WorldWideScience

Sample records for alkene-alkyne coupling total

  1. Synthesis of trans-disubstituted alkenes by cobalt-catalyzed reductive coupling of terminal alkynes with activated alkenes.

    Science.gov (United States)

    Mannathan, Subramaniyan; Cheng, Chien-Hong

    2012-09-10

    A cobalt-catalyzed reductive coupling of terminal alkynes, RC≡CH, with activated alkenes, R'CH=CH(2), in the presence of zinc and water to give functionalized trans-disubstituted alkenes, RCH=CHCH(2)CH(2)R', is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl(2)/P(OMe)(3)/Zn catalyst system to afford 1,2-trans-disubstituted alkenes with high regio- and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl(2)/P(OPh)(3)/Zn system providing a mixture of 1,2-trans- and 1,1-disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3-enynes and acetylene gas with alkenes. Furthermore, a phosphine-free cobalt-catalyzed reductive coupling of terminal alkynes with enones, affording 1,2-trans-disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air-stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis of E-Alkyl Alkenes from Terminal Alkynes via Ni-Catalyzed Cross-Coupling of Alkyl Halides with B-Alkenyl-9-borabicyclo[3.3.1]nonanes.

    Science.gov (United States)

    Di Franco, Thomas; Epenoy, Alexandre; Hu, Xile

    2015-10-02

    The first Ni-catalyzed Suzuki-Miyaura coupling of alkyl halides with alkenyl-(9-BBN) reagents is reported. Both primary and secondary alkyl halides including alkyl chlorides can be coupled. The coupling method can be combined with hydroboration of terminal alkynes, allowing the expedited synthesis of functionalized alkyl alkenes from readily available alkynes with complete (E)-selectivity in one pot. The method was applied to the total synthesis of (±)-Recifeiolide, a natural macrolide.

  3. Photoredox-Catalyzed Stereoselective Conversion of Alkynes into Tetrasubstituted Trifluoromethylated Alkenes.

    Science.gov (United States)

    Tomita, Ren; Koike, Takashi; Akita, Munetaka

    2015-10-26

    A regio- and stereoselective synthesis of trifluoromethylated alkenes bearing four different substituents has been developed. Stereocontrolled sulfonyloxytrifluoromethylation of unsymmetric internal alkynes with an electrophilic CF3 reagent, namely the triflate salt of the Yagupol'skii-Umemoto reagent, in the presence of an Ir photoredox catalyst under visible-light irradiation afforded trifluoromethylalkenyl triflates with well-predictable stereochemistry resulting from anti addition of the trifluoromethyl and triflate groups. Subsequent palladium-catalyzed cross-couplings led to tetrasubstituted trifluoromethylated alkenes in a highly stereoselective manner. The present method is the first example of a facile one-pot synthesis of tetrasubstituted trifluoromethylated alkenes from simple alkynes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Aliphatic alkenes and alkynes

    International Nuclear Information System (INIS)

    Cserep, Gy.

    1981-01-01

    This chapter describes the decomposition of aliphatic alkenes and alkynes by radiolysis, concentrating on results published after 1968. The radiolysis of individual compounds, product yields and possible mechanisms of radiation chemical reactions are discussed in detail. The radiolysis of mixtures of aliphatic alkenes is also investigated. General information on decomposition and some condensation reactions is also presented. (Auth./C.F.)

  5. Synthesis of Alkyne and Alkene Ketal Derivatives of Pentacyclo[5.4 ...

    African Journals Online (AJOL)

    NICO

    2013-11-04

    phenyl-pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8-11-one can be easily accomplished by using the alcohols of various alkynes and alkenes. Generally the synthesis of terminal alkyne and cyclic alkene ketal derivatives were ...

  6. Aliphatic alkenes and alkynes

    International Nuclear Information System (INIS)

    Serep, D.

    1985-01-01

    Papers on radiolysis of aliphatic alkenes and alkynes published after 1968 are analytically reviewed. Kinetics and mechanisms of radiolytic processes, dependences of yields of intermediate and final products on conditions of their procedure and molecular structure of compounds are considered. Certain attention is paid to problems of dimerization and oligomerization at radiolysis of the considered compounds

  7. Intermolecular cope-type hydroamination of alkenes and alkynes using hydroxylamines.

    Science.gov (United States)

    Moran, Joseph; Gorelsky, Serge I; Dimitrijevic, Elena; Lebrun, Marie-Eve; Bédard, Anne-Catherine; Séguin, Catherine; Beauchemin, André M

    2008-12-31

    The development of the Cope-type hydroamination as a method for the metal- and acid-free intermolecular hydroamination of hydroxylamines with alkenes and alkynes is described. Aqueous hydroxylamine reacts efficiently with alkynes in a Markovnikov fashion to give oximes and with strained alkenes to give N-alkylhydroxylamines, while unstrained alkenes are more challenging. N-Alkylhydroxylamines also display similar reactivity with strained alkenes and give modest to good yields with vinylarenes. Electron-rich vinylarenes lead to branched products while electron-deficient vinylarenes give linear products. A beneficial additive effect is observed with sodium cyanoborohydride, the extent of which is dependent on the structure of the hydroxylamine. The reaction conditions are found to be compatible with common protecting groups, free OH and NH bonds, as well as bromoarenes. Both experimental and theoretical results suggest the proton transfer step of the N-oxide intermediate is of vital importance in the intermolecular reactions of alkenes. Details are disclosed concerning optimization, reaction scope, limitations, and theoretical analysis by DFT, which includes a detailed molecular orbital description for the concerted hydroamination process and an exhaustive set of calculated potential energy surfaces for the reactions of various alkenes, alkynes, and hydroxylamines.

  8. Sterically directed iridium-catalyzed hydrosilylation of alkenes in the presence of alkynes.

    Science.gov (United States)

    Muchnij, Jill A; Kwaramba, Farai B; Rahaim, Ronald J

    2014-03-07

    A selective iridium catalyzed hydrosilylation of alkenes in the presence of more reactive alkynes is described. By utilizing [IrCl(COD)]2 in the presence of excess COD, hydrosilylation of alkenes and alkynes with ethynylsilanes is achieved with good chemo- and regioselectivity. This approach goes against the traditional reactivity trends of platinum and rhodium catalysts and allows access to highly substituted silicon alkyne tethers.

  9. Hypervalent iodine(III)-mediated cyclopropa(e)nation of alkenes/alkynes under mild conditions.

    Science.gov (United States)

    Lin, Shaoxia; Li, Mengru; Dong, Zhiyong; Liang, Fushun; Zhang, Jingping

    2014-02-28

    Hypervalent iodine(III)-mediated dioxygenation and diamination of alkenes have been previously developed. In this study, the potential application of hypervalent iodine(III) reagent was successfully extended to the dialkylation and cyclopropa(e)nation of unsaturated alkenes and alkynes. The reactions of alkenes with malononitrile and other active methylene compounds as the carbon nucleophiles give access to multisubstituted cyclopropane derivatives in moderate to excellent yields. Both electron-rich and electron-deficient alkenes are suitable substrates. Alkynes, no matter terminal or internal alkynes, work well, affording the corresponding highly functionalized cyclopropenes efficiently. A plausible mechanism of iodo(III)cyclopropanation, ring opening attack by the carbon-nucleophile, and recyclization was proposed for the cyclopropanation of trans-alkene substrates. The cyclopropenation was thought to proceed via iodo(III)cyclopropanation, ring-opening attack by the carbon-nucleophile, recyclization into a four-membered iodo(III)cyclobutene and final reductive elimination. The protocol might provide a complementary route to cyclopropanation/cyclopropenation.

  10. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    Science.gov (United States)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  11. FeBr3-catalyzed dibromination of alkenes and alkynes

    Institute of Scientific and Technical Information of China (English)

    Yun Fa Zheng; Jian Yu; Guo Bing Yan; Xu Li; Song Luo

    2011-01-01

    The dibromination of alkenes and alkynes with bromosuccinimide and sodium bromide catalyzed by FeBr3 under mild conditions has been developed. The trans-dibromo compounds were exclusively obtained with excellent yields.

  12. Reverse cope elimination of hydroxylamines and alkenes or alkynes: theoretical investigation of tether length and substituent effects.

    Science.gov (United States)

    Krenske, Elizabeth H; Davison, Edwin C; Forbes, Ian T; Warner, Jacqueline A; Smith, Adrian L; Holmes, Andrew B; Houk, K N

    2012-02-01

    Quantum mechanical calculations have been used to study the intramolecular additions of hydroxylamines to alkenes and alkynes ("reverse Cope eliminations"). In intermolecular reverse Cope eliminations, alkynes are more reactive than alkenes. However, competition experiments have shown that tethering the hydroxylamine to the alkene or alkyne can reverse the reactivity order from that normally observed. The exact outcome depends on the length of the tether. In agreement with experiment, a range of density functional theory methods and CBS-QB3 calculations predict that the activation energies for intramolecular reverse Cope eliminations follow the order 6-exo-dig hydroxylamine and alkyne. Cyclization onto an alkene in the 5-exo-trig fashion incurs slightly less tether strain than a 6-exo-dig alkyne cyclization, but its activation energy is higher because the hydroxylamine fragment must distort more before the TS is reached. If the alkene terminus is substituted with two methyl groups, the barrier becomes so much higher that it is also disfavored compared to the 5- and 7-exo-dig cyclizations. © 2012 American Chemical Society

  13. Catalytic Aminohalogenation of Alkenes and Alkynes.

    Science.gov (United States)

    Chemler, Sherry R; Bovino, Michael T

    2013-06-07

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.

  14. Photocatalytic Arylation of Alkenes, Alkynes and Enones with Diazonium Salts

    OpenAIRE

    Schroll, Peter; Hari, Durga Prasad; König, Burkhard

    2012-01-01

    Teaching old dogs new tricks: Visible light photoredox catalysis improves the classic Meerwein arylation protocol significantly and allows the light-controlled arylation of alkenes, alkynes and enones by diazonium salts.

  15. The Reverse Cope Elimination of Hydroxylamines and Alkenes or Alkynes: Theoretical Investigation of Tether Length and Substituent Effects

    Science.gov (United States)

    Krenske, Elizabeth H.; Davison, Edwin C.; Forbes, Ian T.; Warner, Jacqueline A.; Smith, Adrian L.; Holmes, Andrew B.; Houk, K. N.

    2012-01-01

    Quantum mechanical calculations have been used to study the intramolecular additions of hydroxylamines to alkenes and alkynes (“reverse Cope eliminations”). In intermolecular reverse Cope eliminations, alkynes are more reactive than alkenes. However, competition experiments have shown that tethering the hydroxylamine to the alkene or alkyne can reverse the reactivity order from that normally observed. The exact outcome depends on the length of the tether. In agreement with experiment, a range of density functional theory methods and CBS-QB3 calculations predict that the activation energies for intramolecular reverse Cope eliminations follow the order 6-exo-dig hydroxylamine and alkyne. Cyclization onto an alkene in the 5-exo-trig fashion incurs slightly less tether strain than a 6-exo-dig alkyne cyclization, but its activation energy is higher because the hydroxylamine fragment must distort more before the TS is reached. If the alkene terminus is substituted with two methyl groups, the barrier becomes so much higher that it is also disfavored compared to the 5- and 7-exo-dig cyclizations. PMID:22280245

  16. Regioselectivity and Enantioselectivity in Nickel-Catalysed Reductive Coupling Reactions of Alkynes

    Science.gov (United States)

    Moslin, Ryan M.; Miller-Moslin, Karen; Jamison, Timothy F.

    2011-01-01

    Nickel-catalysed reductive coupling reactions of alkynes have emerged as powerful synthetic tools for the selective preparation of functionalized alkenes. One of the greatest challenges associated with these transformations is control of regioselectivity. Recent work from our laboratory has provided an improved understanding of several of the factors governing regioselectivity in these reactions, and related studies have revealed that the reaction mechanism can differ substantially depending on the ligand employed. A discussion of stereoselective transformations and novel applications of nickel catalysis in coupling reactions of alkynes is also included. PMID:17971951

  17. Recent advances in the ruthenium-catalyzed hydroarylation of alkynes with aromatics: synthesis of trisubstituted alkenes.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2015-11-14

    The hydroarylation of alkynes with substituted aromatics in the presence of a metal catalyst via chelation-assisted C-H bond activation is a powerful method to synthesize trisubstituted alkenes. Chelation-assisted C-H bond activation can be done by two ways: (a) an oxidative addition pathway and (b) a deprotonation pathway. Generally, a mixture of cis and trans stereoisomeric as well as regioisomeric trisubstituted alkenes was observed in an oxidative addition pathway. In the deprotonation pathway, the hydroarylation reaction can be done in a highly regio- and stereoselective manner, and enables preparation of the expected trisubstituted alkenes in a highly selective manner. Generally, ruthenium, rhodium and cobalt complexes are used as catalysts in the reaction. In this review, a ruthenium-catalyzed hydroarylation of alkynes with substituted aromatics is covered completely. The hydroarylation reaction of alkynes with amide, azole, carbamate, phosphine oxide, amine, acetyl, sulfoxide and sulphur directed aromatics is discussed.

  18. Rapid Reduction of Alkenes and Alkynes over Pd Nanoparticles Supported on Sulfonated Porous Carbon

    Directory of Open Access Journals (Sweden)

    Arash Shokrolahi

    2013-01-01

    Full Text Available A novel method has been introduced for rapid reduction of alkenes and alkynes, which may be attractive for chemical industries. This method has some advantages such as simplicity and low cost of reactants. Pd supported on sulfonated porous carbon (SPC was used as a new catalyst for reduction of alkenes and alkynes to the corresponding alkanes using sodium borohydride. The heterogeneous reaction was conducted in open air at room temperature to produce the desired saturated compounds in high yields (over 96% and in short reaction time (15 minutes.

  19. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes

    KAUST Repository

    Gó mez-Herrera, Alberto; Nahra, Fady; Brill, Marcel; Nolan, Steven P.; Cazin, Catherine S. J.

    2016-01-01

    The iodination of terminal alkynes for the synthesis of 1-iodoalkynes using N-iodosuccinimide in the presence of a AuI-NHC (NHC=N-heterocyclic carbene) catalyst is reported. A series of aromatic alkynes was transformed successfully into the corresponding 1-iodoalkynes in good to excellent yields under mild reaction conditions. The further use of these compounds as organic building blocks and the advantageous choice of metal-NHC complexes as catalysts for alkyne functionalization were further demonstrated by performing selective AuI-catalyzed hydrofluorination to yield (Z)-2-fluoro-1-iodoalkenes, followed by a Suzuki–Miyaura cross-coupling with aryl boronic acids catalyzed by a PdII-NHC complex to access trisubstituted (Z)-fluoroalkenes. All methodologies can be performed sequentially with only minor variations in the optimized individual reaction conditions, maintaining high efficiency and selectivity in all cases, which therefore, provides straightforward access to valuable fluorinated alkenes from commercially available terminal alkynes.

  20. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes

    KAUST Repository

    Gómez-Herrera, Alberto

    2016-08-22

    The iodination of terminal alkynes for the synthesis of 1-iodoalkynes using N-iodosuccinimide in the presence of a AuI-NHC (NHC=N-heterocyclic carbene) catalyst is reported. A series of aromatic alkynes was transformed successfully into the corresponding 1-iodoalkynes in good to excellent yields under mild reaction conditions. The further use of these compounds as organic building blocks and the advantageous choice of metal-NHC complexes as catalysts for alkyne functionalization were further demonstrated by performing selective AuI-catalyzed hydrofluorination to yield (Z)-2-fluoro-1-iodoalkenes, followed by a Suzuki–Miyaura cross-coupling with aryl boronic acids catalyzed by a PdII-NHC complex to access trisubstituted (Z)-fluoroalkenes. All methodologies can be performed sequentially with only minor variations in the optimized individual reaction conditions, maintaining high efficiency and selectivity in all cases, which therefore, provides straightforward access to valuable fluorinated alkenes from commercially available terminal alkynes.

  1. Magnetic Fe@g??C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Science.gov (United States)

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation, and the reaction can be accomplished using visible light without the need for external sources of energy.This dataset is associated with the following publication:Baig, N., S. Verma, R. Varma , and M. Nadagouda. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(3): 1661-1664, (2016).

  2. Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes.

    Science.gov (United States)

    Gao, Yang; Gao, Yinglan; Wu, Wanqing; Jiang, Huanfeng; Yang, Xiaobo; Liu, Wenbo; Li, Chao-Jun

    2017-01-18

    We describe herein a palladium-catalyzed tandem oxidative arylation/olefination reaction of aromatic tethered alkenes/alkynes for the synthesis of dihydrobenzofurans and 2 H-chromene derivatives. This reaction features a 1,2-difunctionalization of C-C π-bond with two C-H bonds using O 2 as terminal oxidant at room temperature. The products obtained are valuable synthons and important scaffolds in biological agents and natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnetic Fe@g‑C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Data.gov (United States)

    U.S. Environmental Protection Agency — A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically...

  4. Regio- and stereoselective iodoacyloxylations of alkynes.

    Science.gov (United States)

    Priebbenow, Daniel L; Gable, Robert W; Baell, Jonathan

    2015-05-01

    A new method for the regioselective and stereoselective iodoacyloxylation of alkynes has been developed. This protocol utilizes a combination of an iodobenzene dicarboxylate and iodine to functionalize a series of activated and unactivated alkynes in an entirely selective and predictable fashion. The resultant iodo-enol esters were subsequently coupled with boronic acids to afford tetrasubstituted alkene derivatives, which could be further converted to the corresponding 1,1-disubstituted acetophenone.

  5. Kinetic solvent isotope effects in the additions of bromine and 4-chlorobenzenesulfenyl chloride to alkenes and alkynes

    International Nuclear Information System (INIS)

    Modro, A.; Schmid, G.H.; Yates, K.

    1979-01-01

    The rates of bromination of selected alkenes and alkynes in methanol/methanol-d, acetic acid/acetic acid-d, and formic acid/formic acid-d have a nearly constant value of k/sub H//k/sub D/ = 1.23 +- 0.02. This kinetic solvent isotope effect is attributed to specific electrophilic solvation of the incipient bromide anion by hydrogen bonding in the rate-determining transition state. The rates of bromination were measured in two solvents having the same values of the solvent parameter Y but different nucleophilicities in order to assess the importance of nucleophilic solvation. Significant nucleophilic solvent assistance is found for only alkylacetylenes. The kinetic solvent isotope effects of the addition of 4-chlorobenzenesulfenyl chloride to selected alkenes and alkynes in acetic acid/acetic acid-d vary from 1.00 to 1.28. These data are consistent with two mechanisms: one involves a tetravalent sulfur intermediate while the second is the sulfur analogue of the S/sub N/2 mechanism

  6. Tribology and Stability of Organic Monolayers on CrN: A Comparison among Silane, Phosphate, Alkene, and Alkyne Chemistries

    NARCIS (Netherlands)

    Pujari, S.P.; Li, F.; Regeling, R.; Zuilhof, H.

    2013-01-01

    The fabrication of chemically and mechanically stable monolayers on the surfaces of various inorganic hard materials is crucial to the development of biomedical/electronic devices. In this Article, monolayers based on the reactivity of silane, phosphonate, 1-alkene, and 1-alkyne moieties were

  7. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    Science.gov (United States)

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation and the reaction can be accomplished using vi...

  8. The metathesis of alkynes

    Directory of Open Access Journals (Sweden)

    H. C. M. Vosloo

    1991-07-01

    Full Text Available The alkyne metathesis reaction is a direct result of the known and intensively studied alkene or olefin metathesis reaction. Unfortunately this reaction was never studied as intensively as the alkene metathesis reaction, mainly because of a lack of active catalytic systems. In the alkyn metathesis reaction the carbon-carbon triple bonds are broken and rearranged to give a redistribution of alkylidyne groups.

  9. Molecular weight growth in Titan's atmosphere: branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes.

    Science.gov (United States)

    Kirk, Benjamin B; Savee, John D; Trevitt, Adam J; Osborn, David L; Wilson, Kevin R

    2015-08-28

    The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.

  10. Reactions of radioactive 18F with alkenes, alkynes, and other substrates

    International Nuclear Information System (INIS)

    Rowland, F.S.; Rust, F.; Frank, J.P.

