroscopic characterization techniques results in a powerful interfacial development tool. However, the relative infancy of SPM techniques has dictated that initial investigations concentrate on model interfacial systems as benchmarks for testing the control and characterization capabilities of SPM. One such family of model interfacial systems results from the spontaneous adsorption of alkyl thiols to gold. This dissertation examines the application of SPM to the investigation of the interfacial properties of these alkyl thiolate monolayers. Structural investigations result in a proposed explanation for counterintuitive correlations between substrate roughness and heterogeneous electron transfer barrier properties. Frictional measurements are used for characterization of the surface free energy of a series of end-group functionalized monolayers, as well as for the material properties of monolayers composed of varying chain length alkyl thiols. Additional investigations used these characterization techniques to monitor the real-time evolution of chemical and electrochemical surface reactions. The results of these investigations demonstrates the value of SPM technology to the compositional mapping of surfaces, elucidation of interfacial defects, creation of molecularly sized chemically heterogeneous architectures, as well as to the monitoring of surface reactions. However, it is the future which will demonstrate the usefulness of SPM technology to the advancement of science and technology.

  18. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells

    Science.gov (United States)

    Wang, Heming; Rahaq, Yaqub; Kumar, Vikas

    2016-07-01

    A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Photovoltaic performance of solar cells was investigated by J-V curves and external quantum efficiency spectra. We demonstrated that the incorporation of the conjugated photoactive polymer into organolead halide perovskites did not only contribute to the generation of charges, but also enhance stability of solar cells by providing a barrier protection to halide perovskites. It is expected that versatile of conjugated semi-conductive polymers and halide perovskites in photoactive properties enables to create various combinations, forming composites with advantages offered by both types of photoactive materials.

  19. An Efficient Synthesis of Diaryl Ethers by Coupling Aryl Halides with Substituted Phenoxytrimethylsilane in the Presence of TBAF

    Institute of Scientific and Technical Information of China (English)

    Jian Kui ZHAO; Yan Guang WANG

    2003-01-01

    A general synthesis of diaryl ethers via coupling of aryl halides with substitutedphenoxytrimethylsilane in the presence of TBAF is described. The protocol is simple and mild,and gives good to excellent yields.

  20. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    Science.gov (United States)

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-07

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  1. Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing

    OpenAIRE

    Guangru Li; Michael Price; Felix Deschler

    2016-01-01

    Hybrid lead-halide perovskites have emerged as promising solution-processed semiconductor materials for thin-film optoelectronics. In this review, we discuss current challenges in perovskite LED performance, using thin-film and nano-crystalline perovskite as emitter layers, and look at device performance and stability. Fabrication of electrically pumped, optical-feedback devices with hybrid lead halide perovskites as gain medium is a future challenge, initiated by the demonstration of optical...

  2. Corrosion Inhibition of Aluminium Using Exudate Gum from Pachylobus edulis in the Presence of Halide Ions in HCl

    Directory of Open Access Journals (Sweden)

    S. A. Umoren

    2008-01-01

    Full Text Available The anti-corrosive effect of Pachylobus edulis exudate gum in combination with halides ions (Cl–, Br– and I– for aluminium corrosion in HCl was studied at temperature range of 30-60°C using weight loss method. Results obtained showed that the naturally occurring exudate gum acts as an inhibitor for aluminium corrosion in acidic environment. Inhibition efficiency (%I increases with increase in concentration of the exudate gum and synergistically increased to a considerable extent on the addition of the halide ions. The increase in inhibition efficiency (%I and surface coverage (θ in the presence of the halides was found to be in the order I– > Br– > Cl– which indicates that the radii as well as electronegativity of the halide ions play a significant role in the adsorption process. Pachylobus edulis exudate gum obeys Temkin adsorption isotherm. Phenomenon of physical adsorption is proposed from the values of kinetic and thermodynamic parameters obtained. The values of synergism parameter (S1 obtained for the halides are greater than unity suggesting that the enhanced inhibition efficiency of the P. edulis caused by the addition of the halide ions is only due to synergistic effect.

  3. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  4. A Versatile Approach for the Asymmetric Synthesis of 3-Alkyl-isoindolin-1-ones

    Institute of Scientific and Technical Information of China (English)

    CHEN,Ming-De(陈明德); HE,Ming-Zhu(贺明珠); HUANG,Li-Qiang(黄利强); RUAN, Yuan-Ping( 阮源萍 ); HUANG, Pei-Qiang (黄培强)

    2002-01-01

    A flexxible approach to(R)-3-alkyl-isoindolin-1-ones and (R)-3-aryl-isoindolin-1-ones via a diastereoselective-alkylation is described. Present method is versatile in scope, allowing the easy introduction of various C-3 substituents by Grignard addition to phthalimide derived from (R)-phenylglycinol.3-Alkyl-3-hydroxy-isoindolin-1-ones can also be obtained in the first step of the present method.

  5. Reactions between cold methyl halide molecules and alkali-metal atoms.

    Science.gov (United States)

    Lutz, Jesse J; Hutson, Jeremy M

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  6. Theory of metal atom-water interactions and alkali halide dimers

    Science.gov (United States)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  7. [BMIM][PF(6)] promotes the synthesis of halohydrin esters from diols using potassium halides.

    Science.gov (United States)

    Oromí-Farrús, Mireia; Eras, Jordi; Villorbina, Gemma; Torres, Mercè; Llopis-Mestre, Veronica; Welton, Tom; Canela, Ramon

    2008-10-01

    Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF(6)] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF(6)] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.

  8. Carrier-phonon interactions in hybrid halide perovskites probed with ultrafast anisotropy studies

    Science.gov (United States)

    Rivett, Jasmine P. H.; Richter, Johannes M.; Price, Michael B.; Credgington, Dan; Deschler, Felix

    2016-09-01

    Hybrid halide perovskites are at the frontier of optoelectronic research due to their excellent semiconductor properties and solution processability. For this reason, much attention has recently been focused on understanding photoexcited charge-carrier generation and recombination in these materials. Conversely, very few studies have so far been devoted to understanding carrier-carrier and carrier-phonon scattering mechanisms in these materials. This is surprising given that carrier scattering mechanisms fundamentally limit charge-carrier motilities and therefore the performance of photovoltaic devices. We apply linear polarization selective transient absorption measurements to polycrystalline CH3NH3PbBr3 hybrid halide perovskite films as an effective way of studying the scattering processes in these materials. Comparison of the photo induced bleach signals obtained when the linear polarizations of the pump and probe are aligned either parallel or perpendicular to one another, reveal a significant difference in spectral intensity and shape within the first few hundred femtoseconds after photoexcitation.

  9. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    Science.gov (United States)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  10. Relationships between Lead Halide Perovskite Thin-Film Fabrication, Morphology, and Performance in Solar Cells.

    Science.gov (United States)

    Sharenko, Alexander; Toney, Michael F

    2016-01-20

    Solution-processed lead halide perovskite thin-film solar cells have achieved power conversion efficiencies comparable to those obtained with several commercial photovoltaic technologies in a remarkably short period of time. This rapid rise in device efficiency is largely the result of the development of fabrication protocols capable of producing continuous, smooth perovskite films with micrometer-sized grains. Further developments in film fabrication and morphological control are necessary, however, in order for perovskite solar cells to reliably and reproducibly approach their thermodynamic efficiency limit. This Perspective discusses the fabrication of lead halide perovskite thin films, while highlighting the processing-property-performance relationships that have emerged from the literature, and from this knowledge, suggests future research directions.

  11. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  12. Solid-State Nanopore Confinement for Band Gap Engineering of Metal-Halide Perovskites

    CERN Document Server

    Demchyshyn, Stepan; Groiss, Heiko; Heilbrunner, Herwig; Ulbricht, Christoph; Apaydin, Dogukan; Rütt, Uta; Bertram, Florian; Hesser, Günter; Scharber, Markus; Nickel, Bert; Sariciftci, Niyazi Serdar; Bauer, Siegfried; Głowacki, Eric Daniel; Kaltenbrunner, Martin

    2016-01-01

    Tuning the band gap of semiconductors via quantum size effects launched a technological revolution in optoelectronics, advancing solar cells, quantum dot light-emitting displays, and solid state lasers. Next generation devices seek to employ low-cost, easily processable semiconductors. A promising class of such materials are metal-halide perovskites, currently propelling research on emerging photovoltaics. Their narrow band emission permits very high colour purity in light-emitting devices and vivid life-like displays paired with low-temperature processing through printing-compatible methods. Success of perovskites in light-emitting devices is conditional upon finding reliable strategies to obtain tunability of the band gap. So far, colour can be tuned chemically by mixed halide stoichiometry, or by synthesis of colloidal particles. Here we introduce a general strategy of controlling shape and size of perovskite nanocrystallites (less than 10 nm) in domains that exhibit strong quantum size effects. Without ma...

