Sample records for alkoxides

  1. Alkoxide routes to Inorganic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George H [ORNL


    An all alkoxide solution chemistry utilizing metal 2-methoxyethoxide complexes in 2-methoxyethanol was used to deposit thin-films of metal oxides on single-crystal metal oxide substrates and on biaxially textured metal substrates. This same chemistry was used to synthesize complex metal oxide nanoparticles. Nuclear Magnetic Resonance spectroscopy was used to study precursor solutions of the alkaline niobates and tantalates. Film crystallization temperatures were determined from x-ray diffraction patterns of powders derived from the metal oxide precursor solutions. Film structure was determined via x-ray diffraction. Film morphology was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Epitaxial thin-films of strontium bismuth tantalate (SrBi{sub 2}Ta{sub 2}O{sub 9}, SBT) and strontium bismuth niobate (SrBi{sub 2}Nb{sub 2}O{sub 9}, SBN) were deposited on single crystal [1 0 0] magnesium oxide (MgO) buffered with lanthanum manganate (LaMnO{sub 3}, LMO). Epitaxial thin films of LMO were deposited on single crystal [100] MgO via Rf-magnetron sputtering and on single crysal [100] lanthanum aluminate (LaAlO{sub 3}) via the chemical solution deposition technique. Epitaxial thin-films of sodium potassium tantalate (na{sub 0.5}K{sub 0.5}TaO{sub 3}, NKT), sodium potassium niobate (Na{sub 0.5}K{sub 0.5}NbO{sub 3}, NKN) and sodium potassium tantalum niobate (Na{sub 0.5}K{sub 0.5}Ta{sub 0.5}O{sub 3}, NKTN) were deposited on single crystal [1 0 0] lanthanum aluminate and [1 0 0] MgO substrates (NKT and NKN) and biaxially textured metal substrates via the chemical solution deposition technique. Epitaxial growth of thin-films of NKT, NKN and NKTN was observed on LAO and Ni-5% W. Epitaxial growth of thin-films of NKN and the growth of c-axis aligned thin-films of NKT was observed on MgO. Nanoparticles of SBT, SBN, NKT and NKN were synthesized in reverse micelles from alkoxide precursor solutions. X-ray diffraction and transmission electron

  2. Synthesis and characterization of sodium alkoxides

    Indian Academy of Sciences (India)

    K Chandran; R Nithya; K Sankaran; A Gopalan; V Ganesan


    Alcohol route is being adopted for cleaning sodium from sodium-wetted small components of coolant circuits of fast reactors. For better understanding of sodium–alcohol reactions and their energetics, the data on thermo-chemical properties such as heats of sodium–alcohol reactions, heats of dissolution, heat capacities, thermal decomposition behaviour, etc of their end products are essential. In order to generate such data, high purity sodium alkoxides, viz. sodium methoxide, sodium ethoxide and sodium -propoxide, were prepared by reacting sodium metal with respective alcohol. These compounds were characterized using X-ray diffraction technique and IR spectroscopy. The elemental analysis was carried out by CHNS analyser and atomic emission spectroscopy. Normal chain sodium alkoxides were found to exhibit tetragonal crystal structure. Crystal structures of sodium ethoxide and sodium -propoxide are reported for the first time. The IR spectrum of sodium -propoxide is also reported for the first time.

  3. Simultaneous polymerization of Mg and Zr alkoxides

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Vivar, J.; Lara, V.H. [Univ. Autonoma Metropolitana-Iztapalapa, Depto. de Quimica, Mexico, D. F. (Mexico); Mendoza-Serna, R.; Ayala-Morales, A. [Facultad de Estudios Superiores Zaragoza, UNAM, Carrera de Ingenieria Quimica, Mexico, D. F. (Mexico); Bosch, P. [Inst. de Investigaciones en Materiales, UNAM Circuito Exterior, Mexico, D. F. (Mexico)


    The preparation of homogeneous MgO-ZrO{sub 2} ceramics by the sol-gel process is of interest because of its potential technological applications as dielectric materials in thin films and membranes. In this work we used magnesium methoxide and zirconium n-propoxide as precursors. The simultaneous polymerization of the alkoxides was performed via the sol-gel process, using acetylacetone (acacH) and isoeugenol (isoH) separately as the chelating agents, in order to control the hydrolysis and condensation steps. Spectroscopic studies have been performed on the sols, gels, xerogels and oxides, including Fourier transform infrared (FTIR) spectroscopy and small Angle X-ray Scattering (SAXS). (orig.)

  4. Heterolysis of Dihydrogen by Silver Alkoxides and Fluorides. (United States)

    Tate, Brandon K; Nguyen, Jenna T; Bacsa, John; Sadighi, Joseph P


    Alkoxide-bridged disilver cations react with dihydrogen to form hydride-bridged cations, releasing free alcohol. Hydrogenolysis of neutral silver fluorides affords hydride-bridged disilver cations as their bifluoride salts. These reactions proceed most efficiently when the supporting ligands are expanded N-heterocyclic carbenes (NHCs) derived from 6- and 7-membered cyclic amidinium salts. Kinetics studies show that silver fluoride hydrogenolysis is first-order in both silver and dihydrogen.

  5. Impact of metal-alkoxide functionalized linkers on H2 binding: A density functional study (United States)

    Banu, Tahamida; Ghosh, Avik; Das, Abhijit K.


    The effect of metal-alkoxide functionalization of different organic linkers on the H2 binding is investigated employing DFT approach. While analyzing the H2 binding interaction of magnesium-alkoxide modified benzene, naphthalene, anthracene and pyrene linkers, we find their comparable affinity toward H2 molecules. Six-member alkoxide ring containing naphthalene and pyrene systems interact with the H2 molecules in a comparatively better way than their five-member analogues. AIM, NBO and LMO-EDA analyses have been performed to comprehend the bonding nature between Mg center and the H2 molecules. Polarization along with the charge transfer interactions play significant role in stabilizing the systems.

  6. Negative Hyperconjugation versus Electronegativity: Vibrational Spectra of Free Fluorinated Alkoxide Ions in the Gas Phase

    NARCIS (Netherlands)

    Oomens, J.; Berden, G.; Morton, T.H.


    CO stretching frequencies of free, gaseous, fluorinated alkoxide ions shift substantially to the blue, relative to those of corresponding alcohols complexed with ammonia. Free -fluorinated ions, pentafluoroethoxide and heptafluoroisopropoxide anions, display further blue shifts relative to cases wit

  7. Preparation of oxide glasses from metal alkoxides by sol-gel method (United States)

    Kamiya, K.; Yoko, T.; Sakka, S.


    An investigation is carried out on the types of siloxane polymers produced in the course of the hydrolysis of silicon tetraethoxide, as well as the preparation of oxide glasses from metal alkoxides by the sol-gel method.

  8. Metal alkoxides: templates for organometallic chemistry and catalysis. Final technical report on DE FG 02-86ER13570

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Malcolm H.


    The physical properties and chemical reactivities of a series of alkoxide, fluoroalkoxide and thiolate compounds of molybdenum and tungsten having M{triple_bond}M or M{triple_bond}N bonds have been examined which reveal the influence of the pi-donor properties of the ligands: RO > R{sub f}O{approx}RS. Single-site metal alkoxide catalysts for the ring-opening polymerization of lactides have been prepared for the metals magnesium, zinc, and aluminum.

  9. Photoinduced Formation of Colloidal Silver in Nitrocellulose Solutions Containing Titanium Alkoxides (United States)

    Kulak, A. I.; Branitsky, G. A.


    The study shows the possibility of photo-induced reduction of silver nitrate and formation of stable colloidal silver particles in an isopropanol-N,N-dimethylacetamide solution of titanium alkoxide (polybutyl titanate) stabilized by nitrocellulose. It is established that titanium alkoxide and the products of its partial hydrolysis in the liquid composition play the role of a photocatalyst for the reduction of silver ions; the introduction of nitric or acetic acid additives to the composition significantly increases its photosensitivity. The films deposited from the liquid composition, previously irradiated with visible or UV light, consist of hydrated titanium dioxide and nitrocellulose with incorporated colloidal silver. Thermal treatment of the films at 150-245°C leads to the decomposition of nitrocellulose and an increase in the absorption by silver particles.

  10. Negative Hyperconjugation versus Electronegativity: Vibrational Spectra of Free Fluorinated Alkoxide Ions in the Gas Phase. (United States)

    Oomens, Jos; Berden, Giel; Morton, Thomas Hellman


    CO stretching frequencies of free, gaseous, fluorinated alkoxide ions shift substantially to the blue, relative to those of corresponding alcohols complexed with ammonia. Free α-fluorinated ions, pentafluoroethoxide and heptafluoroisopropoxide anions, display further blue shifts relative to cases with only β-fluorination, providing experimental evidence for fluorine negative hyperconjugation. DFT analysis with the atoms in molecules (AIM) method confirms an increase in CO bond order for the α-fluorinated ions, demonstrating an increase in carbonyl character for the free ions.

  11. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Indian Academy of Sciences (India)

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang


    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  12. The Obtaining of Nano Oxide Systems SiO2-REE with Alkoxide Technology (United States)

    Amelina, Anna; Grinberg, Evgenii

    A lot of oxides systems with REE as dopants are used in catalytic processes in organic synthesis. They are very perspectives as thermostable coating in aerospace technics. These systems are usually based on silicon or aluminium oxides and doped with rare-earth elements. This systems can be produced by different methods. One of the most perspective of them is “sol-gel”-method with silicium, aluminium and rare-earth alkoxides as a precursor of doped silica and alumina, or their derivatives. Thus the obtaining of composite SiO _{2} - REE oxide materials by the hydrolysis doped with rare-earth elements was suggested. Some of alcoholate derivatives such as El(OR)n were used in this processes. The SiO _{2}- REE oxides were precipitated during the sol-gel process, where tetraethoxysilane (TEOS) as used as SiO _{2} sources. Also it is known that alkoxides of alkali metals, including lithium alkoxides, are widely used in industry and synthetic chemistry, as well as a source of lithium in various mixed oxide compositions, such as lithium niobate, lithium tantalate or lithium silicate. Therefore, we attempted to obtain the lithium silicate, which is also doped with rare-earth elements. Lithium silicate was obtained by alkaline hydrolysis of tetraethoxysilane with lithium alkoxide. Lithium alkoxide were synthesized by dissolving at metal in the corresponding alcohol are examined. The dependence of the rate of dissolving of the metal on the method of mixing of the reaction mixture and the degree of metal dispersion was investigated. The mathematical model of the process was composed and also optimization of process was carried out. Some oxide SiO _{2}, Al _{2}O _{3} and rare-earth nanostructured systems were obtained by sol-gel-method. The size of particle was determined by electron and X-ray spectroscopy and was in the range of 5 - 15 nm. Purity of this oxide examples for contaminating of heavy metals consists n.(1E-4...1E-5) wt%. Sols obtained by this method may be used

  13. Applications versus properties of Mg–Al layered double hydroxides provided by their syntheses methods: Alkoxide and alkoxide-free sol–gel syntheses and hydrothermal precipitation

    KAUST Repository

    Chubar, Natalia


    A tremendous number of studies have examined layered double hydroxides (LDH) for their technological applications in the ion exchange removal of toxic ions, recovery of valuable substances, catalysis, CO2 capture, as a layered host for storage/delivery of biologically active molecules, additives to plastics and building materials, and other functions. Numerous publications always conclude that the materials (prepared, as a rule, using the oldest synthesis method) are very promising for each investigated application; however, the main chemical industries producing these materials advertise them mainly (or only) as plastic additives. The authors performed extensive research using many of the appropriate methods to compare the structure, surface and adsorptive properties of three Mg-Al LHDs produced by advanced synthesis methods. One industrial sample (by Sasol, Germany) prepared by the alkoxide sol-gel method and two novel Mg-Al LDHs synthesised in-house by alkoxide-free sol-gel and hydrothermal precipitation approaches were investigated. Reasons for the very different adsorptive selectivity of the three LDHs towards arsenate, selenate, phosphate, arsenite and selenite have been provided, highlighting the role of speciation of the interlayer carbonate, aluminium, magnesium, interlayer hydration and moisture content in the adsorptive selectivity towards each toxic anion. This work is the first report presenting the regularities of the LDHs structure, surface and anion exchange properties as a function of their syntheses method. It establishes the links to potential technological applications of each investigated LDH and explains the necessary properties required to make the technological application cost-effective and efficient. The paper might accelerate industrial applications of these advanced materials. © 2013 Elsevier B.V.

  14. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, M., E-mail: m.suarez@cinn.e [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Fernandez, A. [Fundacion ITMA, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Menendez, J.L.; Torrecillas, R. [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)


    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 {sup o}C by the chlorides route, whereas alkoxide precursors needed firing over 900 {sup o}C and nitrates even over 1100 {sup o}C. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 {sup o}C with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  15. Fast and selective ring-opening polymerizations by alkoxides and thioureas (United States)

    Zhang, Xiangyi; Jones, Gavin O.; Hedrick, James L.; Waymouth, Robert M.


    Ring-opening polymerization of lactones is a versatile approach to generate well-defined functional polyesters. Typical ring-opening catalysts are subject to a trade-off between rate and selectivity. Here we describe an effective catalytic system combining alkoxides with thioureas that catalyses rapid and selective ring-opening polymerizations. Deprotonation of thioureas by sodium, potassium or imidazolium alkoxides generates a hydrogen-bonded alcohol adduct of the thiourea anion (thioimidate). The ring-opening polymerization of L-lactide mediated by these alcohol-bonded thioimidates yields highly isotactic polylactide with fast kinetics and living polymerization behaviour, as evidenced by narrow molecular weight distributions (Mw/Mn < 1.1), chain extension experiments and minimal transesterifications. Computational studies indicate a bifunctional catalytic mechanism whereby the thioimidate activates the carbonyl of the monomer and the alcohol initiator/chain end to effect the selective ring-opening of lactones and carbonates. The high selectivity of the catalyst towards monomer propagation over transesterification is attributed to a selective activation of monomer over polymer chains.

  16. Metathesis of carbon dioxide and phenyl isocyanate catalysed by group(IV) metal alkoxides: An experimental and computational study

    Indian Academy of Sciences (India)

    Akshai Kumar; Ashoka G Samuelson


    The insertion reactions of zirconium(IV) -butoxide and titanium(IV) -butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion. The intermediate metallacycle extrudes a new heterocumulene, different from the two that have inserted leading to metathesis. As the reaction is reversible, catalytic metathesis is feasible. In stoichiometric reactions heterocumulene insertion, metathesis and metathesis cum insertion products are observed. However, catalytic amounts of the metal alkoxide primarily led to metathesis products. It is shown that zirconium alkoxides promote catalytic metathesis (isocyanates, carbon dioxide) more efficiently than the corresponding titanium alkoxide. The difference in the metathetic activity of these alkoxides has been explained by a computational study using model complexes Ti(OMe)4 (1bTi) and Zr(OMe)4 (1bZr). The computation was carried out at the B3LYP/LANL2DZ level of theory.

  17. Kinetics and Mechanism of Calcium Hydroxide Conversion into Calcium Alkoxides: Implications in Heritage Conservation Using Nanolimes. (United States)

    Rodriguez-Navarro, Carlos; Vettori, Irene; Ruiz-Agudo, Encarnacion


    Nanolimes are alcohol dispersions of Ca(OH)2 nanoparticles used in the conservation of cultural heritage. Although it was believed that Ca(OH)2 particles were inert when dispersed in short-chain alcohols, it has been recently shown that they can undergo transformation into calcium alkoxides. Little is known, however, about the mechanism and kinetics of such a phase transformation as well as its effect on the performance of nanolimes. Here we show that Ca(OH)2 particles formed after lime slaking react with ethanol and isopropanol and partially transform (fractional conversion, α up to 0.08) into calcium ethoxide and isopropoxide, respectively. The transformation shows Arrhenius behavior, with apparent activation energy Ea of 29 ± 4 and 37 ± 6 kJ mol(-1) for Ca-ethoxide and Ca-isopropoxide conversion, respectively. High resolution transmission electron microscopy analyses of reactant and product phases show that the alkoxides replace the crystalline structure of Ca(OH)2 along specific [hkl] directions, preserving the external hexagonal (platelike) morphology of the parent phase. Textural and kinetic results reveal that this pseudomorphic replacement involves a 3D diffusion-controlled deceleratory advancement of the reaction front. The results are consistent with an interface-coupled dissolution-precipitation replacement mechanism. Analysis of the carbonation of Ca(OH)2 particles with different degree of conversion into Ca-ethoxide (α up to 0.08) and Ca-isopropoxide (α up to 0.04) exposed to air (20 °C, 80% relative humidity) reveals that Ca-alkoxides significantly reduce the rate of transformation into cementing CaCO3 and induce the formation of metastable vaterite, as opposed to stable calcite which forms in untransformed Ca(OH)2 samples. Similar effects are obtained when a commercial nanolime partially transformed into Ca-ethoxide is subjected to carbonation. Such effects may hamper/delay the strengthening or consolidation effects of nanolimes, thus having

  18. Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base difunctional catalysts for transesterification. (United States)

    Zeng, Ruijie; Sheng, Hongting; Zhang, Yongcang; Feng, Yan; Chen, Zhi; Wang, Junfeng; Chen, Man; Zhu, Manzhou; Guo, Qingxiang


    A practical lanthanide(III)-catalyzed transesterification of carboxylic esters, weakly reactive carbonates, and much less-reactive ethyl silicate with primary and secondary alcohols was developed. Heterobimetallic dinuclear lanthanide alkoxide complexes [Ln2Na8{(OCH2CH2NMe2)}12(OH)2] (Ln = Nd (I), Sm (II), and Yb (III)) were used as highly active catalysts for this reaction. The mild reaction conditions enabled the transesterification of various substrates to proceed in good to high yield. Efficient activation of transesterification may be endowed by the above complexes as cooperative acid-base difunctional catalysts, which is proposed to be responsible for the higher reactivity in comparison with simple acid/base catalysts.

  19. Reaction of Silane Alkoxide with Acid Anhydride as a Novel Synthetic Method for Organic-Inorganic Hybrid Materials

    Institute of Scientific and Technical Information of China (English)

    Masahiro Fujiwara


    @@ 1Introduction Sol-gel method is a potent method to produce new inorganic and organic-inorganic hybrid materials. The key step of this methodology is the hydrolysis of a metal alkoxide or other metal substrates such as acetylacetonates to form hydroxyl metal species, followed by their condensation to metal-oxygen-metal (M - O - M)bonds. In this process, the utilization of water, generally in excess, is essential and alcoholic solvents such as ethanol are often required to homogenize the solution when organic compounds coexist. As the common sol-gel method using water allows for limited uses of organic substrates due to their low solubility and stability in aqueous solution, modified variations of sol-gel method are required. Recently, some processes were reported for preparing metal oxides from metal alkoxides without the utilization of water.

  20. Synthesis and Characterization of Fluoro- and Chlorobimetallic Alkoxides as Precursors for Luminescent Metal Oxide Materials via Sol-Gel Technique

    Institute of Scientific and Technical Information of China (English)

    ATHAR, Taimur; SEOK, Sang II; KWON, Jeong Oh


    Heterobimetallic alkoxides are broadly recognized as versatile precursors for luminescence materials, and efforts are being made to develop novel routes by applying the concept of geometrical molecular design, for their synthesis and to design a single source precursor suited to photoluminescent materials. Novel and new series of bimetallic alkoxides has been prepared by metathesis route. They exhibit a lower sensitivity towards hydrolysis and so they are easier to handle as compared to other alkoxides. All the compounds were characterized by elemental analysis, FT-IR and multinuclear NMR spectroscopies. FT-IR revealed that the molecular structure of these metal spectroscopy provided useful information about chemical shifts for better understanding the likely structure based on interactions with their coordinate metals. The mass spectra show similar types of fragmentation pattern.SEM-EDS analyses showed consistency with the formulation. XRD patterns show an enhanced homogeneity at high temperature. TGA measurements show that thermal decomposition occured in steps that depended entirely on the chemical compositions and the synthesis routes. SEM observation reveals that the morphology and particle size strongly depend on synthesis routes for their precursors.

  1. Synthesis of High Surface Area Alumina Aerogels without the Use of Alkoxide Precursors

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, T F; Gash, A E; Chinn, S C; Sawvel, A M; Maxwell, R S; Satcher Jr., J H


    Alumina aerogels were prepared through the addition of propylene oxide to aqueous or ethanolic solutions of hydrated aluminum salts, AlCl{sub 3} {center_dot} 6H{sub 2}O or Al(NO{sub 3}){sub 3} {center_dot} 9H{sub 2}O, followed by drying with supercritical CO{sub 2}. This technique affords low-density (60-130 kg/m{sup 3}), high surface area (600-700 m{sup 2}/g) alumina aerogel monoliths without the use of alkoxide precursors. The dried alumina aerogels were characterized using elemental analysis, high-resolution transmission electron microscopy, powder X-ray diffraction, solid state NMR, acoustic measurements and nitrogen adsorption/desorption analysis. Powder X-ray diffraction and TEM analysis indicated that the aerogel prepared from hydrated AlCl{sub 3} in water or ethanol possessed microstructures containing highly reticulated networks of pseudoboehmite fibers, 2-5 nm in diameter and of varying lengths, while the aerogels prepared from hydrated Al(NO{sub 3}){sub 3} in ethanol were amorphous with microstructures comprised of interconnected spherical particles with diameters in the 5-15 nm range. The difference in microstructure resulted in each type of aerogel displaying distinct physical and mechanical properties. In particular, the alumina aerogels with the weblike microstructure were far more mechanically robust than those with the colloidal network, based on acoustic measurements. Both types of alumina aerogels can be transformed to {gamma}-Al{sub 2}O{sub 3} through calcination at 800 C without a significant loss in surface area or monolithicity.

  2. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon, E-mail:; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju


    Highlights: • Economical method for crack-free amorphous yttria layer deposition by dip coating. • Simpler process for planar yttria film as a diffusion barrier and nucleation layer. • Easy control over the film properties with better characteristics. • Easy control over the thickness of the deposited films. • A feasible process that can be easily adopted by HTSCC industries. - Abstract: Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y{sub 2}O{sub 3} dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm{sup 2} area. After Y{sub 2}O{sub 3} deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO{sub 3} (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y{sub 2}O{sub 3} and GdBCO/LMO/MgO/Y{sub 2}O{sub 3} stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y{sub 2}O{sub 3} multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  3. Molecular layer deposition of aluminum alkoxide polymer films using trimethylaluminum and glycidol. (United States)

    Lee, Younghee; Yoon, Byunghoon; Cavanagh, Andrew S; George, Steven M


    Molecular layer deposition (MLD) of aluminum alkoxide polymer films was examined using trimethlyaluminum (TMA) and glycidol (GLY) as the reactants. Glycidol is a high vapor pressure heterobifunctional reactant with both hydroxyl and epoxy chemical functionalites. These two different functionalities help avoid "double reactions" that are common with homobifuctional reactants. A variety of techniques, including in situ Fourier transform infrared (FTIR) spectroscopy and quartz crystal microbalance (QCM) measurements, were employed to study the film growth. FTIR measurements at 100 and 125 °C observed the selective reaction of the GLY hydroxyl group with the AlCH(3) surface species during GLY exposure. Epoxy ring-opening and methyl transfer from TMA to the surface epoxy species were then monitored during TMA exposure. This epoxy ring-opening reaction is dependent on strong Lewis acid-base interactions between aluminum and oxygen. The QCM experiments observed linear growth with self-limiting surface reactions at 100-175 °C under certain growth conditions. With a sufficient purge time of 20 s after TMA and GLY exposures at 125 °C, the mass gain per cycle (MGPC) was 19.8 ng/cm(2)-cycle. The individual mass gains after the TMA and GLY exposures were also consistent with a TMA/GLY stoichiometry of 4:3 in the MLD film. This TMA/GLY stoichiometry suggests the presence of Al(2)O(2) dimeric core species. The MLD films resulting from these TMA and GLY exposures also evolved with annealing temperature to form thinner conformal porous films with increased density. Non-self-limiting growth was a problem at shorter purge times and lower temperatures. With shorter purge times of 10 s at 125 °C, the MPGC increased dramatically to 134 ng/cm(2)-cycle. The individual mass gains after the TMA and GLY exposures in the CVD regime were consistent with a TMA/GLY stoichiometry of 1:1. The MGPC decreased progressively versus purge time. This behavior was attributed to the removal of

  4. The nature of the alkoxide group, solvent, catalyst, and concentration on the gelation and porosity of hexylene-bridged polysilsesquioxanes

    Energy Technology Data Exchange (ETDEWEB)

    Loy, D. A. (Douglas A.); Small, J. H. (James H.)


    Hexylene-bridged polysilsesquioxanes are hybrid organic-inorganic materials prepared by the sol-gel polymerization of 1,6-bis(trialkoxysilyl)hexane monomers: (1) R = Methyl; (2) R = Ethyl; and (3) R = n-Propyl. Previous studies showed that high surface area xerogels could be prepared from 2 with base catalyzed polymerizations while non-porous xerogels could be prepared with acidic catalysts. The object of this study was to ascertain the influences of monomer alkoxide group, solvent, catalyst, and monomer concentration on gelation time, and the properties of the resulting xerogels.This study has provided some insight into the chemical parameters that affect the ultimate structure in bridged polysilsesquioxanes. First, gelation times do not necessarily directly reflect the hydrolysis and condensation rates expected for different alkoxide groups. The collapse of porosity during the drying of hexylene-bridged polysilsesquioxanes occurs in nearly all acid-catalyzed samples, save those that form quickly due to concentration or from the methoxide monomer 1 in methanolic solution. This suggests that there may be a kinetic contribution to creating porosity in addition to the network compliance model. It would also appear that syneresis of gels during aging may be the symptom of changes resulting in increased porosity. Whatever these changes may be due to, they do not appear to significantly alter the structural composition. Experiments are underway to provide more information and test some of these hypotheses.

  5. Fabrication and characterization of Sb-doped Sn02 thin films derived from methacrylic acid modified tin(IV)alkoxides (United States)

    Kololuoma, Terho K.; Tolonen, Ari; Johansson, Leena-Sisko; Campbell, Joseph M.; Karkkainen, Ari H. O.; Hiltunen, Marianne; Haatainen, Tomi; Rantala, Juha T.


    We report on the fabrication of transparent, conductive and directly photopatternable, pure and Sb-doped tin dioxide thin films. Precursors used were antimony(III)isopropoxide and a photo-reactive tin alkoxide synthesized from tin(IV)isopropoxide and methacrylic acid. The synthesis of methacrylic acid modified tin alkoxide was monitored in-situ using IR- and ESI-TOF mass spectroscopic techniques. Sb-doped organo-tin films were deposited via single layer spin coating. After deposition the films were patterned via photopolymerization, using a mercury I-line UV-lamp. All investigated materials could be patterned with 3 μm features. After development in isopropanol, the films were annealed in air, in order to obtain crystalline and conductive films. The electrical conductivities of the annealed thin films with, and without, UV-irradiation were determined using a linear four-point method. The direct photopatterning process was found to increase the film conductivity for all the Sb-doping levels tested. The mechanisms for the increased conductivity were characterized using AFM, XPS and XRD techniques.

  6. Syntheses, Structures and Thermal Studies of Fluorinated and Non-Fluorinated Homo and Heterometallic Alkoxides (United States)

    Samuels, John Andrew

    The following studies probe the effects of ligand structure and modification on the conversion of metal species to solid-state products. 1. The synthesis, characterization, thermal decomposition, and full hydrolysis of rm Cu^{I }_2 Zr_2(O^{i}Pr) _{10} (1), Cu^ {rm I}_4Zr_4 O(O^{rm i}Pr) _{18} (2), and Cu ^{rm II}_4Zr _4O_3(O^ {rm i}Pr)_{18 } (3) are reported. The structure of 1 contains a Zr_2(O^{rm i}Pr)_9^- face -sharing bioctahedron bound to a Cu^{ rm I}_2(mu_2-OR) ^+ fragment via two mu _2 -alkoxides. The structure for 2 contains two (C_2(mu_2-OR) _2Zr_2(mu_2 -OR)_3(OR)_4] ^{1-} fragments connected via a pseudo-tetrahedral mu_4-O ^{2-} ligand. The structure of 3 contains a planar Cu_4O(O ^{rm i}Pr)_2 ^{4+} fragment capped by two Zr _2O(O^{rm i}Pr)_8^{2-} face-sharing bioctahedral units. The central oxo of the copper fragment is square-planar. TGA studies of ClCuZr_2(O^{ rm i}Pr)_9, 1, 2, and 3 show that internal redox occurs, producing copper metal, acetone, and isopropanol. The final products contain an increasing amount of zirconia with increasing number of oxo ligands in the precursor species. Full hydrolysis of 1 and 3, followed by thermolysis, produces Cu ^0, Cu_2O, and CuO with zirconia, depending on thermolysis conditions. 2. The compounds Na(HFIP) (HFIP = OCH(CF _3)_2), 1a, Na(TFTB) (TFTB = OC(CH _3)_2(CF_3 )), 1b, Na(HFTB) (HFTB = OC(CH_3 )(CF_3)_2), 1c, Na(PFTB) (PFTB = OC(CF_3)_3), 1d, Zr(HFIP)_4, 2a, Zr(TFTB) _4, 2b, Zr(HFTB)_4, 2c, Zr(PFTB)_4, 2d, Na_2 Zr(OR_{rm f})_6 (C_6H_6)_ {rm n} (3a when n = 1 and 3b when n = 2), and Tl_2Zr(OR_ {rm f})_6, 4, have been synthesized and characterized by mass spectrometry, multinuclear NMR and (for 1a, 2c, 3a, 3b and 4) X-ray diffraction structure determinations. Intramolecular bonding interactions between organofluorines and sodium or thallium are seen in all structures and are supported by Tl/F coupling in ^{205}Tl and ^{19 }F NMR spectra. Chemical vapor depositions of 1a-d, 2b-d and 3 produce metal fluoride

  7. Fabrication and performances of MWCNT/TiO2 composites derived from MWCNTs and titanium (IV) alkoxide precursors

    Indian Academy of Sciences (India)

    Mingliang Chen; Fengjun Zhang; Wonchun Oh


    Multi-walled carbon nanotubes (MWCNTs)/TiO2 composites were synthesized by sol–gel technique using titanium (IV) -butoxide (TNB), titanium (IV) isopropoxide (TIP) and titanium (IV) propoxide (TPP) as different titanium alkoxide precursors. The as-prepared composites were comprehensively characterized by BET surface area, SEM, XRD, EDX and UV-Vis absorption spectroscopy. The samples were evaluated for their photocatalytic activity towards the degradation of methylene blue (MB) under UV irradiation. The results indicated that the sample MPB had best excellent photocatalytic activity among the three kinds of samples. Furthermore, we also used piggery waste to determine the photocatalytic activity for the MWCNT/TiO2 composites by using a chemical oxygen demand (COD) method. It seemed all of the samples have an excellent removal effect of COD. From the results of the bactericidal test, MWCNT/TiO2 composites with sunlight had a greater effect on E. coli than any other experimental conditions.

  8. Preparation of epoxy/zirconia hybrid materials via in situ polymerization using zirconium alkoxide coordinated with acid anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Mitsukazu, E-mail: [Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Suita-shi, Osaka 564-8680 (Japan); Nii, Daisuke; Harada, Miyuki [Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Suita-shi, Osaka 564-8680 (Japan)


    Highlights: {yields} Novel epoxy/zirconia hybrid materials were synthesized via in situ polymerization using zirconium alkoxide coordinated with acid anhydride. {yields} The half-ester compound of acid anhydride desorbed from zirconium played as curing agent of epoxy resin. {yields} The zirconia was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale by synchronizing the epoxy curing and sol-gel reactions. {yields} The refractive indices of the hybrid materials significantly improved with an increase in the zirconia content. - Abstract: Novel epoxy/zirconia hybrid materials were synthesized using a bisphenol A epoxy resin (diglycidyl ether of bisphenol A; DGEBA), zirconium(IV)-n-propoxide (ZTNP), and hexahydrophthalic anhydride (HHPA) via in situ polymerization. HHPA played two roles in this system: it acted as a modifier to control the hydrolysis and condensation reactions of zirconium alkoxide and also as a curing agent - the half-ester compound of HHPA desorbed from zirconium reacted with the epoxy resin to form the epoxy network. As a result, both the sol-gel reaction and epoxy curing occurred simultaneously in a homogeneous solution, and organic-inorganic hybrid materials were readily obtained. Further, the zirconia produced by the in situ polymerization was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale; thus, hybrid materials that exhibited excellent optical transparency were obtained. Furthermore, the heat resistance of the hybrid materials could be improved by hybridization with zirconia. And, the refractive indices of the hybrid materials significantly improved with an increase in the zirconia content.

  9. Quantifying the Sigma and Pi interactions between U(V) f orbitals and halide, alkyl, alkoxide, amide and ketimide ligands

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lukens, Wayne W.; Edelstein, Norman M.; Magnani, Nicola; Hayton, Trevor W.; Fortier, Skye; Seaman, Lani A.


    f Orbital bonding in actinide and lanthanide complexes is critical to their behavior in a variety of areas from separations to magnetic properties. Octahedral f1 hexahalide complexes have been extensively used to study f orbital bonding due to their simple electronic structure and extensive spectroscopic characterization. The recent expansion of this family to include alkyl, alkoxide, amide, and ketimide ligands presents the opportunity to extend this study to a wider variety of ligands. To better understand f orbital bonding in these complexes, the existing molecular orbital (MO) model was refined to include the effect of covalency on spin orbit coupling in addition to its effect on orbital angular momentum (orbital reduction). The new MO model as well as the existing MO model and the crystal field (CF) model were applied to the octahedral f1 complexes to determine the covalency and strengths of the ? and ? bonds formed by the f orbitals. When covalency is significant, MO models more precisely determined the strengths of the bonds derived from the f orbitals; however, when covalency was small, the CF model was better than either MO model. The covalency determined using the new MO model is in better agreement with both experiment and theory than that predicted by the existing MO model. The results emphasize the role played by the orbital energy in determining the strength and covalency of bonds formed by the f orbitals.

  10. Effect of Ligand Field Tuning on the SMM Behavior for Three Related Alkoxide-Bridged Dysprosium Dimers. (United States)

    Peng, Yan; Mereacre, Valeriu; Baniodeh, Amer; Lan, Yanhua; Schlageter, Martin; Kostakis, George E; Powell, Annie K


    The synthesis and characterization of three Dy2 compounds, [Dy2(HL1)2(NO3)4] (1), [Dy2(L2)2(NO3)4] (2), and [Dy2(HL3)2(NO3)4] (3), formed using related tripodal ligands with a central tertiary amine bearing picolyl and alkoxy arms, 2-[(2-hydroxy-ethyl)-pyridin-2-ylmethylamino]-ethanol (H2L1), 2-(bis-pyridin-2-ylmethylamino)-ethanol (HL2), and 2-(bis-pyridin-2-ylmethylamino)-propane-1,3-diol (H2L3), are reported. The compounds are rare examples of alkoxide-bridged {Dy2} complexes and display capped square antiprism coordination geometry around each Dy(III) ion. Changes in the ligand field environment around the Dy(III) ions brought about through variations in the ligand donors can be gauged from the magnetic properties, with compounds 1 and 2 showing antiparallel coupling between the Dy(III) ions and 3 showing parallel coupling. Furthermore, slow relaxation of the magnetization typical of SMM behavior could be observed for compounds 2 and 3, suggesting that small variations in the ligand field can have a significant influence on the slow relaxation processes responsible for SMM behavior of Dy(III)-based systems.

  11. Preparation and Basic Properties of BaTiO3-BaPbO3 Multilayer Thin Films by Metal-Alkoxides Method (United States)

    Azuma, Takahiro; Takahashi, Sheiji; Kuwabara, Makoto


    Preferentially oriented barium titanate (BTO)-barium metaplumbate (BPO) multilayer thin films were prepared by the metal-alkoxides method on MgO single crystals. The BPO layer is an electrode for the BTO layer. Thin films were deposited on cleaved MgO (100) substrates by spin coating. A BTO film of 0.4 μm thickness on the BPO layer shows a dielectric constant of about 400 at room temperature. No formation of reaction phases between BTO and BPO, fired at 800°C to yield a well-crystallized BTO film, was detected in X-ray diffraction analysis.

  12. 过渡金属醇盐溶胶-凝胶化学进展%Progress on Sol-Gel Chemistry of Transitional Metal Alkoxides

    Institute of Scientific and Technical Information of China (English)

    王家芳; 章文贡


    介绍过渡金属醇盐(TMA)溶胶-凝胶(sol-gel)化学基本知识,着重讨论在TMAsol-gel过程中化学控制方法和分子改性方法,并指出其研究的重要意义和前景。%The basic sol-gel chemistry is introduced, the chemical controlin sol-gel process of transitional metal alkoxides (TMA) and the molecular modification is discussed in detail. The significance and prospective of the study on TMA sol-gel chemistry are pointed out.

  13. Recent advances in tailoring the aggregation of heavier alkaline earth metal halides, alkoxides and aryloxides from non-aqueous solvents. (United States)

    Fromm, Katharina M


    This overview on one of the subjects treated in our group deals with the synthesis and study of low-dimensional polymer and molecular solid state structures formed with alkaline earth metal ions in non-aqueous solvents. We have chosen several synthetic approaches in order to obtain such compounds. The first concept deals with the "cutting out" of structural fragments from a solid state structure of a binary compound, which will be explained with reference to BaI2. Depending on the size and concentration of oxygen donor ligands, used as chemical scissors on BaI2, three-, two-, one- and zero-dimensional derived adducts of BaI2 are obtained, comparable to a structural genealogy tree for BaI2. A second part deals with the supramolecular approach for the synthesis of low dimensional polymeric compounds based on alkaline earth metal iodides, obtained by the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Certain circumstances allow rules to be established for the prediction of the dimensionality of a given compound, contributing to the fundamental problem of structure prediction in crystal engineering. A third section describes a synthetic approach for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. A first step deals with different molecular solvated alkaline earth metal iodides which are investigated as a function of the ligand size in non-aqueous solvents. These are then reacted with some alkali metal compound in order to partially or totally eliminate alkali iodide and to form the targeted clusters. These unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials and as catalysts. Approaches to two synthetic methods of the latter, sol-gel and (MO)CVD (metal-organic chemical vapour deposition), are investigated with some of our compounds. (D

  14. Alkoxide coordination of iron(III) protoporphyrin IX by antimalarial quinoline methanols: a key interaction observed in the solid-state and solution. (United States)

    Gildenhuys, Johandie; Sammy, Chandre J; Müller, Ronel; Streltsov, Victor A; le Roex, Tanya; Kuter, David; de Villiers, Katherine A


    The quinoline methanol antimalarial drug mefloquine is a structural analogue of the Cinchona alkaloids, quinine and quinidine. We have elucidated the single crystal X-ray diffraction structure of the complexes formed between racemic erythro mefloquine and ferriprotoporphyrin IX (Fe(iii)PPIX) and show that alkoxide coordination is a key interaction in the solid-state. Mass spectrometry confirms the existence of coordination complexes of quinine, quinidine and mefloquine to Fe(iii)PPIX in acetonitrile. The length of the iron(iii)-O bond in the quinine and quinidine complexes as determined by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy unequivocally confirms that coordination of the quinoline methanol compounds to Fe(iii)PPIX occurs in non-aqueous aprotic solution via their benzylic alkoxide functional group. UV-visible spectrophotometric titrations of the low-spin bis-pyridyl-Fe(iii)PPIX complex with each of the quinoline methanol compounds results in the displacement of a single pyridine molecule and subsequent formation of a six-coordinate pyridine-Fe(iii)PPIX-drug complex. We propose that formation of the drug-Fe(iii)PPIX coordination complexes is favoured in a non-aqueous environment, such as that found in lipid bodies or membranes in the malaria parasite, and that their existence may contribute to the mechanism of haemozoin inhibition or other toxicity effects that lead ultimately to parasite death. In either case, coordination is a key interaction to be considered in the design of novel antimalarial drug candidates.

  15. To Evaluate the Application of Alkoxide Sol-Gel Method in Fabrication of 3YSZ-MWCNTs Nanocomposites, in an Attempt to Improve Its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Ali Ahmadi


    Full Text Available In the present research work, fabrication of YSZ-CNTs composite system through alkoxide sol-gel processing was evaluated, in an attempt to improve its mechanical properties. Nanocomposites containing 0.5–2 wt% MWCNTs were then fabricated through the hydrolysis and condensation processing of the solution mixtures containing alkoxide and inorganic precursors along with the functionalized CNTs under basic condition and its final sintering by the SPS technique at 1400°C. Results showed the formation of a nanocomposite powder based on pure 3YSZ matrix, with well dispersion of CNTs and its good adhesion to the matrix particles in composite containing 0.5 wt% CNTs. The fracture toughness of sintered samples showed around 24% increase for the composite containing 0.5 wt% CNTs. The fracture toughness, hardness, and density decreased due to the agglomeration of CNTs over 0.5 wt%. Toughening mechanisms including pullout and crack bridging were observed on the polished and fractured surfaces.

  16. Fluorinated Alkoxide-Based Magnesium-Ion Battery Electrolytes that Demonstrate Li-Ion-Battery-Like High Anodic Stability and Solution Conductivity. (United States)

    Crowe, Adam J; Stringham, Kyle K; Bartlett, Bart M


    Based on DFT predictions, a series of highly soluble fluorinated alkoxide-based electrolytes were prepared, examined electrochemically, and reversibly cycled. The alcohols react with ethylmagnesium chloride to generate a fluoroalkoxy-magnesium chloride intermediate, which subsequently reacts with aluminum chloride to generate the electrolyte. Solutions starting from a 1,1,1,3,3,3-hexafluoro-2-methylpropan-2-ol precursor exhibit high anodic stability, 3.2 V vs Mg(2+/0), and a record 3.5 mS/cm solution conductivity. Excellent galvanostatic cycling and capacity retention (94%) is observed with more than 300 h of cycle time while employing the standard Chevrel phase-Mo6S8 cathode material.

  17. Hybrid polymer/TiO{sub 2} films by in situ hydrolysis condensation of titanium alkoxide precursors for photovoltaic transparent windows

    Energy Technology Data Exchange (ETDEWEB)

    Davenas, Joel; Barlier, Vincent; Legare, Veronique-Bounor [Polymer Engineering, Universite Lyon 1, CNRS UMR 5223, 43 Bd du 11 novembre, 69622 Villeurbanne (France); Canut, Bruno [Lyon Institute of Nanotechnology, INSA de Lyon, CNRS UMR 5270, 20 Av. A. Einstein, 69621 Villeurbanne (France); Rybak, Andrzej [Polymer Engineering, Universite Lyon 1, CNRS UMR 5223, 43 Bd du 11 novembre, 69622 Villeurbanne (France); Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland); Slazak, Agnieszka; Jung, Jaroslaw [Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz (Poland)


    Poly(vinylcarbazole)/TiO{sub 2} hybrid thin films have been produced by the hydrolysis condensation of titanium alkoxide precursors dispersed in a polymer layer deposited on ITO substrates. Common alkoxide precursors like titanium isopropoxide [Ti({sup i}OPr){sub 4}] show a fast hydrolysis beginning during film deposition, which leads to early phase separation. A new TiO{sub 2} precursor precursor bearing carbazole groups: titanium tetrakis 9H-carbazole-9-yl-ethyl-oxy [Ti(OeCarb){sub 4}] has been used to slow down the reactivity of the precursor by a steric hindrance effect. Improved precursor dispersion in the polymer solution is obtained for this new precursor leading to an homogeneous dispersion of the TiO{sub 2} phase at the nanoscale in the hybrid film. Rutherford Backscattering Spectrometry has shown that the hydrolysis condensation was effective with the production of carbazol alcohol remaining trapped in the bulk of the film. This residual alcohol leads to an increase of the UV optical absorption of the PVK/TiO{sub 2} hybrid films. Improvement of the balance between the two types of photogenerated charges has been shown by surface potential decay experiments upon the formation of a TiO{sub 2} conduction network for the transport of electrons. The film is almost transparent above 350 nm opening a new route for the elaboration of semi-transparent photovoltaic glasses, which can find application on the growing market of energy efficient buildings. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Synthesis of a mononuclear, non-square-planar chromium(ii) bis(alkoxide) complex and its reactivity toward organic carbonyls and CO2. (United States)

    Yousif, Maryam; Cabelof, Alyssa C; Martin, Philip D; Lord, Richard L; Groysman, Stanislav


    In this paper, we report the synthesis and reactivity of a rare mononuclear chromium(ii) bis(alkoxide) complex, Cr(OR')2(THF)2, that is supported by a new bulky alkoxide ligand (OR' = di-t-butyl-(3,5-diphenylphenyl)methoxide). The complex is prepared by protonolysis of square-planar Cr(N(SiMe3)2)2(THF)2 with HOR'. X-ray structure determination disclosed that Cr(OR')2(THF)2 features a distorted seesaw geometry, in contrast to nearly all other tetra-coordinate Cr(ii) complexes, which are square-planar. The reactivity of Cr(OR')2(THF)2 with aldehydes, ketones, and carbon dioxide was investigated. Treatment of Cr(OR')2(THF)2 with two equivalents of aromatic aldehydes ArCHO (ArCHO = benzaldehyde, 4-anisaldehyde, 4-trifluorbenzaldehyde, and 2,4,6-trimethylbenzaldehyde) leads cleanly to the formation of Cr(iv) diolate complexes Cr(OR')2(O2C2H2Ar2) that were characterized by UV-vis and IR spectroscopies and elemental analysis; the representative complex Cr(OR')2(O2C2H2Ph2) was characterized by X-ray crystallography. In contrast, no reductive coupling was observed for ketones: treatment of Cr(OR')2(THF)2 with one or two equivalents of benzophenone forms invariably a single ketone adduct Cr(OR')2(OCPh2) which does not react further. QM/MM calculations suggest the steric demands prevent ketone coupling, and demonstrate that a mononuclear Cr(iii) bis-aldehyde complex with partially reduced aldehydes is sufficient for C-C bond formation. The reaction of Cr(OR')2(THF)2 with CO2 leads to the insertion of CO2 into a Cr-OR' bond, followed by complex rearrangement to form a diamagnetic dinuclear paddlewheel complex Cr2(O2COR')4(THF)2, that was characterized by NMR, UV-vis, and IR spectroscopy, and X-ray crystallography.

  19. Epitaxial growth of BaZrO{sub 3} films on single crystal oxide substrates using sol-gel alkoxide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M.; Shoup, S.S.; Beach, D.B.; Williams, R.K.; Specht, E.D. [Oak Ridge National Lab., TN (United States)


    Epitaxial BaZrO{sub 3} (barium zirconium oxide) films were grown on single crystal substrates. A BaZrO{sub 3} precursor solution was prepared by sol-gel synthesis using an all-alkoxide route. The barium precursors were prepared by reacting barium metal with 2-methoxyethanol, and zirconium precursors were prepared by exchanging ligands between zirconium n-propoxide and 2-methoxyethanol. The resulting BaZrO{sub 3} precursor solution was partially hydrolyzed and spin-coated on sapphire (100), SrTiO{sub 3} (strontium titanium oxide) (100), and LaAlO{sub 3} (lanthanum aluminum oxide) (100) substrates. The films were post-annealed in oxygen at 800 C for 2 min in a rapid thermal annealer. The coating and the annealing procedures were repeated three times to obtain the desired thickness, 300 nm. X-ray diffraction studies showed the presence of a single (100) cube texture for BaZrO{sub 3} films on SrTiO{sub 3} and LaAlO{sub 3} substrates. The BaZrO{sub 3} films grown on sapphire had a random texture. The BaZrO{sub 3} films grown on SrTiO{sub 3} substrates had a sharp texture compared to that on LaAlO{sub 3} substrates. This may be due to the relatively smaller lattice mismatch between SrTiO{sub 3} and BaZrO{sub 3}.

  20. Thermochromic behavior of vanadium(IV) alkoxides in solution: a molecular modeling approach; Termocromismo em solucoes de alcoxidos de vanadio(IV): uma abordagem pela modelagem molecular

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Alexandre C. de; Westrup, Katia C. M.; Nunes, Giovana G.; Gulin, Denis J.; Haiduke, Roberto L. A.; Soares, Jaisa F.; Sa, Eduardo L. de [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica


    The thermochromic behavior exhibited by vanadium(IV) alkoxides, [V{sub 2}(mu-OPr{sup i}){sub 2}(OPr{sup i}){sub 6}] and [V{sub 2}(m-ONep){sub 2}(ONep){sub 6}], OPr{sup i} = isopropoxide and ONep = neopentoxide, was studied by molecular modeling using DFT, TDDFT and INDO/S methods. The vibrational and electronic spectra calculated for [V{sub 2}(mu-OPr{sup i}){sub 2}(OPr{sup i}){sub 6}] were very similar to the experimental data registered for crystalline samples of the complex and for its solutions at low temperature (< 210 K), while spectra recorded at high temperature (> 315 K) were compatible with those calculated for the monomeric form, [V(OPr{sup i}){sub 4}]. These results consistently point to a monomer/dimer equilibrium as an explanation for the solution thermochromism of {l_brace}V(OPr{sup i})-4{r_brace}{sub n}. In spite of the structural similarity between [V{sub 2}(mu-ONep){sub 2}(ONep){sub 6}] and [V{sub 2}(mu-OPr{sup i}){sub 2}(OPr{sup i}){sub 6}] in the solid state, the thermochromic behavior of the former could not be explained by the same model, and the possibility of tetranuclear aggregation at low temperatures was also investigated. (author)

  1. Ferroelectric properties and microwave sintering of BaTiO{sub 3} synthesized by using the alkoxide-hydroxide sol-gel Process

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M. [Korea University of Science and Technology, Daejeon (Korea, Republic of); Kim, I. S.; Song, J. S.; Jeong, S. J.; Kim, M. S. [Korean Electro-technology Research Institute, Changwon (Korea, Republic of); Yoon, S. [Empa - Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland)


    BaTiO{sub 3} nanopowder was synthesized at low temperature by using an alkoxide-hydroxide sol-gel method and were sintered by microwave processing. Microwave sintering of BaTiO{sub 3} was carried out at different temperatures for 20 min to get dense ceramics. The phases, morphologies, crystal structures and weight losses of the synthesized and sintered materials were characterized by using X-ray diffraction (XRD), Field-emission scanning electron microscope (FE-SEM), Raman spectroscopy and Thermo-gravimetric analyzer (TGA). The materials could only be sintered densely at lower temperatures (1050 - 1150 .deg. C). Enhancements of the dielectric constant (ε{sub r} ∼ 3500 at 100 kHz) and the remnant polarization (P{sub r} ∼ 6.90 μc/cm{sup 2}) were found for BaTiO{sub 3} microwave-sintered at 1150 .deg. C, which values were higher than those obtained by the conventional sintering. P-E loops confirmed the better ferroelectric nature of the microwave-sintered BaTiO{sub 3}.

  2. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia


    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  3. 金属醇盐法制备Ta2O5气凝胶%Preparation of Ta2O5 aerogel with metal alkoxide method

    Institute of Scientific and Technical Information of China (English)

    杨静; 任洪波; 毕于铁; 罗炫


    With metal alkoxide as precursor. Ta2O5 aerogels were prepared by sol-gel technique. The sol-gel process is found to be affected by water amount, catalyst amount and concentration of Ta(OC2 H5 )5. The gelation can only happen in the presence of strong acid as catalyst, and with the increase of acid strength, the gelation time is obviously decreased. With the con-tinuous increase of water, the gelation time lengthens and then tends to be constant. Additionally, the gelation time increases and the theoretical density of Ta2 O5 aerogel decreases as the solvent amount increases. Through sol-gel process control along with su-percritical drying technique, the Ta2Os aerogel with a low density of 44 mg/cm3 was prepared.%以乙醇钽为前驱物,采用金属醇盐溶胶-凝胶技术,获得了Ta2O5湿凝胶,分析了不同条件下的溶胶-凝胶过程,并初步探讨了凝胶过程机理.Ta2O5的溶胶-凝胶过程主要受到水量、催化剂用量及钽源浓度等因素的影响:体系在强酸性条件下凝胶,且随着酸性的增强,体系凝胶时间明显缩短;当水量较少时,凝胶时间随水量的增加而增加,但当水量增加到一定程度时,体系凝胶时间基本不变;实验证明,通过增大溶剂用量,体系凝胶时间延长,气凝胶理论密度降低.通过对溶胶-凝胶过程的控制,结合超临界干燥技术,获得了密度低至44 mg/cm3的Ta2O5气凝胶样品.

  4. Self-assembled SnO2 micro- and nanosphere-based gas sensor thick films from an alkoxide-derived high purity aqueous colloid precursor (United States)

    Kelp, G.; Tätte, T.; Pikker, S.; Mändar, H.; Rozhin, A. G.; Rauwel, P.; Vanetsev, A. S.; Gerst, A.; Merisalu, M.; Mäeorg, U.; Natali, M.; Persson, I.; Kessler, V. G.


    Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300 °C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400 °C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.Tin oxide is considered to be one of the

  5. MgAl2O4 Ultrafiltration Ceramic Membrane Derived from Mg-Al Double Alkoxide%铝镁双醇盐制备MgAl2O4尖晶石陶瓷超滤膜

    Institute of Scientific and Technical Information of China (English)

    张国昌; 陈运法; 吴振江; 谢裕生


    Spinel (MgAl2O4) ultrafiltration membranes were prepared on porous α-Al2O3 plates via the sol-gel route. Mg-Al double alkoxide [MgAl2(iprO)s] was first synthesized as the precursor, then hydrolyzed and peptized in aqueous solution. The gel layer was coated from the colloidal sol on the intermediate layer (α-Al2O3), which was formerly prepared to modify the porous substrate, and then thermally treated at 900℃. The processing parameters such as pH, temperature and sol composition during the sol preparation were optimized for controlling particle size. The pore size of the 2μm thick top layer is about 13 nm as estimated by both the BSA (Bovine Serum Albumin)retention test and an empirical equation.The water permeability of the obtained spinel membrane is 55~143 kg/(min.cm2.Pa).

  6. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol–gel generated Mg–Al–CO 3 layered double hydroxide with very labile interlayer anions

    KAUST Repository

    Chubar, Natalia


    © the Partner Organisations 2014. Current research on Layered Double Hydroxides (LDHs, also known as hydrotalcites, HTs) is predominantly focused on their intercalations, but the industrial application of LDHs for anion exchange adsorption has not yet been achieved. It was recently recognized that, to develop LDH applications, these materials should be produced using methods other than direct co-precipitation. Mg-Al-CO3LDH produced using an alkoxide-free sol-gel synthesis showed exceptional removal properties for aqueous selenium species. Se K-edge EXAFS/XANES and FTIR studies (supporting the data by XRD patterns) were performed to explain the unusual adsorptive performance of Mg-Al LDH by revealing the molecular-level mechanism of HSeO3 -, SeO4 2-and {HSeO3 -+ SeO4 2-} uptake at pH 5, 7 and 8.5. The role of inner-sphere complexation (exhibited by inorganic adsorbents with good performance) in adsorption of both selenium aqueous species was not confirmed. However, Mg-Al LDH fully met the other expectations regarding the involvement of the interlayer anions. The interlayer carbonate (due to its favorable speciation and generous HT hydration) gave a "second breath" to selenite sorption and was the only mechanism that controlled the removal of Se(vi). Because inner sphere complexation was the leading mechanism for selenite removal, ion exchange via surface OH-and interlayer CO3 2-species was the only mechanism for selenate removal; both of these species were easily bound to Mg-Al LDH (on its surface and gently parked into the interlayer forming a multilayer without violation of the structure of Mg-Al-CO3LDH). This work provides the first theoretical explanation of why it is more difficult to sorb selenate than selenite and which material should be used for this purpose. This journal is

  7. Synthesis and structural determination of zinc complexes based on an anilido-aldimine ligand containing an O-donor pendant arm: zinc alkoxide derivative as an efficient initiator for ring-opening polymerization of cyclic esters. (United States)

    Wang, Chao-Hsiang; Li, Chen-Yu; Huang, Bor-Hunn; Lin, Chu-Chieh; Ko, Bao-Tsan


    Zinc complexes bearing the anilido-aldiminate AA(OMe) ligand (AA(OMe)-H = (E)-2,6-diisopropyl-N-(2-(((2-methoxyethyl)imino)methyl)phenyl)aniline) were synthesized in a stepwise method and were structurally characterized. The reaction of AA(OMe)-H (1) with one equivalent of diethyl zinc (ZnEt2) furnishes a three-coordinated and mononuclear zinc complex [(AA(OMe))ZnEt] (2). Further reaction of 2 with a stoichiometric amount of benzyl alcohol (BnOH) affords a four-coordinated and dinuclear zinc benzylalkoxide complex [(AA(OMe))Zn(μ-OBn)]2 (3). In the presence of two equivalents of AA(OMe)-H with ZnEt2, a homoleptic and four-coordinated zinc complex [(AA(OMe))2Zn] (4) is formed. The geometry around the zinc centres of 3 and 4 are both distorted tetrahedrals, while 2 adopts a different coordination mode with a slightly distorted trigonal planar geometry. The variable-temperature (1)H NMR studies of 3 illustrate that 3 exhibits a dinuclear structure in solution at low temperature as well as in the solid state. While raising the temperature, it drifts towards dissociation to form a mononuclear zinc benzylalkoxide species, which coexists in solution. The ring-opening polymerizations of ε-caprolactone (ε-CL) and β-butyrolactone (β-BL) catalyzed by complexes 3 and 4 are investigated. The ε-CL and β-BL polymerizations initiated by zinc alkoxide 3 were demonstrated to have living characteristics and to proceed in a controlled manner with narrow polydispersity indices (PDIs high monomer-to-initiator ratio (1200/1) initiated by 3 has also been reported.

  8. Applications vs properties of Mg-Al Layered Double Hydroxides provided by their syntheses methods: alkoxide and alkoxide-free sol-gel syntheses and hydrothermal precipitation

    NARCIS (Netherlands)

    Chubar, N.; Gerda, V.; Megantari, O.; Mičušík, M.; Omastova, M.; Heister, K.; Man, P.; Fraissard, J.


    A tremendous number of studies have examined layered double hydroxides (LDH) for their technological applications in the ion exchange removal of toxic ions, recovery of valuable substances, catalysis, CO2 capture, as a layered host for storage/delivery of biologically active molecules, additives to

  9. Metal-Metal Bonds and Metal Carbon Bonds in the Chemistry of Molybdenum and Tungsten Alkoxides. (United States)


    diketones , 0-keto- esters, 0-ketoamines and Schiff bases. Insertion reactions also occur with unsaturated molecules such as CO CS and ArNCO. 02P 2 The...isopropoxy and neopentoxy compounds are oligomers [MoO 2(OR)21 n of, as yet, unknown struc- 2_no, syt unkow stuc 34 tures. A clean synthesis of the green solutions containing the triangulo Mo 30(OR)to compounds (see Figure 5). A clean, direct synthesis of these compounds is by the addition of

  10. Preparation of titanium diboride powders from titanium alkoxide and boron carbide powder

    Indian Academy of Sciences (India)

    Hamed Sinaei Pour Fard; Hamidreza Baharvandi


    Titanium diboride powders were prepared through a sol–gel and boron carbide reduction route by using TTIP and B4C as titanium and boron sources. The influence of TTIP concentration, reaction temperature and molar ratio of precursors on the synthesis of titanium diboride was investigated. Three different concentrations of TTIP solution, 0.033/0.05/0.1, were prepared and the molar ratio of B4C to TTIP varied from 1.3 to 2.5. The results indicated that as the TTIP concentration had an important role in gel formation, the reaction temperature and B4C to TTIP molar ratio showed obvious effects on the formation of TiB2. Pure TiB2 was prepared using molar composition of Ti : B4C = 1 : 2.3 and the optimum synthesis temperature was 1200°C.