    1978-01-01

    The technique of using thermalized 18 F atoms for the study of fluorine atom reactions has proven very useful with unsaturated hydrocarbons and halocarbons, providing data on mechanisms, relative rate constants and factors controlling such reactions. The characteristic difficulties of macroscopic 19 F chemistry are often avoided at tracer levels, and analysis by radio gas chromatography can be quite straightforward. However, experiments at pressures below 0.1 atm are relatively difficult, and most of the usual analytical methods are inapplicable at product mole fractions -10 . Many other classes of compounds can be readily substituted for alkenes and alkynes with little variation in equipment and technique. The extension to study 18 F atom reactions with organometallic compounds is one example of the broad applicability of tracer 18 F studies. 57 references, 5 figures, 10 tables

  11. Gold Redox Catalysis through Base-Initiated Diazonium Decomposition toward Alkene, Alkyne, and Allene Activation.

    Science.gov (United States)

    Dong, Boliang; Peng, Haihui; Motika, Stephen E; Shi, Xiaodong

    2017-08-16

    The discovery of photoassisted diazonium activation toward gold(I) oxidation greatly extended the scope of gold redox catalysis by avoiding the use of a strong oxidant. Some practical issues that limit the application of this new type of chemistry are the relative low efficiency (long reaction time and low conversion) and the strict reaction condition control that is necessary (degassing and inert reaction environment). Herein, an alternative photofree condition has been developed through Lewis base induced diazonium activation. With this method, an unreactive Au I catalyst was used in combination with Na 2 CO 3 and diazonium salts to produce a Au III intermediate. The efficient activation of various substrates, including alkyne, alkene and allene was achieved, followed by rapid Au III reductive elimination, which yielded the C-C coupling products with good to excellent yields. Relative to the previously reported photoactivation method, our approach offered greater efficiency and versatility through faster reaction rates and broader reaction scope. Challenging substrates such as electron rich/neutral allenes, which could not be activated under the photoinitiation conditions (<5 % yield), could be activated to subsequently yield the desired coupling products in good to excellent yield. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mechanisms of reactions of organoaluminium compounds with alkenes and alkynes catalyzed by Zr complexes

    International Nuclear Information System (INIS)

    Parfenova, L V; Khalilov, Leonard M; Dzhemilev, Usein M

    2012-01-01

    The results of studies dealing with mechanisms of hydro-, carbo- and cycloalumination of alkenes and alkynes catalyzed by zirconium complexes are generalized and systematized for the first time. Data about the structures of intermediates responsible for the formation of the target compounds are presented and the available data on the effect of the structure of organoaluminium compounds and the electronic and steric factors determining the catalytic activity of metal complexes in these reactions are considered in detail. Much attention is paid to studies of the influence of reaction conditions on the chemo-, regio- and stereoselectivity of the Zr-containing complex catalysts. The bibliography includes 217 references.

  13. Copper Nitrate Mediated Regioselective [2+2+1] Cyclization of Alkynes with Alkenes: A Cascade Approach to Δ(2)-Isoxazolines.

    Science.gov (United States)

    Gao, Mingchun; Li, Yingying; Gan, Yuansheng; Xu, Bin

    2015-07-20

    An efficient method for the regioselective synthesis of pharmacologically relevant polysubstituted Δ(2)-isoxazolines is based on the copper-mediated direct transformation of simple terminal alkynes and alkenes. The overall process involves the formation of four chemical bonds with inexpensive and readily available copper nitrate trihydrate as a novel precursor of nitrile oxides. The reaction can be easily handled and proceeds under mild conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Alkylation of terminal alkynes with transient σ-alkylpalladium(II) complexes: a carboalkynylation route to alkyl-substituted alkynes.

    Science.gov (United States)

    Zhou, Ming-Bo; Huang, Xiao-Cheng; Liu, Yan-Yun; Song, Ren-Jie; Li, Jin-Heng

    2014-02-10

    A mild and general alkylation of terminal alkynes with transient σ-alkylpalladium(II) complexes for assembling alkyl-substituted alkynes is described. This method represents a new way to the use of transient σ-alkylpalladium(II) complexes in organic synthesis through 1,2-carboalkynylation of alkenes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Oxidative C-H Activation Approach to Pyridone and Isoquinolone through an Iron-Catalyzed Coupling of Amides with Alkynes.

    Science.gov (United States)

    Matsubara, Tatsuaki; Ilies, Laurean; Nakamura, Eiichi

    2016-02-04

    An iron catalyst combined with a mild organic oxidant promotes both C-H bond cleavage and C-N bond formation, and forms 2-pyridones and isoquinolones from an alkene- or arylamide and an internal alkyne, respectively. An unsymmetrical alkyne gives the pyridone derivative with high regioselectivity, this could be due to the sensitivity of the reaction to steric effects because of the compact size of iron. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dehalogenation of vicinal dihalo compounds by 1,1'-bis(trimethylsilyl)-1H,1'H-4,4'-bipyridinylidene for giving alkenes and alkynes in a salt-free manner.

    Science.gov (United States)

    Rej, Supriya; Pramanik, Suman; Tsurugi, Hayato; Mashima, Kazushi

    2017-12-07

    We report a transition metal-free dehalogenation of vicinal dihalo compounds by 1,1'-bis(trimethylsilyl)-1H,1'H-4,4'-bipyridinylidene (1) under mild conditions, in which trimethylsilyl halide and 4,4'-bipyridine were generated as byproducts. The synthetic protocol for this dehalogenation reaction was effective for a wide scope of dibromo compounds as substrates while keeping the various functional groups intact. Furthermore, the reduction of vicinal dichloro alkanes and vicinal dibromo alkenes also proceeded in a salt-free manner to afford the corresponding alkenes and alkynes.

  17. Rhodium(III)-catalyzed [3+2] annulation of 5-aryl-2,3-dihydro-1H-pyrroles with internal alkynes through C(sp²)-H/alkene functionalization.

    Science.gov (United States)

    Zhou, Ming-Bo; Pi, Rui; Hu, Ming; Yang, Yuan; Song, Ren-Jie; Xia, Yuanzhi; Li, Jin-Heng

    2014-10-13

    This study describes a new rhodium(III)-catalyzed [3+2] annulation of 5-aryl-2,3-dihydro-1H-pyrroles with internal alkynes using a Cu(OAc)2 oxidant for building a spirocyclic ring system, which includes the functionalization of an aryl C(sp(2))-H bond and addition/protonolysis of an alkene C=C bond. This method is applicable to a wide range of 5-aryl-2,3-dihydro-1H-pyrroles and internal alkynes, and results in the assembly of the spiro[indene-1,2'-pyrrolidine] architectures in good yields with excellent regioselectivities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rh-Catalyzed decarbonylative coupling with alkynes via C-C activation of isatins.

    Science.gov (United States)

    Zeng, Rong; Dong, Guangbin

    2015-02-04

    Herein we report a [5 + 2 - 1] transformation though catalytic decarbonylative coupling between isatins and alkynes, which provides a unique way to synthesize 2-quinolinone derivatives. A broad range of alkynes can be coupled efficiently with high regioselectivity. This reaction is proposed to go through C-C activation of isatins, followed by decarbonylation and alkyne insertion. Directing group (DG) plays a critical role in this transformation. Assisted by the DG, the C-C cleavage of isatins occurs at room temperature.

  19. Hydrophosphorylation of alkynes with phosphinous acids

    International Nuclear Information System (INIS)

    Nifant'ev, E.E.; Solovetskaya, L.A.; Magdeeva, R.K.

    1986-01-01

    A feature of the homolytic hydrophosphorylation of alkynes, as compared with alkenes, is more ready addition of phosphinous acids in presence of benzoyl peroxides. A difference was found in the hydrophosphorylation of acetylenes with dibutylphosphinous acid and with diarylphosphinous acids: the latter tend to form diaddition products

  20. Controlled trifluoromethylation reactions of alkynes through visible-light photoredox catalysis.

    Science.gov (United States)

    Iqbal, Naeem; Jung, Jaehun; Park, Sehyun; Cho, Eun Jin

    2014-01-07

    The control of a reaction that can form multiple products is a highly attractive and challenging concept in synthetic chemistry. A set of valuable CF3 -containing molecules, namely trifluoromethylated alkenyl iodides, alkenes, and alkynes, were selectively generated from alkynes and CF3 I by environmentally benign and efficient visible-light photoredox catalysis. Subtle differences in the combination of catalyst, base, and solvent enabled the control of reactivity and selectivity for the reaction between an alkyne and CF3 I. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Palladium-catalyzed aerobic oxidative cross-coupling of arylhydrazines with terminal alkynes.

    Science.gov (United States)

    Zhao, Yingwei; Song, Qiuling

    2015-09-04

    The palladium-catalyzed Sonogashira-type aerobic oxidative coupling of arylhydrazines with terminal alkynes via C-N bond cleavage has been developed; internal alkynes were afforded with a broad substrate scope. This reaction proceeds under copper- and base-free conditions with molecular oxygen as the sole oxidant and nitrogen and water as the only by-products.

  2. DFT Investigation of the Palladium-Catalyzed Ene-Yne Coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Tanner, David Ackland; Skrydstrup, T.

    2010-01-01

    ). Concerning chemoselectivity, the calculations also clarify why the ene-yne coupling is able to dominate over plausible alternative reaction pathways such as alkene homocoupiing and alkyne polymerization. The role of the phosphine ligand at various stages of the catalytic cycle has also been delineated....

  3. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.

    2011-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal...

  4. Cu(I)/Diamine-catalyzed Aryl-alkyne Coupling Reactions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    CuI/ethylene diamine/K2CO3/dioxane is shown to be a useful system for the cross coupling reactions of various aryl iodides and bromides with aryl and alkyl alkynes. Compared to the conventional Sonogashira reactions, the new procedure is free of palladium and phosphines.

  5. Separation of Alkyne Enantiomers by Chiral Column HPLC Analysis of Their Cobalt-Complexes

    Directory of Open Access Journals (Sweden)

    Qiaoyun Liu

    2017-03-01

    Full Text Available Separation of the enantiomers of new chiral alkynes in strategic syntheses and bioorthogonal studies is always problematic. The chiral column high-performance liquid chromatography (HPLC method in general could not be directly used to resolve such substrates, since the differentiation of the alkyne segment with the other alkane/alkene segment is not significant in the stationary phase, and the alkyne group is not a good UV chromophore. Usually, a pre-column derivatization reaction with a tedious workup procedure is needed. Making use of easily-prepared stable alkyne-cobalt-complexes, we developed a simple and general method by analyzing the in situ generated cobalt-complex of chiral alkynes using chiral column HPLC. This new method is especially suitable for the alkynes without chromophores and other derivable groups.

  6. Partial hydrogenation of alkynes on highly selective nano-structured mesoporous silica MCM-41 composite catalyst

    International Nuclear Information System (INIS)

    Kojoori, R.K.

    2016-01-01

    In this research, we have developed a silica MCM-41/Metformin/Pd (II) nano composite catalyst for the selective hydrogenation of alkynes to the corresponding (Z)-alkenes under a mild condition of atmospheric pressure and room temperature. Firstly, functionalized Si-MCM-41 metformin catalyst with the optimum performance was prepared. Then, the synthesized catalyst was elucidated by X-ray powder diffraction, BET surface area, FT-IR spectrophotometer, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) and applied in partial hydrogenation of different alkynes, with high selectivity and high yield. The products were characterized by 1H-NMR, 13C-NMR, FT-IR, and Mass Spectrometry (MS) that strongly approved the (Z)-double bond configuration of produced alkenes. This prepared catalyst is competitive with the best palladium catalysts known for the selective liquid phase hydrogenation of alkynes and can be easily recovered and regenerated with keeping high activity and selectivity over at least three cycles with a simple regeneration procedure. (author)

  7. Ion pairing of radical ions of aromatic alkenes and alkynes studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Yamamoto, Yukio; Hayashi, Koichiro

    1991-01-01

    Pulse radiolysis of 1,2-dichloroethane solutions of trans,trans-1,4-bis(2-phenylethenyl)benzene and 1,4-bis(2-phenylethynyl)benzene was undertaken in the presence of Bu 4 NPF 6 (Bu=butyl) to investigate the effect of ion pairing of the solute radical cations with PF 6 - . It was also undertaken for the tetrahydrofuran solutions of the above compounds in the presence of Bu 4 NPF 6 and NaBPh 4 , where the solute radical anions are generated and form ion pairs with Bu 4 N + and Na + . The decay of the radical ions, which is due to neutralization, is retarded by the ion pairing. The rate constants for the neutralization reactions in the free-ion and ion-paired states were determined. Also presented are the data for the radical ions of trans-stilbene, diphenylacetylene, trans,trans-1,4-diphenyl-1,3-butadiene, and diphenylbutadiene. The radical ions of the aromatic alkynes are less stabilized by the ion pairing than those of the aromatic alkenes having the same carbon skeletons probably because of more extensive charge delocalization of the former radical ions. Spectral shifts to shorter wavelengths caused by the ion pairing are appreciable for the radical anions. Dependence of the spectral shifts on the size of the radical anions is described. (author)

  8. Highly Chemo- and Stereoselective Transfer Semihydrogenation of Alkynes Catalyzed by a Stable, Well-defined Manganese(II) Complex

    KAUST Repository

    Brzozowska, Aleksandra; Azofra, Luis Miguel; Zubar, Viktoriia; Atodiresei, Iuliana; Cavallo, Luigi; Rueping, Magnus; El-Sepelgy, Osama

    2018-01-01

    The first example of manganese catalyzed semihydrogenation of internal alkynes to (Z)-alkenes using ammonia borane as a hydrogen donor is reported. The reaction is catalyzed by a pincer complex of the earth abundant manganese(II) salt in the absence of any additives, base or super hydride. The ammonia borane smoothly reduces the manganese pre-catalyst [Mn(II)-PNP][Cl]2 to the catalytically active species [Mn(I)-PNP]-hydride in the triplet spin state. This manganese hydride is highly stabilized by complexation with the alkyne substrate. Computational DFT analysis studies of the reaction mechanism rationalizes the origin of stereoselectivity towards formation of (Z)-alkenes.

  9. Highly Chemo- and Stereoselective Transfer Semihydrogenation of Alkynes Catalyzed by a Stable, Well-defined Manganese(II) Complex

    KAUST Repository

    Brzozowska, Aleksandra

    2018-03-30

    The first example of manganese catalyzed semihydrogenation of internal alkynes to (Z)-alkenes using ammonia borane as a hydrogen donor is reported. The reaction is catalyzed by a pincer complex of the earth abundant manganese(II) salt in the absence of any additives, base or super hydride. The ammonia borane smoothly reduces the manganese pre-catalyst [Mn(II)-PNP][Cl]2 to the catalytically active species [Mn(I)-PNP]-hydride in the triplet spin state. This manganese hydride is highly stabilized by complexation with the alkyne substrate. Computational DFT analysis studies of the reaction mechanism rationalizes the origin of stereoselectivity towards formation of (Z)-alkenes.

  10. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides.

    Science.gov (United States)

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-06-16

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  11. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  12. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara

    2017-06-05

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  13. A HIGHLY STEREOSELECTIVE, NOVEL COUPLING REACTION BETWEEN ALKYNES WITH ALDEHYDES. (R828129)

    Science.gov (United States)

    In the presence of indium triflate or gallium chloride, a novel coupling between internal alkynes and aldehydes occurred to give unsaturated ketones and [4+1] annulation products. Graphical Abstrac...

  14. Pd-catalyzed Z-selective semihydrogenation of alkynes: determining the type of active species

    NARCIS (Netherlands)

    Drost, R.M.; Rosar, V.; Marta, S.D.; Lutz, M.; Demitri, N.; Milani, B.; de Bruin, B.; Elsevier, C.J.

    2015-01-01

    A protocol was developed to distinguish between well-defined molecular and nanoparticle-based catalysts for the Pd-catalyzed semihydrogenation reaction of alkynes to Z-alkenes. The protocol applies quantitative partial poisoning and dynamic light scattering methods, which allow the institution of

  15. Pd-Catalyzed Z-Selective Semihydrogenation of Alkynes : Determining the Type of Active Species

    NARCIS (Netherlands)

    Drost, Ruben M.; Rosar, Vera; Marta, Silvia Dalla; Lutz, Martin; Demitri, Nicola; Milani, Barbara; De Bruin, Bas; Elsevier, Cornelis J.

    2015-01-01

    A protocol was developed to distinguish between well-defined molecular and nanoparticle-based catalysts for the Pd-catalyzed semihydrogenation reaction of alkynes to Z-alkenes. The protocol applies quantitative partial poisoning and dynamic light scattering methods, which allow the institution of

  16. Direct Alkynylation of 3H-Imidazo[4,5-b]pyridines Using gem-Dibromoalkenes as Alkynes Source.

    Science.gov (United States)

    Aziz, Jessy; Baladi, Tom; Piguel, Sandrine

    2016-05-20

    C2 direct alkynylation of 3H-imidazo[4,5-b]pyridine derivatives is explored for the first time. Stable and readily available 1,1-dibromo-1-alkenes, electrophilic alkyne precursors, are used as coupling partners. The simple reaction conditions include an inexpensive copper catalyst (CuBr·SMe2 or Cu(OAc)2), a phosphine ligand (DPEphos) and a base (LiOtBu) in 1,4-dioxane at 120 °C. This C-H alkynylation method revealed to be compatible with a variety of substitutions on both coupling partners: heteroarenes and gem-dibromoalkenes. This protocol allows the straightforward synthesis of various 2-alkynyl-3H-imidazo[4,5-b]pyridines, a valuable scaffold in drug design.

  17. Coupling of terminal alkynes and isonitriles by organo-actinide complexes: Scope and mechanistic insights

    International Nuclear Information System (INIS)

    Barnea, E.; Andrea, T.; Eisen, M. S.; Berthet, J.C.; Ephritikhine, M.

    2008-01-01

    The coupling reaction of terminal alkynes with several isonitriles, catalyzed by the neutral organo-actinide complexes Cp * 2 AnMe 2 (Cp * = C 5 Me 5 , An = Th, U) or the cationic complex [(Et 2 N) 3 U][BPh 4 ], yielded substituted α, β-acetylenic aldimines, in good to excellent yields. The reaction proceeded via a 1,1-insertion of the isonitrile carbon into a metal-acetylide bond, followed by a protonolysis by the acidic proton of the terminal alkyne. Additional insertion products were obtained by altering the catalyst and the reactant ratios. A plausible mechanism for the catalytic reaction is also presented, based on kinetics measurements and thermodynamic studies of the coupling reaction with Cp * 2 ThMe 2 or [(Et 2 N) 3 U][BPh 4 ] as catalysts. The reaction is first-order in catalyst and isonitrile and zero-order in alkyne. (authors)

  18. Transition metal-catalyzed couplings of alkynes to 1,3-enynes: modern methods and synthetic applications.

    Science.gov (United States)

    Trost, Barry M; Masters, James T

    2016-04-21

    The metal-catalyzed coupling of alkynes is a powerful method for the preparation of 1,3-enynes, compounds that are of broad interest in organic synthesis. Numerous strategies have been developed for the homo- and cross coupling of alkynes to enynes via transition metal catalysis. In such reactions, a major issue is the control of regio-, stereo-, and, where applicable, chemoselectivity. Herein, we highlight prominent methods for the selective synthesis of these valuable compounds. Further, we illustrate the utility of these processes through specific examples of their application in carbocycle, heterocycle, and natural product syntheses.

  19. Tribology and stability of organic monolayers on CrN: a comparison among silane, phosphonate, alkene, and alkyne chemistries.

    Science.gov (United States)

    Pujari, Sidharam P; Li, Yan; Regeling, Remco; Zuilhof, Han

    2013-08-20

    The fabrication of chemically and mechanically stable monolayers on the surfaces of various inorganic hard materials is crucial to the development of biomedical/electronic devices. In this Article, monolayers based on the reactivity of silane, phosphonate, 1-alkene, and 1-alkyne moieties were obtained on the hydroxyl-terminated chromium nitride surface. Their chemical stability and tribology were systematically investigated. The chemical stability of the modified CrN surfaces was tested in aqueous media at 60 °C at pH 3, 7, and 11 and monitored by static water contact angle measurements, X-ray photoelectron spectroscopy (XPS), ellipsometry, and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). The tribological properties of the resulting organic monolayers with different end groups (fluorinated or nonfluorinated) were studied using atomic force microscopy (AFM). It was found that the fluorinated monolayers exhibit a dramatic reduction of adhesion and friction force as well as excellent wear resistance compared to those of nonfluorinated coatings and bare CrN substrates. The combination of remarkable chemical stability and superior tribological properties makes these fluorinated monolayers promising candidates for the development of robust high-performance devices.

  20. Highly enantioselective catalytic cross-dehydrogenative coupling of N-carbamoyl tetrahydroisoquinolines and terminal alkynes.

    Science.gov (United States)

    Sun, Shutao; Li, Chengkun; Floreancig, Paul E; Lou, Hongxiang; Liu, Lei

    2015-04-03

    The first catalytic asymmetric cross-dehydrogenative coupling of cyclic carbamates and terminal alkynes has been established. The reaction features high enantiocontrol and excellent functional group tolerance and displays a wide range of structurally and electronically diverse carbamates as well as terminal alkynes. N-Acyl hemiaminals were identified as the reactive intermediates through preliminary control experiments. Employing readily removable carbamates as substrates rather than traditionally adopted N-aryl amines allows applications in complex molecule synthesis and therefore advances the C-H functionalization strategy to a synthetically useful level.

  1. Alkyne- and alkyl-tris(cyclopentadienyl) complexes of uranium(III)

    International Nuclear Information System (INIS)

    Foyentin, M.; Folcher, G.; Ephritkhine, M.