  13. Crystal and electronic structures of substituted halide perovskites based on density functional calculation and molecular dynamics

    Science.gov (United States)

    Takaba, Hiromitsu; Kimura, Shou; Alam, Md. Khorshed

    2017-03-01

    Durability of organo-lead halide perovskite are important issue for its practical application in a solar cells. In this study, using density functional theory (DFT) and molecular dynamics, we theoretically investigated a crystal structure, electronic structure, and ionic diffusivity of the partially substituted cubic MA0.5X0.5PbI3 (MA = CH3NH3+, X = NH4+ or (NH2)2CH+ or Cs+). Our calculation results indicate that a partial substitution of MA induces a lattice distortion, resulting in preventing MA or X from the diffusion between A sites in the perovskite. DFT calculations show that electronic structures of the investigated partially substituted perovskites were similar with that of MAPbI3, while their bandgaps slightly decrease compared to that of MAPbI3. Our results mean that partial substitution in halide perovskite is effective technique to suppress diffusion of intrinsic ions and tune the band gap.

  14. Band Gap Tuning and Defect Tolerance of Atomically Thin Two- Dimensional Organic-Inorganic Halide Perovskites

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    Organic−inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we...... report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data...... for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant....

  15. Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters

    Science.gov (United States)

    Chien Sum, Tze; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-08-01

    The rapid transcendence of organic-inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley-Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic-inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted.

  16. Spacial Structure of Cationic Phosphorus Ligand-Ru (Ⅱ) Halide Complexes-by DFT Study

    Institute of Scientific and Technical Information of China (English)

    Yi Xin ZHAO; Shu Guang WANG

    2005-01-01

    The full-parameter geometry optimization of cationic (S)-BINAP-Ru (Ⅱ) halide complex was performed by DFT method using B3LYP, PW91 and PBE potentials with several basis sets. PW91 with 3-21G / SDD basis sets is found to be the most suitable method with consideration of both precision and efficiency. The dihedral angles (θ) of the binaphthyl or biphenyl with different phosphorus ligand-Ru (Ⅱ) halide complexes were found changing from 59.9 to 79.3 degree, while the natural bite angle (βn) of those complexes only changes from 87.4to 90.3 degree. It is different from the common view of asymmetric organic chemists' that θ directly influences βn.

  17. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site

    KAUST Repository

    Chawla, Mohit

    2015-01-14

    Using static and dynamics DFT methods we show that the Mg2+/F-/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F- with Cl- results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.

  18. Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics.

    Science.gov (United States)

    Kim, In Soo; Haasch, Richard T; Cao, Duyen H; Farha, Omar K; Hupp, Joseph T; Kanatzidis, Mercouri G; Martinson, Alex B F

    2016-09-21

    A low-temperature (TiO2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultrathin (12 nm) compact TiO2 underlayers for planar halide perovskite PV. Although device performance with as-deposited TiO2 films is poor, we identify room-temperature UV-O3 treatment as a route to device efficiency comparable to crystalline TiO2 thin films synthesized by higher temperature methods. We further explore the chemical, physical, and interfacial properties that might explain the improved performance through X-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and X-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.

  19. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez M, R.; Perez S, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Vazquez P, G.; Riveros, H. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Gonzalez M, P., E-mail: mijangos@cifus.uson.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl{sub x}KBr{sub 1-x} and KBr{sub x}RbBr{sub 1-x}. (Author)

  20. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria; Mo, Weijian; Muylle, Michel Serge Marie; Mandema, Remco Hugo; Nair, Vijay

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  1. Dialkylamino cyclopentadienyl ruthenium(ii) complex-catalyzed alpha-alkylation of arylacetonitriles with primary alcohols.

    Science.gov (United States)

    Cheung, Hung Wai; Li, Juan; Zheng, Wenxu; Zhou, Zhongyuan; Chiu, Yu Hin; Lin, Zhenyang; Lau, Chak Po

    2010-01-07

    Aminocyclopentadienyl ruthenium complexes, [(eta(5)-C(5)H(4)NMe(2))Ru(PPh(3))(2)(CH(3)CN)](+)BF(4)(-) and [(eta(5)-C(5)H(4)NEt(2))Ru(PPh(3))(2)(CH(3)CN)](+)BF(4)(-), are moderately active catalysts for alpha-alkylation of arylacetonitriles with primary alcohols; on the other hand, the analogous unsubstituted cyclopentadienyl ruthenium complex [(eta(5)-C(5)H(5))Ru(PPh(3))(2)(CH(3)CN)](+)BF(4)(-) shows very low catalytic activity. On the basis of experimental results and theoretical calculations, rationalization for the much higher catalytic activity of the aminocyclopentadienyl complexes over that of the unsubstituted Cp complex is provided. In the catalytic systems with the former, it is possible to regenerate the active solvento complexes via protonation of the metal hydride intermediates and subsequent ligand substitution; this process is, however, very nonfacile in the catalytic system with the latter.

  2. Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process

    NARCIS (Netherlands)

    Bae, D.; Palmstrom, A.; Roelofs, K.; Mei, B.T.; Chorkendorf, I.; Bent, S.F.; Vesborg, P.C.

    2016-01-01

    Wide-band-gap mixed-halide CH3NH3PbI3–XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently, J

  3. Palladium-Catalyzed Suzuki-Miyaura Type Coupling Reaction of Aryl Halides with Triphenylborane-Pyridine

    Institute of Scientific and Technical Information of China (English)

    杨明华; 顾勇冰; 王艳; 赵玺玉; 严国兵

    2012-01-01

    The Suzuki-Miyaura type coupling reaction of aryl halides with triphenylborane-pyridine was described. The reaction can be catalyzed by Pd(OAc)2 (5 mol%) in presence of Cs2CO3 at 50 ℃ or 80 ℃, and functionalized biaryls were obtained in good to excellent yields. This protocol is general and can tolerate a wide range of func- tional groups.

  4. Non-linear composition dependence of the conductivity parameters in alkali halides mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zardas, Georgios E., E-mail: gzardas@phys.uoa.g [Department of Solid State Physics, Faculty of Physics, University of Athens, Panepistimiopolis, 157 84 Zografos (Greece)

    2009-06-01

    Since mixed alkali halides were found to have applications in optical, optoelectronic and electronic devices, a strong interest has recently expressed for the study of their physical properties. Here, we discuss the experimental finding that a maximum conductivity enhancement with respect to pure constituents is obtained at a certain composition. We show that this composition can be predicted from the bulk properties of the end members.

  5. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water

    OpenAIRE

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M.; Warnan, Julien; Kuehnel, Moritz F; Friend, Richard H.; Reisner, Erwin

    2016-01-01

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqu...

  6. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets.

    Science.gov (United States)

    Ling, Yichuan; Yuan, Zhao; Tian, Yu; Wang, Xi; Wang, Jamie C; Xin, Yan; Hanson, Kenneth; Ma, Biwu; Gao, Hanwei

    2016-01-13

    Bright light-emitting diodes based on solution-processable organometal halide perovskite nanoplatelets are demonstrated. The nanoplatelets created using a facile one-pot synthesis exhibit narrow-band emissions at 529 nm and quantum yield up to 85%. Using these nanoparticles as emitters, efficient electroluminescence is achieved with a brightness of 10 590 cd m(-2) . These ligand-capped nanoplatelets appear to be quite stable in moisture, allowing out-of-glovebox device fabrication.

  7. Tailoring the oxidation state of cobalt through halide functionality in sol-gel silica

    OpenAIRE

    Gianni Olguin; Christelle Yacou; Simon Smart; Diniz da Costa, João C.

    2013-01-01

    The functionality or oxidation state of cobalt within a silica matrix can be tailored through the use of cationic surfactants and their halide counter ions during the sol-gel synthesis. Simply by adding surfactant we could significantly increase the amount of cobalt existing as Co3O4 within the silica from 44% to 77%, without varying the cobalt precursor concentration. However, once the surfactant to cobalt ratio exceeded 1, further addition resulted in an inhibitory mechanism whereby the alt...

  8. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability.

    Science.gov (United States)

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W; Liang, Dong; Ding, Qi; Joshi, Prakriti; Hwang, Leekyoung; Zhu, X-Y; Jin, Song

    2016-02-10

    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500-2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing under ∼10(8) shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI3 (∼10(7) laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI3 and (FA,MA)Pb(I,Br)3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.

  9. An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides

    KAUST Repository

    Weng, Zhiqiang

    2012-12-12

    A series of copper(I) trifluoromethyl thiolate complexes have been synthesized from the reaction of CuF2 with Me3SiCF 3 and S8 (see scheme; Cu red, F green, N blue, S yellow). These air-stable complexes serve as reagents for the efficient conversion of a wide range of aryl halides into the corresponding aryl trifluoromethyl thioethers in excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organo-Metal Halide Perovskites.