  11. Preparation of UO_2 Fine Particle by Hydrolysis of Uranium(IV) Alkoxide


    Satoh, Isamu; Takahashi, Mitsuyuki; Miura, Shigeyuki


    Fine particles of uranium(IV) dioxides were obtained by hydrolysis of uranium(IV) ethoxide which was synthesized by reacting uranium tetrachloride with sodium ethoxide. The monodispersed submicrometer particles were confirmed by SEM observation.

  12. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa


    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  13. Effect of Powder Characteristics on Microstructure and Properties in Alkoxide Prepared PZT Ceramics. (United States)


    The powders were also subjected to DTA and TGA analysis using a (DuPont 1090) Thermal Analysis System. Particle size distribution measurements were made...and 5300 C. TGA analysis showed the first two peaks to be associated with weight losses, the maximLn losses occurring near 3000C, and all weight loss

  14. Mechanistic studies aimed at the development of single site metal alkoxide catalysts for the production of polyoxygenates from renewable resources.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Malcolm H. [The Ohio State Univ., Columbus, OH (United States)


    The work proposed herein follows on directly from the existing 3 year grant and the request for funding is for 12 months to allow completion of this work and graduation of current students supported by DOE. The three primary projects are as follows. 1.) A comparative study of the reactivity of LMg(OR) (solvent), where L= a β-diiminate or pyrromethene ligand, in the ring-opening of cyclic esters. 2.) The homopolymerization of expoxides, particularly propylene oxide and styrene oxide, and their copolymerizations with carbon dioxide or organic anhydrides to yield polycarbonates or polyesters, respectively. 3.) The development of well-defined bismuth (III) complexes for ring-opening polymerizations that are tolerant of both air and water. In each of these topics special emphasis is placed on developing a detailed mechanistic understanding of the ring-opening event and how this is modified by the employment of specific metal and ligand combinations. This document also provides a report on findings of the past grant period that are not yet in the public domain/published and shows how the proposed work will bring the original project to conclusion.

  15. Preparation and characterization of lead zirconate titanate ceramic fibers with alkoxide-based sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Mai Manfang; Lin Cheng; Xiong Zhaoxian; Xue Hao; Chen Lifu [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China)], E-mail:


    Lead zirconate titanate (PZT) fibers with diameters from 10{mu}m to 40{mu}m were prepared via a sol-gel route. Several kinds of chemicals were used, including lead acetate trihydrate, zirconium n-butoxide and titanium n-butoxide, in addition to butanol as a solvent. As a water source for hydrolysis reaction, Pb(CH{sub 3}COO){sub 2}{center_dot}3H{sub 2}O was directly used without further adding of water or catalyst conventionally. Acetylacetonate and acetate were added as stabilization agents to obtain stable sols for fiber drawing. The gel-to-ceramic conversion was characterized with thermal analysis, infrared spectroscopy and X-ray diffraction. A pure perovskite phase was obtained after heat treatment at 650 deg. C for 1h. By using scanning electron microscope (SEM), it was observed that a lower rate of heat treatment resulted in a denser microstructure of the fibers. The relative permittivity and the P-E hysteresis loop of the crystalline PZT fibers were also measured and discussed in the paper.

  16. Preparation and characterization of lead zirconate titanate ceramic fibers with alkoxide-based sol-gel route (United States)

    Mai, Manfang; Lin, Cheng; Xiong, Zhaoxian; Xue, Hao; Chen, Lifu


    Lead zirconate titanate (PZT) fibers with diameters from 10μm to 40μm were prepared via a sol-gel route. Several kinds of chemicals were used, including lead acetate trihydrate, zirconium n-butoxide and titanium n-butoxide, in addition to butanol as a solvent. As a water source for hydrolysis reaction, Pb(CH3COO)2·3H2O was directly used without further adding of water or catalyst conventionally. Acetylacetonate and acetate were added as stabilization agents to obtain stable sols for fiber drawing. The gel-to-ceramic conversion was characterized with thermal analysis, infrared spectroscopy and X-ray diffraction. A pure perovskite phase was obtained after heat treatment at 650°C for 1h. By using scanning electron microscope (SEM), it was observed that a lower rate of heat treatment resulted in a denser microstructure of the fibers. The relative permittivity and the P-E hysteresis loop of the crystalline PZT fibers were also measured and discussed in the paper.

  17. Highly efficient enantioselective epoxidation of α,β-enones catalyzed by cheap chiral lanthanum and gadolinium alkoxides

    NARCIS (Netherlands)

    Chen, Ruifang; Qian, Changtao; Vries, Johannes G. de


    (S)-6,6'-Dibromo-BINOL and (S)-6,6'-diphenyl-BINOL have been developed as efficient chiral ligands applicable to lanthanoid catalyzed asymmetric epoxidation of α,β-unsaturated ketones in the presence of cumene hydroperoxide. Excellent chemical yield and enantioselectivity have been achieved for seve

  18. Crystal structures of a novel NNN pincer ligand and its dinuclear titanium(IV alkoxide pincer complex

    Directory of Open Access Journals (Sweden)

    Jakub Pedziwiatr


    Full Text Available This report describes a synthetic protocols and the crystal structures involving a novel pincer-type H3[NNN] ligand, namely di-μ-bromido-μ-{2-(2,2-dimethylpropanimidoyl-N-[2-(2,2-dimethylpropanimidoyl-4-methylphenyl]-4-methylaniline}-bis[(diethyl etherlithium], [Li2Br2(C24H33N3(C4H10O2] (1 and a dinuclear metal complex, namely di-μ-bromido-2:3κ4Br:Br-bis{2-(2,2-dimethylpropanimidoyl-N-[2-(2,2-dimethylpropanimidoyl-4-methylphenyl]-4-methylaniline}-1κ3N,N′,N′′;4κ3N,N′,N′′-tetra-μ-isopropanolato-1:2κ4O:O;3:4κ4O:O-diisopropanolato-1κO,4κO-2,3-dilithium-1,4-dititanium, [Li2Ti2Br2(C24H32N32(C3H7O6] or {[NHNNH]Ti(OiPr3(LiBr2}2 (2. Complex 1, which sits on a twofold rotation axis, is a rare example of a pincer-type ligand which bears ketimine side arms. A unique feature of complex 1 is that the ketimine N atoms have an LiBr(Et2O fragment bonded to them, with the Li atom adopting a distorted tetrahedral geometry. This particular fragment creates an LiBr bridge between the two ketimine sidearms, which leads to a cage-type appearance of the ligand. Complex 2 consists of the previously described ligand and a TiIV metal atom in an octahedral environment, and is located on an inversion center. Complex 2 crystallizes as a dinuclear species with the metal atoms being bridged by an LiBr entity [the Br atoms are disordered and refined in two positions with their site occupation factors refining to 0.674 (12/0.372 (12], and the Li cation being bonded to the isopropoxide O atoms (Li having a tetrahedral coordination as in 1. The organic ligand of compound 2 exhibits disorder in its periphery groups; isopropyl and tert-butyl groups (occupation factors fixed at 0.6/0.4. The novel [NNN]H3 pincer-type ligand was characterized by multinuclear and multidimensional NMR, HRMS and X-ray crystallography. The dinuclear metal complex 2 was characterized by X-ray crystallography. Although each structure exhibits donor N—H groups, no hydrogen bonding is found in either one, perhaps due to the bulky groups around them. One of the ethyl groups of the ether ligand of 1 is disordered and refined in two parts with site-occupation factors of 0.812 (8 and 0.188 (8. One and a half toluene solvent molecules are also present in the asymmetric unit of 2. The toluene molecules were significantly disordered and could not be modeled properly, thus SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] was used to remove their contributions to the overall intensity data.


    Institute of Scientific and Technical Information of China (English)

    刘炜; 毋登辉


    以金属Mg、AL与正丁醇为原料,采用溶胶凝胶法合成平均粒径在25~35 μm之间的高纯镁铝尖晶石超微粉体.将金属Mg、Al同时加入正丁醇中反应,得到高纯度镁铝双金属醇盐,并通过红外光谱分析研究醇盐的结构.经过对醇盐水解反应的正交实验研究,确定了最优的水解条件.干凝胶在700℃煅烧开始出现镁铝尖晶石相,并于1 200℃形成晶相完全的镁铝尖晶石粉体.

  20. Formation of TiO{sub 2} domains in Poly (9-vinylcarbazole) thin film by hydrolysis-condensation of a metal alkoxide

    Energy Technology Data Exchange (ETDEWEB)

    Barlier, V. [Laboratoire Materiaux polymeres et Biomateriaux, ingenierie des Materiaux Polymeres, Universite Claude Bernard Lyon 1, 15 bd Latarjet, 69622 Villeurbanne cedex (France); Bounor-Legare, V. [Laboratoire Materiaux polymeres et Biomateriaux, ingenierie des Materiaux Polymeres, Universite Claude Bernard Lyon 1, 15 bd Latarjet, 69622 Villeurbanne cedex (France); Alcouffe, P. [Laboratoire Materiaux polymeres et Biomateriaux, ingenierie des Materiaux Polymeres, Universite Claude Bernard Lyon 1, 15 bd Latarjet, 69622 Villeurbanne cedex (France); Boiteux, G. [Laboratoire Materiaux polymeres et Biomateriaux, ingenierie des Materiaux Polymeres, Universite Claude Bernard Lyon 1, 15 bd Latarjet, 69622 Villeurbanne cedex (France); Davenas, J. [Laboratoire Materiaux polymeres et Biomateriaux, ingenierie des Materiaux Polymeres, Universite Claude Bernard Lyon 1, 15 bd Latarjet, 69622 Villeurbanne cedex (France)]. E-mail:


    New organic-inorganic hybrid thin films based on Poly (9-vinylcarbazole) (P9VK) and Dioxide titanium (TiO{sub 2}) bulk-heterojunction were obtained by a hydrolysis-condensation (H-C) process of titanium (IV) isopropoxide in thin film. The TiO{sub 2} distribution in the film was investigated by scanning electron microscopy. The results indicated that homogeneous TiO{sub 2} particles around 100 nm were formed on the surface of the polymer thin film. Photoluminescence spectroscopy has been used to study the charge transfer efficiency in the photoactive layer and results were compared with a simplest elaboration route, the dispersion of TiO{sub 2} anatase in a P9VK solution before spin coating. Results showed that TiO{sub 2} elaborated by H-C exhibits a competitive quenching effect with TiO{sub 2} anatase.

  1. Sol-gel antireflective coating on plastics (United States)

    Ashley, Carol S.; Reed, Scott T.


    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.


    NARCIS (Netherlands)



    The reaction of (RO)8Cr2Na4(THF)4[R = i-Pr (1a), Ph (1b)] with TMEDA (TMEDA = N,N,N',N'-tetramethylethylenediamine) has been studied. While the isopropyl derivative 1a yielded the polymeric [(i-PrO)2Cr]n, in the case of 1b, the Cr(III) aggregate (PhO)10Cr4(mu-3-O)3Na4(TMEDA)4 (2) was formed via an u

  3. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol-gel generated Mg-Al-CO3 layered double hydroxide with very labile interlayer anions

    NARCIS (Netherlands)

    Chubar, N.


    Current research on Layered Double Hydroxides (LDHs, also known as hydrotalcites, HTs) is predominantly focused on their intercalations, but the industrial application of LDHs for anion exchange adsorption has not yet been achieved. It was recently recognized that, to develop LDH applications, these

  4. Inherent substrate-dependent growth initiation and selective-area atomic layer deposition of TiO{sub 2} using “water-free” metal-halide/metal alkoxide reactants

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Sarah E.; Kalanyan, Berç; Parsons, Gregory N., E-mail: [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905 (United States)


    Titanium dioxide atomic layer deposition (ALD) is shown to proceed selectively on oxidized surfaces with minimal deposition on hydrogen-terminated silicon using titanium tetrachloride (TiCl{sub 4}) and titanium tetra-isopropoxide [Ti(OCH(CH{sub 3}){sub 2}){sub 4}, TTIP] precursors. Ex situ x-ray photoelectron spectroscopy shows a more rapid ALD nucleation rate on both Si–OH and Si–H surfaces when water is the oxygen source. Eliminating water delays the oxidation of the hydrogen-terminated silicon, thereby impeding TiO{sub 2} film growth. For deposition at 170 °C, the authors achieve ∼2 nm of TiO{sub 2} on SiO{sub 2} before substantial growth takes place on Si–H. On both Si–H and Si–OH, the surface reactions proceed during the first few TiCl{sub 4}/TTIP ALD exposure steps where the resulting products act to impede subsequent growth, especially on Si–H surfaces. Insight from this work helps expand understanding of “inherent” substrate selective ALD, where native differences in substrate surface reaction chemistry are used to promote desired selective-area growth.

  5. Polymerisation of Beta-alanine through catalytic ester-amide exchange

    NARCIS (Netherlands)

    Steunenberg, P.; Könst, P.M.; Scott, E.L.; Franssen, M.C.R.; Zuilhof, H.; Sanders, J.P.M.


    Herein we present the use of group (IV) metal alkoxides as catalysts for the polymerisation of esters of p-alanine and its derivatives. The influence of different group (IV) metal alkoxides, different esters, temperature and solvents on the polymerisation are investigated. The order in which the gro

  6. Synthesis of Group 4 metal compounds containing cyclopentadienyl ligands with a pendant alkoxide function : Molecular structure of {[eta(5):eta(1)-C5H4(CH2)(2)O]TiCl2}(2) and [eta(5):eta(1)-C5H4(CH2)(3)O]TiCl2

    NARCIS (Netherlands)

    Trouvé, Gwénaëlle; Laske, Dietmar A.; Meetsma, Auke; Teuben, Jan H.


    Trimethylsilylcyclopentadiene-siloxy ethers Me(3)SiC(5)H(4)(CH2),OSiMe(3) (n = 2, 3) react with TiCl4 to give (2-(cyclopentadienyl)-eth-1-oxy)titanium dichloride, [[eta(5): eta(1)-C5H4(CH2)(2)O]TiCl2](2) and (3-(cyclopentadienyl)-prop-1-oxy)titanium dichloride [eta(5): eta(1)- C5H4(CH2)(3)O]TiCl2, b

  7. Method to synthesize metal chalcogenide monolayer nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.


    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  8. Preparation of (non-)aqueous dispersins of colloidal boehmite needles

    NARCIS (Netherlands)

    Buining, P.A.; Pathmamanoharan, C.; Philipse, A.P.; Lekkerkerker, H.N.W.


    A novel hydrothermal alkoxide method is presented for the preparation of stable, aqueousdispersions of fairly monodisperse, charged colloidal boehmite needles. A polymer coating procedure for the needles is described which leads to sterically stabilized dispersions in organic solvents.

  9. Design of hybrid titania nanocrystallites as supports for gold catalysts. (United States)

    Mendez, Violaine; Caps, Valérie; Daniele, Stéphane


    Citrate-functionalized titania nanocrystallites are successfully synthesized from a heteroleptic titanium alkoxide precursor in a low temperature, hydrolytic process and used as gold catalyst supports for CO oxidation and aerobic stilbene epoxidation.

  10. High abrasion resistance coating materials from organic/inorganic hybrid materials produced by the sol-gel method



    A series of new high abrasion resistance coating materials have been prepared utilizing organic/inorganic hybrid materials formed by cohydrolyzing a metal alkoxide sol (e.g. silicon, aluminum, titanium, or zirconium metal alkoxide sol) with one or more bis(trialkoxysilane-containing) organic components or related functionalized species. These hybrid materials show optical clarity and improve the abrasion resistance of polymer substrates when applied as coatings and cured on such substrates.

  11. Synthesis and processing of monosized oxide powders (United States)

    Barringer, Eric A.; Fegley, Jr., M. Bruce; Bowen, H. Kent


    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 micron can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed.

  12. Alumina Coating on Carbon Fibers by Sol-Gel Method



    Alumina precursor film was coated on carbon fibers by a sol-gel method using aluminum alkoxide solution. The optimum coating condition for the concentration of alumina alkoxide and silane coupling agent was determined to uniformly coat alumina precursor on carbon fibers. Alumina precursor converted to alumina ceramics by heating at 750℃. SEM and EPMA showed that alumina ceramics was uniformly coated on carbon fibers. The thickness of alumina layer increased with increasing coating times. The ...

  13. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J


    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  14. {sup 203,205}Tl NMR Studies of Crystallographically Characterized Thallium Alkoxides. X-Ray Structures of [Tl(OCH{sub 2}CH{sub 3})]4 and [Tl(OAr)]{sub infinity} where OAr = OC{sub 6}H{sub 3}(Me){sub 2}-2,6 and OC{sub 6}H{sub 3}(Pr{sup i}){sub 2}-2,6

    Energy Technology Data Exchange (ETDEWEB)



    [Tl(OCH{sub 2}CH{sub 3})]{sub 4}, (1) was reacted with excess HOR to prepare a series of [Tl(OR)]{sub n} where OR= OCHMe{sub 2} (2, n = 4), OCMe{sub 3} (3, n = 4), OCH{sub 2}CMe{sub 3} (4, n = 4), OC{sub 6}H{sub 3}(Me){sub 2}-2,6 (5, n = {infinity}), and OC{sub 6}H{sub 3}(Pr{sup i}){sub 2}-2,6 (6, n = {infinity}). Single crystal X-ray diffraction was used to determine the structure of compounds ligated by more sterically demanding ligands. Compound 4 was found to adopt a cubane structure, while 5 and 6 formed linear polymeric structures. These compounds were additionally characterized by {sup 203,205}Tl solution and {sup 205}Tl solid state NMR. Compounds 1--4 were found to remain intact in solution while the polymeric species, 5 and 6, appeared to be fluxional. While variations in the solution and solid state structures for the tetrameric [Tl(OR)]{sub 4} and polymeric [Tl(OAr)]{sub {infinity}} may be influenced by the steric hindrance of their respective ligands, the covalency of the species is believed to be more an effect of the parent alcohol acidity.

  15. Amphiphilic phase-transforming catalysts for transesterification of triglycerides (United States)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be

  16. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    Energy Technology Data Exchange (ETDEWEB)

    B.G. Potter, Jr.


    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  17. Regioselective, Transition Metal-Free C-O Coupling Reactions Involving Aryne Intermediates. (United States)

    Dong, Yuyang; Lipschutz, Michael I; Tilley, T Don


    A new transition-metal-free synthetic method for C-O coupling between various aryl halides and alkoxides is described. This type of transformation is typically accomplished using palladium catalysts containing a specialized phosphine ligand. The reactions reported here can be performed under mild, ambient conditions using certain potassium alkoxides and a range of aryl halides, with iodide and bromide derivatives giving the best results. A likely mechanistic pathway involves the in situ generation of an aryne intermediate, and directing groups on the aryl ring inductively control regioselectivity.

  18. Effect of Mixing and Other Operating Parameters in Sol-Gel Processes


    Marchisio, Daniele L.; Omegna, Federica; Barresi, Antonello A.; Bowen, Paul


    In this work the effect of mixing on a sol-gel process is quantitatively investigated. Titanium dioxide synthesis from titanium tetra-isopropoxide is used as a test reaction. Solutions of titanium alkoxide in isopropyl alcohol and water in isopropyl alcohol are mixed in a special mixing device (i.e., vortex reactor) at different mixing rates, and the effect of mixing is quantified and compared with the effect of the other relevant operating parameters, namely the water to alkoxide, acid to a...

  19. Catalytic Asymmetric Carbon-Carbon Forming Reactions Catalyzed Chiral Schiff Base-Metal Complexes

    Institute of Scientific and Technical Information of China (English)

    Takanori; Tanaka; Masahiko; Hayashi


    1 Results In 1991, we disclosed the novel asymmetric catalysts prepared from chiral Schiff base and titanium alkoxide in the reaction of asymmetric silylcyanation of aldehydes (eq.1)[1]. Since our first report, chiral Schiff base-metal complex was proven to be efficient in a variety of asymmetric reactions. We reported the first example of enantioselective addition of diketene to aldehydes promoted by chiral Schiff base-titanium alkoxide complexes (eq.2)[2]. The products of this reaction have been cove...

  20. Research Opportunities for Materials with Ultrafine Microstructures (United States)


    Ulrich, 1984). Alkoxides are the organometallic precursors for silica, alumina, titania, and zirconia , among others. A catalyst is used to start...selectively added to the clusters by these methods. The extension of this technology to include excitation of gaseous species in corona -discharge free

  1. Tetragonal zirconia: Wet chemical preparation, mechanical and electrical properties

    NARCIS (Netherlands)

    Keizer, K.; Hemert, van M.; Graaf, van de M.A.C.G.; Burggraaf, A.J.


    Yttria-stabilized zirconia powders were prepared in the composition range of 3 to 13 at% yttria. The hydrolysis-gel precipitation technique was used, starting from metal alkoxides or chlorides. In the composition range between 5 and 10 at% yttria, the materials sintered at 1250°C have a fully tetrag


    Institute of Scientific and Technical Information of China (English)

    周继承; 王祥生


    @@ In both conventional method[1] and modified method[2] ,organic Si and Ti alkoxides were used as Si source and Ti source respectively, and only strong organic base was used. So this system may be called as organic synthesis one (see Fig 1 )Thangaraj et al[3] reported that in the organic synthesis system only organic strong base TPAOH can be used.

  3. Regioselective silylation of pyranosides using a boronic acid/Lewis base co-catalyst system. (United States)

    Lee, Doris; Taylor, Mark S


    The combination of a boronic acid and a Lewis base, both employed in substoichiometric amounts, enables the regioselective silylation of cis-diol groups in alkylpyranoside substrates. The proposed mode of activation involves the formation of a tetracoordinate adduct that displays enhanced nucleophilicity at the boron-bound alkoxide groups.


    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  5. The performance of Ti-MCM-41 in aqueous media and after mechanical treatment studied by in situ XANES, UV/Vis and test reactions

    DEFF Research Database (Denmark)

    Hagen, Anke; Schueler, K.; Roessner, F.


    The influence of water on the epoxidation of cyclohexene with H2O2 and tert-butyl hydroperoxide (tbhp) on Ti-MCM-41 molecular sieves prepared by post-synthetic modification of the support with titanium alkoxides was investigated. The catalytic performance depends on the hydrophilicity/hydrophobic...

  6. Microporous niobia-silica membrane with very low CO2 permeability

    NARCIS (Netherlands)

    Boffa, V.; ten Elshof, J.E.; Petukhov, A.V.; Blank, D.H.A.


    A sol-gel-derived microporous ceramic membrane with an exceptionally low permeability for CO2 from gaseous streams was developed and characterized. The sols were prepared from a mixture of niobium and silicon alkoxide precursors by acid-catalyzed synthesis. Microporous films were formed by coating a

  7. Microporous Niobia-Silica Membrane with Very Low CO2 Permeability

    NARCIS (Netherlands)

    Boffa, Vittorio; Elshof, ten Johan E.; Petukhov, Andrei V.; Blank, Dave H.A.


    A sol-gel-derived microporous ceramic membrane with an exceptionally low permeability for CO2 from gaseous streams was developed and characterized. The sols were prepared from a mixture of niobium and silicon alkoxide precursors by acid-catalyzed synthesis. Microporous films were formed by coating a

  8. European Science Notes Information Bulletin. Reports on Current European and Middle Eastern Science (United States)


    Hydrolytic Routes 0 Modification and Hydrolysis of Metal Alkoxides Laboratoire de Chimie Organique et * Nanomaterials Prepared by Sol-Gel Process...gel research in France is heavily dominat- Laboratoire de Chimie Organique et Organoie- ed by chemists. Consequently, research emphasis tallique - J...section provides the titles of current projects at academic institutions in France. Overview of Research Laboratories Laboratoire de Chimie

  9. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. (United States)

    Rodriguez-Navarro, Carlos; Suzuki, Amelia; Ruiz-Agudo, Encarnacion


    Alcohol dispersions of Ca(OH)2 nanoparticles, the so-called nanolimes, are emerging as an effective conservation material for the consolidation of stone, mortars, and plasters present in old masonry and/or mural paintings. To better understand how this treatment operates, to optimize its performance and broaden its applications, here we study the nano and microstructural characteristics, carbonation behavior, and consolidation efficacy of colloidal alcohol dispersions of Ca(OH)2 nanoparticles produced by both homogeneous (commercial nanolime) and heterogeneous phase synthesis (aged slaked lime and carbide lime putties). We observe that the alcohol not only provides a high colloidal stability to Ca(OH)2 particles, but also affects the kinetics of carbonation and CaCO3 polymorph selection. This is due to the pseudomorphic replacement of Ca(OH)2 particles by calcium alkoxides upon reaction with ethanol or 2-propanol. The extent of this replacement reaction depends on Ca(OH)2 size and time. Hydrolysis of alkoxides speeds up the carbonation process and increases the CaCO3 yield. The higher degree of transformation into calcium alkoxide of both the commercial nanolime and the carbide lime fosters metastable vaterite formation, while calcite precipitation is promoted upon carbonation of the aged slaked lime due its lower reactivity, which limits calcium alkoxide formation. A higher consolidation efficacy in terms of strength gain of treated porous stone is achieved in the latter case, despite the fact that the carbonation is much faster and reaches a higher yield in the former ones. Formation of alkoxides, which has been neglected in previous studies, needs to be considered when applying nanolime treatments. These results show that the use Ca(OH)2 nanoparticle dispersions prepared with either aged slaked lime or carbide lime putties is an economical and effective conservation alternative to commercial nanolimes produced by homogeneous phase synthesis. Ultimately, this

  10. Biodegradation-tunable mesoporous silica nanorods for controlled drug delivery. (United States)

    Park, Sung Bum; Joo, Young-Ho; Kim, Hyunryung; Ryu, WonHyoung; Park, Yong-il


    Mesoporous silica in the forms of micro- or nanoparticles showed great potentials in the field of controlled drug delivery. However, for precision control of drug release from mesoporous silica-based delivery systems, it is critical to control the rate of biodegradation. Thus, in this study, we demonstrate a simple and robust method to fabricate "biodegradation-tunable" mesoporous silica nanorods based on capillary wetting of anodic aluminum oxide (AAO) template with an aqueous alkoxide precursor solution. The porosity and nanostructure of silica nanorods were conveniently controlled by adjusting the water/alkoxide molar ratio of precursor solutions, heat-treatment temperature, and Na addition. The porosity and biodegradation kinetics of the fabricated mesoporous nanorods were analyzed using N2 adsorption/desorption isotherm, TGA, DTA, and XRD. Finally, the performance of the mesoporous silica nanorods as drug delivery carrier was demonstrated with initial burst and subsequent "zero-order" release of anti-cancer drug, doxorubicin.

  11. Precursor type affecting surface properties and catalytic activity of sulfated zirconia

    Directory of Open Access Journals (Sweden)

    Zarubica Aleksandra R.


    Full Text Available Zirconium-hydroxide precursor samples are synthesized from Zr-hydroxide, Zr-nitrate, and Zr-alkoxide, by precipitation/impregnation, as well as by a modified sol-gel method. Precursor samples are further sulphated for the intended SO4 2- content of 4 wt.%, and calcined at 500-700oC. Differences in precursors’ origin and calcination temperature induce the incorporation of SO4 2- groups into ZrO2 matrices by various mechanisms. As a result, different amounts of residual sulphates are coupled with other structural, as well as surface properties, resulting in various catalytic activities of sulphated zirconia samples. Catalyst activity and selectivity are a complex synergistic function of tetragonal phase fraction, sulphates contents, textural and surface characteristics. Superior activity of SZ of alkoxide origin can be explained by a beneficial effect of meso-pores owing to a better accommodation of coke deposits.

  12. Sol-gel derived sorbents (United States)

    Sigman, Michael E.; Dindal, Amy B.


    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  13. Mechanism of the carbonate-based-electrolyte degradation and its effects on the electrochemical performance of Li1+x(NiaCobMn1-a-b)1-xO2 cells (United States)

    Peng, H.-J.; Villevieille, C.; Trabesinger, S.; Wolf, H.; Leitner, K.; Novák, P.


    In lithium-ion batteries with carbonate electrolytes, the formation of lithium alkoxides at the anode impairs the electrochemical performance and the cycle life of the cells through destabilisation of the cathode-electrolyte interface. To fully understand the effect of electrolyte composition on the stability of the cathode-electrolyte interface, and therefore to minimise alkoxide formation and improve cycling stability, we study different carbonate solvents and mixtures thereof. Electrolytes that promote the formation of ethoxide are found to be more detrimental to the cell performance than those forming methoxide. The presence of cyclic carbonates in the electrolyte-solvent mixture alleviates the detrimental effects of ethoxide-forming solvents on the electrochemical performance of Li1.05(Ni0.33Co0.33Mn0.33)0.95O2 by reducing the solubility of the ethoxide.

  14. Study of phase transformation and microstructure of alcohol washed titania nanoparticles for thermal stability (United States)

    Kaur, Manpreet; Singh, Gaganjot; Bimbraw, Keshav; Uniyal, Poonam


    Nanostructured titania have been successfully synthesized by hydrolysis of alkoxide at calcination temperatures 500 °C, 600 °C and 700 °C. As the calcination temperature increases, alcohol washed samples show lesser rutile content as compared to water washed samples. Morphology and Particle sizes was determined by field emission scanning electron microscopy (FESEM), while thermogravimetric-differential scanning calorimetry (TG-DSC) was used to determine thermal stability. Alcohol washed samples undergo 30% weight loss whereas 16% in water washed samples was observed. The mean particle sizes were found to be increase from 37 nm to 100.9 nm and 35.3 nm to 55.2 nm for water and alcohol washed samples respectively. Hydrolysis of alkoxide was shown to be an effective means to prepare thermally stable titania by using alcohol washed samples as a precursor.

  15. Study of phase transformation and microstructure of alcohol washed titania nanoparticles for thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail:; Singh, Gaganjot; Bimbraw, Keshav; Uniyal, Poonam, E-mail: [School of Physics and Materials Science, Thapar University, Patiala-147 004, Punjab (India)


    Nanostructured titania have been successfully synthesized by hydrolysis of alkoxide at calcination temperatures 500 °C, 600 °C and 700 °C. As the calcination temperature increases, alcohol washed samples show lesser rutile content as compared to water washed samples. Morphology and Particle sizes was determined by field emission scanning electron microscopy (FESEM), while thermogravimetric-differential scanning calorimetry (TG-DSC) was used to determine thermal stability. Alcohol washed samples undergo 30% weight loss whereas 16% in water washed samples was observed. The mean particle sizes were found to be increase from 37 nm to 100.9 nm and 35.3 nm to 55.2 nm for water and alcohol washed samples respectively. Hydrolysis of alkoxide was shown to be an effective means to prepare thermally stable titania by using alcohol washed samples as a precursor.

  16. Evolution of microstructure in mixed niobia-hybrid silica thin films from sol-gel precursors. (United States)

    Besselink, Rogier; Stawski, Tomasz M; Castricum, Hessel L; ten Elshof, Johan E


    The evolution of structure in sol-gel derived mixed bridged silsesquioxane-niobium alkoxide sols and drying thin films was monitored in situ by small-angle X-ray scattering. Since sol-gel condensation of metal alkoxides proceeds much faster than that of silicon alkoxides, the incorporation of d-block metal dopants into silica typically leads to formation of densely packed nano-sized metal oxide clusters that we refer as metal oxide building blocks in a silica-based matrix. SAXS was used to study the process of niobia building block formation while drying the sol as a thin film at 40-80°C. The SAXS curves of mixed niobia-hybrid silica sols were dominated by the electron density contrast between sol particles and surrounding solvent. As the solvent evaporated and the sol particles approached each other, a correlation peak emerged. Since TEM microscopy revealed the absence of mesopores, the correlation peak was caused by a heterogeneous system of electron-rich regions and electron poor regions. The regions were assigned to small clusters that are rich in niobium and which are dispersed in a matrix that mainly consisted of hybrid silica. The correlation peak was associated with the typical distances between the electron dense clusters and corresponded with distances in real space of 1-3 nm. A relationship between the prehydrolysis time of the silica precursor and the size of the niobia building blocks was observed. When 1,2-bis(triethoxysilyl)ethane was first hydrolyzed for 30 min before adding niobium penta-ethoxide, the niobia building blocks reached a radius of 0.4 nm. Simultaneous hydrolysis of the two precursors resulted in somewhat larger average building block radii of 0.5-0.6 nm. This study shows that acid-catalyzed sol-gel polymerization of mixed hybrid silica niobium alkoxides can be rationalized and optimized by monitoring the structural evolution using time-resolved SAXS.

  17. United States Air Force Graduate Student Summer Support Program 1986. Program Technical Report. Volume 2 (United States)


    Park Hypersonic Flow Over a Compression Ramp 66 Characterization of Alkoxide Derived April G. Parker Zirconia Toughened Fused Silica 67 On the...methyl sulfinyl carbanion with DMAc/LiCl resulted in the formation of an insoluble precipitate whose identity was not investigated. The use of 18- crown -6...of the role of the interface and thermostability of the matrix and the reinforcement. Zirconia has been used for increasing the toughness, resistance

  18. Symposium on Chemical Precursors to Ceramics Held in Miami Beach, Florida on September 12, 1989 (United States)


    reactivity of the systems by substitution of alkoxide groups with carboxylic acid and beta- diketone ligands was discussed. Leonard V. Interrante...presented. The synthesis and polymerization of vinyl derivatives of borazine and pentaborane, and their conversion to BN was discussed. The...34 Gas phase synthesis of SiC and Si3N4 using laser-assisted decomposition of silane was discussed. Following careful analysis of flow patterns of

  19. United States Air Force Graduate Student Summer Support Program 1986. Program Technical Report. Volume 1 (United States)


    S. Park Hypersonic Flow Over a Compression Ramp 66 Characterization of Alkoxide Derived April G. Parker Zirconia Toughened Fused Silica 67 On with a cubic spline. Since the Gaussian IN distribution is very similar to a cubic spline, this explains in part why filtering with a Gaussian...inferior surfaces of each L2 and L3 vertebral body were evenly set into an acrylic dental resin (Fastcure, Kerry Laboratory, Romulus, Michigan

  20. Mesoporous Metal Complex–Silica Aerogels for Environmentally Friendly Amination of Allylic Alcohols


    Grau Atienza, Aida; Baeza, Alejandro; Serrano, Elena; Garcia-Martinez, Javier; Nájera Domingo, Carmen


    Two series of mesoporous hybrid iron(III) complex–silica aerogels were prepared in one-pot synthesis by using the sol–gel coordination chemistry approach. The use of the ligands 3-(2-aminoethylamino)propyltrimethoxysilane and 2-(diphenylphosphino)ethyltriethoxysilane, both with terminal triethoxysilyl groups, were used to incorporate metal complexes in situ into the framework of silica, through their co-condensation with a silicon alkoxide during the aerogel formation. This methodology yielde...

  1. A Solution-Phase Parallel Synthesis of 5-Substituted 3,6-Dihydro-7H-1,2,3-triazolo[4,5-d]pyrimidin-7-ones

    Institute of Scientific and Technical Information of China (English)

    Sun Shaofa; Chen Li; Yang Xuhong


    5-Substituted 7H-1,2,3-triazolo[4,5-d]pyrimidin-7-ones (4) were rapidly prepared by a solution-phase parallel synthetic method, which includes aza-Wittig reaction of iminophosphorane (1) with phenyl isocynate to give car-bodiimide (2) and subsequent reaction of 2 with various amine and alcohols in the presence of catalytic amount of sodium alkoxide in a parallel fashion.

  2. US Japan Workshop. Hybrid 2000 Conference Held in Ithaca, New York on May 7-12, 2000 (United States)


    the preparation and applications of Z-SMA will be presented based on the reaction of zirconium alkoxides with styrene/maleic anhydride copolymer (SMA...spectra. The decreasing intensity of vc=o (acid anhydride ) and the appearance of vc=o (caiboxyiate group)- Z-SMA was prepared from ZTB and SMA in the...Chemistry", "International Journal of Polymeric Materials". -Corresponding Member of IUPAC Commission on Polymer Nomenclature ; Chairman of the Polymer

  3. Nanodesigning of Hierarchical Multifunctional Ceramics (United States)


    conditions by reacting nanosized titanium oxide or titanium alkoxides with a solution of barium hydroxide. The powders produced by this approach range in...14 1.2.5 Density of Colloidal Aggregated Network Near a Hard Wall ...... 15 1.2.6 Synthesis of Lead- Zirconium -Titanate (Pb(Zr0.5 2Tio.4 8)0 3 ) (PZT...6 Figure 4: Spinnability map for poly(ethylene oxide )-based a-A120 3 suspensions ......... 9 Figure 5: High

  4. Design, Synthesis, and Chemical Processing of Hierarchical Ceramic Structures for Aerospace Applications (United States)


    Figure 2. The alkoxides rapidly hydrolyze in moist air or of zirconium hydrous oxides , as shown in Figure 4. The water giving a series of condensed...utanoxanes, but quan- zirconium hydrous- oxide precipitate is converted to ZrO2 titative cleavage of all the alkoxy groups is difficult to thermally and...demonstrated that nanosized powders can be processed to obtain ceramic composites with ultrafine microstructures and high densities. Nanosized powders of

  5. Nanocomposite organomineral hybrid materials. Part I


    KUDRYAVTSEV Pavel Gennadievich; FIGOVSKY Oleg Lvovich


    The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility t...

  6. Nanocomposite organomineral hybrid materials. Part 2


    KUDRYAVTSEV Pavel Gennadievich; FIGOVSKY Oleg Lvovich


    The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility t...

  7. Photochromic properties of spirooxazine dyes in ormocer gels and coatings


    Hou, Lisong; Mennig, Martin; Schmidt, Helmut K.


    The wet- and "cold"-chemical characteristic of sol-gel process makes the sol-gel derived materials offer exciting potentials as hosts for photochromic dyes. In the present work, using mixed organically modified silicon alkoxides as starting compounds a novel ORMOCER material has been prepared via the sol-gel process as a host for spirooxazines. The photochromic properties of the dyes in the ORMOCER gel and coating are compared with those in ethanol. The experimental results show that both the...



    Tursiloadi, Silvester


    A technique to determine the surface fractal dimension of mesoporous TiO­2 using a dynamic flow adsorption instrument is described. Fractal dimension is an additional technique to characterize surface morphology. Surface fractal dimension, a quantitative measurement of surface ruggedness, can be determined by adsorbing a homologous series of adsorbates onto an adsorbent sample of mesoporous TiO­2. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical ...

  9. Preparation and Mechanical Performance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 周兰香; 张明; 中北里志; 井上真一; 冈本弘


    Rare earth-containing PSBR sheet was prepared by reaction of rare earth alkoxide with quaternary ammonium salt of pyridine modified SBR (PSBR) latex, and then it was blended with natural rubber (NR) to produce rare earth-containing composite elastomer. It is found that mechanical performance can be improved remarkably. Analyzed by infrared spectrometry (IR), differential scanning calorimetry (DSC) and cross-linking densitometry, the relationship between structure and performance was discussed.

  10. A Synthesis of the Tricyclic Core Structure of FR901483 Featuring an Ugi Four-Component Coupling and a Remarkably Selective Elimination Reaction1 (United States)

    Seike, Hirofumi


    Three key reactions, an efficient Ugi four-component coupling, a regiospecific, base-mediated elimination reaction, and an intramolecular nitrone/alkene [3+2] cycloaddition, were used to achieve an effective synthesis of the tricyclic molecular framework of the immunosuppressant FR901483. The outcome of a control experiment supports the idea that an internal deprotonation by an alkoxide ion is the origin of the site selectivity observed in the base-induced elimination of hydroxy mesylate 17. PMID:22114366

  11. Direct Conversion of Aldehydes and Ketones to Allylic Halides by a NbX(5-)[3,3] Rearrangement. (United States)

    Fleming, Fraser F; Ravikumar, P C; Yao, Lihua


    Sequential addition of vinylmagnesium bromide and NbCl(5), or NbBr(5), to a series of aldehydes and ketones directly provides homologated, allylic halides. Transposition of the intermediate vinyl alkoxide is envisaged through a metalla-halo-[3,3] rearrangement with concomitant delivery of the halogen to the terminal carbon. The [3,3] rearrangement is equally effective for the conversion of a propargyllic alcohol to the corresponding allenyl bromide.

  12. A Synthesis of the Tricyclic Core Structure of FR901483 Featuring an Ugi Four-Component Coupling and a Remarkably Selective Elimination Reaction. (United States)

    Seike, Hirofumi; Sorensen, Erik J


    Three key reactions, an efficient Ugi four-component coupling, a regiospecific, base-mediated elimination reaction, and an intramolecular nitrone/alkene [3+2] cycloaddition, were used to achieve an effective synthesis of the tricyclic molecular framework of the immunosuppressant FR901483. The outcome of a control experiment supports the idea that an internal deprotonation by an alkoxide ion is the origin of the site selectivity observed in the base-induced elimination of hydroxy mesylate 17.

  13. Direct Conversion of Aldehydes and Ketones to Allylic Halides by a NbX5-[3,3] Rearrangement (United States)

    Fleming, Fraser F.; Ravikumar, P. C.; Yao, Lihua


    Sequential addition of vinylmagnesium bromide and NbCl5, or NbBr5, to a series of aldehydes and ketones directly provides homologated, allylic halides. Transposition of the intermediate vinyl alkoxide is envisaged through a metalla-halo-[3,3] rearrangement with concomitant delivery of the halogen to the terminal carbon. The [3,3] rearrangement is equally effective for the conversion of a propargyllic alcohol to the corresponding allenyl bromide. PMID:20046989

  14. Fast carbon dioxide recycling by reaction with γ-Mg(BH4)2. (United States)

    Vitillo, Jenny G; Groppo, Elena; Bardají, Elisa Gil; Baricco, Marcello; Bordiga, Silvia


    γ-Mg(BH4)2 was found to be a promising material for CO2 recycling (mainly to formate and alkoxide-like compounds). CO2 conversion occurs with unprecedented fast kinetics at 30 °C and 1 bar. A multi-technique approach allowed to attribute the superior performance of γ-Mg(BH4)2 to its large specific surface area.


    Directory of Open Access Journals (Sweden)



    Full Text Available Titania nanoparticles with high photocatalytic activity were prepared from titanium alkoxide dissolved in alcohol and water under acidic conditions. The effects of the key parameters including (alkoxide/water ratio, (alkoxide/alcohol ratio, precursor type, solvent type, type and concentration of stabilizer, calcination temperature, presence of methylcellulose (MC and hydrothermal treatment were studied. The optimal conditions were obtained through an experimental design technique. This technique is also used to find the main factors influencing the degradation of methylene blue (MB and mass percent of anatase phase. The powders characteristics were investigated by XRD and Brunauer-Emmett-Teller (BET methods. The X-ray diffraction studies showed that the product has anatase crystal structure with average particle size below 13 nm. The photocatalytic activities of the TiO2 nanoparticles were assessed by the degradation of MB in aqueous solution. According to the obtained results, the kinetics of photocatalytic reaction followed pseudo-first-order model. The results showed that the main factors influencing the degradation of MB were the type of stabilizer, presence of MC, hydrothermal treatment, solvent type and calcination temperature. Specific surface areas of the nanoparticles were between 76-198 m2/g.

  16. Controlled self-assembly of hydrophobic quantum dots through silanization. (United States)

    Yang, Ping; Ando, Masanori; Murase, Norio


    We demonstrate the formation of one-, two-, and three-dimensional nanocomposites through the self-assembly of silanized CdSe/ZnS quantum dots (QDs) by using a controlled sol-gel process. The self-assembly behavior of the QDs was created when partially hydrolyzed silicon alkoxide monomers replaced hydrophobic ligands on the QDs. We examined systematically self-assembly conditions such as solvent components and QD sizes in order to elucidate the formation mechanism of various QD nanocomposites. The QD nanocomposites were assembled in water phase or on the interface of water and oil phase in emulsions. The partially hydrolyzed silicon alkoxides act as intermolecules to assemble the QDs. The QD nanocomposites with well-defined solid or hollow spherical, fiber-like, sheet-like, and pearl-like morphologies were prepared by adjusting the experimental conditions. The high photoluminescence efficiency of the prepared QD nanocomposites suggests partially hydrolyzed silicon alkoxides reduced the surface deterioration of QDs during self-assembly. These techniques are applicable to other hydrophobic QDs for fabricating complex QD nanocomposites.

  17. A simple sol–gel approach to synthesize nanocrystalline 8 mol% yttria stabilized zirconia from metal-chelate precursors: Microstructural evolution and conductivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Biswajoy; Basu, Rajendra Nath, E-mail:


    A facile non alkoxide based sol–gel technique has been used to synthesize homogeneously distributed nanocrystalline 8 mol% yttria stabilized zirconia (YSZ) powder. The two steps of such powder preparation are gelation and thermal decomposition of metal-chelate complex in aqueous solution. Such nano powder was characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Field emission scanning electron microscope (FESEM), Fourier transform infra-red spectroscopy (FTIR) and BET surface area analyser. Upon calcinations at 600 °C, well crystallized nano-sized (10–15 nm) YSZ powder is obtained having spherical morphology and reasonably high surface area. The required ionic conductivity (0.107 S/cm) is achieved with 1200 °C sintered samples when measured at 1000 °C in air. - Graphical abstract: A facile non-alkoxide sol–gel route based on metal-EDTA chelate precursor is provided to synthesize dense nanocrystalline YSZ for use as SOFC electrolyte. - Highlights: • Facile one-step non-alkoxide based sol–gel approach. • Nanocrystalline YSZ synthesis from metal-chelate complex. • High ionic conductivity at low sintering temperature.

  18. Synthesis of Titania-Silica Materials by Sol-Gel

    Directory of Open Access Journals (Sweden)

    Rubia F. S. Lenza


    Full Text Available In this work TiO2-SiO2 glasses containing as much as 20 mol % of TiO2 were prepared via sol-gel process using titanium and silicon alkoxides, in the presence of chlorine, in the form of titanium tetrachloride or HCl. The gels were heat-treated until 800 °C. X-ray diffraction and Fourier transform infrared spectroscopy were used to understand the structural properties of TiO2-SiO2 oxides calcined at different temperatures and to evaluate the homogeneity of these materials. The degree of the compactness of the silica network is inferred from the frequency of the asymmetric stretching vibrations of Si-O-Si bonds. Formation of Si-O-Ti bridges, as monitored by the intensity of characteristic 945 cm-1 ¾ 960 cm-1 vibration, is particularly prominent if the method of basic two-step prehydrolysis of silicon alkoxide, addition of titanium alkoxide and completion of hydrolysis was used.

  19. Sol-gel preparation of ion-conducting ceramics for use in thin films. [LaSrCoO[sub 3]; SrCeY[sub x]O[sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, M.I.


    A metal alkoxide sol-gel solution suitable for depositing a thin film of La[sub 0.6]Sr[sub 0.4]CoO[sub 3] on a porous substrate has been developed; such films should be useful in fuel cell electrode and oxygen separation membrane manufacture. Crack-free films have been deposited on both dense and porous substrates by dip-coating and spin-coating techniques followed by a heat treatment in air. Fourier transform infrared spectroscopy was used to determine the chemical structure of metal alkoxide solution system. X-ray diffraction was used to determine crystalline phases formed at various temperatures, while scanning electron microscopy was used to determine physical characteristics of the films. Surface coatings have been successfully applied to porous substrates through the control of the substrate pore size, deposition parameters, and firing parameters. Conditions have been defined for which films can be deposited, and for which the physical and chemical characteristics of the film can be improved. A theoretical discussion of the chemical reactions taking place before and after hydrolysis in the mixed alkoxide solutions is presented, and the conditions necessary for successful synthesis are defined. Applicability of these films as ionic and electronic conductors is discussed.

  20. Sol-gel preparation of ion-conducting ceramics for use in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, M.I.


    A metal alkoxide sol-gel solution suitable for depositing a thin film of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} on a porous substrate has been developed; such films should be useful in fuel cell electrode and oxygen separation membrane manufacture. Crack-free films have been deposited on both dense and porous substrates by dip-coating and spin-coating techniques followed by a heat treatment in air. Fourier transform infrared spectroscopy was used to determine the chemical structure of metal alkoxide solution system. X-ray diffraction was used to determine crystalline phases formed at various temperatures, while scanning electron microscopy was used to determine physical characteristics of the films. Surface coatings have been successfully applied to porous substrates through the control of the substrate pore size, deposition parameters, and firing parameters. Conditions have been defined for which films can be deposited, and for which the physical and chemical characteristics of the film can be improved. A theoretical discussion of the chemical reactions taking place before and after hydrolysis in the mixed alkoxide solutions is presented, and the conditions necessary for successful synthesis are defined. Applicability of these films as ionic and electronic conductors is discussed.

  1. Cadmium complexes bearing (Me2)N^E^O(-) (E = S, Se) organochalcogenoalkoxides and their zinc and mercury analogues. (United States)

    Pop, Alexandra; Bellini, Clément; Şuteu, Răzvan; Dorcet, Vincent; Roisnel, Thierry; Carpentier, Jean-François; Silvestru, Anca; Sarazin, Yann


    Heteroleptic zinc and cadmium complexes of the type [{(Me2)N^E^O(R2)}M-Nu]n (M = Zn, Cd; E = S, Se; R = CH3, CF3; Nu = N(SiMe3)2, I, Cl; n = 1-2) were prepared by reacting the alcohol proteo-ligands {(Me2)N^E^O(R2)}H with [M(N(SiMe3)2)2] (M = Zn, Cd) or [XMN(SiMe3)2] (M = Zn, X = Cl; M = Cd, X = I) in an equimolar ratio. These group 12 metal complexes were characterised in solution by multinuclear NMR spectroscopy and their solid-state structures were determined by X-ray diffractometry. The ligands {(Me2)N^E^O((CH3)2)}(-) bearing CH3 groups in α position to the alkoxide behave as κ(2)-O,E-bidentate moieties (E = S, Se) and form centro-symmetric dinuclear O-bridged heteroleptic alkoxo-amido complexes both with zinc and cadmium, with four-coordinate metal centres resting in tetrahedral environments. By contrast, complexes supported by the CF3-substituted {(Me2)N^E^O((CF3)2)}(-) crystallise as tetrahedral mononuclear species, with tridentate κ(3)-N,O,E-coordinated ligands. These structural differences resulting from changes in the ligand skeleton and in the electron-donating properties of the alkoxide were also observed in solution. Attempts to prepare congeneric heteroleptic mercury complexes from [Hg(N(SiMe3)2)2] unexpectedly only afforded homoleptic bis(alkoxide)s such as [{(Me2)N^S^O((CF3)2)}2Hg]. Owing to the strong Hg-C bond, treatment of [PhHgN(SiMe3)2] with {(Me2)N^S^O((CF3)2)}H afforded the heteroleptic, T-shaped [{(Me2)N^S^O((CF3)2)}HgPh] mercuric alkoxide upon elimination of hexamethyldisilazane. [{(Me2)N^S^O((CF3)2)}2Hg] and [{(Me2)N^S^O((CF3)2)}HgPh] constitute very rare examples of structurally characterised mercuric alkoxides.

  2. Concerning the Deactivation of Cobalt(III)-Based Porphyrin and Salen Catalysts in Epoxide/CO 2 Copolymerization

    KAUST Repository

    Xia, Wei


    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Functioning as active catalysts for propylene oxide (PO) and carbon dioxide copolymerization, cobalt(III)-based salen and porphyrin complexes have drawn great attention owing to their readily modifiable nature and promising catalytic behavior, such as high selectivity for the copolymer formation and good regioselectivity with respect to the polymer microstructure. Both cobalt(III)-salen and porphyrin catalysts have been found to undergo reduction reactions to their corresponding catalytically inactive cobalt(II) species in the presence of propylene oxide, as evidenced by UV/Vis and NMR spectroscopies and X-ray crystallography (for cobalt(II)-salen). Further investigations on a TPPCoCl (TPP=tetraphenylporphyrin) and NaOMe system reveal that such a catalyst reduction is attributed to the presence of alkoxide anions. Kinetic studies of the redox reaction of TPPCoCl with NaOMe suggests a pseudo-first order in cobalt(III)-porphyrin. The addition of a co-catalyst, namely bis(triphenylphosphine)iminium chloride (PPNCl), into the reaction system of cobalt(III)-salen/porphyrin and PO shows no direct stabilizing effect. However, the results of PO/CO2 copolymerization by cobalt(III)-salen/porphyrin with PPNCl suggest a suppressed catalyst reduction. This phenomenon is explained by a rapid transformation of the alkoxide into the carbonate chain end in the course of the polymer formation, greatly shortening the lifetime of the autoreducible PO-ring-opening intermediates, cobalt(III)-salen/porphyrin alkoxides. CO2 saves: The deactivation of cobalt(III)-porphyrin and salen catalysts in propylene oxide/carbon dioxide copolymerization is systematically investigated, revealing a proposed mechanism for the catalyst reduction (see scheme).

  3. Fractals of Silica Aggregates

    Institute of Scientific and Technical Information of China (English)

    ZhinhongLi; DongWu; Yuhansun; JunWang; YiLiu; BaozhongDong; Zhinhong


    Silica aggregates were prepared by base-catalyzed hydrolysis and condensation of alkoxides in alcohol.Polyethylene glycol(PEG) was used as organic modifier.The sols were characterized using Small Angle X-ray Scattering (SAXS) with synchrotron radiation as X-ray source.The structure evolution during the sol-gel process was determined and described in terms of the fractal geometry.As-produced silica aggregates were found to be mass fractals.The fractl dimensions spanned the regime 2.1-2.6 corresponding to more branched and compact structures.Both RLCA and Eden models dominated the kinetic growth under base-catalyzed condition.

  4. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    DEFF Research Database (Denmark)

    Gadea, Christophe; Marani, Debora; Esposito, Vincenzo


    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolami......Drop on demand deposition (DoD) of titanium oxide thin films (... of MDEA is here elucidated in terms of long term stability. The ink printability parameter (Z) is optimized, resulting in a reactive solution with printability, Z, >1, and chemical stability up to 600 h. Thin titanium oxide films (

  5. Highly functionalized and potent antiviral cyclopentane derivatives formed by a tandem process consisting of organometallic, transition-metal-catalyzed, and radical reaction steps. (United States)

    Jagtap, Pratap R; Ford, Leigh; Deister, Elmar; Pohl, Radek; Císařová, Ivana; Hodek, Jan; Weber, Jan; Mackman, Richard; Bahador, Gina; Jahn, Ullrich


    A simple modular tandem approach to multiply substituted cyclopentane derivatives is reported, which succeeds by joining organometallic addition, conjugate addition, radical cyclization, and oxygenation steps. The key steps enabling this tandem process are the thus far rarely used isomerization of allylic alkoxides to enolates and single-electron transfer to merge the organometallic step with the radical and oxygenation chemistry. This controlled lineup of multiple electronically contrasting reactive intermediates provides versatile access to highly functionalized cyclopentane derivatives from very simple and readily available commodity precursors. The antiviral activity of the synthesized compounds was screened and a number of compounds showed potent activity against hepatitis C and dengue viruses.

  6. 碳氮共渗

    Institute of Scientific and Technical Information of China (English)


    [篇名 ] A study on friction and wear behaviour of carburized, carbonitrided and borided AISI 1020 and 5115 steels, [篇名 ] Alloy Carburization at Temperatures of 1,200 - 2,100 F(650-1,150 ℃), [篇名] Amorphous silicon carbonitride fibers drawn from alkoxide modified ceraser, [ 篇名 ] Bearings with incrcased reliability, [篇名 ] Bright outlook for hard coatings, [ 篇名 ] Carbonitridc coating by low-temperature diffusion process, [ 篇名 ] Carbonitridc nanomaterials, thin films, and solids.

  7. An S(N)Ar approach to sterically hindered ortho-alkoxybenzaldehydes for the synthesis of olefin metathesis catalysts. (United States)

    Engle, Keary M; Luo, Shao-Xiong; Grubbs, Robert H


    A three-step procedure has been developed for preparing ortho-alkoxybenzaldehydes from ortho-fluorobenzaldehydes that tolerates the use of sterically hindered sodium alkoxide nucleophiles. The protocol is modular and operationally convenient. The ortho-alkoxybenzaldehyde products can be converted in one additional step to ortho-alkoxystyrenes by a Wittig reaction. These styrenes are precursors to the chelating benzylidene moiety in a proposed series of novel ruthenium complexes for use in olefin metathesis. Chelation with three representative styrenes has been demonstrated.

  8. A utilização de materiais obtidos pelo processo de sol-gel na construção de biossensores The utilization of materials obtained by the sol-gel process in biosensors construction

    Directory of Open Access Journals (Sweden)

    Antonio A. S. Alfaya


    Full Text Available The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.

  9. Sol-gel silica films embedding NIR- emitting Yb-quinolinolate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Figus, Cristiana, E-mail:; Quochi, Francesco, E-mail:; Piana, Giacomo; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni [Dipartimento di Fisica, University of Cagliari, SS 554 Bivio per Sestu, I-09042, Monserrato-Cagliari (Italy); Artizzu, Flavia [Dipartimento di Fisica, University of Cagliari and Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, SS 554 Bivio per Sestu, I-09042, Monserrato-Cagliari (Italy); Mercuri, Maria Laura; Serpe, Angela; Deplano, Paola [Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, SS 554 Bivio per Sestu, I-09042, Monserrato-Cagliari (Italy)


    Sol-gel silica thin films embedding an ytterbium quinolinolato complex (YbClQ{sub 4}) have been obtained using different alkoxides. Homogeneous, crack- and defect-free thin films of optical quality have been successfully deposited on glass substrate by dip-coating. The silica thin films have been characterized by time-resolved photoluminescence. The luminescence properties of the YbClQ{sub 4} are preserved in silica films prepared through an optimized sol-gel approach. The excited state lifetime of the lanthanide is comparable to those observed in bulk and longer than the corresponding ones in solution.

  10. Sol-gel silica films embedding NIR- emitting Yb-quinolinolate complexes (United States)

    Figus, Cristiana; Quochi, Francesco; Artizzu, Flavia; Piana, Giacomo; Saba, Michele; Mercuri, Maria Laura; Serpe, Angela; Deplano, Paola; Mura, Andrea; Bongiovanni, Giovanni


    Sol-gel silica thin films embedding an ytterbium quinolinolato complex (YbClQ4) have been obtained using different alkoxides. Homogeneous, crack- and defect-free thin films of optical quality have been successfully deposited on glass substrate by dip-coating. The silica thin films have been characterized by time-resolved photoluminescence. The luminescence properties of the YbClQ4 are preserved in silica films prepared through an optimized sol-gel approach. The excited state lifetime of the lanthanide is comparable to those observed in bulk and longer than the corresponding ones in solution.