    1987-01-01

    Treatment of cp 3 U(THF) (1) (cp=eta-C 5 H 5 , THF=tetrahydrofuran) with diphenylacetylene affords the alkyne complex cp 3 U(Ph-C identical to C-Ph); (1) reacts with RLi (R = Me, Busup(n)) to give the alkyl compounds cp 3 URLi (3); hydrogenolysis of (3) in the presence of a terminal alkene R'(-H) leads to the formation of cp 3 UR'Li. (author)

  2. Synthesis and characterization of alkene-extended tetrathiafulvalenes with lateral alkyne appendages

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brønsted; Gisselbrecht, Jean-Paul; Thorup, Niels

    2003-01-01

    Tetrathiafulvalene (TTF) derivatives containing a diethynyl-substituted alkene spacer were synthesized and investigated for their electronic and structural properties. Co-planarity of the central diethynylethene unit and the two dithiole rings were confirmed by X-ray crystallographic analysis....

  3. Synthesis of naphthalenes through three-component coupling of alkynes, Fischer carbene complexes, and benzaldehyde hydrazones via isoindole intermediates.

    Science.gov (United States)

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K; Herndon, James W

    2008-04-17

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels-Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes.

  4. Synthesis of Naphthalenes through Three-Component Coupling of Alkynes, Fischer Carbene Complexes, and Benzaldehyde Hydrazones via Isoindole Intermediates

    OpenAIRE

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K.; Herndon, James W.

    2008-01-01

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels–Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes.

  5. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    KAUST Repository

    Fava, Eleonora

    2016-07-21

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. © 2016 American Chemical Society.

  6. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    KAUST Repository

    Fava, Eleonora; Nakajima, Masaki; Nguyen, Anh L. P.; Rueping, Magnus

    2016-01-01

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. © 2016 American Chemical Society.

  7. Synthesis of Naphthalenes through Three-Component Coupling of Alkynes, Fischer Carbene Complexes, and Benzaldehyde Hydrazones via Isoindole Intermediates

    Science.gov (United States)

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K.; Herndon, James W.

    2008-01-01

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels–Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes. PMID:18351767

  8. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy.

    Science.gov (United States)

    Negishi, Ei-ichi; Huang, Zhihong; Wang, Guangwei; Mohan, Swathi; Wang, Chao; Hattori, Hatsuhiko

    2008-11-18

    Although generally considered competitive, the alkenylation and carbonyl olefination routes to alkenes are also complementary. In this Account, we focus on these approaches for the synthesis of regio- and stereodefined di- and trisubstituted alkenes and a few examples of tetrasubstituted alkenes. We also discuss the subset of regio- and stereodefined dienes and oligoenes that are conjugated. Pd-catalyzed cross-coupling using alkenyl metals containing Zn, Al, Zr, and B (Negishi coupling and Suzuki coupling) or alkenyl halides and related alkenyl electrophiles provides a method of alkenylation with the widest applicability and predictability, with high stereo- and regioselectivity. The requisite alkenyl metals or alkenyl electrophiles are most commonly prepared through highly selective alkyne addition reactions including (i) conventional polar additions, (ii) hydrometalation, (iii) carbometalation, (iv) halometalation, and (v) other heteroatom-metal additions. Although much more limited in applicability, the Heck alkenylation offers an operationally simpler, viable alternative when it is highly selective and satisfactory. A wide variety of carbonyl olefination reactions, especially the Wittig olefination and its modifications represented by the E-selective HWE olefination and the Z-selective Still-Gennari olefination, collectively offer the major alternative to the Pd-catalyzed alkenylation. However, the carbonyl olefination method fundamentally suffers from more limited stereochemical options and generally lower stereoselectivity levels than the Pd-catalyzed alkenylation. In a number of cases, however, very high (>98%) stereoselectivity levels have been attained in the syntheses of both E and Z isomers. The complementarity of the alkenylation and carbonyl olefination routes provide synthetic chemists with valuable options. While the alkenylation involves formation of a C-C single bond to a CC bond, the carbonyl olefination converts a CO bond to a CC bond. When a

  9. Cyclopropenes in Metallacycle-Mediated Cross-Coupling with Alkynes: Convergent Synthesis of Highly Substituted Vinylcyclopropanes.

    Science.gov (United States)

    O'Rourke, Natasha F; Micalizio, Glenn C

    2016-03-18

    Stereodivergent metallacycle-mediated cross-coupling reactions are described for the synthesis of densely functionalized vinylcyclopropanes from the union of alkynes with cyclopropenes. Strategies explored include hydroxyl-directed and nondirected processes, with the latter of these delivering vinylcyclopropanes with exquisite levels of regio- and stereoselectivity. Challenges inherent to these coupling reactions include diastereoselectivity (with respect to the cyclopropene) and regioselectivity (with respect to both coupling partners).

  10. Covalently Attached Organic Monolayers onto Silicon Carbide from 1-Alkynes: Molecular Structure and Tribological Properties

    NARCIS (Netherlands)

    Pujari, S.P.; Scheres, L.M.W.; Weidner, T.; Baio, J.E.; Cohen Stuart, M.A.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    In order to achieve improved tribological and wear properties at semiconductor interfaces, we have investigated the thermal grafting of both alkylated and fluorine-containing ((CxF2x+1)–(CH2)n-) 1-alkynes and 1-alkenes onto silicon carbide (SiC). The resulting monolayers display static water contact

  11. Gold(I)-catalyzed diazo coupling: strategy towards alkene formation and tandem benzannulation.

    Science.gov (United States)

    Zhang, Daming; Xu, Guangyang; Ding, Dong; Zhu, Chenghao; Li, Jian; Sun, Jiangtao

    2014-10-06

    A gold(I)-catalyzed cross-coupling of diazo compounds to afford tetrasubstituted alkenes has been developed by taking advantage of a trivial electronic difference between two diazo substrates. A N-heterocyclic-carbene-derived gold complex is the most effective catalyst for this transformation. Based on this new strategy, a gold(I)-initiated benzannulation has been achieved through a tandem reaction involving a diazo cross-coupling, 6π electrocyclization, and oxidative aromatization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemistry of Carbon Monoxide Free Cyclopentadienylvanadium(I) Alkene and Alkyne Complexes

    NARCIS (Netherlands)

    Hessen, Bart; Meetsma, Auke; Bolhuis, Fré van; Teuben, Jan H.; Helgesson, Göran; Jagner, Susan

    The compounds CpV(L)(PMe3)2 (L = η2-ethene (2), η2-alkyne) form a new class of highly reactive CO-free CpVI complexes. Paramagnetic 2 was prepared from CpVCl(PMe3)2 and 0.5 mol of BrMg(CH2)4MgBr. An X-ray structure determination shows a relatively short ethene C=C distance of 1.365 (5) Å. The

  13. Selective coupling reaction between 2,6-diiodoanisoles and terminal alkynes catalyzed by Pd(PPh32Cl2 and CuI

    Directory of Open Access Journals (Sweden)

    Allan F. C. Rossini

    2012-06-01

    Full Text Available The cross-coupling reaction between aryl halides and terminal alkynes, catalyzed by palladium complexes and copper (I salts, consists in an efficient synthetic tool for the formation of C-C bonds, resulting in disubstituted acetylenic compounds. Accordingly, in this work we present our preliminary results involving the selective cross-coupling reaction between 2,6-diiodoanisoles and terminal alkynes, catalyzed by Pd(PPh32Cl2 and CuI, in the formation of 2-iodo-alkynylanisoles (scheme 1.

  14. The Pd-catalyzed semihydrogenation of alkynes to Z-alkenes: Catalyst systems and the type of active species

    NARCIS (Netherlands)

    Drost, R.M.

    2014-01-01

    In this thesis studies have been performed on the Pd-catalyzed Z-selective semihydrogenation of alkynes. In Chapter one a general introduction is given. In Chapter two a new NHC-based, easy-to-use catalyst system is developed. The performance of the system is evaluated for a range of alkynes. In

  15. Copper-promoted oxidative coupling of enamides and alkynes for the synthesis of substituted pyrroles.

    Science.gov (United States)

    Zhao, Mi-Na; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2014-02-10

    An efficient copper-promoted oxidative coupling of enamides with alkynes has been developed for the synthesis of substituted pyrroles. The reaction proceeded through C-H and N-H bond functionalization of enamides under mild conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  17. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    Matsuura, K.; Muto, H.

    1991-01-01

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--H β proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp 2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  18. Inactivation of Toluene 2-Monooxygenase in Burkholderia cepacia G4 by Alkynes

    Science.gov (United States)

    Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.; Hyman, Michael R.

    1999-01-01

    High concentrations of acetylene (10 to 50% [vol/vol] gas phase) were required to inhibit the growth of Burkholderia cepacia G4 on toluene, while 1% (vol/vol) (gas phase) propyne or 1-butyne completely inhibited growth. Low concentrations of longer-chain alkynes (C5 to C10) were also effective inhibitors of toluene-dependent growth, and 2- and 3-alkynes were more potent inhibitors than their 1-alkyne counterparts. Exposure of toluene-grown B. cepacia G4 to alkynes resulted in the irreversible loss of toluene- and o-cresol-dependent O2 uptake activities, while acetate- and 3-methylcatechol-dependent O2 uptake activities were unaffected. Toluene-dependent O2 uptake decreased upon the addition of 1-butyne in a concentration- and time-dependent manner. The loss of activity followed first-order kinetics, with apparent rate constants ranging from 0.25 min−1 to 2.45 min−1. Increasing concentrations of toluene afforded protection from the inhibitory effects of 1-butyne. Furthermore, oxygen, supplied as H2O2, was required for inhibition by 1-butyne. These results suggest that alkynes are specific, mechanism-based inactivators of toluene 2-monooxygenase in B. cepacia G4, although the simplest alkyne, acetylene, was relatively ineffective compared to longer alkynes. Alkene analogs of acetylene and propyne—ethylene and propylene—were not inactivators of toluene 2-monooxygenase activity in B. cepacia G4 but were oxidized to their respective epoxides, with apparent Ks and Vmax values of 39.7 μM and 112.3 nmol min−1 mg of protein−1 for ethylene and 32.3 μM and 89.2 nmol min−1 mg of protein−1 for propylene. PMID:9925593

  19. Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives

    Directory of Open Access Journals (Sweden)

    Dixneuf Pierre H.

    2016-03-01

    Full Text Available This account presents the importance of ruthenium-catalysed alkene cross-metathesis for the catalytic transformations of biomass derivatives into useful intermediates, especially those developed by the authors in the Rennes (France catalysis team in cooperation with chemical industry. The cross-metathesis of a variety of functional alkenes arising from plant oils, with acrylonitrile and fumaronitrile and followed by catalytic tandem hydrogenation, will be shown to afford linear amino acid derivatives, the precursors of polyamides. The exploration of cross-metathesis of bio-sourced unsaturated nitriles with acrylate with further catalytic hydrogenation has led to offer an excellent route to α,ω-amino acid derivatives. That of fatty aldehydes has led to bifunctional long chain aldehydes and saturated diols. Two ways of access to functional dienes by ruthenium-catalyzed ene-yne cross-metathesis of plant oil alkene derivatives with alkynes and by cross-metathesis of bio-sourced alkenes with allylic chloride followed by catalytic dehydrohalogenation, are reported. Ricinoleate derivatives offer a direct access to chiral dihydropyrans and tetrahydropyrans via ring closing metathesis. Cross-metathesis giving value to terpenes and eugenol for the straightforward synthesis of artificial terpenes and functional eugenol derivatives without C=C bond isomerization are described.

  20. Ion-tagged π-acidic alkene ligands promote Pd-catalysed allyl-aryl couplings in an ionic liquid

    NARCIS (Netherlands)

    Bäuerlein, P.S.; Fairlamb, I.J.S.; Jarvis, A.G.; Lee, A.F.; Müller, C.; Slattery, J.M.; Thatcher, R.J.; Vogt, D.; Whitwood, A.C.

    2009-01-01

    Ionic p-acidic alkene ligands based on chalcone and benzylidene acetone frameworks have been ?doped? into ionic liquids to provide functional reaction media for Pd-catalysed cross-couplings of a cyclohexenyl carbonate with aryl siloxanes that allow simple product isolation, free from Pd (

  1. Anti-1,2-Diols via Ni-Catalyzed Reductive Coupling of Alkynes and α-Oxyaldehydes

    Science.gov (United States)

    Luanphaisarnnont, Torsak; Ndubaku, Chudi O.; Jamison, Timothy F.

    2008-01-01

    Ni-catalyzed reductive coupling of aryl alkynes (1) and enantiomerically enriched α-oxyaldehydes (2) afford differentiated anti-1,2-diols (3) with high diastereoselectivity and regioselectivity, despite the fact that the methoxymethyl (MOM) and para-methoxybenzyl (PMB) protective groups typically favor syn-1,2-diol formation in carbonyl addition reactions of this family of aldehydes. PMID:15987174

  2. Vicinal Diboronates in High Enantiomeric Purity through Tandem Site-Selective NHC–Cu-Catalyzed Boron-Copper Additions to Terminal Alkynes

    Science.gov (United States)

    Lee, Yunmi; Jang, Hwanjong; Hoveyda, Amir H.

    2009-01-01

    A Cu-catalyzed protocol for conversion of terminal alkynes to enantiomerically enriched diboronates is reported. In a single vessel, a site-selective hydroboration of an alkyne leads to the corresponding terminal vinylboronate, which undergoes a second site-selective and enantioselective hydroboration. Reactions proceed in the presence of two equivalents of commercially available bis(pinacolato)diboron [B2(pin)2] and 5–7.5 mol % of a chiral bidentate imidazolinium salt, affording diboronates in 60–93% yield and up to 97.5:2.5 enantiomeric ratio (er). The enantiomerically enriched products can be functionalized to afford an assortment of versatile organic molecules. Enynes are converted to unsaturated diboronates with high chemo- (>98% reaction of alkyne; <2% at alkene) and enantioselectivity (e.g., 94.5:5.5 er). PMID:19968273

  3. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls.

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J

    2015-10-14

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes.

  4. Hydrotelluration of alkynes: a unique route to Z-vinyl organometallics

    Directory of Open Access Journals (Sweden)

    Vieira Maurício L.

    2001-01-01

    Full Text Available The hydrotelluration reaction of alkynes is reviewed. The transformation of vinylic tellurides into reactive vinyl organometallics and the coupling reactions of vinylic tellurides with alkynes and organometallics are presented.

  5. FeCl3- and GaCl3-Catalyzed Dehydrative Coupling Reaction of Chromone-Derived Morita-Baylis-Hillman Alcohols with Terminal Alkynes%FeCl3- and GaCl3-Catalyzed Dehydrative Coupling Reaction of Chromone-Derived Morita-Baylis-Hillman Alcohols with Terminal Alkynes

    Institute of Scientific and Technical Information of China (English)

    武陈; 曾皓; 刘哲; 刘利; 王东; 陈拥军

    2011-01-01

    FeCl3- and GaCl3-catalyzed dehydrative coupling reactions of chromone-derived Morita-Baylis-Hillman (MBH) alcohols with terminal alkynes were developed. The reactions provided exclusively a-regioselective and acetylene-substituted products in good yields.

  6. Cu(II)-mediated ortho C-H alkynylation of (hetero)arenes with terminal alkynes.

    Science.gov (United States)

    Shang, Ming; Wang, Hong-Li; Sun, Shang-Zheng; Dai, Hui-Xiong; Yu, Jin-Quan

    2014-08-20

    Cu(II)-promoted ortho alkynylation of arenes and heteroarenes with terminal alkynes has been developed to prepare aryl alkynes. A variety of arenes and terminal alkynes bearing different substituents are compatible with this reaction, thus providing an alternative disconnection to Sonogashira coupling.

  7. C-H Bond Functionalization via Hydride Transfer: Direct Coupling of Unactivated Alkynes and sp3 C-H Bonds Catalyzed by Platinum Tetraiodide

    Science.gov (United States)

    Vadola, Paul A.; Sames, Dalibor

    2010-01-01

    We report a catalytic intramolecular coupling between terminal unactivated alkynes and sp3 C-H bonds via the through-space hydride transfer (HT-cyclization of alkynes). This method enables one-step preparation of complex heterocyclic compounds by α-alkenylation of readily available cyclic ethers and amines. We show that PtI4 is an effective Lewis acid catalyst for the activation of terminal alkynes for the hydride attack and subsequent C-C bond formation. In addition, we have shown that the activity of neutral platinum salts (PtXn) can be modulated by the halide ligands. This modulation in turn allows for fine-tuning of the platinum center reactivity to match the reactivity and stability of selected substrates and products. PMID:19852462

  8. Iodine-Catalyzed Direct Olefination of 2-Oxindoles and Alkenes via Cross-Dehydrogenative Coupling (CDC) in Air.

    Science.gov (United States)

    Huang, Hong-Yan; Wu, Hong-Ru; Wei, Feng; Wang, Dong; Liu, Li

    2015-08-07

    A direct intermolecular olefination of sp(3) C-H bond between 2-oxindoles and simple alkenes via a Cross-Dehydrogenative Coupling (CDC) strategy has been developed. In the absence of additional base, moderate to excellent yields have been obtained by using a catalytic amount of iodine with atmospheric oxygen as the reoxidant. Based on the observation of a radical capture experiment, the transformation is proposed to proceed via a radical process.

  9. A Facile Stereospecific Synthesis of 1, 3-Enynylsulfides via Sonogashira Coupling of (E)-α-Iodovinyl Sulfides with 1-Alkynes

    Institute of Scientific and Technical Information of China (English)

    Jian Wen JIANG; Ming Zhong CAI

    2006-01-01

    (E)-α-Iodovinyl sulfides 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol % of Pd(PPh3)4 and 10 mol %of CuI to afford the corresponding 1, 3-enynylsulfides 3 stereospecifically in high yields.

  10. Effect of nitrogen and phosphate limitation on utilization of bitumen ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... Carbon (iv) oxide. Bromine + gas. Decolourization. Alkene and alkyne suspect. Cold acidified potassium tetraoxomanganate(vii) + gas. Decolourzation. Alkene and alkyne suspect. Silver trioxonitrate (v) + gas. No reaction. Alkene confirmed. Figure 7. The IR analysis of bitumen before biodegradation.

  11. Subnanometer Gold Clusters on Amino-Functionalized Silica: An Efficient Catalyst for the Synthesis of 1,3-Diynes by Oxidative Alkyne Coupling

    Czech Academy of Sciences Publication Activity Database

    Vilhanová, B.; Václavík, Jiří; Artiglia, L.; Ranocchiari, M.; Togni, A.; van Bokhoven, J. A.

    2017-01-01

    Roč. 7, č. 5 (2017), s. 3414-3418 ISSN 2155-5435 Institutional support: RVO:61388963 Keywords : alkyne coupling * gold * heterogeneous catalysis * hypervalent iodine * subnanometer Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 10.614, year: 2016

  12. Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis

    Science.gov (United States)

    Nguyen, Thach T.; Koh, Ming Joo; Mann, Tyler J.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-12-01

    Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity—namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products—and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.

  13. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  14. Reversible alkyne insertion in the benzannulation reaction of Fischer carbene complexes with alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.L.; Bos, M.E.; Wulff, W.D. [Univ. of Chicago, IL (United States)

    1995-12-31

    The benzannulation reaction of Fischer carbene complexes with alkynes to give phenols is highly regioselective with terminal alkynes, and reasonably regioselective with internal alkynes. This has been attributed to steric factors in intermediates, where one form is favored due to close contact between the R substituent and a cis-CO ligand. Whether alkyne insertion is kinetically or thermodynamically controlled has not been determined. The authors now have evidence from regioselectivity studies that alkyne insertion into the metal-carbon bond is reversible. Implications of these results and further mechanistic considerations will be presented.

  15. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.

    Science.gov (United States)

    Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing

    2014-06-02

    Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cobalt-Catalyzed, Aminoquinoline-Directed sp2 C-H Bond Alkenylation by Alkynes**

    Science.gov (United States)

    Grigorjeva, Liene; Daugulis, Olafs

    2014-01-01

    We have developed a method for cobalt-catalyzed, aminoquinoline- and picolinamide-directed sp2 C-H bond alkenylation by alkynes. Method shows excellent functional group tolerance and both internal and terminal alkynes are competent substrates for the coupling. The reaction employs Co(OAc)2*4H2O catalyst, Mn(OAc)2 cocatalyst, and oxygen from air as a terminal oxidant. PMID:25060365

  17. Total Synthesis of Four Stereoisomers of (4Z,7Z,10Z,12E,16Z,18E)-14,20-Dihydroxy-4,7,10,12,16,18-docosahexaenoic Acid and Their Anti-inflammatory Activities.

    Science.gov (United States)

    Goto, Tomomi; Urabe, Daisuke; Masuda, Koji; Isobe, Yosuke; Arita, Makoto; Inoue, Masayuki

    2015-08-07

    A novel anti-inflammatory lipid mediator, (4Z,7Z,10Z,12E,14S,16Z,18E,20R)-14,20-dihydroxy-4,7,10,12,16,18-docosahexaenoic acid (1aa), and its three C14,C20 stereoisomers (1ab,ba,bb) were synthesized in a convergent fashion. The carbon backbone of the target compounds was assembled from seven simple fragments by employing two Sonogashira coupling and three SN2 alkynylation reactions. The thus constructed four internal alkynes were chemoselectively reduced to the corresponding (Z)-alkenes by applying a newly developed stepwise protocol: (i) hydrogenation of the three alkynes using Lindlar catalyst and (ii) formation of the dicobalt hexacarbonyl complex from the remaining alkyne and subsequent reductive decomplexation. The synthetic preparation of the stereochemically defined four isomers 1aa,ab,ba,bb permitted determination of the absolute structure of the isolated natural product to be 1aa. Biological testing of the four synthetic 14,20-dihydroxydocosahexaenoic acids disclosed similar anti-inflammatory activities of the non-natural isomers (1ab,ba,bb) and the natural form (1aa).