    Science.gov (United States)

    Pourdavoud, Neda; Wang, Si; Mayer, André; Hu, Ting; Chen, Yiwang; Marianovich, André; Kowalsky, Wolfgang; Heiderhoff, Ralf; Scheer, Hella-Christin; Riedl, Thomas

    2017-03-01

    Photonic nanostructures are created in organo-metal halide perovskites by thermal nanoimprint lithography at a temperature of 100 °C. The imprinted layers are significantly smoothened compared to the initially rough, polycrystalline layers and the impact of surface defects is substantially mitigated upon imprint. As a case study, 2D photonic crystals are shown to afford lasing with ultralow lasing thresholds at room temperature.

  11. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    Science.gov (United States)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-01-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3−xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3−xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3−xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3−xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br− (0.23 eV) than for I− (0.29–0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film. PMID:28272547

  12. Optical/IR Characteristics of Alkali Halide Aerosol Clouds over the Ocean.

    Science.gov (United States)

    2014-09-26

    Continues) 19 ABSTRACT (Continue on reverse if necessary and identify by block number) --- Artificial fogs grown on hygroscopic alkali halide...the cruise fell into one of two catagories: 1) elevated clouds or 2) surface fog banks. Both types of clouds have the potential of being useful for...8217 TABLE VI Computed Transmission Through Cloud #8 (from Size Distribution) (250 Meters Thick Cloud) Wavel ength i crons) 0.55 3.5 10.6 Rel

  13. Simultaneous Analyses and Applications of Multiple Fluorobenzoate and Halide Tracers in Hydrologic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q; Moran, J E

    2004-01-22

    An analytical method that employs ion chromatography has been developed to more fully exploit the use of fluorobenzoic acids (FBAs) and halides as hydrologic tracers. In a single run, this reliable, sensitive, and robust method can simultaneously separate and quantify halides (fluoride, chloride, bromide, and iodide) and up to seven FBAs from other common groundwater constituents (e.g., nitrate and sulfate). The usefulness of this ion chromatographic (IC) analytical method is demonstrated in both field and laboratory tracer experiments. Field experiments in unsaturated tuff featuring fractures or a fault show that this efficient and cost-effective method helps achieve the objectives of tracer studies that use multiple FBAs and/or diffusivity tracers (simultaneous use of one or more FBA and halide). The field study examines the hydrologic response of fractures and the matrix to different flow rates and the contribution of matrix diffusion in chemical transport. Laboratory tracer experiments with eight geologic media from across the United States--mostly from Department of Energy facilities where groundwater contamination is prevalent and where subsurface characterization employing tracers has been ongoing or is in need--reveal several insights about tracer transport behavior: (1) Bromide and FBAs are not always transported conservatively. (2) The delayed transport of these anionic tracers is likely related to geologic media characteristics, such as organic matter, pH, iron oxide content, and clay mineralogy. (3) Any use of iodine as a hydrologic tracer should take into account the different sorption behaviors of iodide and iodate and the possible conversion of iodine's initial chemical form. (4) The transport behavior of potential FBA and halide tracers under relevant geochemical conditions should be evaluated before beginning ambitious, large-scale field tracer experiments.

  14. Photon Driven Transformation of Cesium Lead Halide Perovskites from Few-Monolayer Nanoplatelets to Bulk Phase.

    Science.gov (United States)

    Wang, Yue; Li, Xiaoming; Sreejith, Sivaramapanicker; Cao, Fei; Wang, Zeng; Stuparu, Mihaiela Corina; Zeng, Haibo; Sun, Handong

    2016-12-01

    Influence of light exposure on cesium lead halide nanostructures has been explored. A discovery of photon driven transformation (PDT) in 2D CsPbBr3 nanoplatelets is reported, in which the quantum-confined few-monolayer nanoplatelets will convert to bulk phase under very low irradiation intensity (≈20 mW cm(-2) ). Benefiting from the remarkable emission color change during PDT, the multicolor luminescence photopatterns and facile information photo-encoding are established.

  15. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    CERN Document Server

    Park, Y T; Kim, M S; Kwon, J H

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  16. Role of Microstructure in the Electron-Hole Interaction of Hybrid Lead-Halide Perovskites

    OpenAIRE

    Grancini, Giulia; Srimath Kandada, Ajay Ram; Frost, Jarvist M.; Barker, Alex J; Bastiani, Michele; Gandini, Marina; Marras, Sergio; Lanzani, Guglielmo; Walsh, Aron; Petrozza, Annamaria

    2015-01-01

    Solar cells based on hybrid inorganic-organic halide perovskites have demonstrated high power conversion efficiencies in a range of architectures. The existence and stability of bound electron-hole pairs in these materials, and their role in the exceptional performance of optoelectronic devices, remains a controversial issue. Here we demonstrate, through a combination of optical spectroscopy and multiscale modeling as a function of the degree of polycrystallinity and temperature, that the ele...

  17. On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites

    Science.gov (United States)

    Brunetti, Bruno; Cavallo, Carmen; Ciccioli, Andrea; Gigli, Guido; Latini, Alessandro

    2016-08-01

    The interest of the scientific community on methylammonium lead halide perovskites (MAPbX3, X = Cl, Br, I) for hybrid organic-inorganic solar cells has grown exponentially since the first report in 2009. This fact is clearly justified by the very high efficiencies attainable (reaching 20% in lab scale devices) at a fraction of the cost of conventional photovoltaics. However, many problems must be solved before a market introduction of these devices can be envisaged. Perhaps the most important to be addressed is the lack of information regarding the thermal and thermodynamic stability of the materials towards decomposition, which are intrinsic properties of them and which can seriously limit or even exclude their use in real devices. In this work we present and discuss the results we obtained using non-ambient X-ray diffraction, Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss (KEML) techniques on MAPbCl3, MAPbBr3 and MAPbI3. The measurements demonstrate that all the materials decompose to the corresponding solid lead (II) halide and gaseous methylamine and hydrogen halide, and the decomposition is well detectable even at moderate temperatures (~60 °C). Our results suggest that these materials may be problematic for long term operation of solar devices.

  18. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  19. Defects in perovskite-halides and their effects in solar cells

    Science.gov (United States)

    Ball, James M.; Petrozza, Annamaria

    2016-11-01

    Solar cells based on perovskite-halide light absorbers have a unique set of characteristics that could help alleviate the global dependence on fossil fuels for energy generation. They efficiently convert sunlight into electricity using Earth-abundant raw materials processed from solution at low temperature. Thus, they offer potential for cost reductions compared with or in combination with other photovoltaic technologies. Nevertheless, to fully exploit the potential of perovskite-halides, several important challenges must be overcome. Given the nature of the materials — relatively soft ionic solids — one of these challenges is the understanding and control of their defect structures. Currently, such understanding is limited, restricting the power conversion efficiencies of these solar cells from reaching their thermodynamic limit. This Review describes the state of the art in the understanding of the origin and nature of defects in perovskite-halides and their impact on carrier recombination, charge-transport, band alignment, and electrical instability, and provides a perspective on how to make further progress.

  20. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence

    Science.gov (United States)

    Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K. L.; Sum, Tze Chien; Huang, Wei

    2017-01-01

    The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 1015 cm−3, defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence. PMID:28239146

  1. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles.

    Science.gov (United States)

    Xing, Jun; Yan, Fei; Zhao, Yawen; Chen, Shi; Yu, Huakang; Zhang, Qing; Zeng, Rongguang; Demir, Hilmi Volkan; Sun, Xiaowei; Huan, Alfred; Xiong, Qihua

    2016-07-26

    Organometal halide perovskite has recently emerged as a very promising family of materials with augmented performance in electronic and optoelectronic applications including photovoltaic devices, photodetectors, and light-emitting diodes. Herein, we propose and demonstrate facile solution synthesis of a series of colloidal organometal halide perovskite CH3NH3PbX3 (X = halides) nanoparticles with amorphous structure, which exhibit high quantum yield and tunable emission from ultraviolet to near-infrared. The growth mechanism and photoluminescence properties of the perovskite amorphous nanoparticles were studied in detail. A high-efficiency green-light-emitting diode based on amorphous CH3NH3PbBr3 nanoparticles was demonstrated. The perovskite amorphous nanoparticle-based light-emitting diode shows a maximum luminous efficiency of 11.49 cd/A, a power efficiency of 7.84 lm/W, and an external quantum efficiency of 3.8%, which is 3.5 times higher than that of the best colloidal perovskite quantum-dot-based light-emitting diodes previously reported. Our findings indicate the great potential of colloidal perovskite amorphous nanoparticles in light-emitting devices.

  2. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements.

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I; Phillips, Nicholas J

    2002-03-10

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such away that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.

  3. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence.