  11. Synthesis of nanoscale antimony particles

    Energy Technology Data Exchange (ETDEWEB)

    Balan, L.; Dailly, A. [Universite Henri Poincare Nancy I, Laboratoire de Chimie du Solide Mineral, UMR 7555 CNRS (France); Schneider, R. [Universite Henri Poincare Nancy I, Laboratoire de Synthese organometallique et Reactivite, UMR 7565 CNRS (France); Billaud, D., E-mail: [Universite Henri Poincare Nancy I, Laboratoire de Chimie du Solide Mineral, UMR 7555 CNRS (France); Willmann, P. [Centre National d' Etudes Spatiales, (France); Olivier-Fourcade, J.; Jumas, J.-C. [Universite Montpellier, Laboratoire des Agregats Moleculaires et Materiaux Inorganiques, UMR 5072 CNRS (France)


    For the search of new negative electrodes of Li-ion batteries, a low-temperature method has been developed for the preparation of nanoscale antimony particles which uses an alkoxide-activated sodium hydride as reducing agent of antimony pentachloride. X-ray diffraction and TEM studies confirm the obtaining of amorphous Sb nanoparticles dispersed in an organic matrix. {sup 121}Sb Moessbauer spectroscopy gives evidence for the occurrence of interactions between antimony and the matrix. These interactions are modified by the washing treatments.

  12. Assessment of covalent bond formation between coupling agents and wood by FTIR spectroscopy and pull strength tests

    DEFF Research Database (Denmark)

    Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark


    In the focus was the question whether metal alkoxide coupling agents – titanium, silane, and zirconium – form covalent bonds to wood and how they improve coating adhesion. In a previous work, a downshift of the lignin infrared (IR) band ∼1600 cm-1 was shown to be consistent with the formation...... of ether linkages between lignin and titanium coupling agent. In the present work, changes were found in the attenuated total reflectance-Fourier transform IR (ATR-FTIR) spectra of lignin and wood mixed with silane, and titanium coupling agents, and to a lesser extent for a zirconium coupling agent...

  13. Bonding mechanism and performance of ceramic coatings by sol-gel process

    Institute of Scientific and Technical Information of China (English)


    Thin alumina coatings were prepared on carbide tools to enhance their wear-resistant ability by dip coating from an aluminum alkoxide solution. The coating eventually obtained was perfectly integrated, without any macroscopic defect, and showed good performance in turning medium carbon steel, which presented a novel and promising coating method for cutting tools. The coating morphology before and after heat treatment was examined with the aid of a scanning electron microscope (SEM). The composition of coating and interface layer as well as the crystal structure of coating was characterized by X-ray diffraction (XRD). The elemental distribution near the interlayer was analyzed by electron probe microanalysis (EPMA).

  14. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘


    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  15. Developments of Catalysts for Hydrogen Production from Dimethyl Ether

    Institute of Scientific and Technical Information of China (English)

    Kaoru; Takeishi


    1 Results Dimethyl ether (DME) is expected as a clean fuel of the 21st century.I have developed new catalysts for hydrogen production by steam reforming of DME.Cu-Zn/Al2O3 catalysts prepared by the sol-gel method produce large quantities of H2 and CO2 by DME steam reforming under lower reaction temperature[1].However,the sol-gel catalysts will be more expensive than general catalysts prepared by impregnation methods and coprecipitation methods,because the precursor,alkoxides are very expensive.For pract...

  16. Continuous Hydrolysis and Liquid–Liquid Phase Separation of an Active Pharmaceutical Ingredient Intermediate Using a Miniscale Hydrophobic Membrane Separator

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Morthensen, Sofie Thage; Lewandowski, Daniel Jacob


    Continuous hydrolysis of an active pharmaceutical ingredient intermediate, and subsequent liquid–liquid (L-L) separation of the resulting organic and aqueous phases, have been achieved using a simple PTFE tube reactor connected to a miniscale hydrophobic membrane separator. An alkoxide product...... a PTFE membrane with 28 cm2 of active area. A less challenging separation of water and toluene was achieved at total flow rates as high as 80 mL/min, with potential to achieve even higher flow rates. The operability and flexibility of the membrane separator and a plate coalescer were compared...

  17. Preparation of self-sustained film by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    曹冰; 朱从善


    Large size self-sustained film with considerable thickness ranging from 30 to 500 μm was prepared with sol-gel method by using dimethyldiethoxysilane/tetraethoxysilane composite alkoxide as precursor. The film exhibits good plasticity as well. Various factors that may influence the film properties were investigated. IR and AFM techniques were adopted to study the film structure and surface morphology. Gas chromatogram/mass spectrum technique was also adopted to characterize the network structure of the material through identification of different polymers formed during hydrolysis and condensation course.

  18. Preparation of hydrophobic coatings (United States)

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey


    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  19. Rational design, synthesis and 2D-QSAR study of novel vasorelaxant active benzofuran-pyridine hybrids. (United States)

    Srour, Aladdin M; Abd El-Karim, Somaia S; Saleh, Dalia O; El-Eraky, Wafaa I; Nofal, Zeinab M


    Reaction of 3-aryl-1-(benzofuran-2-yl)-2-propen-1-ones 3a-c with malononitrile in the presence of sufficient amount of sodium alkoxide in the corresponding alcohol proceeds in a regioselective manner to afford 2-alkoxy-4-aryl-6-(benzofuran-2-yl)-3-pyridinecarbonitriles 4-37, which also obtained by treating ylidenemalononitriles 6a-q with 2-acetylbenzofuran 1 in the presence of sufficient amount of sodium alkoxide in the corresponding alcohol. The new chemical entities showed significant vasodilation properties using isolated thoracic aortic rings of rats pre-contracted with norepinephrine hydrochloride standard technique. Compounds 11, 16, 21, 24 and 30 exhibited remarkable activity compared with amiodarone hydrochloride the reference standard used in the present study. CODESSA-Pro software was employing to obtain a statistically significant QSAR model describing the bioactivity of the newly synthesized analogs (N=31, n=5, R(2)=0.846, R(2)cvOO=0.765, R(2)cvMO=0.778, F=27.540. s(2)=0.002).

  20. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Rafael A., E-mail: [Institute of Chemistry, Laboratory of Magnetic Materials and Colloids, Sao Paulo State University-UNESP, Caixa Postal 355, Araraquara 14800-900 (Brazil); Marques, Rodrigo Fernando C. [Institute of Science and Technology, Alfenas Federal University, Pocos de Caldas 37701-100 (Brazil); Santos, Francisco J. [Institute of Chemistry, Laboratory of Magnetic Materials and Colloids, Sao Paulo State University-UNESP, Caixa Postal 355, Araraquara 14800-900 (Brazil); Chaker, Juliano A. [FCE, Brasilia University, Caixa Postal 7380, Brasilia 72220-140 (Brazil); Jafelicci, Miguel [Institute of Chemistry, Laboratory of Magnetic Materials and Colloids, Sao Paulo State University-UNESP, Caixa Postal 355, Araraquara 14800-900 (Brazil)


    Superparamagnetic iron oxide (SPIO) nanoparticles show great promise for many biotechnological applications. This paper addresses the synthesis and characterization of SPIO nanoparticles grafted with three different alkoxysilanes: 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-ethyl-diethoxysilane (APDES) and 3-aminopropyl-diethy-ethoxysilane (APES). SPIO nanoparticles with an average particle diameter of 10 nm were prepared by chemical sonoprecipitation. As confirmed by Fourier transform infrared (FTIR) spectroscopy, silylation of these nanoparticles occurs through a two-step process. Decreasing the number of alkoxide groups reduced the concentration of free amino groups on the SPIO surface ([SPIO-NH{sub 2}]-APTES>APDES>APES). This phenomenon results from steric contributions and the formation of H-bonded amines provided by the ethyl groups present in the APDES and APES molecules. A simulation of SPIO nanoparticles in a saline physiologic solution shows that the ethyl groups impart larger steric stability onto the ferrofluids, which reduces aggregation. The magnetization (M) versus magnetic field (H) curves show that the synthesized iron oxide nanoparticles display superparamagnetic behavior. The zero-field cooling (ZFC) and field cooling (FC) curves show that the changes in the blocking temperature depend on the alkoxysilane-functionalized particle surface. - Highlights: > Superparamagnetic iron oxide nanoparticles were grafted with different alkoxysilanes. > The decrease of alkoxide group number reduced the concentration of free amino group. > We correlate the influence of the amino and ethyl groups with their colloidal property. > Inter-particles aggregation analyzed by magnetic measurement.

  1. Erratum to "The mechanism and thermodynamics of transesterification of acetate-ester enolates in the gas phase" : [Int. J. Mass Spectrom. Ion Process. 172 (1998) 25 (United States)

    Haas, George W.; Giblin, Daryl E.; Gross, Michael L.


    In solution, base-catalyzed hydrolysis and transesterification of esters are initiated by hydroxide- or alkoxide-ion attack at the carbonyl carbon. At low pressures in the gas phase, however, transesterification proceeds by an attack of the enolate anion of an acetate ester on an alcohol. Fourier transform mass spectrometry (FTMS) indicates that the reaction is the second-order process: -CH2-CO2-R+R'-OH-->-CH2-CO2-R'+R-OH and there is little to no detectable production of either alkoxide anion. Labeling studies show that the product and reactant enolate anion esters undergo exchange of hydrogens located [alpha] to the carbonyl carbon with the deuterium of R'--OD. The extent of the H/D exchange increases with reaction time, pointing to a short-lived intermediate. The alcoholysis reaction rate constants increase with increasing acidity of the primary, straight-chained alkyl alcohols, whereas steric effects associated with branched alcohols cause the rate constants to decrease. Equilibrium constants, which were determined directly from measurements at equilibrium and which were calculated from the forward and reverse rate constants, are near unity and show internal consistency. In the absence of steric effects, the larger enolate is always the favored product at equilibrium. The intermediate for the transesterification reaction, which can be generated at a few tenths of a torr in a tandem mass spectrometer, is tetrahedral, but other adducts that are collisionally stabilized under these conditions are principally loosely bound complexes.

  2. The mechanism and thermodynamics of transesterification of acetate-ester enolates in the gas phase (United States)

    Haas, George W.; Giblin, Daryl E.; Gross, Michael L.


    In solution, base-catalyzed hydrolysis and transesterification of esters are initiated by hydroxide- or alkoxide-ion attack at the carbonyl carbon. At low pressures in the gas phase, however, transesterification proceeds by an attack of the enolate anion of an acetate ester on an alcohol. Fourier transform mass spectrometry (FTMS) indicates that the reaction is the second-order process: -CH2-CO2-R + R'-OH --> - CH2-CO2-R' + R-OH and there is little to no detectable production of either alkoxide anion. Labeling studies show that the product and reactant enolate anion esters undergo exchange of hydrogens located [alpha] to the carbonyl carbon with the deuterium of R'-OD. The extent of the H/D exchange increases with reaction time, pointing to a short-lived intermediate. The alcoholysis reaction rate constants increase with increasing acidity of the primary, straight-chained alkyl alcohols, whereas steric effects associated with branched alcohols cause the rate constants to decrease. Equilibrium constants, which were determined directly from measurements at equilibrium and which were calculated from the forward and reverse rate constants, are near unity and show internal consistency. In the absence of steric effects, the larger enolate is always the favored product at equilibrium. The intermediate for the transesterification reaction, which can be generated at a few tenths of a torr in a tandem mass spectrometer, is tetrahedral, but other adducts that are collisionally stabilized under these conditions are principally loosely bound complexes.

  3. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    Energy Technology Data Exchange (ETDEWEB)

    Umalas, Madis [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Hussainova, Irina, E-mail: [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); ITMO University, Kronverksky 49, St. Petersburg, 197101 (Russian Federation); Reedo, Valter [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Young, Der-Liang [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); Cura, Erkin; Hannula, Simo-Pekka [Department of Materials Science and Engineering, Aalto University, School of Chemical Technology, POB 16200, Aalto, 00076 (Finland); Lõhmus, Rünno [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Lõhmus, Ants [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia)


    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC{sub 2} was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC{sub 2} solid solution by spark plasma sintering. • Sintered ZrTiC{sub 2} have good mechanical properties.

  4. Synthesis of Mesoporous Titania with Surfactant and its Characterization

    Directory of Open Access Journals (Sweden)

    T. Benkacem


    Full Text Available A mesoporous titania was obtained by gelation from Ti-alkoxide in acidic solutions with addition of surfactant cetyltrimetylammonium bromide (CH3(CH215N(CH33Br using a sol-gel process. The effects of surfactant concentration on synthesis of mesoporous titania were studied. The structural characterisation was studied by differential thermal analysis, infrared spectroscopy, X-ray diffraction. Studies by X-ray diffraction showed that crystallisation of TiO2 powder occurs at 200°C, above 200°C we obtained a mixture of two forms-Anatase and rutile. The textural characterisation by nitrogen adsorption-desorption allowed us to observe the variation of the surface area, porous volume and pore diameters according to temperature and [CTAB]/[Ti-alkoxide] molar ratio. The analysis of the results shows that addition of surfactant residue increases considerably its pore diameters. The deposit thin layers has been realized with a sol prepared with the destabilization of colloidal solutions process. Scanning electron-spectroscopy observation for thermally treated (at 400 and 600°C samples, showed homogeneous layers without cracking.

  5. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films (United States)

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O.'


    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness.

  6. Liquid-Phase Synthesis of Ba2V2O7 Phosphor Powders and Films Using Immiscible Biphasic Organic-Aqueous Systems. (United States)

    Takahashi, Mami; Hagiwara, Manabu; Fujihara, Shinobu


    A liquid-phase synthesis of inorganic phosphor materials at a moderate temperature was proposed by using immiscible liquid-liquid biphasic systems. A self-activated Ba2V2O7 phosphor was actually synthesized from vanadium alkoxide dissolved in an organic solution and barium acetate in an aqueous solution. A mild hydrolysis reaction of the alkoxide started at the organic-inorganic interface, and an intermediate compound, Ba(VO3)2·H2O, was initially formed. Ba2V2O7 powders were then obtained by the conversion from Ba(VO3)2·H2O promoted in the aqueous solution. Ba2V2O7 films were obtained on surface-modified silica glass substrates through the similar chemical reactions. Factors such as the surface state of substrates, the kind of organic solvents, and the volume of aqueous solutions were examined to improve the film deposition behavior. The resultant Ba2V2O7 materials showed broad-band visible photoluminescence upon irradiation with ultraviolet light based on the charge transfer transition in the VO4(3-) units existing as dimers.

  7. Syntheses and molecular structures of new cali. (United States)

    Attner, J; Radius, U


    An unusual disproportionation reaction of the molybdenum(IV) and tungsten(IV) chlorides [MCl4L2] (M=Mo, L=Et2S, Et2O; M=W; L= Et2S) in the presence of p-tBu-calix[4]arene (Cax(OH)4) and triethylamine leads to d0 complexes [(CaxO4)[CaxO2(OH)2]M] (1) and d3 compounds (HNEt3)2[(CaxO4)2M2] (2). Complexes la (M = Mo), 1b (M = W), and the HCl adduct of 2a (M = Mo) have been structurally characterized. Compound 1a represents one of the few examples of a well-characterized molybdenum(VI) hexa-alkoxide complex of the type [Mo(OR)6]. Isolation and structural characterization of the side product [(CaxO4W)[kappa2(O)-kappa1(O)-CaxO3(OH)](CaxO4WCl)] (3) suggests the intermediacy of chloro-containing calix[4]arene complexes in these reaction mixtures. The reaction of 1a with HCI provides [CaxO4MoCl2] (4a), the first well-defined example of a mixed molybdenum(VI) alkoxide halide compound of the general formula [MoClx(OR)6-x].

  8. Photocatalytic degradation of PCP-Na with TiO2 photocatalysis loaded with platinum

    Institute of Scientific and Technical Information of China (English)


    Titanium dioxide(TiO2 ) samples of different crystal forms were prepared by hydrolysis tetrabutyl titanate in various water to alkoxide ratios and sintering the hydrolysis product at different temperatures.The photocatalysts coated on hollow glass beads and loaded with platinum varying from 0.2% to 2.4% by weight.The photecatalytic degradation rate of sodium pentachlorophenolate (PCP- Na) depends on the preparing conditions such as.:sintering temperatures,water to alkoxide ratios(R),platinum content and the size.The proper conditions of preparation photoeatalysts are as follows:the ratio of TiO2:sodium silicate :hollow glass beads :platinum is 10:5:20:0.15(w/w),R is 100,sintering temperature is 650℃,and the size of hollow glass is 0.5 - 1 mm.Under these conditions,the ratio between aeatase and rutile of the photocatalyst is 2:1,and the photocatalytie activity is high.

  9. Synthesis, Characterization, and Electronic Structure Studies of Cubic Bi1.5ZnTa1.5O7 for Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei


    Full Text Available Bi1.5ZnTa1.5O7 (BZT has been synthesized using an alkoxide based sol-gel reaction route. The evolution of the phases produced from the alkoxide precursors and their properties have been characterized as function of temperature using a combination of thermogravimetric analysis (TGA coupled with mass spectrometry (MS, infrared emission spectrometry (IES, X-ray diffraction (XRD, ultraviolet and visible (UV-Vis spectroscopy, Raman spectroscopy, and N2 adsorption/desorption isotherms. The lowest sintering temperature (600°C to obtain phase pure BZT powders with high surface area (14.5 m2/g has been determined from the thermal decomposition and phase analyses. The photocatalytic activity of the BZT powders has been tested for the decolorization of organic azo-dye and found to be photoactive under UV irradiation. The electronic band structure of the BZT has been investigated using density functional theory (DFT calculations to determine the band gap energy (3.12 eV and to compare it with experimental band gap (3.02 eV at 800°C from optical absorption measurements. An excellent match is obtained for an assumption of Zn cation substitutions at specifically ordered sites in the BZT structure.

  10. Synthesis of 1D, 2D, and 3D ZnO Polycrystalline Nanostructures Using the Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Tseng


    Full Text Available This study employed various polyol solvents to synthesize zinc oxide polycrystalline nanostructures in the form of fibers (1D, rhombic flakes (2D, and spheres (3D. The synthetic process primarily involved the use of zinc acetate dihydrate in polyol solutions, which were used to derive precursors of zinc alkoxides. Following hydrolysis at 160°C, the zinc alkoxide particles self-assembled into polycrystalline nanostructures with different morphologies. Following calcination at 500°C for 1 h, polycrystalline ZnO with good crystallinity was obtained. FE-SEM explored variations in surface morphology; XRD was used to analyze the crystalline structures and crystallinity of the products, which were confirmed as ZnO wurtzite structures. FE-TEM verified that the ZnO nanostructures were polycrystalline. Furthermore, we employed TGA/DSC to observe the phase transition. According to the results of property analyses, we proposed models of the relevant formation mechanisms. Finally, various ZnO structures were applied in the degradation of methylene blue to compare their photocatalytic efficiency.

  11. On the improvement of mechanical properties of monolithic silica aerogels (for transparent insulating material); Silica aerogel (tomei dannetsu zairyo) kyodo no kaizen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tajiri, K.; Igarashi, K.; Tanemura, S. [National Industrial Research Institute of Nagoya, Nagoya (Japan)


    Study was made on improvement of the strength of silica aerogel as transparent insulating material. Silica aerogel is a low-density porous material with high heat insulation and transparency. To develop a insulating material with high transparency, monolithic silica aerogel was studied. For direct use of it for windows, its strength improvement was attempted. The aerogel was prepared by supercritical drying (alcohol or CO2) of silica wet gel obtained by hydrolysis and condensation of silicon alkoxide solution. To prepare the aerogel bonded on plate glass for strength improvement, the aerogel was bonded to alkoxide by exposing active silanol radical through F-etching of plate glass surface. However, to obtain the practical large-area bonded aerogel, shrinkage control of the aerogel in supercritical drying was necessary. Addition of Laponite into a silica network for strength improvement by polymer increased the bending strength by 50%. Although some reduction of its transparency was observed because of clouding, its heat insulation was stable. Further strength improvement is necessary for its practical use. 5 figs., 1 tab.

  12. Crystallinity and stoichiometry of nano-structured sol-gel-derived BaTiO{sub 3} monolithic gels

    Energy Technology Data Exchange (ETDEWEB)

    Shimooka, Hirokazu [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan). Dept. of Applied Chemistry; Kuwabara, Makoto [Univ. of Tokyo (Japan). Dept. of Materials Science


    The crystallization behavior and stoichiometric changes of barium titanium alkoxide-derived monolithic gels prepared by the sol-gel process using a high-concentration Ba,Ti precursor solution (0.8 mol/L) were investigated during aging at room temperature. Crystallization of the gels (which were amorphous, per X-ray diffraction analysis immediately after gelation) into the BaTiO{sub 3} perovskite phase increased during aging and was associated with significant shrinkage of the gels. Crystallization reached a value of {approximately}82% by the final stage of shrinkage, assuming the degree of crystallization of a gel treated at 600 C to be 100%. The stoichiometry of the gels (Ba/Ti molar ratio) also changed considerably during aging, as estimated by the concentrations of Ba and Ti that remained in the expelled liquid resulting from syneresis at any time during the aging process. Deviation in the Ba/Ti ratio of the precursor solution ranged from 0.015 at the initial stage of shrinkage to 0.003 at the final stage, a value determined by inductively coupled plasma atomic emission spectroscopy. The present study demonstrates the great advantage of using high-concentration precursor solutions of barium titanium alkoxides, rather than low-concentration solutions, to obtain BaTiO{sub 3} gel monoliths with high density and crystallinity and little stoichiometric deviation, by sol-gel processing at room temperature.

  13. The sol-gel route: A versatile process for up-scaling the fabrication of gas-tight thin electrolyte layers (United States)

    Viazzi, Céline; Rouessac, Vincent; Lenormand, Pascal; Julbe, Anne; Ansart, Florence; Guizard, Christian


    Sol-gel routes are often investigated and adapted to prepare, by suitable chemical modifications, submicronic powders and derived materials with controlled morphology, which cannot be obtained by conventional solid state chemistry paths. Wet chemistry methods provide attractive alternative routes because mixing of species occurs at the atomic scale. In this paper, ultrafine powders were prepared by a novel synthesis method based on the sol-gel process and were dispersed into suspensions before processing. This paper presents new developments for the preparation of functional materials like yttria-stabilized-zirconia (YSZ, 8% Y2O3) used as electrolyte for solid oxide fuel cells. YSZ thick films were coated onto porous Ni-YSZ substrates using a suspension with an optimized formulation deposited by either a dip-coating or a spin-coating process. The suspension composition is based on YSZ particles encapsulated by a zirconium alkoxide which was added with an alkoxide derived colloidal sol. The in situ growth of these colloids increases significantly the layer density after an appropriated heat treatment. The derived films were continuous, homogeneous and around 20 μm thick. The possible up-scaling of this process has been also considered and the suitable processing parameters were defined in order to obtain, at an industrial scale, homogeneous, crack-free, thick and adherent films after heat treatment at 1400 °C.

  14. Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating. (United States)

    Maeng, Wan Young; Yoo, Mi


    Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65.

  15. Effect of Change in Ba Concentration on Crystallintiy and Dielectric Constant of the Sol-Gel Deposited Barium Strontium Titante (BST Films on n-Type Si Wafer

    Directory of Open Access Journals (Sweden)

    C.C. Tripathi


    Full Text Available Thin (Bax, Sr1 – xTiO3 (BST films of different chemical compositions (x = 0.3 0.5 & 0.7 were prepared by the sol-gel process using barium acetate, strontium acetate and titanium isopropoxide as metal alkoxides. The titanium isopropoxide was dissolved in acetyl acetone (chelating agent and mixing the resultant solution with barium and strontium acetate dissolved in acetic acid solution. The alkoxide group in titanium isopropoxide was replaced by acetate ligand and after hydrolysis and condensation process a complex solution was obtained. This solution was deposited on n-type (111 Si wafers by spin coating and after drying at 350 ºC the samples were annealed at 700 ºC in oxygen ambient. The precise control of composition of different species is important for producing good quality films having high crystallinity and dielectric constant. The crystallinity of the film was found to increase with the increase of Ba concentration as found from X-ray diffraction. The calculated value of dielectric constant from CV measurements revealed that the film of (Ba0.7, Sr0.3 TiO3 had the maximum dielectric constant as 463 and the surface was examined by SEM.

  16. Switching on elusive organometallic mechanisms with photoredox catalysis. (United States)

    Terrett, Jack A; Cuthbertson, James D; Shurtleff, Valerie W; MacMillan, David W C


    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to 'switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.

  17. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo C, A.; Osuna A, J. G., E-mail: [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza y Jose Cardenas Valdes, 25000 Saltillo, Coahuila (Mexico)


    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  18. Novel routes to metalloorganics containing aluminum from minerals (United States)

    Narayanan, Ramasubramanian

    Novel pathways for synthesizing Al metalloorganics directly from widely available oxides and oxo-hydroxides of aluminum are developed. The Al metalloorganics are then used to produce low-cost precursors for ceramics and polymers containing Al. Alumatrane, an unique, air-stable, aluminum alkoxide is prepared in one step from aluminum hydroxide in quantitative yields. Subsequently, alumatrane was used to prepare and characterize all group II dialuminate ceramics (MAlsb2Osb4, M = Mg, Ca, Sr, Ba). Similarly, an air-stable alkoxide of silicon was synthesized directly from SiOsb2, and is used in conjunction with alumatrane to produce precursors for aluminosilicate ceramics (MAlSiOsb4, M = K, Li, Na). Aluminum formate is synthesized, in differing efficiencies, from different crystalline minerals of Al, by direct dissolution in formic acid. A few other aluminum carboxylates are also synthesized, either directly from minerals or from aluminum formates, thus expanding the scope of the acid dissolution of aluminum hydroxides. Aluminum allyloxypropanoate (AAP) (Al(Osb2CCHsb2CHsb2OCH{=}CHsb2)sb2(OH)), an aluminum carboxylate with a polymerizable group has been synthesized from aluminum formate. This, has been incorporated into methyl methacrylate (MMA) polymers to impart fire retardancy. The increase in char yields as a result of AAP incorporation, indicate improved fire retardancy. Fire retardant characteristics of alumatrane has also been investigated, in MMA polymers and in a polyurethane polymer, taking char yields as a measure of fire retardance efficiency.

  19. Silica doped with lanthanum sol-gel thin films for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, M. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Serrano, A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); Llopis, J. [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain); Garcia, M.A. [Glass and Ceramic Institute, CSIC, C. Kelsen 5, 28049 Madrid (Spain); IMDEA Nanoscience, Fco. Tomas y Valiente 7, 28049 Madrid (Spain); Carmona, N., E-mail: [Department of Materials Physics, Complutense University at Madrid, Avda. Complutense sn, 28004 Madrid (Spain)


    We present here anticorrosive silica coatings doped with lanthanum ions for the protection of metallic surfaces as an alternative to chromate (VI)-based conversion coatings. The coatings were synthesized by the sol-gel method starting from silicon alkoxides and two different lanthanum precursors: La (III) acetate hydrate and La (III) isopropoxide. Artificial corrosion tests in acid and alkaline media showed their effectiveness for the corrosion protection of AA2024 aluminum alloy sheets for coating prepared with both precursors. The X-ray absorption Near Edge Structure and X-ray Absorption Fine Structure analysis of the coatings confirmed the key role of lanthanum in the structural properties of the coating determining its anticorrosive properties. - Highlights: Black-Right-Pointing-Pointer Silica sol-gel films doped with lanthanum ions were synthesized. Black-Right-Pointing-Pointer Films from lanthanum-acetate and La-alkoxide were prepared for comparison purposes. Black-Right-Pointing-Pointer La-acetate is an affordable chemical reactive preferred for the industry. Black-Right-Pointing-Pointer Films properties were explored by scanning electron microscopy and X-Ray absorption spectroscopy. Black-Right-Pointing-Pointer An alternative to anticorrosive pre-treatments for metallic surfaces is suggested.

  20. Controlled synthesis of SBR elastomers (United States)

    Zhou, Jin-Ping

    The first objective of this research was to prepare styrene-butadiene copolymers (SBRs) with low vinyl and non blocky styrene contents for hysteresis reduction. The effect of added alkali metal alkoxides on the alkyllithium initiated copolymerization of butadiene and styrene was investigated. It was found that the amount of block styrene passes through a minimum as the molar ratio of alkali metal alkoxide (Na+ or K+) to lithium varies from 0 to 0.5. The optimal amount of alkoxides varied with the alkali metal (Na+ vs. K+) and depended on the level of lithium alkoxide present. The best system found for this purpose was sodium 2,3-dimethyl-3-pentoxide under inert atmosphere conditions; the optimal amount of 0.2. However, optimization for polymerization under high vacuum conditions required a shift of [NaODP]/[RLi] to the range of about 0.05 to 0.1. Pre-addition of lithium 2,3-dimethyl 3-pentoxide under high vacuum conditions shifted the optimal amount of NaODP to a higher level, which indicated that differences for the two systems were caused by different levels of the impurities presented. Further investigation of other styrene-diene copolymerizations verified that the amount of added sodium alkoxide needed to be optimized in order to produce copolymers with the least blocky styrene. Determination of the monomer reactivity ratios of styrene and butadiene for NaDDP revealed that the amount of block styrene was not minimized by "random" copolymerization, but by systems with a tendency toward alternation. Computer simulation revealed that the highest percentage of isolated styrene unit (the least block styrene contents) not only required a very low value of the styrene monomer reactivity ratio to eliminate the short block styrene sequences but also a compatible value of the butadiene monomer reactivity ratio in order not to produce a long terminal styrene block. Glass transition temperatures (Tg) showed dependency not only on total styrene and vinyl contents, but also

  1. Silica Synthesis by Sponges: Unanticipated Molecular Mechanism (United States)

    Morse, D. E.; Weaver, J. C.


    Oceanic diatoms, sponges and other organisms synthesize gigatons per year of silica from silicic acid, ultimately obtained from the weathering of rock. This biogenic silica exhibits a remarkable diversity of structures, many of which reveal a precision of nanoarchitectural control that exceeds the capabilities of human engineering. In contrast to the conditions of anthropogenic and industrial manufacture, the biological synthesis of silica occurs under mild physiological conditions of low temperatures and pressures and near-neutral pH. In addition to the differentiation between biological and abiotic processes governing silica formation, the biomolecular mechanisms controlling synthesis of these materials may offer insights for the development of new, environmentally benign routes for synthesis of nanostructurally controlled silicas and high-performance polysiloxane composites. We found that the needle-like silica spicules made by the marine sponge, Tethya aurantia, each contain an occluded axial filament of protein composed predominantly of repeating assemblies of three similar subunits we named "silicateins." To our surprise, analysis of the purified protein subunits and the cloned silicatein DNAs revealed that the silicateins are highly homologous to a family of hydrolytic enzymes. As predicted from this finding, we discovered that the silicatein filaments are more than simple, passive templates; they actively catalyze and spatially direct polycondensation to form silica, (as well as the phenyl- and methyl-silsesquioxane) from the corresponding silicon alkoxides at neutral pH and low temperature. Catalytic activity also is exhibited by the silicatein subunits obtained by disaggregation of the protein filaments and those produced from recombinant DNA templates cloned in bacteria. This catalytic activity accelerates the rate-limiting hydrolysis of the silicon alkoxide precursors. Genetic engineering, used to produce variants of the silicatein molecule with


    Directory of Open Access Journals (Sweden)

    A. V. Firsova


    Full Text Available The article discusses the use of organomagnesium initiators in the synthesis of styrene-butadiene random copolymer (SBR obtained solution polymerization and their influence on the properties of rubber. Selected organic magnesium dialkyl initiator is combined with a modifier, which is a mixed alkoxide of an alkali and alkaline earth metals, which allows to control the micr ostructure of the diene polymer and its molecular weight characteristics. Alcohol derivatives selected high-boiling alcohols tetra (hydroxypropyl ethylenediamine (lapromol 294 and tetrahydrofurfuryl alcohol (TGFS. Selection of high-boiling alcohols due to the fact that the destruction of alkoxide with aqueous polymer degassing they do not fall into the return solvent and almost fall into the exact water. The metal components of alkoxides are lithium, sodium, potassium, magnesium and calcium. The resulting solutions are stable when stored modifier t hroughout the year even at -40 °C. The scheme of obtaining the new catalyst systems based organomagnesium and alcoxide of alkali and alkaline earth metals, which yields as functionalized SBR with a statistical and a distribution block of butadiene and styrene was developed. The process of copolymerization with styrene to butadiene organomagnesium initiators as using an organolithium compound (n-butyllithium was carried out, and without it. Found that the addition of n-butyllithium in the reaction mixture leads to a sharp increase in the rate of reaction. The results of studies of the effect of composition of the initiator system on the structure of diene polymers. It was revealed that a mixed initiator system affords a high conversion of monomers (to 90 % in 1 hour 1,2-polybutadiene content increased to 60 %. The process of polymerization of only a mixture of organomagnesium initiators and alcoxide of alkali and alkaline earth metals are not actively proceeds, conversion of the monomers reaches to 90 % in 4 hours, the microstructure

  3. Pivaloylmetals (tBu-COM: M = Li, MgX, K) as equilibrium components. (United States)

    Knorr, R; Böhrer, G; Schubert, B; Böhrer, P


    Short-lived pivaloylmetals, (H(3)C)(3)C-COM, were established as the reactive intermediates arising through thermal heterolytic expulsion of O=CtBu(2) from the overcrowded metal alkoxides tBuC(=O)-C(-OM)tBu(2) (M = MgX, Li, K). In all three cases, this fission step is counteracted by a faster return process, as shown through the trapping of tBu-COM by O=C(tBu)-C(CD(3))(3) with formation of the deuterated starting alkoxides. If generated in the absence of trapping agents, all three tBu-COM species "dimerize" to give the enediolates MO-C(tBu)=C(tBu)-OM along with O=CtBu(2) (2 equiv). A common-component rate depression by surplus O=CtBu(2) proves the existence of some free tBu-COM (separated from O=CtBu(2)); but companion intermediates with the traits of an undissociated complex such as tBu-COM & O=CtBu(2) had to be postulated. The slow fission step generating tBu-COMgX in THF levels the overall rates of dimerization, ketone addition, and deuterium incorporation. Formed by much faster fission steps, both tBu-COLi and tBu-COK add very rapidly to ketones and dimerize somewhat slower (but still fairly fast, as shown through trapping of the emerging O=CtBu(2) by H(3)CLi or PhCH(2)K, respectively). At first sight surprisingly, the rapid fission, return, and dimerization steps combine to very slow overall decay rates of the precursor Li and K alkoxides in the absence of trapping agents: A detailed study revealed that the fast fission step, generating tBu-COLi in THF, is followed by a kinetic partitioning that is heavily biased toward return and against the product-forming dimerization. Both tBu-COLi and tBu-COK form tBu-CH=O with HN(SiMe(3))(3), but only tBu-COK is basic enough for being protonated by the precursor acyloin tBuC(=O)-C(-OH)tBu(2) .

  4. Carbocation Stability in H-ZSM5 at High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Glen A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cheng, Lei [Argonne National Lab. (ANL), Argonne, IL (United States); Bu, Lintao [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kim, Seonah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robichaud, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nimlos, Mark R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Curtiss, Larry A. [Argonne National Lab. (ANL), Argonne, IL (United States); Beckham, Gregg T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Zeolites are common catalysts for multiple industrial applications, including alcohol dehydration to produce olefins, and given their commercial importance, reaction mechanisms in zeolites have long been proposed and studied. Some proposed reaction mechanisms for alcohol dehydration exhibit noncyclic carbocation intermediates or transition states that resemble carbocations, and several previous studies suggest that the tert-butyl cation is the only noncyclic cation more stable than the corresponding chemisorbed species with the hydrocarbon bound to the framework oxygen (i.e., an alkoxide). To determine if carbocations can exist at high temperatures in zeolites, where these catalysts are finding new applications for biomass vapor-phase upgrading (~500 °C), the stability of carbocations and the corresponding alkoxides were calculated with two ONIOM embedding methods (M06-2X/6-311G(d,p):M06-2X/3-21G) and (PBE-D3/6-311G(d,p):PBE-D3/3-21G) and plane-wave density functional theory (DFT) using the PBE functional corrected with entropic and Tkatchenko–Scheffler van der Waals corrections. Additionally, the embedding methods tested are unreliable at finding minima for primary carbocations, and only secondary or higher carbocations can be described with embedding methods consistent with the periodic DFT results. The relative energy between the carbocations and alkoxides differs significantly between the embedding and the periodic DFT methods. The difference is between ~0.23 and 14.30 kcal/mol depending on the molecule, the model, and the functional chosen for the embedding method. At high temperatures, the pw-DFT calculations predict that the allyl, isopropyl, and sec-butyl cations exhibit negligible populations while acetyl and tert-butyl cations exhibit significant populations (>10%). Furthermore, the periodic DFT results indicate that mechanisms including secondary and tertiary carbocations intermediates or carbocations stabilized by adjacent oxygen or double bonds are

  5. Synthesis and Crystal Structures of Three Ladder Distannoxane Dimers [(PhCH2)2(Cl)SnOSn(X)(CH2Ph)2]2(X=Cl,OMe,OEt)

    Institute of Scientific and Technical Information of China (English)

    马春林; 李凤


    Three distannoxane dimers[(PhCH2)2(Cl)SnOSn(X)(CH2Ph)2]2(X=Cl,OMe,OEt)were prepared by the hydrolytic reaction of (PhCH2)2SnCl2 with sodium alkoxides.The compounds are assigned tetranuclear distannoxane structures in solid state.which contain the so-called ladder arrangement with a central planar Sn2O2 four-membered ring.The endo-and exo-cyclic Sn atoms are both five-coordinate,and have distorted trigonal bipyramidal geometries.A variety of hydrolyses of(PhCH2)2SnCl2 were performed and these dimers were characterized by IR,1H NMR spectroscopy and X-ray diffraction analysis.

  6. Supported Tetrahedral Oxo-Sn Catalyst: Single Site, Two Modes of Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Beletskiy, Evgeny V.; Hou, Xianliang; Shen, Zhongliang; Gallagher, James R.; Miller, Jeffrey T.; Wu, Yuyang; Li, Tiehu; Kung, Mayfair C.; Kung, Harold H.


    Mild calcination in ozone of a (POSS)-Sn- (POSS) complex grafted on silica generated a heterogenized catalyst that mostly retained the tetrahedral coordination of its homogeneous precursor, as evidenced by spectroscopic characterizations using EXAFS, NMR, UV-vis, and DRIFT. The Sn centers are accessible and uniform and can be quantified by stoichiometric pyridine poisoning. This Sn-catalyst is active in hydride transfer reactions as a typical solid Lewis acid. However, the Sn centers can also create Brønsted acidity with alcohol by binding the alcohol strongly as alkoxide and transferring the hydroxyl H to the neighboring Sn-O-Si bond. The resulting acidic silanol is active in epoxide ring opening and acetalization reactions.

  7. Low-cost composites based on porous titania–apatite surfaces for the removal of patent blue V from water: Effect of chemical structure of dye

    Directory of Open Access Journals (Sweden)

    C. El Bekkali


    Full Text Available Hydroxyapatite/titania nanocomposites (TiHAp were synthesized from a mixture of a titanium alkoxide solution and dissolution products of a Moroccan natural phosphate. The simultaneous gelation and precipitation processes occurring at room temperature led to the formation of TiHAp nanocomposites. X-ray diffraction results indicated that hydroxyapatite and anatase (TiO2 were the major crystalline phases. The specific surface area of the nanocomposites increased with the TiO2 content. Resulting TiHAp powders were assessed for the removal of the patent blue V dye from water. Kinetic experiments suggested that a sequence of adsorption and photodegradation is responsible for discoloration of dye solutions. These results suggest that such hydroxyapatite/titania nanocomposites constitute attractive low-cost materials for the removal of dyes from industrial textile effluent.

  8. Asymmetric carbon-carbon bond forming reactions catalyzed by chiral titanium complexes. Efficient synthesis of optically active secondary alcohols; Kiraru na chitan shokubai ni yoru fuseitanso-tanso ketsugo keisei. Kogaku kassei dainikyu arukoru no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, M. [Yamaguchi Univ., Yamaguchi (Japan). Faculty of Science


    For asymmetric metal complex catalysts with high catalytic activity and ability for recognizing asymmetry, it is most important to choose center metals and design asymmetric organic ligands. When the authors began to study on the title reactions, combination of titanium alkoxides as center metals and chiral Schiff bases as organic ligands was unknown, although two moieties had been used independently for asymmetric reactions with excellent results. Asymmetric silylcyanation of aldehydes and enantio-selective addition of diketone to aldehydes are introduced, that have been achieved by authors using titanium complexes of the above combination. In the silylcyanation, reactivity is remarkably improved, compared with a single catalyst of titanium isopropoxide. Cyanohydrin of R from was obtained preferentially with salicyladehyde, particularly having 3-tert butyl group, in an asymmetric yield of 85 % ee. In the latter addition reaction, 5-hydroxy-3-ketoesters were obtained from benzaldehyde in an asymmetric yield as high as 91 % ee. 9 refs., 2 figs.

  9. Influence of oxygen and pH on the selective oxidation of ethanol on Pd catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hibbitts, David D.; Neurock, Matthew


    The selective oxidation of ethanol on supported Pd is catalytically promoted by the presence of hydroxide species on the Pd surface as well as in solution. These hydroxide intermediates act as Brønsted bases which readily abstract protons from the hydroxyl groups of adsorbed or solution-phase alcohols. The C1AH bond of the resulting alkoxide is subsequently activated on the metal surface via hydride elimination to form acetaldehyde. Surface and solution-phase hydroxide intermediates can also readily react with the acetaldehyde via nucleophilic addition to form a germinal diol intermediate, which subsequently undergoes a second C1AH bond activation on Pd to form acetic acid. The role of O2 is to remove the electrons produced in the oxidation reaction via the oxygen reduction reaction over Pd. The reduction reaction also regenerates the hydroxide intermediates and removes adsorbed hydrogen that is produced during the oxidation.

  10. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    energy expression.Furthermore, the model is validated by comparison with experimental data of the flame synthesis of titania by combustion of TiCl4 previously presented by Pratsinis et al. (1996).The combination of particle dynamics and CFD simulations has proved to be an efficient method......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...... for the analysis of particle formation in flames. Good results for a wide range of operating conditions were obtained. Therefore, the method should be useful as a tool for the optimization and/or design of flame processes for particle production....


    Institute of Scientific and Technical Information of China (English)

    QIU Yongxing; YU Xiaojie; FENG Linxian; YANG Shilin


    Acryloyl terminated Poly (ethyleneoxide)macromonomers(PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called "selective dissolution", the well-defined structure of the purified copolymers was confirmed by IR, 1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed "comb-model" was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.

  12. The formation of titanium dioxide crystallite nanoparticles during activation of PAN nanofibers containing titanium isopropoxide

    Energy Technology Data Exchange (ETDEWEB)

    Mehrpouya, Fahimeh; Tavanai, Hossein, E-mail:; Morshed, Mohammad [Isfahan University of Technology, Department of Textile Engineering, Center of Excellence in Applied Nanotechnology (Iran, Islamic Republic of); Ghiaci, Mehran [Isfahan University of Technology, Department of Chemistry (Iran, Islamic Republic of)


    Activated carbon (AC) can act as an important carrier for TiO{sub 2} nanoparticles. TiO{sub 2} nanoparticle can be fabricated by the hydrolysis and condensation of titanium alkoxides like titanium isopropoxide. This study showed that the formation of titanium dioxide crystallite nanoparticle during activation of PAN nanofibers containing titanium isopropoxide leads to the formation of mainly anatase crystal TiO{sub 2} nanoparticle in AC nanofibers, with a good dispersion in both the longitude and cross section of nanofibers. The TiO{sub 2} crystallite size lies in the range of 7.3-11.3 nm. The dispersion of TiO{sub 2} nanoparticles in the matrix of AC nanofibers is far superior to the direct mixing of TiO{sub 2} nanoparticles in the original electrospinning solution.

  13. Transformation of bulk alloys to oxide nanowires (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb


    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  14. Caracterização de filmes finos de Nb2O5 com propriedades eletrocrômicas Caracterization of OF Nb2O5 thin films with electrochromic properties

    Directory of Open Access Journals (Sweden)

    C. O. Avellaneda


    Full Text Available The sols for thin electrochromic coatings of Nb2O5 were obtained by synthesis of the niobium butoxide from BuONa and NbCl5. The ~300nm thick films were deposited by dip-coating technique from the alkoxide solution and calcined at 560ºC in O2 atmosphere during 3 hours. The particles size of niobium oxide (V powder (~20mm was obtained from x-ray diffraction using the Scherrer equation. The coatings were characterized by cyclic voltammetry and cronoamperommetry techniques. The spectral variation of the optical transmittance were determined in situ as a function of the cyclical potencial and memory effect. The insertion process of lithium is reversible and change the film color from transparent (T=80% to dark blue (T=20%.

  15. Continuous supercritical synthesis and dielectric behaviour of the whole BST solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Reveron, H; Elissalde, C; Aymonier, C; Bousquet, C; Maglione, M; Cansell, F [Institut de Chimie de la Matiere Condensee de Bordeaux (ICMCB), CNRS-UPR 9048, Bordeaux I University, 87, avenue du Dr Schweitzer, 33608 PESSAC Cedex (France)


    In this study we show that pure and well crystallized nanoparticles of Ba{sub x}Sr{sub 1-x}TiO{sub 3} (BST) can be synthesized over the entire range of composition through the hydrolysis and further crystallization of alkoxide precursors under supercritical conditions. To our knowledge, this is the first time that the whole ferroelectric solid solution has been produced in a continuous way, using the same experimental conditions. The composition of the powder can be easily controlled by adjusting the feed solution composition. The powders consist of soft-aggregated monocrystalline nanoparticles with an average particle size ranging from {approx}20 to 40 nm. Ferroelectric ceramics with accurately adjustable Curie temperature (100-390 K) can thus be obtained by sintering.

  16. Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania

    Directory of Open Access Journals (Sweden)

    Luther Mahoney


    Full Text Available Mesoporous titanium dioxide materials were prepared using a nanocasting technique involving silica SBA-15 as the hard-template. At an optimal loading of titanium precursor, the hexagonal periodic array of pores in SBA-15 was retained. The phases of titanium dioxide could be easily varied by the number of impregnation cycles and the nature of titanium alkoxide employed. Low number of impregnation cycles produced mixed phases of anatase and TiO2(B. The mesoporous TiO2 materials were tested for solar hydrogen production, and the material consisting of 98% anatase and 2% TiO2(B exhibited the highest yield of hydrogen from the photocatalytic splitting of water. The periodicity of the pores was an important factor that influenced the photocatalytic activity. This study indicates that mixed phases of titania containing ordered array of pores can be prepared by using the nanocasting strategy.

  17. TiO2 Surface Coating of Mn-Zn Dopped Ferrites Study

    DEFF Research Database (Denmark)

    Solný, Tomáš; Ptacek, Petr; Másilko, Jiří


    This study deals with TiO2 coating of powder Mn-Zn ferrite in order to recieve photocatalytic layer on the top of these particles, forming core-shell catalyst. Powder catalysts are of great advance over the world due to the high surface area, considering the kinetics proceeds through heterogenous...... phase boundary catalysis. However their withdrawal from cleaning systems often requires energetically and economically demanding processes such as filtration and ultrafiltration. Since the ferrite is magnetic, the advantage of such formed core-shell photocatalyst is easibility of removing from...... photocatalytic decomposition system using external magnetic field. In this study the surface coating is performed, using Ti alkoxides mixtures with nanosized TiO2 particles and C and Au coating to form film layer of TiO2 on the surface of ferrite. XRD, SEM – EDS analyses are employed to study surface coating....

  18. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    K S Seshadri; M Selvaraj; R Kesava Moorthy; K Varatharajan; M P Srinivasan; K B Lal


    The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature. The binder plays an important role in that it not only helps in adjustment of sol viscosity but also helps in binding the sol particle with porous support. Here a comparative study on the role of different binders, viz. polyvinyl alcohol, polyethyleneimine, polyacrylamide, effect of their viscosity and surface tension effect on the morphology of the titania membrane is presented. The results show that among the three binders studied polyvinyl alcohol gave rise to membranes of desired characteristics when the sol viscosity was 0.08 pa.s.

  19. The Influence of Yttrium Isopropoxide on the Mechanical Properties of SiCW-reinforced AlN Ceramics

    Institute of Scientific and Technical Information of China (English)


    By using self-made metal-alkoxide yttrium isopropoxide as a sintering additive and disperser of whisker,the SiC whisker reinforced AlN ceramics was prepared.Its apparent density is 99.5 percent of the theoretical density;its flexural strength and fracture toughness are 681 MPa and 5.21 MPa*m1/2 respectively.Comparing the result with that by applying Y2O3 powder as a sintering additive,the flexural strength is increased by 25% and the fracture toughness is increased by 33%.The dispersity of whisker by increased yttrium isopropoxide is significantly better than that by Triton X-100.

  20. Nickel-aluminium complex: a simple and effective precursor for nickel aluminate (NiAl2O4 spinel

    Directory of Open Access Journals (Sweden)

    Apirat Laobuthee


    Full Text Available A reaction of aluminium hydroxide, nickel nitrate and triethanolamine in ethylene glycol provided, in one step, a simple and effective nickel-aluminium complex precursor for NiAl2O4 spinel. On the basis of 1H-, 13C-NMR spectroscopy, and mass spectrometry, the possible structure of the complex was proposed as a trimetallic double alkoxide consisting of two four-coordinate TEA-Al (alumatrane moieties linked via a bridging TEA group enfolding the Ni2+ cation. Transformation of the nickel-aluminium complex to pure spinel occurred when the complex precursor was pyrolysed at 1000C for 5 h. The BET surface area of the pyrolysed product was found to be 31 m2/g. In addition, the morphology of the powder product was examined by SEM.

  1. Sol-gel multicapillary columns for gas-solid chromatography. (United States)

    Sidelnikov, Vladimir N; Patrushev, Yuri V; Belov, Yuri P


    In this work, we report the method for the preparation of multicapillary columns (MCCs) for gas-solid chromatography. The porous layer adsorbent is formed on capillary walls by the hydrolysis of aluminum alkoxide in the presence of polypropylene glycol (PPG) and HCl. Porosity and selectivity of the adsorbent depend on reaction conditions and the concentration of PPG. Sol-gel MCCs are well suited for high-speed chromatographic analysis of light hydrocarbons by gas-solid chromatography. Nine-component mixtures of C1-C4 hydrocarbons are separated within 8-12 s. The efficiency of 25-30 cm long alumina sol-gel MCCs consisting of approximately 1400 capillaries of 40 microm diameter is up to 2500-3000 theoretical plates.

  2. Syntheses and Reactions of Chalcogen-containing Heterocycles. (United States)

    Sashida, Haruki


    The advances in my laboratory for the past 20-25 years concerning the chemistry of chalcogen-containing heterocycles are reviewed. The intramolecular cyclization of the chalcogenols (-TeH, -SeH, -SH) into a triple bond or appropriate leaving group produced various chalcogen-containing heterocycles. The reactions of the obtained products were examined: the reactions of 1-benzo- and 2-benzopyrylium salts containing a tellurium or selenium element with several nucleophiles, including alkoxides, amines, the cyanide ion, an active methyl compound (acetone), Grignard reagents, copper reagents, and tin reagents, along with hydrogenation and hydrolysis reactions, provided corresponding chromes or isochromes having various functional groups at the 2- or 1-C position. Isothiocyanate and isoselenocyanate were used as chalcogen sources for the preparation of five- or six-membered heterocycles. In addition, double intramolecular cyclization, ring-expansion reactions, electrophilic cyclization and iodocyclization were also carried out.

  3. Eu3+ probe ion for rare-earth dopant site structure in sol-gel derived LiYF4 oxyfluoride glass-ceramic (United States)

    Secu, C. E.; Negrea, R. F.; Secu, M.


    Sol-gel route using metal alkoxides and trifluoroacetic acid as precursors has been used to prepare oxyfluoride glass-ceramic containing Eu3+-doped LiYF4 nanocrystals of about tens of nm size embedded in a silica matrix through controlled crystallization at higher temperatures of the xerogel. Photoluminescence spectra and decay curves recorded in the Eu3+-doped LiYF4 polycrystalline pellet and glass ceramic have been discussed using group-theoretical arguments. In the glass-ceramic Eu3+ ions are embedded dominantly inside the LiYF4 nanocrystals most probably as Eu-O center and/or dimer centers in low symmetry (C2v) sites; oxygen ions were incorporated in their neighborhood during the glass ceramization.

  4. 4,5-Dihydro-1,2,3-oxadiazole: A Very Elusive Key Intermediate in Various Important Chemical Transformations. (United States)

    Banert, Klaus; Singh, Neeraj; Fiedler, Benjamin; Friedrich, Joachim; Korb, Marcus; Lang, Heinrich


    4,5-Dihydro-1,2,3-oxadiazoles are postulated to be key intermediates in the industrial synthesis of ketones from alkenes, in the alkylation of DNA in vivo, and in the decomposition of N-nitrosoureas; they are also a subject of great interest for theoretical chemists. In the presented report, the formation of 4,5-dihydro-1,2,3-oxadiazole and the subsequent decay into secondary products have been studied by NMR monitoring analysis. The elusive properties evading characterization have now been confirmed by (1) H, (13) C, and (15) N NMR spectroscopy, and relevant 2D experiments at very low temperatures. Our experiments with suitably substituted N-nitrosoureas using thallium(I) alkoxides as bases under apolar conditions answer important questions on the existence and the secondary products of 4,5-dihydro-1,2,3-oxadiazole.

  5. Isotactic rac-Lactide Polymerization with Copper Complexes: The Influence of Complex Nuclearity. (United States)

    Fortun, Solène; Daneshmand, Pargol; Schaper, Frank


    Diiminopyrrolide copper alkoxide complexes, LCuOR (OR(1)=N,N-dimethylamino ethoxide, OR(2)=2-pyridyl methoxide), are active for the polymerization of rac-lactide at ambient temperature in benzene to yield polymers with M(w)/M(n)=1.0-1.2. X-ray diffraction studies showed bridged dinuclear complexes in the solid state for both complexes. While LCuOR(1) provided only atactic polylactide, LCuOR(2) produced partially isotactic polylactide (P(m)=0.7). The difference in stereocontrol is attributed to a dinuclear active species for LCuOR(2) in contrast to a mononuclear species for LCuOR(1).

  6. High temperature stability of anatase in titania-alumina semiconductors with enhanced photodegradation of 2, 4-dichlorophenoxyacetic acid. (United States)

    López-Granada, G; Barceinas-Sánchez, J D O; López, R; Gómez, R


    The incorporation of aluminum acetylacetonate as alumina source during the gelation of titanium alkoxide reduces the nucleation sites for the formation of large rutile crystals on temperatures ranging from 400 to 800°C. As a result, the aggregation of anatase crystals is prevented at high temperature. A relationship among the specific surface area, pore size, energy band gap, crystalline structure and crystallite size as the most relevant parameters are evaluated and discussed. According to the results for the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, the specific surface area, pore size, Eg band gap are not determinant in the photocatalytic properties. It was found that the anatase crystallite size is the mores important parameter affecting the degradation efficiency.

  7. Semiconducting of nanocrystalline tin oxide and its influence factors

    Institute of Scientific and Technical Information of China (English)

    LI Li-li; DUAN Xue-chen


    A series of nanocrystalline SnO2 powders, doped with different Sb contents, were synthesized by route of alkoxides hydrolysis using SnCl4·5H2O and SbCl3 as starting materials and calcined at different temperatures. The microstructure and morphology of samples are investigated by XRD and TEM, the valence state changes of Sb in SnO2 crystal lattice is detected by M(O)ssbauer spectroscopy and XPS.The resistivity of powders is examined with a mould of inside diameter d=10mm at a constant pressure. The results show that lightly-doping Sb is effective means of semiconducting of nanocrystalline SnO2. The ratio of Sb5+ to Sb3+ decreases with increasing Sb content in SnO2 crystal lattices and calcination temperature. The XPS diffraction confirms the same result as Mssbauer spectroscopy.

  8. Studies of methods to restrict the grain growth of nanocrystalline metal oxides

    CERN Document Server

    Al-Angari, Y


    There is considerable interest in nanocrystalline materials. This thesis is concerned with nanocrystalline oxides and the development of methods to prevent their grain growth on heating. This growth, which is evident at temperatures as low as 400 deg C, presents a serious problem in the study and applications of nanocrystalline oxides. The systems that were studied were nanocrystalline magnesium oxide, zirconium oxide, cerium oxide and tin oxide. The methods of preventing grain growth included the encapsulation of the oxide in the pores of porous silica, mixing with nanocrystals of alumina and treating the surface with a silanising agent, hexamethyldisilazane. All the methods employed showed some effect on reducing the grain growth. Encapsulation in the pores of silica was effective, however it proved difficult to get large amounts of the oxides into the pores. A more efficient method of preparing large samples was the incorporation of alumina, which was achieved by a sol-gel process. An alkoxide of the targe...

  9. Identification of TiO2 clusters present during synthesis of sol-gel derived TiO2 nano-particles

    DEFF Research Database (Denmark)

    Simonsen, Morten Enggrob; Søgaard, Erik Gydesen

    Synthesis of titanium dioxide nanoparticles with controlled size distribution and morphology are of great interest for many applications i.e. photocatalysis and dye sensitized solar cells (DSSC). The sol-gel method has some advantages over other preparation techniques in the many parameters, which...... nano-particles is lacking but is highly important for full control of the synthesis and production of nano-particles. In this study titanium dioxide clusters present during nucleation and growth of sol-gel derived TiO2 nanoparticles was investigated by help of electro spray mass spectrometry (ESI...... during nucleation and growth of the sol-gel derived TiO2 nano-particles, although the time of the induction period was greatly influenced. The reactivity of the alkoxy group were found to be OEt > OPri > OBu. The difference in the reactivity of the alkoxides leading to difference in size of the primary...

  10. Study of refractive index and thickness of TiO2/ormosil planar waveguide

    Institute of Scientific and Technical Information of China (English)

    Wang Bao-Ling; Hu Li-Li


    Hybrid titania/ormosil waveguide films have been prepared by sol-gel method at low thermal treatment temperature of 150℃. The influence of processing parameters including the molar ratios of Ti(OBu)4/ glycidoxypropyltrimethoxysilane (GLYMO) and H2O/Ti(OBu)4 (expressed as R), especially aging of sol, on the refractive index and thickness of film was investigated. The optical properties of films were measured with Scanning Electron Microscope and m-line spectroscopy. The results indicate that the film thickness increases with the aging time of sol, but the variation of refractive index as a function of aging time of sol depends on the relative ratio of GLYMO to Ti-alkoxide.The relation between film thickness and corresponding sol viscosity is linear as the volume of GLYMO is 80% within the range of measured data.

  11. Optical and morphological properties of sol gel derived titanium dioxide films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A. B. [Department of Physics, Nabira Mahavidyalaya, Katol-441302 (India); Sharma, S. K. [Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore-560012 (India); M, Vishwas [Department of Physics, Govt. Science College, Bangalore-560067 (India); Rao, K. Narasimha [Department of Instrumentation, Indian Institute of Science, Bangalore-560012 (India)


    Titanium oxide (Titania) thin films were synthesized on different substrates via the sol-gel dip-coating method using alkoxide solution. Some selected samples were also prepared with different percentage of Lead (Pb). The influence of Pb addition in precursor sol on the optical properties of titanium dioxide thin films was studied. The optical transmittance in the visible region has increased with increase in weight percentage of lead. The refractive index was slightly decreased with Pb addition. Crystallization of these coatings was achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by Scanning Electron Microscopy. Increase in average grain size from 250 nm to 350 nm with increase in Pb concentration is observed. Films were appeared to more coarse with increase in Pb addition. An increase in Pb addition resulted increase in average roughness from 12 nm to 25 nm.