  18. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhang

    2016-12-01

    Full Text Available This work represents our initial effort in identifying azide/alkyne pairs for optimal reactivity in copper-catalyzed azide-alkyne cycloaddition (CuAAC reactions. In previous works, we have identified chelating azides, in particular 2-picolyl azide, as “privileged” azide substrates with high CuAAC reactivity. In the current work, two types of alkynes are shown to undergo rapid CuAAC reactions under both copper(II- (via an induction period and copper(I-catalyzed conditions. The first type of the alkynes bears relatively acidic ethynyl C-H bonds, while the second type contains an N-(triazolylmethylpropargylic moiety that produces a self-accelerating effect. The rankings of reactivity under both copper(II- and copper(I-catalyzed conditions are provided. The observations on how other reaction parameters such as accelerating ligand, reducing agent, or identity of azide alter the relative reactivity of alkynes are described and, to the best of our ability, explained.

  19. Transition metal control in the reaction of alkyne-substituted phenyl iodides with terminal alkynes: Sonogashira coupling vs cyclic carbopalladation

    Czech Academy of Sciences Publication Activity Database

    Teplý, Filip; Stará, Irena G.; Starý, Ivo; Kollárovič, Adrian; Šaman, David; Fiedler, Pavel

    2002-01-01

    Roč. 58, č. 44 (2002), s. 9007-9018 ISSN 0040-4020 R&D Projects: GA ČR GA203/99/1448 Institutional research plan: CEZ:AV0Z4055905 Keywords : alkynes Subject RIV: CC - Organic Chemistry Impact factor: 2.420, year: 2002

  20. Highly efficient transition metal-free coupling of acid chlorides with terminal alkynes in [bmim]Br: A rapid route to access ynones using MgCl2

    Directory of Open Access Journals (Sweden)

    Mohammad Navid Soltani Rad

    2018-03-01

    Full Text Available A simple, mild, highly efficient and transition metal-free protocol for synthesis of ynones in an ionic liquid is described. In this approach, the coupling reaction of different acid chlorides with terminal alkynes was efficiently carried out using 0.05 mol% MgCl2 in the presence of triethylamine in [bmim]Br at room temperature to afford the corresponding ynones in good to excellent yields. This method is highly efficient for various acid chlorides and alkynes including aliphatic, aromatic, and heteroaromatic substrates bearing different functional groups. The influence of some parameters in this reaction including type of ionic liquid, base and catalyst has been discussed.

  1. Relative Performance of Alkynes in Copper-Catalyzed Azide-Alkyne Cycloaddition

    Science.gov (United States)

    Kislukhin, Alexander A.; Hong, Vu P.; Breitenkamp, Kurt E.; Finn, M.G.

    2013-01-01

    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) has found numerous applications in a variety of fields. We report here only modest differences in the reactivity of various classes of terminal alkynes under typical bioconjugative and preparative organic conditions. Propargyl compounds represent an excellent combination of azide reactivity, ease of installation, and cost. Electronically activated propiolamides are slightly more reactive, at the expense of increased propensity for Michael addition. Certain alkynes, including tertiary propargyl carbamates, are not suitable for bioconjugation due to copper-induced fragmentation. A fluorogenic probe based on such reactivity is available in one step from rhodamine 110 and can be useful for optimization of CuAAC conditions. PMID:23566039

  2. Investigation of the Pyridinium Ylide—Alkyne Cycloaddition as a Fluorogenic Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Simon Bonte

    2016-03-01

    Full Text Available The cycloaddition of pyridinium ylides with alkynes was investigated under mild conditions. A series of 13 pyridinium salts was prepared by alkylation of 4-substituted pyridines. Their reactivity with propiolic ester or amide in various reaction conditions (different temperatures, solvents, added bases was studied, and 11 indolizines, with three points of structural variation, were, thus, isolated and characterized. The highest yields were obtained when electron-withdrawing groups were present on both the pyridinium ylide, generated in situ from the corresponding pyridinium salt, and the alkyne (X, Z = ester, amide, CN, carbonyl, etc.. Electron-withdrawing substituents, lowering the acid dissociation constant (pKa of the pyridinium salts, allow the cycloaddition to proceed at pH 7.5 in aqueous buffers at room temperature.

  3. Cobalt-catalyzed, aminoquinoline-directed C(sp²)-H bond alkenylation by alkynes.

    Science.gov (United States)

    Grigorjeva, Liene; Daugulis, Olafs

    2014-09-15

    A method for cobalt-catalyzed, aminoquinoline- and picolinamide-directed C(sp(2))-H bond alkenylation by alkynes was developed. The method shows excellent functional-group tolerance and both internal and terminal alkynes are competent substrates for the coupling. The reaction employs a Co(OAc)2⋅4 H2O catalyst, Mn(OAc)2 co-catalyst, and oxygen (from air) as a terminal oxidant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Adsorption of small hydrocarbons on rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  5. Using Pd-salen complex as an efficient catalyst for the copper- and solvent-free coupling of acyl chlorides with terminal alkynes under aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    Mohammad

    2010-01-01

    The palladium-salen complex palladium(Ⅱ) N,N'-bis{[5-(triphenylphosphonium)-methyl]salicylidene}-l,2-ethanediamine chloride was found to be a highly active catalyst for the copper- and solvent-free coupling reaction of terminal alkynes with different acyl chlorides in the presence of triethylamine as base, giving excellent ynones under aerobic conditions.

  6. Rhodium-catalyzed redox-neutral coupling of phenidones with alkynes.

    Science.gov (United States)

    Fan, Zhoulong; Lu, Heng; Li, Wei; Geng, Kaijun; Zhang, Ao

    2017-07-21

    A switchable synthesis of N-substituted indole derivatives from phenidones via rhodium-catalyzed redox-neutral C-H activation has been achieved. In this protocol, we firstly disclosed that the reactivity of Rh(iii) catalysis could be enhanced through employing palladium acetate as an additive. Some representative features include external oxidant-free, applicable to terminal alkynes, short reaction time and operational simplicity. The utility of this method is further showcased by the economical synthesis of potent anticancer PARP-1 inhibitors.

  7. Organoactinides-new type of catalysts for carbon-silicon bond formation

    International Nuclear Information System (INIS)

    Dash, Aswini K.; Wang, Ji.Q.; Wang, Jiaxi; Gourevich, Ilya; Eisen, Moris S.

    2002-01-01

    Organoactinide complexes of the type Cp 2 * AnMe 2 (An=Th, U) have been found to be efficient catalysts for the hydrosilylation of terminal alkynes. The chemoselectivity and regiospecificity of the reactions depend strongly on the nature of the catalyst, the nature of the alkyne, the silane substituents, the ratio between the silane and alkyne, the solvent and the reaction temperature. The hydrosilylation reaction of the terminal alkynes with PhSiH 3 at room temperature produces the trans-vinylsilane as the major product along with the silylalkyne and the corresponding alkene. At higher temperatures the cis-vinylsilane and the double hydrosilylated alkene, in which the two silicon moieties are connected at the same carbon atom, are also obtained. Replacing the pentamethylcyclopentadienyl ligand by the bridge ligation [Me 2 SiCp'' 2 ] 2- 2[Li] + (Cp''=C 5 Me 4 ) affords the synthesis of ansa-Me 2 SiCp'' 2 ThBu 2 , which was found to react extremely fast for the hydrosilylation of terminal alkynes or alkenes with PhSiH 3 . Besides the rapidity of the processes using the bridge organoactinide, as compared to Cp * 2 ThMe 2 , the chemo- and regio-selectivity of the products were increased allowing the production of only the trans-vinylsilane and the 1-silylated alkane for the hydrosilylation of alkyne and alkene, respectively. (author)

  8. Intramolecular Azide to Alkene Cycloadditions for the Construction of Pyrrolobenzodiazepines and Azetidino-Benzodiazepines

    Directory of Open Access Journals (Sweden)

    Karl Hemming

    2014-10-01

    Full Text Available The coupling of proline- and azetidinone-substituted alkenes to 2-azidobenzoic and 2-azidobenzenesulfonic acid gives precursors that undergo intramolecular azide to alkene 1,3-dipolar cycloadditions to give imine-, triazoline- or aziridine-containing pyrrolo[1,4]benzodiazepines (PBDs, pyrrolo[1,2,5]benzothiadiazepines (PBTDs, and azetidino[1,4]benzodiazepines. The imines and aziridines are formed after loss of nitrogen from a triazoline cycloadduct. The PBDs are a potent class of antitumour antibiotics.

  9. Conjugated polymers developed from alkynes

    Institute of Scientific and Technical Information of China (English)

    Yajing Liu; Jacky W.Y.Lam; Ben Zhong Tang

    2015-01-01

    The numerous merits of conjugated polymers(CPs) have encouraged scientists to develop a variety of synthetic routes to CPs with diverse structures and functionalities. Among the large scope of substrates,alkyne plays an important role in constructing polymers with conjugated backbones. In addition to some well-developed reactions including Glaser–Hay and Sonogashira coupling, azide/thiol-yne click reaction and cyclotrimerization, some novel alkyne-based reactions have also been explored such as oxidative polycoupling, decarbonylative polycoupling and multicomponent tandem polymerizations. his review focuses on the recent progress on the synthetic methodology of CPs in the last ive years using monomers with two or more triple bonds and some of their high-technological applications. Selected examples of materials properties of these CPs are given in this review, such as luorescence response to chemical or physical stimuli, magnetism, white light emission, cell imaging and bioprobing. Finally, a short perspective is raised in regard to the outlook of the preparation methodologies, functionalities as well as potential applications of CPs in the future.

  10. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings

    Science.gov (United States)

    Jackson, Evan P.; Malik, Hasnain A.; Sormunen, Grant J.; Baxter, Ryan D.; Liu, Peng; Wang, Hengbin; Shareef, Abdur-Rafay; Montgomery, John

    2015-01-01

    CONSPECTUS The control of regiochemistry is a considerable challenge in the development of a wide array of catalytic processes. Simple π-components such as alkenes, alkynes, 1,3-dienes, and allenes are among the many classes of substrates that present complexities in regioselective catalysis. Considering an internal alkyne as a representative example, when steric and electronic differences between the two substituents are minimal, differentiating among the two termini of the alkyne presents a great challenge. In cases where the differences between the alkyne substituents are substantial, overcoming those biases to access the regioisomer opposite that favored by substrate biases often presents an even greater challenge. Nickel-catalyzed reductive couplings of unsymmetrical π-components make up a group of reactions where control of regiochemistry presents a challenging but important objective. In the course of our studies of aldehyde-alkyne reductive couplings, complementary solutions to challenges in regiocontrol have been developed. Through careful selection of the ligand and reductant, as well as the more subtle reaction variables such as temperature and concentration, effective protocols have been established that allow highly selective access to either regiosiomer of the the allylic alcohol products using a wide range of unsymmetrical alkynes. Computational studies and an evaluation of reaction kinetics have provided an understanding of the origin of the regioselectivity control. Throughout the various procedures described, the development of ligand-substrate interactions play a key role, and the overall kinetic descriptions were found to differ between protocols. Rational alteration of the rate-determining step plays a key role in the regiochemistry reversal strategy, and in one instance, the two possible regioisomeric outcomes in a single reaction were found to operate by different kinetic descriptions. With this mechanistic information in hand, the

  11. Quantum confinement and surface chemistry of 0.8–1.6 nm hydrosilylated silicon nanocrystals

    International Nuclear Information System (INIS)

    Pi Xiao-Dong; Wang Rong; Yang De-Ren

    2014-01-01

    In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne-hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing —NH 2 and —C 4 H 3 S lead to significant hydrosilylation-induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene-hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing —NH 2 and —C 4 H 3 S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement. (condensed matter: structural, mechanical, and thermal properties)

  12. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    Science.gov (United States)

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 1,3-Dipolar Cycloaddition Reactions of 1-(4-Phenylphenacyl-1,10-phenanthrolinium N-Ylide with Activated Alkynes and Alkenes

    Directory of Open Access Journals (Sweden)

    A. Badoiu

    2005-02-01

    Full Text Available The 3 2 cycloaddition reaction of 1-(4-phenylphenacyl-1,10-phenanthrolinium ylide with activated alkynes gave pyrrolo[1,2- 4a][1,10]phenanthrolines 6a-d. The "one pot" synthesis of 6a,b,d from 4, activatedalkenes, Et3N and tetrakis-pyridine cobalt (II dichromate (TPCD is described. Thehelical chirality of pyrrolophenanthrolines 6b-d was put in evidence by NMRspectroscopy.

  14. Copper-Catalyzed Eglinton Oxidative Homocoupling of Terminal Alkynes: A Computational Study

    Directory of Open Access Journals (Sweden)

    Jesús Jover

    2015-01-01

    Full Text Available The copper(II acetate mediated oxidative homocoupling of terminal alkynes, namely, the Eglinton coupling, has been studied with DFT methods. The mechanism of the whole reaction has been modeled using phenylacetylene as substrate. The obtained results indicate that, in contrast to some classical proposals, the reaction does not involve the formation of free alkynyl radicals and proceeds by the dimerization of copper(II alkynyl complexes followed by a bimetallic reductive elimination. The calculations demonstrate that the rate limiting-step of the reaction is the alkyne deprotonation and that more acidic substrates provide faster reactions, in agreement with the experimental observations.

  15. Synthesis of phenanthrenes through copper-catalyzed cross-coupling of N-tosylhydrazones with terminal alkynes.

    Science.gov (United States)

    Hossain, Mohammad Lokman; Ye, Fei; Liu, Zhenxing; Xia, Ying; Shi, Yi; Zhou, Lei; Zhang, Yan; Wang, Jianbo

    2014-09-19

    A novel protocol for the synthesis of phenanthrenes through the copper-catalyzed reaction of aromatic tosylhydrazones with terminal alkynes is explored. The reaction proceeds via the formation of an allene intermediate and subsequent six-π-electron cyclization-isomerization, affording phenanthrene derivatives in good yields. The transformation can be performed in two ways: (1) with N-tosylhydrazones derived from [1,1'-biphenyl]-2-carbaldehydes and terminal alkynes as the starting materials and (2) with N-tosylhydrazones derived from aromatic aldehydes and 2-alkynyl biphenyls as the starting materials. This new phenanthrene synthesis uses readily available starting materials and a cheap copper catalyst and has a wide range of functional group compatibility.

  16. Rhodium(III)-catalyzed vinylic sp2 C-H bond functionalization: efficient synthesis of pyrido[1,2-α]benzimidazoles and imidazo[1,2-α]pyridines.

    Science.gov (United States)

    Dong, Lin; Huang, Ji-Rong; Qu, Chuan-Hua; Zhang, Qian-Ru; Zhang, Wei; Han, Bo; Peng, Cheng

    2013-09-28

    A simple approach for synthesis of novel aza-fused scaffolds such as pyrido[1,2-α]benzimidazoles and imidazo[1,2-α]pyridines was developed by Rh(III)-catalyzed direct oxidative coupling between alkenes and unactivated alkynes without an extra directing group. The method would allow a broad substrate scope, providing fused heterocycles with potential biological properties.

  17. A Near-Threshold Shape Resonance in the Valence-Shell Photoabsorption of Linear Alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.; Gans, Bérenger; de Oliveira, N.; Ito, K.; Joyeux, D.; Archer, L. E.; Lucchese, R. R.; Xu, Hong; Pratt, S. T.

    2015-12-17

    The room-temperature photoabsorption spectra of a number of linear alkynes with internal triple bonds (e.g., 2-butyne, 2-pentyne, and 2- and 3-hexyne) show similar resonances just above the lowest ionization threshold of the neutral molecules. These features result in a substantial enhancement of the photoabsorption cross sections relative to the cross sections of alkynes with terminal triple bonds (e.g., propyne, 1-butyne, 1-pentyne,...). Based on earlier work on 2-butyne [Xu et al., J. Chem. Phys. 2012, 136, 154303], these features are assigned to excitation from the neutral highest occupied molecular orbital (HOMO) to a shape resonance with g (l = 4) character and approximate pi symmetry. This generic behavior results from the similarity of the HOMOs in all internal alkynes, as well as the similarity of the corresponding g pi virtual orbital in the continuum. Theoretical calculations of the absorption spectrum above the ionization threshold for the 2- and 3-alkynes show the presence of a shape resonance when the coupling between the two degenerate or nearly degenerate pi channels is included, with a dominant contribution from l = 4. These calculations thus confirm the qualitative arguments for the importance of the l = 4 continuum near threshold for internal alkynes, which should also apply to other linear internal alkynes and alkynyl radicals. The 1-alkynes do not have such high partial waves present in the shape resonance. The lower l partial waves in these systems are consistent with the broader features observed in the corresponding spectra.

  18. A facile stereospecific synthesis of (Z)-2-sulfonyl-substituted 1,3-enynes via Sonogashira coupling of (E)-α-iodovinyl sulfones with 1-alkynes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    (E)-α-Iodovinyl sulfones 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol% of Pd(PPh3)4 and 10 mol% of CuI to stereospecifically afford the corresponding (Z)-2-sulfonyl-substituted 1,3-enynes 3 in high yields.(C) 2007 Ming Zhong Cai. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  19. Modern Reduction Methods

    CERN Document Server

    Andersson, Pher G

    2008-01-01

    With its comprehensive overview of modern reduction methods, this book features high quality contributions allowing readers to find reliable solutions quickly and easily. The monograph treats the reduction of carbonyles, alkenes, imines and alkynes, as well as reductive aminations and cross and heck couplings, before finishing off with sections on kinetic resolutions and hydrogenolysis. An indispensable lab companion for every chemist.

  20. Alkynes as Allylmetal Equivalents in Redox-Triggered C–C Couplings to Primary Alcohols: (Z)-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition

    Science.gov (United States)

    2015-01-01

    The cationic ruthenium catalyst generated upon the acid–base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-(2-Pr)3PhSO3H promotes the redox-triggered C–C coupling of 2-alkynes and primary alcohols to form (Z)-homoallylic alcohols with good to complete control of olefin geometry. Deuterium labeling studies, which reveal roughly equal isotopic compositions at the allylic and distal vinylic positions, along with other data, corroborate a catalytic mechanism involving ruthenium(0)-mediated allene–aldehyde oxidative coupling to form a transient oxaruthenacycle, an event that ultimately defines (Z)-olefin stereochemistry. PMID:25075434

  1. Electrocatalytic aerobic epoxidation of alkenes: Experimental and DFT investigation

    International Nuclear Information System (INIS)

    Magdesieva, Tatiana V.; Borisova, Nataliya E.; Dolganov, Alexander V.; Ustynyuk, Yuri A.

    2012-01-01

    A new method for electrocatalytic aerobic epoxidation of alkenes catalyzed by binuclear Cu(II) complexes with azomethine ligands based on 2,6-diformyl-4-tert-butylphenol is described. In acetonitrile–water (5%), at the potential of Cu II /Cu I redox couple (–0.8 V vs. Ag/AgCl/KCl) at room temperature the epoxide is obtained in an average yield of around 50%. Contrary to the majority of known epoxidations, no strong oxidants are involved and no free hydrogen peroxide is formed in the reaction, thus making it ecologically friendly. The DFT quantum-chemical modeling of the reaction mechanism revealed that a copper hydroperoxo-complex rather than hydrogen peroxide or a copper oxo-complex oxidizes alkene. The process is very selective since neither products of hydroxylation of benzene ring in styrene nor of allylic oxidation of cyclohexene were detected.

  2. Palladium-catalyzed aryl C-H olefination with unactivated, aliphatic alkenes.

    Science.gov (United States)

    Deb, Arghya; Bag, Sukdev; Kancherla, Rajesh; Maiti, Debabrata

    2014-10-01

    Palladium-catalyzed coupling between aryl halides and alkenes (Mizoroki-Heck reaction) is one of the most popular reactions for synthesizing complex organic molecules. The limited availability, problematic synthesis, and higher cost of aryl halide precursors (or their equivalents) have encouraged exploration of direct olefination of aryl carbon-hydrogen (C-H) bonds (Fujiwara-Moritani reaction). Despite significant progress, the restricted substrate scope, in particular noncompliance of unactivated aliphatic olefins, has discouraged the use of this greener alternative. Overcoming this serious limitation, we report here a palladium-catalyzed chelation-assisted ortho C-H bond olefination of phenylacetic acid derivatives with unactivated, aliphatic alkenes in good to excellent yields with high regio- and stereoselectivities. The versatility of this operationally simple method has been demonstrated through drug diversification and sequential C-H olefination for synthesizing divinylbenzene derivatives.

  3. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes.