    Science.gov (United States)

    Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K L; Sum, Tze Chien; Huang, Wei

    2017-02-27

    The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 10(15) cm(-3), defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.

  4. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals.

    Science.gov (United States)

    Volonakis, George; Filip, Marina R; Haghighirad, Amir Abbas; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry J; Giustino, Feliciano

    2016-04-07

    Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV-vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV.

  5. Steric engineering of metal-halide perovskites with tunable optical band gaps.

    Science.gov (United States)

    Filip, Marina R; Eperon, Giles E; Snaith, Henry J; Giustino, Feliciano

    2014-12-15

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  6. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning.

    Science.gov (United States)

    Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V

    2016-06-14

    Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  7. Lanthanum halide scintillators for time-of-flight 3-D pet

    Science.gov (United States)

    Karp, Joel S.; Surti, Suleman

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  8. Homoepitaxial Growth of Metal Halide Crystals Investigated by Reflection High-Energy Electron Diffraction

    Science.gov (United States)

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; Lunt, Richard R.

    2017-01-01

    We report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flow growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications. PMID:28071732

  9. Differential alkylation-based redox proteomics - Lessons learnt

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina

    2015-01-01

    is a critical evaluation of differential alkylation-based strategies for the analysis of S-nitrosylation and S-sulfenylation. The aim is to assess the current status and to provide insights for future directions in the dynamically evolving field of redox proteomics. To achieve that we collected 35 original......, including the amount of starting material required for analysis. The results of this meta-analysis are the core of this review, complemented by issues related to biological models and sample preparation in redox proteomics, including conditions for free thiol blocking and labelling of target cysteine...

  10. Synthesis and cytotoxic activity of some derivatives of alkyl piperidine.

    Science.gov (United States)

    Jahan, Sarwat; Akhtar, Shamim; Saify, Zafar Saied; Mushtaq, Nousheen; Sial, Ali Akbar; Kamil, Arfa; Arif, Muhammed

    2013-05-01

    Synthesis of novel phenacyl derivatives of alkyl piperidine as cytotoxic agents via simple and single step reaction procedure is going to be reported here. Twelve new compounds were successfully synthesized in moderate yield and in solid form. Their synthesis was confirmed by TLC, melting point, CHN analysis and through different spectral studies such as UV, IR, Mass and proton NMR. The advantages of this synthetic route are simple operation, mild reaction conditions and good yields. These newly synthesized derivatives were extensively explored for their cytotoxicity by brine shrimp lethality assay.

  11. Field cryofocussing hydride generation applied to the simultaneous multi-elemental determination of alkyl-metal(loid) species in natural waters using ICP-MS detection.

    Science.gov (United States)

    Tseng, C M; Amouroux, D; Brindle, I D; Donard, O F

    2000-12-01

    Two hydride generation manifold systems, utilizing flow injection and cryotrapping techniques for alkyl-metal(loid) speciation analysis in natural waters, are described in this paper. They provide shipboard capacity for simultaneous derivatization of analytes with NaBH4 and cryotrapping of the generated products in a field packed column at -196 degrees C. The first system is a large-volume hydride generator, using a reagent-injection flow technique as a flow batch type, that has been fully optimized and applied to the simultaneous detection of alkylated species in estuarine waters. The technique permits the analysis of a large volume sample (0.5-11) at a sampling rate of 3 h-1. The second is an online continuous flow hydride generator. A sampling rate of 3-12 h-1 can be achieved with samples of 0.1-0.51. In addition, shipboard operation eliminates major problems related to sample pretreatment, transport and storage. Ultra-trace multi-element determination is finally performed in the laboratory by cryogenic GC hyphenated with ICP-MS. Routine detection limits of 0.5-10 pg (as metal) for 0.51 water samples were achieved for the selected alkyl-metal(loid) species of arsenic, germanium, mercury and tin. Concentrations of various species, obtained from water samples taken from the Rhine estuary, are also presented. These species include alkylated arsenic compounds, other than methyl derivatives, that have been tentatively identified and are reported here for the first time.

  12. Formation of 6-thioguanine and 6-mercaptopurine from their 9-alkyl derivatives in mice.

    Science.gov (United States)

    Nelson, J A; Vidale, E

    1986-01-01

    Several 9-alkyl, 6-thiopurines have been reported to have more favorable therapeutic indexes than do the parent drugs, 6-mercaptopurine (MP) and 6-thioguanine (TG). Some of these compounds were reported to be active against cells in culture resistant to 6-thiopurines, and it has been assumed that their mechanisms of action may differ from those of TG and MP. 9-(n-Butyl)-6-thioguanine was essentially inactive toward Chinese hamster ovary cells in vitro when compared with TG (50% effective dose, 250 and 1 microM, respectively). However, lethal doses of 9-(n-butyl)-6-thioguanine and TG in mice were similar when these agents were given i.p. daily for 9 consecutive days (50% lethal dose, 13 and 9 mg/kg/day). Similar organ toxicities were observed upon histopathological examination of dying animals. The cumulative, daily urinary excretion of TG was virtually identical in mice given 20- and 10-mg/kg/day of doses of 9-(n-butyl)-6-thioguanine or TG, respectively, for 9 days. The TG formed was identified by ultraviolet light (340 nm) detection following separation on a reverse phase high performance liquid chromatography system and by fluorescent detection of the permanganate oxidation product separated on a strong anion-exchange system. Dealkylation of 9-(n-butyl)-6-mercaptopurine and 9-ethyl-6-mercaptopurine also occurred in AKR mice. At near equitoxic doses, the daily cumulative urinary excretion of MP from 9-(n-butyl)-6-mercaptopurine and 9-ethyl-6-mercaptopurine was about 20-30% of that observed in mice receiving MP. The MP was confirmed in each case by enzymatic peak-shift of MP to 6-thiouric acid and ultraviolet light detection using the high performance liquid chromatography systems referred to above. The results suggest that these 9-alkyl derivatives serve as prodrugs for TG and MP, a finding that explains a number of their pharmacological and toxicological properties.

  13. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase.

    Science.gov (United States)

    Mecinović, Jasmin; Snyder, Phillip W; Mirica, Katherine A; Bai, Serena; Mack, Eric T; Kwant, Richard L; Moustakas, Demetri T; Héroux, Annie; Whitesides, George M

    2011-09-07

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H(2)NSO(2)C(6)H(4)-CONHCH(2)(CX(2))(n)CX(3), n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the

  14. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    Energy Technology Data Exchange (ETDEWEB)

    Sylwester, Eric Robert [Univ. of California, Berkeley, CA (United States)

    1998-10-01

    Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr4, HfBr4, RfBr4, NbBr5, TaOBr3, HaCl5, WBr6, FrBr, and BiBr3. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography. Adsorption Enthalpy (ΔHa) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and ΔHa was observed: RfBr4 > ZrBr4 > HfBr4. The ΔHa values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of 261Rf was performed. 261Rf was produced via the 248Cm(18O, 5n) reaction and observed with a half-life of 74-6+7 seconds, in excellent agreement with the previous measurement of 78-6+11 seconds. We recommend a new half-life of 75±7 seconds for 261Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant

  15. The isobutylene-isobutane alkylation process in liquid HF revisited.

    Science.gov (United States)

    Esteves, P M; Araújo, C L; Horta, B A C; Alvarez, L J; Zicovich-Wilson, C M; Ramírez-Solís, A

    2005-07-07

    Details on the mechanism of HF catalyzed isobutylene-isobutane alkylation were investigated. On the basis of available experimental data and high-level quantum chemical calculations, a detailed reaction mechanism is proposed taking into account solvation effects of the medium. On the basis of our computational results, we explain why the density of the liquid media and stirring rates are the most important parameters to achieve maximum yield of alkylate, in agreement with experimental findings. The ab initio Car-Parrinello molecular dynamics calculations show that isobutylene is irreversibly protonated in the liquid HF medium at higher densities, leading to the ion pair formation, which is shown to be a minimum on the potential energy surface after optimization using periodic boundary conditions. The HF medium solvates preferentially the fluoride anion, which is found as solvated [FHF](-) or solvated F(-.)(HF)(3). On the other hand, the tert-butyl cation is weakly solvated, where the closest HF molecules appear at a distance of about 2.9 Angstrom with the fluorine termination of an HF chain.