  12. Green and scalable production of colloidal perovskite nanocrystals and transparent sols by a controlled self-collection process (United States)

    Liu, Shuangyi; Huang, Limin; Li, Wanlu; Liu, Xiaohua; Jing, Shui; Li, Jackie; O'Brien, Stephen


    Colloidal perovskite oxide nanocrystals have attracted a great deal of interest owing to the ability to tune physical properties by virtue of the nanoscale, and generate thin film structures under mild chemical conditions, relying on self-assembly or heterogeneous mixing. This is particularly true for ferroelectric/dielectric perovskite oxide materials, for which device applications cover piezoelectrics, MEMs, memory, gate dielectrics and energy storage. The synthesis of complex oxide nanocrystals, however, continues to present issues pertaining to quality, yield, % crystallinity, purity and may also suffer from tedious separation and purification processes, which are disadvantageous to scaling production. We report a simple, green and scalable ``self-collection'' growth method that produces uniform and aggregate-free colloidal perovskite oxide nanocrystals including BaTiO3 (BT), BaxSr1-xTiO3 (BST) and quaternary oxide BaSrTiHfO3 (BSTH) in high crystallinity and high purity. The synthesis approach is solution processed, based on the sol-gel transformation of metal alkoxides in alcohol solvents with controlled or stoichiometric amounts of water and in the stark absence of surfactants and stabilizers, providing pure colloidal nanocrystals in a remarkably low temperature range (15 °C-55 °C). Under a static condition, the nanoscale hydrolysis of the metal alkoxides accomplishes a complete transformation to fully crystallized single domain perovskite nanocrystals with a passivated surface layer of hydroxyl/alkyl groups, such that the as-synthesized nanocrystals can exist in the form of super-stable and transparent sol, or self-accumulate to form a highly crystalline solid gel monolith of nearly 100% yield for easy separation/purification. The process produces high purity ligand-free nanocrystals excellent dispersibility in polar solvents, with no impurity remaining in the mother solution other than trace alcohol byproducts (such as isopropanol). The afforded stable

  13. Synthetic Applications of Chiral Furanboronate

    Institute of Scientific and Technical Information of China (English)

    CHAN KinFai; WONG Henry N,C.


    @@ We recently uncovered that consecutive reactions of chiral furfural-boronate 1 with a lithium alkoxide and a nucleophile led to the formation of alcohols 2 with good diastereoselection in favor of S-configuration at the newly generated chiral carbon. In addition, it was also found that 2a and 2b were chromatographically separable on a silica gel column. This reaction is believed to involve a tetrahedral borate intermediate, as can be substantiated by 11BNMR spectroscopic studies. Chiral furanmethanolboronates 2a(or 2b) underwent a palladium-catalyzed Suzuki coupling to form enantiomerically pure furans 3, which can be further converted to the synthetically useful hydroxypyranones 4.1,2,3 In addition, Mukaiyama reaction of 1 also led to chromatographically separable diastereomeric aldol-products. The scope and limitation of these conversions will be discussed.

  14. Sol-gel deposited electrochromic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, N.; Lampert, C.M.


    Electrochromic devices have increasing application in display devices, switchable mirrors and smart windows. A variety of vacuum deposition technologies have been used to make electrochromic devices. The sol- gel process offers an alternative approach to the synthesis of optical quality and low cost electrochromic device layers. This study summarizes the developments in sol-gel deposited electrochromic films. The sol-gel process involves the formation of oxide networks upon hydrolysis-condensation of alkoxide precursors. In this study we cover the sol-gel deposited oxides of WO[sub 3], V[sub 2]O[sub 5], TiO[sub 2], Nb[sub 2]O[sub 5], and NiO[sub x].

  15. Synthetic Applications of Chiral Furanboronate

    Institute of Scientific and Technical Information of China (English)

    CHAN; KinFai


    We recently uncovered that consecutive reactions of chiral furfural-boronate 1 with a lithium alkoxide and a nucleophile led to the formation of alcohols 2 with good diastereoselection in favor of S-configuration at the newly generated chiral carbon. In addition, it was also found that 2a and 2b were chromatographically separable on a silica gel column. This reaction is believed to involve a tetrahedral borate intermediate, as can be substantiated by 11BNMR spectroscopic studies. Chiral furanmethanolboronates 2a(or 2b) underwent a palladium-catalyzed Suzuki coupling to form enantiomerically pure furans 3, which can be further converted to the synthetically useful hydroxypyranones 4.1,2,3 In addition, Mukaiyama reaction of 1 also led to chromatographically separable diastereomeric aldol-products. The scope and limitation of these conversions will be discussed.  ……

  16. Effect of chelating agent acetylacetone on corrosion protection properties of silane-zirconium sol-gel coatings (United States)

    Yu, Mei; Liang, Min; Liu, Jianhua; Li, Songmei; Xue, Bing; Zhao, Hao


    The hybrid sol-gel coatings on AA2024-T3 were prepared with a silane coupling agent 3-glycidoxypropyltrimethoxysilane (GPTMS) and a metal alkoxide tetra-n-propoxyzirconium (TPOZ) as precursors. The effect of acetylacetone (AcAc) as a chelating agent on the corrosion protection properties of sol-gel coatings were evaluated and the optimal AcAc/TPOZ molar ratio was obtained. The sol-gel coatings were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The corrosion protection properties of the coatings were evaluated by means of potentiodynamic polarization study (PDS) and electrochemical impedance spectroscopy (EIS). It is demonstrated that AcAc avoids fast hydrolysis of TPOZ and benefits to form stable sols. The coating with AcAc/TPOZ molar ratio of 3 shows the best corrosion protection performance in 0.05 M NaCl solution.

  17. Continuous tubular flow reactor for XAFS studies of organometallic reactions: Possibilities and limitations for studies of the Soai reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nchari, Luanga N; Hembury, Guy A; Beesley, Angela M; Tsapatsaris, Nikolaos; Hudson, Matthew; Schroeder, Sven L M [School of Chemical Engineering and Analytical Science, University of Manchester, PO Box 88, Manchester, M60 1QD (United Kingdom); Meehan, David J; Thomason, Matthew, E-mail: [School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)


    A computer-controlled continuous tubular flow reactor system has been commissioned that permits time-resolved in situ XAFS measurements of organometallic reactions. The system was commissioned by Zn K-edge measurements of products formed during the Soai reaction. XANES data are shown that illustrate the quality of the data that can be achieved. The XANES spectra are compatible with the presence of dimer, trimer or other oligomeric alkoxide species in the Soai process. It is shown how heterogeneity in the Soai reaction system leads to considerable complications with the measurements due to the formation of floating particles of the aldehyde/iPr{sub 2}Zn adduct formed in the reaction; additionally, decomposition of iPr{sub 2}Zn with residual air and moisture leads to deposits on cell walls.

  18. Total synthesis of (-)-virginiamycin M2: application of crotylsilanes accessed by enantioselective Rh(II) or Cu(I) promoted carbenoid Si-H insertion. (United States)

    Wu, Jie; Panek, James S


    A stereoselective synthesis of the antibiotic (-)-virginiamycin M(2) is detailed. A convergent strategy was utilized that proceeded in 10 steps (longest linear sequence) from enantioenriched silane (S)-15. This reagent, which was prepared via a Rh(II)- or Cu(I)-catalyzed carbenoid Si-H insertion, was used to introduce the desired olefin geometry and stereocenters of the C1-C5 propionate subunit. A modified Negishi cross-coupling or an efficient alkoxide-directed titanium-mediated alkyne-alkyne reductive coupling strategy was utilized to assemble the trisubstituted (E,E)-diene. An underutilized late-stage SmI(2)-mediated macrocyclization was employed to construct the 23-membered macrocycle scaffold of the natural product.

  19. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites. (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing


    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  20. Effects of Modified Precursor Solution on Microstructure of (Y,Yb)MnO3/HfO2/Si (United States)

    Suzuki, Kazuyuki; Kato, Kazumi


    Ferroelectric/insulator/silicon structures were prepared using (Y,Yb)MnO3 films as ferroelectrics and HfO2 thin films as insulators through alkoxy-derived precursor solutions. The HfO2 solution was chemically modified in order to decrease the number of heating cycles required. The HfO2 films prepared using a partially hydrolyzed alkoxide solution had a uniform structure. From the results of measurements of the roughness level and refractive index of the HfO2 films, the partial hydrolysis of the HfO2 solution was found to be effective for the formation of a uniform microstructure in a thin insulator film. (Y,Yb)MnO3/HfO2/Si structures were constructed using the resultant HfO2 thin films prepared using the modified solutions.

  1. Surface morphology engineering of metal-oxide films by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.; Solis, J.L.; Estrada, W. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru); Facultad de Ciencias, Universidad Nacional de Ingenieria, P.O. Box 31-139, Lima (Peru); Gomez, M. [Facultad de Ciencias, Universidad Nacional de Ingenieria, P.O. Box 31-139, Lima (Peru)


    The Chemical Spray Pyrolysis technique and a combination of sol-gel and spray pyrolysis techniques have been used in order to monitor the morphology of metal-oxide-based thin films to be used as functional materials. We can obtain surfaces from specular to rough-porous according to the physico-chemical conditions of the precursor/spraying solution. We have produced coatings of ZnO-based and NiO{sub x}-based coatings from alcoholic and aqueous solutions. A single glass, ITO-precoated glass or alumina was used as the substrate. Porous materials of WO{sub 3}, WO{sub 3}-SnO{sub 2} and SnO{sub 2} have been produced by spraying either inorganic or metal alkoxide gels over a hot substrate. The morphologies of coatings were evaluated by either SEM or optical measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Effect of vanadium on the obtaining of the titanium dioxide by Sol-Gel Method; Efeito do vanadio na obtencao de dioxido de titanio pelo Metodo Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Granado, S.R.; Silva, D.W.; Lopes, S.A.; Cavalheiro, A.A., E-mail: [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais


    The obtaining of transition metal modified titanium dioxide (TiO{sub 2}) can be a promising path to promote changes in crystal structure of anatase phase in order to displace the band gap toward frequencies near to visible region. The insertion of the heterovalent ions such as vanadium can be shift the titanium coordination number in the anatase matrix, leading to important changes in the photonic characteristics of the material. In Sol-Gel method, the presence of the non alkoxide precursors can affects the stability of the solution and the gelifying process, with consequences on the characteristics of the material. In this work, it was investigated the effect of 5mol% of vanadium by thermal analysis of the dried gel and XRD and adsorption isotherm in the samples obtained at different temperatures. The decomposition steps of the precursor were associated to phase formation in the material, leading to conclusion that the presence of vanadium affects the stability of anatase phase. (author)

  3. Organometallic Gold(Ⅲ)Derivatives with Anionic Oxygen Ligands-mononuclear Hydroxo,Alkoxo,and Acetato Complexes:Synthesis and Spectral Study

    Institute of Scientific and Technical Information of China (English)

    Prithwiraj Byabartta


    A variety of gold(Ⅲ) adducts having a-ligated oxygen-donor ligands have been prepared from [Au(ppy)Cl2](ppy·phenylpyridine)(1) either by partial or total replacement of the chloride ions.The new species comprise hydroxo-[Au(ppy)(OH)Cl](2),and[Au(ppy)(OH)2](3),oxo-[Au2(ppy)2(μ-O)2](4),acetate-[Au(ppy)(O2CMe2)] (5),and alkoxo complexes-[Au(ppy)(OR)Cl](6,7)and[Au(ppy)(OR)2](8-10)(R=Me,6 and 8;Et,7 and 9;Pri,10).The dihydroxo and the OXO complexes Can be interconverted by refluxing the former in anhydrous THF and the latter in water.The hydroxides 2 and 3 and the acetato complex 5 undergo σ-ligand metathesis in ROH solution(R=Me,Et or Pri) to give the corresponding alkoxides.

  4. E ective Doping of Rare-earth Ionsin Silica Gel:A Novel Approach to Design Active Electronic Devices

    Institute of Scientific and Technical Information of China (English)

    D. Haranath∗; Savvi Mishra; Amish G. Joshi; Sonal Sahai; Virendra Shanker


    Eu3+luminescence spectroscopy has been used to investigate the effective doping of alkoxide-based silica (SiO2) gels using a novel pressure-assisted sol-gel method. Our results pertaining to intense photolumi-nescence (PL) from gel nanospheres can be directly attributed to the high specific surface area and remarkable decrease in unsaturated dangling bonds of the gel nanospheres under pressure. An increased dehydroxylation in an autoclave resulted in enhanced red (∼611 nm) PL emission from europium and is almost ten times brighter than the SiO2 gel made at atmospheric pressure and∼50℃ using conventional St¨ober-Fink-Bohn process. The presented results are entirely different from those reported earlier for SiO2:Eu3+ gel nanospheres and the origin of the enhanced PL have been discussed thoroughly.


    Institute of Scientific and Technical Information of China (English)

    Yue-sheng Li; Yue-jin Tong; Kai Jing; Meng-xian Ding


    Barium titanate (BaTiO3) powders with particle sizes of 30~50 nm were prepared from barium stearate, titanium alkoxides and stearic acid by stearic acid-gel method. Dispersing the agglomerate of BaTiO3 nanoparticles into poly(amic acid) solution followed by curing led to the formation of polyimide hybrid films. The hybrid films were transparent and well distributed with BaTiO3 nanoparticles when the BaTiO3 content was less than 1 wt%. Highly loaded hybrid film containing 30 wt % BaTiO3 was tough, had a smooth surface and possessed much higher dielectric and piezoelectric constants than the parent polyimide.

  6. Chitosan bio-based organic-inorganic hybrid aerogel microspheres. (United States)

    El Kadib, Abdelkrim; Bousmina, Mosto


    Recently, organic-inorganic hybrid materials have attracted tremendous attention thanks to their outstanding properties, their efficiency, versatility and their promising applications in a broad range of areas at the interface of chemistry and biology. This article deals with a new family of surface-reactive organic-inorganic hybrid materials built from chitosan microspheres. The gelation of chitosan (a renewable amino carbohydrate obtained by deacetylation of chitin) by pH inversion affords highly dispersed fibrillar networks shaped as self-standing microspheres. Nanocasting of sol-gel processable monomeric alkoxides inside these natural hydrocolloids and their subsequent CO(2) supercritical drying provide high-surface-area organic-inorganic hybrid materials. Examples including chitosan-SiO(2), chitosan-TiO(2), chitosan-redox-clusters and chitosan-clay-aerogel microspheres are described and discussed on the basis of their textural and structural properties, thermal and chemical stability and their performance in catalysis and adsorption.

  7. Organo-metallic elements for associative information processing (United States)

    Potember, Richard S.; Poehler, Theodore O.


    In the three years of the program we have: (1) built and tested a 4 bit element matrix device for possible use in high density content-addressable memories systems; (2) established a test and evaluation laboratory to examine optical materials for nonlinear effects, saturable absorption, harmonic generation and photochromism; (3) successfully designed, constructed and operated a codeposition processing system that enables organic materials to be deposited on a variety of substrates to produce optical grade coatings and films. This system is also compatible with other traditional microelectronic techniques; (4) used the sol-gel process with colloidal AgTCNQ to fabricate high speed photochromic switches; (5) develop and applied for patent coverage to make VO2 optical switching materials via the sol-gel processing using vanadium (IV) alkoxide compounds.

  8. A new method for the chemoselective reduction of aldehydes and ketones using boron tri-isopropoxide, B(OPr)3: Comparison with boron tri-ethoxide, B(OEt)3

    Indian Academy of Sciences (India)

    Burcu Uysal; Birsen S Oksal


    A chemoselective Meerwein-Ponndorf-Verley reduction process of various aliphatic and allylic ,-unsaturated aldehydes and ketones is described. This chemoselective reduction is catalysed by boron triisopropoxide B(OPr)3. Kinetics of reduction of aldehydes and ketones to corresponding alcohols were also examined and rate constant of each carbonyl compounds were measured. Rate constant and reduction yield of each carbonyl compounds in the presence of B(OPr)3 were compared with those in the presence of B(OEt)3. The alcohols that are the reduction product were analysed by GC-MS. The rate constants and alcohol yields were found to be higher with B(OEt)3 than with B(OPr)3. The mechanism proposed involves a six-membered transition state in which both the alcohol and the carbonyl are coordinated to the same boron centre of a boron alkoxide catalyst.

  9. Activity of B(OEt)3-MCM-41 catalyst in the MPV reduction of crotonaldehyde

    Indian Academy of Sciences (India)

    Burcu Uysal


    Mesoporous silica materialMCM-41 was functionalized with boron tri-ethoxide (B(OEt)3) groups by the grafting method and denoted as `B(OEt)3-MCM-41’. With the use of TEM, X-ray diffraction, highresolution thermogravimetry (TGA) and N2 adsorption-desorption isotherms, it was shown that the initial hexagonal structure, the high specific surface area, and porosity are retained in the functionalized material. 29Si NMR- and 11B NMR- spectroscopies revealed that the surface of MCM-41 consists of boron alkoxide species. The Meerwein-Ponndorf-Verley (MPV) reduction of crotonaldehyde to but-2-en-1-ol was conducted in the presence of B(OEt)3-MCM-41 catalyst. MPV reduction of crotonaldehyde also showed that functionalization leads to the creation of Lewis acidic sites. A combination of mesoporous structure with Lewis acidic properties makes the MCM-41 functionalized with boron tri-ethoxide groups, useful as solid Lewis acid catalysts.

  10. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Suegama, P.H. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Sarmento, V.H.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Benedetti, A.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); de Melo, H.G.; Aoki, I.V. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Santilli, C.V., E-mail: santilli@iq.unesp.b [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)


    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  11. Synthesis of Ethers via Reaction of Carbanions and Monoperoxyacetals (United States)


    Although transfer of electrophilic alkoxyl (“RO+”) from organic peroxides to organometallics offers a complement to traditional methods for etherification, application has been limited by constraints associated with peroxide reactivity and stability. We now demonstrate that readily prepared tetrahydropyranyl monoperoxyacetals react with sp3 and sp2 organolithium and organomagnesium reagents to furnish moderate to high yields of ethers. The method is successfully applied to the synthesis of alkyl, alkenyl, aryl, heteroaryl, and cyclopropyl ethers, mixed O,O-acetals, and S,S,O-orthoesters. In contrast to reactions of dialkyl and alkyl/silyl peroxides, the displacements of monoperoxyacetals provide no evidence for alkoxy radical intermediates. At the same time, the high yields observed for transfer of primary, secondary, or tertiary alkoxides, the latter involving attack on neopentyl oxygen, are inconsistent with an SN2 mechanism. Theoretical studies suggest a mechanism involving Lewis acid promoted insertion of organometallics into the O–O bond. PMID:26560686

  12. Lithium-Assisted Copolymerization of CO 2 /Cyclohexene Oxide: A Novel and Straightforward Route to Polycarbonates and Related Block Copolymers

    KAUST Repository

    Zhang, Dongyue


    A facile route toward alternating polycarbonates by anionic copolymerization of carbon dioxide (CO2) and cyclohexene oxide (CHO), using lithium halide or alkoxide as initiators and triisobutylaluminum (TiBA) as activator, is reported. α,ω-Heterobifunctional and α,ω-dihydroxypoly(cyclohexene carbonate)s (PCHC) as well as poly(CHC-co-CHO) copolymers with different carbonate composition could also be easily synthesized by adjusting the amount of TiBA or by adding inert lithium salts. The value of this initiating system also resides in the easy access to PSt-b-PCHC (PSt: polystyrene) and PI-b-PCHC (PI: polyisoprene) block copolymers which can be derived by mere one-pot sequential addition of styrene or dienes first and then of CO2 and CHO under the same experimental conditions. © 2016 American Chemical Society.

  13. Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites

    Indian Academy of Sciences (India)

    Shahzada Ahmad; Sharif Ahmad; S A Agnihotry


    Hybrid materials, which consist of organic–inorganic materials, are of profound interest owing to their unexpected synergistically derived properties. These hybrid materials replaced the pristine polymers due to their higher strength and stiffness in the recent years. In the present work, studies concerning the preparation of poly (methyl methacrylate) (PMMA), PMMA/SiO2, and PMMA/TiO2 nanocomposites are reported. These nanocomposite polymers were synthesized by means of free radical polymerization of methyl methacrylate using benzoyl peroxide as an initiator in a water medium. Further `sol–gel’ transformation based hydrolysis and condensation of Ti and Si alkoxides were used to prepare the inorganic phase during the polymerization process of MMA.

  14. Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition. (United States)

    Zhang, Hao; Ding, He; Wei, Mengjie; Li, Chunya; Wei, Bin; Zhang, Jianhua


    A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of nanolaminates. We found that moisture barrier performance was improved with the increasing of the number of dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10(-5) g/m(2)/day at 25°C, relative humidity (RH) 85%. The half lifetime of a green OLED with the initial luminance of 1,500 cd/m(2) reached 350 h using three pairs of the Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

  15. On Tuning the Fluorescence Emission of Porphyrin Free Bases Bonded to the Pore Walls of Organo-Modified Silica

    Directory of Open Access Journals (Sweden)

    Rosa I. Y. Quiroz-Segoviano


    Full Text Available A sol-gel methodology has been duly developed in order to perform a controlled covalent coupling of tetrapyrrole macrocycles (e.g., porphyrins, phthalocyanines, naphthalocyanines, chlorophyll, etc. to the pores of metal oxide networks. The resulting absorption and emission spectra intensities in the UV-VIS-NIR range have been found to depend on the polarity existing inside the pores of the network; in turn, this polarization can be tuned through the attachment of organic substituents to the tetrapyrrrole macrocycles before bonding them to the pore network. The paper shows clear evidence of the real possibility of maximizing fluorescence emissions from metal-free bases of substituted tetraphenylporphyrins, especially when these molecules are bonded to the walls of functionalized silica surfaces via the attachment of alkyl or aryl groups arising from the addition of organo-modified alkoxides.

  16. Synthesis, characterization, and catalytic activity of Zirconium oxide nitrides supported on high-surface SiO{sub 2}; Praeparation und Charakterisierung von SiO{sub 2}-getraegerten Zirconiumoxidnitriden mit hoher Oberflaeche und Untersuchung ihrer katalytischen Aktivitaet bei der Ammoniakzersetzung

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Nancy; Otremba, Thorsten; Schomaecker, Reinhard; Ressler, Thorsten; Lerch, Martin [Technische Univ. Berlin (Germany). Inst. fuer Chemie


    Zirconium oxide nitrides are active ammonia decomposition catalysts for the production of hydrogen. We present a route to zirconium oxide nitrides with high surface area. The precursor used consisted of a high-surface-area silica material coated with zirconium alkoxide. Subsequent hydrolysis and calcination resulted in ZrO{sub 2} supported on SiO{sub 2}. The high surface area of the material could be maintained in the following ammonolysis procedure leading to the corresponding zirconium oxide nitride. In contrast to the as-prepared ZrO{sub 2}, the zirconium oxide nitrides exhibited a significant catalytic activity in ammonia decomposition, but compared to an iron oxide-based reference material, the new oxide nitrides showed a rather low activity. Nevertheless, zirconium oxide nitrides constitute suitable model systems for elucidating the effect of nitrogen in the anion substructure on the activity and selectivity of oxide-based ammonia decomposition catalysts. (orig.)

  17. Ultrapure glass optical waveguide development in microgravity by the sol-gel process (United States)


    Containerless melting of glasses in space for the preparation of ultrapure homogeneous glass for optical waveguides is discussed. The homogenization of the glass using conventional raw materials is normally achieved on Earth either by the gravity induced convection currents or by the mechanical stirring of the melt. Because of the absence of gravity induced convection currents, the homogenization of glass using convectional raw materials is difficult in the space environment. Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation.

  18. Surface Microstructure Characterization of Sol-gel Derived Porous TiO2 Thin Films

    Institute of Scientific and Technical Information of China (English)


    Porous TiO2 thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by sol-gel route on soda lime glass, and were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that TiO2 film prepared from precursor solution without PEG is composed of spherical particles of about 100 nm and several nanometer mesoporous pores. With the increase of the amount of PEG added to the precursor solution, the diameter and the depth of the pores in the resultant films increas on the decomposition of PEG during heat-treatment, which lead to the increase of the surface roughness of the films. XRD and TEM results show that the single anatase phase is precipitated and there are some orientation effects in (101) direction.

  19. Effects of mineral tourmaline particles on the photocatalytic activity of TiO2 thin films. (United States)

    Meng, Junping; Liang, Jinsheng; Ou, Xiuqin; Ding, Yan; Liang, Guangchuan


    Titania composite thin films (T/TiO2) containing tourmaline particles were prepared by a sol-gel method, using alkoxide solutions as precursor. The tourmaline particles and thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and so on. The effects of tourmaline on the photocatalytic activity of TiO2 were measured with methyl orange as an objective photodegradation substance. The results showed that the photocatalytic degradation of methyl orange conformed to the first-order kinetic equation and the composite thin films had better photocatalytic activity due to the cooperation of polarity and the far infrared emission of tourmaline. The T/TiO2 thin films including 0.5 wt% tourmaline exhibited better photocatalytic activity when heat-treated at 250 degrees C for 3 h, than pure TiO2 thin films under the ultraviolet irradiation.

  20. Nanocomposite organomineral hybrid materials. Part 3

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich


    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  1. Nanocomposite organomineral hybrid materials. Part I

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich


    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  2. Nanocomposite organomineral hybrid materials. Part 2

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich


    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  3. One-pot synthesis of linear- and three-arm star-tetrablock quarterpolymers via sequential metal-free ring-opening polymerization using a "catalyst switch" strategy

    KAUST Repository

    Zhao, Junpeng


    A "catalyst switch" strategy has been used to sequentially polymerize four different heterocyclic monomers. In the first step, epoxides (1,2-butylene oxide and ethylene oxide) were successively polymerized from a monohydroxy or trihydroxy initiator in the presence of a strong phosphazene base promoter (t-BuP4). Then, an excess of diphenyl phosphate (DPP) was introduced, followed by addition and polymerization of a cyclic carbonate (trimethylene carbonate) and a cyclic ester (δ-valerolactone or ε-caprolactone). DPP acted as both neutralizer of the phosphazenium alkoxide (polyether chain end) and activator of the cyclic carbonate/ester. Using this method, linear- and star-tetrablock quarterpolymers were prepared in one pot. This work is emphasizing the strength of the previously developed catalyst switch strategy for the facile metal-free synthesis of complex macromolecular architectures. © 2014 Wiley Periodicals, Inc.

  4. A "catalyst switch" Strategy for the sequential metal-free polymerization of epoxides and cyclic Esters/Carbonate

    KAUST Repository

    Zhao, Junpeng


    A "catalyst switch" strategy was used to synthesize well-defined polyether-polyester/polycarbonate block copolymers. Epoxides (ethylene oxide and/or 1,2-butylene oxide) were first polymerized from a monoalcohol in the presence of a strong phosphazene base promoter (t-BuP4). Then an excess of diphenyl phosphate (DPP) was introduced, followed by the addition and polymerization of a cyclic ester (ε-caprolactone or δ-valerolactone) or a cyclic carbonate (trimethylene carbonate), where DPP acted as both the neutralizer of phosphazenium alkoxide (polyether chain end) and the activator of cyclic ester/carbonate. This work has provided a one-pot sequential polymerization method for the metal-free synthesis of block copolymers from monomers which are suited for different types of organic catalysts. © 2014 American Chemical Society.

  5. Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO 2 in a Li-ion cell (United States)

    Kweon, Ho-Jin; Park, JeonJoon; Seo, JunWon; Kim, GeunBae; Jung, BokHwan; Lim, Hong S.

    A study is made of the effects of MgO and Al 2O 3 coatings on the electrical properties of LiCoO 2 cathode material on the thermal stability (differential scanning calorimetry (DSC)) of the charged cathode, and on the safety characteristics of 18650 Li-ion cells. Powdery active material is coated with Mg or Al alkoxide solutions followed by heat treatment in air at temperatures between 300 and 800 °C. The presence of the coating is confirmed by an elemental depth-profile analysis of the powder surface using secondary ion mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS). Both oxide coatings, especially the Al 2O 3 coating, substantially improve the charge-discharge voltage characteristics, rate capability, capacity and rate-capability retention on cycling and thermal stability of the LiCoO 2 cathode. These beneficial effects are demonstrated in 18650 Li-ion cells.

  6. Synthesis of a Pseudodisaccharide α-C-Glycosidically Linked to an 8-Alkylated Guanine

    Directory of Open Access Journals (Sweden)

    Jan Duchek


    Full Text Available The synthesis of stable guanofosfocin analogues has attracted considerable attention in the past 15 years. Several guanofosfocin analogues mimicking the three constitutional elements of mannose, ribose, and guanine were designed and synthesized. Interest in ether-linked pseudodisaccharides and 8-alkylated guanines is increasing, due to their potential applications in life science. In this article, a novel guanofosfocin analogue 6, an ether-linked pseudodisaccharide connected α-C-glycosidically to an 8-alkylated guanine, was synthesized in a 10-longest linear step sequence from known diol 13, resulting in an overall yield of 26%. The key steps involve the ring-opening of cyclic sulfate 8 by alkoxide generated from 7 and a reductive cyclization of 4-N-acyl-2,4-diamino-5-nitrosopyrimidine 19 to form compound 6.

  7. Synthesis of TiO{sub 2} nanoparticles by hydrolysis and peptization of titanium isopropoxide solution

    Energy Technology Data Exchange (ETDEWEB)

    Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B. [National Institute of Science and Technology, Palur Hills, Berhampur, Orissa (India); Centre for Advanced Material Processing, Central Mechanical Engineering Research Institute (CSIR-CMERI), Mahatma Gandhi Avenue, Durgapur- 713 209 (India); Dept. of Chemistry, National Institute of Technology, Durgapur (India)


    Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.

  8. Effect of annealing temperature on titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, K., E-mail:; Arumugam, S., E-mail: [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirappalli-620024 (India); Chandrasekaran, G. [Department of Physics, Pondicherry University, Pondicherry-605014 (India)


    Titania polycrystalline samples are prepared by using sol-gel route hydrolyzing a alkoxide titanium precursor under acidic conditions. The as prepared samples are treated with different calcination temperatures. The anatase phase of titania forms when treated below 600°C, above that temperature the anatase phase tends to transform into the rutile phase of titania. The experimental determination of average grain size, phase formation, lattice parameters and the crystal structures of titania samples at different calcinations is done using X-ray diffraction (XRD). Fourier Transform Infra-red Spectroscopy (FTIR), UV-vis-NIR spectroscopy and Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-ray are used to characterize the samples to bring impact on the respective properties.


    Institute of Scientific and Technical Information of China (English)

    ZHANG Shengshui; LIU Qingguo; YANG Leiling; FARRINGTON; Gregory C.


    This paper reports the synthesis of methoxyoligo (oxyethylene) methacrylate (MEOn , n is the repeating unit number of (CH2CH2O) in the macromonomer),and its polymerization in different solvents. MEOn is prepared through such two independent reactions as (1) anionic polymerization of oxirane initiated by potassium alkoxide and (2) end-capping of methoxy oligo(oxyethylene) by methacrylic group. The n value can be conveniently controlled over the range of 5~30 by varying the molar ratio of oxirane to initiator and the molecular weight distribution of MEOn be narrowed by increasing reaction time only in step (1). MEOn thus obtained shows a rapid polymerization in water and benzene respectively, and both give water-soluble polymers as long as suitable conditions are used.

  10. Preparation of functionalized porous nano-γ-Al2O3 powders employing colophony extract

    Directory of Open Access Journals (Sweden)

    Ángela B. Sifontes


    Full Text Available This study reports the synthesis of porous nano alumina employing carboxylato-alumoxanes [Al(Ox(OHy(O2CRz]n as precursors for controlling the pore size, pore size distribution and porosity of the alumina, using a new process ecofriendly. The carboxylato-alumoxanes was prepared by the reaction of boehmite with carboxylic acids. The boehmite was obtained by the hydrolysis of aluminum alkoxide in an aqueous solution. The colophony extract is employed as a source of carboxylic acids. The materials were characterized, using XRD, TGA, N2 physical adsorption, SEM, TEM, NMR and FTIR. A mechanism was proposed for the formation of the synthesized structures. TEM measurements confirmed particle size ranged from 5 to 8 nm.

  11. Stress engineering for the design of morphotropic phase boundary in piezoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomoya, E-mail: [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Yanagida, Hiroshi; Maekawa, Kentaroh [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Arai, Takashi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561 (Japan); Satoh, Shigeo [Graduate School of Science and Engineering, Ibaragi University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaragi 316-0033 (Japan); Matsuda, Takeshi [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan)


    Alkoxide-derived lead zirconate titanate thin films having Zr/Ti = 50/50 to 60/40 compositions with different residual stress conditions were deposited on a Si wafer to clarify the effects of the residual stress on the morphotropic phase boundary shift. The residual stress condition was controlled to − 0.1 to − 0.9 GPa by the design of the buffer layer structure on the Si wafer. Results show that the maximum effective piezoelectric constant d{sub 33} was obtained at 58/42 composition under − 0.9 GPa compressive residual stress condition. Moreover, the MPB composition shifted linearly to Zr-rich phase with increasing compressive residual stress. - Highlights: • The residual stress in lead zirconate titanate film on silicon was controlled. • The maximum residual stress in lead zirconate titanate film was − 0.9 GPa. • The morphotropic phase boundary shifted to zirconium rich phase by the strain.

  12. Computational tools for mechanistic discrimination in the reductive and metathesis coupling reactions mediated by titanium(IV) isopropoxide

    Indian Academy of Sciences (India)

    Akshai Kumar; Ashoka G Samuelson


    A theoretical study has been carried out at the B3LYP/LANL2DZ level to compare the reactivity of phenyl isocyanate and phenyl isothiocyanate towards titanium(IV) alkoxides. Isocyanates are shown to favour both mono insertion and double insertion reactions. Double insertion in a head-to-tail fashion is shown to be more exothermic than double insertion in a head-to-head fashion. The head-to-head double insertion leads to the metathesis product, a carbodiimide, after the extrusion of carbon dioxide. In the case of phenyl isothiocyanate, calculations favour the formation of only mono insertion products. Formation of a double insertion product is highly unfavourable. Further, these studies indicate that the reverse reaction involving the metathesis of N,N'-diphenyl carbodiimide with carbon dioxide is likely to proceed more efficiently than the metathesis reaction with carbon disulphide. This is in excellent agreement with experimental results as metathesis with carbon disulphide fails to occur. In a second study, multilayer MM/QM calculations are carried out on intermediates generated from reduction of titanium(IV) alkoxides to investigate the effect of alkoxy bridging on the reactivity of multinuclear Ti species. Bimolecular coupling of imines initiated by Ti(III) species leads to a mixture of diastereomers and not diastereoselective coupling of the imine. However if the reaction is carried out by a trimeric biradical species, diastereoselective coupling of the imine is predicted. The presence of alkoxy bridges greatly favours the formation of the d,l (±) isomer, whereas the intermediate without alkoxy bridges favours the more stable meso isomer. As a bridged trimeric species, stabilized by bridging alkoxy groups, correctly explains the diastereoselective reaction, it is the most likely intermediate in the reaction.

  13. Aluminum Complexes Stabilized by Piperazidine-Bridged Bis(phenolate) Ligands: Syntheses, Structures, and Applica- tion in the Ring-Opening Polymerization of ε-Caprolactone

    Institute of Scientific and Technical Information of China (English)

    李文艺; 姚英明; 张勇; 沈琪


    The synthesis and characterization of aluminum alkoxide and alkyl complexes stabilized by piperazidine- bridged bis(phenolate) ligands are described. Treatment of ligand precursors Hz[ONNO]^1 {Hz[ONNO]^1= 1,4-bis(2-hydroxy-3-tert-butyl-5-methylbenzyl)piperazidine} and Hz[ONNO]2 {H2[ONNO]2=1,4-bis(2-hydroxy3,5-di-tert-butylbenzyl)piperazidine} with A1Et2(OCH2Ph) and A1Etz(OPr-i), which were generated in situ by the reactions of AIEt3 with equivalent of the corresponding alcohols, in a 1: 1 molar ratio in THF gave the corresponding aluminum alkoxide complexes [ONNO]IAI(OCH2Ph) (1) and [ONNO]2Al(OPr-i) (2), respectively. The reaction of H2[ONNO]^1 with A1Etz(OCHzPh) in a 1 : 2 molar ratio in THF afforded a mixture of monometallic aluminum ethyl complex [ONNO] 1A1Et (3) and complex 1, which can be isolated by stepwise crystallization. Similarly, Hz[ONNO]2 reacted with A1Etz(OPr-0 in a 1: 2 molar ratio in THF to give a mixture of aluminum ethyl complex [ONNO]2AlEt (4) and complex 2. Complexes 1 and 2 were also available via treatment of complexes 3 and 4 with 1 equiv, of benzyl alcohol and isopropyl alcohol, respectively. All of these complexes were fully characterized including X-ray structural determination. It was found that complexes 1 to 4 can initiate the ring-opening polymerization of e-caprolactone, and complexes 1 and 2 showed higher catalytic activity in comparison with com- plexes 3 and 4.

  14. Structural characterisation and antibacterial activity of PP/TiO{sub 2} nanocomposites prepared by an in situ sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Bahloul, Walid; Melis, Flavien [Universite de Lyon, Lyon F-69003 (France) and Universite de Lyon 1, Lyon F-69622 (France); CNRS UMR5223, Ingenierie des Materiaux Polymeres, IMP-Lyon 1, F-69622 Villeurbanne (France); Bounor-Legare, Veronique, E-mail: [Universite de Lyon, Lyon F-69003 (France) and Universite de Lyon 1, Lyon F-69622 (France); CNRS UMR5223, Ingenierie des Materiaux Polymeres, IMP-Lyon 1, F-69622 Villeurbanne (France); Cassagnau, Philippe [Universite de Lyon, Lyon F-69003 (France); Universite de Lyon 1, Lyon F-69622 (France); CNRS UMR5223, Ingenierie des Materiaux Polymeres, IMP-Lyon 1, F-69622 Villeurbanne (France)


    Graphical abstract: TEM micrograph of PP/TiO{sub 2} nanocomposite materials (a) in situ PP/TiO{sub 2} and (b) PP/TiO{sub 2} (anatase). Highlights: Black-Right-Pointing-Pointer Titanium alkoxide hydrolysis-condensation reactions during polypropylene processing. Black-Right-Pointing-Pointer Inorganic domains diameter of around 10 nm. Black-Right-Pointing-Pointer Interesting antibacterial activities compared to a dispersion of anatase TiO{sub 2}. - Abstract: Polypropylene/titanium dioxide (PP/TiO{sub 2}) nanocomposites can be prepared using a novel method based on the hydrolysis-condensation reactions (sol-gel method) of titanium alkoxide inorganic precursors that have been premixed with polypropylene under molten conditions. The resultant nanocomposites were characterised by transmission electronic microscopy (TEM), X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). These techniques showed the formation of the titanium oxi-hydroxide chemical structure (Ti{sub x}O{sub y}(OH){sub z}) with a diameter of approximately 10 nm in the polymer matrix. Furthermore, a condensation degree of around 17% was determined using XPS analysis. The antibacterial activity was tested according to the JIS Z 2801:2000 standard with Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in the absence of light. Correlations between the microstructure and the chemical composition of PP/TiO{sub 2} nanocomposites and the antibacterial properties of these nanocomposites were discussed. The structure of titanium oxi-hydroxide derivative particles (Ti{sub x}O{sub y}(OH){sub z}) within the polypropylene matrix has been shown to impact strongly on the antibacterial properties in comparison with the results obtained with a dispersion of anatase titanium dioxide into the PP.

  15. Modificación superficial de aleaciones de base aluminio (anodizadas y no anodizadas mediante recubrimientos de sílice

    Directory of Open Access Journals (Sweden)

    García-Heras, M.


    Full Text Available Transparent and colourless silica coatings were deposited on anodising and non-anodising substrates of aluminium-base alloys (series 6063. Coatings were prepared by soLgel (dipping method from a silica alkoxide and a mixture of both silica alkoxide and silica alkylalkoxide. Preparations were optimised from viscosity, density, surface tension, and contact angle measurements. Densification was carried out at 60 and 120 °C. Reflectance attenuation of coated samples was analysed by UV-VIS-NIR spectroscopy. The results indicated that -10 % of attenuation is reached. Durability and resistance against degradation tests of the metal/coating system were undertaken by immersion into aqueous solutions. Electrochemical impedance measurements and potential corrosion of the metallic substrate for variable times were performed.

    Se han depositado recubrimientos transparentes e incoloros de sílice sobre sustratos anodizados y no anodizados de aleaciones de base aluminio (serie 6063. Los recubrimientos se prepararon por sol-gel (inmersión-extracción a partir de un alcóxido de silicio y de una mezcla de alcóxido y alquilalcóxido de silicio. La optimización de las fonnulaciones se basó en medidas de viscosidad, densidad, tensión superficial y ángulo de contacto. La densificación se llevó a cabo a 60 y 120 °C. La atenuación de la reflectancia luminosa de las muestras recubiertas se analizó por espectroscopia UV-VIS-IRP. Los resultados indicaron que se alcanza casi un 10 % de atenuación. Los ensayos de durabilidad y resistencia a la degradación del sistema metal/recubrimiento se realizaron por inmersión en disoluciones acuosas, aplicando medidas de impedancia electroquímica y del potencial de corrosión del sustrato metálico, para tiempos variables.

  16. Reaction mechanism and optimal conditions for preparation of high-quality vanadium oxide films by organic sol-gel for optoelectronic applications (United States)

    Sun, Minghui; Wen, Yuejiang; Xu, Xiangdong; Wang, Meng; He, Qiong; Jiang, Yadong; Dai, Zelin; Gu, Yu; Chen, Zhegeng


    Although vanadium oxides (VO x ) are important functional materials for academic research and industrial applications, the reaction mechanism of VO x prepared by organic sol-gel remains unclear. In order to investigate this mechanism, VO x organic sols were reacted at different temperatures, by which various VO x thin films were prepared. The products were systematically characterized by infrared spectroscopy, Raman spectroscopy, UV-vis spectroscopy, thermogravimetric analysis, scanning electron microscopy, x-ray diffraction, and a high resistance meter. Results reveal that vanadium alkoxides are created through an alcoholysis reaction of V2O5 powder and isobutyl alcohol, and then a condensation reaction of the vanadium alkoxides leads to the formation of VO x networks. The as-prepared sols are strongly temperature-dependent, causing different chemical structures and physical properties for the resulting VO x films. Particularly, a moderate temperature of 110 °C prompts both alcoholysis and condensation reactions, and thus the VO x films that are produced by the sol reacted at 110 °C possess a low resistivity of 23 Ω cm, a high temperature coefficient resistance (TCR) of  -3.2% K-1, and a low average transmittance of 54% in 580-1100 nm, compared with those prepared by the sols reacted at lower or higher temperatures. Therefore, 110 °C is a desirable sol temperature for producing VO x films serving as high-quality bolometric materials for uncooled infrared detectors. This work discloses not only the reaction mechanism of VO x films prepared by organic sol-gel, but also the route to yield desirable VO x films for optoelectronic applications.

  17. Efficient and Selective Formation of Macrocyclic Disubstituted Z Alkenes by Ring-Closing Metathesis (RCM) Reactions Catalyzed by Mo- or W-Based Monoaryloxide Pyrrolide (MAP) Complexes. Applications to Total Syntheses of Epilachnene, Yuzu Lactone, Ambrettolide, Epothilone C and Nakadomarin A (United States)

    Wang, Chenbo; Yu, Miao; Kyle, Andrew F.; Jakubec, Jakubec; Dixon, Darren J.; Schrock, Richard R.; Hoveyda, Amir H.


    The first broadly applicable set of protocols for efficient and highly Z-selective formation of macrocyclic disubstituted alkenes through catalytic ring-closing metathesis (RCM) is described. Cyclizations are performed in the presence of 1.2–7.5 mol % of a Mo- or W-based mono-aryloxide pyrrolide (MAP) complex at 22 °C and typically proceed to complete conversion within two hours. The utility of the catalytic strategy is demonstrated by stereoselective synthesis of representative macrocyclic alkenes, including natural products yuzu lactone (13-membered ring: 73% Z) epilachnene (15-membered ring: 91% Z), ambrettolide (17-membered ring: 91% Z), an advanced precursor to epothilones C and A (16-membered ring: up to 97% Z) and nakadomarin A (polycyclic 15-membered ring: up to 97% Z). We demonstrate the complementary nature of the Mo-based catalysts, which deliver high activity but can be more prone to causing post-RCM stereoisomerization, versus W-based variants, which furnish lower activity but are less inclined towards causing loss of kinetic Z selectivity; a number of catalytic Z-selective cases are provided to elucidate which catalyst class is best suited for which substrate and particular type of alkene RCM process. Mechanistic models that rationalize the origin and the trends in Z selectivity as a function of alterations in the catalyst structure (i.e., Mo vs W and different imido and aryloxide or alkoxide ligands) are provided; we show that reaction time can be critical in retaining the Z selectivity attained not only with MAP complexes but with the original Mo-based bis-alkoxides as well. The W-based catalysts are sufficiently stable to be manipulated in air even with humidity levels of up to 80%; the catalytic Z-selective cyclizations can be performed on gram scale with complex molecule starting materials. PMID:23345004

  18. Physical and gas permeation properties of a series of novel hybrid inorganic-organic composites based on a synthesized fluorinated polyimide (United States)

    Cornelius, Christopher James


    A series of hybrid inorganic-organic composites were fabricated from a functionalized fluorinated polyimide and tetraethoxysilane (TEOS), tetramethoxysilane, methyltrimethoxysilane (MTMOS), and phenyltrimethoxy-silane (PTMOS) employing the sol-gel process. Polyimides were synthesized from 4,4'-hexafluoroisopropylidene dianiline (6FpDA) and 4,4'-hexafluoroisopropyl-idenediphthalic anhydride (6FDA) utilizing a solution imidization technique. The hybrid materials were synthesized by in-situ sol-gel processing of the aforementioned alkoxides and a fully imidized polyimide that was functionalized with 3-aminopropyltriethoxysilane. The gas permeability, diffusivity, and selectivity were evaluated for He, O2, N2, CH4, and CO2, while the physical properties of these hybrid materials were evaluated using several analytical techniques. The results from this study revealed that gas transport and physical properties were dependent on the type of alkoxide employed in the hybrid inorganic-organic material. Gas permeability was observed to increase with increasing gas penetrant size for MTMOS and PTMOS based hybrids, while TEOS based hybrids decreased gas permeability at all compositions. In general, MTMOS based hybrid materials had the largest increases in permeability, which was attributed to an increase in free volume. The TEOS based hybrid materials had the largest decreases in permeability, while PTMOS based hybrid materials had performance in between these alkoxides. Decreased permeability for the TEOS based hybrids was attributed to the formation of lower permeable material at a particle interface and coupled with increasing tortuosity. Results of PALS studies suggested that there was an increase in free volume and pore size for MTMOS based hybrids, while both TEOS and PTMOS based hybrids had decreases in both average pore size and free volume. The temperature dependence of permeation, diffusivity, and sorption were evaluated from 35°C to 125°C. These results suggested

  19. Hierarchical porous TiO{sub 2} thin films by soft and dual templating

    Energy Technology Data Exchange (ETDEWEB)

    Henrist, Catherine, E-mail: [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); University of Liege, Center for Applied Technology in Microscopy (CATmu), B6 Sart Tilman, Liege 4000 (Belgium); Dewalque, Jennifer [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); Cloots, Rudi [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium); University of Liege, Center for Applied Technology in Microscopy (CATmu), B6 Sart Tilman, Liege 4000 (Belgium); Vertruyen, Bénédicte; Jonlet, Jonathan; Colson, Pierre [University of Liege, Department of Chemistry, GREENMAT-LCIS, B6 Sart Tilman, Liege 4000 (Belgium)


    Hierarchical porous structures, with different pore sizes, including pores larger than 10 nm, constitute an important field of research for many applications such as selective molecule detection, catalysis, dye-sensitized solar cells, nanobiotechnology and nanomedecine. However, increasing the pore size logically results in the decrease of specific surface. There is a need to quantify and predict the resulting porosity and specific surface. We have prepared hierarchical porous TiO{sub 2} thin films either by surfactant templating (soft) or dual surfactant/nanospheres templating (soft/hard). They all show narrow, bimodal distribution of pores. Soft templating route uses a modified sol–gel procedure by adding a swelling agent (polypropylene glycol) to a precursor solution containing Ti alkoxide and block-copolymer surfactant. This scheme leads to very thin films showing high specific surface and bimodal porosity with diameters of 10 nm and 54 nm. Dual templating route combines a precursor solution made of Ti alkoxide and block-copolymer surfactant with polystyrene (PS) nanospheres (diam. 250 nm) in a one-pot simple process. This gives thicker films with a bimodal distribution of pores (8 nm and 165-200 nm). The introduction of PS nanospheres in the surfactant–Ti system does not interfere with the soft templating process and results in a macroporosity with a pore diameter 20–30% smaller than the original beads diameter. The dye loading of hierarchical films is compared to pure surfactant-templated TiO{sub 2} films and shows a relative decrease of 29% for soft templating and 43% for dual templating. The microstructure of bimodal porous films is characterized by several techniques such as transmission and scanning electron microscopy, X-ray diffraction, profilometry and ellipsometry. Finally, a geometrical model is proposed and validated for each system, based on the agreement between calculated specific surfaces and experimental dye loading with N719 dye

  20. Synthesis, properties and applications of bio-based materials (United States)

    Srinivasan, Madhusudhan

    silanes on the polyester in short reaction times of 5 minutes. This improved the compatibility with the talc filler. This biodegradable polyester product was characterized by high tensile strength and moderate elongation. The modification method is simple is applicable to a variety of aliphatic biodegradable polyesters. Finally a rapid polymerization of 1, 4-dioxan-2-one in very short times was accomplished with titanium alkoxides as initiators. At low [monomer]/ [initiator] ratios (100:1), nearly all the alkoxide groups initiated polymerization. High conversions up to 90% were achieved even at high ratios (2400:1). The activation energy for polymerization for titanium tetraisopropoxide is the lowest reported (33.5 kJ/mol) for this monomer system.

  1. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.

    Directory of Open Access Journals (Sweden)

    Logan D Andrews


    Full Text Available Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound P(i was determined from pH dependencies of the binding of Pi and tungstate, a P(i analog lacking titratable protons over the pH range of 5-11, and from the ³¹P chemical shift of bound P(i. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥10⁸-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and P(i binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the

  2. Synthesis, Conformation, and Glycosidic Coupling Reaction of 1,2 - and 1,3 - Anhydro Sugar Derivatives%1,2和1,3-缩水内醚糖衍生物的制备,构象及其糖苷化反应

    Institute of Scientific and Technical Information of China (English)



    吡哺糖的1,2-及1,3-缩水内醚苄醚由相应的吡喃糖的C-2氧负离子(对1,3-缩水内醚是C-3氧负离子)与连有氯原子的C-1经分子内关环反应而制备,而有些吡喃糖的1,2-缩水内醚苄醚是由相应的吡喃糖的C-1氧负离子与连有对甲苯磺酰氧基的C-2经分子内关环(倒关环)反应而得.呋喃糖的1,2-缩水内醚苄醚只能用倒关环法合成.1,2-(或1,3-)缩水内醚糖的开环反应通常给出1,2-反式连接(对1,3缩水内醚是1,3反式连接)的糖苷键.1,2-及1,3-缩水内醚糖的构象分析是通过1HMNR测定及分子力学计算的方法而完成的.%The synthesis of 1,2 - and 1,3 - anhydro glycopyranose benzyl ethers was successfully achieved via intramolecular SN2 reaction of the corresponding C - 2 (or C - 3 for 1,3 - anhydron sugars) alkoxide with C- 1 bearing chloride, and the synthesis of some 1,2-anhydro pyranoses by the intramolecular reaction of the corresponding C - 1 alkoxide with C - 2 bearing tosyloxy group (inverse ring closure). The synthesis of 1,2 - anhydro glycofuranose benzyl ethers was carried out only by the inverse ring closure. Ring opening of the 1,2 - and 1,3 - anhydro sugars usually afforded 1,2 - trans and 1,3 - trans linked glyeosides respectively. Conformational analysis of the 1,2 - and 1,3- anhydro sugars was performed by 1H NMR spectrometry and molecular mechanics calculations.

  3. Synthesis of heterometallic compounds with uncommon combinations of elements for oxide nanomaterials using organometallics. (United States)

    John, Łukasz; Sobota, Piotr


    Oxide nanomaterials with interesting electronic and magnetic properties have applications including superconductors, magnetic core materials, high-frequency devices, and gas sensors. They can also serve as efficient oxide lattices for luminescent ions. Highly phase-pure BaHfO3 nanopowders are extremely desirable as matrices for luminescent doping, and barium hafnate is an attractive host lattice for new X-ray phosphors, which are much more effective than the phosphors currently used in radiology and computed tomography. This wide range of applications creates a strong impetus for novel and inexpensive methods for their synthesis. Classically, mixed-cation oxide ceramics are synthesized according to conventional solid-state reactions involving oxides, carbonates, or nitrates at relatively high temperatures (∼1500 °C). These procedures are inefficient and often lead to inhomogeneous by-products and poor control over the stoichiometry and phase purity. Among the new preparation techniques are those involving metal alkoxides and aryloxides with strictly defined metal stoichiometries at the molecular level. In this Account, we describe several structurally interesting heterometallic alkoxoorganometallic compounds prepared via reactions of organometallic compounds (MMe3 where M = Al, In, Ga) with group 2 alkoxides having additional protonated hydroxyl group(s) in the alcohol molecule present in the metal coordination sphere. Using lower temperatures than in the conventional solid-state thermal routes involving carbonate/oxide mixtures, we can easily transform these new complexes, with rarely found combinations of metallic precursors (Ba/In, Sr/Al, and Ba/Ga), into highly pure binary oxide materials that can be used, in a similar manner to perovskites and spinels, as host matrices for various lanthanide ions. Furthermore, our studies on titanium, zirconium, and hafnium metallocenes showed them to be attractive and cheap precursors for an extensive range of novel

  4. Competitive homolytic and heterolytic decomposition pathways of gas-phase negative ions generated from aminobenzoate esters. (United States)

    Xia, Hanxue; Zhang, Yong; Pavlov, Julius; Jariwala, Freneil B; Attygalle, Athula B


    An alkyl-radical loss and an alkene loss are two competitive fragmentation pathways that deprotonated aminobenzoate esters undergo upon activation under mass spectrometric conditions. For the meta and para isomers, the alkyl-radical loss by a homolytic cleavage of the alkyl-oxygen bond of the ester moiety is the predominant fragmentation pathway, while the contribution from the alkene elimination by a heterolytic pathway is less significant. In contrast, owing to a pronounced charge-mediated ortho effect, the alkene loss becomes the predominant pathway for the ortho isomers of ethyl and higher esters. Results from isotope-labeled compounds confirmed that the alkene loss proceeds by a specific γ-hydrogen transfer mechanism that resembles the McLafferty rearrangement for radical cations. Even for the para compounds, if the alkoxide moiety bears structural motifs required for the elimination of a more stable alkene molecule, the heterolytic pathway becomes the predominant pathway. For example, in the spectrum of deprotonated 2-phenylethyl 4-aminobenzoate, m/z 136 peak is the base peak because the alkene eliminated is styrene. Owing to the fact that all deprotonated aminobenzoate esters, irrespective of the size of the alkoxy group, upon activation fragment to form an m/z 135 ion, aminobenzoate esters in mixtures can be quantified by precursor ion discovery mass spectrometric experiments.

  5. A silica sol-gel design strategy for nanostructured metallic materials. (United States)

    Warren, Scott C; Perkins, Matthew R; Adams, Ashley M; Kamperman, Marleen; Burns, Andrew A; Arora, Hitesh; Herz, Erik; Suteewong, Teeraporn; Sai, Hiroaki; Li, Zihui; Werner, Jörg; Song, Juho; Werner-Zwanziger, Ulrike; Zwanziger, Josef W; Grätzel, Michael; DiSalvo, Francis J; Wiesner, Ulrich


    Batteries, fuel cells and solar cells, among many other high-current-density devices, could benefit from the precise meso- to macroscopic structure control afforded by the silica sol-gel process. The porous materials made by silica sol-gel chemistry are typically insulators, however, which has restricted their application. Here we present a simple, yet highly versatile silica sol-gel process built around a multifunctional sol-gel precursor that is derived from the following: amino acids, hydroxy acids or peptides; a silicon alkoxide; and a metal acetate. This approach allows a wide range of biological functionalities and metals--including noble metals--to be combined into a library of sol-gel materials with a high degree of control over composition and structure. We demonstrate that the sol-gel process based on these precursors is compatible with block-copolymer self-assembly, colloidal crystal templating and the Stöber process. As a result of the exceptionally high metal content, these materials can be thermally processed to make porous nanocomposites with metallic percolation networks that have an electrical conductivity of over 1,000 S cm(-1). This improves the electrical conductivity of porous silica sol-gel nanocomposites by three orders of magnitude over existing approaches, opening applications to high-current-density devices.

  6. Density functional theory predictions of the composition of atomic layer deposition-grown ternary oxides. (United States)

    Murray, Ciaran; Elliott, Simon D


    The surface reactivity of various metal precursors with different alkoxide, amide, and alkyl ligands during the atomic layer deposition (ALD) of ternary oxides was determined using simplified theoretical models. Quantum chemical estimations of the Brønsted reactivity of a metal complex precursor at a hydroxylated surface are made using a gas-phase hydrolysis model. The geometry optimized structures and energies for a large suite of 17 metal precursors (including cations of Mg, Ca, Sr, Sc, Y, La, Ti, Zr, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, and Ga) with five different anionic ligands (conjugate bases of tert-butanol, tetramethyl heptanedione, dimethyl amine, isopropyl amidine, and methane) and the corresponding hydrolyzed complexes are calculated using density functional theory (DFT) methods. The theoretically computed energies are used to determine the energetics of the model reactions. These DFT models of hydrolysis are used to successfully explain the reactivity and resulting stoichiometry in terms of metal cation ratios seen experimentally for a variety of ALD-grown ternary oxide systems.