    Science.gov (United States)

    Yamamoto, Yoshihiko

    2014-03-07

    Transition-metal (TM)-catalyzed hydroarylation reactions of alkynes have received much attention, because they enable the net insertion of alkyne C-C triple bonds into C-H bonds of aromatic precursors, resulting in regio- and stereo-selective formation of synthetically useful arylalkenes. Taking advantage of this feature, TM-catalyzed alkyne hydroarylations have been successfully used for the synthesis of heterocycles. TM-catalyzed alkyne hydroarylations can be classified into three major categories depending on the type of reaction and precursors involved: (1) palladium-catalyzed reductive Heck reactions of alkynes with aryl halides, (2) TM-catalyzed conjugate arylation reactions of activated alkynes with arylboronic acids, and (3) TM-catalyzed aromatic C-H alkenylations with alkynes. This review surveys heterocycle synthesis via TM-catalyzed hydroarylation of alkynes according to the above classification, with an emphasis on the scope and limitations, as well as the underlying mechanisms.

  4. Sonogashira Coupling Reaction with Palladium Powder and Potassium Fluoride in Methanol

    Institute of Scientific and Technical Information of China (English)

    王磊; 李品华

    2003-01-01

    A Sonogashira coupling reaction of aromatic halides with terminal alkynes in the presence of palladium powder,potassium fluoride,cuprous iodide and triphenylphosphine in methanol,giving the corresponding coupling products aryl alkynes in good to excellent yiekls,was investigated.

  5. Syngas conversion to a light alkene and related methods

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2017-11-14

    Methods of producing a light alkene. The method comprises contacting syngas and tungstated zirconia to produce a product stream comprising at least one light alkene. The product stream is recovered. Methods of converting syngas to a light alkene are also disclosed. The method comprises heating a precursor of tungstated zirconia to a temperature of between about 350.degree. C. and about 550.degree. C. to form tungstated zirconia. Syngas is flowed over the tungstated zirconia to produce a product stream comprising at least one light alkene and the product stream comprising the at least one light alkene is recovered.

  6. Selective Semihydrogenation of Alkynes Catalyzed by Pd Nanoparticles Immobilized on Heteroatom-Doped Hierarchical Porous Carbon Derived from Bamboo Shoots.

    Science.gov (United States)

    Ji, Guijie; Duan, Yanan; Zhang, Shaochun; Fei, Benhua; Chen, Xiufang; Yang, Yong

    2017-09-11

    Highly dispersed palladium nanoparticles (Pd NPs) immobilized on heteroatom-doped hierarchical porous carbon supports (N,O-carbon) with large specific surface areas are synthesized by a wet chemical reduction method. The N,O-carbon derived from naturally abundant bamboo shoots is fabricated by a tandem hydrothermal-carbonization process without assistance of any templates, chemical activation reagents, or exogenous N or O sources in a simple and ecofriendly manner. The prepared Pd/N,O-carbon catalyst shows extremely high activity and excellent chemoselectivity for semihydrogenation of a broad range of alkynes to versatile and valuable alkenes under ambient conditions. The catalyst can be readily recovered for successive reuse with negligible loss in activity and selectivity, and is also applicable for practical gram-scale reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Decarboxylative Hydroalkylation of Alkynes.

    Science.gov (United States)

    Till, Nicholas A; Smith, Russell T; MacMillan, David W C

    2018-05-02

    The merger of open- and closed-shell elementary organometallic steps has enabled the selective intermolecular addition of nucleophilic radicals to unactivated alkynes. A range of carboxylic acids can be subjected to a CO 2 extrusion, nickel capture, migratory insertion sequence with terminal and internal alkynes to generate stereodefined functionalized olefins. This platform has been further extended, via hydrogen atom transfer, to the direct vinylation of unactivated C-H bonds. Preliminary studies indicate that a Ni-alkyl migratory insertion is operative.

  8. Borostannylation of Alkynes and Enynes. Scope and Limitations of the Reaction and Utility of the Adducts

    Science.gov (United States)

    Singidi, Ramakrishna Reddy; RajanBabu, T. V.

    2010-01-01

    The utility of the bis-metallating reagent 1,3-dimethyl-2-trimethylstannyl-2-bora-1,3-diazacyclopentane (1) has not been fully realized because of the hydrolytic instability of the products derived from catalyzed vicinal syn-additions to alkynes. The isolation of variety of such adducts derived from alkynes (and also from hitherto unreported additions to 1,3-enynes) as stable boron pinacolates is reported. Examples of the applications of resulting products in tandem cross-coupling reactions and as dienes in Diels-Alder reactions are illustrated. PMID:20459076

  9. MICROWAVE-ASSISTED CU (I) CATALYZED SOLVENT-FREE THREE COMPONENT COUPLING OF ALDEHYDE, ALKYNE AND AMINE

    Science.gov (United States)

    Direct Grignard type addition of terminal alkynes to in situ generated imines, from aldehydes and amines, occurs under microwave irradiation using CuBr alone in a one-pot operation. This solventless approach provides ready access to propargylamines and is applicable both...

  10. Binding motif of terminal alkynes on gold clusters.

    Science.gov (United States)

    Maity, Prasenjit; Takano, Shinjiro; Yamazoe, Seiji; Wakabayashi, Tomonari; Tsukuda, Tatsuya

    2013-06-26

    Gold clusters protected by terminal alkynes (1-octyne (OC-H), phenylacetylene (PA-H) and 9-ethynyl-phenanthrene (EPT-H)) were prepared by the ligand exchange of small (diameter alkynes on Au clusters was investigated using various spectroscopic methods. FTIR and Raman spectroscopy revealed that terminal hydrogen is lost during the ligand exchange and that the C≡C bond of the alkynyl group is weakened upon attachment to the Au clusters. Acidification of the water phase after the ligand exchange indicated that the ligation of alkynyl groups to the Au clusters proceeds via deprotonation of the alkynes. A series of precisely defined Au clusters, Au34(PA)16, Au54(PA)26, Au30(EPT)13, Au35(EPT)18, and Au(41-43)(EPT)(21-23), were synthesized and characterized in detail to obtain further insight into the interfacial structures. Careful mass analysis confirmed the ligation of the alkynes in the dehydrogenated form. An upright configuration of the alkynes on Au clusters was suggested from the Au to alkyne ratios and photoluminescence from the excimer of the EPT ligands. EXAFS analysis implied that the alkynyl carbon is bound to bridged or hollow sites on the cluster surface.

  11. Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation

    Science.gov (United States)

    Patman, Ryan L.; Chaulagain, Mani Raj; Williams, Vanessa M.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, 2-butyne couples to benzylic and aliphatic alcohols 1a–1i to furnish allylic alcohols 2a–2i, constituting a direct C-H vinylation of alcohols employing alkynes as vinyl donors. Under related transfer hydrogenation conditions employing formic acid as terminal reductant, 2-butyne couples to aldehydes 4a, 4b, and 4e to furnish identical products of carbonyl vinylation 2a, 2b, and 2e. Thus, carbonyl vinylation is achieved from the alcohol or the aldehyde oxidation level in the absence of any stoichiometric metallic reagents. Nonsymmetric alkynes 6a–6c couple efficiently to aldehyde 4b to provide allylic alcohols 2m–2o as single regioisomers. Acetylenic aldehyde 7a engages in efficient intramolecular coupling to deliver cyclic allylic alcohol 8a. PMID:19173651

  12. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    Science.gov (United States)

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  13. Gold-catalyzed Alkyne Hydroxylation: Synthesis of 2-Substituted Benzo[b]furan Compounds

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan; XIN Zhi-Jun; XUE Ji-Jun; LI Ying

    2008-01-01

    A strategy concerning the synthesis of 2-substituted benzo[b]furan compounds from o-alkynyl phenols via a gold-catalyzed alkyne hydroxylation is described, which allows the rapid synthesis of various 2-substituted benzo[b]furan derivatives in excellent yields under mild conditions. The o-alkynyl phenol precursors were readily prepared with a Sonogashira coupling reaction.

  14. Palladium(0) alkyne complexes as active species: A DFT-investigation

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, Giancarlo; Cacchi, Sandro

    2005-01-01

    Alkynes have been found to be excellent ligands for Pd(0); the stability of a range of alkyne-Pd(0) complexes, and their reactivity in oxidative addition, have been investigated by DFT methods.......Alkynes have been found to be excellent ligands for Pd(0); the stability of a range of alkyne-Pd(0) complexes, and their reactivity in oxidative addition, have been investigated by DFT methods....

  15. Total Synthesis of Bryostatins. Development of Methodology for Atom-Economic and Stereoselective Synthesis of the C-ring Subunit

    Science.gov (United States)

    Trost, Barry M.; Frontier, Alison J.; Thiel, Oliver R.; Yang, Hanbiao; Dong, Guangbin

    2012-01-01

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for stereoselective assembly of the C-ring subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the C-ring subunit of bryostatins. PMID:21793057

  16. Nickel/zinc-catalyzed decarbonylative addition of anhydrides to alkynes: a DFT study.

    Science.gov (United States)

    Meng, Qingxi; Li, Ming

    2013-10-01

    Density functional theory (DFT) was used to investigate the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. All intermediates and transition states were optimized completely at the B3LYP/6-31+G(d,p) level. Calculated results indicated that the decarbonylative addition of phthalic anhydrides to alkynes was exergonic, and the total free energy released was -87.6 kJ mol(-1). In the five-coordinated complexes M4a and M4b, the insertion reaction of alkynes into the Ni-C bond occurred prior to that into the Ni-O bond. The nickel(0)/zinc-catalyzed decarbonylative addition was much more dominant than the nickel-catalyzed one in whole catalytic decarbonylative addition. The reaction channel CA→M1'→T1'→M2'→T2'→M3a'→M4a'→T3a1'→M5a1' →T4a1'→M6a'→P was the most favorable among all reaction pathways of the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. And the alkyne insertion reaction was the rate-determining step for this channel. The additive ZnCl2 had a significant effect, and it might change greatly the electron and geometry structures of those intermediates and transition states. On the whole, the solvent effect decreased the free energy barriers.

  17. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  18. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    Science.gov (United States)

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [(PhCH2O2P(CH32CHNCH(CH32]2PdCl2/CuI as Cocatalyst for Coupling-Cyclization of 2-Iodophenol with Terminal Alkynes in Water

    Directory of Open Access Journals (Sweden)

    Panli Jiang

    2018-03-01

    Full Text Available A new and efficient [(PhCH2O2P(CH32CHNCH(CH32]2PdCl2/CuI-co-catalyzed coupling-cyclization reactions of 2-iodophenol with terminal alkynes is described. Different 2-substitued benzo[b]furan derivatives are obtained in good to excellent yields. This protocol employs a relatively low palladium(II catalyst loading in water under air conditions.

  20. Chromium Salen Mediated Alkene Epoxidation

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Norrby, Per-Ola; Daly, Adrian M.

    2002-01-01

    The mechanism of alkene epoxidation by chromium(v) oxo salen complexes has been studied by DFT and experimental methods. The reaction is compared to the closely related Mn-catalyzed process in an attempt to understand the dramatic difference in selectivity between the two systems. Overall......-spin surface. The low-spin addition of metal oxo species to an alkene leads to an intermediate which forms epoxide either with a barrier on the low-spin surface or without a barrier after spin inversion. Supporting evidence for this intermediate was obtained by using vinylcyclopropane traps. The chromium...

  1. Convergent Synthesis of Piperidines by the Union of Conjugated Alkynes with Imines: A Unique Regioselective Bond Construction for Heterocycle Synthesis

    Science.gov (United States)

    Chen, Ming Z.; Micalizio, Glenn C.

    2009-01-01

    A two-step process is described for the union of aromatic imines, conjugated alkynes and aldehydes that results in a stereoselective synthesis of highly substituted piperidines. This synthetic process has been made possible by defining a unique regioselective functionalization of conjugated alkynes that establishes a suitably functionalized substrate for subsequent heterocycle-forming cationic annulation. Given the flexibility of the coupling process, heterocycles can be accessed through a process that establishes up to four stereogenic centers and four fused rings. PMID:19817447

  2. Selectivity in catalytic alkyne cyclotrimerization over chromium(VI): kinetic evaluation using the characteristics of radioactive carbon-11 decay for nondisruptive ultrasensitive detection of adsorbed species

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Wolf, A.P.

    1984-01-01

    The application of carbon-11 to kinetic measurements of molecular sorption is reported using positron annihilation surface detection (PASD). The technique is nondisruptive to dynamic processes and has the sensitivity to detect 10 -8 of a monolayer. In studies of alkyne cyclomerization on silica-alumina-supported Cr(VI), a high selectivity toward p-xylene formation was observed when acetylene-propyne mixtures were cotrimerized at monolayer total alkyne coverages. This selectivity was enhanced to 84% p-xylene, as the partial acetylene coverage was reduced to 1.0% of a monolayer. Competitive sorption studies utilized PASD to measure the surface concentration of [ 11 C]-acetylene coupled with macroscopic sorption measurements of propyne. Surface displacement of sorbed acetylene by propyne was observed with subsequent readsorption. The kinetics of this displacement were evaluated by using PASD in pulse-flow studies with various acetylene and propyne coverages and were modeled to a calculation of the isomeric xylene distribution. A near-identical fit was obtained between experimental and modeled results. This strongly suggested that the observed selectivity for p-xylene formation was due to sorbate interactions resulting in a specific molecular ordering of the alkyne mixture on the catalyst surface

  3. Reaction of tantalum-alkyne complexes with isocyanates or acyl cyanides

    International Nuclear Information System (INIS)

    Kataoka, Yasutaka; Oguchi, Yoshiyuki; Yoshizumi, Kazuyuki; Miwatashi, Seiji; Takai, Kazuhiko; Utimoto, Kiitiro

    1992-01-01

    Treatment of alkynes with low-valent tantalum derived from TiCl 5 and zinc produces tantalum-alkyne complexes (not isolated), which react in situ with phenyl isocyanate (or butyl isocyanate) to give (E)-α, β-unsaturated amides stereoselectively. The tantalum-alkyne complexes also react with acyl cyanides in the presence of BF 3 ·OEt 2 to give α-cyanohydrins. In both reactions, filtration of the reaction mixture containing the tantalum-alkyne complexes before addition of isocyanates (or acyl cyanides) is indispensable to obtain good yields. (author)

  4. Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures.

    Science.gov (United States)

    Hein, Samuel J; Lehnherr, Dan; Arslan, Hasan; J Uribe-Romo, Fernando; Dichtel, William R

    2017-11-21

    Aromatic compounds and polymers are integrated into organic field effect transistors, light-emitting diodes, photovoltaic devices, and redox-flow batteries. These compounds and materials feature increasingly complex designs, and substituents influence energy levels, bandgaps, solution conformation, and crystal packing, all of which impact performance. However, many polycyclic aromatic hydrocarbons of interest are difficult to prepare because their substitution patterns lie outside the scope of current synthetic methods, as strategies for functionalizing benzene are often unselective when applied to naphthalene or larger systems. For example, cross-coupling and nucleophilic aromatic substitution reactions rely on prefunctionalized arenes, and even directed metalation methods most often modify positions near Lewis basic sites. Similarly, electrophilic aromatic substitutions access single regioisomers under substrate control. Cycloadditions provide a convergent route to densely functionalized aromatic compounds that compliment the above methods. After surveying cycloaddition reactions that might be used to modify the conjugated backbone of poly(phenylene ethynylene)s, we discovered that the Asao-Yamamoto benzannulation reaction is notably efficient. Although this reaction had been reported a decade earlier, its scope and usefulness for synthesizing complex aromatic systems had been under-recognized. This benzannulation reaction combines substituted 2-(phenylethynyl)benzaldehydes and substituted alkynes to form 2,3-substituted naphthalenes. The reaction tolerates a variety of sterically congested alkynes, making it well-suited for accessing poly- and oligo(ortho-arylene)s and contorted hexabenzocoronenes. In many cases in which asymmetric benzaldehyde and alkyne cycloaddition partners are used, the reaction is regiospecific based on the electronic character of the alkyne substrate. Recognizing these desirable features, we broadened the substrate scope to include silyl

  5. Rhodium Phosphine-π-Arene Intermediates in the Hydroamination of Alkenes

    Science.gov (United States)

    Liu, Zhijian; Yamamichi, Hideaki; Madrahimov, Sherzod T.; Hartwig, John F.

    2011-01-01

    A detailed mechanistic study of the intramolecular hydroamination of alkenes with amines catalyzed by rhodium complexes of a biaryldialkylphosphine are reported. The active catalyst is shown to contain the phosphine ligand bound in a κ1, η6 form in which the arene is π-bound to rhodium. Addition of deuterated amine to an internal olefin showed that the reaction occurs by trans addition of the N-H bond across the C=C bond, and this stereochemistry implies that the reaction occurs by nucleophilic attack of the amine on a coordinated alkene. Indeed, the cationic rhodium fragment binds the alkene over the secondary amine, and the olefin complex was shown to be the catalyst resting state. The reaction was zero-order in substrate, when the concentration of olefin was high, and a primary isotope effect was observed. The primary isotope effect, in combination with the observation of the alkene complex as the resting state, implies that nucleophilic attack of the amine on the alkene is reversible and is followed by turnover-limiting protonation. This mechanism constitutes an unusual pathway for rhodium-catalyzed additions to alkenes and is more closely related to the mechanism for palladium-catalyzed addition of amide N-H bonds to alkenes. PMID:21309512

  6. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.

    Science.gov (United States)

    Beller, Harry R; Goh, Ee-Been; Keasling, Jay D

    2010-02-01

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which

  7. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Science.gov (United States)

    Schrodi, Yann [Agoura Hills, CA

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  8. The spontaneous formation of single-molecule junctions via terminal alkynes

    International Nuclear Information System (INIS)

    Pla-Vilanova, Pepita; Aragonès, Albert C; Sanz, Fausto; Darwish, Nadim; Diez-Perez, Ismael; Ciampi, Simone

    2015-01-01

    Herein, we report the spontaneous formation of single-molecule junctions via terminal alkyne contact groups. Self-assembled monolayers that form spontaneously from diluted solutions of 1, 4-diethynylbenzene (DEB) were used to build single-molecule contacts and assessed using the scanning tunneling microscopy-break junction technique (STM-BJ). The STM-BJ technique in both its dynamic and static approaches was used to characterize the lifetime (stability) and the conductivity of a single-DEB wire. It is demonstrated that single-molecule junctions form spontaneously with terminal alkynes and require no electrochemical control or chemical deprotonation. The alkyne anchoring group was compared against typical contact groups exploited in single-molecule studies, i.e. amine (benzenediamine) and thiol (benzendithiol) contact groups. The alkyne contact showed a conductance magnitude comparable to that observed with amine and thiol groups. The lifetime of the junctions formed from alkynes were only slightly less than that of thiols and greater than that observed for amines. These findings are important as (a) they extend the repertoire of chemical contacts used in single-molecule measurements to 1-alkynes, which are synthetically accessible and stable and (b) alkynes have a remarkable affinity toward silicon surfaces, hence opening the door for the study of single-molecule transport on a semiconducting electronic platform. (fast track communication)

  9. Direct C–H trifluoromethylation of di- and trisubstituted alkenes by photoredox catalysis

    Directory of Open Access Journals (Sweden)

    Ren Tomita

    2014-05-01

    Full Text Available Background: Trifluoromethylated alkene scaffolds are known as useful structural motifs in pharmaceuticals and agrochemicals as well as functional organic materials. But reported synthetic methods usually require multiple synthetic steps and/or exhibit limitation with respect to access to tri- and tetrasubstituted CF3-alkenes. Thus development of new methodologies for facile construction of Calkenyl–CF3 bonds is highly demanded.Results: The photoredox reaction of alkenes with 5-(trifluoromethyldibenzo[b,d]thiophenium tetrafluoroborate, Umemoto’s reagent, as a CF3 source in the presence of [Ru(bpy3]2+ catalyst (bpy = 2,2’-bipyridine under visible light irradiation without any additive afforded CF3-substituted alkenes via direct Calkenyl–H trifluoromethylation. 1,1-Di- and trisubstituted alkenes were applicable to this photocatalytic system, providing the corresponding multisubstituted CF3-alkenes. In addition, use of an excess amount of the CF3 source induced double C–H trifluoromethylation to afford geminal bis(trifluoromethylalkenes.Conclusion: A range of multisubstituted CF3-alkenes are easily accessible by photoredox-catalyzed direct C–H trifluoromethylation of alkenes under mild reaction conditions. In particular, trifluoromethylation of triphenylethene derivatives, from which synthetically valuable tetrasubstituted CF3-alkenes are obtained, have never been reported so far. Remarkably, the present facile and straightforward protocol is extended to double trifluoromethylation of alkenes.

  10. Synthesis of insect pheromones belonging to the group of (Z)-trisubstituted alkenes

    International Nuclear Information System (INIS)

    Grigorieva, Natalia Ya; Tsiklauri, Paata G

    2000-01-01

    Stereo- and regiocontrolled methods for the construction of a (Z)-trisubstituted C=C bond and for the regiospecific introduction of a chiral fragment are exemplified in total syntheses of insect pheromones belonging to (Z)-trisubstituted alkenes. The bibliography includes 113 references.

  11. Synthesis of substituted mono- and diindole C-nucleoside analogues from sugar terminal alkynes by sequential sonogashira/heteroannulation reaction.