  16. A novel electrochemical alkylation of aniline with methanol over Zn/Cu salts modified kaolin

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu [Institute of Energy-Chemistry, College of Chemistry and Materials Science, Shaanxi Normal University, Xi' An 710062 (China); Wang Bo [Institute of Energy-Chemistry, College of Chemistry and Materials Science, Shaanxi Normal University, Xi' An 710062 (China)], E-mail: wangbo@snnu.edu.cn; Zhao, Jun [Institute of Energy-Chemistry, College of Chemistry and Materials Science, Shaanxi Normal University, Xi' An 710062 (China)

    2008-04-01

    A novel liquid phase alkylation of aniline with methanol over Zn/Cu salts modified kaolin assisted with a pair of porous carbon electrode in slurry-bed reactor under constant current intensity, room temperature and atmospheric pressure was reported. The Zn/Cu salts modified kaolin catalysts were synthesized and characterized by infrared spectrometer (IR), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM), which showed that the transition metals were completely supported on kaolin's structure and formed a pored one. The effect parameters, such as initial pH, electrolysis time, metal ratio with kaolin and salts composition in this electrochemical catalytic system, were studied. The procedure was inspected by ultraviolet-visible spectrum (UV-vis), and the product distribution was detected by gas chromatography/mass spectrometry (GC/MS). In addition, a possible reaction mechanism was also proposed.

  17. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    Directory of Open Access Journals (Sweden)

    Beatrice Ch. D. Salert

    2012-01-01

    Full Text Available This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obtained electron-transporting polymers as the emissive layer material in blend systems together with a green iridium-based emitter 13 and a small molecule as an additional cohost with wideband gap characteristics (CoH-001. The performance of the OLEDs was characterized and discussed in regard to the chemical structure of the new electron-transporting polymers.

  18. Multivalent polyglycerol supported imidazolidin-4-one organocatalysts for enantioselective Friedel–Crafts alkylations

    Directory of Open Access Journals (Sweden)

    Tommaso Pecchioli

    2015-05-01

    Full Text Available The first immobilization of a MacMillan’s first generation organocatalyst onto dendritic support is described. A modified tyrosine-based imidazolidin-4-one was grafted to a soluble high-loading hyperbranched polyglycerol via a copper-catalyzed alkyne–azide cycloaddition (CuAAC reaction and readily purified by dialysis. The efficiency of differently functionalized multivalent organocatalysts 4a–c was tested in the asymmetric Friedel–Crafts alkylation of N-methylpyrrole with α,β-unsaturated aldehydes. A variety of substituted enals was investigated to explore the activity of the catalytic system which was also compared with monovalent analogues. The catalyst 4b showed excellent turnover rates and no loss of activity due to immobilization, albeit moderate enantioselectivities were observed. Moreover, easy recovery by selective precipitation allowed the reuse of the catalyst for three cycles.

  19. Silver Halide Fibers For Surgical Applications Of CO2 Laser

    Science.gov (United States)

    Gal, Dov; Eldar, Michael; Valden, Refael; Batler, Alexander; Neufeld, Henry N.; Gaton, Edith; Volman, Moshe; Akselrod, Solange; Levite, Arie; Katzir, Abraham

    1984-10-01

    Carbon dioxide laser energy was used for the dissolution of atheromatous plaques. Delivery system was based on a AgCl:AgBr fiber which was inserted in a loose teflon tube. The system was used to vaporize human plaques in vitro as well as blocked human arteries which were transplanted in dogs. Preliminary results indicate that a system based on a CO2 laser and an infrared transmitting fiber may be useful in cardiology.

  20. Synthesis of alkylated deoxyno irimycin and 1,5-dideoxy-1,5-iminoxylitol analogues:

    DEFF Research Database (Denmark)

    Szczepina, M.G.; Johnston, B.D; Yuan, Y.

    2004-01-01

    The syntheses of N-alkylated deoxynojirimycin and 1,5-dideoxy-1,5-iminoxylitol derivatives having either a D- or an L-erythritol-3-sulfate functionalized N-substituent are reported. The alkylating agent used was a cyclic sulfate derivative, whereby selective attack of the nitrogen atom at the lea...

  1. Synthesis of 2-substituted tryptophans via a C3- to C2-alkyl migration

    Directory of Open Access Journals (Sweden)

    Michele Mari

    2014-08-01

    Full Text Available The reaction of 3-substituted indoles with dehydroalanine (Dha derivatives under Lewis acid-mediated conditions has been investigated. The formation of 2-substituted tryptophans is proposed to occur through a selective alkylative dearomatization–cyclization followed by C3- to C2-alkyl migration and rearomatization.

  2. Liposomes containing alkylated methotrexate analogues for phospholipase A(2) mediated tumor targeted drug delivery

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars; Jensen, Simon Skøde;

    2009-01-01

    to the alpha-carboxylic acid. The cytotoxicity of the gamma-alkylated compound towards KATO III (IC50 = 55 nM) and HT-29 (IC50 = 400 nM) cell lines, Was unaffected by the alkylation, whereas the additional benzyl group on the alpha-carboxyl group made the Compound nontoxic. The gamma-derivative with promising...

  3. A new procedure for N1-alkylation of imidazolidin-4-ones and its NMR characterization

    Science.gov (United States)

    Vale, Nuno; Figueiredo, Patrícia

    2016-12-01

    N1-unsubstituted imidazolidin-4-ones of primaquine (PQ) can be stabilized by N1-alkylation under basic conditions. Here we report the development, with our conditions, of peptidomimetic derivatives of PQ with L-amino acid and alkyl derivatives. The new derivatives represent potential new therapeutics for use against protozoan parasites, through enzymatic protection of aminopeptidases.

  4. Catalytic Alkylation of 2-Methylfuran with Formalin Using Supported Acidic Ionic Liquids

    DEFF Research Database (Denmark)

    Li, Hu; Shunmugavel, Saravanamurugan; Yang, Song;

    2015-01-01

    Biphasic alkylation of 2-methylfuran (2-MF) with formalin was carried out with a series of SBA-15 supported acidic ionic liquid catalysts (acidic SILCs) under mild reaction conditions. Acidic SILC with sulfonic acid groups (SO3H) and long alkyl chains was observed to have higher catalytic activity...

  5. The asymmetric alkylation of dimethylhydrazones; intermolecular chirality transfer using sparteine as chiral ligand.

    Science.gov (United States)

    McSweeney, Christina M; Foley, Vera M; McGlacken, Gerard P

    2014-12-01

    The asymmetric alkylation of ketones represents a fundamental transformation in organic chemistry. Chiral auxiliaries have been used almost exclusively for this transformation. Herein we describe a strategy for the generation of enantiomerically enriched α-alkylated ketones up to an er of 83 : 17, using a chiral ligand protocol.

  6. Sources and proxy potential of long chain alkyl diols in lacustrine environments.

    NARCIS (Netherlands)

    Rampen, Sebastiaan W.; Datema, Mariska; Rodrigo-Gámiz, M.; Schouten, Stefan; Reichart, Gert-Jan; Sinninghe Damste, Jaap S.

    2014-01-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) compositi

  7. Sources and proxy potential of long chain alkyl diols in lacustrine environments

    NARCIS (Netherlands)

    Rampen, S.; Datema, M.; Rodrigo-Gámiz, M.; Schouten, S.; Reichart, G.-J.; Sinninghe Damsté, J.S.

    2014-01-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) compositi

  8. Effects of alkyl side chains on properties of aliphatic amino acids probed using quantum chemical calculations.

    Science.gov (United States)

    Ganesan, Aravindhan; Wang, Feng; Brunger, Michael; Prince, Kevin

    2011-09-01

    Effects of alkyl side chains (R-) on the electronic structural properties of aliphatic amino acids are investigated using quantum mechanical approaches. The carbon (C 1s) binding energy spectra of the aliphatic amino acids are derived from the C 1s spectrum of glycine (the parent spectrum) by the addition of spectral peaks, depending on the alkyl side chains, appearing in the lower energy region IP aliphatic amino acids owing to perturbations depending on the size and structure of the alkyl chains. The pattern of the N 1s and O 1s spectra in glycine is retained in the spectra of the other amino acids with small shifts to lower energy, again depending on the alkyl side chain. The Hirshfeld charge analyses confirm the observations. The alkyl effects on the valence binding energy spectra of the amino acids are concentrated in the middle valence energy region of 12-16 eV, and hence this energy region of 12-16 eV is considered as the `fingerprint' of the alkyl side chains. Selected valence orbitals, either inside or outside of the alkyl fingerprint region, are presented using both density distributions and orbital momentum distributions, in order to understand the chemical bonding of the amino acids. It is also observed that the HOMO-LUMO energy gaps of the aliphatic amino acids are reduced with the growth of the alkyl side chain.

  9. Glycidol-carbohydrate hybrids: a new family of DNA alkylating agents.

    Science.gov (United States)

    Toshima, Kazunobu; Okuno, Yukiko; Matsumura, Shuichi

    2003-10-06

    Novel and chiral glycidol-carbohydrate hybrids possessing an epoxy group as a DNA alkylating moiety were designed and synthesized. These artificial hybrids selectively alkylated DNA at the N-7 sites of the guanines and cleaved DNA without any additives. The binding ability of the glycidol was significantly enhanced by the attachment of the carbohydrate.