  7. Synthesis of amorphous zirconium oxide with luminescent characteristics; Sintesis de oxido de circonio amorfo con caracteristicas luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera S, M.; Chavez G, M.; Soto E, A.M.; Velasquez O, C.; Garcia S, M.A.; Olvera T, L.; Rivera M, T. [UAM-I, 09340 Mexico D.F. (Mexico)


    It was prepared zirconium oxide, ZrO{sub 2}, by means of hydrolysis-condensation reactions (sol-gel method), using zirconium propoxide, Zr(C{sub 3}H{sub 7}O){sub 4}, as precursor and nitric acid, HNO{sub 3}, as catalyst of the hydrolysis reaction. In this synthesis it was used a molar ratio water-alkoxide, r=n{sub H2O}/n{sub Zr}(C{sub 3}H{sub 7}0){sub 4}, high, similar to 200, so that the hydrolysis happens quickly and the nucleation and growth are completed in very little time. The solid was characterized with Ftir spectrophotometry, Differential thermal analysis (Dta), Thermal gravimetric analysis (T G), X-ray diffraction of powders, Scanning electron microscopy (Sem) and X-ray Dispersion energy (EDX). The ZrO{sub 2} obtained by this way is amorphous even to 300 C and it consists of big aggregates. The amorphous ZrO{sub 2}, presents thermoluminescent behavior, after it was irradiated with UV radiation and beta particles of {sup 90}Sr/{sup 90}Y and it was thermally stimulated. (Author)

  8. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. (United States)

    Banger, K K; Yamashita, Y; Mori, K; Peterson, R L; Leedham, T; Rickard, J; Sirringhaus, H


    At present there is no ‘ideal’ thin-film transistor technology for demanding display applications, such as organic light-emitting diode displays, that allows combining the low-temperature, solution-processability offered by organic semiconductors with the high level of performance achievable with microcrystalline silicon1. N-type amorphous mixed metal oxide semiconductors, such as ternary oxides Mx1My2Oz, where M1 and M2 are metals such as In, Ga, Sn, or Zn, have recently gained momentum because of their high carrier mobility and stability2, 3 and good optical transparency, but they are mostly deposited by sputtering. So far no route is available for forming high-performance mixed oxide materials from solution at low process temperatures <250 °C. Ionic mixed metal oxides should in principle be ideal candidates for solution-processable materials because the conduction band states derived from metal s-orbitals are relatively insensitive to the presence of structural disorder and high charge carrier mobilities are achievable in amorphous structures2. Here we report the formation of amorphous metal oxide semiconducting thin-films using a ‘sol–gel on chip’ hydrolysis approach from soluble metal alkoxide precursors, which affords unprecedented high field-effect mobilities of 10 cm2 V−1 s−1, reproducible and stable turn-on voltages Von≈0 V and high operational stability at maximum process temperatures as low as 230 °C.

  9. Minute-made and low carbon fingerprint microwave synthesis of high quality templated mesoporous silica

    KAUST Repository

    Chaignon, J.


    © The Royal Society of Chemistry 2015. Hexagonal mesostructured templated silicas were produced in less than 10 minutes using an ultra-fast microwave assisted hydrothermal synthesis. Typically, 10 g can be prepared at once in a commercial microwave device usually devoted to analytical digestion. Undesired alcohol side-products were avoided using inexpensive water colloidal silica instead of silicon alkoxides as the silicon source. In comparison with classical heating activation, the absence of pore expansion and pore wall thickening even for synthesis temperatures as high as 190 °C evidenced that heat transfer and diffusion of matter had no time to take place. Comparison between the chemically extracted and calcined samples shows that the structure was better stabilized for autoclaving above 150 °C. However, a fast temperature ramping and final temperatures above 180 °C were required to sear structures of the highest quality comparable to that of the best conventional methods. This is rationalized by assuming a sequential flake-by-flake assembly of the pore-wall at the micelle palisade. Notably, tosylate counterions yielded better structural characteristics than bromide counterions and allowed better opportunities for surfactant recycling.

  10. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerization initiators. (United States)

    Zhong, Zhiyuan; Dijkstra, Pieter J; Feijen, Jan


    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the polymerization reactions, has continuously been an important topic. Here, we will address the recent advances in the ring-opening polymerization of lactides, with an emphasis on the highly versatile in situ generated initiator systems and single-site stereoselective initiators. The in situ generated initiators including in situ formed yttrium, calcium and zinc alkoxides all have been shown to bring about a rapid and living polymerization of lactides under mild conditions, which facilitated the preparation of a variety of advanced lactide-based biomaterials. For example, well-defined di- and tri-block copolymers consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic polyester blocks, which form novel biodegradable polymersomes or biodegradable thermosensitive hydrogels, have been prepared. In the past few years, significant progress has also been made in the area of stereoselective polymerization of lactides. This new generation of initiators has enabled the production of polylactide materials with novel microstructures and/or properties, such as heterotactic (--RRSSRRSSRRSS--) polylactide, crystalline syndiotactic (--RSRSRSRSRSRS--) polylactide and isotactic stereoblock (--Rn Sn Rn Sn--) polylactide, exhibiting a high melting temperature. The recently developed polymerizations using in situ generated initiators and stereoselective polymerizations have no doubt opened a brand-new avenue for the design and exploration of polylactides and their copolymers.

  11. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. (United States)

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua


    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (aerogels promising candidates as photocatalysts.

  12. From Fragile to Resilient Insulation: Synthesis and Characterization of Aramid-Honeycomb Reinforced Silica Aerogel Composite Materials

    Directory of Open Access Journals (Sweden)

    Marina Schwan


    Full Text Available The production of a new composite material embedding aramid honeycomb materials into nano-porous silica aerogels is studied. Our aim is to improve the poor mechanical strength of silica aerogels by aramid honeycombs without losing the amazing properties of the aerogels like little density and low thermal conductivity. The composite materials were prepared using two formulations of silica aerogels in combination with aramid honeycomb materials of different cell sizes. The silica aerogels are prepared using silicon alkoxides methyltrimethoxysilane and tetraethylorthosilicate as precursors in a two-step acid–base sol–gel process. Shortly in advance of the gelation point, the aramid honeycombs were fluted by the sol, gelation occurred and, after the aging process, the gel bodies were supercritically dried. The properties of the received composite materials are satisfying. Even the thermal conductivities and the densities are a bit higher than for pure aerogels. Most importantly, the mechanical strength is improved by a factor of 2.3 compared to aramid honeycomb materials and by a factor of 10 compared to the two silica aerogels themselves. The composite materials have a good prospective to be used as an impressive insulation material.

  13. 氧化铝气凝胶的研究进展%Research Progress in the Stugy of Alumina Aerogels

    Institute of Scientific and Technical Information of China (English)

    胡子君; 周洁洁; 陈晓红; 孙陈诚


    Al_2O_3气凝胶以其独特性质受到人们的广泛关注.本文就Al_2O_3气凝胶的结构、性质和制备方法进行了综述,制备方法包括铝醇盐的一步法、两步法和无机铝盐的滴加环氧丙烷法,其中滴加环氧丙烷法是制备高性能Al_2O_3气凝胶非常有发展潜力的方法之一.同时还介绍了纤维增强气凝胶、多组分及掺杂改性气凝胶.%Alumina aerogel had been paid great attention for its unique properties. The structure and various preparation methods of alumina aerogels had been summarized in this paper. The preparation methods included alumina alkoxide one step,two steps method and addition of propylene oxide method. The addition of propylene oxide method is one of the most potential route for the synthesis of high performance alumina aerogels. Fiber-reinforced, multiple cornponent and doped aerogels were also introduced.

  14. Excess Pu disposition in zirconolite-rich Synroc containing nepheline

    Energy Technology Data Exchange (ETDEWEB)

    Vance, E.R.; Hart, K.P.; Day, R.A.; Begg, B.D.; Angel, P.J.; Loi, E.; Weir, J. [ANSTO, Menai, New South Wales (Australia); Oversby, V.M. [Lawrence Livermore Nation Lab., CA (United States)


    A titanate Synroc ceramic for the immobilization of Pu-bearing waste was designed to consist of 70 wt% zirconolite (CaZrTi{sub 2}O{sub 7}) + 15 wt% nepheline (NaAlSiO{sub 4}) + 15 wt% rutile (TiO{sub 2}). It contained 10 wt% of Pu plus 6 wt% of Gd as a neutron poison. The material was made by the standard sol-gel route, using a mixture of alkoxides and nitrates, followed by stir-drying and calcination. It was fabricated by hot-pressing at 1,150--1,250 C/20 MPa for 2 hours in a collapsible metal bellows. Though zirconolite was the majority phase, {approximately} 20 wt% of perovskite also formed. Some of the Na, intended for nepheline, partitioned into the titanate phases. 84-day differential total leach rates of Pu were in the order of 10{sup {minus}5} g/m{sup 2}/d at 90 and 200 C. Companion ceramics using molar substitution of Ce for Pu confirmed the idea that Ce is a good simulant of Pu from a solid state chemical view, but that there are limitations in terms of leach rate parallels.

  15. Preparation and tribological properties of inclusion complex of β-cyclodextrin/dialkyl pentasulfide as additive in PEG-600 aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jiju; Xu, Xuefeng, E-mail:; Li, Gan; Peng, Wei


    The inclusion complex of β-cyclodextrin (β-CD) and dialkyl pentasulfide (DPS), in which DPS was incorporated into β-CD cavities, was prepared by a co-precipitation method. The tribological properties of the complex used as lubricant additive in PEG 600 aqueous solution were investigated by a four-ball tester. The complex exhibited better tribological properties than β-CD under different loads, and also showed better anti-friction performance than DPS in the latter half of the test duration. The tribological action mechanism of the complex on a steel surface was studied according to the X-ray photoelectron spectroscopy (XPS) analyses. The β-CD molecules of the complexes were decomposed into various molecular fragments and the DPS molecules were released under the friction condition. It revealed that thiolate and ferrous sulfide (FeS) films formed by DPS played a major role, and iron alkoxide and carbon deposition films formed by the friction fragments of β-CD mainly exhibited anti-friction property on FeS-to-FeS interface. The interactions among different films led to the formation of a mixed boundary lubrication film.


    Directory of Open Access Journals (Sweden)

    Érica A. de Souza

    Full Text Available Over the last decades, the combination of different technologies to search for systems with new properties and features has brought various segments of biological and earth sciences together. Additive manufacturing, known as rapid prototyping, combined with the sol-gel methodology enables the production of novel systems with applications in many scientific fields. In this work, flexible polyamide membranes were obtained by additive manufacturing, functionalized by the sol-gel methodology, and incorporated with the coordination compound between Eu(III and 1,10-phenanthroline. The presence of vibrations at 1100 cm-1 in the FTIR spectrum of the material, which is a band typical of the Si-O-Si group in the alkoxide employed during the process, confirmed the polyamide membrane functionalization. The thermogravimetric curve showed that a residue remained after heating at 700 ºC, which was attributed to SiO2. The membrane was highly luminescent, which confirmed incorporation of the Eu3+ compound into the material and pointed to the possible application of this system as a topical medication for the treatment of skin diseases.

  17. Evaluating sol-gel ceramic thin films for metal implant applications: III. In vitro aging of sol-gel-derived zirconia films on Ti-6Al-4V. (United States)

    Kirk, P B; Filiaggi, M J; Sodhi, R N; Pilliar, R M


    Sol-gel-derived zirconia films were deposited onto polished Ti-6Al-4V substrates by dip-coating from an alkoxide precursor solution. No change in morphology of the zirconia film was observed after aging at 37 degrees C for 4-12 weeks in pH 4.0 buffer solution or Hanks' balanced salt solution (HBSS), although a precipitate predominantly composed of calcium phosphate was formed on those films aged in HBSS. X-ray diffraction identified the phase of the zirconia film as either cubic or tetragonal, and revealed no degradation to the monoclinic phase after aging. By a substrate straining test, the fracture strain of the coating was revealed to be 1.5%, above the yield strain of the titanium alloy substrate. At this strain level, through-thickness cracks formed in the coating where slip bands emerged from the substrate. Qualitatively, the adhesion of the film was sufficient to prevent gross delamination of the film at high strain levels, although small regions of delamination were caused by compressive buckling of the film. This behavior indicates generally good adhesion. No change in this behavior was observed after aging.

  18. [N′-(4-Decyloxy-2-oxidobenzylidene-3-hydroxy-2-naphthohydrazidato-κ3N,O,O′]dimethyltin(IV: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    Siti Nadiah Binti Mohd Rosely


    Full Text Available The title diorganotin compound, [Sn(CH32(C28H32N2O4], features a distorted SnC2NO2 coordination geometry almost intermediate between ideal trigonal–bipyramidal and square-pyramidal. The dianionic Schiff base ligand coordinates in a tridentate fashion via two alkoxide O and hydrazinyl N atoms; an intramolecular hydroxy-O—H...N(hydrazinyl hydrogen bond is noted. The alkoxy chain has an all-trans conformation, and to the first approximation, the molecule has local mirror symmetry relating the two Sn-bound methyl groups. Supramolecular layers sustained by imine-C—H...O(hydroxy, π–π [between decyloxy-substituted benzene rings with an inter-centroid separation of 3.7724 (13 Å], C—H...π(arene and C—H...π(chelate ring interactions are formed in the crystal; layers stack along the c axis with no directional interactions between them. The presence of C—H...π(chelate ring interactions in the crystal is clearly evident from an analysis of the calculated Hirshfeld surface.

  19. RBS analysis of electrochromic layers

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.C.; Bell, J.M. [University of Technology, Sydney, NSW (Australia); Kenny, M.J.; Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics


    Tungsten oxide thin films produced by dip-coating from tungsten alkoxide solutions are of interest for their application in large area switchable windows. The application consists of a layer of electrochromic tungsten oxide (W0{sub 3}) on indium tin oxide (ITO) coated glass in contact with a complementary structure. Electrochromic devices are switchable between states of high and low transparency by the application of a small voltage. The mechanism relies on the dual injection of ions and electrons into the W0{sub 3} layer from adjacent layers in the device. Electrochromic tungsten oxide can be deposited using standard techniques (eg. sputtering and evaporation) but also using sol-gel deposition. Sol-gel processing has an advantage over conventional preparation techniques because of the simplicity of the equipment. The scaling up to large area coatings is also feasible. RBS and forward recoil has been used to obtain profiles for individual elements in the structure of electrochromic films. 3 refs., 3 figs.

  20. Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKa's

    DEFF Research Database (Denmark)

    Ugur, Ilke; Marion, Antoine; Parant, Stéphane


    approaches (gas phase or continuum solvent-based approaches), with five distinct atomic charge models (Mulliken, Löwdin, NPA, Merz-Kollman, and CHelpG), and with nine different DFT functionals combined with 16 different basis sets. Moreover, the capability of semiempirical methods (AM1, RM1, PM3, and PM6......) to also predict pKa's of thiols, phenols, and alcohols is analyzed. From our benchmarks, the best combination to reproduce experimental pKa's is to compute NPA atomic charge using the CPCM model at the B3LYP/3-21G and M062X/6-311G levels for alcohols (R(2) = 0.995) and thiols (R(2) = 0.986), respectively...... of the experimental pKa's of phenols, alcohols, and thiols. Our protocol is based on the linear relationship between computed atomic charges of the anionic form of the molecules (being either phenolates, alkoxides, or thiolates) and their respective experimental pKa values. It is tested with different environment...

  1. Incorporation of Nanohybrid Films of Silica into Recycled Polystyrene Matrix

    Directory of Open Access Journals (Sweden)

    Genoveva Hernández-Padrón


    Full Text Available An alternative for the reutilization of polystyrene waste containers consisting in creating a hybrid material made of SiO2 nanoparticles embedded in a matrix of recycled polystyrene (PSR has been developed. Recycled polystyrene functionalized (PSRF was used to influence the morphological and antifog properties by the sol-gel synthesis of nanohybrid silica. To this end, silica nanoparticles were produced from alkoxide precursors in the presence of recycled polystyrene. The functionalization of this polymeric matrix was with the purpose of uniting in situ carboxyl and silanol groups during the sol-gel process. In this way, opaque or transparent solid substrates can be obtained, with each of these endowed with optical conditions that depend on the amount of reactants employed to prepare each nanohybrid specimen. The nanohybrids were labelled as SiO2/PSR (HPSR and SiO2/PSRF (HPSRF and their properties were then compared to those of commercial polystyrene (PS. All the prepared samples were used for coating glass substrates. The hydrophobicity of the resultant coatings was determined through contact angle measurement. The nanohybrid materials were characterized by FT-IR and 1H-NMR techniques. Additionally, TGA and SEM were employed to determine their thermal and textural properties.

  2. Preparation of Water-Repellent Glass by Sol-Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane. (United States)

    Jeong, Hye-Jeong; Kim, Dong-Kwon; Lee, Soo-Bok; Kwon, Soo-Han; Kadono, Kohei


    Coating films on glass substrate were prepared by sol-gel process using alkoxide solutions containing perfluoroalkylsilane (PFAS) and tetraethoxysilane (TEOS). The physical properties of the coating films were characterized by SEM, FT-IR, and XRD. And their surface properties were investigated by measuring contact angles and atomic compositions. Transparent coating films with smooth surface and uniform thickness could be obtained. The contact angles of the coating films for water and methylene iodide are extremely high, at 118 degrees and 97 degrees, respectively, and their surface free energies are about 9.7 dyn/cm. It was found that the water-repellent glass prepared is very hydrophobic and exhibits excellent water-repellency. Hydrophobic perfluoroalkyl groups are preferentially enriched to the outermost layer at the coating film-air interface, and two layers probably exist in the coating film. The upper layer oriented toward the air is composed of mainly perfluoroalkyl groups originating from PFAS, and the lower layer is composed of mainly -OSiO- groups originating from TEOS. The heat treatment after drying step cannot influence the surface enrichment of the perfluoroalkyl group. The hydrolysis reaction should be more completely done before the dip coating step to obtain lower surface free energy. The burning temperature should be less than 300 degrees C because the perfluoroalkyl group begins to decompose from this temperature. Copyright 2001 Academic Press.

  3. Synthetic scope, computational chemistry and mechanism of a base induced 5-endo cyclization of benzyl alkynyl sulfides (United States)

    Motto, John M.; Castillo, Álvaro; Montemayer, Laura K.; Sheepwash, Erin E.


    We present an experimental and computational study of the reaction of aryl substituted benzyl 1-alkynyl sulfides with potassium alkoxide in acetonitrile, which produces 2-aryl 2,3-dihydrothiophenes in poor to good yields. The cyclization is most efficient with electron withdrawing groups on the aromatic ring. Evidence indicates there is rapid exchange of protons and tautomerism of the alkynyl unit prior to cyclization. Theoretical calculations were also conducted to help rationalize the base induced 5-endo cyclization of benzyl 1-propynyl sulfide (1a). The potential energy surface was calculated for the formation of 2,3-dihydrothiophene in a reaction of benzyl 1-propynyl sulfide (1a) with potassium methoxide. Geometries were optimized with CAM-B3LYP/6-311+G(d,p) in acetonitrile with the CPCM solvent model. It is significant that the benzyl propa-1,2-dien-1-yl sulfane (6) possessed a lower benzylic proton affinity than the benzyl prop-2-yn-1-yl sulfane (8) thus favoring the base induced reaction of the former. From benzyl(propa-1,2-dien-1-yl sulfane (6), 2,3-dihydrothiophene can be formed via a conjugate base that undergoes 5-endo-trig cyclization followed by a protonation step. PMID:21442022

  4. Influence of the Sol pH on Electrochemical and Mechanical Behaviors of Siloxane-PMMA Hybrid Films Combined with UV Ink (United States)

    Kunst, Sandra Raquel; Longhi, Marielen; Baldin, Estela Knopp Kerstner; Boniatti, Rosiana; Beltrami, Lilian Vanessa Rossa; de Fraga Malfatti, Célia


    Pre-treatments with a siloxane-PMMA base have shown promising results when combined with the new ink technology with curing by ultraviolet (UV) radiation. Tinplate sheets were coated with a hybrid film obtained from a sol with alkoxides precursors consisting of 3-(trimethoxysilylpropyl) methacrylate and tetraethoxysilane and adding an organic phase composed of poly(methyl methacrylate). The hydrolysis reactions were catalyzed with a nitric acid solution (pH = 1 and pH = 3). The hybrid films were obtained by a dip-coating process, coated with red-colored paint UV curing and characterized for their electrochemical and mechanical behavior. The results showed that a more acidic pH (pH = 1) promotes the formation of a hybrid film with better protective properties, presented a better electrochemical performance and higher values of layer thickness. However, the hybrid film obtained with pH = 3 combined with the UV coating presented the best performance. This result is probably due to a better anchorage and adhesion verified in this sample.

  5. Simple thiol-ene click chemistry modification of SBA-15 silica pores with carboxylic acids. (United States)

    Bordoni, Andrea V; Lombardo, M Verónica; Regazzoni, Alberto E; Soler-Illia, Galo J A A; Wolosiuk, Alejandro


    A straightforward approach for anchoring tailored carboxylic groups in mesoporous SiO2 colloidal materials is presented. The thiol-ene photochemical reaction between vinyltrimethoxysilane precursors and various thiocarboxylic acids which has, click chemistry features (i.e. high conversion yields, insensitivity to oxygen, mild reaction conditions), results in carboxylated silane precursors that can be readily used as surface modifiers. The carboxylic groups of acetic, undecanoic and succinic acid were immobilized on the silica mesopore walls of SBA-15 powders employing the synthesized silane precursors. Post-grafting has been confirmed through infrared spectrometry (FTIR), energy dispersive X-ray spectroscopy (EDS), elemental analysis (EA) and zeta potential measurements. Detailed field-emission gun scanning electron microscopy (FESEM) images and small angle X-ray scattering (SAXS) data revealed parallel mesopores and ordered mesostructures. It is shown that the immobilized COOH groups are chemically accessible for acid-base reactions as well as copper adsorption. Immobilization of easily synthesized tailored carboxylic modified alkoxide precursors within mesoporous systems provides a unique chemical nanoenvironment within these ordered frameworks.

  6. Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity. (United States)

    Zhou, Han; Fan, Tongxiang; Ding, Jian; Zhang, Di; Guo, Qixin


    A general method has been developed for the synthesis of various hollow TiO2 micro/nanostructures with bacteria as templates to further study the structural effect on photocatalytic hydrogen evolution properties. TiO2 hollow spheres and hollow tubes, served as prototypes, are obtained via a surface sol-gel process using cocci and bacillus as biotemplates, respectively. The formation mechanisms are based on absorption of metal-alkoxide molecules from solution onto functional cell wall surfaces and subsequent hydrolysis to give nanometer-thick oxide layers. The UV-Vis absorption spectrum shows that the porous TiO2 hollow spheres have enhanced light harvesting property compared with the corresponding solid counterpart. This could be attributed to their unique hollow porous micro/nanostructures with microsized hollow cavities and nanovoids which could bring about multiple scattering and rayleigh scattering of light, respectively. The hollow TiO2 structures exhibit superior photocatalytic hydrogen evolution activities under UV and visible light irradiation in the presence of sacrificial reagents. The hydrogen evolution rate of hollow structures is about 3.6 times higher than the solid counterpart and 1.5 times higher than P25-TiO2. This work demonstrates the structural effect on enhancing the photocatalytic hydrogen evolution performance which would pave a new pathway to tailor and improve catalytic properties over a broad range.

  7. Development Of HUD Combiner For Automotive Windshield Application (United States)

    Hattori, Akimasa; Makita, Kensuke; Okabayashi, Shigeru


    The head-up display system (HUM) has been developed for the windshield of Nissan Motor's passenger car, '88 model of Silvia (240SX) and '89 model of Maxima. HUD consists of a projector with high brightness VFT and a combiner which is a light-selective reflective film applied on the surface of ' e windshield. The system provides nice display legibility of speed in a three-digit reap at the position more than one meter far from driver's eye even under the bright sunlight. In this report, we present the optical properties and manufacturing process of the advanced combiner. The combiner has to have high transmittance as well as high reflectance so that a driver can see both foreground object and display reading at the same time. The optical design for the combiner is based on the concepts: (a) Visible light transmittance has to be 70% or more in accordance with a legal requirement, and (b) taking both peak wavelengths of Vim' and sensitivity characteristics of human eyes into consideration, 530nm of wave length is chosen as a reflective light. The combiner consists of a dielectric thin layer of Ti02-Si02 system. Its basic structure is decided by simulation with matrix method of the resultant waves. The coating film is applied on the restricted area of the forth surface of laminated windshield by newly developed solgel printing process using a metal alkoxide solution with a relatively long storage life.

  8. Microemulsion mediated synthesis of BaTiO3 – Ag nanocomposites

    Directory of Open Access Journals (Sweden)

    Songhak Yoon


    Full Text Available BaTiO3 – Ag composite nanopowders were synthesized via microemulsion mediated synthesis through the hydrolytic decomposition of mixed metal alkoxide solutions as precursor for the BaTiO3 and the reduction of silver nitrate in the presence of polyvinylpyrrolidone (PVP as source for the Ag nanoparticles. The X-ray diffraction (XRD patterns indicate that BaTiO3 and Ag phases were successfully synthesized in the composite powders. Scanning electron microscopy (SEM and transmission electron microscopy (TEM show that the synthesized BaTiO3 nanoparticles were aggregates of nanosized primary particles as small as 10 nm in diameter and the average particle size of nanocrystalline Ag was about 100 nm. Calcination and sintering studies reveal that there exists a difference in the sintering behaviour of BaTiO3 and Ag in the composite nanopowders. Thermogravimetric analysis (TGA shows weight losses due to the burnout of organic residues arising from the synthesis, the release of water from the surface and separation of hydroxyl ions from the lattice of BaTiO3 nanoparticles. A dilatometric study of BaTiO3-Ag composite confi rmed a strong difference in the shrinkage behaviour compared to that of the pure BaTiO3 obtained by microemulsion mediated synthesis.

  9. Designing Photocatalysts for Hydrogen Evolution: Are Complex Preparation Strategies Necessary to Produce Active Catalysts? (United States)

    Grewe, Tobias; Tüysüz, Harun


    A facile synthetic route for the preparation of highly active photocatalysts was developed. The protocol involves the preparation of a photocatalyst through the direct injection of metal alkoxide precursors into solutions in a photoreactor. As a proof of concept, a tantalum oxide based photocatalyst was chosen as a model system. Tantalum ethoxide [Ta(OEt)5 ] was injected rapidly into a photoreactor filled with a water/methanol mixture, and a TaOx (OH)y composite formed and was able to produce hydrogen under light illumination. Compared to commercial and mesostructured Ta2 O5 and NaTaO3 materials, TaOx (OH)y produced by direct injection shows superior hydrogen production activity. Notably, the samples prepared by direct injection are amorphous; however, their photocatalytic performance is much higher than those of their crystalline equivalents. If Ta(OEt)5 was dispersed in methanol before injection, an amorphous framework with higher surface area and larger pore volume was formed, and the hydrogen production rate increased further. The addition of a sodium precursor during the injection further boosted the photocatalytic activity. Furthermore, this concept has also been applied to a titanium-based photocatalyst, and a much better hydrogen production rate has been obtained in comparison with that of commercial TiO2 (P25-Degussa); therefore, the direct-injection synthesis is a flexible method that opens the door to the facile preparation of highly active nanostructured photocatalysts for hydrogen production.

  10. Structural and magnetic properties of pure and Ca-doped LaCoO3 nanopowders obtained by a sol-gel route. (United States)

    Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Maragno, Cinzia; Tondello, Eugenio; Caneschi, Andrea; Sangregorio, Claudio; Gialanella, Stefano


    Pure and Ca-doped LaCoO3 nanopowders were prepared by a non-alkoxidic sol-gel route using cobalt(II) acetate, lanthanum(III) nitrate and calcium(II) acetate as oxide precursors. The structural evolution and magnetic properties of the samples were studied as a function of thermal treatments in air up to 1273 K. In particular, the microstructure and composition of the systems were analyzed by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). Both pure and calcium-doped samples annealing at 973 K resulted in the formation of cubic LaCoO3 (average crystallite size <30 nm). This phase was fully retained in the calcium-doped materials even after annealing at higher temperatures, whereas a transition to the rhomboedral polymorph was detected in the pure samples at 1073 K. The magnetic behavior of the nanopowders was investigated as a function of temperature and applied field using both dynamic and static susceptibility measurements. Pure lanthanum cobaltite samples underwent a transition to an ordered state at 88 K, and their magnetic properties changed as a function of thermal treatments. As concerns calcium-doped samples, they ordered ferromagnetically at 171 and 185 K depending on the annealing temperature and displayed open hysteresis loops with coercive fields as large as 1.75 T at low temperatures.

  11. Atomic resolution structure of a lysine-specific endoproteinase from Lysobacter enzymogenes suggests a hydroxyl group bound to the oxyanion hole. (United States)

    Asztalos, Peter; Müller, Astrid; Hölke, Werner; Sobek, Harald; Rudolph, Markus G


    Lysobacter enzymogenes lysyl endoproteinase (LysC) is a trypsin-type serine protease with a high pH optimum that hydrolyses all Lys-Xaa peptide bonds. The high specificity of LysC renders it useful for biotechnological purposes. The K30R variant of a related lysyl endoproteinase from Achromobacter lyticus has favourable enzymatic properties that might be transferrable to LysC. To visualize structural differences in the substrate-binding sites, the crystal structures of wild-type and the K30R variant of LysC were determined. The mutation is located at a distance of 12 Å from the catalytic triad and subtly changes the surface properties of the substrate-binding site. The high pH optimum of LysC can be attributed to electrostatic effects of an aromatic Tyr/His stack on the catalytic aspartate and is a general feature of this enzyme subfamily. LysC crystals in complex with the covalent inhibitor N(α)-p-tosyl-lysyl chloromethylketone yielded data to 1.1 and 0.9 Å resolution, resulting in unprecedented precision of the active and substrate-binding sites for this enzyme subfamily. Error estimates on bond lengths and difference electron density indicate that instead of the expected oxyanion a hydroxyl group binds to the partially solvent-exposed oxyanion hole. Protonation of the alkoxide catalytic intermediate might be a recurring feature during serine protease catalysis.

  12. Living hybrid materials capable of energy conversion and CO2 assimilation. (United States)

    Meunier, Christophe F; Rooke, Joanna C; Léonard, Alexandre; Xie, Hao; Su, Bao-Lian


    This paper reviews our work on the fabrication of photobiochemical hybrid materials via immobilisation of photosynthetically active entities within silica materials, summarising the viability and productivity of these active entities post encapsulation and evaluating their efficiency as the principal component of a photobioreactor. Immobilisation of thylakoids extracted from spinach leaves as well as whole cells such as A. thaliana, Synechococcus and C. caldarium was carried out in situ using sol-gel methods. In particular, a comprehensive overview is given of the efforts to find the most biocompatible inorganic precursors that can extend the lifetime of the organisms upon encapsulation. The effect of matrix-cell interactions on cell lifetime and the photosynthetic efficiency of the resultant materials are discussed. Precursors based on alkoxides, commonly used in "Chimie Douce" to form porous silica gel, release by-products which are often cytotoxic. However by controlling the formation of gels from aqueous silica precursors and silica nanoparticles acting as "cements" one can significantly enhance the life span of the entrapped organelles and cells. Adapted characteristic techniques have shown survival times of up to 5 months with the photosynthetic production of oxygen recorded as much as 17 weeks post immobilisation. These results constitute a significant advance towards the final goal, long-lasting semi-artificial photobioreactors that can advantageously exploit solar radiation to convert polluting carbon dioxide into useful biofuels, sugars or medical metabolites.

  13. Fabrication of TiO2 Nanotanks Embedded in a Nanoporous Alumina Template

    Directory of Open Access Journals (Sweden)

    C. Massard


    Full Text Available The feasibility of surface nanopatterning with TiO2 nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2 gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM. The TiO2 nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM with selected area electron diffraction (SAED were used to investigate the TiO2 structure. The optical properties were studied using UV-Vis spectroscopy.

  14. Synthesis, Structure, and Reactivity of Anionic sp(2) -sp(3) Diboron Compounds: Readily Accessible Boryl Nucleophiles. (United States)

    Pietsch, Sabrina; Neeve, Emily C; Apperley, David C; Bertermann, Rüdiger; Mo, Fanyang; Qiu, Di; Cheung, Man Sing; Dang, Li; Wang, Jianbo; Radius, Udo; Lin, Zhenyang; Kleeberg, Christian; Marder, Todd B


    Lewis base adducts of tetra-alkoxy diboron compounds, in particular bis(pinacolato)diboron (B2 pin2 ), have been proposed as the active source of nucleophilic boryl species in metal-free borylation reactions. We report the isolation and detailed structural characterization (by solid-state and solution NMR spectroscopy and X-ray crystallography) of a series of anionic adducts of B2 pin2 with hard Lewis bases, such as alkoxides and fluoride. The study was extended to alternative Lewis bases, such as acetate, and other diboron reagents. The B(sp(2) )-B(sp(3) ) adducts exhibit two distinct boron environments in the solid-state and solution NMR spectra, except for [(4-tBuC6 H4 O)B2 pin2 ](-) , which shows rapid site exchange in solution. DFT calculations were performed to analyze the stability of the adducts with respect to dissociation. Stoichiometric reaction of the isolated adducts with two representative series of organic electrophiles-namely, aryl halides and diazonium salts-demonstrate the relative reactivities of the anionic diboron compounds as nucleophilic boryl anion sources.

  15. Electrochemical characterization of YSZ thick films deposited by dip-coating process

    Energy Technology Data Exchange (ETDEWEB)

    Mauvy, F.; Lalanne, C.; Bassat, J.M.; Grenier, J.C. [Institut de Chimie de la Matiere Condensee de Bordeaux ICMCB - CNRS, Universite Bordeaux 1, 87, av. du Dr. A. Schweitzer, 33 608 Pessac-Cedex (France); Lenormand, P.; Ansart, F. [Centre Interuniversitaire de Recherche et d' Ingenierie et d' Ingenierie des Materiaux, CIRIMAT, Universite Paul Sabatier, Bat. 2R1, 118 route de Narbonne, 31062 Toulouse Cedex (France)


    Yttria stabilized zirconia (YSZ, 8% Y{sub 2}O{sub 3}) thick films were coated on dense alumina substrates by a dip-coating process. The suspension was obtained by addition of a polymeric matrix in a stable suspension of commercial YSZ (Tosoh) powders dispersed in an azeotropic mixture MEK-EtOH. The suspension composition was improved by the addition of YSZ Tosoh particles encapsulated by zirconium alkoxide sol containing yttrium nitrate which are the precursors of the 8-YSZ oxide. This optimal formulation allowed preparing, via a dip-coating process, thick films which were, after thermal treatment, homogeneous, dense and crack-free. A specific method was performed to measure the electrical conductivity, i.e. to determine the ionic conductivity of the film: it uses the four-point probe technique combined with ac impedance spectroscopy. The good agreement between the classical two-electrode measurements performed on YSZ pellets and the four-electrode ones performed on YSZ films allows concluding that this method is relevant for characterizing the transport properties of thick films. (author)

  16. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f


    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  17. Proton conduction and long-range ferrimagnetic ordering in two isostructural Copper(II) mesoxalate metal-organic frameworks. (United States)

    Gil-Hernández, Beatriz; Savvin, Stanislav; Makhloufi, Gamall; Núñez, Pedro; Janiak, Christoph; Sanchiz, Joaquín


    Two compounds of formula {(H3O)[Cu7(Hmesox)5(H2O)7]·9H2O}n (1a) and {(NH4)0.6(H3O)0.4[Cu7(Hmesox)5(H2O)7]·11H2O}n (1b) were prepared and structurally characterized by single-crystal X-ray diffraction (H4mesox = mesoxalic acid, 2-dihydroxymalonic acid). The compounds are crystalline functional metal-organic frameworks exhibiting proton conduction and magnetic ordering. Variable-temperature magnetic susceptibility measurements reveal that the copper(II) ions are strongly ferro- and antiferromagnetically coupled by the alkoxide and carboxylate bridges of the mesoxalate linker to yield long-range magnetic ordering with a Tc of 17.6 K, which is reached by a rare mechanism known as topologic ferrimagnetism. Electric conductivity, measured by impedance methods, shows values as high as 6.5 × 10(-5) S cm(-1) and occurs by proton exchange among the hydronium/ammonium and water molecules of crystallization, which fill the voids left by the three-dimensional copper(II) mesoxalate anionic network.

  18. Preparation of silica by sol-gel method using formamide

    Directory of Open Access Journals (Sweden)

    R.F.S. Lenza


    Full Text Available In this work we obtained microporous and mesoporous silica gels by sol-gel processing. Tetraethylortosilicate (TEOS was used as precursor. Nitric acid and hydrofluoric acid were used as catalysts. In order to study the affect of formamide as drying additive, we used a molar ratio alkoxide/formamide of 1/1. The performance of formamide in obtaining crack-free gels was evaluated through monolithicity measurements. The structural evolution occurring in the interconnected network of the gels during thermal treatment was monitored by Fourier transform infrared spectroscopy (FTIR, shrinkage and density measurements and nitrogen gas sorption. We noted that in the presence of formamide, the Si-O-Si bonds are stronger and belong to a more cross-linked structure. The samples obtained in the presence of formamide have larger pore volume and its pore structure is in the range of mesoporosity. The samples obtained without additive are microporous. Formamide allowed the preparation of crack-free silica gels stabilized at high temperatures.

  19. Radiosynthesis of [F-18]fluoxetine as a potential radiotracer for serotonin reuptake sites

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.K.; Mukherjee, Jogeshwar (Chicago Univ., IL (United States). Dept. of Radiology)


    Synthesis of 4-nitro-[alpha]-bromo-[alpha],[alpha]-difluorotoluene was accomplished in two steps starting from 4-nitrobenzaldehyde, with a 30% overall yield. Radiolabeling of 4-nitro-[alpha]-bromo-[alpha], [alpha]-difluorotoluene with no-carrier-added [[sup 18]F]fluoride provided 4-nitro-[alpha],[alpha]-difluoro-[alpha]-[[sup 18]F] fluorotoluene in 2-4% yields with a specific activity of 2590 GBq/mmol (70 Ci/mmol). The effect of the reaction temperature on the radiochemical yield and specific activity of the radiolabeling reaction was studied. Radiochemical yields increased, whereas specific activity decreased, with increasing temperature. Radiosynthesis of [[sup 18]F] fluoxetine involved coupling of 4-nitro-[alpha],[alpha]-difluoro-[alpha]-[[sup 18]F]fluorotoluene with the sodium alkoxide of (S)-3-(methylamino)-1-phenyl-1-propanol. The overall yield of HPLC purified [[sup 18]F]fluoxetine was 1-2% (decay-corrected; total radiosynthesis time, 150-180 min). The specific activity of the product was 1480 GBq/mmol (40 Ci/mmol). (Author).

  20. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal. (United States)

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A


    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  1. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles. (United States)

    Jadav, Ghanshyam L; Aswal, Vinod K; Singh, Puyam S


    Silica nanoparticles produced from organically functionalized silicon alkoxide precursors were incorporated into polyamide film to produce a silica-polyamide nanocomposite membrane with enhanced properties. The dispersion of the silica nanoparticles in the nanocomposite membrane was characterized by performing small-angle neutron scattering (SANS) measurements on dilute reactant systems and dilute solution suspensions of the final product. Clear scattering of monodisperse spherical particles of 10-18 A R(g) were observed from dilute solutions of the initial reactant system. These silica nanoparticles initially reacted with diamine monomers of polyamide and subsequently were transformed into polyamide-coated silica nanoparticles; finally nanoparticle aggregates of 27-45 A R(g) were formed. The nanoparticle dispersion of the membrane as the nanosized aggregates is in corroboration with ring- or chain-like assemblies of the nanoparticles dispersed in the bulk polyamide phase as observed by transmission electron microscopy. It is demonstrated that dispersions of silica nanoparticles as the nanosized aggregates in the polyamide phase could be achieved in the nanocomposite membrane with a silica content up to about 2 wt.%. Nanocomposite membranes with higher silica loading approximately 10 wt.% lead to the formation of large aggregates of sizes over 100 A R(g) in addition to the nanosized aggregates.

  2. Sol-gel derived ceramic electrolyte films on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, T.W.


    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  3. Synthesis of /sup 11/C-methylated inulin as a radiopharmaceutical for imaging brain edema and pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Toshihiko; Iio, Masaaki; Inagaki, Keizo


    /sup 11/C-methylated inulin, supposedly useful for imaging of brain edema and pulmonary edema, was prepared using cyclotron produced /sup 11/CO/sub 2/. The synthesis consists of the production of /sup 11/C-methyl iodide and its coupling with inulin alkoxide sodium in dimethylsulfoxide as solvent. /sup 11/C labeled inulin was purified by alcohol precipitation. The radiochemical yield of pure /sup 11/C-inulin was 34% of /sup 11/CO/sub 2/ 30 min after the end of bombardment. The blood clearance and body distribution of /sup 11/C was observed in rabbits after i.v. injection of /sup 11/C-inulin. The blood clearance curve was composed of a sum of three exponential functions. The gamma camera image showed that the /sup 11/C activity in blood moved quickly to kidneys and urine and a small dose of radioactivity remained persistently in edematous tissues, i.e. the edematous lung tissues produced by oleic acid treatment.

  4. Release of ceria nanoparticles grafted on hybrid organic-inorganic films for biomedical application. (United States)

    Pinna, Alessandra; Figus, Cristiana; Lasio, Barbara; Piccinini, Massimo; Malfatti, Luca; Innocenzi, Plinio


    The controlled release of nanoparticles from a hybrid organic-inorganic surface allows for developing several applications based on a slow delivery of oxygen scavengers into specific environments. We have successfully grafted ceria nanoparticles on a hybrid film surface and tested their release in a buffer solution; the tests have shown that the particles are continuously delivered within a time scale of hours. The hybrid film has been synthesized using 3-glycidoxypropyltrimethoxysilane as precursor alkoxide; the synthesis has been performed in highly basic conditions to control the polycondensation reactions of both organic and inorganic networks via controlled aging of the solution. Only films prepared from aged solutions are able to graft ceria nanoparticles on their surface. The ceria nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy and UV-vis spectroscopy, the hybrid films have been analyzed by Fourier transform infrared spectroscopy, atomic force microscopy and Raman spectroscopy. Raman imaging has been used for the release test. The hybrid film-ceria nanoparticles system fulfils the requirements of optical transparency and stability in buffer solutions which are necessary for biomedical applications.

  5. Survey report for fiscal 1998. Joint research project with researchers related to petroleum substituting energies in the EU countries; 1998 nendo EU shokoku no sekiyu daitai energy kanren kenkyusha tono kyodo kenkyu jigyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    It was intended to invite researchers related to petroleum substituting energies from the EU countries to perform joint researches at research organizations under the auspices of the Agency of Industrial Science and Technology having deep relations with research themes of the invited researchers, to deepen the mutual understanding, and to form efficient cooperative relationship. The intention is also to contribute to research and development of petroleum substituting energies to be used in Japan in the future. The research themes, researchers, their research organizations, and the receiving research organizations are as follows: (1) evaluation of reservoir impedance in high-temperature rock experimental fields by Mr. Ralph Weidler (Germany) at Ruhr University received by the Resource and Environmental Technology Research Institute; (2) changing the particle boundary structure of ceramics by using the alkoxide process by Dr. Ramon Torrecillas (Spain) at Institute Nacional del Carbon received by the Nagoya Industrial Technology Research Institute; (3) research on corrosion in metallic materials for molten carbonate type fuel cells by Dr. Giuseppe Calogero (Italy) at Institute for Transformation and Storage of Energy received by the Osaka Industrial Technology Research Institute; and (4) estimation of behavior of deep geothermal reservoirs with high enthalpy by Dr. Enrico Maranini at Universita' Di Ferrara received by the Geology Survey Center. (NEDO)

  6. 表面活性剂对纳米TiO2制备及其光催化活性的影响(Ⅰ)%Effect of Surfactant on Preparation and Photoreactivity of Nanocrystalline TiO2 (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    蒋卫中; 范山湖; 湛社霞; 李玉光; 石宗炳


    Titanium dioxide photocatalysts were prepared by hydrolysis of tatinium alkoxide. Their physicochemical characters were studied by using TG-DTA, XRD, BET and SEM,and their photocatalytic reactivity was also detemined with the degradation of phenol as a probe reaction. The results indicated that the presence of surfactant PVA at the synthesis solution of TiO2 reduced significantly its agglomeration, and resulted in homogeneous nanometer TiO2 particles.In the case of addition of 0.5%~1% of PVA,the resultant TiO2 particles were about 30 nm insize and exhibitted the best photoreactivity.%用醇盐水解法制备了TiO2光催化剂,以TG-DTA、XRD、BET和SEM等方法研究了TiO2光催化剂物理化学特性,考察了添加聚乙烯醇对催化剂粒度大小及其催化活性的影响.结果表明,添加聚乙烯醇能显著降低团聚度,加入φ=0.5%~1.0%聚乙烯醇制备的样品平均颗粒尺寸约50 nm,具有较高的光催化活性.

  7. Incorporation of anti-inflammatory agent into mesoporous silica (United States)

    Rodrigues Braz, Wilson; Lamec Rocha, Natállia; de Faria, Emerson H.; Silva, Márcio L. A. e.; Ciuffi, Katia J.; Tavares, Denise C.; Furtado, Ricardo Andrade; Rocha, Lucas A.; Nassar, Eduardo J.


    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  8. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties (United States)

    Jirák, Zdeněk; Kuličková, Jarmila; Herynek, Vít; Maryško, Miroslav; Koktan, Jakub; Kaman, Ondřej


    Novel procedure for coating of oxide nanoparticles with titania, employing hydrolysis and polycondensation of titanium alkoxides under high-dilution conditions and cationic surfactants, is developed and applied to magnetic cores of perovskite manganite. Bare particles of the ferromagnetic La0.65Sr0.35MnO3 phase, possessing high magnetization, M10 kOe(4.5 K) = 63.5 emu g-1, and Curie temperature, TC = 355 K, are synthesized by sol-gel procedure and subsequently coated with titania. Further, a comparative silica-coated product is prepared. In order to analyse the morphology, colloidal stability, and surface properties of these two types of coated particles, a detailed study by means of transmission electron microscopy, dynamic light scattering, zeta-potential measurements, and IR spectroscopy is carried out. The experiments on the titania-coated sample reveal a continuous though porous character of the TiO2 shell, the nature of which is amorphous but can be transformed to anatase at higher temperatures. Finally, the relaxometric study at the magnetic field of 0.5 T, performed to quantity the transverse relaxivity and its temperature dependence, reveals important differences between the titania-coated and silica-coated nanoparticles.

  9. Manganite perovskite ceramics, their precursors and methods for forming (United States)

    Payne, David Alan; Clothier, Brent Allen


    Disclosed are a variety of ceramics having the formula Ln.sub.1-xM.sub.xMnO.sub.3, where 0.Itoreq.x.Itoreq.1 and where Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or Y; M is Ca, Sr, Ba, Cd, or Pb; manganite precursors for preparing the ceramics; a method for preparing the precursors; and a method for transforming the precursors into uniform, defect-free ceramics having magnetoresistance properties. The manganite precursors contain a sol and are derived from the metal alkoxides: Ln(OR).sub.3, M(OR).sub.2 and Mn(OR).sub.2, where R is C.sub.2 to C.sub.6 alkyl or C.sub.3 to C.sub.9 alkoxyalkyl, or C.sub.6 to C.sub.9 aryl. The preferred ceramics are films prepared by a spin coating method and are particularly suited for incorporation into a device such as an integrated circuit device.

  10. Encapsulation of titanium dioxide nanoparticles in PLA microspheres using supercritical emulsion extraction to produce bactericidal nanocomposites (United States)

    Campardelli, R.; Della Porta, G.; Gomez, V.; Irusta, S.; Reverchon, E.; Santamaria, J.


    In this work, PLA microparticles containing TiO2 (anatase) nanoparticles have been produced using the Continuous Supercritical Emulsion Extraction technique (SEE-C). A stabilized anatase colloidal suspension (15 ± 5 nm) in ethanol aqueous solution was obtained by precipitation from solutions of titanium alkoxides and directly used as the water internal phase of a water-in-oil in water double emulsion or suspended as a powder in the organic phase of a solid-in-oil in water emulsion. Micro- (0.9 ± 0.5 μm) and submicro-particles (203 ± 40 nm) have been produced, with TiO2 nominal loadings of 1.2, 2.4, and 3.6 wt%. High TiO2 encapsulation efficiencies up to about 90 % have been obtained. PLA/TiO2 particles have been characterized by TEM and XPS to investigate the dispersion of the metal oxide in the polymeric matrix. The photo-assisted bactericidal activity of TiO2-containing microparticles against a biofilm-forming strain of Staphylococcus aureus was investigated in specific assays under UV light. Pure TiO2 nanoparticles and PLA/TiO2 particles showed the same bactericidal activity.

  11. Electrochemical characterization of YSZ thick films deposited by dip-coating process (United States)

    Mauvy, F.; Lenormand, P.; Lalanne, C.; Ansart, F.; Bassat, J. M.; Grenier, J. C.; Groupement de Recherches Cnrs "Pacte", Gdr 2985

    Yttria stabilized zirconia (YSZ, 8% Y 2O 3) thick films were coated on dense alumina substrates by a dip-coating process. The suspension was obtained by addition of a polymeric matrix in a stable suspension of commercial YSZ (Tosoh) powders dispersed in an azeotropic mixture MEK-EtOH. The suspension composition was improved by the addition of YSZ Tosoh particles encapsulated by zirconium alkoxide sol containing yttrium nitrate which are the precursors of the 8-YSZ oxide. This optimal formulation allowed preparing, via a dip-coating process, thick films which were, after thermal treatment, homogeneous, dense and crack-free. A specific method was performed to measure the electrical conductivity, i.e. to determine the ionic conductivity of the film: it uses the four-point probe technique combined with ac impedance spectroscopy. The good agreement between the classical two-electrode measurements performed on YSZ pellets and the four-electrode ones performed on YSZ films allows concluding that this method is relevant for characterizing the transport properties of thick films.

  12. Synthesis, crystal structure of diferrous complex and its reactivity with dioxygen

    Institute of Scientific and Technical Information of China (English)

    阎世平; 程鹏; 王庆伦; 廖代正; 姜宗慧; 王耕霖


    The dinuclear complex of [Fe2L{O2P(OPh)2}](CIO4)2 ·Et2O(1) (where L represents the dinucleating ligand N-Et-HPTB, anion of N, N, N’, N’-tetrakis (N-ethyl-2-benzimidazolyemethyl)-2-hydroxy-1, 3-diamino-propane) has been synthesized and crystallizes in the triclinic space group P T with cell constants α = 1.526(3) nm, b = 1.259 8(3) nm, c = 1.563 0(3) nm , α = 94.41 (3)°, P = 115.31(3)°, β=99.90(3)°, V= 3.267(1) nm3, z=2, R = 0.084 7 and Rw = 0.177 8. The Fe(Ⅱ) sites are bridged by an alkoxide of the dinucleating ligand and a phosphate, affording a diiron core with an Fe-μ-O-Fe angle of 131.20(3)° and an Fe-Fe distance of 0.364 9 nm. Both Fe(II) centers have trigonal bipyramidal geometry. Dioxygen adduct (1/O2) forms upon exposure of the diferrous complex to O2 at low temperature (-60℃). The 1/O2 adduct is stable at -60℃ but decomposes upon warming. The adduct exhibits visible absorption maximum near 606 nm and resonance Raman features at 478 cm-1 (γFe-o) and 897 cm-1 (γo-o), and the latter

  13. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia


    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  14. Achievement report for fiscal 1998. Research and development on a new manufacturing method for functional thin films suitable for recycling, and their application to colored glasses (the second year); 1998 nendo seika hokokusho. Recycle ni tekishita kinosei usumaku no shinki seizoho to chakushoku glass eno oyo ni kansuru kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)



    A new thin film manufacturing method is established to add a function to glass material surface, as a new material technology which harmonizes with global environment, and is suitable for resource re-utilization and energy conservation. It is intended to develop a leading technology to promote recycling of colored glasses by applying this technical method to colored glasses. Fiscal 1998 has implemented subsequently to fiscal 1997 the following subjects in the three research items composed of a new manufacturing method of functional thin films, application of the functional thin films to colored glasses, and the comprehensive investigative studies: establishment of an industrial manufacturing method for color coating liquid and evaluation of basic characteristics of the colored functional thin films, optimization of element technology for photo-sensitive gel films by means of chemically modifying metallic alkoxide, tests of forming films on glass bottles and plate glasses by using a coating machine installed in fiscal 1997, design and prototype fabrication of a new demonstration coating machine, and analysis on thermal decomposition of the colored thin films. Optimization was performed on the element technology for manufacturing sol-gel functional thin films, and a survey was carried out on recycling systems of colored glasses adopted in Europe. (NEDO)

  15. Thermochemical water decomposition cyle for hydrogen production%热化学循环分解水制氢

    Institute of Scientific and Technical Information of China (English)



    the thermochemical water decomposition cycle which consists of four gas-solid reaction of ca and Fe compounds for hydrogen production is discussed. The reactivity was improved by the introduction as a preparation method of the alkoxide and addition of graphite and lauric acid. Fine reactant Fe2O3 particles were homogeneously dispersed in the porous matrix of inert FeaTiOs with the sufficient strength of pellet.%文章所讨论的热化学循环分解水制氢是由Ca和Fe化合物的四步气-固反应所组成。在制备方法上,通过引入醇盐法并添加石墨和月桂酸将反应物Fe2O3颗粒均匀地分散在作为粘合剂的多孔惰性Fe2TeO5基质中,做成具有足够强度的丸,而使反应性得到改进。

  16. Partial Oxidation of n-Butane over a Sol-Gel Prepared Vanadium Phosphorous Oxide

    Directory of Open Access Journals (Sweden)

    Juan M. Salazar


    Full Text Available Vanadium phosphorous oxide (VPO is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO4∙0.5H2O (the precursor followed by in situ activation to produce (VO2P2O7 (the active phase. This paper discusses an alternative synthesis method based on sol-gel techniques. Vanadium (V triisopropoxide oxide was reacted with ortho-phosphoric acid in an aprotic solvent. The products were dried at high pressure in an autoclave with a controlled excess of solvent. This procedure produced a gel of VOPO4 with interlayer entrapped molecules. The surface area of the obtained materials was between 50 and 120 m2/g. Alcohol produced by the alkoxide hydrolysis reduced the vanadium during the drying step, thus VOPO4 was converted to the precursor. This procedure yielded non-agglomerated platelets, which were dehydrated and evaluated in a butane-air mixture. Catalysts were significantly more selective than the traditionally prepared materials with similar intrinsic activity. It is suggested that the small crystallite size obtained increased their selectivity towards maleic anhydride.

  17. Effective Sol-Gel Nanocoatings on ZnO Electrodes for Suppressing Recombination in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Shintaro Ueno


    Full Text Available Attempts have been made to improve the performance of dye-sensitized solar cells by forming metal-oxide nanocoating layers on ZnO electrodes by a sol-gel transformation. SiO2, Nb2O5, TiO2, or ZrO2 nanocoating layers could be formed by dipping ZnO films into metal alkoxide solutions of low concentrations and subsequent heat treatments. The performance of DSSCs using the coated ZnO electrodes depends strongly on the structure of coating layers such as the thickness and the surface coverage, which are significantly influenced by the coating conditions. In particular, SiO2 and Nb2O5 coating layers are effective to suppress the recombination by constructing the energy barrier at the ZnO/electrolyte interface and enhance energy conversion efficiency. It is found that the coating layers also hinder the grain growth of ZnO, contributing to the enhanced cell performance as well.

  18. Preparation and characteristics of high pH-resistant sol-gel alumina-based hybrid organic-inorganic coating for solid-phase microextraction of polar compounds. (United States)

    Liu, Mingming; Liu, Ying; Zeng, Zhaorui; Peng, Tianyou


    A novel alumina-based hybrid organic-inorganic sol-gel coating was first developed for solid-phase microextraction (SPME) from a highly reactive alkoxide precursor, aluminum sec-butoxide, and a sol-gel-active organic polymer hydroxyl-terminated polydimethylsiloxane (OH-TSO). The underlying mechanism was discussed and confirmed by IR spectra. The porous surface structure of the sol-gel coating was revealed by scanning electron microscopy. A detailed investigation was conducted to evaluate the remarked performance of the newly developed sol-gel alumina-OH-TSO hybrid materials. In stark contrast to the sol-gel silica-based coating, the alumina-based coating demonstrated excellent pH stability. In addition, good thermal resistance and coating preparation reproducibility are also its outstanding performance. As compared to silica-based hybrids material, the ligand exchange ability of alumina makes it structurally superior extraction sorbents for polar compounds, such as fatty acids, phenols, alcohols, aldehydes and amines. Practical applicability of the prepared alumina-OH-TSO fiber was demonstrated through the analysis of volatile alcohols and fatty acids in beer. The recoveries obtained ranged from 85.7 to 104% and the relative standard deviation values for all analytes were below 9%.

  19. Sol-gel precursors and products thereof

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.


    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  20. Study of an industrial process for the synthesis of high molar mass ethylene oxide-propylene oxide copolymers usable as extrusible electrolyte; Etude d`un procede industriel de synthese de copolymeres oxyde d`ethylene-oxyde de propylene de hautes masses molaires utilisables comme electrolyte extrudable

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Caselles, E. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France)


    The aim of this work is to develop an industrial process for the synthesis of an extrusible electrolyte polymer for lithium batteries. From literature data and precise specifications the high molar mass EO/OP copolymers synthesis by coordinative catalysis has been studied in order to reach a high productivity and to minimize the treatment steps. Two catalytic systems have been studied: the aluminium alkoxide-based Vandenberg-type catalysis and the calcium alcoholate amides catalysis. The first catalysis performed in solution gives excellent results. Its adaptation to silicon supported catalysis leads to a directly usable polymer in suspension but the productivity falls down and remains to be optimized. The calcium amide catalysis in heptane suspension generates acceptable productivities but also a too high proportion of low molar masses. Various approaches have been studied to minimize this proportion due to the presence of secondary sites that generate a cationic mechanism. The two synthesis ways explored are promising but remain to be optimized in order to increase the productivity of the efficient catalytic site and to reduce the formation of low molar masses generated by parasite catalytic sites. (J.S.) 9 refs.

  1. Sol-Gel Synthesis and Characterization of Cubic Bismuth Zinc Niobium Oxide Nanopowders

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei


    Full Text Available Bismuth zinc niobium oxide (BZN was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.

  2. High Quality YBCO Film Growth on SrTiO3-Buffered LaAlO3 Substrate by Full Solution Method

    Institute of Scientific and Technical Information of China (English)

    Sansheng WANG; Lin WANG; Bingfu GU


    A full solution method has been developed as a low cost process of YBa2Cu3O7-x (YBCO) coated conductor fabrication.In this study,highly biaxially textured SrTiO3 (STO) buffer layers were fabricated on LaAlO3 (LAO) single crystal substrates by sol-gel method using metal alkoxides as the staring precursor materials.High quality YBCO superconducting film was then fabricated on STO-buffered LAO substrate by triflvoroacetic metalorganic deposition (TFA-MOD) method.For the YBCO superconducting film,only (001) diffraction peaks can be detected by XRD (X-ray diffraction) analysis with no other phases detectable.Especially,In-plane texture of YBCO film is improved compared to that of STO buffer layer from phi scans analysis,which indicates the self-epitaxy phenomenon explained by considering interfacial energy.STO and YBCO films both show c-axis oriented grains growt.h and have uniform surface microstructure.A critical transition temperature,Tc (R=0) of 89.5 K and a critical current density of 2 mA/cm2 (17 K,self-field) were obtained for a 0.2 μm thick YBCO film on STO-buffered LAO substrate.No reaction between YBCO and STO was detected by XRD analysis.This full solution process may provide a promising low cost fabrication route for YBCO coated conductors on metal tape.