    Science.gov (United States)

    Zhang, Fuyi; Mu, Delong; Wang, Liming; Du, Pengfei; Han, Fen; Zhao, Yufen

    2014-10-17

    The synthesis of substituted mono- and diindole C-nucleoside analogues has been achieved in good to excellent yields by sequential Sonogashira coupling/NaAuCl4-catalyzed heteroannulation reactions of substituted 2-iodoanilines with various sugar terminal alkynes in one pot. The method is general, mild, and efficient and suitable for a wide range of sugar substrates, and 42 examples are given. The amino group of the substituted 2-iodoanilines is unprotected. The sugar terminal alkynes include furanosides, pyranosides, and acyclic glycosides with free hydroxyl groups, sensitive functional subtituents, and various protecting groups having different steric hindrance.

  12. Total synthesis of bryostatins: the development of methodology for the atom-economic and stereoselective synthesis of the ring C subunit.

    Science.gov (United States)

    Trost, Barry M; Frontier, Alison J; Thiel, Oliver R; Yang, Hanbiao; Dong, Guangbin

    2011-08-22

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for the stereoselective assembly of the ring C subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the ring C subunit of bryostatins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Iron-catalyzed diboration and carboboration of alkynes.

    Science.gov (United States)

    Nakagawa, Naohisa; Hatakeyama, Takuji; Nakamura, Masaharu

    2015-03-09

    An iron-catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis-1,2-diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron-catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Azide- and alkyne-derivatised α-amino acids

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Pedersen, D.S.

    2012-01-01

    With the emergence of the copper-catalysed Huisgen cycloaddition the use of azide- and alkyne-derivatised α-amino acids has found widespread use within most chemistry disciplines. Despite a growing interest in these building blocks researchers are struggling to identify the best way for their syn......With the emergence of the copper-catalysed Huisgen cycloaddition the use of azide- and alkyne-derivatised α-amino acids has found widespread use within most chemistry disciplines. Despite a growing interest in these building blocks researchers are struggling to identify the best way...... for their synthesis. In this review we have compiled available methods for synthesising optically active azide- and alkyne-derivatised α-amino acids that can be prepared from readily available α-amino acids. We highlight a number of commonly overlooked problems associated with existing methods and direct attention...... to unexplored possibilities. Azide- and alkyne-derivatised α-amino acids are finding widespread use within most chemistry disciplines. However, it is far from clear what the best way for the synthesis of these useful building blocks is. Herein we show the available methods for synthesis of optically active...

  15. Rhodium-catalysed syn-carboamination of alkenes via a transient directing group.

    Science.gov (United States)

    Piou, Tiffany; Rovis, Tomislav

    2015-11-05

    Alkenes are the most ubiquitous prochiral functional groups--those that can be converted from achiral to chiral in a single step--that are accessible to synthetic chemists. For this reason, difunctionalization reactions of alkenes (whereby two functional groups are added to the same double bond) are particularly important, as they can be used to produce highly complex molecular architectures. Stereoselective oxidation reactions, including dihydroxylation, aminohydroxylation and halogenation, are well established methods for functionalizing alkenes. However, the intermolecular incorporation of both carbon- and nitrogen-based functionalities stereoselectively across an alkene has not been reported. Here we describe the rhodium-catalysed carboamination of alkenes at the same (syn) face of a double bond, initiated by a carbon-hydrogen activation event that uses enoxyphthalimides as the source of both the carbon and the nitrogen functionalities. The reaction methodology allows for the intermolecular, stereospecific formation of one carbon-carbon and one carbon-nitrogen bond across an alkene, which is, to our knowledge, unprecedented. The reaction design involves the in situ generation of a bidentate directing group and the use of a new cyclopentadienyl ligand to control the reactivity of rhodium. The results provide a new way of synthesizing functionalized alkenes, and should lead to the convergent and stereoselective assembly of amine-containing acyclic molecules.

  16. Regioselective iodoazidation of alkynes: synthesis of α,α-diazidoketones.

    Science.gov (United States)

    Okamoto, Noriko; Sueda, Takuya; Minami, Hideki; Miwa, Yoshihisa; Yanada, Reiko

    2015-03-06

    Aryl alkyl alkynes reacted with N-iodosuccinimide (NIS) and trimethylsilyl azide (TMSN3), leading to α,α-diazidoketones via the regioselective addition of IN3 to alkynes. Huisgen cyclization of α,α-diazidoketones generated bis-triazole compounds.

  17. Mannich reactions of alkynes: the role of sub-stoichiometric amounts of stable polymeric alkynylcopper (I) compounds in the catalytic cycle (abstract)

    International Nuclear Information System (INIS)

    Khan, A.N.; Buckley, B.R.; Heaney, H.

    2011-01-01

    The rapid development of the use of organocopper reagents and catalysts in organic synthesis since the middle of the last century has been comprehensively documented. The advantages of using heterogeneous catalysts include ease of work-up and purification, reduction in waste disposal, and the ability to recycle catalysts. Reactions of terminal alkynes that involve copper(I) catalysts have been widely studied, in particular as a result of the search for atom efficiency. Ligand associated alkynylcopper(I) derivatives have been reported many times, for example in copper(I) catalysed alkyne-azide cycloaddition (CuAAC) reactions. Our interest in Mannich reactions, and also in alkynylcopper(I) pre-catalysts, prompted this study of reactions of alkynes with secondary amines with aldehydes. Early studies of Mannich reactions involving alkynes almost always involved formaldehyde, exceptions included imines and derivatives of glyoxylic esters. An efficient one-pot three-component coupling of an aldehyde, alkyne, and amine to generate propargyl amines has been effected by microwave heating in water using a polymeric alkynylcopper(I) complex as catalyst (Scheme 1). This reaction utilizes water as a solvent which provides a green-approach for such reactions. This method has proved to be applicable to a wide range of substrates. (author)

  18. New methods of arene iodination and functional transformation of multiple bonds in organic compounds

    International Nuclear Information System (INIS)

    Filimonov, V.D.; Chajkovskij, V.K.; Krasnokutskaya, E.A.

    2000-01-01

    The review summarizes the latest results of organic chemistry and technology of organic synthesis department of Tomsk polytechnical university concerning iodination of arenes and chemical transformations of unsaturated compounds. Preparative possibilities of the new reactions and reagents for iodination, oxidation of alkenes and alkynes to 1,2- and bis-1,2-dicarbonyl compounds, iodonitration of alkynes, and reaction of oxidative dimerization of the terminal alkynes to unsaturated δ-sultones are discussed [ru

  19. First total synthesis of (-)-ichthyothereol and its acetate.

    Science.gov (United States)

    Mukai, C; Miyakoshi, N; Hanaoka, M

    2001-08-24

    The first and stereoselective total syntheses of (-)-ichthyothereol (1) and its acetate ((+)-2) were achieved by incorporation of the two chiral centers of diethyl L-tartrate. The starting diethyl L-tartrate was converted into trans-2-ethynyl-3-hydroxytetrahydropyran 14 in a stereoselective manner via the endo mode cyclization of the epoxy-alkyne derivative 12. The alcohol 12 was then transformed into (E)-iodoolefin derivative 15, which was exposed to a coupling reaction with 1-tributylstannyl-1,3,5-heptyne (19), derived from the corresponding 1-trimethylsilyl-1,3,5-heptyne (18), under Stille conditions to produce the all-carbon framework of the target natural products. Chemical modification of the coupled product 20 under conventional conditions completed the first total synthesis of (-)-ichthyothereol (1) and its acetate ((+)-2).

  20. Highly Stereoselective Gold-Catalyzed Coupling of Diazo Reagents and Fluorinated Enol Silyl Ethers to Tetrasubstituted Alkenes.

    Science.gov (United States)

    Liao, Fu-Min; Cao, Zhong-Yan; Yu, Jin-Sheng; Zhou, Jian

    2017-02-20

    We report a highly stereoselective synthesis of all-carbon or fluorinated tetrasubstituted alkenes from diazo reagents and fluorinated enol silyl ethers, using C-F bond as a synthetic handle. Cationic Au I catalysis plays a key role in this reaction. Remarkable fluorine effects on the reactivity and selectivity was also observed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermal and UV Hydrosilylation of Alcohol-Based Bifunctional Alkynes on Si (111) surfaces: How surface radicals influence surface bond formation.

    Science.gov (United States)

    Khung, Y L; Ngalim, S H; Scaccabarozi, A; Narducci, D

    2015-06-12

    Using two different hydrosilylation methods, low temperature thermal and UV initiation, silicon (111) hydrogenated surfaces were functionalized in presence of an OH-terminated alkyne, a CF3-terminated alkyne and a mixed equimolar ratio of the two alkynes. XPS studies revealed that in the absence of premeditated surface radical through low temperature hydrosilylation, the surface grafting proceeded to form a Si-O-C linkage via nucleophilic reaction through the OH group of the alkyne. This led to a small increase in surface roughness as well as an increase in hydrophobicity and this effect was attributed to the surficial etching of silicon to form nanosize pores (~1-3 nm) by residual water/oxygen as a result of changes to surface polarity from the grafting. Furthermore in the radical-free thermal environment, a mix in equimolar of these two short alkynes can achieve a high contact angle of ~102°, comparable to long alkyl chains grafting reported in literature although surface roughness was relatively mild (rms = ~1 nm). On the other hand, UV initiation on silicon totally reversed the chemical linkages to predominantly Si-C without further compromising the surface roughness, highlighting the importance of surface radicals determining the reactivity of the silicon surface to the selected alkynes.

  2. The development of catalytic nucleophilic additions of terminal alkynes in water.

    Science.gov (United States)

    Li, Chao-Jun

    2010-04-20

    One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in

  3. Mechanism, reactivity, and selectivity of nickel-catalyzed [4 + 4 + 2] cycloadditions of dienes and alkynes.

    Science.gov (United States)

    Hong, Xin; Holte, Dane; Götz, Daniel C G; Baran, Phil S; Houk, K N

    2014-12-19

    Density functional theory (DFT) calculations with B3LYP and M06 functionals elucidated the reactivities of alkynes and Z/E selectivity of cyclodecatriene products in the Ni-catalyzed [4 + 4 + 2] cycloadditions of dienes and alkynes. The Ni-mediated oxidative cyclization of butadienes determines the Z/E selectivity. Only the oxidative cyclization of one s-cis to one s-trans butadiene is facile and exergonic, leading to the observed 1Z,4Z,8E-cyclodecatriene product. The same step with two s-cis or s-trans butadienes is either kinetically or thermodynamically unfavorable, and the 1Z,4E,8E- and 1Z,4Z,8Z-cyclodecatriene isomers are not observed in experiments. In addition, the competition between the desired cooligomerization and [2 + 2 + 2] cycloadditions of alkynes depends on the coordination of alkynes. With either electron-deficient alkynes or alkynes with free hydroxyl groups, the coordination of alkynes is stronger than that of dienes, and alkyne trimerization prevails. With alkyl-substituted alkynes, the generation of alkyne-coordinated nickel complex is much less favorable, and the [4 + 4 + 2] cycloaddition occurs.

  4. Versatility of Alkyne-Modified Poly(Glycidyl Methacrylate) Layers for Click Reactions

    International Nuclear Information System (INIS)

    Soto-Cantu, Erick; Lokitz, Bradley S.; Hinestrosa Salazar, Juan Pablo; Deodhar, Chaitra; Messman, Jamie M.; Ankner, John Francis; Kilbey, S. Michael II

    2011-01-01

    Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for 'click' chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using 'click' chemistry, and grafting densities in the range of 0.007-0.95 chains nm -2 were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm -3 . The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.

  5. Regioconvergent and Enantioselective Rhodium-Catalyzed Hydroamination of Internal and Terminal Alkynes: A Highly Flexible Access to Chiral Pyrazoles.

    Science.gov (United States)

    Haydl, Alexander M; Hilpert, Lukas J; Breit, Bernhard

    2016-05-04

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with internal and terminal alkynes features an utmost chemo-, regio-, and enantioselective access to enantiopure allylic pyrazoles, readily available for incorporation in small-molecule pharmaceuticals. This methodology is distinguished by a broad substrate scope, resulting in a remarkable compatability with a variety of different functional groups. It furthermore exhibits an intriguing case of regio-, position-, and enantioselectivity in just one step, underscoring the sole synthesis of just one out of up to six possible products in a highly flexible approach to allylated pyrazoles by emanating from various internal and terminal alkynes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrophosphination of alkynes and related reactions catalyzed by rare-earth amides

    International Nuclear Information System (INIS)

    Takaki, Ken; Komeyama, Kimihiro; Kobayashi, Daisuke; Kawabata, Tomonori; Takehira, Katsuomi

    2006-01-01

    Intermolecular hydrophosphination of alkynes with Ph 2 PH was effectively catalyzed by Yb-imine complex [Yb(η 2 -Ph 2 CNPh)(hmpa) 3 ], in which the empirical rate law was described as v = k [catalyst] 2 [alkyne] 1 [phosphine] . The active catalysts were proved to be ytterbium(II) mono- and diphosphido species generated in situ. Although trivalent phosphido complex [Yb(PPh 2 ) 3 (hmpa) n ], gave the same results as the divalent complexes, Yb metals of the both complexes seemed to keep their original oxidation state unchanged. When Ph 2 PH was substituted by Ph 2 P-SiMe 3 , silylphosphination of aromatic internal alkynes took place to afford 1-trimethylsilyl-2-diphenylphosphinoalkenes in moderate yields. Moreover, one-pot synthesis of 1-diphenylphosphino-1,3-butadienes from terminal alkynes and Ph 2 PH has been achieved using Y[N(SiMe 3 ) 2 ] 3 catalyst through the alkyne dimerization and subsequent hydrophosphination

  7. Synthesis of alkynes from vinyl triflates using tetrabutylammonium fluoride.

    Science.gov (United States)

    Okutani, Masaru; Mori, Yuji

    2015-01-01

    A convenient method for the preparation of alkynes and alkynyl esters from ketones and β-keto esters is described which involves the formation of vinyl triflates, followed by elimination with tetrabutylammonium fluoride trihydrate, to give alkynes. Unlike established elimination methods, the method requires neither a strong base nor anhydrous conditions.

  8. Tri(t-butyl)phosphine-assisted selective hydrosilylation of terminal alkynes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A highly efficient and regio-/stereoselective method of hydrosilylating terminal alkynes was developed using Pt(DVDS)-tri(t-butyl) phosphine catalyst system at room temperature.Trans-products or alpha-products were obtained almost exclusively depending on the alkynes and silanes employed.

  9. Green oxidation of alkenes in ionic liquid solvent by hydrogen

    Indian Academy of Sciences (India)

    Additionally, ion liquid solvent efficiently improved all the catalytic performances. Finally, the reaction was extended to different alkenes using the heterogeneous complex 2-L4. Among all the alkenes, those containing -electron-withdrawing groups and trans-orientations exhibited lower tendency for oxidation.

  10. Ruthenium(II)-catalyzed direct addition of indole/pyrrole C2-H bonds to alkynes.

    Science.gov (United States)

    Liang, Libo; Fu, Shaomin; Lin, Dongen; Zhang, Xiao-Qi; Deng, Yuanfu; Jiang, Huanfeng; Zeng, Wei

    2014-10-17

    A ruthenium-catalyzed C2-hydroindolation of alkynes has been achieved. This protocol provides a rapid and concise access to kinds of 2-alkenyl-substituted N-(2-pyridyl)indoles in which the pyridyl moiety can be easily removed to afford free (N-H) indoles under mild conditions. Various arenes and alkynes, including electron-deficient and electron-rich internal alkynes and terminal alkynes, allow for this transformation.

  11. Carbolanthanation of substituted alkynes

    International Nuclear Information System (INIS)

    Kalinin, V.N.; Kazimirchuk, E.I.; Vitt, S.V.; Khandozhko, V.N.; Beletskaya, I.P.

    1993-01-01

    Using the reaction between CH 3 YbI and substituted alkynes as an example, agents can enter into carbolanthanation reaction via transfer of a methyl group to carbon atom of acetylene bond with the production of a new olefin carbanion. 5 refs.; 1 fig.; 3 tabs

  12. Methods of producing epoxides from alkenes using a two-component catalyst system

    Science.gov (United States)

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  13. Glaser coupling of polymers : side-reaction in huisgens "Click" coupling reaction and opportunity for polymers with focal diacetylene units in combination with ATRP

    NARCIS (Netherlands)

    Duxbury, C.J.; Cummins, D.M.; Heise, A.

    2009-01-01

    Atom, transfer radical polymerization (ATRP) was used in combination with Glaser type coupling, allowing the clean and efficient formation of symmetrically coupled polymers with a central diacetylene unit. The feasibility of the clean acetylene coupling was investigated with alkyne terminated

  14. Modeling of alkynes: synthesis and theoretical properties

    Directory of Open Access Journals (Sweden)

    Renato Rosseto

    2003-06-01

    Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.

  15. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial...... hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  16. Silver-Catalyzed Cyclopropanation of Alkenes Using N-Nosylhydrazones as Diazo Surrogates.

    Science.gov (United States)

    Liu, Zhaohong; Zhang, Xinyu; Zanoni, Giuseppe; Bi, Xihe

    2017-12-15

    An efficient silver-catalyzed [2 + 1] cyclopropanation of sterically hindered internal alkenes with diazo compounds in which room-temperature-decomposable N-nosylhydrazones are used as diazo surrogates is reported. The unexpected unique catalytic activity of silver was ascribed to its dual role as a Lewis acid activating alkene substrates and as a transition metal forming silver carbenoids. A wide range of internal alkenes, including challenging diarylethenes, were suitable for this protocol, thereby affording a variety of cyclopropanes with high efficiency in a stereoselective manner under mild conditions.

  17. Nickel Chloride Promoted Glaser Coupling Reaction in Hot Water

    Institute of Scientific and Technical Information of China (English)

    Pin Hua LI; Lei WANG; Min WANG; Jin Can YAN

    2004-01-01

    A Glaser coupling reaction of terminal alkynes in the presence of nickel chloride without any organics and bases in hot water has been developed, which produces the corresponding homo-coupling products in good yields.

  18. Double carbometallation of alkynes: an efficient strategy for the construction of polycycles.

    Science.gov (United States)

    Luo, Yong; Pan, Xiaolin; Yu, Xingxin; Wu, Jie

    2014-02-07

    Cyclization reactions of alkynes, especially the double carbometallation of alkynes, have drawn much interest from organic chemists because of their high efficiency in the construction of polycycles. Utilizing different nucleophiles or catalytic systems, various efficient strategies to access challenging skeletons have been extensively explored in recent years. In this review, achievements in this field are presented in three major parts (the syn-syn, anti-anti, and syn-anti addition reactions of diynes or two alkyne molecules). Cyclization reactions of diynes initiated by nucleophiles, [2+2+n] cycloaddition, or other processes and reactions, involving two identical or different alkynes are described, which provide facile and reliable approaches to various π systems, medium-sized rings, and even macrocycles.

  19. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    Science.gov (United States)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  20. Analysis of the oxidation of short chain alkynes by flavocytochrome P450 BM3.

    Science.gov (United States)

    Waltham, Timothy N; Girvan, Hazel M; Butler, Christopher F; Rigby, Stuart R; Dunford, Adrian J; Holt, Robert A; Munro, Andrew W

    2011-04-01

    Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ∼90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.

  1. Engineering 1-Alkene Biosynthesis and Secretion by Dynamic Regulation in Yeast

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Hu, Yating; Zhu, Zhiwei

    2018-01-01

    strategy to control the expression of membrane enzyme and 1-alkene production and cell growth by relieving the possible toxicity of overexpressed membrane proteins. With these efforts, the engineered yeast cell factory produced 35.3 mg/L 1-alkenes with more than 80% being secreted. This represents a 10...... product secretion. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce and secrete 1-alkenes by manipulation of the fatty acid metabolism, enzyme selection, engineering the electron transfer system and expressing a transporter. Furthermore, we implemented a dynamic regulation...

  2. Catalytic Hydration of Alkenes and Alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Jim, D.

    2003-03-18

    The fifteen years of DOE support have encompassed two different projects, electron-transfer reactions of metal carbonyl anions and water-soluble organometallic complexes. Each of these is related to homogeneous catalysis and will be described in separate sections. Electron Transfer--Twenty-one manuscripts resulted from our studies of electron-transfer reactions of metal carbonyl anions and acknowledge DOE support. Construction of an infrared stopped-flow system allowed us to measure rates of reactions for the extremely air-sensitive metal carbonyl anions. As for carbanions, both one-electron and two-electron processes occur for metal carbonyl anions. The most unexpected feature was examples of a very rapid two-electron process, followed by a much slower one-electron back transfer. The two-electron processes were accompanied by transfer of a ligand between two metals, M-X + M{prime}{sup -} {yields} M{sup -} + M{prime}-X with X groups of CO{sup 2}, H{sup +}, CH{sub 3}{sup +} and Br{sup +}. These transfers, which can be considered nucleophilic displacements, occurred when M{prime}{sup -} was more nucleophilic than M{sup -}. The 21 published manuscripts explore one- and two-electron processes for many such organometallic complexes. Water-Soluble Organometallic Complexes--The potential of water-soluble organometallic complexes in ''green chemistry'' intrigued us. Sixteen manuscripts acknowledging DOE support have appeared thus far in this field. Our research centered on sulfonated phosphine ligands, PPh{sub 2}(m-C{sub 6}H{sub 4}SO{sub 3}Na) and P(m-C{sub 6}H{sub 4}SO{sub 3}Na){sub 3}, to solubilize organometallic complexes in water. These analogues of PPH{sub 3} allowed us to synthesize complexes of Ir, Rh, Ru, Ni, Pd, Pt and Ag that are water-soluble and contain such common organometallic ligands as CO, H and CH{sub 3} in addition to halides and the phosphine ligands. These metal complexes show the ability to activate H{sub 2}, CO, C{sub 2}H{sub 4}, H{sub 2}O, SO{sub 2} etc. in aqueous solution. The primary conclusion is that water-soluble organometallic complexes can be prepared and show very similar reactivity in water to analogous compounds in organic solvents. Thus, organometallic complexes in aqueous solution do provide a ''green'' route to products currently prepared in organic solvents.