  10. Modification with alkyl chains and the influence on thermal and mechanical properties of aromatic hyperbranched polyesters

    NARCIS (Netherlands)

    Schmaljohann, Dirk; Häußler, Liane; Pötschke, Petra; Voit, Brigitte I.; Loontjens, Ton J.A.

    2000-01-01

    All-aromatic hyperbranched polyesters with hydroxy endgroups were functionalized with aliphatic n-alkyl carboxylic acids. The length of the n-alkyl chain as well as the degree of modification were varied and the resulting, partially amphiphilic polymers were characterized by differential scanning ca

  11. Studies on the solvation dynamics of coumarin 153 in 1-ethyl-3-methylimidazolium alkylsulfate ionic liquids: dependence on alkyl chain length.

    Science.gov (United States)

    Das, Sudhir Kumar; Sarkar, Moloy

    2012-08-06

    Steady-state and time-resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1-ethyl-3-methylimidazolium alkylsulfate ([C(2)mim][C(n)OSO(3)]) ionic liquids differing only in the length of the linear alkyl chain (n = 4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady-state absorption and emission maxima of C153 on going from the C(4)OSO(3) to the C(8)OSO(3) system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time-zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes-Einstein-Debye (SED), Gierer-Wirtz (GW), and Dote-Kivelson-Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity.

  12. Conformation-specific spectroscopy of alkyl benzyl radicals: Effects of a radical center on the CH stretch infrared spectrum of an alkyl chain

    Science.gov (United States)

    Korn, Joseph A.; Tabor, Daniel P.; Sibert, Edwin L.; Zwier, Timothy S.

    2016-09-01

    An important initial step in the combustion of gasoline and diesel fuels is the abstraction of hydrogen from alkylbenzenes to form resonance-stabilized alkyl benzyl radicals. This work uses, for the first time, double resonance spectroscopy methods to explore the conformation-specific vibronic and infrared spectroscopy of the α-ethylbenzyl (αEtBz) and α-propylbenzyl (αPrBz) radicals. Local mode Hamiltonian modeling enables assignment of the alkyl CH stretch IR spectra, accounting for Fermi resonance that complicates aliphatic alkyl CH stretch IR spectroscopy. The ground state conformational preferences of the ethyl and propyl chains are changed from those in the alkylbenzenes themselves, with global minima occurring for an in-plane orientation of the alkyl chain (trans) about its first dihedral angle (ϕf123, numbers are alkyl C atoms. C1 is CH radical site). This in-plane structure is the only observed conformer for the α-EtBz radical, while two conformers, tt and tg' share this orientation at the first dihedral, but differ in the second (ϕ1234) for the αPrBz radical. The in-plane orientation lowers the local site frequencies of the CH2 group stretches immediately adjacent to the benzylic radical site by about 50 cm-1 relative to those in pure alkyl chains or alkylbenzenes. This effect of the radical site is localized on the first CH2 group, with little effect on subsequent members of the alkyl chain. In the D1 excited electronic state, an out-of-plane orientation is preferred for the alkyl chains, leading to torsional mode Franck-Condon activity in the D0-D1 spectra that is both conformer-specific and diagnostic of the conformational change.

  13. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Science.gov (United States)

    2010-07-01

    ... alcohol, halogenated alkane, substituted epoxide, and amino compound (generic). 721.10145 Section 721... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  14. GABA receptor antagonists and insecticides: common structural features of 4-alkyl-1-phenylpyrazoles and 4-alkyl-1-phenyltrioxabicyclooctanes.

    Science.gov (United States)

    Sammelson, Robert E; Caboni, Pierluigi; Durkin, Kathleen A; Casida, John E

    2004-06-15

    Fipronil [5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-trifluoromethylsulfinylpyrazole] is one of the most important insecticides. Structure-activity studies described here reveal that fipronil retains its very high binding potency at the human beta3 and house fly gamma-aminobutyric acid (GABA) receptors and toxicity to house flies on replacing the pyrazole trifluoromethylsulfinyl moiety with tert-butyl or isopropyl and the phenyl trifluoromethyl substituent with ethynyl, trifluoromethoxy, bromo or chloro. Among the compounds studied, those with other alkyl groups at the 4-position of the pyrazole, as well as phenyl substitution without one or both of the 2,6-dichloro groups, are less effective. 5-Amino-4-tert-butyl-3-cyano-1-(2,6-dichloro-4-ethynylphenyl)pyrazole is highly effective and almost isosteric with 4-tert-butyl-3-cyano-1-(4-ethynylphenyl)-2,6,7-trioxabicyclo[2.2.2]octane (the most potent 4-alkyl-1-phenyltrioxabicyclooctane) as a noncompetitive GABA antagonist and insecticide. These findings are interpreted as three binding subsites in the GABA receptor: a hydrophobic site undergoing steric interaction with the tert-butyl or equivalent group; a hydrogen bonding site to pyrazole N-2; a pi bonding site to the face of the phenyl moiety; with supplemental enhancement by the 3-cyano and 4-ethynyl substituents.

  15. Sulfated Alkyl Glucopyranans with Potent Antiviral Activity Synthesized by Ring-Opening Copolymerization of Anhydroglucose and Alkyl Anhydroglucose Monomers

    Directory of Open Access Journals (Sweden)

    Shiming Bai

    2015-01-01

    Full Text Available Sulfated glucopyranans having long alkyl groups were prepared by the ring-opening copolymerization of benzylated 1,6-anhydroglucopyranose with 3-O-octadecyl 1,6-anhydro-β-d-glucopyranose monomers, and subsequent deprotection and sulfation. Water-soluble sulfated glucopyranans with 2.8 and 4.7 mol% of 3-O-octadecyl group and lower molecular weights of M-n = 2.5 × 103–5.1 × 103 have potent anti-HIV activity at 0.05–1.25 μg/mL, even though sulfated polysaccharides with molecular weights below M-n = 6 × 103 had low anti-HIV activity. The interaction with poly-l-lysine as a model compound of proteins was analyzed by SPR, DSL, and zeta potential, indicating that the sulfated 3-O-octadecyl glucopyranans had high association and low dissociation rate constants, and the particle size increased after addition of poly-l-lysine. The anti-HIV activity was induced by electrostatic interaction between sulfate groups and amino groups of poly-l-lysine and by the synergistic effect of the hydrophobic long alkyl chain and hydrophilic sulfated group.

  16. Alkylating ability of carbohydrate oxetanes: Practical synthesis of bolaform skeleton derivative

    Directory of Open Access Journals (Sweden)

    Hadžić Pavle A.

    2015-01-01

    Full Text Available Alkylating ability of oxetane ring in carbohydrate structure was investigated and flexible method for bolaform amphiplile skeleton construction with xylose as polar heads is proposed. The method is based on oxetane ring opening in easily accessible 3,5-anhydro-1,2-O-cyclohexylidenexylofuranose (1. One step nitrogen alkylation in terminal diamines with 1 gave basic cationic bolaform skeleton with xylose as potential polar heads and deliberately chosen length of non polar spacer. Under similar experimental conditions, but with appropriate molar ratio of alkylating agent, alkylation reaction provide for selective monoalkylation of diamines. Successful alkylation in xanthine series (theophylline was also achieved with 1, giving a new 5-deoxy-5-(7´-theophyllineamino-α-D-xylofuranose derivative.

  17. PHOTOREDUCTION OF ALKYL VIOLOGENS AND POLYVIOLOGENS IN 2-PROPANOL AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    LIANG Zhaoxi; LI Wen; LI Manfu

    1987-01-01

    In order to study the effect of alkyl chain length and the polymer effect on the photoreduction behavior of some viologens, a series of alkyl viologen, polyviologen and bisviologen compounds have been synthesized. In the presence of excess 2-propanol, the initial photoreduction of alkyl viologens and polyviologens follow the peudo-second-order reaction, the calculated rate constants are related to the alkyl chain length. In addition, the intramolecular association of radical cations of polyviologens has been found even in dilute solution. However the extent of association is varied with the alkyl chain length. The observed polymer effect of polyviologens in the photoreduction is significant which can be explained in terms of the nature of second order reaction.

  18. 40 CFR 721.3830 - Formaldehyde, reaction products with an alkylated phenol and an aliphatic amine (generic).

    Science.gov (United States)

    2010-07-01

    ... an alkylated phenol and an aliphatic amine (generic). 721.3830 Section 721.3830 Protection of... products with an alkylated phenol and an aliphatic amine (generic). (a) Chemical substance and significant..., reaction products with an alkylated phenol and an aliphatic amine (PMN P-99-0531) is subject to...

  19. 75 FR 50926 - 2-propenoic acid, 2-methyl-, C12-16-alkyl esters, telomers with 1-dodecanethiol, polyethylene...