  3. Sol–gel processing of carbidic glasses

    Indian Academy of Sciences (India)

    L M Manocha; E Yasuda; Y Tanabe; S Manocha; D Vashistha


    Carbon incorporation into the silicate network results in the formation of rigid carbidic glasses with improved physical, mechanical and thermal properties. This generated great interest in the development of these heteroatom structured materials through different processing routes. In the present studies, sol–gel processing has been used to prepare silicon based glasses, especially oxycarbides through organic–inorganic hybrid gels by hydrolysis–condensation reactions in silicon alkoxides, 1,4-butanediol and furfuryl alcohol with an aim to introduce Si–C linkages in the precursors at sol level. The incorporation of these linkages has been studied using IR and NMR spectroscopy. These bonds, so introduced, are maintained throughout the processing, especially during pyrolysis to high temperatures. In FFA–TEOS system, copolymerization with optimized mol ratio of the two results in resinous mass. This precursor on pyrolysis to 1000°C results in Si–O–C type amorphous solid black mass. XRD studies on the materials heated to 1400°C exhibit presence of crystalline Si–C and cristobalites in amorphous Si–O–C mass. In organic–inorganic gel system, the pyrolysed mass exhibits phase stability up to much higher temperatures. The carbidic materials so produced have been found to exhibit good resistance against oxidation at 1000°C.

  4. Assessing extreme models of the Stoeber synthesis using transients under a range of initial composition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; McCormick, A.V. [Univ. of Minnesota, Minneapolis, MN (United States); Look, J.L. [Oak Ridge National Lab., TN (United States); Harris, M.T. [Univ. of Maryland, College Park, MD (United States). Dept. of Chemical Engineering


    Monodispersely sized micrometer-scale spherical colloids of metal oxides are important for the controlled fabrication of high quality ceramic materials. Their synthesis by the hydrolysis of metal alkoxides is of particular interest. {sup 29}Si-NMR, conductimetry, and photon correlation spectroscopy are used to monitor the temporal profile of intermediate concentrations in Stoeber synthesis (i.e., ammonia-catalyzed hydrolysis of tetraethoxysilane in a batch reactor). Extreme models of the process are assessed by examining the effect of initial composition on these transients (over a wider range of composition than attempted previously). The trends with initial composition suggest that the nucleation is rate-limited by the hydrolysis of the singly hydrolyzed monomer, the product of which probably phase separates. Moreover, the trends are consistent with the aggregation model discussed by G.H. Bogush and C.F. Zukoski (J. Colloid Interface Sci. 142, 1, 19, 1991) and by M.T. Harris (Ph.D. dissertation, Univ. of Tennessee, 1992). The trends are not consistent with a growth model without aggregation.

  5. Zirconium oxide aerogel for effective enrichment of phosphopeptides with high binding capacity. (United States)

    Zhang, Liyuan; Xu, Jin; Sun, Liangliang; Ma, Junfeng; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui


    In this study, zirconium oxide (ZrO(2)) aerogel was synthesized via a green sol-gel approach, with zirconium oxychloride, instead of the commonly used alkoxide with high toxicity, as the precursor. With such material, phosphopeptides from the digests of 4 pmol of β-casein with the coexistence of 100 times (mol ratio) BSA could be selectively captured, and identified by MALDI-TOF MS. Due to the large surface area (416.0 m(2) g(-1)) and the mesoporous structure (the average pore size of 10.2 nm) of ZrO(2) aerogel, a 20-fold higher loading capacity for phosphopeptide, YKVPQLEIVPN[pS]AEER (MW 1952.12), was obtained compared to that of commercial ZrO(2) microspheres (341.5 vs. 17.87 mg g(-1)). The metal oxide aerogel was further applied in the enrichment of phosphopeptides from 100 ng nonfat milk, and 17 phosphopeptides were positively identified, with a 1.5-fold improvement in phosphopeptide detection compared with previously reported results. These results demonstrate that ZrO(2) aerogel can be a powerful enrichment material for phosphoproteome study.

  6. Thermoluminescent dosimetry of beta radiations of {sup 90} Sr/ {sup 90} Y using amorphous ZrO{sub 2}; Dosimetria termoluminiscente de radiaciones beta de {sup 90} Sr/ {sup 90} Y usando ZrO{sub 2} amorfo

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T. [CICATA-Legaria, IPN, Legaria Num. 694, 11500 Mexico D.F. (Mexico); Olvera T, L.; Azorin N, J.; Barrera R, M.; Soto E, A.M. [UAM-I, 09340 Mexico D.F. (Mexico)


    In this work the results of studying the thermoluminescent properties (Tl) of the zirconium oxide in its amorphous state (ZrO{sub 2}-a) before beta radiations of {sup 90} Sr/ {sup 90} Y are presented. The amorphous powders of the zirconium oxide were synthesized by means of the sol-gel technique. The sol-gel process using alkoxides like precursors, is an efficient method to prepare a matrix of zirconium oxide by hydrolysis - condensation of the precursor to form chains of Zr-H{sub 3} and Zr-O{sub 2}. One of the advantages of this technique is the obtention of gels at low temperatures with very high purity and homogeneity. The powders were characterized by means of thermal analysis and by X-ray diffraction. The powders of ZrO{sub 2}-a, previously irradiated with beta particles of {sup 90} Sr/{sup 90} Y, presented a thermoluminescent curve with two peaks at 150 and 257 C. The dissipation of the information of the one ZrO{sub 2}-a was of 40% the first 2 hours remaining constant the information for the following 30 days. The reproducibility of the information was of {+-} 2.5% in standard deviation. The studied characteristics allow to propose to the amorphous zirconium oxide as thermoluminescent dosemeter for the detection of beta radiation. (Author)

  7. Synthesis and Characterization of Upconversion Fluorescent Yb3+, Er3+ Doped CsY2F7 Nano- and Microcrystals

    Directory of Open Access Journals (Sweden)

    Helmut Schäfer


    Full Text Available Cs Y2F7: 78%   Y3+, 20%   Yb3+, 2%   Er3+ nanocrystals with a mean diameter of approximately 8 nm were synthesized at   185°C in the high boiling organic solvent N-(2-hydroxyethyl-ethylenediamine (HEEDA using ammonium fluoride, the rare earth chlorides and a solution of caesium alkoxide of N-(2-hydroxyethyl-ethylenediamine in HEEDA. In parallel with this approach, a microwave assisted synthesis was carried out which forms nanocrystals of the same material, about 50 nm in size, in aqueous solution at 200∘C/8 bar starting from ammonium fluoride, the rare earth chlorides, and caesium fluoride. In case of the nanocrystals, derived from the HEEDA synthesis, TEM images reveal that the particles are separated but have a broad size distribution. Also an occurred heat-treatment of these nanocrystals (600∘C for 45 minutes led to bulk material which shows highly efficient light emission upon continuous wave (CW excitation at 978 nm. Besides the optical properties, the structure and the morphology of the three products were investigated by means of powder XRD and Rietveld method.

  8. Titanium complex formation of organic ligands in titania gels. (United States)

    Nishikiori, Hiromasa; Todoroki, Kenta; Setiawan, Rudi Agus; Teshima, Katsuya; Fujii, Tsuneo; Satozono, Hiroshi


    Thin films of organic ligand-dispersing titania gels were prepared from titanium alkoxide sols containing ligand molecules by steam treatment without heating. The formation of the ligand-titanium complex and the photoinduced electron transfer process in the systems were investigated by photoelectrochemical measurements. The complex was formed between the 8-hydroxyquinoline (HQ) and titanium species, such as the titanium ion, on the titania nanoparticle surface through the oxygen and nitrogen atoms of the quinolate. A photocurrent was observed in the electrodes containing the complex due to the electron injection from the LUMO of the complex into the titania conduction band. A bidentate ligand, 2,3-dihydroxynaphthalene (DHN), formed the complex on the titania surface through dehydration between its two hydroxyl groups of DHN and two TiOH groups of the titania. The electron injection from the HOMO of DHN to the titania conduction band was observed during light irradiation. This direct electron injection was more effective than the two-step electron injection.

  9. Influences of acid on molecular forms of fluorescein and photoinduced electron transfer in fluorescein-dispersing sol-gel titania films. (United States)

    Nishikiori, Hiromasa; Setiawan, Rudi Agus; Miyashita, Kyohei; Teshima, Katsuya; Fujii, Tsuneo


    Fluorescein-dispersing titania gel films were prepared by the acid-catalyzed sol-gel reaction using a titanium alkoxide solution containing fluorescein. The molecular forms of fluorescein in the films, depending on its acid-base equilibria, and the complex formation and photoinduced electron transfer process between the dye and titania surface were investigated by fluorescence and photoelectric measurements. The titanium species were coordinated to the carboxylate and phenolate-like groups of the fluorescein species. The quantum efficiencies of the fluorescence quenching and photoelectric conversion were higher upon excitation of the dianion species interacting with the titania, i.e. the dye-titania complex. This result indicated that the dianion form was the most favorable for formation of the dye-titania complex exhibiting the highest electron transfer efficiency. Using nitric acid as the catalyst, the titania surface bonded to the fluorescein instead of the adsorbed nitrate ion during the steam treatment. The dye-titania complex formation played an important role in the electron injection from the dye to the titania conduction band.

  10. A two-dimensional coordination compound as a zinc ion selective luminescent probe for biological applications. (United States)

    Dhara, Koushik; Karan, Santanu; Ratha, Jagnyeswar; Roy, Partha; Chandra, Goutam; Manassero, Mario; Mallik, Biswanath; Banerjee, Pradyot


    A 2D coordination compound {[Cu2(HL)(N3)]ClO4}infinity (1; H3L = 2,6-bis(hydroxyethyliminoethyl)-4-methyl phenol) was synthesized and characterized by single-crystal X-ray diffraction to be a polymer in the crystalline state. Each [Cu2(HL)(N3)]+ species is connected to its adjacent unit by a bridging alkoxide oxygen atom of the ligand to form a helical propagation along the crystallographic a axis. The adjacent helical frameworks are connected by a ligand alcoholic oxygen atom along the crystallographic b axis to produce pleated 2D sheets. In solution, 1 dissociates into [Cu2(HL)2(H3L)]2H2O (2); the monomer displays high selectivity for Zn2+ and can be used in HEPES buffer (pH 7.4) as a zinc ion selective luminescent probe for biological application. The system shows a nearly 19-fold Zn2+-selective chelation-enhanced fluorescence response in the working buffer. Application of 2 to cultured living cells (B16F10 mouse melanoma and A375 human melanoma) and rat hippocampal slices was also studied by fluorescence microscopy.

  11. Taggants, method for forming a taggant, and a method for detecting an object

    Energy Technology Data Exchange (ETDEWEB)

    Harrup, Mason K [Idaho Falls, ID; Stewart, Frederick F [Idaho Falls, ID; Stone, Mark L [Idaho Falls, ID


    A taggant comprising at least one perfluorocarbon compound surrounded by a polyphosphazene compound. The polyphosphazene compound has the chemical structure: ##STR00001## wherein G.sub.1 and G.sub.2 are pendant groups having different polarities, m is an integer greater than or equal to 100, and each of A and B is independently selected from hydrogen, an alkyl, an alkene, an alkoxide, a polyether, a polythioether, a siloxane, and --X(CH.sub.2).sub.nY.sup.1(CH.sub.2)p.sub.1Y.sup.2(CH.sub.2)p.sub.2 . . . Y.sup.i(CH.sub.2)p.sub.iCH.sub.3, where n ranges from 1 to 6, X and Y are independently selected from oxygen, sulfur, selenium, tellurium, and polonium, and p.sub.1 through p.sub.i range from 1 to 6. Cyclic polyphosphazene compounds lacking the A and B groups are also disclosed, as are methods of forming the taggant and of detecting an object.

  12. Novel hybrid organic-inorganic sol-gel materials based on highly efficient heterocyclic push-pull chromophores (United States)

    Abbotto, Alessandro; Bozio, Renato; Brusatin, Giovanna; Facchetti, Antonio; Guglielmi, Massimo; Innocenzi, Plinio; Meneghetti, Moreno; Pagani, Giorgio A.; Signorini, Raffaella


    We report the synthesis of sol-gel materials based on highly efficient heterocycle-based push-pull chromophores showing second- and third-order nonlinear optical activity. We show the proper functionalization of the best performing chromophores and their incorporation into a hybrid organic- inorganic sol-gel matrix. Different types of functionalization of the active molecule have been considered, including hydroxyl and alkoxysilyl end-groups. The functionalization strategy responded to different criteria such as stability and synthetic availability of the final molecular precursors, their solubility, and the used synthetic approach to the sol-gel material. The synthesis of the sol-gel materials has been tuned in order to preserve molecular properties and control important factors such as final concentration of the active dye in the matrix. Both acid- and base-catalyzed sol-gel synthesis has been taken into account. 3-Glycidoxypropyltrimethoxysilane and 3- aminopropyltriethoxysilane have been used as the organically modified alkoxides to prepare the hybrid organic-inorganic matrix. Characterization of the spectroscopic properties of the sol-gel materials is presented.

  13. Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study

    Energy Technology Data Exchange (ETDEWEB)

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Andersen, Richard


    Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with the starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.

  14. Biomimetic synthesis of hierarchically porous nanostructured metal oxide microparticles--potential scaffolds for drug delivery and catalysis. (United States)

    Seisenbaeva, Gulaim A; Moloney, Micheal P; Tekoriute, Renata; Hardy-Dessources, Adeline; Nedelec, Jean-Marie; Gun'ko, Yurii K; Kessler, Vadim G


    Hierarchically porous hybrid microparticles, strikingly reminiscent in their structure of the silica skeletons of single-cell algae, diatoms, but composed of titanium dioxide, and the chemically bound amphiphilic amino acids or small proteins can be prepared by a simple one-step biomimetic procedure, using hydrolysis of titanium alkoxides modified by these ligands. The growth of the hierarchical structure results from the conditions mimicking the growth of skeletons in real diatoms--the self-assembly of hydrolysis-generated titanium dioxide nanoparticles, templated by the microemulsion, originating from mixing the hydrocarbon solvent and water on action of amino acids as surfactants. The obtained microsize nanoparticle aggregates possess remarkable chemical and thermal stability and are promising substrates for applications in drug delivery and catalysis. They can be provided with pronounced surface chirality through application of chiral modifying ligands. They display also high selectivity in sorption of phosphorylated biomolecules or medicines as demonstrated by (1)H and (31)P NMR studies and by in vitro modeling using (32)P-marked ATP as a substrate. The release of the adsorbed model compounds in an inert medium is a very slow process directed by desorption kinetics. It is enhanced, however, noticeably in contact with biological fluids modeling those of the tissues suffering inflammation, which makes the produced material highly attractive for application in medical implants. The developed synthetic approach has been applied successfully also for the preparation of analogous hybrid microparticles based on zirconium dioxide or aluminum sesquioxide.

  15. Sequence-regulated copolymers via tandem catalysis of living radical polymerization and in situ transesterification. (United States)

    Nakatani, Kazuhiro; Ogura, Yusuke; Koda, Yuta; Terashima, Takaya; Sawamoto, Mitsuo


    Sequence regulation of monomers is undoubtedly a challenging issue as an ultimate goal in polymer science. To efficiently produce sequence-controlled copolymers, we herein developed the versatile tandem catalysis, which concurrently and/or sequentially involved ruthenium-catalyzed living radical polymerization and in situ transesterification of methacrylates (monomers: RMA) with metal alkoxides (catalysts) and alcohols (ROH). Typically, gradient copolymers were directly obtained from the synchronization of the two reactions: the instantaneous monomer composition in feed gradually changed via the transesterification of R(1)MA into R(2)MA in the presence of R(2)OH during living polymerization to give R(1)MA/R(2)MA gradient copolymers. The gradient sequence of monomers along a chain was catalytically controlled by the reaction conditions such as temperature, concentration and/or species of catalysts, alcohols, and monomers. The sequence regulation of multimonomer units was also successfully achieved in one-pot by monomer-selective transesterification in concurrent tandem catalysis and iterative tandem catalysis, providing random-gradient copolymers and gradient-block counterparts, respectively. In contrast, sequential tandem catalysis via the variable initiation of either polymerization or in situ transesterification led to random or block copolymers. Due to the versatile adaptability of common and commercially available reagents (monomers, alcohols, catalysts), this tandem catalysis is one of the most efficient, convenient, and powerful tools to design tailor-made sequence-regulated copolymers.

  16. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process (United States)

    Liu, Dean-Mo; Chen, I-Wei


    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  17. Encapsulation of titanium dioxide nanoparticles in PLA microspheres using supercritical emulsion extraction to produce bactericidal nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Campardelli, R., E-mail:; Della Porta, G. [University of Salerno, Department of Industrial Engineering (Italy); Gomez, V.; Irusta, S. [University of Zaragoza, Aragon Institute of Nanoscience (INA) (Spain); Reverchon, E., E-mail: [University of Salerno, Department of Industrial Engineering (Italy); Santamaria, J., E-mail: [University of Zaragoza, Aragon Institute of Nanoscience (INA) (Spain)


    In this work, PLA microparticles containing TiO{sub 2} (anatase) nanoparticles have been produced using the Continuous Supercritical Emulsion Extraction technique (SEE-C). A stabilized anatase colloidal suspension (15 {+-} 5 nm) in ethanol aqueous solution was obtained by precipitation from solutions of titanium alkoxides and directly used as the water internal phase of a water-in-oil in water double emulsion or suspended as a powder in the organic phase of a solid-in-oil in water emulsion. Micro- (0.9 {+-} 0.5 {mu}m) and submicro-particles (203 {+-} 40 nm) have been produced, with TiO{sub 2} nominal loadings of 1.2, 2.4, and 3.6 wt%. High TiO{sub 2} encapsulation efficiencies up to about 90 % have been obtained. PLA/TiO{sub 2} particles have been characterized by TEM and XPS to investigate the dispersion of the metal oxide in the polymeric matrix. The photo-assisted bactericidal activity of TiO{sub 2}-containing microparticles against a biofilm-forming strain of Staphylococcus aureus was investigated in specific assays under UV light. Pure TiO{sub 2} nanoparticles and PLA/TiO{sub 2} particles showed the same bactericidal activity.

  18. Influence of catalyst on structural and morphological properties of TiO2 nanostructured films prepared by sol-gel on glass

    Institute of Scientific and Technical Information of China (English)

    Mehdi Alzamani; Ali Shokuhfar; Ebrahim Eghdam; Sadegh Mastali


    Transparent TiO2 thin films have been prepared by the sol-gel method using titanium alkoxides as precursors. Thin films were deposited on glass supports by the dip-coating technique. The TiO2 layer acts as a self-cleaning coating generated from its photocatalysis and photoinduced superhydrophilicity. The crystalline structure of TiO2 films was dominantly identified as the anatase phase, consisted of uniform spherical particles of about 14-50 nm in size, which strongly depends upon catalyst-type and heat treatment temperature. Increasing heat treating temperature can lead to an increase in crystalline size. The results indicated that the sample S.S (sample derived from sol containing sulfuric acid as catalyst) exhibits superhydrophilic nature and better photocatalytic activity, which can be attributed to its higher anatase content and lower crystalline size. Morphological studies, carried out using Atomic Force Microscopy (AFM), confirm the presence of crystalline phase with such a grain size and low surface roughness. Thus, the applied films exhibiting high photocatalytic activity, superhydrophilic behavior, and low surface roughness can be used as an efficient self-cleaning coating on glass and other optical applications.

  19. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka


    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  20. Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol-gel-derived TiO2-SiO2 nano composite coatings on stainless steel substrates. (United States)

    Dadash, Mohammad Saleh; Karbasi, Saeed; Esfahani, Mojtaba Nasr; Ebrahimi, Mohammad Reza; Vali, Hojatollah


    Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol-gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50-60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si-O-Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO(2)-calcinated NBG and TiO(2)-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si-O-Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.

  1. Biological characterization of a new silicon based coating developed for dental implants. (United States)

    Martínez-Ibáñez, M; Juan-Díaz, M J; Lara-Saez, I; Coso, A; Franco, J; Gurruchaga, M; Suay Antón, J; Goñi, Isabel


    Taking into account the influence of Si in osteoblast cell proliferation, a series of sol-gel derived silicon based coating was prepared by controlling the process parameters and varying the different Si-alkoxide precursors molar rate in order to obtain materials able to release Si compounds. For this purpose, methyltrimethoxysilane (MTMOS) and tetraethyl orthosilicate (TEOS) were hydrolysed together and the sol obtained was used to dip-coat the different substrates. The silicon release ability of the coatings was tested finding that it was dependent on the TEOS precursor content, reaching a Si amount value around ninefolds higher for coatings with TEOS than for the pure MTMOS material. To test the effect of this released Si, the in vitro performance of developed coatings was tested with human adipose mesenchymal stem cells finding a significantly higher proliferation and mineralization on the coating with the higher TEOS content. For in vivo evaluation of the biocompatibility, coated implants were placed in the tibia of the rabbit and a histological analysis was performed. The evaluation of parameters such as the bone marrow state, the presence of giant cells and the fibrous capsule proved the biocompatibility of the developed coatings. Furthermore, coated implants seemed to produce a qualitatively higher osteoblastic activity and a higher number of bone spicules than the control (uncoated commercial SLA titanium dental implant).

  2. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others


    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  3. Phthalocyanine/chitosan-TiO{sub 2} photocatalysts: Characterization and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, A. [University of Sfax-Faculty of Science-LCI-Sfax-Tunisia (Tunisia); Boufi, S. [University of Sfax-Faculty of Science-LMSE-Sfax-Tunisia (Tunisia); Bouattour, S., E-mail: [University of Sfax-Faculty of Science-LCI-Sfax-Tunisia (Tunisia)


    Graphical abstract: - Highlights: • Hybrid chitosan–phthalocyanine-TiO{sub 2} photocatalyst are elaborated at room temperature without any calcination treatment. • After immersion in water, the alkoxide groups underwent hydrolysis and the (TiO{sub 6}) octahedra started to join together. • The enhanced activity of the hybrid catalyst is attributed to the cooperative role of the three components of the photocatalyst. - Abstract: Chitosan (CS) was used as a template to prepare a hybrid chitosan–phthalocyanine-TiO{sub 2} (PC/CS-TiO{sub 2}) photocatalyst at room temperature without any calcination treatment. The as-prepared hybrid photocatalyst (PC/CS-TiO{sub 2}) was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and UV–vis diffuse reflectance spectroscopy (DRS). The results of the photodegradation of aniline, used as a model pollutant, revealed that the hybrid photocatalyst (PC/CS-TiO{sub 2}) exhibited a photocatalytic activity under visible-light irradiation. The enhanced activity of the hybrid catalyst is attributed to the cooperative role of the three components of the photocatalyst; chitosan as a template for the immobilization crystalline TiO{sub 2} nanoparticles, phthalocyanine that promote the light absorption in the visible range and TiO{sub 2} acting as an acceptor of electrons generated by the photons absorption to produce superoxide radicals.

  4. Flower-Like Mn-Doped CeO2 Microstructures: Synthesis, Characterizations, and Catalytic Properties

    Directory of Open Access Journals (Sweden)

    Ling Liu


    Full Text Available Mn-doped CeO2 flower-like microstructures have been synthesized by a facile method, involving the precipitation of metallic alkoxide precursor in a polyol process from the reaction of CeCl3·7H2O with ethylene glycol in the presence of urea followed by calcination. By introducing manganese ions, the composition can be freely manipulated. To investigate whether there was a hybrid synergic effect in CH4 combustion reaction, further detailed characteristics of Mn-doped CeO2 with various manganese contents were revealed by XRD, Raman, FT-IR, SEM, EDS, XPS, OSC, H2-TPR, and N2 adsorption-desorption measurements. The doping manganese is demonstrated to increase the storage of oxygen vacancy for CH4 and enhance the redox capability, which can efficiently convert CH4 to CO2 and H2O under oxygen-rich condition. The excellent catalytic performance of MCO-3 sample, which was obtained with the starting Mn/Ce ratios of 0.2 in the initial reactant compositions, is associated with the larger surface area and richer surface active oxygen species.

  5. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.


    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  6. Epoxy Sol-Gel Hybrid Thermosets

    Directory of Open Access Journals (Sweden)

    Angels Serra


    Full Text Available Sol-gel methodologies are advantageous in the preparation of hybrid materials in front of the conventional addition of nanoparticles, because of the fine dispersion of the inorganic phase that can be reached in epoxy matrices. In addition, the use of organoalkoxysilanes as coupling agents allows covalent linkage between organic and inorganic phases, which is the key point in the improvement of mechanical properties. The sol-gel process involves hydrolysis and condensation reactions under mild conditions, starting from hydrolysable metal alkoxides, generally alkoxy silanes. Using the sol-gel procedure, the viscosity of the formulation is maintained, which is an important issue in coating applications, whereas the transparency of the polymer matrix is also maintained. However, only the proper combination of the chemistries and functionalities of both organic and inorganic structures leads to thermosets with the desired characteristics. The adequate preparation of hybrid epoxy thermosets enables their improvement in characteristics such as mechanical properties (modulus, hardness, scratch resistance, thermal and flame resistance, corrosion and antimicrobial protection, and even optical performance among others.

  7. Part 1. Approaches to the total synthesis of the diterpene marrubin. Part II. Ligand assisted nucleophilic additions. Part III. Coal processing in a non-dissolving medium

    Energy Technology Data Exchange (ETDEWEB)

    Lipscombe, J.; Charles, W. II


    The total synthesis of the diterpene marrubiin was attempted using methodology previously developed in the Liotta laboratories. Ligand Assisted Nucleophilic Additions (LANA) comprise a new class of synthetic reactions involving the stereoselective addition of some group, usually in an intramolecular conjugate fashion. This group is itself derived from an earlier nucleophilic addition to a carbonyl moiety. Exchange of the original metal of the alkoxide with a second metal (which must be at least divalent) having a transferrable group demands that the stereochemistry of the first addition control the second. The general features of these types of processes are discussed. Initial work with substituted quinones is presented, and some mechanistic rationales are given. A novel method of coal processing at modest temperatures and hydrogen pressures (250-300/sup 0/C, 8.0 MPa) is discussed. Coals reacted with small amounts of tetrahydroquinoline in the presence of fluorocarbons or other non-dissolving media underwent astounding increases in pyridine solubility, a common standard in coal liquefaction studies. Several additives were employed, although only tetrahydroquinoline was found to effectively increase coal solubility. Coals having vastly different individual properties behaved similarly under these conditions. Kinetic and model studies were used in an attempt to clarify the reactions occurring under these novel conditions.

  8. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huang Hai; Xie Qiuping; Kang Muxing; Zhang Bo; Wu Yulian [Department of Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Zhang Hui; Chen Jin; Zhai Chuanxin; Yang Deren [State Key Lab of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang Biao, E-mail:, E-mail: yulianwu2003@yahoo.c [Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)


    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet {beta}-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into {beta}-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.


    Energy Technology Data Exchange (ETDEWEB)



    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems.

  10. Magnetic properties of Co doped MgTiO3 ceramics (United States)

    Kumar Thatikonda, Santhosh; Gogoi, Pallabi; Kisan, Bhagaban; Perumal, Alagarsamy; Sharma, Pramod; Dobbidi, Pamu


    Structural, magnetic and dielectric properties of (Mg1-xCox)TiO3 (x=0-0.07) ceramics prepared by the semi-alkoxide precursor method are investigated. All the sintered samples exhibit paramagnetic nature at room temperature, but magnetic susceptibility increases with increasing Co content up to 0.03 and decreases at higher Co content. Temperature dependent magnetization data obtained under zero-field-cooled (ZFC) and field-cooled (FC) conditions reveal a ferromagnetic to paramagnetic phase transition around 228 K for x=0.03 and bifurcation between the ZFC and FC data shifts to lower temperature from 170 to 150 K with increasing the applied field from 100 to 500 Oe. The broadband dielectric properties are studied in the temperature range 133-300 K and in the frequency range of 1 MHz to 1 GHz. It is observed that both ε‧ and ε‧‧ of (Mg0.97Co0.03)TiO3 ceramic increase with increasing temperature. Interestingly, the temperature dependent dielectric properties of (Mg0.97Co0.03)TiO3 ceramic measured at 1 GHz exhibit anomalies at temperatures where the magnetic phase transitions were observed.

  11. Magnetic properties of Co doped MgTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Thatikonda, Santhosh; Gogoi, Pallabi; Kisan, Bhagaban; Perumal, Alagarsamy [Department of Physics, Indian Institute of Technology Guwahati, Assam 781039 (India); Sharma, Pramod [Institute of Plasma Research Gandhinagar, Gujarat (India); Dobbidi, Pamu, E-mail: [Department of Physics, Indian Institute of Technology Guwahati, Assam 781039 (India)


    Structural, magnetic and dielectric properties of (Mg{sub 1−x}Co{sub x})TiO{sub 3} (x=0–0.07) ceramics prepared by the semi-alkoxide precursor method are investigated. All the sintered samples exhibit paramagnetic nature at room temperature, but magnetic susceptibility increases with increasing Co content up to 0.03 and decreases at higher Co content. Temperature dependent magnetization data obtained under zero-field-cooled (ZFC) and field-cooled (FC) conditions reveal a ferromagnetic to paramagnetic phase transition around 228 K for x=0.03 and bifurcation between the ZFC and FC data shifts to lower temperature from 170 to 150 K with increasing the applied field from 100 to 500 Oe. The broadband dielectric properties are studied in the temperature range 133–300 K and in the frequency range of 1 MHz to 1 GHz. It is observed that both ε′ and ε′′ of (Mg{sub 0.97}Co{sub 0.03})TiO{sub 3} ceramic increase with increasing temperature. Interestingly, the temperature dependent dielectric properties of (Mg{sub 0.97}Co{sub 0.03})TiO{sub 3} ceramic measured at 1 GHz exhibit anomalies at temperatures where the magnetic phase transitions were observed.

  12. One-Step Synthesis of TiO2/Perlite Composites by Flame Spray Pyrolysis and Their Photocatalytic Behavior

    Directory of Open Access Journals (Sweden)

    M. Giannouri


    Full Text Available TiO2/perlite composites were prepared via facile one-step flame spray pyrolysis (FSP route. Titanium alkoxide (TIPO and expanded perlite were used as Ti source and substrate, respectively. Precursor TIPO-ethanol solutions containing homogeneously dispersed perlite particles were processed through FSP setup at different experimental conditions regarding the gas flow and precursor supply rates. The structure, morphology, and the composition of the obtained powders were investigated. The porosity and the light absorbance of the TiO2/perlite composites were examined and their photocatalytic activity in NO oxidation was evaluated. Commercial titania powder P25 was also FSP processed and investigated for comparison. The XRD analysis revealed that biphased titania with different anatase-rutile ratio and particles size 20–40 nm was synthesized onto the perlite which according to microscopy results was covered by neck-connected TiO2 nanoparticles. The anatase-rutile interplay was also demonstrated by the Raman spectra where presence of Si-O-Ti vibrational modes was observed for some samples. The UV-Vis diffuse reflectance spectra of the TiO2/perlite composites revealed up to 70% reflection that was connected to the presence of the gray perlite and superficial carbon. The best photocatalytic activity of the composites was connected to almost equal anatase-rutile ratio and possible synergetic effect of the two TiO2 phases.

  13. Ethylene glycol-assisted coating of titania on nanoparticles. (United States)

    Dahl, Michael; Castaneda, Fernando; Joo, Ji Bong; Reyes, Victor; Goebl, James; Yin, Yadong


    Coating titania shells onto sub-micron sized particles has been widely studied recently, with success mainly limited to objects with sizes above 50 nm. Direct coating on particles below this size has been difficult to attain especially with good control over properties such as thickness and crystallinity. Here we demonstrate that titanium-glycolate formed by reacting titanium alkoxide and ethylene glycol is an excellent precursor for coating titania on aqueous nanoparticles. The new coating method is particularly useful for its ability to coat materials lacking strong polymers or ligands which are frequently needed to facilitate typical titania coatings. We demonstrate the effectiveness of the process of coating titania on metal nanoparticles ranging from citrate-stabilized gold and silver spheres to gold nanorods and silver nanoplates, and larger particles such as SiO2 microspheres and polymer spheres. Further the thickness of these coatings can be tuned from a few nanometers to ∼40 nm through sequential coatings. These coatings can subsequently be crystallized into TiO2 through refluxing in water or by calcination to obtain crystalline shells. This procedure can be very useful for the production of TiO2 coatings with tunable thickness and crystallinity as well as for further study on the effect of TiO2 coatings on nanoparticles.

  14. High dose thermoluminescence dosimetry performance of Sol-gel synthesized TiO{sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Salas J, Ch. J.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Castillo U, D. M.; Flores M, K. [Universidad de Sonora, Departamento de Ciencias Quimico Biologicas, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Castano, V. M., E-mail: [UNAM, Instituto de Fisica, Centro de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, Queretaro, Qro. (Mexico)


    Full text: TiO{sub 2} is a ceramic material with many applications due to their different crystalline phases (rutile, anatase and brookite). It has attracted attention in several fields because their high mechanical strength, chemical stability and ion-conducting properties. Moreover, in recent years, some research groups gained interest in the thermoluminescence features of TiO{sub 2} concerning their potential use as thermoluminescence dosimeter. In this work, we present experimental results obtained in the first stage of a long-term research project focused in the synthesis of TiO{sub 2} phosphors for dosimetric applications. The thermoluminescent characterization of samples was carried out after being exposed to beta particle irradiation. TiO{sub 2} was prepared by alkoxide sol-gel route using titanium tetrabutoxide as precursor, ethanol, water and ammonia as catalyst. Pellet-shaped samples were annealed at 700 degrees C for 6 h in air atmosphere followed by slow cooling, and then were exposed to radiation doses from 25 to 400 Gy. The glow curves display maxima located at 103 and 238 degrees C when a 5 C/s heating rate is used. From the experimental results here presented, we conclude that TiO{sub 2} is a promising material to develop high dose Tl dosimeters. (Author)

  15. High rate capability of a BaTiO3-decorated LiCoO2 cathode prepared via metal organic decomposition (United States)

    Teranishi, Takashi; Katsuji, Naoto; Yoshikawa, Yumi; Yoneda, Mika; Hayashi, Hidetaka; Kishimoto, Akira; Yoda, Koji; Motobayashi, Hidefumi; Tasaki, Yuzo


    Metal organic decomposition (MOD) using octylic acid salts was applied to synthesize a BaTiO3-LiCoO2 (BT-LC) composite powder. The Ba and Ti octylates were utilized as metal precursors, in an attempt to synthesize homogeneous BT nanoparticles on the LC matrix. The BT-LC composite, having a phase-separated composite structure without any impurity phase, was successfully obtained by optimizing the MOD procedure. The composite prepared using octylate precursors exhibited a sharper distribution and better dispersibility of decorated BT particles. Additionally, the average particle size of the decorated BTs using metal octylate was reduced to 23.3 nm, compared to 44.4 nm from conventional processes using Ba acetate as well as Ti alkoxide as precursors. The composite cathode displayed better cell performance than its conventional counterpart; the discharge capacity of the metal octylate-derived specimen was 55.6 mAh/g at a 50C rate, corresponding to 173% of the capacity of the conventional specimen (32.2 mAh/g). The notable improvement in high rate capability obtained in this study, compared with the conventional route, was attributed to the higher density of the triple junction formed by the BT-LC-electrolyte interface.

  16. Hydride transfer made easy in the oxidation of alcohols catalyzed by choline oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Gadda, G.; Orville, A.; Pennati, A.; Francis, K.; Quaye, O.; Yuan, H.; Rungsrisuriyachai, K.; Finnegan, S.; Mijatovic, S.; Nguyen, T.


    Choline oxidase (E.C. catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor (Scheme 1). The gem-diol, hydrated species of the aldehyde intermediate of the reaction acts as substrate for aldehyde oxidation, suggesting that the enzyme may use similar strategies for the oxidation of the alcohol substrate and aldehyde intermediate. The determination of the chemical mechanism for alcohol oxidation has emerged from biochemical, mechanistic, mutagenetic, and structural studies. As illustrated in the mechanism of Scheme 2, the alcohol substrate is initially activated in the active site of the enzyme by removal of the hydroxyl proton. The resulting alkoxide intermediate is then stabilized in the enzyme-substrate complex via electrostatic interactions with active site amino acid residues. Alcohol oxidation then occurs quantum mechanically via the transfer of the hydride ion from the activated substrate to the N(5) flavin locus. An essential requisite for this mechanism of alcohol oxidation is the high degree of preorganization of the activated enzyme-substrate complex, which is achieved through an internal equilibrium of the Michaelis complex occurring prior to, and independently from, the subsequent hydride transfer reaction. The experimental evidence that support the mechanism for alcohol oxidation shown in Scheme 2 is briefly summarized in the Results and Discussion section.

  17. Environments of Ga in MFI-type Ga-silicates and their catalytic performance; MFI gata Ga-silicate chu no Ga no sonzai jotai to shokubai seino

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, H.; Takiyama, Y.; Higashida, K.; Otsuka, S.; Kishida, M.; Wakabayashi, K. [Kyushu University, Fukuoka (Japan); Shoji, H. [Maruzen Petrochemical Co. Ltd., Chiba (Japan)


    MFI-type Ga-silicates (GaS) of varying atomic Si/Ga ratio are synthesized from the gel stocks, to compare them one another for their properties and C4H10 conversion performance. GaS (M) synthesized by the Mobil method shows a broader Ga-MASNMR spectral peak relevant to the GaO4 tetrahedron and lower unit cell increase rate, when it contains a high proportion of Ga, than GaS (A) synthesized by the alkoxide method. It is therefore considered that GaS (M) has an increased content of the GaO4 tetrahedron of low symmetry, as Ga content increases. GaS (M) loses a larger quantity of Ga eluted out as a result of HCl treatment than GaS (A), indicating that the former contains the GaO4 tetrahedron of low symmetry under a less stable condition. GaS (M) gives a higher aromatic hydrocarbon yield in the C4H10 conversion than GaS (A), as its Ga content increases. This results from difference between their dehydrogenation performances, indicating that Ga in the GaO4 tetrahedron of lower symmetry has a higher dehydrogenation performance. 19 refs., 6 figs., 3 tabs.

  18. Metal-Free Alternating Copolymerization of CO2with Epoxides: Fulfilling “Green” Synthesis and Activity

    KAUST Repository

    Zhang, Dongyue


    Polycarbonates were successfully synthesized for the first time through the anionic copolymerization of epoxides with CO2, under metal-free conditions. Using an approach based on the activation of epoxides by Lewis acids and of CO, by appropriate cations, well-defined alternating copolymers made of CO, and propylene oxide (PO) or cyclohexene oxide (CHO) were indeed obtained. Triethyl borane was the Lewis acid chosen to activate the epoxides, and onium halides or onium alkoxides involving either ammonium, phosphonium, or phosphazenium cations were selected to initiate the copolymerization. In the case of PO, the carbonate content of the poly(propylene carbonate) formed was in the range of 92-99% and turnover numbers (TON) were close to 500; in the case of CHO perfectly alternating poly(cyclohexene carbonate) were obtained and TON values were close to 4000. The advantages of such a copolymerization system are manifold: (i) no need for multistep catalyst/ligand synthesis as in previous works; (ii) no transition metal involved in the copolymer synthesis and therefore no coloration of the samples isolated; and (iii) no necessity for postsynthesis purification.

  19. P,O-Phosphinophenolate zinc(II) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, ε-caprolactone and trimethylene carbonate. (United States)

    Fliedel, Christophe; Rosa, Vitor; Alves, Filipa M; Martins, Ana M; Avilés, Teresa; Dagorne, Samuel


    The P,O-type phosphinophenol proligands (1·H, 2-PPh2-4-Me-6-Me-C6H2OH; 2·H, 2-PPh2-4-Me-6-(t)Bu-C6H2OH) readily react with one equiv. of ZnEt2 to afford in high yields the corresponding Zn(II)-ethyl dimers of the type [(κ(2)-P,O)Zn-Et]2 (3 and 4) with two μ-OPh bridging oxygens connecting the two Zn(II) centers, as determined by X-ray diffraction (XRD) studies in the case of 3. Based on diffusion-ordered NMR spectroscopy (DOSY), both species 3 and 4 retain their dimeric structures in solution. The alcoholysis reaction of Zn(II) alkyls 3 and 4 with BnOH led to the high yield formation of the corresponding Zn(II) benzyloxide species [(κ(2)-P,O)Zn-OBn]2 (5 and 6), isolated in a pure form as colorless solids. The centrosymmetric and dimeric nature of Zn(II) alkoxides 5 and 6 in solution was deduced from DOSY NMR experiments and multinuclear NMR data. Though the heteroleptic species 5 is stable in solution, its analogue 6 is instable in CH2Cl2 solution at room temperature to slowly decompose to the corresponding homoleptic species 8via the transient formation of (κ(2)-P,O)2Zn2(μ-OBn)(μ–κ(1):κ(1)-P,O) (6′). Crystallization of compound 6 led to crystals of 6′, as established by XRD analysis. The reaction of ZnEt2 with two equiv. of 1·H and 2·H allowed access to the corresponding homoleptic species of the type [Zn(P,O)2] (7 and 8). All gathered data are consistent with compound 7 being a dinuclear species in the solid state and in solution. Data for species 8, which bears a sterically demanding P,O-ligand, are consistent with a mononuclear species in solution. The Zn(II) alkoxide species 5 and the [Zn(P,O)2]-type compounds 7 and 8 were evaluated as initiators of the ring-opening polymerization (ROP) of lactide (LA), ε-caprolactone (ε-CL) and trimethylene carbonate (TMC). Species 5 is a well-behaved ROP initiator for the homo-, co- and ter-polymerization of all three monomers with the production of narrow disperse materials under living and immortal

  20. Antiferromagnetically Coupled Dimeric Dodecacopper Supramolecular Architectures of Macrocyclic Ligands with a Symmetrical μ6-BO3(3-) Central Moiety. (United States)

    Tandon, Santokh S; Bunge, Scott D; Toth, Sara A; Sanchiz, Joaquin; Thompson, Laurence K; Shelley, Jacob T


    Reactions between 2,6-diformyl-4-alkyl(R)-phenol (R = CH3 or C(CH3)3) and 1,3-diamino-2-hydroxypropane (1,3-DAP) in the presence of copper(II) salts (Cu(BF4)2·6H2O, Cu(ClO4)2·6H2O/H3BO3/Ar) and triethylamine (TEA) in a single pot result in self-assembly of dimeric dodecacopper supramolecular architectures of 30-membered hexatopic macrocyclic ligands (H6L4 and H6L5) with unique and fascinating structures having the BO3(3-) anion as the central species bonded to all six copper centers in a symmetrical fashion (μ6-BO3(3-)). A number of closely related macrocyclic hexacopper complexes are reported: {[Cu6(L4)(μ6-BO3)(μ-H2O)(C3H7NO)2(BF4)][BF4]2·3C3H7NO}2 (1) (DMF = C3H7NO), {[Cu6(L4)(μ6-BO3)(μ-C3H7NO)3][ClO4]3·3C3H7NO}2 (2), {[Cu6(L5)(μ6-BO3)(μ-OH)(H2O)3(C3H7NO)][BF4]2·6C3H7NO·4C2H5OH·2H2O}2 (3), {[Cu6(L5)(μ6-BO3)(μ-CH3OH)(CH3OH)2][ClO4]3·10H2O}2 (4), and {[Cu6(L5)(μ6-BO3)(μ-CH3CO2)(μ-CH3O)(CH3OH)][BF4]·13CH3OH·8H2O}2 (5). A polymeric side product {[Cu2(H2L2)(CH3OH)(BF4)][BF4]}n (6), involving a 2 + 2 macrocyclic ligand, was also isolated and structurally characterized. Complex 6 involves dinuclear copper(II) units linked through BF4(-) anions to form a novel 1D single-chain polymeric coordination compound. This appears to be the first report in which a central BO3(3-) species is linked to six copper(II) ions held together by a single macrocyclic ligand through three μ1,1-O(BO3(3-)) and three μ1,3-O(BO3(3-)) bridges. In complexes 1-5 the BO3(3-) is present in the center of the macrocyclic cavity and is bonded to all six metal centers arranged in a benzene-like hexagonal array. In the hexagonal array there are alternate double (μ-alkoxide and μ1,3-O(BO3(3-))) and (μ-phenoxide and μ1,1-O(BO3(3-))) bridges between the Cu(II) centers. The symmetrical hexa-bridging nature of μ6-BO3(3-) is unprecedented in transition metal complex chemistry, and along with alkoxide and phenoxide bridges in the equatorial plane provides effective pathways for an

  1. Reaction Mechanism of Pentene Skeletal Isomerization on Zeolites%分子筛催化的戊烯骨架异构反应机理

    Institute of Scientific and Technical Information of China (English)

    郭玉华; 蒲敏; 陈标华


    The microcosmic interaction mechanism of pentene skeletal isomerization on zeolites was studied by the density functional theory at the B3LYP/6-31G (d, p) level.The reaction trajectories were determined by the intrinsic reaction coordinate (IRC) methods.The results indicate that the skeletal isomerization of pentene can proceed by two kinds of mechanisms: the alkoxide intermediate mechanism and methyleyclopropane-like intermediate mechanism.The alkoxide intermediate mechanism involves two reaction pathways: methyl shift and ethyl shift.Accordingly, the overall skeletal isomerization of pentene has three reaction pathways.Both the methyl and ethyl shift mechanisms consist of three elementary steps.The rate determining steps are the shift of the methyl group and the shift of the ethyl group, respectively.The corresponding activation barriers are nearly equivalent (206.17 and 207.31 kJ·mol-1, respectively), indicating that two reaction pathways compete between each other.The methylcyclopropane-like intermediate mechanism includes two elementary steps: the torsion of the carbon chain and the methyl shift.This intermediate has highly ionic character and is a high energy species.The rate determining step is the torsion of the carbon chain, and its activation barrier is 147.93 kJ·mol-1.This value obviously is lower than those of the methyl and ethyl shift process, implying that the methylcyclopropanelike intermediate pathway occurs more easily.%在密度泛函理论中的B3LYP/6-31G(d,p)水平上研究了分子筛催化戊烯骨架异构的微观作用机制,分别对各个基元反应进行了内禀反应坐标(IRC)解析.结果表明:戊烯的骨架异构存在2种反应机理:烷氧基中间体机理和类甲基环丙烷中间体机理.而烷氧基中间体机理又包括2个反应途径,1个是甲基迁移,另1个是乙基迁移.因此,整个异构反应存在3个反应途径.甲基迁移机理和乙基迁移机理都含有3个基元步骤,其中速控步骤分别

  2. A new route for the synthesis of titanium silicalite-1

    Energy Technology Data Exchange (ETDEWEB)

    Vasile, Aurelia, E-mail: [Laboratory of Materials Chemistry, Faculty of Chemistry, ' Al.I. Cuza' University of Iasi, B-dul Carol I, No. 11, 700506 Iasi (Romania); Busuioc-Tomoiaga, Alina Maria [Laboratory of Materials Chemistry, Faculty of Chemistry, ' Al.I. Cuza' University of Iasi, B-dul Carol I, No. 11, 700506 Iasi (Romania); Catalysis Research Department, ChemPerformance SRL, Iasi 700337 (Romania)


    Graphical abstract: Well-prepared TS-1 was synthesized by an innovative procedure using inexpensive reagents such as fumed silica and TPABr as structure-directing agent. This is the first time when highly crystalline TS-1 is obtained in basic medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source has been prevented by titanium complexation with acetylacetone before structuring gel. Highlights: Black-Right-Pointing-Pointer TS-1 was obtained using cheap reagents as fumed silica and tetrapropylammonium bromide. Black-Right-Pointing-Pointer First time NaOH was used as source of OH{sup -} ions required for crystallization process. Black-Right-Pointing-Pointer The hydrolysis Ti alkoxides was controlled by Ti complexation with 2,4-pentanedione. -- Abstract: A new and efficient route using inexpensive reagents such as fumed silica and tetrapropylammonium bromide is proposed for the synthesis of titanium silicalite-1. High crystalline titanium silicalite-1 was obtained in alkaline medium, using sodium hydroxide as HO{sup -} ion source required for the crystallization process. Hydrolysis of titanium source with formation of insoluble oxide species was prevented by titanium complexation with before structuring gel. The final solids were fully characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance, Raman and atomic absorption spectroscopies, as well as nitrogen sorption analysis. It was found that a molar ratio Ti:Si of about 0.04 in the initial reaction mixture is the upper limit to which well formed titanium silicalite-1 with channels free of crystalline or amorphous material can be obtained. Above this value, solids with MFI type structure containing both Ti isomorphously substituted in the network and extralattice anatase nanoparticles inside of channels is formed.

  3. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. (United States)

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H


    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass.

  4. Synthesis and characterization of TiO2 pillared montmorillonites: application for methylene blue degradation. (United States)

    Chen, Daimei; Du, Gaoxiang; Zhu, Qian; Zhou, Fengsan


    TiO2 pillared clay composites were prepared by modifying of montmorillonite (Mt) with cetyl-trimethyammoniumbromide (CTAB) and then using an acidic solution of hydrolyzed Ti alkoxide to intercalate into the interlayer space of the organic modified Mt. The as-prepared materials were characterized by XRD, FTIR, TEM, SEM TG-DTA, specific surface area and porosity measurements. The composites had a porous delaminated structure with pillared fragments and well dispersed TiO2 nanoparticles. Introduction of CTAB into the synthetic system accelerated the hydrolysis and condensation of the Ti source, which promoted TiO2 formation. In addition, the CTAB also significantly increased the porosity and surface area of the composites. A number of anatase particles, with crystal sizes of 5-10 nm, were homogenously distributed on the surface of the Mt as the result of the templating role of CTAB. The resultant TiO2 pillared Mt exhibited good thermal stability as indicated by its surface area after calcination at 800°C. No phase transformations from anatase to rutile were observed even under calcination at 900°C. The grain size of the anatase in prepared sample increased from 2.67 nm to 13.42 nm as the calcination temperature increased from 300°C to 900°C. The photocatalytic performance of these new porous materials was evaluated by using methylene blue degradation. The composite exhibited better photocatalytic property than P 25. The maximum removal efficiency of this composite was up to 99% within 60 min.

  5. Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation. (United States)

    Dvininov, E; Popovici, E; Pode, R; Cocheci, L; Barvinschi, P; Nica, V


    The synthesis and properties of metal oxide pillared cationic clays (PILCs) has been subject to numerous studies in the last decades. In order to obtain TiO(2)-pillared type materials, sodium montmorillonite from Romania-areal of Valea Chioarului, having the following composition (% wt): SiO(2)-72.87; Al(2)O(3)-14.5; MgO-2.15; Fe(2)O(3)-1.13; Na(2)O-0.60; K(2)O-0.60; CaO-0.90; PC-5.70 and cation exchange capacity, determined by ammonium acetate method, of 82 meq/100g, as matrix, was used. Sodium form of the clay was modified, primarily, by intercalation of cetyl-trimethylammonium cations between negatively charged layers which will lead to the expansion of the interlayer space. For the preparation of the TiO(2)-pillared clay, the alkoxide molecules, as titania precursor, were adsorbed onto/into clay samples (1 mmol Ti/g clay), in hydrochloric acid environment, the resulted species being converted into TiO(2) pillars by calcination. The as-prepared materials have been used as catalysts for Congo Red dye photodegradation, under UV. The photocatalytic activity of the pillared clays is a function of TiO(2) pillars size, their increase leading to the enhancement of the contact areas between dye solution and photoactive species present in the interlayer space. The structural characteristics and properties of the obtained materials were investigated by X-ray Diffraction, Thermogravimetry Analysis, UV-vis Diffuse Reflectance, Transmission Electron Microscopy and Energy Dispersive X-ray Analysis.

  6. Sol-gel preparation of TiO{sub 2}-ZrO{sub 2} thin films supported on glass rings: Influence of phase composition on photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Alonso, Maria D. [Instituto de Catalisis y Petroleoquimica, CSIC, c/ Marie Curie, 2. Cantoblanco. 28049 Madrid (Spain)]. E-mail:; Tejedor-Tejedor, Isabel [Environmental Chemistry and Technology Program, University of Wisconsin, 660 North Park Street, Madison, WI 53706 (United States); Coronado, Juan M. [Instituto de Catalisis y Petroleoquimica, CSIC, c/ Marie Curie, 2. Cantoblanco. 28049 Madrid (Spain)]. E-mail:; Soria, Javier [Instituto de Catalisis y Petroleoquimica, CSIC, c/ Marie Curie, 2. Cantoblanco. 28049 Madrid (Spain); Anderson, Marc A. [Environmental Chemistry and Technology Program, University of Wisconsin, 660 North Park Street, Madison, WI 53706 (United States)


    In order to optimize the characteristics of TiO{sub 2}-ZrO{sub 2} thin films supported on glass for the photocatalytic removal of VOCs, acidic sols of different composition (ZrO{sub 2}, TiO{sub 2} and Ti-Zr mixed oxides) have been prepared using metal alkoxides as starting materials. The photoactive oxides were deposited on 'Raschig rings' of borosilicate glass using a dip-coating technique. The phase composition of the thin films was controlled during the sol preparation stage to produce either (1) Ti{sub 0.9}Zr{sub 0.1}O{sub 2} solid solutions, or (2) ZrO{sub 2}/TiO{sub 2} binary metal oxides (10% and 20% molar content of Zr). The particle size of the different sols was measured by photon correlation spectroscopy, and the xerogels were characterized by XRD, N{sub 2} adsorption isotherms, and TG-DTA, so as to monitor the modifications induced by the thermal treatments. Raman spectroscopy was used to determine the crystalline structure of the supported TiO{sub 2}-ZrO{sub 2} oxides, which in all cases corresponded to the anatase phase. The band gap of the thin films was estimated from the UV-vis spectra, and none of them differed significantly from that of unmodified TiO{sub 2}. The photoactivity of the coated glass 'Raschig rings' was measured for the oxidation of acetone and methylcyclohexane vapors using, respectively, total recycle and single pass plug flow photoreactors. The results obtained indicate that, for the same Zr content, the photoactivity of the films containing binary metal oxides is slightly higher than that of the solid solution. In contrast, specific surface area seems to have little influence on the performance of the thin films.


    Institute of Scientific and Technical Information of China (English)



    A process for the preparation of β-diketones,especialy aromatic β-diketones,by Claisen condensation reaction of acetophenone or its derivatives with alphatic esters in the presense of sodium alkoxide as a catalyst in an aromatic hydrocarbon solvent is reported.The different β-diketones can be obtained with high yields and purity.The crude materials was commercially available.The process is facile and can permit efficient recirculation of solvent.   The experiments on testing the extraction properties of β-diketones are performed.The results indicate that these β-diketones can extract copper efficiently under certain condition and be potential to become extractant of copper.%阐述了在醇钠作催化剂、芳香烃作溶剂的条件下,由苯乙酮或其衍生物与羧酸酯发生Claisen缩合反应合成β-二酮,特别是芳香族β-二酮的方法。该合成方法的优点是可以制备出高纯度不同结构的β-二酮,且产率高;所需原料为国内易得工业品,反应溶剂可重复使用;方法简便,有较好的工业应用价值。β-二酮的萃取性能表明,它是有效的铜萃取剂。

  8. In situ spectroscopic applications to the study of rechargeable lithium batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, R.; Kim, Sunghyun; Tryk, D.; Scherson, D.A. [Case Western Reserve Univ., Cleveland, OH (United States). Dept of Chemistry


    In situ attenuated total reflection Fourier transform infrared spectroscopy (ATR/FTIR) has been employed to examine the reactivity of lithium toward polyethylene oxide (PEO) at ca. 60{degree}C. Uncertainties regarding the cleanliness of the Li surfaces were, minimized by electrodepositing a film of metallic Li directly onto a thin layer of gold (ca. 60 {Angstrom}) vapor deposited on a Ge ATR optical element during the spectroscopic measurements. The ATR/FTIR features observed upon stripping the Li layer were consistent with the formation of alkoxide-type moieties resulting from the Li-induced cleavage of the ether-type functionalities. Electronic and structural aspects of the electrochemical insertion of lithium from non-aqueous electroyltes into FeS{sub 2} have been investigated using in situ Fe K-edge X-ray absorption fine structure (XAFS). The results obtained indicate that the incorporation of Li{sup +} in the pyrite lattice brings about a marked decrease in the amplitude of the extended XAFS (EXAFS) oscillations, particularly for shells associated with distant atoms and a rounding of the, X-ray absorption near edge structure (XANES) region. An analysis of the EXAFS spectra yielded a value for the FeS distance of 2.29 {plus_minus} 0.02 {Angstrom}. On this basis and additional in situ room temperature {sup 57}Fe Mossbauer effect spectroscopy data for the same system it has been proposed that the electrically formed material involves a highly disordered (possibly amorphous) form of Fe{sub l-x}S (with Li+ counterbalancing the charge).

  9. The mechanical robustness of atomic-layer- and molecular-layer-deposited coatings on polymer substrates (United States)

    Miller, David C.; Foster, Ross R.; Zhang, Yadong; Jen, Shih-Hui; Bertrand, Jacob A.; Lu, Zhixing; Seghete, Dragos; O'Patchen, Jennifer L.; Yang, Ronggui; Lee, Yung-Cheng; George, Steven M.; Dunn, Martin L.


    The mechanical robustness of atomic layer deposited alumina and recently developed molecular layer deposited aluminum alkoxide ("alucone") films, as well as laminated composite films composed of both materials, was characterized using mechanical tensile tests along with a recently developed fluorescent tag to visualize channel cracks in the transparent films. All coatings were deposited on polyethylene naphthalate substrates and demonstrated a similar evolution of damage morphology according to applied strain, including channel crack initiation, crack propagation at the critical strain, crack densification up to saturation, and transverse crack formation associated with buckling and delamination. From measurements of crack density versus applied tensile strain coupled with a fracture mechanics model, the mode I fracture toughness of alumina and alucone films was determined to be KIC=1.89±0.10 and 0.17±0.02 MPa m0.5, respectively. From measurements of the saturated crack density, the critical interfacial shear stress was estimated to be τc=39.5±8.3 and 66.6±6.1 MPa, respectively. The toughness of nanometer-scale alumina was comparable to that of alumina thin films grown using other techniques, whereas alucone was quite brittle. The use of alucone as a spacer layer between alumina films was not found to increase the critical strain at fracture for the composite films. This performance is attributed to the low toughness of alucone. The experimental results were supported by companion simulations using fracture mechanics formalism for multilayer films. To aid future development, the modeling method was used to study the increase in the toughness and elastic modulus of the spacer layer required to render improved critical strain at fracture. These results may be applied to a broad variety of multilayer material systems composed of ceramic and spacer layers to yield robust coatings for use in chemical barrier and other applications.

  10. Molecular catalytic coal liquid conversion. Quarterly progress report, [January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Cheng, C.; Ettinger, M.