  3. Catalytic oligomerization of terminal alkynes promoted by organo-f-complexes

    International Nuclear Information System (INIS)

    Straub, T.; Haskel, A.; Eisen, M.S.

    1995-01-01

    Organoactinides of the type Cp* 2 AcMe 2 (Cp*=C 5 Me 5 ; Ac=Th, U) are active catalyst precursors for the oligomerization of terminal alkynes HC triple-bond CR (R=alkyl, aryl, SiMe 3 ). The regioselectivity and the extent of oligomerization strongly depend on the alkyne substituent R, whereas the catalytic reactivity is similar for 1 and 2. In the presence of one of these organoactinides, for example, HCCSiMe 3 regioselectively oligomerizes to the head-to-tail dimer 3 (5%) and the trimer 4 (95%). 1 and 2 react with the terminal alkynes, releasing methane, to the corresponding bisacetylide complexes which are active species and in the catalytic reactions. The bisacetylide complex (η 5 -C 5 Me 5 ) 2 U(CCPh) 2 was identified by proton NMR spectroscopy. Subsequent insertion of alkyne molecules in the actinide-carbon σ-bonds leads to the formation of actinide-alkenyl complexes. The turnover limiting step is the release of the organic oligomer from the actinide-organyl complex. A species of the latter has been spectroscopically characterized in the trimerization reaction of HCCSiMe 3 . In this poster, the catalytic reactivity of the actinide alkyls 1 and 2 with various mono-substituted alkynes as well as the spectroscopic characterization of the key organometallic intermediate complexes in the catalytic cycle and a detailed mechanistic discussion are given

  4. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei

    2016-03-18

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  5. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei; Gnanou, Yves; Hadjichristidis, Nikolaos

    2016-01-01

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  6. Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes.

    Science.gov (United States)

    Zeng, Wei; Wu, Wanqing; Jiang, Huanfeng; Huang, Liangbin; Sun, Yadong; Chen, Zhengwang; Li, Xianwei

    2013-07-28

    Regioselective synthesis of polysubstituted benzofurans using a copper catalyst and molecular oxygen from phenols and alkynes in a one-pot procedure has been reported. The transformation consists of a sequential nucleophilic addition of phenols to alkynes and oxidative cyclization. A wide variety of phenols and alkynes can be used in the same manner.

  7. Synthesis of some novel fluoro isoxazolidine and isoxazoline ...

    Indian Academy of Sciences (India)

    and N-benzylhydroxylamine, with activated alkenes and electron deficient alkynes to afford enhanced rates and improved .... methodologies in nitrone cycloaddition reactions,14–18 herein ... ro benzaldehyde) were obtained commercially from.

  8. SOCl2 CATALYZED CYCLIZATION OF CHALCONES: SYNTHESIS ...

    African Journals Online (AJOL)

    Preferred Customer

    synthesised pyrazolines have been studied using Bauer-Kirby method. .... was separated with dichloromethane and the solid product was obtained on evaporation. ...... Hammett σ constants in alkenes, alkynes, acid chlorides and styrenes.

  9. Cobalt-catalyzed C-H olefination of aromatics with unactivated alkenes.

    Science.gov (United States)

    Manoharan, Ramasamy; Sivakumar, Ganesan; Jeganmohan, Masilamani

    2016-08-18

    A cobalt-catalyzed C-H olefination of aromatic and heteroaromatic amides with unactivated alkenes, allyl acetates and allyl alcohols is described. This method offers an efficient route for the synthesis of vinyl and allyl benzamides in a highly stereoselective manner. It is observed that the ortho substituent on the benzamide moiety is crucial for the observation of allylated products in unactivated alkenes.

  10. Rhodium-Catalyzed Linear Codimerization and Cycloaddition of Ketenes with Alkynes

    Directory of Open Access Journals (Sweden)

    Teruyuki Kondo

    2010-06-01

    Full Text Available A novel rhodium-catalyzed linear codimerization of alkyl phenyl ketenes with internal alkynes to dienones and a novel synthesis of furans by an unusual cycloaddition of diaryl ketenes with internal alkynes have been developed. These reactions proceed smoothly with the same rhodium catalyst, RhCl(PPh33, and are highly dependent on the structure and reactivity of the starting ketenes.

  11. Recent advances in the ruthenium(ii)-catalyzed chelation-assisted C-H olefination of substituted aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2017-08-08

    The transition-metal-catalyzed chelation-assisted alkenylation at the inert C-H bond of aromatics with alkenes is one of the efficient methods to synthesize substituted vinylarenes in a highly regio- and stereoselective manner. Palladium, rhodium and ruthenium complexes are frequently used as catalysts for this type of transformation. The present review describes the recent advances in the ruthenium-catalyzed chelation-assisted alkenylation at the C-H bond of aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway. Several directing groups including 2-pyridyl, carbonyl, amidine, amide, amine, imidate, sulphonic acid, triazole, cyano, oxazolidinone and hydontoin are widely used in the reaction. The scope, limitation and mechanistic investigation of the alkenylation reactions are discussed elaborately. This feature article includes all the reported ruthenium-catalyzed alkenylation reactions via the deprotonation pathway until the end of March 2017.

  12. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells.

    Science.gov (United States)

    Li, Shengliang; Chen, Tao; Wang, Yunxia; Liu, Libing; Lv, Fengting; Li, Zhiliang; Huang, Yanyi; Schanze, Kirk S; Wang, Shu

    2017-10-16

    Development of Raman-active materials with enhanced and distinctive Raman vibrations in the Raman-silent region (1800-2800 cm -1 ) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water-soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne-state-dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman-silent region compared to alkyne-containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π-conjugated structure. PPE-based conjugated polymer nanoparticles (CPNs) were also prepared as Raman-responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis

    Directory of Open Access Journals (Sweden)

    Khin Aye San

    2018-05-01

    Full Text Available Evaluation of metal nanoparticle catalysts functionalized with well-defined thiolate ligands can be potentially important because such systems can provide a spatial control in the reactivity and selectivity of catalysts. A synthetic method utilizing Bunte salts (sodium S-alkylthiosulfates allows the formation of metal nanoparticles (Au, Ag, Pd, Pt, and Ir capped with alkanethiolate ligands. The catalysis studies on Pd nanoparticles show a strong correlation between the surface ligand structure/composition and the catalytic activity and selectivity for the hydrogenation/isomerization of alkenes, dienes, trienes, and allylic alcohols. The high selectivity of Pd nanoparticles is driven by the controlled electronic properties of the Pd surface limiting the formation of Pd–alkene adducts (or intermediates necessary for (additional hydrogenation. The synthesis of water soluble Pd nanoparticles using ω-carboxylate-S-alkanethiosulfate salts is successfully achieved and these Pd nanoparticles are examined for the hydrogenation of various unsaturated compounds in both homogeneous and heterogeneous environments. Alkanethiolate-capped Pt nanoparticles are also successfully synthesized and further investigated for the hydrogenation of various alkynes to understand their geometric and electronic surface properties. The high catalytic activity of activated terminal alkynes, but the significantly low activity of internal alkynes and unactivated terminal alkynes, are observed for Pt nanoparticles.

  14. On-surface construction of low-dimensional nanostructures with terminal alkynes: Linking strategies and controlling methodologies

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Qi-Wei Chen; Kai Wu

    2017-01-01

    Bottom-up approach to constructing low-dimensional nanostructures on surfaces with terminal alkynes has drawn great interest because of its potential applications in fabricating advanced functional nanomaterials.The diversity of the achieved products manifests rich chemistry of terminal alkynes and hence careful linking strategies and proper controlling methodologies are required for selective preparations of high-quality target nanoarchitectures.This review summarizes various on-surface linking strategies for terminal alkynes,including non-bonding interactions as well as organometallic and covalent bonds,and presents examples to show effective control of surface assemblies and reactions of terminal alkynes by variations of the precursor structures,substrates and activation modes.Systematic studies of the on-surface linkage of terminal alkynes may help efficient and predictable preparations of surface nanomaterials and further understanding of surface chemistry.

  15. Niobium bonds as homogeneous catalysts for the cyclotrimerization of alkynes

    International Nuclear Information System (INIS)

    Du Toit, C.J.

    1984-05-01

    The activity and selectivity of the catalytic system MX 5 with M = Nb or Ta and X = Cl - or Br - and (CH 3 ) 3 TaCl 2 with regard to the reaction rate and product formation in the reaction with alkynes were evaluated. A measuring technique was developed with which the reaction path of the oligomerization reactions of alkynes with homogeneous catalysts in a nitrogen atmosphere can be followed spectrophotometrically

  16. Tracking intracellular uptake and localisation of alkyne tagged fatty acids using Raman spectroscopy

    Science.gov (United States)

    Jamieson, Lauren E.; Greaves, Jennifer; McLellan, Jayde A.; Munro, Kevin R.; Tomkinson, Nicholas C. O.; Chamberlain, Luke H.; Faulds, Karen; Graham, Duncan

    2018-05-01

    Intracellular uptake, distribution and metabolism of lipids are tightly regulated characteristics in healthy cells. An analytical technique capable of understanding these characteristics with a high level of species specificity in a minimally invasive manner is highly desirable in order to understand better how these become disrupted during disease. In this study, the uptake and distribution of three different alkyne tagged fatty acids in single cells were monitored and compared, highlighting the ability of Raman spectroscopy combined with alkyne tags for better understanding of the fine details with regard to uptake, distribution and metabolism of very chemically specific lipid species. This indicates the promise of using Raman spectroscopy directly with alkyne tagged lipids for cellular studies as opposed to subsequently clicking of a fluorophore onto the alkyne for fluorescence imaging.

  17. Niobium(V)chloride as homogeneous catalyst for the trimerization of alkynes

    International Nuclear Information System (INIS)

    Du Toit, C.J.; Du Plessis, J.A.K.; Lachman, G.

    1985-01-01

    The reaction is characterized by an induction period followed by a rapid reaction in which oligomerization takes place. The most rapid reaction rate is found for terminal alkynes in polar solvents. With phenylacetylene, triphenylbenzene is formed, whereas internal alkynes mostly form polymers. 1,7-Octadiyne undergoes intramolecular ring closure to form 1,4-bis(tetralin)butane

  18. Anti-Markovnikov hydroimination of terminal alkynes in gold-catalyzed pyridine construction from ammonia.

    Science.gov (United States)

    Wang, Liliang; Kong, Lingbing; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2015-08-11

    Gold-catalyzed hydroimination of terminal alkynes, giving rise to anti-Markovnikov adducts concomitant with unstable Markovnikov adducts is described. The elementary step can be applied for the construction of pyridine derivatives from ammonia and alkynes.

  19. Synthesis of Cyclohexane-Fused Isocoumarins via Cationic Palladium(II)-Catalyzed Cascade Cyclization Reaction of Alkyne-Tethered Carbonyl Compounds Initiated by Intramolecular Oxypalladation of Ester-Substituted Aryl Alkynes.

    Science.gov (United States)

    Zhang, Jianbo; Han, Xiuling; Lu, Xiyan

    2016-04-15

    A cationic Pd(II)-catalyzed cascade cyclization reaction of alkyne-tethered carbonyl compounds was developed. This reaction is initiated by intramolecular oxypalladation of alkynes with an ester group followed by 1,2-addition of the formed C-Pd(II) bond to the carbonyl group, providing a highly efficient method for the synthesis of cyclohexane-fused isocoumarins.

  20. SHORT COMMUNICATION POLYMETHYLHYDROSILOXANE ...

    African Journals Online (AJOL)

    Various methods have been employed for this chemical ... All chemicals were obtained from commercial sources and were used without further purification unless ..... alkenes and alkynes using (EtO)2Si(Me)H as a stoichiometric reductant.

  1. BF3·Et2O promoted conjugate addition of ethanethiol to electron-deficient alkynes

    Institute of Scientific and Technical Information of China (English)

    Qing Fa Zhou; Xue Ping Chu; Shen Zhao; Tao Lu; Wei Fang Tang

    2012-01-01

    An effective method for the synthesis of vinyl thioethers through the conjugate addition of ethanethiol to electron-deficient alkynes promoted by BF3·Et2O has been developed.Electron-deficient internal alkynes react with ethanethiol in this system to yield mainly Z-isomer of vinyl thioether adducts,while electron-deficient terminal alkynes afford mainly E-isomer of vinyl thioether adducts.

  2. Mechanism of the palladium-catalyzed hydrothiolation of alkynes to thioethers: a DFT study.

    Science.gov (United States)

    Zhang, Xing-hui; Geng, Zhi-yuan; Wang, Ke-tai; Li, Shan-shan

    2014-09-01

    The mechanisms of the palladium-catalyzed hydrothiolation of alkynes with thiols were investigated using density functional theory at the B3LYP/6-31G(d, p) (SDD for Pd) level. Solvent effects on these reactions were explored using the polarizable continuum model (PCM) for the solvent tetrahydrofuran (THF). Markovnikov-type vinyl sulfides or cis-configured anti-Markovnikov-type products were formed by three possible pathways. Our calculation results suggested the following: (1) the first step of the cycle is a proton-transfer process from thiols onto the palladium atom to form a palladium-thiolate intermediate. The palladium-thiolate species is attacked on alkynes to obtain an elimination product, liberating the catalyst. (2) The higher activation energies for the alkyne into the palladium-thiolate bond indicate that this step is the rate-determining step. The Markovnikov-type vinyl sulfide product is favored. However, for the aromatic alkyne, the cis-configured anti-Markovnikov-type product is favored. (3) The activation energy would reduce when thiols are substituted with an aromatic group. Our calculated results are consistent with the experimental observations of Frech and colleagues for the palladium-catalyzed hydrothiolation of alkynes to thiols.

  3. Zinc mediated activation of terminal alkynes: stereoselective synthesis of alkynyl glycosides.

    Science.gov (United States)

    Tatina, Madhu Babu; Kusunuru, Anil Kumar; Yousuf, Syed Khalid; Mukherjee, Debaraj

    2014-10-28

    Zinc mediated alkynylation reaction was studied for the preparation of C-glycosides from unactivated alkynes. Different glycosyl donors such as glycals and anomeric acetates were tested towards an alkynyl zinc reagent obtained from alkynes using zinc dust and ethyl bromoacetate as an additive. The method provides simple, mild and stereoselective access to alkynyl glycosides both from aromatic and aliphatic acetylenes.

  4. Iron Catalyzed Cycloaddition of Alkynenitriles and Alkynes

    Science.gov (United States)

    D’Souza, Brendan R.; Lane, Timothy K.

    2011-01-01

    The combination of Fe(OAc)2 and an electron-donating, sterically-hindered pyridyl bisimine ligand catalyzes the cycloaddition of alkynenitriles and alkynes. A variety of substituted pyridines were obtained in good yields. PMID:21557582

  5. Energy transfer from an alkene triplet state during pulse radiolysis

    International Nuclear Information System (INIS)

    Barwise, A.J.G.; Gorman, A.A.; Rodgers, M.A.J.

    1976-01-01

    Pulse radiolysis of a benzene solution of norbornene containing low concentrations of anthracene results in delayed formation of anthracene triplet: this is the result of diffusion-controlled energy transfer from the alkene triplet state which has a natural lifetime in benzene of 250 ns. The use of various hydrocarbon acceptors has indicated that Esub(T)=20 000+-500 cm -1 for the relaxed T 1 state of the alkene, at least 5000 cm -1 below that of the spectroscopic state. (Auth.)

  6. Mechanistic Study of the Oxidative Coupling of Styrene with 2-Phenylpyridine Derivatives Catalyzed by Cationic Rhodium( III) via C–H Activation

    Science.gov (United States)

    Brasse, Mikaël; Cámpora, Juan; Ellman, Jonathan A.; Bergman, Robert G.

    2013-01-01

    The Rh(III) catalyzed oxidative coupling of alkenes with arenes provides a greener alternative to the classical Heck reaction for the synthesis of arene-functionalized alkenes. The present mechanistic study gives insights for the rational development of this key transformation. The catalyst resting states and the rate law of the reaction have been identified. The reaction rate is solely dependent on catalyst and alkene concentrations and the rate determining step is the migratory insertion of alkene into a Rh–C(aryl) bond. PMID:23590843

  7. Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes

    International Nuclear Information System (INIS)

    Mykhalichko, B M; Mys'kiv, M G; Temkin, Oleg N

    2000-01-01

    Characteristic features of the coordination chemistry of Cu(I) and mechanisms of catalytic conversions of alkynes in the CuCl-MCl-H 2 O-HC≡CR system (MCl is alkali metal or ammonium chloride or amine hydrochloride; R=H, CH 2 OH, CH=CH 2 , etc.) are analysed based on studies of the compositions and structures of copper(I) chloride (bromide) complexes, alkyne π-complexes and ethynyl organometallic polynuclear compounds formed in this system in solutions and in the crystalline state. The role of polynuclear complexes in various reactions of alkynes is discussed. The bibliography includes 149 references.

  8. Sonogashira Reaction of Aryl and Heteroaryl Halides with Terminal Alkynes Catalyzed by a Highly Efficient and Recyclable Nanosized MCM-41 Anchored Palladium Bipyridyl Complex

    Directory of Open Access Journals (Sweden)

    Chung-Yuan Mou

    2010-12-01

    Full Text Available A heterogeneous catalyst, nanosized MCM-41-Pd, was used to catalyze the Sonogashira coupling of aryl and heteroaryl halides with terminal alkynes in the presence of CuI and triphenylphosphine. The coupling products were obtained in high yields using low Pd loadings to 0.01 mol%, and the nanosized MCM-41-Pd catalyst was recovered by centrifugation of the reaction solution and re-used in further runs without significant loss of reactivity.

  9. Catalytic formal [2+2+1] synthesis of pyrroles from alkynes and diazenes via Ti(II)/Ti(IV) redox catalysis.

    Science.gov (United States)

    Gilbert, Zachary W; Hue, Ryan J; Tonks, Ian A

    2016-01-01

    Pyrroles are structurally important heterocycles. However, the synthesis of polysubstituted pyrroles is often challenging. Here, we report a multicomponent, Ti-catalysed formal [2+2+1] reaction of alkynes and diazenes for the oxidative synthesis of penta- and trisubstituted pyrroles: a nitrenoid analogue to classical Pauson-Khand-type syntheses of cyclopentenones. Given the scarcity of early transition-metal redox catalysis, preliminary mechanistic studies are presented. Initial stoichiometric and kinetic studies indicate that the mechanism of this reaction proceeds through a formally Ti(II)/Ti(IV) redox catalytic cycle, in which an azatitanacyclobutene intermediate, resulting from [2+2] alkyne + Ti imido coupling, undergoes a second alkyne insertion followed by reductive elimination to yield pyrrole and a Ti(II) species. The key component for catalytic turnover is the reoxidation of the Ti(II) species to a Ti(IV) imido via the disproportionation of an η(2)-diazene-Ti(II) complex.

  10. Rhodium-catalyzed chemo- and regioselective decarboxylative addition of β-ketoacids to alkynes.

    Science.gov (United States)

    Li, Changkun; Grugel, Christian P; Breit, Bernhard

    2016-04-30

    A highly efficient rhodium-catalyzed chemo- and regioselective addition of β-ketoacids to alkynes is reported. Applying a Rh(i)/(S,S)-DIOP catalyst system, γ,δ-unsaturated ketones were prepared with exclusively branched selectivity under mild conditions. This demonstrates that readily available alkynes can be an alternative entry to allyl electrophiles in transition-metal catalyzed allylic alkylation reactions.

  11. Regioselective annulation of nitrosopyridine with alkynes: straightforward synthesis of N-oxide-imidazopyridines.

    Science.gov (United States)

    Manna, Srimanta; Narayan, Rishikesh; Golz, Christopher; Strohmann, Carsten; Antonchick, Andrey P

    2015-04-11

    We have developed a novel method for the regioselective annulation of 2-nitrosopyridines with variably substituted alkynes under mild reaction conditions. This approach allows the annulation of alkynes with 2-nitrosopyridines under reagent- and catalyst-free reaction conditions. The developed method shows excellent functional group tolerance and provides easy access to N-oxide-imidazo[1,2-a]pyridines.

  12. Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles

    Science.gov (United States)

    Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng

    2017-04-01

    Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.