    Science.gov (United States)

    2010-08-18

    ... AGENCY 40 CFR Part 180 2-propenoic acid, 2-methyl-, C12-16-alkyl esters, telomers with 1-dodecanethiol... tolerance for residues of 2-propenoic acid, 2-methyl-, C12-16- alkyl esters, telomers with 1-dodecanethiol... residues of 2-propenoic acid, 2-methyl-, C12-16-alkyl esters, telomers with 1-dodecanethiol,...

  20. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl polycarboxylic acids, esters... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  1. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  2. Quantitative structure–activity relationships for chronic toxicity of alkyl-chrysenes and alkyl-benz[a]anthracenes to Japanese medaka embryos (Oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongkang [Department of Biology, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Morandi, Garrett D. [School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Brown, R. Stephen [School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Department of Chemistry, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Snieckus, Victor; Rantanen, Toni [Department of Chemistry, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Jørgensen, Kåre B. [Department of Mathematics and Natural Sciences, University of Stavanger, 4036 Stavanger (Norway); Hodson, Peter V., E-mail: peter.hodson@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada)

    2015-02-15

    Highlights: • Medaka embryos were exposed to alkyl chrysenes and benzo[a]anthracenes (BAA). • Concentrations were kept constant by partition controlled delivery. • Chrysene was not toxic within solubility limits, in contrast to BAA. • Alkylation increased the toxicity of chrysene and BAA. • Toxicity was related to hydrophobicity and to specific modes of action. - Abstract: Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are a class of compounds found at significant concentrations in crude oils, and likely the main constituents responsible for the chronic toxicity of oil to fish. Alkyl substituents at different locations on the aromatic rings change the size and shape of PAH molecules, which results in different interactions with tissue receptors and different severities of toxicity. The present study is the first to report the toxicity of several alkylated derivatives of chrysene and benz[a]anthracene to the embryos of Japanese medaka (Oryzias latipes) using the partition controlled delivery (PCD) method of exposure. The PCD method maintained the desired exposure concentrations by equilibrium partitioning of hydrophobic test compounds from polydimethylsiloxane (PDMS) films. Test concentrations declined by only 13% over a period of 17 days. Based on the prevalence of signs of blue sac disease (BSD), as expressed by median effective concentrations (EC50s), benz[a]anthracene (B[a]A) was more toxic than chrysene. Alkylation generally increased toxicity, except at position 2 of B[a]A. Alkyl-PAHs substituted in the middle region had a lower EC50 than those substituted at the distal region. Except for B[a]A and 7-methylbenz[a]anthracene (7-MB), estimated EC50 values were higher than their solubility limits, which resulted in limited toxicity within the range of test concentrations. The regression between log EC50s and log K{sub ow} values provided a rough estimation of structure–activity relationships for alkyl-PAHs, but K{sub ow} alone did not provide

  3. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    Science.gov (United States)

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.

  4. A review on bis-hydrazonoyl halides: Recent advances in their synthesis and their diverse synthetic applications leading to bis-heterocycles of biological interest

    Directory of Open Access Journals (Sweden)

    Ahmad Sami Shawali

    2016-11-01

    Full Text Available This review covers a summary of the literature data published on the chemistry of bis-hydrazonoyl halides over the last four decades. The biological activities of some of the bis-heterocyclic compounds obtained from these bis-hydrazonoyl halides are also reviewed and discussed.

  5. Breastfeeding as an Exposure Pathway for Perfluorinated Alkylates

    DEFF Research Database (Denmark)

    Mogensen, Ulla B; Grandjean, Philippe; Nielsen, Flemming

    2015-01-01

    Perfluorinated alkylate substances (PFASs) are widely used and have resulted in human exposures worldwide. PFASs occur in breast milk, and the duration of breastfeeding is associated with serum-PFAS concentrations in children. To determine the time-dependent impact of this exposure pathway, we...... examined the serum concentrations of five major PFASs in a Faroese birth cohort at birth, and at ages 11, 18, and 60 months. Information about the children's breastfeeding history was obtained from the mothers. The trajectory of serum-PFAS concentrations during months with and without breastfeeding...... increases during partial breast-feeding. In contrast to this main pattern, perfluorohexanesulfonate was not affected by breast-feeding. After cessation of breastfeeding, all serum concentrations decreased. This finding supports the evidence of breastfeeding being an important exposure pathway to some PFASs...

  6. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene

    CERN Document Server

    Li, Mohan; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2015-01-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay researches. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator being developed. In this paper we observed a good separation of scintillation and Cherenkov lights in an LAB sample. The rising and decay times of the scintillation light of the LAB were measured to be $(7.7\\pm3.0)\\ \\rm{ns}$ and $(36.6\\pm2.4)\\ \\rm{ns}$, respectively, while the full width [-3$\\sigma$, 3$\\sigma$] of the Cherenkov light was 12 ns dominated by the time resolution of our photomultiplier tubes. The light yield of the scintillation was measured to be $(1.01\\pm0.12)\\times10^3\\ \\rm{photons}/\\rm{MeV}$.

  7. Branched alkyl alcohol propoxylated sulfate surfactants for improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Iglauer, S.; Shuler, P.; Tang, Y. [California Institute of Technology, Covina, CA (US). Power, Environmental and Energy Research (PEER) Center; Goddard, W.A. III [California Institute of Technology, Pasadena, CA (United States). Materials and Process Simulation Center

    2010-05-15

    This investigation considers branched alkyl alcohol propoxylated sulfate surfactants as candidates for chemical enhanced oil recovery (EOR) applications. Results show that these anionic surfactants may be preferred candidates for EOR as they can be effective at creating low interfacial tension (IFT) at dilute concentrations, without requiring an alkaline agent or cosurfactant. In addition, some of the formulations exhibit a low IFT at high salinity, and hence may be suitable for use in more saline reservoirs. Adsorption tests onto kaolinite clay indicate that the loss of these surfactants can be comparable to or greater than other types of anionic surfactants. Surfactant performance was evaluated in oil recovery core flood tests. Selected formulations recovered 35-50% waterflood residual oil even with dilute 0.2 wt% surfactant concentrations from Berea sandstone cores. (orig.)

  8. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T.K. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Clarke, S.M., E-mail: stuart@bpi.cam.ac.u [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Bhinde, T. [BP Institute, Department of Chemistry, University of Cambridge, Cambridge (United Kingdom); Castro, M.A.; Millan, C. [Instituto Ciencia de los Materiales de Sevilla, Departamento de Quimica Inorganica (CSIC-Universidad de Sevilla) (Spain); Medina, S. [Centro de Investigacion, Tecnologia e Innovacion de la Universidad de Sevilla (CITIUS), Sevilla (Spain)

    2011-03-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C{sub 7}, C{sub 9} and C{sub 11}) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C{sub 11} homologue is determined to have a plane group of either p2, pgb or pgg, and for the C{sub 7} homologue the p2 plane group is preferred.

  9. Enhanced performance of alkylated graphene reinforced polybutylene succinate nanocomposite

    Science.gov (United States)

    Abidin, A. S. Zainal; Yusoh, K.; Jamari, S. S.; Abdullah, A. H.; Ismail, Z.

    2016-07-01

    Polybutylene succinate (PBS) was being grafted with octadecylamine-functionalized graphene oxide (GO-ODA) to produce novel PBS/GO-ODA nanocomposites by solution blending technique. Alkylated graphene oxide has superhydrophobic surface thus improved the affinity of the filler with low polar polymer such as PBS. The structure and compatibility of the filler and nanocomposites were being characterized using Fourier transform infrared spectroscopy (FTIR), Universal tensile machine (UTM) and thermogravimetric analysis (TGA). Enhancement of tensile strength and Young's modulus by 30% and 165% respectively was achieved with cooperation of 0.5% GO-ODA loading. The functionalization of GO-ODA in PBS matrix leads to the improvement in the nanocomposites properties.

  10. Molecular and Electronic Structure of n-Alkyl Cyanobiphenyl Nematogens

    Energy Technology Data Exchange (ETDEWEB)

    Risser, Steven M.(TEXAS A and M UNIVERSITY); Ferris, Kim F.(BATTELLE (PACIFIC NW LAB))

    2001-12-01

    First principle electronic structure calculations (ab-initio and density functional) were performed on a series of substituted cyanobiphenyls to examine the structural and electronic properties as a function of the alkyl tail length and changes in torsion angle about the central bond connecting the rings. We find good agreement between our results and previous electronic structure studies for the optimized torsion angle between phenyls in the cyanobiphenyls, and changes in dipole moment for the cyanobiphenyls. We also find the torsion angle and rotational barriers in cyanobiphenyls to be similar to that in simple biphenyl. However, we find large discrepancies with the recent density functional calculations that reported a much smaller torsion angle in the syanobiphenyls.