    Last quarter, substantial progress has been made in the two general tasks advanced in our research proposal. The first task consists of the development of molecular homogeneous catalysts that can be used in the hydrogenation of coal liquids and in coal conversion processes. The second task concerns the activation of dihydrogen by basic catalysts in homogeneous reaction systems. With regards to the first task, we have prepared two organometallic rhodium (1) catalysts. These are the dimer of dichloropentamethylcyclopentadienylrhodium, [RhCl{sub 2}(C{sub 5}Me{sub 5})], and the dimer of chloro(1,5-hexadiene)rhodium We have subsequently investigated the hydrogenation of various aromatic organic compounds using these organometallic reagents as catalysts. Results showed that both catalysts effected the hydrogenation of the aromatic portions of a wide range of organic compounds, including aromatic hydrocarbons and aromatic compounds containing the ether group, alkyl groups, amino and carbonyl groups. However, both compounds were totally ineffective in catalyzing the hydrogenation of sulfur-containing aromatic organic compounds. Nevertheless, both rhodium catalysts successfully catalyzed the hydrogenation of naphthalene even in the presence of the coal liquids. With regards to base-activated hydrogenation of organic compounds, we have found that hydroxide and alkoxide bases are capable of activating,dihydrogen, thereby leading to the hydrogenation of phenyl-substituted alkenes. More specifically, tetrabutylammonium hydroxide, potassium tert-butoxide and potassium phenoxide were successfully used to activate dihydrogen and induce the hydrogenation of trans-stilbene. Potassium tert-butoxide was found to be slightly more effective than the other two bases in accomplishing this chemistry.

  11. Lanthanum(III) catalysts for highly efficient and chemoselective transesterification. (United States)

    Hatano, Manabu; Ishihara, Kazuaki


    A facile, atom-economical, and chemoselective esterification is crucial in modern organic synthesis, particularly in the areas of pharmaceutical, polymer, and material science. However, a truly practical catalytic transesterification of carboxylic esters with various alcohols has not yet been well established, since, with many conventional catalysts, the substrates are limited to 1°- and cyclic 2°-alcohols. In sharp contrast, if we take advantage of the high catalytic activities of La(Oi-Pr)(3), La(OTf)(3), and La(NO(3))(3) as ligand-free catalysts, ligand-assisted or additive-enhanced lanthanum(III) catalysts can be highly effective acid-base combined catalysts in transesterification. A highly active dinuclear La(III) catalyst, which is prepared in situ from lanthanum(III) isopropoxide and 2-(2-methoxyethoxy)ethanol, is effective for the practical transesterification of methyl carboxylates, ethyl acetate, weakly reactive dimethyl carbonate, and much less-reactive methyl carbamates with 1°-, 2°-, and 3°-alcohols. As the second generation, nearly neutral "lanthanum(III) nitrate alkoxide", namely La(OR)(m)(NO(3))(3-m), has been developed. This catalyst is prepared in situ from inexpensive, stable, low-toxic lanthanum(III) nitrate hydrate and methyltrioctylphosphonium methyl carbonate, and is highly useful in the non-epimerized transesterification of α-substituted chiral carboxylic esters, even under azeotropic reflux conditions. In these practical La(III)-catalyzed transesterifications, colorless esters can be obtained in small- to large-scale synthesis without the need for inconvenient work-up or careful purification procedures.

  12. Synthesis, structural and magnetic characterisation of iron(II/III), cobalt(II) and copper(II) cluster complexes of the polytopic ligand: N-(2-pyridyl)-3-carboxypropanamide. (United States)

    Russell, Mark E; Hawes, Chris S; Ferguson, Alan; Polson, Matthew I J; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S; Kruger, Paul E


    Herein we describe the synthesis, structural and magnetic characterisation of three transition metal cluster complexes that feature the polytopic ligand N-(2-pyridyl)-3-carboxypropanamide (H2L): [Fe3(III)Fe2(II)(HL)6(O)(H2O)3][ClO4]5·3MeCN·4H2O, 1, [Co8(HL)8(O)(OH)4(MeOH)3(H2O)]-[ClO4]3·5MeOH·2H2O, 2, and [Cu6(L(ox))4(MeOH)(H2O)3]·MeOH, 3. Complex 1 is a mixed valence penta-nuclear iron cluster containing the archetypal {Fe3(III)O} triangular basic carboxylate cluster at its core, with two Fe(II) ions above and below the core coordinated to three bidentate pyridyl-amide groups. The structure of the octanuclear Co(II) complex, 2, is based upon a central Co4 square with the remaining four Co(II) centres at the 'wing-tips' of the complex. The cluster core is replete with bridging oxide, hydroxide and carboxylate groups. Cluster 3 contains an oxidised derivative of the ligand, L(ox), generated in situ through hydroxylation of an α-carbon atom. This hexanuclear cluster has a 'barrel-like' core and contains Cu(II) ions in both square planar and square-based pyramidal geometries. Bridging between Cu(II) centres is furnished by alkoxide and carboxylate groups. Magnetic studies on 1-3 reveals dominant antiferro-magnetic interactions for 1 and 2, leading to small non-zero spin ground states, while 3 shows ferro-magnetic exchange between the Cu(II) centres to give an S = 3 spin ground state.

  13. 溶胶凝胶法制备( Ba0.3Sr0.7)(Zn1/3Nb2/3)O3微波介质陶瓷薄膜%FABRICATION OF ( Ba0.3Sr0.7 ) ( Zn1/3Nb2/3 ) O3 MICROWAVE DIELECTRIC CERAMIC THIN FILMS BY SOL-GEL

    Institute of Scientific and Technical Information of China (English)

    杨龙; 王锐; 石锋


    Inexpensive metal nitrates and barium acetate instead of metal alkoxides were used as raw materials, and high quality sol was obtained by utilization of acetylacetone and citric acid. Microwave dielectric ceramic (Ba0 3Sr0 7) (Zn1/3Nb2/3) O3 thin film was fabricated on Pt/Ti/SiO2/Si substrates by spin -coating, then annealed in the environment of oxygen. X - ray diffraction ( XRD) , Fourier transform infrared spectrometer (FTIR) , and scanning electron microscope ( SEM) were used to study the microstructures and morphological properties of the thin film. The results revealed that the main phases of the thin film were (Ba0 3Sr0 7) (Zn1/3Nb2/3) O3 with less second phase. The thin film was compact in surface and well crystallized without crack.%以柠檬酸和乙酰丙酮为络合剂和稳定剂,金属硝酸盐为起始原料制备溶胶.采用甩胶旋涂法在Pt/Ti/SiO2/Si基片上制膜并在O2环境下退火,重复3次制得所需薄膜.采用XRD,FTIR和SEM分析薄膜的结晶性,微观结构和表面形貌.结果表明:制备的薄膜主晶相为(Ba0.3Sr0.7)(Zn1/3Nb2/3)O3,伴有少量的第二相,同时,薄膜表面致密,无气孔,结晶良好,结晶颗粒均匀分布于薄膜的表面.

  14. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos


    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  15. Isotope effect maximum for proton transfer between normal acids and bases

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, N.A. (Univ. of Goeteborg); Chiang, Y.; Kresge, A.J.


    Kinetic isotope effects were determined for the reaction between p-methylbenzaldehyde and methoxylamine in the presence of thirteen carboxylic acid catalysts and ammonium ions using deuterium oxide as the solvent for k/sub D/ measurements. The ratio of k/sub H//k/sub D/ = 1 for the relatively strong acids, CNCH/sub 2/CO/sub 2/H and HCO/sub 2/H, rise to a maximum approaching 3 for CNCH/sub 2/CH/sub 2/NH/sub 3//sup +/, O(CH/sub 2/CH/sub 2/)/sub 2/NH/sub 2//sup +/, and C/sub 6/H/sub 5/CH/sub 2/NH/sub 3//sup +/, and decrease to less than 2 for CH/sub 3/OCH/sub 2/CH/sub 2/CH/sub 2/NH/sub 3//sup +/, and CH/sub 3/CH/sub 2/CH/sub 2/NH/sub 3//sup +/. The authors state that the maximum observed can not be the result of solvent and secondary isotope effects, but must be caused by a rate determining step involving the proton transfer from the catalyst to the alkoxide oxygen of the first-formed zwitterion intermediate. From a discussion of the pKa's of the proton donor and the protonated proton acceptor (for these systems, pKa = 0), the authors conclude that the experimental data are consistent with a model in which encounter, proton transfer, and separation occur at approximately equal rates.

  16. Growth of epitaxial films of sodium potassium tantalate and niobate on single-crystal lanthanum aluminate [100] substrates

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George H. [University of Tennessee, Knoxville (UTK); Specht, Eliot D [ORNL; Larese, John Z [ORNL; Xue, Ziling [University of Tennessee, Knoxville (UTK); Beach, David B [ORNL


    Epitaxial films of sodium potassium tantalate (Na{sub 0.5}K{sub 0.5}TaO{sub 3}, NKT) and sodium potassium niobate (Na{sub 0.5}K{sub 0.5}NbO{sub 3}, NKN) were grown on single-crystal lanthanum aluminate (LAO) (100) (indexed as a pseudo-cubic unit cell) substrates via an all-alkoxide solution (methoxyethoxide complexes in 2-methoxyethanol) deposition route for the first time. X-ray diffraction studies indicated that the onset of crystallization in powders formed from hydrolyzed gel samples was 550 C. {sup 13}C nuclear magnetic resonance studies of solutions of methoxyethoxide complexes indicated that mixed-metal species were formed, consistent with the low crystallization temperatures observed. Thermal gravimetric analysis with simultaneous mass spectrometry showed the facile loss of the ligand (methoxyethoxide) at temperatures below 400 C. Crystalline films were obtained at temperatures as low as 650 C when annealed in air. {theta}-2{theta} x-ray diffraction patterns revealed that the films possessed c-axis alignment in that only (h00) reflections were observed. Pole-figures about the NKT or NKN (220) reflection indicated a single in-plane, cube-on-cube epitaxy. The quality of the films was estimated via {omega} (out-of-plane) and {psi} (in-plane) scans and full-widths at half-maximum (FWHMs) were found to be reasonably narrow ({approx}1{sup o}), considering the lattice mismatch between the films and the substrate.

  17. Formation of silica iron oxide glasses (United States)

    Al-Bawab, Abeer F.

    The microemulsion-gel method was developed as an alternative process in the production of room temperature glasses. This method is based on the formation of a microemulsion, to which is added a metal alkoxide that undergoes hydrolysis and condensation to form an oxide network, which is dried into glass. The goal of this work is to understand the sol-gel process upon addition of hydrate metal salts. The thermal transitions of the silica containing ferric nitrate hydrate were examined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Using infrared (IR) spectroscopy and X-ray diffraction (XRD). The glasses with a less than 30 mol % iron nitrate were amorphous, while those higher concentration were crystalline. Based on XRD the thermal transitions did not alter the crystallinity. The IR spectra indicated the existence of Si-O-Fe bonds. Thermal analysis indicated similar transitions as exhibited by pure iron nitrate with minor modifications due to interactions with the silica. The reaction between tetraethoxysilane and chloral hydrate in ethanol was followed by NMR of the sp{29}Si nucleus at two different pHs. The sp{29}Si NMR spectra were similar to those reported for the reactions in alcohol between tetraethoxysilane and water of low pH, and for the reactions in the presence of inorganic hydrate. At pH 4, monomene silicon species were detected where at pH 2 the reaction was sufficiently rapid that multi hydroxy monomers were not detected as expected from the catalysts. The reaction proceeded without adding water. The reaction between aluminum chloride and methoxydimethyloctylsilane was investigated at room temperature using NMR and IR spectroscopy in addition to a molecular weight determination from the freezing point reduction in benzene. The structure as deduced from the experimental results was found to be a dimer containing two silicon atoms and two aluminum atoms of which the latter were tetrahedrally coordinated.

  18. Assessing the reactivity of sodium alkyl-magnesiates towards quinoxaline: single electron transfer (SET) vs. nucleophilic alkylation processes. (United States)

    Livingstone, Zoe; Hernán-Gómez, Alberto; Baillie, Sharon E; Armstrong, David R; Carrella, Luca M; Clegg, William; Harrington, Ross W; Kennedy, Alan R; Rentschler, Eva; Hevia, Eva


    By exploring the reactivity of sodium butyl-magnesiate (1) supported by the bulky chelating silyl(bisamido) ligand {Ph2Si(NAr*)2}(2-) (Ar* = 2,6-iPr2-C6H3) towards Quinoxaline (Qx), the ability of this bimetallic system to effectively promote SET processes has been disclosed. Thus 1 executes the single-electron reduction of Qx affording complex (2) whose structure in the solid state contains two quinaxolyl radical anions Qx˙ stabilised within a dimeric magnesiate framework. Combining multinuclear NMR and EPR measurements with DFT calculations, new insights into the constitution of 2 in solution and its magnetic behaviour have been gained. Further evidence on the SET reactivity of 1 was found when it was reacted with nitroxyl radical TEMPO which furnished contacted ion pair sodium magnesiate [(Ph2Si(NAr*)2)Mg(TEMPO(-))Na(THF)3] (4) where both metals are connected by an alkoxide bridge, resulting from reduction of TEMPO. The role that the different ligands present in 1 can play in these new SET reactions has also been assessed. Using an amination approach, the Bu group in 1 can be replaced by the more basic amide TMP allowing the isolation of (3) which was characterised by multinuclear NMR and X-ray crystallography. (1)H NMR monitoring of the reaction of 3 with Qx showed its conversion to 2, leaving the hydrogen atoms of the heterocycle untouched. Contrastingly, using sodium homoalkyl magnesiate [NaMg(CH2SiMe3)3] (5) led to the chemoselective C2 alkylation of this heterocycle, suggesting that the presence of the steric stabiliser {Ph2Si(NAr*)2}(2-) on the mixed-metal reagent is required in order to facilitate the Qx reduction.

  19. High-throughput analysis for preparation, processing and analysis of TiO{sub 2} coatings on steel by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cuadrado Gil, Marcos, E-mail: [SCRIPTS - Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3) (Belgium); Van Driessche, Isabel, E-mail: [SCRIPTS - Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3) (Belgium); Van Gils, Sake, E-mail: [OCAS - ArcelorMittal Gent R and D Centre, Pres. J.F. Kennedylaan 3, Zelzate B-9060 (Belgium); Lommens, Petra, E-mail: [SCRIPTS - Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3) (Belgium); Castelein, Pieter, E-mail: [Flamac - A Division of SIM, Technologiepark 903, Zwijnaarde 9052 (Belgium); De Buysser, Klaartje, E-mail: [SCRIPTS - Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3) (Belgium)


    Highlights: Black-Right-Pointing-Pointer High-throughput preparation of TiO{sub 2} aqueous precursors. Black-Right-Pointing-Pointer Analysis of stability and surface tension. Black-Right-Pointing-Pointer Deposition of TiO{sub 2} coatings. - Abstract: A high-throughput preparation, processing and analysis of titania coatings prepared by chemical solution deposition from water-based precursors at low temperature ( Almost-Equal-To 250 Degree-Sign C) on two different types of steel substrates (Aluzinc Registered-Sign and bright annealed) is presented. The use of the high-throughput equipment allows fast preparation of multiple samples saving time, energy and material; and helps to test the scalability of the process. The process itself includes the use of IR curing for aqueous ceramic precursors and possibilities of using UV irradiation before the final sintering step. The IR curing method permits a much faster curing step compared to normal high temperature treatments in traditional convection devices (i.e., tube furnaces). The formulations, also prepared by high-throughput equipment, are found to be stable in the operational pH range of the substrates (6.5-8.5). Titanium alkoxides itself lack stability in pure water-based environments, but the presence of the different organic complexing agents prevents it from hydrolysis and precipitation reactions. The wetting interaction between the substrates and the various formulations is studied by the determination of the surface free energy of the substrates and the polar and dispersive components of the surface tension of the solutions. The mild temperature program used for preparation of the coatings however does not lead to the formation of pure crystalline material, necessary for the desired photocatalytic and super-hydrophilic behavior of these coatings. Nevertheless, some activity can be reported for these amorphous coatings by monitoring the discoloration of methylene blue in water under UV irradiation.

  20. Probing the reaction mechanism of IspH protein by x-ray structure analysis

    KAUST Repository

    Gräwert, Tobias


    Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) represent the two central intermediates in the biosynthesis of isoprenoids. The recently discovereddeoxyxylulose 5-phosphate pathway generates a mixture of IPP and DMAPP in its final step by reductive dehydroxylation of 1-hydroxy-2-methyl- 2-butenyl 4-diphosphate. This conversion is catalyzed by IspH protein comprising a central iron-sulfur cluster as electron transfer cofactor in the active site. The five crystal structures of IspH in complex with substrate, converted substrate, products and PPi reported in this article provide unique insights into the mechanism of this enzyme. While IspH protein crystallizes with substrate bound to a [4Fe-4S] cluster, crystals of IspH in complex with IPP, DMAPP or inorganic pyrophosphate feature [3Fe-4S] clusters. The IspH:substrate complex reveals a hairpin conformation of the ligand with the C(1) hydroxyl group coordinated to the unique site in a [4Fe-4S] cluster of aconitase type. The resulting alkoxide complex is coupled to a hydrogen-bonding network, which serves as proton reservoir via a Thr167 proton relay. Prolonged x-ray irradiation leads to cleavage of the C(1)-O bond (initiated by reducing photo electrons). The data suggest a reaction mechanism involving a combination of Lewis-acid activation and proton coupled electron transfer. The resulting allyl radical intermediate can acquire a second electron via the iron-sulfur cluster. The reaction may be terminated by the transfer of a proton from the β-phosphate of the substrate to C(1) (affording DMAPP) or C(3) (affording IPP).

  1. Sol-Gel Precursors for Ceramics from Minerals Simulating Soils from the Moon and Mars (United States)

    Sibille, Laurent; Gavira-Gallardo, Jose-Antonio; Hourlier-Bahloul, Djamila


    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report some preliminary results on the production of sol-gel precursors for ceramic products using mineral resources available in Martian or Lunar soil. The presence of SiO2, TiO2, and A12O3 in both Martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and Lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from Lunar and Martian simulant soils. Clear sol-gel precursors have been obtained by dissolution of silica from Lunar simulant soil in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy were used to characterize the elemental composition and structure of the precursor molecules. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors. In the second set of experiments, we used the same starting materials to synthesize silicate esters in acidified alcohol mixtures. Preliminary results indicate the presence of silicon alkoxides in the product of distillation.

  2. Synthesis, crystal structure of diferrous complex and its reactivity with dioxygen

    Institute of Scientific and Technical Information of China (English)


    The dinuclear complex of [ Fe2L{ O2P(OPh)2} ] (ClO4)2·Et2O(1) (where L represents the dinucleating ligand N-Et-HPTB, anion of N, N, N′, N′-tetrakis (N-ethyl-2-benzimidazolyemethyl)- 2-hydroxy-1, 3-diamino-propane) has been synthesized and crystallizes in the triclinic space group P with cell constants a = 1.526(3) nm, b = 1.259 8(3) nm, c = 1.563 0(3) nm , α= 94.41(3)°, β= 115.31(3)°, γ = 99.90(3)°, V = 3.267(1) nm3, z = 2, R = 0.084 7 and Rw = 0.177 8. The Fe(Ⅱ) sites are bridged by an alkoxide of the dinucleating ligand and a phosphate, affording a diiron core with an Fe-μ-O-Fe angle of 131.20(3)° and an Fe-Fe distance of 0.364 9 nm. Both Fe(Ⅱ) centers have trigonal bipyramidal geometry. Dioxygen adduct (1/O2) forms upon exposure of the diferrous complex to O2 at low temperature (-60℃). The 1/O2 adduct is stable at -60℃ but decomposes upon warming. The adduct exhibits visible absorption maximum near 606 nm and resonance Raman features at 478 cm-1 (γFe-O) and 897 cm-1 (γO-O), and the latter is the characteristic of a μ-1,2-peroxo species, indicating that dioxygen adducts can serve as models for the putative oxygenated intermediate of some non-heme diiron-oxo proteins.

  3. Functionalization of luminescent YVO{sub 4}:Eu{sup 3+} nanoparticles by sol–gel

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Barbara A.; Ferreira, Natália H.; Oliveira, Pollyanna F.; Faria, Emerson H. de; Tavares, Denise C.; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail:


    Over the last decades, researchers have explored nanotechnological applications in different areas. The non-hydrolytic and hydrolytic sol–gel routes offer the ideal conditions to obtain materials with distinct compositions and multifunctionality, for use in such diverse areas as nanomedicine and technology. In this work, we used the modified hydrolytic sol–gel route to prepare YVO{sub 4} doped with Eu{sup 3+} ion. The YVO{sub 4}:Eu{sup 3+} nanoparticles were functionalized with 3-chloropropyltriethoxysilane using the hydrolytic sol–gel process; the drug cisplatin was then added to them. The final powder was characterized by thermal analysis, infrared spectroscopy, X-ray diffraction, and photoluminescence. The powder X-ray diffraction patterns of the samples obtained before and after functionalization revealed well defined peaks ascribed to the tetragonal structure of the YVO{sub 4} phase. The thermal analysis curves evidenced mass loss relative to 3-chloropropyltriethoxysilane and cisplatin decomposition. Infrared spectroscopy showed the peaks related to the CH and NH groups vibration modes, confirming YVO{sub 4} functionalization. The excitation and emission spectrum of the Eu{sup 3+} ion did not change upon its doping into the matrix functionalized with 3-chloropropyl and cisplatin. Cytotoxicity tests conducted on normal Chinese hamster (V79 cells) and murine melanoma (B16F10) cells attested that the matrix was not toxic. - Highlights: • Sol–gel methodology was used to obtain luminescent YVO{sub 4}. • Matrix was functionalized by alkoxide. • YVO{sub 4} matrix was not toxic. • YVO{sub 4}:Eu{sup 3+} nanoparticles existed in the cell cytoplasm and nucleus. • YVO{sub 4}:Eu{sup 3+} can function as a fluorescent label and drug delivery system.

  4. Synthesis and characterization of polyhedral oligomeric titanized silsesquioxane: A new biocompatible cage like molecule for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen, E-mail: [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Messori, Massimo [Dipartimento di Ingegneria ‘Enzo Ferrari’, Università di Modena e Reggio Emilia, Modena (Italy)


    Organic–inorganic hybrid materials have shown improved properties to be used as biocompatible coating in biomedical applications. Polyhedral oligomeric silsesquioxane (POSS) containing coatings are among hybrid materials showing promising properties for these applications. In this work an open cage POSS has been reacted with a titanium alkoxide to end cap the POSS molecule with titanium atom to obtain a so called polyhedral oligomeric metalized silsesquioxane (POMS). The synthesized POMS was characterized by FTIR, RAMAN and UV–visible spectroscopy as well as {sup 29}Si NMR and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) techniques. Appearance of peaks at 920 cm{sup −1} in FTIR and 491 cm{sup −1} and 1083 cm{sup −1} in Raman spectra confirmed Si–O–Ti linkage formation. It was also demonstrated that POMS was in a monomeric form. To evaluate the biocompatibility of hybrids films, pristine POSS and synthesized POMS were used in synthesis of a polycarbonate urethane polymer. Results revealed that POMS containing hybrid, not only had notable thermal and mechanical stability compared to POSS containing one, as demonstrated by DSC and DMTA analysis, they also showed controlled surface properties in such a manner that hydrophobicity and biocompatibility were both reachable to give rise to improved cell viability in presence of human umbilical vein endothelial cells (HUVEC) and MRC-5 cells. - Highlight: • Polyhedral Oligomeric Metalized Silsesquioxane (POMS) based on titanium was synthesized. • POMS can improve mechanical properties of polyurethane. • POMS increases hydrophobicity of polyurethane. • POMS is a unique nanocage to enhance biocompatibility of polyurethane.

  5. Alkaline Earth Metal Zirconate Perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)) Derived from Molecular Precursors and Doped with Eu(3+) Ions. (United States)

    Drąg-Jarząbek, Anna; John, Łukasz; Petrus, Rafał; Kosińska-Klähn, Magdalena; Sobota, Piotr


    The effect of alkaline earth metal alkoxides on the protonation of zirconocene dichloride was investigated. This approach enabled the design of compounds with preset molecular structures for generating high-purity binary metal oxide perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)). Single-source molecular precursors [Ba4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2(η(2) -HOR)2 (HOR)2 Cl4], [Sr4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2 (HOR)4 Cl4], [Ca4 Zr2 (μ6-O)(μ3 ,η(2)-OR)8 (OR)2 Cl4], and [Ca6 Zr2 (μ2 ,η(2)-OR)12 (μ-Cl)2 (η(2) -HOR)4 Cl6 ]⋅8 CH2 Cl2 were prepared via elimination of the cyclopentadienyl ring from Cp2 ZrCl2 as CpH in the presence of M(OR)2 and alcohol ROH (ROH=CH3OCH2 CH2OH) as a source of protons. The resulting complexes were characterized by elemental analysis, IR and NMR spectroscopy, and single-crystal X-ray diffraction. The compounds were then thermally decomposed to MCl2 /MZrO3 mixtures. Leaching of MCl2 from the raw powder with deionized water produced highly pure perovskite-like oxide particles of 40-80 nm in size. Luminescence studies on Eu(3+)-doped MZrO3 revealed that the perovskites are attractive host lattices for potential applications in display technology.

  6. Sol-gel approach to in situ creation of high pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME). (United States)

    Alhooshani, Khalid; Kim, Tae-Young; Kabir, Abuzar; Malik, Abdul


    A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME).

  7. Sol-gel germania triblock polymer coatings of exceptional pH stability in capillary microextraction online-coupled to high-performance liquid chromatography. (United States)

    Segro, Scott S; Triplett, Judy; Malik, Abdul


    For the first time, a germania-based sol-gel coating was used in capillary microextraction (CME) in combination with high-performance liquid chromatography (HPLC). A hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), was covalently bonded into a sol-gel germania matrix in the course of its creation from an alkoxide precursor via hydrolytic polycondensation reactions. A thin layer of this in situ-created sol-gel hybrid material was covalently anchored to the inner walls of a 0.25 mm i.d. fused silica capillary to produce a sol-gel germania triblock polymeric sorbent in the form of a highly stable surface coating. Such a coating served as an effective extracting phase for the preconcentration of a wide range of polar and nonpolar analytes (e.g., alcohols, amines, ketones, phenols, and polycyclic aromatic hydrocarbons) with nanomolar and picomolar detection limits. Most significantly, the sol-gel germania triblock polymer coating demonstrated impressive resistance to extreme pH conditions, surviving 5 days of continuous exposure to 1.0 M HCl (pH approximately 0.0) or 1.0 M NaOH (pH approximately 14.0), practically without any changes in performance. This shows the suitability of sol-gel germania hybrid organic-inorganic hybrid materials for use as sorbents or stationary phases under extreme pH conditions, often needed in a variety of separation and sample preparation techniques and applications, including ion chromatography, hydrophobic interaction chromatography, proteomics, HPLC with electrochemical detection, isoelectric focusing, and extraction of acidic and basic analytes.

  8. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties. (United States)

    Salarian, Mehrnaz; Xu, William Z; Wang, Zhiqiang; Sham, Tsun-Kong; Charpentier, Paul A


    Calcium phosphate-based nanocomposites offer a unique solution toward producing scaffolds for orthopedic and dental implants. However, despite attractive bioactivity and biocompatibility, hydroxyapatite (HAp) has been limited in heavy load-bearing applications due to its intrinsically low mechanical strength. In this work, to improve the mechanical properties of HAp, we grew HAp nanoplates from the surface of one-dimensional titania nanorod structures by combining a coprecipitation and sol-gel methodology using supercritical fluid processing with carbon dioxide (scCO2). The effects of metal alkoxide concentration (1.1-1.5 mol/L), reaction temperature (60-80 °C), and pressure (6000-8000 psi) on the morphology, crystallinity, and surface area of the resulting nanostructured composites were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) method. Chemical composition of the products was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure (XANES) analyses. HAp nanoplates and HAp-TiO2 nanocomposites were homogeneously mixed within poly(ε-caprolactone) (PCL) to develop scaffolds with enhanced physical and mechanical properties for bone regeneration. Mechanical behavior analysis demonstrated that the Young's and flexural moduli of the PCL/HAp-TiO2 composites were substantially higher than the PCL/HAp composites. Therefore, this new synthesis methodology in scCO2 holds promise for bone tissue engineering with improved mechanical properties.

  9. Dehydration of 1-octadecanol over H-BEA: A combined experimental and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenji; Liu, Yuanshuai; Barath, Eszter; Wang, Lucy; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.


    Liquid phase dehydration of 1-octdecanol, which is intermediately formed during the hydrodeoxygenation of microalgae oil, has been explored in a combined experimental and computational study. The alkyl chain of C18 alcohol interacts with acid sites during diffusion inside the zeolite pores, resulting in an inefficient utilization of the Brønsted acid sites for samples with high acid site concentrations. The parallel intra- and inter- molecular dehydration pathways having different activation energies pass through alternative reaction intermediates. Formation of surface-bound alkoxide species is the rate-limiting step during intramolecular dehydration, whereas intermolecular dehydration proceeds via a bulky dimer intermediate. Octadecene is the primary dehydration product over H-BEA at 533 K. Despite of the main contribution of Brønsted acid sites towards both dehydration pathways, Lewis acid sites are also active in the formation of dioctadecyl ether. The intramolecular dehydration to octadecene and cleavage of the intermediately formed ether, however, require strong BAS. L. Wang, D. Mei and J. A. Lercher, acknowledge the partial support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  10. Yttrium deposition on mesoporous TiO2: textural design and UV decolourization of organic dyes

    Indian Academy of Sciences (India)

    M L Ojeda; C Velasquez; V Renteria; A Campero; M A García-Sánchez; F Rojas


    This study discusses about the photochemical, topological and textural properties of yttrium-doped titanium dioxide (TiO2) photocatalysts. The mesoporous yttrium-doped TiO2 substrates prepared in this research work operate efficiently via low-cost commercial 13-W UV lamps. A quantity of 2 wt% yttrium deposition on TiO2 accelerates methyl orange UV decolourization kinetics. When Y content increases to 8 wt%, besides anatase, rutile is formed from 600°C. The Y2Ti2O7 photoinactive compound emerges at 800°C. The P-123 surfactant mesopore templating treatment of TiO2 xerogels (when concurrent with the sol–gel Y-doping of Ti alkoxides) features the following two correlated phenomena: (i) The surface area increases while the access to the inner porosity of the substrate becomes much easier, so that a larger portion of the surface is made accessible to the dye molecules as well as to the yttrium dopant; (ii) the inclusion of tubular instead of ink-bottle pores facilitates the transport of organic species in and out of the pore structure. The most active mesoporous substrate resulted to be made of 2 wt% Y; contrastingly, when Y= 8 wt%, photoinactivity arose because of Y2Ti2O7 formation. The involvement of P123 was not the sole factor influencing the efficiency of TiO2 mesoporous photocatalysts. There were additional key factors, such as the surging of co-ordination and nucleophilic species, during the dye photodegradation process, which were also induced by the presence of Y species on the surface of these substrates.

  11. Combinatorial Approach for the Discovery of New Scintillating Materials SBIR Phase I Final Report Report # DOE/ER/84310

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, J P; Agrawal, A; Tonazzi, J C


    The combinatorial approach for the discovery of new scintillating materials has been investigated using the wet-chemical (sol-gel) synthesis methods. Known scintillating compounds Lu2SiO5 (LSO) and (LuAl)O3 (LAO) and solid solutions in the systems of Lu2O3 -Y2O3 – SiO2 (CeO2-doped) (LYSO) and Lu2O3 -Y2O3 – Al2O3 (CeO2 –doped) (LYAO) were synthesized from sol-gel precursors. Sol-gel precursors were formulated from alkoxides and nitrates and acetates of the cations. Sol-gel solution precursors were formulated for the printing of microdot arrays of different compositions in the above oxide systems. Microdot arrays were successfully printed on C-cut and R-cut sapphire substrates using Biodot printer at Los Alamos National Laboratory (LANL). The microdot arrays were adherent and stable after heat-treating at 1665oC and had an average thickness of around 2m. X-ray fluorescence elemental mapping showed the arrays to be of the correct chemical composition. Sintered microdots were found to be highly crystalline by microscopic observation and X-ray diffraction. Scintillation was not clearly detectable by visual observation under UV illumination and by video observation under the scanning electron beam of an SEM. The microdots were either poorly scintillating or not scintillating under the present synthesis and testing conditions. Further improvements in the synthesis and processing of the microdot arrays as well as extensive scintillation testing are needed.

  12. LaFePdO{sub 3} perovskite automotive catalyst having a self-regenerative function

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hirohisa [Materials Research and Development Division, Daihatsu Motor Co., Ltd., Osaka 563-8651 (Japan)]. E-mail:; Tan, Isao [Materials Research and Development Division, Daihatsu Motor Co., Ltd., Osaka 563-8651 (Japan); Uenishi, Mari [Materials Research and Development Division, Daihatsu Motor Co., Ltd., Osaka 563-8651 (Japan); Taniguchi, Masashi [Materials Research and Development Division, Daihatsu Motor Co., Ltd., Osaka 563-8651 (Japan); Kimura, Mareo [Research and Development Division, Cataler Corporation, Shizuoka 437-1492 (Japan); Nishihata, Yasuo [Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, Hyogo 679-5148 (Japan); Mizuki, Jun' ichiro [Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, Hyogo 679-5148 (Japan)


    An automotive gasoline engine is operated close to the stoichiometric air-to-fuel ratio to convert the pollutant emissions simultaneously, accompanying with redox (reduction and oxidation) fluctuations in exhaust-gas composition through adjusting the air-to-fuel ratio. An innovative LaFe{sub 0.95}Pd{sub 0.05}O{sub 3} perovskite catalyst, named 'the intelligent catalyst', has been developed, and which has a new self-regenerative function of the precious metal in the inherent fluctuations of automotive exhaust-gas. The LaFe{sub 0.95}Pd{sub 0.05}O{sub 3} perovskite catalyst, La located at the A-site, was prepared by the alkoxide method. Pd located at the B-site of the perovskite lattice in the oxidative atmosphere, and segregated out to form small metallic particles in the reductive atmosphere. The catalyst retained a predominantly perovskite structure throughout a redox cycle of the exhaust-gas, while the local structure around Pd could be changed in a completely reversible manner. The agglomeration and growth of Pd particles is suppressed, even under the severe environment, as a result of the movement between inside and outside the perovskite lattice. It is revealed that the self-regenerative function of Pd occurs even at 200 deg. C, unexpectedly low temperature, in the LaFe{sub 0.95}Pd{sub 0.05}O{sub 3} catalyst. Since the high catalytic activity is maintained, the great reduction of Pd loading has been achieved. The intelligent catalyst is expected as a new application of the rare earth, and then the technology is expected in the same way in the global standard of the catalyst designing.

  13. Synthesis and characterization of homochiral polymeric S-malato molybdate(VI): toward the potentially stereospecific formation and absolute configuration of iron-molybdenum cofactor in nitrogenase. (United States)

    Zhou, Zhao-Hui; Yan, Wen-Bin; Wan, Hui-Lin; Tsai, Khi-Rui


    Reaction of sodium or potassium molybdate and excess malic acid in a wide range of pH values (pH 4.0-7.0) resulted in the isolation of two cis-dioxo-bis(malato)-Mo(VI) complexes, viz. Na(3)[MoO(2)H(S-mal)(2)] and K(3)[MoO(2)H(S-mal)(2)].H(2)O (H(3)mal=malic acid). The sodium complex is also characterized by an X-ray structure analysis, showing that the mononuclear Mo units are linked together via very strong symmetric CO(2)...H... O(2)C-hydrogen bond [2.432(5) A], forming a polymeric chain. The molybdenum atoms are quasi-octahedrally coordinated by two cis-oxo groups and two bidentate malate ligands via its alkoxy and alpha-carboxyl groups, while the beta-carboxylic and carboxylate groups remain uncomplexed, as the coordination of vicinal carboxylate and alkoxide of homocitrate in FeMo cofactor of nitrogenase. The absolute configuration of the metal center in this S-malato complex is assigned as Lambda and the homochirality within the chain is established as a homochiral form ...Lambda(S)-Lambda(S)-Lambda(S)-Lambda(S)... . It is proposed that the chiral configuration of the metal center in wild-type FeMo-co biosynthesis might be induced by the early coordination of the chiral R-homocitric acid, while a mixture of raceme might be obtained in the biosynthesis of NifV(-) FeMo-cofactor. The absolute configuration of wild-type FeMo-cofactor is assigned as Delta(R).

  14. Effect of Support Structure in Au/Al2O3-TiO2 Catalysts in Low-Temperature CO Oxidation

    Directory of Open Access Journals (Sweden)

    Rajska Maria


    Full Text Available The aim of this study was to determine the effect of the support phase composition (Al2O3–TiO2 and the addition of gold on the catalytic properties in low-temperature CO oxidation. In this paper, the physicochemical properties and results of catalytic measurements performed for the obtained samples were investigated. The catalyst carriers were prepared using the sol-gel method with alkoxide Al(C3H7O3 and Ti(C3H7O4 employed to obtain the corresponding oxides, in the case of which the molar ratio (Al2O3:TiO2 was 0.75:0.25, 0.50:0.50 and 0.25:0.75, thus corresponding to the molar ratio of the Al:Ti elements, i.e. 1.5:0.25, 2:1 and 0.5:0.75 respectively. The gold catalysts were prepared through the deposition of gold by the deposition precipitation method using the theoretical loading of Au 2 wt.%. To examine the effect of the phase composition on the catalytic activity of the obtained samples, appropriate carriers were calcined at two different temperatures: 500°C and 1350°C. This made it possible to obtain the intended polymorphs of aluminum oxide and titanium dioxide (γ–Al2O3, α–Al2O3, anatase and rutile. For certain samples, calcined at a high temperature, the aluminum titanium oxide (Al2O5Ti phase was also observed. The prepared samples were characterized by XRD, BET, SEM, and additionally both particle size distribution analysis and measurements of the catalytic activity were performed. The highest catalytic activity was shown by Au/75Al–25Ti_LT, where T90 was about 110°C.

  15. Comparative Study of the Optical and Textural Properties of Tetrapyrrole Macrocycles Trapped Within ZrO2, TiO2, and SiO2 Translucent Xerogels

    Directory of Open Access Journals (Sweden)

    Eduardo Salas-Bañales


    Full Text Available The entrapping of physicochemical active molecules inside mesoporous networks is an appealing field of research due to the myriad of potential applications in optics, photocatalysis, chemical sensing, and medicine. One of the most important reasons for this success is the possibility of optimizing the properties that a free active species displays in solution but now trapped inside a solid substrate. Additionally it is possible to modulate the textural characteristics of substrates, such as pore size, specific surface area, polarity and chemical affinity of the surface, toward the physical or chemical adhesion of a variety of adsorbates. In the present document, two kinds of non-silicon metal alkoxides, Zr and Ti, are employed to prepare xerogels containing entrapped tetrapyrrolic species that could be inserted beforehand in analogue silica systems. The main goal is to develop efficient methods for trapping or binding tetrapyrrole macrocycles inside TiO2 and ZrO2 xerogels, while comparing the properties of these systems against those of the SiO2 analogues. Once the optimal synthesis conditions for obtaining translucent monolithic xerogels of ZrO2 and TiO2 networks were determined, it was confirmed that these substrates allowed the entrapment, in monomeric form, of macrocycles that commonly appear as aggregates within the SiO2 network. From these experiments, it could be determined that the average pore diameters, specific surface areas, and water sorption capacities depicted by each one of these substrates, are a consequence of their own nature combined with the particular structure of the entrapped tetrapyrrole macrocycle. Furthermore, the establishment of covalent bonds between the intruding species and the pore walls leads to the obtainment of very similar pore sizes in the three different metal oxide (Ti, Zr, and Si substrates as a consequence of the templating effect of the encapsulated species.

  16. Synthesis and characterization of Sn doped TiO{sub 2} photocatalysts: Effect of Sn concentration on the textural properties and on the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Vázquez, I.; Del Angel, G.; Bertin, V. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); González, F. [Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Vázquez-Zavala, A.; Arrieta, A. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Padilla, J.M. [Universidad Tecnológica del Centro de Veracruz, Área de Tecnología, Av. Universidad Carretera Federal Cuitláhuac-La Tinaja No. 350, Cuitláhuac, Veracruz 94910 (Mexico); Barrera, A. [Universidad de Guadalajara, Centro Universitario de la Ciénega, Av. Universidad, Número 1115, Col. Linda Vista, Apdo. Postal 106, Ocotlán Jal. (Mexico); Ramos-Ramirez, E. [Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato de la Universidad de Guanajuato Noria Alta S/N, Col. Noria Alta, Guanajuato, Gto. C.P. 36050 (Mexico)


    Abstract: TiO{sub 2} and Sn-doped TiO{sub 2} materials were prepared by sol–gel method using titanium and tin alkoxides at different Sn concentration (0.1 mol%, 0.5 mol%, 1 mol%, 3 mol% and 5 mol%). Samples were characterized by thermo gravimetric analyzer with differential scanning calorimeter (TGA–DSC), X-ray Rietveld refinement, N{sub 2} adsorption (BET), transmission electron microscopy (TEM), UV–vis spectroscopies technology and Raman spectroscopy. Only anatase phase was observed in pure TiO{sub 2}, whereas anatase and brookite were obtained in Sn-doped TiO{sub 2} samples. Sn dopant acts as a promoter in phase transformation of TiO{sub 2}. The Rietveld refinements method was used to determine the relative weight of anatase and brookite, and crystallite size as a function of Sn concentration after calcination of samples at 673 K. It was also demonstrated the incorporation of Sn{sup 4+} into the anatase TiO{sub 2} structure. Sn{sup 4+} inhibits the growth of TiO{sub 2} crystallite size, which leads to an increase of the specific surface area of TiO{sub 2}. From XRD analysis, the solid solution limit of Sn{sup 4+} into TiO{sub 2} is 5 mol% Sn. The photocatalytic activity on Sn{sup 4+} doped TiO{sub 2} was determined for the 2,4-dichlorophenoxyacetic acid reaction. The maximum in activity was attributed to the coexistence of anatase and brookite phases in the appropriate ratio and crystallite size.

  17. Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Obdulia Medina-Juárez


    Full Text Available Special preparation of Santa Barbara Amorphous (SBA-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO2. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO2 adsorption is only reasonably achieved when the SiO2 surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent. Unfunctionalized and amine-functionalized substrates were characterized through X-ray diffraction, N2 sorption, Raman spectroscopy, electron microscopy, 29Si solid-state Nuclear Magnetic Resonance (NMR, and NH3 thermal programmed desorption. These analyses proved that the thermo-alkaline procedure desilicates the substrate and eliminates the micropores (without affecting the SBA-15 capillaries, present in the original solid. NMR analysis confirms that the hydroxylated solid anchors more amino functionalizing molecules than the unhydroxylated material. The SBA-15 sample subjected to hydroxylation and amino-functionalization displays a high enthalpy of interaction, a reason why this solid is suitable for a strong deposition of CO2 but with the possibility of observing a low-pressure hysteresis phenomenon. Contrastingly, CH4 adsorption on amino-functionalized, hydroxylated SBA-15 substrates becomes almost five times lower than the CO2 one, thus giving proof of their selectivity toward CO2. Although the amount of retained CO2 is not yet similar to or higher than those determined in other investigations, the methodology herein described is still susceptible to optimization.

  18. Transferability and Adhesion of Sol-Gel-Derived Crystalline TiO2 Thin Films to Different Types of Plastic Substrates. (United States)

    Amano, Natsumi; Takahashi, Mitsuru; Uchiyama, Hiroaki; Kozuka, Hiromitsu


    Anatase thin films were prepared on various plastic substrates by our recently developed sol-gel transfer technique. Polycarbonate (PC), poly(methyl methacrylate) (PMMA), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyether ether ketone (PEEK), and polyvinylidene chloride (PVDC) were employed as plastic substrates. A Si(100) substrate was first coated with a polyimide (PI)/polyvinylpyrrolidone (PVP) mixture layer, and an alkoxide-derived titania gel film was deposited on it by spin-coating. The resulting titania gel film was heated to 600 °C, during which the PI/PVP layer decomposed and the gel film was converted into a 60 nm thick anatase film. The anatase film was then transferred from the Si(100) substrate to the plastic substrate. This was achieved by heating the plastic/anatase/Si(100) stack in a near-infrared image furnace to 120-350 °C, depending on the type of plastic substrate, under unidirectional pressure. The anatase film cracked during transfer to PE, PP, PEEK, and PVDC substrates but did not crack during transfer to PC, PMMA, and PET substrates. The fraction of the total film area that was successfully transferred was assessed with the aid of image analysis. This fraction tended to be large for plastics with C═O and C-O groups and small for those without these groups. The film/substrate adhesion assessed by cross-cut tape tests also tended to be high for plastics with C═O and C-O groups and low for those without these groups. The adhesion to plastics without C═O or C-O groups could be enhanced and their transfer area fraction increased by oxidizing the native plastic surface by ultraviolet-ozone treatment prior to transfer.

  19. Sol-gel preparation of silica and titania thin films (United States)

    Thoř, Tomáš; Václavík, Jan


    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  20. Preparation and mechanical properties of silicon oxycarbide fibers from electrospinning/sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofei [School of Materials Sciences and Engineering, Tianjin University, 300072 Tianjin (China); Gong, Cairong, E-mail: [School of Materials Sciences and Engineering, Tianjin University, 300072 Tianjin (China); Fan, Guoliang [School of Materials Sciences and Engineering, Tianjin University, 300072 Tianjin (China)


    Graphical abstract: Ceramic fibers, silicon oxycarbide (SiOC) fibers were demonstrated and showed higher mechanical properties from electrospinning/sol-gel process at 1000 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer SiOC fibers with low cost are promising to substitute the non-oxide fibers. Black-Right-Pointing-Pointer Successful preparation of SiOC fibers by electrospinning/sol-gel process. Black-Right-Pointing-Pointer Confirmation of the designed product using material characterization methods. Black-Right-Pointing-Pointer The SiOC fibers prepared at 1000 Degree-Sign C possess higher strength (967 MPa). -- Abstract: Silicon oxycarbide (SiOC) fibers were produced through the electrospinning of the solution containing vinyltrimethoxysilane and tetraethoxysilane in the course of sol-gel reaction with pyrolysis to ceramic. The effect of the amount of spinning agent Polyvinylpyrrolidone (PVP) on the dope spinnability was investigated. At a mass ratio of PVP/alkoxides = 0.05, the spinning sol exhibited an optimal spinnable time of 50 min and generated a large quantity of fibers. Electrospun fibers were characterized by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis-differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM results revealed that the SiOC fibers had a smooth surface and dense cross-section, free of residue pores and cracks. The XPS results gave high content of SiC (13.99%) in SiOC fibers. The SiOC fibers prepared at 1000 Degree-Sign C had a high tensile strength of 967 MPa and Young's modulus of 58 GPa.

  1. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes. (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva


    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways.

  2. Three-coordinate beryllium β-diketiminates: synthesis and reduction chemistry. (United States)

    Arrowsmith, Merle; Hill, Michael S; Kociok-Köhn, Gabriele; MacDougall, Dugald J; Mahon, Mary F; Mallov, Ian


    A series of mononuclear, heteroleptic beryllium complexes supported by the monoanionic β-diketiminate ligand [HC{CMeNDipp}(2)](-) (L; Dipp = 2,6-diisopropylphenyl) have been synthesized. Halide complexes of the form [LBeX] (X = Cl, I) and a bis(trimethylsilyl)amide complex were produced via salt metathesis routes. Alkylberyllium β-diketiminate complexes of the form [LBeR] (R = Me, (n)Bu) were obtained by salt metathesis from the chloride precursor [LBeCl]. Controlled hydrolysis of [LBeMe] afforded an air-stable, monomeric β-diketiminatoberyllium hydroxide complex. [LBeMe] also underwent facile protonolysis with alcohols to form the corresponding β-diketiminatoberyllium alkoxides [LBeOR] (R = Me, (t)Bu, Ph). High temperatures and prolonged reaction times were required for protonolysis of [LBeMe] with primary amines to yield the β-diketiminatoberyllium amide complexes [LBeNHR] (R = (n)Bu, CH(2)Ph, Ph). No reactions were observed between [LBeMe] and silanes, terminal acetylenes, or secondary amines. All compounds were characterized by (1)H, (13)C, and (9)Be NMR spectroscopy and, in most cases, by X-ray crystallography. Reduction of the beryllium chloride complex with potassium metal resulted in apparent hydrogen-atom transfer between two β-diketiminate backbones, yielding two dimeric, potassium chloride bridged diamidoberyllium species. X-ray analysis of a cocrystallized mixture of the 18-crown-6 adducts of these species allowed unambiguous identification of the two reduced diketiminate ligands, one of which had been deprotonated at a backbone methyl substituent and the other reduced by hydride addition to the β-imine position. It is proposed that this process occurs by the formation of an unobserved radical anion species and intermolecular hydrogen-atom transfer by a radical-based hydrogen abstraction mechanism.

  3. A two-layer ONIOM study of thiophene cracking catalyzed by proton- and cation-exchanged FAU zeolite. (United States)

    Sun, Yingxin; Mao, Xinfeng; Pei, Supeng


    A two-layer ONIOM study on the hydrodesulfurization mechanism of thiophene in H-FAU and M-FAU (M = Li(+), Na(+), and K(+)) has been carried out. The calculated results reveal that in H-FAU, for a unimolecular mechanism, the rate-determining step is hydrogenation of alkoxide intermediate. The assistance of H2O and H2S molecules does not reduce the difficulty of the C-S bond cracking step more effectively. A bimolecular hydrodesulfurization mechanism is more favorable due to the lower activation barriers. The rate-determining step is the formation of 2-methylthiophene, not the C-S bond cracking of thiophene. Moreover, the ring opening of thiophene is much easier to occur than the desulfurization step. A careful analysis of energetics indicates that H2S, propene, and methyl thiophene are the major products for the hydrodesulfurization process of thiophene over H-FAU zeolite, in good agreement with experimental findings. In M-FAU zeolites, both unimolecular and bimolecular cracking processes are difficult to occur because of the high energy barriers. Compared to the case on H-FAU, the metal cations on M-FAU increase the difficulty of occurrence of bimolecular polymerization and subsequent C-S bond cracking steps. Graphical abstract Hydrodesulfurization process of thiophene can take place in H-FAU zeolite. Two different mechanisms, unimolecular and bimolecular ones, have been proposed and evaluated in detail. The bimolecular mechanism is more favorable due to lower activation barrier as described in the picture above. Our calculated data indicate that H2S, propene, and methylthiophene are the major products, in good agreement with experimental observations. The effect of metal cations on the reaction mechanism is also investigated in this work.

  4. Synthesis and structures of bis-ligated zinc complexes supported by tridentate ketoimines that initiate L-lactide polymerization. (United States)

    Gerling, Kimberly A; Rezayee, Nomaan M; Rheingold, Arnold L; Green, David B; Fritsch, Joseph M


    Eight bis-ligated, homoleptic, zinc complexes were synthesized through the reaction of NNO Schiff base ketoimines bearing varying substituents with diethyl zinc in an inert atmosphere glovebox at room temperature and isolated in 62-95% yield. The complexes were characterized with (1)H, (13)C, and (19)F nuclear magnetic resonance spectroscopy, absorbance spectroscopy, high resolution mass spectrometry, elemental analysis, and single crystal X-ray crystallography. The complexes were shown to adopt distorted octahedral coordination geometry around zinc. The (1)H and (19)F NMR spectra of complexes 1-7 showed stable zinc coordination at 300 K while the effect of steric encumbrance and two trifluoromethyl groups in complex 8 was investigated with variable temperature NMR. The bis-ligated zinc complexes were effective initiators for the ring opening polymerization of L-lactide into poly-L-lactic acid (PLLA). With [L-lac]/[Zn complex] = 50, the bis-ligated zinc complexes yielded percentage conversion of 14-98% with polymerization times varying from 15-1440 min, where the longest reaction times were required when two trifluoromethyl groups were present. The addition of 4-fluorophenol co-catalyst resulted in up to a 5-fold increase in the percentage conversion in toluene solution and up to a 14-fold increase in bulk melt polymerization with reductions in the poly-dispersity index values for the isolated PLLA. Addition of 4-fluorophenol to complex 1 was studied with (1)H and (19)F NMR and appeared to yield an in situ generated zinc alkoxide complex.

  5. Titanium (IV) sol-gel chemistry in varied gravity environments (United States)

    Hales, Matthew; Martens, Wayde; Steinberg, Theodore

    Sol-gel synthesis in reduced gravity is a relatively new topic in the literature and further inves-tigation is essential to realise its potential and application to other sol-gel systems. The sol-gel technique has been successfully applied to the synthesis of silica systems of varying porosity for many diverse applications [1-5]. It is proposed that current methods for the synthesis of silica sol-gels in reduced gravity may be applied to titanium sol-gel processing in order to enhance desirable physical and chemical characteristics of the final materials. The physical and chemical formation mechanisms for titanium alkoxide based sol-gels, to date, is not fully understood. However, various authors [6-9] have described potential methods to control the hydrolysis and condensation reactions of titanium alkoxides through the use of chemical inhibitors. A preliminary study of the reaction kinetics of titanium alkoxide sol-gel reaction in normal gravity was undertaken in order to determine reactant mixtures suitable for further testing under varied gravity conditions of limited duration. Through the use of 1H Nuclear Magnetic Resonance spectroscopy (NMR) for structural analysis of precursor materials, Ultra-Violet-Visible spectroscopy (UV-VIS) and viscosity measurements, it was demonstrated that not only could the rate of the chemical reaction could be controlled, but directed linear chain growth within the resulting gel structure was achievable through the use of increased inhibitor concentrations. Two unique test systems have been fabricated to study the effects of varied gravity (reduced, normal, high) on the formation of titanium sol-gels. Whilst the first system is to be used in conjunction with the recently commissioned drop tower facility at Queensland University of Technology in Brisbane, Australia to produce reduced gravity conditions. The second system is a centrifuge capable of providing high gravity environments of up to 70 G's for extended periods of time

  6. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J., E-mail: [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Drevet, R., E-mail: [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); Lemelle, A.; Ben Jaber, N.; Tara, A. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France); El Btaouri, H. [Université de Reims Champagne-Ardenne UMR CNRS MEDyC, EA 7369, Campus Moulin de la Housse, 51687 REIMS Cedex 2 (France); Benhayoune, H. [Université de Reims Champagne-Ardenne, Laboratoire Ingénierie et Sciences des Matériaux, LISM EA 4695, 21 rue Clément ADER, 51685 REIMS Cedex 2 (France)


    In this paper a new sol–gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol–gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol–gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2 M nitric acid solution or either a 5 mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer–Emmett–Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol–gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4 h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol–gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol–gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol–gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. - Highlights: • Citric acid is employed as a catalyzer of the sol–gel process. • This catalyzer is used at a very low concentration for the hydrolysis reaction. • The chemical composition of the bioglass synthesized by the sol–gel process is optimized. • The properties of two sol–gel bioglasses are compared with those of the commercial

  7. Choosing the best molecular precursor to prepare Li4Ti5O12 by the sol-gel method using (1)H NMR: evidence of [Ti3(OEt)13](-) in solution. (United States)

    García-Herbosa, Gabriel; Aparicio, Mario; Mosa, Jadra; Cuevas, José V; Torroba, Tomás


    (1)H NMR spectroscopy at 400 MHz in toluene-d8 of evaporated mixtures of lithium ethoxide and titanium(iv) isopropoxide in ethanol, used to prepare the spinel Li4Ti5O12 by the sol-gel method, may help clarify why the atomic ratio 5Li : 5Ti and not 4Li : 5Ti is the right choice to obtain the pure phase when performing hydrolysis at room temperature. The mixtures xLiOEt/yTi(OPr(i))4 in ethanol undergo alcohol exchange at room temperature, and the evaporated residues contain double lithium-titanium ethoxide [LiTi3(OEt)13] rather than simple mixtures of single metal alkoxides; this is of great relevance to truly understanding the chemistry and structural changes in the sol-gel process. Detailed inspection of the (1)H and (13)C VT NMR spectra of mixtures with different Li/Ti atomic ratios unequivocally shows the formation of [LiTi3(OEt)13] in a solution at low temperature. The methylene signals of free lithium ethoxide and Li[Ti3(OEt)13] coalesce at 20 °C when the atomic ratio is 5 : 5; however, the same coalescence is only observed above 60 °C when the atomic ratio is 4 : 5. We suggest that the highest chemical equivalence observed by (1)H NMR spectroscopy achieved through chemical exchange of ethoxide groups involves the highest microscopic structural homogeneity of the sol precursor and will lead to the best gel after hydrolysis. Variable temperature (1)H NMR spectra at 400 MHz of variable molar ratios of LiOEt/Ti(OPr(i))4 are discussed to understand the structural features of the sol precursor. While the precursor with the atomic ratio 5Li : 5Ti shows no signal of free LiOEt at 20 °C, both 4Li : 5Ti and 7Li : 5Ti show free LiOEt at 20 °C in their (1)H NMR spectra, indicating that the molar ratio 5Li : 5Ti gives the maximum rate of chemical exchange. DFT calculations have been performed to support the structure of the anion [Ti3(OEt)13](-) at room temperature.

  8. Formation mechanism and characteristics of lanthanum-doped BaTiO{sub 3} powders and ceramics prepared by the sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Ianculescu, Adelina Carmen [Department of Oxide Materials Science and Engineering, Politehnica University of Bucharest, 17 Gh. Polizu, 011061 Bucharest (Romania); Vasilescu, Catalina Andreea, E-mail: [Department of Oxide Materials Science and Engineering, Politehnica University of Bucharest, 17 Gh. Polizu, 011061 Bucharest (Romania); National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG54, 077125 Magurele (Romania); Crisan, Maria; Raileanu, Malina [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vasile, Bogdan Stefan; Calugaru, Mihai [Department of Oxide Materials Science and Engineering, Politehnica University of Bucharest, 17 Gh. Polizu, 011061 Bucharest (Romania); Crisan, Dorel; Dragan, Nicolae [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Curecheriu, Lavinia; Mitoseriu, Liliana [Department of Physics, Al. I. Cuza University of Iasi, Blvd. Carol I 11, 700506 Iasi (Romania)


    Pure and lanthanum-doped barium titanate nanopowders described by two different formulae, as Ba{sub 1−x}La{sub x}TiO{sub 3}, for lower La concentrations (0 ≤ x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} for higher La concentration (x = 0.025) were prepared by an alkoxide sol–gel method. Single phase compositions were obtained after annealing at 900 °C for 2 h, in air. The increase of the lanthanum content causes structural and morphological changes in the oxide powders, including the evolution of the unit cell from tetragonal toward a cubic symmetry, the particle size decrease and a higher aggregation tendency. SEM investigations of the ceramics sintered at 1300 °C for 4 h indicate significant changes of the microstructural features (strong decrease of the average grain size and increase of the intergranular porosity) with the raise of La amount. Lanthanum addition to barium titanate prepared by sol–gel induces a more significant shift of the Curie temperature toward lower values, than that one reported in literature for ceramics of similar compositions, but processed by the conventional solid state method. The compositions with smaller La amount (x ≤ 0.005) show semiconducting properties at room temperature and high relative dielectric permittivity values, while the undoped ceramics and those doped with higher La content (x = 0.025) are good dielectrics. The ceramic with x = 0.025 exhibits acceptable low losses, a very diffuse ferroelectric–paraelectric transition and Curie temperature closed to the room temperature, being thus susceptible for high tunability applications. - Highlights: • Ba{sub 1−x}La{sub x}TiO{sub 3} (x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} (x = 0.025) were prepared by sol–gel. • Ceramics with x < 0.5 exhibit semiconductor and high dielectric properties. • Ceramic with x = 0.025 exhibits acceptable low losses and diffuse phase transition.

  9. Mn8 and Mn16 clusters from the use of 2-(hydroxymethyl)pyridine, and comparison with the products from bulkier chelates: a new high nuclearity single-molecule magnet. (United States)

    Taguchi, Taketo; Wernsdorfer, Wolfgang; Abboud, Khalil A; Christou, George


    The synthesis, crystal structures, and magnetochemical characterization of two new Mn clusters [Mn(8)O(2)(O(2)CPh)(10)(hmp)(4)(MeOH)(2)] (1; 6Mn(II), 2Mn(III)) and [Mn(16)O(8)(OH)(2)(O(2)CPh)(12)(hmp)(10)(H(2)O)(2)](O(2)CPh)(2) (2; 6Mn(II), 10Mn(III)) are reported. They were obtained from the use of 2-(hydroxymethyl)pyridine (hmpH) under the same reaction conditions but differing in the presence or absence of added base. Thus, the reaction of hmpH with Mn(O(2)CPh)(2) in CH(2)Cl(2)/MeOH led to isolation of octanuclear complex 1, whereas the analogous reaction in the presence of NEt(3) gave hexadecanuclear complex 2. Complexes 1 and 2 possess either very rare or unprecedented core structures that are related to each other: that of 1 can be described as a linked pair of incomplete [Mn(4)O(3)] cubanes, while that of 2 consists of a linked pair of complete [Mn(4)O(4)] cubanes, on either side of which is attached a tetrahedral [Mn(4)(μ(4)-O)] unit. Solid-state direct current (dc) and alternating current (ac) magnetic susceptibility measurements on 1 and 2 establish that they possess S = 5 and 8 ground states, respectively. Complex 2 exhibits frequency-dependent out-of-phase (χ(M)") ac susceptibility signals at temperatures below 3 K suggestive of a single-molecule magnet (SMM). Magnetization versus applied dc field sweeps on single crystals of 2·10MeOH down to 0.04 K exhibited hysteresis, confirming 2 to be a new SMM. Comparison of the structure of 2 (Mn(16)) with Mn(12) or Mn(6) clusters previously obtained under the same reaction conditions but with two Me or two Ph groups, respectively, added next to the alkoxide O atom of hmp(-) indicate their influence on the nuclearity and structure of the products as being due to the overall bulk of the chelate plus the decreased ability of the O atom to bridge.

  10. QM/MM Studies of the Matrix Metalloproteinase 2 (MMP2) Inhibition Mechanism of (S)-SB-3CT and its Oxirane Analogue. (United States)

    Zhou, Jia; Tao, Peng; Fisher, Jed F; Shi, Qicun; Mobashery, Shahriar; Schlegel, H Bernhard


    SB-3CT, (4-phenoxyphenylsulfonyl)methylthiirane, is a potent, mechanism-based inhibitor of the gelatinase sub-class of the matrix metalloproteinase (MMP) family of zinc proteases. The gelatinase MMPs are unusual in that there are several examples where both enantiomers of a racemic inhibitor have comparable inhibitory abilities. SB-3CT is one such example. Here, the inhibition mechanism of the MMP2 gelatinase by the (S)-SB-3CT enantiomer and its oxirane analogue is examined computationally, and compared to the mechanism of (R)-SB-3CT. Inhibition of MMP2 by (R)-SB-3CT was shown previously to involve enzyme-catalyzed C-H deprotonation adjacent to the sulfone, with concomitant opening by β-elimination of the sulfur of the three-membered thiirane ring. Similarly to the R enantiomer, (S)-SB-3CT was docked into the active site of MMP2, followed by molecular dynamics simulation to prepare the complex for combined quantum mechanics and molecular mechanics (QM/MM) calculations. QM/MM calculations with B3LYP/6-311+G(d,p) for the QM part (46 atoms) and the AMBER force field for the MM part were used to compare the reaction of (S)-SB-3CT and its oxirane analogue in the active site of MMP2 (9208 atoms). These calculations show that the barrier for the proton abstraction coupled ring opening reaction of (S)-SB-3CT in the MMP2 active site is 4.4 kcal/mol lower than its oxirane analogue, and the ring opening reaction energy of (S)-SB-3CT is only 1.6 kcal/mol less exothermic than its oxirane analogue. Calculations also show that the protonation of the ring-opened products by water is thermodynamically much more favorable for the alkoxide obtained from the oxirane, than for the thiolate obtained from the thiirane. In contrast to (R)-SB-3CT and the R-oxirane analogue, the double bonds of the ring-opened products of (S)-SB-3CT and its S-oxirane analogue have the cis-configuration. Vibrational frequency and intrinsic reaction path calculations on a reduced size QM/MM model (2747 atoms

  11. Synthesis and characterization of organic–inorganic hybrid materials prepared by sol–gel and containing Zn{sub x}Cd{sub 1−x}S nanoparticles prepared by a colloidal method

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Luis F.F.F., E-mail: [Centro de Química, Departamento de Química, Universidade do Minho, 4710-057 Braga (Portugal); Centro de Física, Departamento de Física, Universidade do Minho, 4710-057 Braga (Portugal); Silva, Carlos J.R. [Centro de Química, Departamento de Química, Universidade do Minho, 4710-057 Braga (Portugal); Kanodarwala, Fehmida K.; Stride, John A. [School of Chemistry, University of New South Wales, Sydney 2052 (Australia); Pereira, Mário R.; Gomes, Maria J.M. [Centro de Física, Departamento de Física, Universidade do Minho, 4710-057 Braga (Portugal)


    Nanocomposite materials based on a hybrid organic–inorganic ureasilicate matrix doped with Zn{sub x}Cd{sub 1−x}S nanoparticles were prepared. Zn{sub x}Cd{sub 1−x}S nanoparticles with different compositions (Zn/Cd mole ratio) were prepared through a colloidal method using reverse micelles. Previously to dispersion within the matrix precursors used to prepare the hybrid gel composite, the nanoparticles surface was modified in order to improve compatibility and stability with the matrix and to assure the preservation of the original optical properties of the nanoparticles. The matrix was obtained by the reaction between a silicon alkoxide modified by an isocyanate group and a di-amine functionalized oligopolyoxyethylene (Jeffamine ED-600), which by subsequent hydrolysis and condensation reactions formed a mechanically stable and highly transparent solid network containing the Zn{sub x}Cd{sub 1−x}S nanoparticles. The materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and by HRTEM. The obtained nanocomposites show a high transparency in the visible range accounting for the good dispersion of the nanoparticles within the matrix. The results obtained confirmed the preservation of the original optical properties of the nanoparticles after their incorporation into the ureasilicate matrix, showing that the developed method is suitable for the production of materials with potential applications in which it is necessary to take advantage of the optical properties of the nanoparticles incorporated. The HRTEM analysis confirmed that the dispersed nanoparticles show a high level of crystallinization. -- Highlights: • Synthesis of a hybrid ureasilicate matrix doped with Zn{sub x}Cd{sub 1−x}S nanoparticles. • The influence of the composition of the nanoparticles plays an important role in the optical properties of the nanocomposites. • Preservation of the optical properties of the nanoparticles associated with

  12. Low temperature sol-gel process for optical coatings based on magnesium fluoride and titanium dioxide; Niedertemperatur Sol-Gel Verfahren fuer optische Schichtsysteme auf Basis von Magnesiumfluorid und Titandioxid

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Hannes


    This work deals with the development of a low temperature sol-gel spincoating process for thin films with thicknesses in the nanometer range based on metal oxides and metal fluorides. Optical films such as anti-reflective (AR) or high reflective coatings are of much interest and consist of alternating dielectric layers of low and high refractive index materials. Regarding the general procedure for the metal fluorides a novel nonaqueous sol-gel synthesis starting from metal alkoxides and alcohol-dissolved HF was used. The coatings were dried and calcined at 100 C. The morphology of these films was characterised with REM, TEM and AFM. EDX and XPS were used to identify the chemical composition and ellipsometry and UV-vis spectroscopy to determine the optical properties of the films. This new process allows the preparation of homogeneous magnesium fluoride and titanium dioxide layers with low roughness (R{sub a} {<=} 1,9 nm) on silicon and quartz substrates. The magnesium fluoride layers are partially amorphous or microcrystalline with crystallite sizes from 2 nm to 10 nm. The titanium dioxide layers are predominantly amorphous. The thicknesses of the magnesium fluoride and titanium dioxide single layers were adjustable between 25 nm and 500 nm depending on the number of coating steps and on the concentration of the used sols. The magnesium fluoride layers had a refractive index of n{sub 500} = 1,36 and the titanium dioxide layers a refraction index of n{sub 500} = 2,05. For the first time, an alternating metal fluoride and oxide multilayer system was produced with a low temperature sol-gel method (consisting of magnesium fluoride and titanium dioxide). Based on the determined optical constants of the magnesium fluoride and titanium dioxide single layers, AR and HR multilayer systems were calculated and fabricated. The transmission spectra of the designs and the corresponding multilayer were in good agreement. Similar results were obtained with the reflection spectra

  13. Improving the oxidation resistance of carbon fibers using silicon oxycarbide coatings%SiOC陶瓷涂层改善炭纤维的抗氧化性能

    Institute of Scientific and Technical Information of China (English)

    夏克东; 吕春祥; 杨禹


    以乙烯基改性的硅氧烷作为溶胶凝胶前驱体在炭纤维表面制备出SiOC陶瓷涂层。采用扫描电镜、X-射线衍射、X-射线光电子能谱、拉曼光谱以及热重分析对涂层进行表征。炭纤维的力学性能通过单丝拉伸强度测试研究。结果表明,无定型的SiOC涂层由SiCx O4-x结构单元和自由碳相组成。 SiOC涂层可改善炭纤维的抗氧化性能。涂层脱落与表面裂纹导致纤维拉伸强度降低以及weibull模量增加。与未涂层纤维相比,具有200 nm涂层厚度的炭纤维初始氧化温度可提高150℃,其单丝拉伸强度为2.32 GPa。%Silicon oxycarbide ( SiOC) ceramic was coated on carbon fibers using a vinyl group-modified silicon alkoxide as the sol precursor. The coatings were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and thermogravimetry. The mechanical properties of the carbon fibers were investigated by single fiber tensile tests. Results showed that the amorphous SiOC coating was composed of SiCx O4-x and a free carbon phase. The oxidation resistance of the carbon fibers was improved by the SiOC coatings. However, debonding of the coatings and surface cracks led to a reduction of tensile strength and an increase of Weibull modulus. The coating with a thickness of 200 nm increased the onset oxidation temperature by about 150℃, but decreased the tensile strength from 3. 18 to 2. 32 GPa.

  14. Enthalpies of formation and lattice enthalpies of alkaline metal acetates

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, Ana I. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisbon (Portugal); Oliveira, Pedro H. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal); Diogo, Herminio P. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal); Minas da Piedade, Manuel E. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisbon (Portugal)]. E-mail:


    The standard (p{sup o}=0.1MPa) molar enthalpies of formation in the crystalline state of the alkaline metal acetates CH{sub 3}COOM (M=Li, Na, K, Rb, Cs), at T=298.15K, were determined by reaction-solution calorimetry as: {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COOLi,cr)=-(741.40+/-0.95)kJmol{sup -1}, {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COONa,cr)=-(711.01+/-0.51)kJmol{sup -1}, {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COOK,cr)=-(722.36+/-0.49)kJmol{sup -1}, {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COORb,cr)=-(722.31+/-1.09)kJmol{sup -1}, {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COOCs,cr)=-(726.10+/-1.07)kJmol{sup -1}. These results, taken together with the enthalpies of formation of the haloacetates XCH{sub 2}COOM (M=Li, Na; X=Cl, Br, I) and chloropropionates ClCH(CH{sub 3})COOM (M=Li, Na) re-evaluated from literature data were used to derive a consistent set of lattice energies, and discuss some general trends of the structure-energetics relationship for the CH{sub 3}COOM, XCH{sub 2}COOM, and ClCH(CH{sub 3})COOM compounds, based on the Kapustinskii approximation. It was found that the lattice energies of the haloacetates are essentially independent of the halogen and ca. 17-25kJmol{sup -1} smaller than those of the corresponding acetates. In addition, no significant difference between the lattice enthalpy values of the haloacetates and chloropropionates was observed. Finally, linear correlations of very similar slope were obtained by plotting the M-O bond distances derived from the Kapustinskii equation against the published experimental M-O bond distances for alkaline metal acetates and alkoxides. The analysis of these relations suggests that the metal-oxygen bond distances for the lithium, potassium, and rubidium acetates, whose molecular structures in the solid state have not been determined, can be estimated as 214, 288, and 304pm, respectively.

  15. Ion exchange properties of titanic fiber of layered structure

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Yoshinori; Komatsu, Yu; Sasaki, Takayoshi


    Usually, titanic acid is produced by hydrolyzing titanium tetrachloride, titanium sulfate or titanium alkoxide and is obtained in the form of precipitate in an amorphous gel state. The present authors have synthesized two types of titanic fibers of a layered crystaline structure to provide new ion exchangers. Three synthetic techniques, namely, flux process, annealing baking process and melt process, have been developed. This report deals with the structure and properties of these materials. In the flux process, a mixture of TiO/sub 2/, K/sub 2/CO/sub 3/ and K/sub 2/MoO/sub 4/ (flux) is melted at 1150 deg C and annealed at about 950 deg C to provide a K/sub 2/Ti/sub 4/O/sub 3/ fiber of a layered structure, which is subsequently converted into H/sub 2/Ti/sub 4/O/sub 9/ center dot nH/sub 2/O fiber. In the melt process, a mixture of materials is heate up to 1100 deg C to produce molten K/sub 2/Ti/sub 2/O/sub 5/, which is quenched to form K/sub 2/Ti/sub 2/O/sub 5/ fiber of a layered structure. Then it is converted into H/sub 2/Ti/sub 2/O/sub 5/ center dot nH/sub 2/O fiber. The annealing baking process provides K/sub 2/Ti/sub 4/O/sub 9/, which is converted into K/sub 2/Ti/sub 2/O/sub 5/ fiber. In this report, the crystal structure of H/sub 2/Ti/sub 4/O/sub 9/ center dot nH/sub 2/O is discussed and the ion exchanging properties are analized. Examination is made on the ion exchanging reactions involving potassium, alkali metal ions, alkaline earth metal ions and divalent transition metal ions. Various ion exchangers, including the present ones, are compared in terms of the partition coefficient and separation factor. (Nogami, K.).

  16. Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnet. (United States)

    Murugesu, Muralee; Raftery, James; Wernsdorfer, Wolfgang; Christou, George; Brechin, Euan K


    The synthesis and magnetic properties of the compound [Mn(22)O(6)(OMe)(14)(O(2)CMe)(16)(tmp)(8)(HIm)(2)] 1 are reported. Complex 1 was prepared by treatment of [Mn(3)O(MeCO(2))(6)(HIm)(3)](MeCO(2)) (HIm = imidazole) with 1,1,1-tris(hydroxymethyl)propane (H(3)tmp) in MeOH. Complex 1.2MeOH crystallizes in the orthorhombic space group Pbca. The molecule consists of a metallic core of 2 Mn(IV), 18 Mn(III), and 2 Mn(II) ions linked by a combination of 6 micro(3)-bridging O(2)(-) ions, 14 micro(3)- and micro(2)-bridging MeO(-) ions, 16 micro-MeCO(2)(-) ligands, and 8 tmp(3)(-) ligands, which use their alkoxide arms to bridge in a variety of ways. The metal-oxygen core is best described as a wheel made from [Mn(3)O(4)] partial cubes and [Mn(3)O] triangles. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 1.8-300 K temperature range in a 1 T applied field. The chi(M)T value steadily decreases from 56 cm(3) K mol(-)(1) at 300 K to 48.3 cm(3) K mol(-)(1) at 30 K and then increases slightly to reach a maximum value of 48.6 cm(3) K mol(-)(1) at 15 K before dropping rapidly to 40.3 cm(3) K mol(-)(1) at 5 K. The ground-state spin of complex 1 was established by magnetization measurements in the 0.1-2.0 T and 1.80-4.00 K ranges. Fitting of the data by a matrix-diagonalization method to a model that assumes only the ground state is populated and incorporating only axial zero-field splitting (DS(z)()(2)), gave a best fit of S = 10, g = 1.96 and D = -0.10 cm(-)(1). The ac magnetization measurements performed on complex 1 in the 1.8-8 K range in a 3.5 G ac field oscillating at 50-1000 Hz showed frequency-dependent ac susceptibility signals below 3 K. Single-crystal hysteresis loop and relaxation measurements indicate loops whose coercivities are strongly temperature and time dependent, increasing with decreasing temperature and increasing field sweep rate, as expected for the superparamagnetic-like behavior of a single

  17. Bridging silyl groups in sigma-bond metathesis and [1, 2] shifts. An experimental and computational study of the reaction between cerium metallocenes and MeOSiMe3

    Energy Technology Data Exchange (ETDEWEB)

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Andersen, Richard


    The reaction of Cp'2CeH (Cp' = 1,2,4-(Me3C)3C5H2 ) with MeOSiMe3 gives Cp'2CeOMe and HSiMe3 and the reaction of the metallacycle, Cp'[(Me3C)2C5H2C(Me) 2CH2]Ce, with MeOSiMe3 yields Cp'2CeOCH2SiMe3, formed from hypothetical Cp'2CeCH2OSiMe3 by a [1, 2] shift also known as a silyl-Wittig rearrangement. Although both cerium products are alkoxides, they are formed by different pathways. DFT calculations on the reaction of the model metallocene, Cp2CeH, and MeOSiMe3 show that the lowest energy pathway is a H for OMe exchange at Ce that occurs by way of a sigma-bond metathesis transition state as SiMe3 exchanges partners. The formation of Cp2CeOCH2SiMe3 occurs by way of a low activation barrier [1, 2]shift of the SiMe3 group in Cp2CeCH2OSiMe3. Calculations on a model metallacycle, Cp[C5H4C(Me)2CH2]Ce, show that the metallacycle favors CH bond activation over sigma-bond metathesis involving the transfer of the SiMe3 group in good agreement with experiment. The sigma-bond metathesis involving the transfer of SiMe3 and the [1, 2]shift of SiMe3 reactions have in common a pentacoordinate silicon at the transition states. A molecular orbital analysis illustrates the connection between these two Si-O bond cleavage reactions and traces the reason why they occur for a silyl but not for an alkyl group to the difference in energy required to form a pentacoordinate silicon or carbon atom in the transition state. This difference clearly distinguishes a silyl from an alkyl group as shown in the study of"Pyrolysis of Tetramethylsilane Yielding Free d-orbitals by Seyferth and Pudvin in ChemTech 1981, 11, 230-233".

  18. Diversification of ortho-Fused Cycloocta-2,5-dien-1-one Cores and Eight- to Six-Ring Conversion by σ Bond C-C Cleavage. (United States)

    Eccleshare, Lee; Lozada-Rodríguez, Leticia; Cooper, Phillippa; Burroughs, Laurence; Ritchie, John; Lewis, William; Woodward, Simon


    Sequential treatment of 2-C6 H4 Br(CHO) with LiC≡CR(1) (R(1) =SiMe3 , tBu), nBuLi, CuBr⋅SMe2 and HC≡CCHClR(2) [R(2) =Ph, 4-CF3 Ph, 3-CNPh, 4-(MeO2 C)Ph] at -50 °C leads to formation of an intermediate carbanion (Z)-1,2-C6 H4 {CA (=O)C≡CB R(1) }{CH=CH(CH(-) )R(2) } (4). Low temperatures (-50 °C) favour attack at CB leading to kinetic formation of 6,8-bicycles containing non-classical C-carbanion enolates (5). Higher temperatures (-10 °C to ambient) and electron-deficient R(2) favour retro σ-bond C-C cleavage regenerating 4, which subsequently closes on CA providing 6,6-bicyclic alkoxides (6). Computational modelling (CBS-QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H(+) gave 1,2-dihydronaphthalen-1-ols, or under dehydrating conditions, 2-aryl-1-alkynylnaphthlenes. Enolates 5 react in situ with: H2 O, D2 O, I2 , allylbromide, S2 Me2 , CO2 and lead to the expected C-E derivatives (E=H, D, I, allyl, SMe, CO2 H) in 49-64 % yield directly from intermediate 5. The parents (E=H; R(1) =SiMe3 , tBu; R(2) =Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R(1) =SiMe) and oxime formation. The latter allows formation of 6,9-bicyclics via Beckmann rearrangement. The 6,8-ring iodides are suitable Suzuki precursors for Pd-catalysed C-C coupling (81-87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71-95 %).

  19. Use of Manganese(II)-Schiff Base Complexes for Carrying Polar Organometallics and Inorganic Ion Pairs. (United States)

    Gallo, Emma; Solari, Euro; Floriani, Carlo; Chiesi-Villa, Angiola; Rizzoli, Corrado


    This report concerns the carrier properties of [Mn(acacen)]-derived compounds toward polar organometallics, inorganic ion pairs, and salts. Such properties are the consequence of Mn(II) behaving as a Lewis acid and the O&arcraise;O bite of the bidentate Schiff base ligand toward alkali cations. The starting compounds, which occur in a dimeric form, [Mn(acac-L-en)](2) [L' = CH(2)CH(2) (1); L" = C(6)H(10) (2); L"' = R,R-C(6)H(10) (3)] have been synthesized either via a metathesis reaction from MnCl(2) or using [Mn(3)Mes(6)]. The reaction of 1-3 with lithium organometallics allowed the isolation of [Mn(acac-L-en)(R)Li(DME)] [R = Me, L = L' (4); R = Ph, L = L' (5); R = Mes, L = L' (6); R = Me, L = L" (7); R = Me, L = L"' (8)] as metalated forms, where the alkyl or aryl group is sigma-bonded to Mn(II), while the lithium cation is anchored to the Schiff base ligand. The metalated forms 4-8 react with PhCHO to give the corresponding lithium alkoxide, which remains bound in its ion-pair form to the [Mn(acacen)] skeleton in [Mn(2)(acac-L'-en)(2)Li(2)(OCH(Ph)Me)(2)](n)() (9). The use of 8, which has a chiral bridge across two nitrogen atoms, did not lead to a significant asymmetric induction in the reaction with PhCHO, because of the long separation between the lithium cation and the stereogenic center. The metalated form 4 was able to transfer the methyl group to the nitrile function to give the corresponding lithium-imide which then remains bonded to [Mn(acacen)] as the ion pair in a dimeric structure, as revealed for [Mn(2)(acac-L'-en)(2)Li(2)(DME){N=C(Ph)Me}(2)](n)() (10). Their reaction with 1 appears to depend on the steric bulkiness of the alkyl group in NaOR, resulting in either monomeric adducts, i.e. in [Mn(acac-L'-en)(2,6-Bu(t)(2)C(6)H(3)O)Na(DME)(2)] (11.2DME), or polymeric structures, like in [Mn(acac-L'-en)Na(DME)(&mgr;-OEt)](n)() (13). All the dimeric units reported in this paper show a slight antiferromagnetic coupling between the two Mn(II) assisted by

  20. Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ignazio Renato Bellobono


    Full Text Available Photomineralization of methane in air (10.0–1000 ppm (mass/volume of C at 100% relative humidity (dioxygen as oxygen donor was systematically studied at 318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1, the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1. Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance on k1 and k2, as well as of flow rate on K1 and K2, is rationalized. The influence of reactor geometry on k values is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or

  1. Influences of preparation conditions on the crystalline structure of CuO/SiO2%制备条件对CuO/SiO2催化剂铜晶相的影响

    Institute of Scientific and Technical Information of China (English)

    王仁国; 童冬梅; 谢正强; 胡常伟; 田安民


    采用醇盐法制备了一系列不同铜负载量及含不同助剂的SiO2负载的铜基催化剂。考察了不同制备条件对催化剂制备过程中硅酸凝胶生成速度的影响,发现在其它条件相同的情况下,正硅酸乙酯与乙二醇的体积比起主要作用,与金属铜盐的浓度基本无关。用XRD测试表明,本实验方法所制备的催化剂中的CuO是高度分散的非晶相状态,极易还原。高铜负载量的催化剂在500℃,空气气氛中焙烧4h后有Cu的晶相产生,其中含Fe、Ni助剂的有助于铜盐在分解过程中被还原为晶相铜,而Zn、V助剂的存在却抑制了铜物种的还原。%A series of CuO/SiO2 catalysts with different copper loading and containing various promoters (Fe,Ni,Zn,V) were prepared by alkoxide method.The crystalline structures were investigated by XRD.The results show that when the temperature,the mole ratio between water and ethyl silicate,and acidity in the solution keep constant,the rate of the gel formation depends only on the volume ratio between ethyl silicate and ethylene glyol,which is assumed to be related to the size of SiO2 particle.In CuO/SiO2 catalysts,the copper species exhibited as amorphorious or microcrystallite phase.XRD could not detect the Fe,Ni,Zn,V species after calcination.It shows that they were highly dispersed on the catalysts.It was found that in the catalysts promoted by Fe or Ni promoters the copper species were reduced to copper crystallite by ethylene glyol after calcination,and in the catalysts promoted by Ni the copper species were reduced much easier.However,the copper species in the catalysts promoted by Zn or V were not reduced and CuO formed after calcination at the same experimental conditions.

  2. Protective performances of two anti-graffiti treatments towards sulfite and sulfate formation in SO{sub 2} polluted model environment

    Energy Technology Data Exchange (ETDEWEB)

    Carmona-Quiroga, Paula Maria, E-mail: [Eduardo Torroja Institute for Construction Science, Serrano Galvache 4 St, 28033 Madrid (Spain); Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar [Department of Chemistry and Biotechnology, Environmental Inorganic Chemistry, Chalmers University of Technology, S-41296 Goethenburg (Sweden); Blanco-Varela, Maria Teresa; Martinez-Ramirez, Sagrario [Eduardo Torroja Institute for Construction Science, Serrano Galvache 4 St, 28033 Madrid (Spain)


    Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO{sub 2} and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ('Protectosil Antigraffiti' marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 {+-} 0.03 ppm of SO{sub 2} and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO{sub 2} and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO{sub 2} capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM

  3. Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites (United States)

    Travis, Jonathan

    The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films

  4. 锌掺杂多孔SiO2/TiO2薄膜制备及光催化性能研究%Preparation of Zn-doped SiO2/TiO2 thin films by sol-gel processing and their photocatalytic properties

    Institute of Scientific and Technical Information of China (English)

    胡张顺; 姚伯龙; 鲍雪钦


    锌掺杂多孔SiO2/TiO2(多孔 Zn-SiO2/TiO2)复合薄膜自清洁玻璃以含聚乙二醇的钛醇盐和硅醇盐的复合溶胶前驱体通过浸渍提拉法制备.结果表明,在TiO2薄膜中添加SiO2可抑制TiO2晶粒长大,并提高TiO2薄膜的亲水性;随着聚乙二醇添加量的增加,锌掺杂多孔SiO2/TiO2薄膜的孔隙增多,表面积增大;经500℃煅烧的多孔Zn-SiO2/TiO2复合薄膜中,TiO2主要为催化效率高的锐钛矿相;多孔Zn-SiO2/TiO2复合薄膜表观光催化降解速率明显高于未掺锌多孔SiO2/TiO2薄膜.%The porous Zn-doped SiO2/TiO2(porous Zn-SiO2/TiO2) composite thin films on the glass substrate were prepared from alkoxide solutions containing polyethylene glycol(PEG) by sol-gel method. The results showed that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal in the TiO2 thin films, low the contact angle for water of TiO2 films; the pore size is adjusted by adding different amount of PEG, the anatase TiO2 can grow on the porous Zn-SiO2/TiO2 composite thin films at 500 ℃; studies of photocatalytic degradation show that the degradation rate of porous Zn-SiO2/TiO2 composite thin films were higher than that of un-doped porous SiO2/TiO2 composite thin films.

  5. Mesostructured Hydrophobic-Oleophobic Silica Films for Sustained Functionality in Tribological Environments (United States)

    Kessman, Aaron J.

    The primary goal of this research was to synthesize water- and oil-repellent coatings that offer sustained functionality and durability. Engineered low surface energy materials generally suffer from a lack of mechanical robustness, which makes them susceptible to damage by abrasive wear. Fluorinated silanes are often combined with alkoxide precursors via sol-gel co-condensation to create coatings with high hardness and good substrate adhesion. However, a common problem with these materials is that the organic moieties that provide low surface energy also become surface segregated and highly concentrated at the solid-air interface. With such a structure, mechanical removal of the top surface by abrasion, for example, reveals subsurface areas that are then much less concentrated in terms of functional chemistry. The material developed in this study was designed to overcome this problem by means of a tailored and templated mesostructure that effectively encapsulated the low surface energy functional moieties, and thus achieves sustained functionality during abrasive wear. This material, applied as a thin coating to a variety of substrates, has the potential to reduce waste and pollution and the environmental degradation of materials and structures. Improving the performance of such materials can benefit a wide variety of applications. These include optoelectronic devices including photovoltaic panels; automobile and aircraft; architectural structures; the chemical, food, and medical industries for hygienic and anti-fouling requirements; textiles; and household applications. This approach has further implications in areas such as boundary lubrication and drug delivery systems. Hydrophobic-oleophobic mesoporous fluorinated silica films were synthesized via sol-gel co-condensation and coated on glass substrates. Fluorosilane and surfactant template concentrations were varied to elucidate the effect of organic functionality and porosity on performance. Structural

  6. Protective performances of two anti-graffiti treatments towards sulfite and sulfate formation in SO 2 polluted model environment (United States)

    Carmona-Quiroga, Paula María; Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar; Blanco-Varela, María Teresa; Martínez-Ramírez, Sagrario


    Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO 2 and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ("Protectosil Antigraffiti" marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 ± 0.03 ppm of SO 2 and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO 2 and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO 2 capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM. However, support for sulfur

  7. Synthesis, characterization and solid-state photoluminescence studies of six alkoxy phenylene ethynylene dinuclear palladium(II) rods. (United States)

    Figueira, João; Czardybon, Wojciech; Mesquita, José Carlos; Rodrigues, João; Lahoz, Fernando; Russo, Luca; Valkonen, Arto; Rissanen, Kari


    A rare family of six discrete binuclear [PdCl(PEt3)2] phenylene ethynylene rods with alkoxy side chains (methoxy, ethoxy and heptoxy) have been developed, and their solid-state photoluminescence results have been presented and discussed. The shorter bridging ligands are of the general formula H-C≡C-C6H2(R)2-C≡C-H, where R = H, OCH3, OC2H5, and OC7H15, whereas the longer ones are based on H-C≡C-C6H4-C≡C-C6H2(R)2-C≡C-C6H4-C≡C-H, where R = OCH3, OC2H5. These ligands display increasing length in both the main dimension (backbone length) as well as the number of carbons in the side chains (R, alkoxide side chain) that stem from the central phenylene moiety. The X-ray crystal structures of two of the prepared complexes are reported: one corresponds to a shorter rod, 1,4-bis[trans-(PEt3)2ClPd-C≡C]-2,5-diethoxybenzene (6c), while the second one is associated with a longer rod, the binuclear complex 1,4-bis[trans-(PEt3)2ClPd-4-(-C≡C-C6H4-C≡C)]-2,5-diethoxybenzene (7c). All new compounds were characterized by NMR spectroscopy ((1)H, (13)C{(1)H} and (31)P{(1)H}) as well as ESI-MS(TOF), EA, FTIR, UV-Vis, cyclic voltammetry and solid-state photoluminescence. Our work shows the influence of the alkoxy side chains on the electronic structure of the family of binuclear Pd rods by lowering its oxidation potential. In addition to this, the increase of the length of the bridge results in a higher oxidation potential. Solid state photoluminescence results indicate that Pd complexes are characterized by a marked decrease in both the emission intensity and the fluorescence lifetime values as compared to their ligands. This behaviour could be due to some degree of ligand-to-metal charge transfer.

  8. 在乙二醇甲醚溶液中合成NiTiO_3超细粉末%Synthesis of Nano-sized Particle Spinel NiTiO_3 by Electrolysis in Ethylene Glycol Methyl Ether Solution

    Institute of Scientific and Technical Information of China (English)

    王凤武; 徐迈; 魏亦军; 方文彦


    在无隔膜电解槽中,加入0.035mol/L(Bu4N)Br的乙二醇甲醚溶液,保持电解温度40℃、电流密度30mA/cm2时,先电解钛片6h,再电解镍片3h,制得镍、钛醇盐配合物,电流效率为95.1%。采用红外、拉曼光谱对其进行了表征。结果表明,前驱体结构为NiTi(OCH2CH2OCH3)6,可以有效克服团聚现象。水解、真空干燥24h后所得干凝胶在520℃煅烧2h制得纳米NiTiO3粉体。经X-射线衍射、电子透射显微镜测试表明,干凝胶粒径为20~30nm,钛酸镍NiTiO3粒径为25nm,纯度较高。%In a cell without separating the cathode and anode spaces,Ni and Ti alkoxide complex was synthesized by electrochemical dissolution of Ti for 6h,and of Ni for 3h at 40℃ in CH3OCH2CH2OH solution of 0.035mol/L(Bu4N)Br when current density is 30mA/cm2.The results of IR and Raman spectra showed that current efficiency reaches 95.1% and the precursor of NiTiO3is NiTi(OCH2CH2OCH3)6,which could prevent the precursor from gathering.The xerogel was obtained by dryness in vacuum for 24h and hydrolysis under pH≈9.0 of the precursor,which was heated at 520℃ for 2h to obtain the nano-NiTiO3 powder.XRD and SEM of nano-NiTiO3 suggested the average particle size of xerogel obtained was 20~30 nm and the nano-sized particle spinel NiTiO3was 25 nm with high purity.

  9. 在乙二醇甲醚溶液中合成前驱体水解法制备Zn2SnO4超细粉末%Preparation of nano-sized Zn2SnO4 spinel particle by electrolysis in CH3 OCH2 CH2 OH solution

    Institute of Scientific and Technical Information of China (English)

    朱传高; 王凤武; 徐迈; 方文彦


    Zinc and tin alkoxide was prepared in the without diaphragm cell when the tin sheet was electrolysed for 4 h and then zinc sheet was electrolysed for 4 h tetrabutylammonium (0. 15 mol/L)bromides were added to serve as supporting e-lectrolyte. Glycol and methyl ether were used as electrolyte. Current density in the 20 mA · cm -2 and temperature in the 30 ℃ were employed. The current efficiency was 90.3%. The structure of precursor was analyzed by Raman spectra,Infrared spectroscopy. The xerogel was prepared by vacuum drying for 24 h after hydrolyzing. The obtained xerogel were calcined at 450 ℃ for 2 h in air. Then, nanosized Zn, SnO4 were prepared successfully. The structural characterization of the xerogel and nano Zn2SnO4 was performed by X-ray diffraction (XRD) , transmission electron microscopy (TEM). The characterization results indicated that Zn2SnO4 nano-particles (size 25 - 35 nm) are obtained. The grain of xerogel was about20 - 30 nm. The product is high purity.%在无隔膜电解槽中,加入0.15 mol/L( Bu4N)Br的乙二醇甲醚溶液,保持电解温度30℃、电流密度20时,先电解锡片4h,再电解锌片4h,制得锌、锡醇盐配合物,电流效率为90.3%.采用红外、拉曼光谱对其进行了表征.结果表明,前驱体结构为Zn2 Sn( OCH2CH2OCH3)8,可以有效克服团聚现象.水解、真空干燥24 h后所得干凝胶在450℃煅烧2h制得纳米Zn2SnO4粉体.经X-射线衍射、电子透射显微镜测试表明,干凝胶粒径为20~30 nm,锡酸锌Zn2SnO4粒径在25~35 nm,纯度较高.

  10. Synthesis of Nano-sized Particle Spinel ZnTiO3 by Electrolysis in CH3OCH2CH2OH Solution%在乙二醇甲醚溶液中电解合成ZnTiO3超细粉末

    Institute of Scientific and Technical Information of China (English)

    朱传高; 王凤武; 徐迈; 方文彦


    在无隔膜电解槽中,加入0.035 mol·dm-3(Bu4 N)Br的乙二醇甲醚溶液,保持电解温度30℃、电流密度30mA·cm-2,先电解钛片6h,再电解锌片3h,制得锌、钛醇盐配合物ZnTi(OCH2CH2OCH3),,电流效率为95.4%.采用红外、拉曼光谱对其进行了表征.结果表明,前驱体中含有配体(OCH2CH2OCH3)6,可以有效克服团聚现象.水解后干燥24 h得到干凝胶,在450℃锻烧2h制得纳米ZnTiO3粉体.经X射线衍射、电子透射显微镜测试表明,干凝胶粒径为25 nm,钛酸锌粒径在20~30 nm,纯度较高.%Zinc and titanium alkoxide was prepared in the cell without diaphragm when the titanium sheet was electrolysed for 6 h and then zinc sheet was electrolysed for 3 h tetrabutylammonium (0.035 mol ·dm-3) bromides were added to serve as supporting electrolyte. Glycol and methyl ether were used as electrolyte. Current density of 30 A · dm-2 and temperature of 30 ℃ were employed. The current efficiency was 95.4%. The structure of precursor was analyzed by laser Raman spectra,infrared spectroscopy. The xerogel was prepared by vacuum drying for 24 h after hydrolyzi. The obtained xerogel were calcined at 450 ℃, 2 h in air. After 2 h, the nano ZnTiO3 were prepared successfully. The structural characterization of the xerogeld and nano ZnTiO3 was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM). The results indicated that ZnTiO3 nano-partieles (size 20-30 nm) are obtained. The grain of xerogel was about 25 nm. The product is high purity.

  11. Microwave characteristics of sol-gel based Ag-doped (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung-Tae; Kim, Cheolbok [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States); Senior, David E. [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States); Department of Electrical and Electronic Engineering, Universidad Tecnológica de Bolívar Cartagena, 130011 Colombia (Colombia); Kim, Dongsu [Packaging Research Center, Korea Electronics Technology Institute, Gyeonggi-do, 463-816 (Korea, Republic of); Yoon, Yong-Kyu, E-mail: [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States)


    Dielectric Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films with a different concentration of Ag-dopant of 0.5, 1, 1.5, 2, 3, and 5 mol % have been prepared using an alkoxide-based sol-gel method on a Pt(111)/TiO{sub 2}/SiO{sub 2}/Si substrate and their surface morphology and crystallinity have been examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. An on-chip metal-insulator-metal capacitor has been fabricated with the prepared thin film ferroelectric sample. Concentric coplanar electrodes are used for high frequency electrical characterization with a vector network analyzer and a probe station. The SEM images show that increasing Ag doping concentration leads to a decrease in grain size. XRD reveals that the fabricated films show good BST crystallinity for all the concentration while a doping concentration of 5 mol % starts to show an Ag peak, implying a metallic phase. Improved microwave dielectric loss properties of the BST thin films are observed in a low Ag doping level. Especially, BST with an Ag doping concentration of 1 mol % shows the best properties with a dielectric constant of 269.3, a quality factor of 48.1, a tunability at the electric field of 100 kV/cm of 41.2 %, a leakage-current density of 1.045 × 10{sup −7}A/cm{sup 2} at an electric field of 100 kV/cm and a figure of merit (defined by tunability (%) divided by tan δ (%)) of 19.59 under a dc bias voltage of 10 V at 1 GHz. - Highlights: • High quality Ag-doped Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films were derived by the sol-gel method. • Doped Ag replaced the A site ions in the ABO{sub 3} type structure. • Doped Ag helped lower leakage current by filling oxygen vacancies, which is a leakage path. • Microwave characteristics of low dielectric loss and good tunability were confirmed. • Great potential is envisioned for low loss tunable microwave applications.

  12. Hybrid scorpionate/cyclopentadienyl magnesium and zinc complexes: synthesis, coordination chemistry, and ring-opening polymerization studies on cyclic esters. (United States)

    Garcés, Andrés; Sánchez-Barba, Luis F; Alonso-Moreno, Carlos; Fajardo, Mariano; Fernández-Baeza, Juan; Otero, Antonio; Lara-Sánchez, Agustín; López-Solera, Isabel; Rodríguez, Ana María


    The reaction of the hybrid scorpionate/cyclopentadienyl lithium salt [Li(bpzcp)(THF)] [bpzcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl] with 1 equiv of RMgCl proceeds cleanly to give very high yields of the corresponding monoalkyl kappa(2)-NN-eta(5)-C(5)H(4) magnesium complexes [Mg(R)(kappa(2)-eta(5)-bpzcp)] (R = Me 1, Et 2, (n)Bu 3, (t)Bu 4, CH(2)SiMe(3) 5, CH(2)Ph 6). Hydrolysis of the hybrid lithium salt [Li(bpzcp)(THF)] with NH(4)Cl/H(2)O in ether cleanly affords the two previously described regioisomers: (bpzcpH) 1-[2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl]-1,3-cyclopentadiene (a) and 2-[2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl]-1,3-cyclopentadiene (b). Subsequent reaction of the bpzcpH hybrid ligand with ZnR(2) quantitatively yields the monoalkyl kappa(2)-NN-eta(1)(pi)-C(5)H(4) zinc complexes [Zn(R){kappa(2)-eta(1)(pi)-bpzcp}] (R = Me 7, Et 8, (t)Bu 9, CH(2)SiMe(3) 10). Additionally, magnesium alkyls 1, 2, 4, and 5 can act as excellent cyclopentadienyl and alkyl transfers to the zinc metal center and yield zinc alkyls 7-10 in good yields. The single-crystal X-ray structures of the derivatives 4, 5, 7, and 10 confirm a 4-coordinative structure with the metal center in a distorted tetrahedral geometry. Interestingly, whereas alkyl magnesium derivatives 4 and 5 present a eta(5) coordination mode for the cyclopentadienyl fragment, zinc derivatives 7 and 10 feature a peripheral eta(1)(pi) arrangement in the solid state. Furthermore, the reaction of the hybrid lithium salt [Li(bpzcp)(THF)] with 1 equiv of ZnCl(2) in tetrahydrofuran (THF) affords very high yields of the chloride complex [ZnCl{kappa(2)-eta(1)(pi)-bpzcp}] (11). Compound 11 was used as a convenient starting material for the synthesis of the aromatic amide zinc compound [Zn(NH-4-MeC(6)H(4)){kappa(2)-eta(1)(pi)-bpzcp}] (12), by reaction with the corresponding aromatic primary amide lithium salt. Alternatively, aliphatic amide and alkoxide derivatives were

  13. 室内装饰品负载氮掺杂氧化钛的光催化性能%Photocatalytic performance of nitrogen-doped titania coated on room decorations

    Institute of Scientific and Technical Information of China (English)

    王泽清; 郭薇; 辛钢; 吴丽琼; 马廷丽


    采用钛醇盐水解法与溶胶凝胶法,以氨水、尿素、三乙胺为氮源,制备了纳米TiO2-xNx光催化剂.为了在净化室内空气的同时能够装饰环境,提出了喷涂和浸泡2种工艺将光催化剂负载于室内装饰品,并在模拟太阳光的照射下对室内污染物甲醛进行降解.XRD、UV-Vis光谱及XPS分析结果表明,在烧结温度为400℃时得到的3种TiO 2-xNx是锐钛矿相,其中以尿素为氮源的TiO2-xNx温度达到600℃时开始发生相转变,3种TiO2xNx在可见光区域的400~550 nm均出现新的吸收;以氨水、尿素和三乙胺为氮源制备的TiO2xNx的掺氮量分别为2.77%、0.29%和0.47%.以氨水为氮源制备的光催化剂,14 h降解甲醛的效率达到了95%;以三乙胺为氮源制备的光催化剂7 h降解甲醛的效率达到了96%.因此,应用喷涂法在室内装饰品上负载光催化剂降解室内污染物具有很好的应用前景.%Nanocrystalline TiO2-xNx photocatalysts were prepared by hydrolysis of titanium alkoxide and sol-gel method using aqueous ammonia, urea and triethylamine as nitrogen sources, respectively. The photocatalytic activity of TiO2-xNx coated on the ornamental flowers by spray-coating and dipping methods was evaluated through a study of the decomposition of formaldehyde under simulated solar light. The obtained photocatalysts were characterized by X-ray diffraction, UV-Vis spectrum and X-ray photoelectron spectrum. The results show that three kinds of TiO2-xNx are mainly anatase phase after calcinations at 400℃. The TiO2-xNx prepared with urea was calcined under 600℃, the phase transformation was observed. Moreover, TiO2-xNx showed a new absorption from 400 to 550 nm in the visible light region. The XPS results show that the nitrogen content of TiO2-xNx using ammonia, urea and triethylamine as nitrogen sources was 2. 77% , 0. 29% and 0.47% , respectively.The degradation rate of formaldehyde reached 96% and 95% for the photocatalysts

  14. Synthesis of supramolecular iron (III) complexes by cluster aggregation (United States)

    Seddon, Elisa Joy


    -helical structure; both the meso and helical forms of Fe2(L)3 were crystallographically characterized. In this work, suitable reaction conditions were found whereby dinuclear complexes of the form [Fe2OX2(O2CR) 2L'] (X = Cl or Br; R = CH3 or C 6H5) could be formed via self-assembly. The choice of solvent proved to be an important variable; the complex [Fe 6O6(O2CPh)3L' 3(H2O)2]3+ with a "six-rung ladder" core was produced from the same reactant stoichiometry as the dinuclear complexes, but in a different solvent. Controlled alcoholysis of pre-formed Fe4 or Fe3 complexes was used as a new method to induce cluster aggregation, and mixed oxide-alkoxide-carboxylate complexes of Fe6 or Fe7, as well as the cyclic complex [Fe(OCH 3)2(O2CCH3)]10 were synthesized via this method. The products were spectroscopically, electrochemically, and magnetochemically characterized.

  15. Nanoconfinement Effects in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Harold H. [Northwestern Univ., Evanston, IL (United States)


    In this investigation, the unique properties that stem from the constrained environment and enforced proximity of functional groups at the active site were demonstrated for a number of systems. The first system is a nanocage structure with silicon-based, atom-thick shells and molecular-size cavities. The shell imparts the expected size exclusion for access to the interior cavity, and the confined space together with the hydrophobic shell strongly influences the stability of charged groups. One consequence is that the interior amine groups in a siloxane nanocage exhibit a shift in their protonation ability that is equivalent to about 4 pH units. In another nanocage structure designed to possess a core-shell structure in which the core periphery is decorated with carboxylic acid groups and the shell interior is populated with silanol groups, the restricted motion of the core results in limiting the stoichiometry of reaction between carboxylic acid and a Co2CO8 complex, which leads to formation and stabilization of Co(I) ions in the nanocage. The second designed catalytic structure is a supported, isolated, Lewis acid Sn-oxide unit derived from a (POSS)-Sn-(POSS) molecular complex (POSS = incompletely condensed silsesquioxane). The Sn center in the (POSS)-Sn-(POSS) complex is present in a tetrahedral coordination, as confirmed by single crystal x-ray crystallography and Sn NMR, and its Lewis acid character is demonstrated with its binding to amines. The retention of the tetrahedral coordination of Sn after heterogenization and mild oxidative treatment is confirmed by characterization using EXAFS, NMR, UV-vis, and DRIFT, and its Lewis acid character is confirmed by stoichiometric binding with pyridine. This Sn-catalyst is active in hydride transfer reactions as a typical solid Lewis acid. In addition, the Sn centers can also create Brønsted acidity with alcohol by binding the alcohol strongly as alkoxide and transferring the hydroxyl H to the

  16. PDMS based microfluidic chips and their application in material synthesis (United States)

    Gong, Xiuqing

    reactions. Here, we report the microfluidic fabrication of magnetically responsive microsphere, macroporous polymer microspheres and hollow titania microspheres. To prepare magnetically responsive microsphere, we introduced magnetic particles into liquid shell and drug into liquid core. After cross-linking reaction of the shell, we studied the magnetic contraction and extention behavior which induced the drug release efficiency. To prepare porous polymer, the H 2O2 solution was encapsulated in polymer precursor, after which we investigated its decomposition under UV irradiation, which simultaneously induces the polymerization of the encapsulating shell. Because the H 2O2 decomposition leads to the release of oxygen, porous microspheres were obtained from a combined H2O2-decomposition/polymer precursor polymerization reaction. To prepare hollow titanium gel microspheres, water droplets were first formed by the flow focusing geometry in microfluidic chip and used as a soft template. Then hydrolysis and gelation of titanium alkoxide on the droplet's surface were induced in following serpentine channels, controlled by interface water diffusion. The water diffusion process can be controlled by the amount of the "dewetting" reagent butanol, by which the surface morphology of the titania microspheres can be tuned.

  17. The protein and peptide mediated syntheses of non-biologically-produced oxide materials (United States)

    Dickerson, Matthew B.

    Numerous examples exist in nature of organisms which have evolved the ability to produce sophisticated structures composed of inorganic minerals. Studies of such biomineralizing organisms have suggested that specialized biomolecules are, in part, responsible for the controlled formation of these structures. The research detailed in this dissertation is focused on the use of biomolecules (i.e., peptides and proteins) to form non-biologically produced materials under mild reaction conditions (i.e., neutral pH, aqueous solutions, and room temperature). The peptides utilized in the studies detailed in this dissertation were identified through the screening of single crystal rutile TiO2 substrates or Ge powder with a phagedisplayed peptide library. Twenty-one peptides were identified which possessed an affinity for Ge. Three of these twenty one peptides were tested for germania precipitation activity. Those peptides possessing a basic isoelectric point as well as hydroxyl- and imidazole-containing amino acid residues were found to be the most effective in precipitating amorphous germania from an alkoxide precursor. The phage-displayed peptide library screening of TiO2 substrates yielded twenty peptides. Four of these peptides, which were heavily enriched in histidine and/or basic amino acid residues, were found to possess signficant titania precipitation activity. The activity of these peptides was found to correlate with the number of positive charges they carried. The sequence of the most active of the library-identified peptides was modified to yield two additional peptides. The titania precipitation activity of these designed peptides was higher than the parent peptide, with reduced pH dependence. The titania materials generated by the library-identified and designed peptides were found to be composed of amorphous titania as well as <10 nm anatase and/or monoclinic TiO2 crystallites. The production of titania and zirconia resulting from the interaction of the

  18. Development of Aerogel Molds for Metal Casting Using Lunar and Martian Regolith (United States)


    In the last few years NASA has set new priorities for research and development of technologies necessary to enable long-term presence on the Moon and Mars. Among these key technologies is what is known as in situ resource utilization, which defines all conceivable usage of mineral, liquid, gaseous, or biological resources on a visited planet. In response to this challenge, we have been focusing on developing and demonstrating the manufacturing of a specific product using Lunar and Martian soil simulants (i.e., a mold for the casting of metal and alloy parts) which will be an indispensable tool for the survival of outposts on the Moon and Mars. In addition, our purpose is to demonstrate the feasibility of using mesoporous materials such as aerogels to serve as efficient casting molds for high quality components in propulsion and other aerospace applications. The first part of the project consists of producing aerogels from the in situ resources available in Martian and Lunar soil. The approach we are investigating is to use chemical processes to solubilize silicates using organic reagents at low temperatures and then use these as precursors in the formation of aerogels for the fabrication of metal casting molds. One set of experiments consists of dissolving silica sources in basic ethylene glycol solution to form silicon glycolates. When ground silica aerogel was used as source material, a clear solution of silicon glycolate was obtained and reacted to form a gel thus proving the feasibility of this approach. The application of this process to Lunar and Martian simulants did not result in the formation of a gel; further study is in progress. In the second method acidified alcohol is reacted with the simulants to form silicate esters. Preliminary results indicate the presence of silicon alkoxide in the product distillation. However, no gel has been obtained so further characterization is ongoing. In the second part of the project, the focus has been on developing a

  19. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg


    In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. Steps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of immobilizing ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with propylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length. All model compounds were fully characterized, pure and thermally stable up to at least 235 C, covering the requested broad range of glass transition temperatures from -78.1 C up to +6.2 C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity {sigma}{sub dc} and thus indicating comparable salt dissociation and rather independent motion of cations and ions. In general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in

  20. Theoretical study on the reaction mechanism of (CH3)3CO(.) radical with NO

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Hongmei; LIU; Kun; SUN; Chengke; LI; Zonghe


    [1]Sun, Z., Zheng, S. J., Wang, J. et al., First experimental observation on different ionic states of the tert-butoxy [(CH3)3CO' ] radical, Chem. Eur. J., 2001, 7(14): 2995-2999.[2]Wang, J., Sun, Z., Zhu, X. J. et al., First experimental observation on different ionic states of the CH3CH2O radical: a HeI photoelectron spectrum of the ethoxy CH3CH2O radical, Chem. Phys. Lett.,2001, 340: 98-102.[3]Zhu, X. J., Ge, M. F., Wang, J. et al., First experimental observation on different ionic states of both methylthio (CH3S') and methoxy (CH3O') radicals, Angew. Chem. Int. Ed., 2000, 39(11):1940-1943.[4]Ramond, T. M., Davico, G. E., Schwartz, R. L. et al., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J.Chem. Phys., 1999, 112: 1158-1169.[5]Blitz, M., Pilling, M. J., Robertson, S. H. et al., Direct studies on the decomposition of the tert-butoxy radical and its reaction with NO, Phys. Chem. Chem. Phys., 1999, 1: 73-80.[6]Lee, Y. Y., Wann, G., Lee, Y. P., Vibronic analysis of the A → X laser-induced fluorescence of jet-cooled methoxy (CH3O) radical,J. Chem. Phys., 1993, 99: 9465-9471.[7]Wiberg, K. B., Structures and charge distributions in alkoxide ions, J. Am. Chem. Soc., 1990, 112: 3379-3385.[8]Janousek, B. K., Zimmerman, A. H., Reed, K. J. et al., Electron photodetachment from aliphatic molecular anions, gas-phase electron affinities of methoxyl, tert-butoxyl, and neopentoxyl radicals, J. Am. Chem. Soc., 1978, 100: 6142-6148.[9]Griller, D., Ingold, K. U., Persistent carbon-centered radicals,Acc. Chem. Res., 1976, 9: 13-19.[10]Haire, D. L., Janzen, E. G., Synthesis and spin trapping kinetics of new alkyl substituted cyclic nitrones, Can. J. Chem., 1982, 60:1514-1522.[11]Walling, C., Kurkov, V. P., Positive halogen compounds, XV. Kinetics of the chlorination of Hydrocarbons by t-butyl hypochlorite,J. Am. Chem. Soc., 1967, 89: 4895-4901.[12]Becke, A. D., Density-functional thermochemistry, Ⅲ. The

  1. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials (United States)

    Jin, Lei


    topic in this thesis presents studies of ethane oxydehydrogenation (ODH) in the presence of CO2 over the octahedral molecular sieve (OMS-2) catalyst. Conversion of CO2 into organic compounds has been studied intensively. Ethane catalytic oxydehydrogenation in the presence of CO2 offers an attractive route for converting CO2. In this study, using OMS-2 as the catalyst in C2H6 dehydrogenation in the presence of CO2 is an example where extreme conditions are used to drive high conversions of ethane (> 70%) and CO2 (up to 56%) with high selectivity towards ethylene (87%) with a short contact time (0.6 s). This inexpensive material also showed high stability during the process, and the presence of CO2 removed coke depositions throughout the catalyst. The results obtained from this study open up new possibilities for olefin dehydrogenations in the presence of CO2, a perfect feedstock for any process involving ethylene carbonylation with the recycling of the greenhouse gas. The fourth part of this thesis presents a ZnO/La2O2CO 3 composite prepared by a new and easy method and discusses the use of these materials as heterogeneous catalysts for ultra-fast microwave biodiesel production at low temperatures. The search for solid state materials with high catalytic activities is one of the key steps toward reducing the cost of producing biodiesel. We present a high biodiesel yield (> 95%) in less than 5 minutes under mild reaction conditions ( 95%) in a short reaction time (< 20 minutes). The results of low temperature activities and short reaction times with minimum energy consumption show them to have solid potential as alkali metal hydroxide/alkoxide alternatives for industrial applications.

  2. Production d'isobutène de haute pureté par décomposition du MTBE High-Purity Isobutene Production from Mtbe

    Directory of Open Access Journals (Sweden)

    Meunier P. B.


    Bronsted acid sites with the participation of basic sites. But some authors note an influence or participation of Lewis acid sites during the dimerization of isobutene on TiO2 or the dehydration of methanol. Dehydration occurring on resins or an oxide catalyst is inhibited by the presence of water. On oxides the alkoxide species with surface CH3O- is revealed to be the adsorbed species. A check must be made of both the preparation and acidity of catalytic formulations to minimize secondary reactions and to produce very pure isobutene.

  3. Polymerization in emulsion microdroplet reactors (United States)

    Carroll, Nick J.

    emulsion. It was discovered surface pore size increases after just a few hours, with high number of hollow particles observed. After 3 days, the particles were irregular shaped with little surface porosity observed via scanning electron microscopy. This may indicate that the microemulsion in the standard synthesis is not at equilibrium and that the alkoxide monomer, tetraethylorthosilicate, may change surface activity over time as additional levels of hydrolysis are obtained. Monodisperse, microemulsion nanoporous particles were synthesized utilizing a microfluidic platform. Emulsification of silica precursor in a pure oil phase at the microfluidic orifice, with infusion of surfactant-laden oil phase into the device downstream of the orifice, allows for successful fluidic treatment of a low interfacial tension system and the formation of monodisperse particles. Temperate evaporation of the solvent from the droplets at ambient conditions preserves the excellent size distribution of the fluidic-formed precursor droplets during gelation. Successful synthesis of monodisperse silica particles with bimodal nanoporosity demonstrates engineering control at three different length scales: the nanoscale via surfactant molecular templating, tens of nanometers via spontaneous microemulsion templating and at the micron level through control of overall size distribution via a microfluidic platform.

  4. Microstructure and Mechanics of Superconductor Epitaxy via the Chemical Solution Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Frederick F. Lange


    funding was intermittent to say the least, and funding to support the student and the research expenses has to be supplemented by Lange’s gift funds. During the first part of the second year, strontium zirconate was identified as an alternative to lanthanum manganite as a buffer layer for use on the IBAD MgO superconducting wire. A lattice parameter of 4.101 Angstroms offers a reduced lattice mismatch between the MgO and SrZrO3. Studies were focused on investigating hybrid precursor routes, combining Sr acetate with a number of different Zr alkoxides. Initial results from heat treating precursors to form powders are positive with the formation of orthorhombic SrZrO3 at temperatures between 800°C and 1100°C under a reducing atmosphere of Ar – 5% H2. Buffer layer research on RABiTS substrates were centered on GdAlO3 (3.71 Å) and YAlO3 (3.68 Å) buffer layer materials. Powder experiments in YAlO3 have shown the perovskite phase to be metastable at processing temperatures below 1500 °C. Experiments involving spin coating of YAlO3 precursors have found significant problems involved with wettability of the YAlO3 precursor (Yttrium acetate, Aluminum tri-sec butoxide, DI water and Formic Acid) on RABiTS substrates; this, and the demise of the funds precluded further research using YAlO3. The diminished funds for the second year, and the small, tricked funds during the third year lead to a redirection of the student to another research area., and a stop to any experimental achievements that were much too ambition relative to the available funds. The only positive results obtained during this latter period was the understanding why two dissimilar structures could result in an epitaxial relation. It was shown that two rules of crystal chemistry, cation/anion coordination and charge balance, could be applied to understand the epitaxy of SrTiO3 on Ni c(2 X 2)S, TiO2 (anatase) on LaAlO3, TiO2 (rutile) on r-plane Al2O3, and Zr1-x(Yx)O2 on (0001) Al2O3. This new understanding of