  11. Fridel-Crafts alkylation of iodine catalyed by ultrasound assisted

    Directory of Open Access Journals (Sweden)

    Manoel G. de Oliveira

    2012-06-01

    Full Text Available Triarymethanes (TRAMs are used as antitubercular agents, antitumor or antiviral.1 Was weighed 2 mmol of (1a, 1 mmol of (2a, 10 mol% of I2 in 5 mL of CH2Cl2, the reaction was brought to ultrasound bath (SONIC MODEL LS-4, 7D of 44 kH and 150 W (Scheme 1.The product was purified on silica gel-60, eluting mixture 8:2 of (Hexano:Ethyl acetate. Under these conditions 65% of the product (3a was obtained. The compound was characterized by third m.p. 161ºC (161-162ºC.1 The Fridel-Crafts alkylation catalyzed by I2 bath ultrasound occurs at short reaction time requiring less energy expenditure compared to the method of agitation. It is intended to increase the study of various aromatic compounds (1, different aldehydes (2 and vary the use of solvents.

  12. Synthesis and in vivo distribution in rat brain of /sup 11/C-labelled N-alkylated ADTN derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Werf, J.F. van der; Vaalburg, W.; Korf, J.; Kuilman, T.; Wiegman, T. (Rijksuniversiteit Groningen (Netherlands). Hospital)

    1984-05-01

    A method for the rapid production and purification of /sup 11/C-labelled N-alkylated derivatives of the dopamine agonist 2-amino-6,7-dihydroxytetralin (ADTN) is described. The label is introduced by N-methylation with no-carrier-added /sup 11/CH/sub 3/I of the corresponding secondary amines via their lithium salts. Following systemic injection in rats a uniform distribution of radioactivity in the brain was found for both the labelled 2-(N-methyl-N-n-propylamino)- and 2-(N,N-dimethylamino)-6,7-dihydroxytetralin.

  13. Synthesis and in vivo distribution in rat brain of /sup 11/C-labelled N-alkylated ADTN derivatives

    Energy Technology Data Exchange (ETDEWEB)

    van der Werf, J.F.; Vaalburg, W.; Korf, J.; Kuilman, T.; Wiegman, T.

    1984-05-01

    A method for the rapid production and purification of /sup 11/C-labelled N-alkylated derivatives of the dopamine agonist 2-amino-6,7-dihydroxytetralin (ADTN) is described. The label is introduced by N-methylation with no-carrier-added /sup 11/CH/sup 3/I of the corresponding secondary amines via their lithium salts. Following systemic injection in rats a uniform distribution of radioactivity in the brain was found for both the labelled 2-(N-methyl-N-n-propylamino)- and 2-(N,N-dimethylamino)-6,7-dihydroxytetralin.

  14. Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites.

    Science.gov (United States)

    Kim, Jongseob; Chung, Choong-Heui; Hong, Ki-Ha

    2016-10-05

    Organic-inorganic hybrid perovskites have unique electronic properties in which deep level defects are rarely formed. This unique defect characteristic is the source of the long carrier diffusion length. This theoretical study shows what causes this characteristic formation of shallow level defects in lead tri-halide perovskites. Comparative studies between iodides and other halides showed that deep level defect states were generated for Cl based perovskites. Longer Pb-halide bond lengths and narrower band gaps are beneficial for preventing deep level defect states. Additionally, our study shows that the formation of shallow level defects does not change even when the lattice structures of the perovskites do not reach their equilibrium structures.

  15. Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations.

    Science.gov (United States)

    Egger, David A; Kronik, Leeor

    2014-08-07

    A microscopic picture of structure and bonding in organic-inorganic perovskites is imperative to understanding their remarkable semiconducting and photovoltaic properties. On the basis of a density functional theory treatment that includes both spin-orbit coupling and dispersive interactions, we provide detailed insight into the crystal binding of lead-halide perovskites and quantify the effect of different types of interactions on the structural properties. Our analysis reveals that cohesion in these materials is characterized by a variety of interactions that includes important contributions from both van der Waals interactions among the halide atoms and hydrogen bonding. We also assess the role of spin-orbit coupling and show that it causes slight changes in lead-halide bonding that do not significantly affect the lattice parameters. Our results establish that consideration of dispersive effects is essential for understanding the structure and bonding in organic-inorganic perovskites in general and for providing reliable theoretical predictions of structural parameters in particular.

  16. Synthesis of alkyl esters by cutinase in miniemulsion and organic solvent media.

    Science.gov (United States)

    de Barros, Dragana P C; Fonseca, Luís P; Cabral, Joaquim M S; Weiss, Clemens K; Landfester, Katharina

    2009-05-01

    The main objective of this work was studying and testing the nature and influence of reaction media (organic solvent vs. miniemulsion system) on the synthesis of alkyl esters catalyzed by Fusarium solani pisi cutinase. Ester synthesis and cutinase selectivity for different chain length of acids and alcohols (ethyl and hexyl) were evaluated. In iso-octane, after 1 h of reaction, cutinase exhibits rates of esterification between 0.24 micromol x mg(-)1 x min(-1) for ethyl oleate and 1.15 micromol x mg(-)1 x min(-1) for ethyl butyrate, while in a miniemulsion system the rates were from 0.05 for ethyl heptanoate to 0.76 micromol x mg(-1) x min(-1) for ethyl decanoate. The reaction rate for the synthesis of hexyl esters in a miniemulsion system was from 0.19 for hexyl heptanoate to 1.07 micromol x mg(-)1 x min(-1) for hexyl decanoate. High conversion yields of 95% at equilibrium after 8 h of reaction in iso-octane for pentanoic acid (C(5)) with ethanol at equimolar concentration (0.1 M) was achieved. Additionally, this work showed that a significant and unexpected shift in cutinase selectivity occurred towards longer chain length carboxylic acids (C(8)-C(10)) in miniemulsion system as compared to organic solvent (iso-octane) and previous studies in reverse micellar systems. The possibility of working with higher concentration of substrates, without inhibitory effect on the enzyme, was another advantage of the miniemulsion system.

  17. Measurements of NMHCs, Halocarbons, and Light Alkyl Nitrates During TOPSE

    Science.gov (United States)

    Blake, N. J.; Blake, D. R.; Sive, B. C.; Sive, B. C.; Katzenstein, A. S.; Meinardi, S.; Wingenter, O. W.; Wingenter, O. W.; Ridley, B. A.

    2001-05-01

    Nonmethane hydrocarbons (NMHCs), halocarbons, and alkyl nitrates were measured in nearly 2500 whole air samples collected aboard the National Center for Atmospheric Research (NCAR) C-130 aircraft as part of the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign. Thirty-eight flights were made during seven deployments at mid- to high-latitudes over Arctic North America flying from Boulder, Colorado (40° N) as far north as 85° N. The deployments were flown over a four-month period from early February to mid-May. The TOPSE campaign was designed to observe the chemical and dynamical evolution of tropospheric chemical composition at northern mid-latitudes, and to investigate the significance of volatile organic carbon (VOC) species to the spring-time ozone maximum. For the region to the north of 50° N, total C2-C9 NMHC mixing ratios gradually decreased from their wintertime maximum of nearly 10 ppbC to about 4 ppbC in May at a rate of approximately 1.7 ppbC/month. By comparison, ozone increased by about 15 ppbv over the same period ( ~4.4 ppb/month). The rate of decay of the speciated NMHCs was dependent on their individual OH lifetimes. Total light (C1-C4) alkyl nitrates decreased from about 25 pptv to about 10 pptv and represented approximately10% or less of NOY. The strong latitude gradients, with highest levels north of 50° N were associated with the earliest deployments. By May, the latitudinal NMHC gradients had all but disappeared. Similarly, negative NMHC gradients with altitude were strongest early in the campaign. We identified several interesting episodes of long-range transport of both polluted and clean marine air masses into the sampling region, in addition to regions of very low NMHC levels associated with boundary layer ozone depletion events.

  18. Solvation structure of the halides from x-ray absorption spectroscopy

    Science.gov (United States)

    Antalek, Matthew; Pace, Elisabetta; Hedman, Britt; Hodgson, Keith O.; Chillemi, Giovanni; Benfatto, Maurizio; Sarangi, Ritimukta; Frank, Patrick

    2016-07-01

    Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, and a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (-0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.

  19. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.

    Science.gov (United States)

    Weidman, Mark C; Seitz, Michael; Stranks, Samuel D; Tisdale, William A

    2016-08-23

    Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.

  20. All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation

    KAUST Repository

    Ning, Zhijun

    2012-09-12

    A new solution-phase halide passivation strategy to improve the electronic properties of colloidal quantum dot films is reported. We prove experimentally that the approach leads to an order-of-magnitude increase in mobility and a notable reduction in trap state density. We build solar cells having the highest efficiency (6.6%) reported using all-inorganic colloidal quantum dots. The improved photocurrent results from increased efficiency of collection of infrared-generated photocarriers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.