  13. The role of alkenes produced during hydrous pyrolysis of a shale

    Energy Technology Data Exchange (ETDEWEB)

    Leif, R.N.; Simoneit, B.R.T. [Oregon State Univ., Corvallis, OR (United States). College of Oceanic and Atmospheric Sciences

    2000-07-01

    Hydrous pyrolysis experiments conducted on Messel shale with D{sub 2}O demonstrated that a large amount of deuterium becomes incorporated into the hydrocarbons generated from the shale kerogen. In order to understand the pathway of deuterium (and protium) exchange and the role of water during hydrous pyrolysis, we conducted a series of experiments using aliphatic compounds (1,13-tetradecadiene, 1-hexadecene, eicosane and dotriacontane) as probe molecules. These compounds were pyrolyzed in D{sub 2}O, shale/D{sub 2}O, and shale/H{sub 2}O and the products analyzed by GC-MS. In the absence of powdered shale, the incorporation of deuterium from D{sub 2}O occurred only in olefinic compounds via double bond isomerization. The presence of shale accelerated deuterium incorporation into the olefins and resulted in a minor amount of deuterium incorporation in the saturated n-alkanes. The pattern of deuterium substitution of the diene closely matched the deuterium distribution observed in the n-alkanes generated from the shale kerogen in the D{sub 2}O/shale pyrolyses. The presence of the shale also resulted in reduction (hydrogenation) of olefins to saturated n-alkanes with concomitant oxidation of olefins to ketones. These results show that under hydrous pyrolysis conditions, kerogen breakdown generates n-alkanes and terminal n-alkenes by free radical hydrocarbon cracking of the aliphatic kerogen structure. The terminal n-alkenes rapidly isomerize to internal alkenes via acid-catalyzed isomerization under hydrothermal conditions, a significant pathway of deuterium (and protium) exchange between water and the hydrocarbons. These n-alkenes simultaneously undergo reduction to n-alkanes (major) or oxidation to ketones (minor) via alcohols formed by the hydration of the alkenes. (Author)

  14. Copper-catalysed selective hydroamination reactions of alkynes

    Science.gov (United States)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2015-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.

  15. Copper-catalyzed selective hydroamination reactions of alkynes

    Science.gov (United States)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  16. Metallo-Phosphorylation of Alkynes: Reaction of Alkynes with Cp2Zr(1-butene) ( PR3 ) and Chlorophosphate

    Institute of Scientific and Technical Information of China (English)

    XI Chan-Juan; LAI Chun-Bo; CHEN Chao; HONG Xiao-Yin

    2003-01-01

    @@ Phosphorylation of alkynes is an attractive reaction for the synthesis of stereodefined alkenylphosphonates that are useful intermediates in organic synthesis. Particularly interesting and challenging reactions are those involving the region- and stereo-selective simultaneous introductions of phosphate and other functional groups to multiple carbon-carbon bonds.[1,2

  17. Applications of the simplified perturbed-chain SAFT equation of state using an extended parameter table

    DEFF Research Database (Denmark)

    Tihic, Amra; Kontogeorgis, Georgios; von Solms, Nicolas

    2006-01-01

    in the literature are estimated by correlating vapour-pressure and liquid-density data and by using an interpolation method. PC-SAFT parameters for 200 new compounds are estimated for different families of nonassociating compounds (alkanes, alkenes, alkynes, cycloalkenes, nitroalkanes, polynuclear aromatics...

  18. Trifluoroethylation of Alkynes: Synthesis of Allylic-CF3 Compounds by Visible-Light Photocatalysis

    Institute of Scientific and Technical Information of China (English)

    Geum-bee Roh; Naeem Iqbal; Eun Jin Cho

    2016-01-01

    Two types of allylic trifluoromethylated compounds were synthesized by reacting alkynes with CF3CH2I using visible-light photocatalysis.Subtle differences in the catalytic system controlled the selectivity of iodotrifluoroethylation and hydrotrifluoroethylation.The iodotrifluoroethylated products were obtained in the presence of [Ru(bpy)3]C12 and TMEDA in CH3CN under visible-light irradiation,whereas hydrotrifluoroethylated products were synthesized usingfac-[Ir(ppy)3] and a mixture of DBU and K2CO3 in DMF.The iodotrifluoroethylation reaction worked particularly well,even at gram-scale,and the synthetic utility of iodotrifluoroethylated products was proved by their coupling reactions,providing complex CF3-containing products.

  19. Carbonaceous Materials from End-capped Alkynes

    Czech Academy of Sciences Publication Activity Database

    Hlavatý, Jaromír; Kavan, Ladislav; Kubišta, Jiří

    2002-01-01

    Roč. 40, č. 3 (2002), s. 345-349 ISSN 0008-6223 R&D Projects: GA ČR GA203/00/0634; GA ČR GA203/99/1015 Institutional research plan: CEZ:AV0Z4040901 Keywords : carbon nanotube * alkynes * infrared spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 3.048, year: 2002

  20. Alkyne- and 1,6-elimination- succinimidyl carbonate - terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation.

    Science.gov (United States)

    Xie, Yumei; Duan, Shaofeng; Forrest, M Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker.

  1. Chiral diamine-silver(I)-alkene complexes: a quantum chemical and NMR study

    DEFF Research Database (Denmark)

    Kieken, Elsa; Wiest, Olaf; Helquist, Paul

    2005-01-01

    explored by DFT methods. By successive substitution of the computational model complexes, it has been possible to elucidate the role of each amine substituent in achieving successful discrimination of alkenes. The conformational space has been fully explored using small model systems, allowing an unbiased......The ability of chiral diamine silver complexes to bind chiral and prochiral alkenes has been analyzed in detail. The stereoselectivity in binding of alkenes to a chiral ethanediamine silver complex has been investigated by NMR. The low-energy conformations of several small model complexes have been...... calculation of stereoselectivities that match well the experimental results. For a chiral allylic alcohol substrate, the correct stereoselectivity was obtained only when the structures were optimized with a continuum representation of the solvent. The discrepancy between gas phase and solution data is found...

  2. Unsaturated carbone and allenylidene ruthenium complexes from alkynes

    International Nuclear Information System (INIS)

    Bozek, Yu.L.; Diznev, P.A.

    1995-01-01

    The author's studies aimed at activation of terminal alkynes by metal complexes, reactivity patterns and selective preparations of unsaturated carbene, allenylidene and cumulenylidene derivatives of (arene)ruthenium complexes are reviewed. 48 refs

  3. Spectroscopic and Theoretical Identification of Two Thermal Isomerization Pathways for Bistable Chiral Overcrowded Alkenes.

    Science.gov (United States)

    Kistemaker, Jos C M; Pizzolato, Stefano F; van Leeuwen, Thomas; Pijper, Thomas C; Feringa, Ben L

    2016-09-12

    Chiroptical molecular switches play an important role in responsive materials and dynamic molecular systems. Here we present the synthesis of four chiral overcrowded alkenes and the experimental and computational study of their photochemical and thermal behavior. By irradiation with UV light, metastable diastereoisomers with opposite helicity were generated through high yielding E-Z isomerizations. Kinetic studies on metastable 1-4 using CD spectroscopy and HPLC analysis revealed two pathways at higher temperatures for the thermal isomerization, namely a thermal E-Z isomerization (TEZI) and a thermal helix inversion (THI). These processes were also studied computationally whereby a new strategy was developed for calculating the TEZI barrier for second-generation overcrowded alkenes. To demonstrate that these overcrowded alkenes can be employed as bistable switches, photochromic cycling was performed, which showed that the alkenes display good selectivity and fatigue resistance over multiple irradiation cycles. In particular, switch 3 displayed the best performance in forward and backward photoswitching, while 1 excelled in thermal stability of the photogenerated metastable form. Overall, the alkenes studied showed a remarkable and unprecedented combination of switching properties including dynamic helicity, reversibility, selectivity, fatigue resistance, and thermal stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Methods for the selective detection of alkyne-presenting molecules and related compositions and systems

    Science.gov (United States)

    Valdez, Carlos A.; Vu, Alexander K.

    2017-10-17

    Provided herein are methods for selectively detecting an alkyne-presenting molecule in a sample and related detection reagents, compositions, methods and systems. The methods include contacting a detection reagent with the sample for a time and under a condition to allow binding of the detection reagent to the one or more alkyne-presenting molecules possibly present in the matrix to the detection reagent. The detection reagent includes an organic label moiety presenting an azide group. The binding of the azide group to the alkyne-presenting molecules results in emission of a signal from the organic label moiety.

  5. Eosin Y (EY) Photoredox-Catalyzed Sulfonylation of Alkenes: Scope and Mechanism.

    Science.gov (United States)

    Meyer, Andreas Uwe; Straková, Karolína; Slanina, Tomáš; König, Burkhard

    2016-06-13

    Alkyl- and aryl vinyl sulfones were obtained by eosin Y (EY)-mediated visible-light photooxidation of sulfinate salts and the reaction of the resulting S-centered radicals with alkenes. Optimized reaction conditions, the sulfinate and alkene scope, and X-ray structural analyses of several reaction products are provided. A detailed spectroscopic study explains the reaction mechanism, which proceeds through the EY radical cation as key intermediate oxidizing the sulfinate salts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine.

    Science.gov (United States)

    Harigae, Ryo; Moriyama, Katsuhiko; Togo, Hideo

    2014-03-07

    The reaction of terminal alkynes with n-BuLi, and then with aldehydes, followed by the treatment with molecular iodine, and subsequently hydrazines or hydroxylamine provided the corresponding 3,5-disubstituted pyrazoles or isoxazoles in good yields with high regioselectivity, through the formations of propargyl secondary alkoxides and α-alkynyl ketones. The present reactions are one-pot preparation of 3,5-disubstituted pyrazoles from terminal alkynes, aldehydes, molecular iodine, and hydrazines, and 3,5-disubstituted isoxazoles from terminal alkynes, aldehydes, molecular iodine, and hydroxylamine.

  7. Glycerol as Precursor of Organoselanyl and Organotellanyl Alkynes.

    Science.gov (United States)

    Lenardão, Eder J; Borges, Elton L; Stach, Guilherme; Soares, Liane K; Alves, Diego; Schumacher, Ricardo F; Bagnoli, Luana; Marini, Francesca; Perin, Gelson

    2017-03-02

    Herein we describe the synthesis of organoselanyl and organotellanyl alkynes by the addition of lithium alkynylchalcogenolate (Se and Te) to tosyl solketal, easily obtained from glycerol. The alkynylchalcogenolate anions were generated in situ and added to tosyl solketal in short reaction times, furnishing in all cases the respective products of substitution in good yields. Some of the prepared compounds were deprotected using an acidic resin to afford new water-soluble 3-organotellanylpropane-1,2-diols. The synthetic versatility of the new chalcogenyl alkynes was demonstrated in the iodocyclization of 2,2-dimethyl-1,3-dioxolanylmethyl(2-methoxyphenylethynyl)selane 3f , which afforded 3-iodo-2-(2,2-dimethyl-1,3-dioxolanylmethyl) selenanylbenzo[ b ]furan in 85% yield, opening a new way to access water-soluble Se-functionalized benzo[ b ]furanes.

  8. Cu(OAc)2 catalyzed Sonogashira cross-coupling reaction in amines

    Institute of Scientific and Technical Information of China (English)

    Sheng Mei Guo; Chen Liang Deng; Jin Heng Li

    2007-01-01

    A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.

  9. Fused-Ring Formation by an Intramolecular "Cut-and-Sew" Reaction between Cyclobutanones and Alkynes.

    Science.gov (United States)

    Deng, Lin; Jin, Likun; Dong, Guangbin

    2018-03-01

    The development of a catalytic intramolecular "cut-and-sew" transformation between cyclobutanones and alkynes to construct cyclohexenone-fused rings is described herein. The challenge arises from the need for selective coupling at the more sterically hindered proximal position, and can be addressed by using an electron-rich, but less bulky, phosphine ligand. The control experiment and 13 C-labelling study suggest that the reaction may start with cleavage of the less hindered distal C-C bond of cyclobutanones, followed by decarbonylation and CO reinsertion to enable Rh insertion at the more hindered proximal position. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Recent advances in transition-metal-catalyzed intermolecular carbomagnesiation and carbozincation

    Directory of Open Access Journals (Sweden)

    Kei Murakami

    2013-02-01

    Full Text Available Carbomagnesiation and carbozincation reactions are efficient and direct routes to prepare complex and stereodefined organomagnesium and organozinc reagents. However, carbon–carbon unsaturated bonds are generally unreactive toward organomagnesium and organozinc reagents. Thus, transition metals were employed to accomplish the carbometalation involving wide varieties of substrates and reagents. Recent advances of transition-metal-catalyzed carbomagnesiation and carbozincation reactions are reviewed in this article. The contents are separated into five sections: carbomagnesiation and carbozincation of (1 alkynes bearing an electron-withdrawing group; (2 alkynes bearing a directing group; (3 strained cyclopropenes; (4 unactivated alkynes or alkenes; and (5 substrates that have two carbon–carbon unsaturated bonds (allenes, dienes, enynes, or diynes.

  11. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol

    Directory of Open Access Journals (Sweden)

    Gelson Perin

    2017-02-01

    Full Text Available A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ, from the reaction of elemental selenium with NaBH4, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the (Z,Z-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl selenide 3f with (4-methoxyphenylmagnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  12. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol.

    Science.gov (United States)

    Perin, Gelson; Barcellos, Angelita M; Luz, Eduardo Q; Borges, Elton L; Jacob, Raquel G; Lenardão, Eder J; Sancineto, Luca; Santi, Claudio

    2017-02-20

    A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ , from the reaction of elemental selenium with NaBH₄, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the ( Z , Z )-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl) selenide 3f with (4-methoxyphenyl)magnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  13. Rh-Catalyzed (5+2) Cycloadditions of 3-Acyloxy-1,4-enynes and Alkynes: Computational Study of Mechanism, Reactivity, and Regioselectivity

    Science.gov (United States)

    Xu, Xiufang; Liu, Peng; Shu, Xing-zhong; Tang, Weiping; Houk, K. N.

    2013-01-01

    The mechanism of Rh-catalyzed (5+2) cycloadditions of 3-acyloxy-1,4-enyne (ACE) and alkynes is investigated using density functional theory calculations. The catalytic cycle involves 1,2-acyloxy migration, alkyne insertion, and reductive elimination to form the cycloheptatriene product. In contrast to the (5+2) cycloadditions with vinylcyclopropanes (VCP), in which alkyne inserts into a rhodium-allyl bond, alkyne insertion into a Rh–C(sp2) bond is preferred. The 1,2-acyloxy migration is found to be the rate-determining step of the catalytic cycle. The electron-rich p-dimethylaminobenzoate substrate promotes 1,2-acyloxy migration and significantly increases the reactivity. In the regioselectivity-determining alkyne insertion step, the alkyne substituent prefers to be distal to the forming C–C bond and thus distal to the OAc group in the product. PMID:23725341

  14. A new approach to ferrocene derived alkenes via copper-catalyzed olefination.

    Science.gov (United States)

    Muzalevskiy, Vasily M; Shastin, Aleksei V; Demidovich, Alexandra D; Shikhaliev, Namiq G; Magerramov, Abel M; Khrustalev, Victor N; Rakhimov, Rustem D; Vatsadze, Sergey Z; Nenajdenko, Valentine G

    2015-01-01

    A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps.

  15. Organolanthanide-Catalyzed Cyclodimerizations of Disubstituted Alkynes

    NARCIS (Netherlands)

    Heeres, H.J.; Heeres, Andre; Teuben, J.H.

    The lanthanide alkyls Cp2*LnCH(SiMe3)2 (Ln = La, Ce) are efficient catalysts for the cyclodimerization of 2-alkynes MeC≡CR (R = Me, Et, n-Pr) to 1,2-disubstituted 3-alkylidenecyclobutenes. The first step in the reaction is a propargylic metalation of the α-methyl group, giving Cp*2LnCH2C≡CR

  16. Demonic axe-like conjugated alkynes in combating microbes.

    Science.gov (United States)

    Komsani, Jayaram Reddy; Koppireddi, Satish; Avula, Sreenivas; Koochana, Pranay Kumar; Yadla, Rambabu

    2013-10-01

    A new series of disubstituted alkynes was obtained by microwave induced internal splitting of the corresponding β-oxo-alkylidenetriphenylphosphoranes. The antimicrobial potential of these conjugated alkynes and phosphoranes was assayed in vitro against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, Staphylococcus epidermidis), three Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and five fungal strains (Aspergillus niger, Candida albicans, Aspergillus flavus, Candida rugosa, Saccharomyces cerevisiae). The 3-pyridylalkyne derivatives viz., 3-(6-chloropyridin-3-yl)propynenitrile (6a), 3-(2-chloropyridin-3-yl)propynenitrile (6b), ethyl 3-(6-chloropyridin-3-yl)propiolate (6c), iso-propyl 3-(6-chloropyridin-3-yl)propiolate (6d) and 3-(2,6-dichloro-5-fluoropyridin-3-yl)propynenitrile (6e) were found to be highly potent towards all tested microorganisms except E. coli. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Alkyne hydroarylation with Au N-heterocyclic carbene catalysts

    Directory of Open Access Journals (Sweden)

    Cristina Tubaro

    2013-02-01

    Full Text Available Mono- and dinuclear gold complexes with N-heterocyclic carbene (NHC ligands have been employed as catalysts in the intermolecular hydroarylation of alkynes with simple unfunctionalised arenes. Both mono- and dinuclear gold(III complexes were able to catalyze the reaction; however, the best results were obtained with the mononuclear gold(I complex IPrAuCl. This complex, activated with one equivalent of silver tetrafluoroborate, exhibited under acidic conditions at room temperature much higher catalytic activity and selectivity compared to more commonly employed palladium(II catalysts. Moreover, the complex was active, albeit to a minor extent, even under neutral conditions, and exhibited lower activity but higher selectivity compared to the previously published complex AuCl(PPh3. Preliminary results on intramolecular hydroarylations using this catalytic system indicate, however, that alkyne hydration by traces of water may become a serious competing reaction.

  18. Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.

    Science.gov (United States)

    Fu, Hongxia; Li, Yanru; Sun, Lingbo; He, Pan; Duan, Xinrui

    2015-11-17

    Click chemistry with metabolic labeling has been widely used for selectively imaging biomacromolecules in cells. The first example of azide-alkyne cycloaddition for ratiometric fluorescent imaging of live cells is reported. The precursor of the azido fluorophore (cresyl violet) has a fluorescence emission peak at 620 nm. The electron-rich nitrogen of the azido group blue-shifts the emission peak to 566 nm. When the click reaction occurs, an emission peak appears at 620 nm due to the lower electronic density of the newly formed triazole ring, which allows us to ratiometrically record fluorescence signals. This emission shift was applied to ratiometric imaging of propargylcholine- and dibenzocyclooctyne-labeled human breast cancer cells MCF-7 under laser confocal microscopy. Two typical triazole compounds were isolated for photophysical parameter measurements. The emission spectra presented a fluorescence emission peak around 620 nm for both click products. The results further confirmed the emission wavelength change was the result of azide-alkyne cycloaddition reaction. Since nearly all biomolecules can be metabolically labeled by reported alkyne-functionalized derivatives of native metabolites, our method can be readily applied to image these biomacromolecules.

  19. General and efficient one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones from sugar terminal alkynes by Sonogashira/tetra-n- butylammonium permanganate oxidation.

    Science.gov (United States)

    Zhang, Fuyi; Wu, Xiaopei; Wang, Liming; Liu, Hong; Zhao, Yufen

    2015-11-19

    A new approach for one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones has been achieved by the reaction of various sugar terminal alkynes with heterocyclic(aryl) iodides at room temperature. This one-pot protocol includes Sonogashira coupling and mild n-Bu4NMnO4 oxidation reaction. This method is mild, general and efficient. Fifty-six examples have been given and the sugar/heterocyclic(aryl) 1,2-diketones were obtained in 71-94% yields. The sugar terminal alkynes include 9 structurally different sugars in pyranose, furanose, and acyclic form which have various protecting groups, sensitive groups, and sterically bulky substituents. The heterocyclic(aryl) iodides include sterically bulky heterocyclic compounds and iodobenzenes with electron-donating, electron-neutral, and electron-withdrawing substituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ruthenium-catalyzed cyclization of N-carbamoyl indolines with alkynes: an efficient route to pyrroloquinolinones.

    Science.gov (United States)

    Manoharan, Ramasamy; Jeganmohan, Masilamani

    2015-09-21

    A regioselective synthesis of substituted pyrroloquinolinones via a ruthenium-catalyzed oxidative cyclization of substituted N-carbamoyl indolines with alkynes is described. The cyclization reaction was compatible with various symmetrical and unsymmetrical alkynes including substituted propiolates. Later, we performed the aromatization of pyrroloquinolinones into indole derivatives in the presence of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ).

  1. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  2. Displacement of ethene from the decamethyltitanocene-ethene complex with internal alkynes, substituent-dependent alkyne-to-allene rearrangement, and the electronic transition relevant to the back-bonding interaction.

    Science.gov (United States)

    Pinkas, Jiří; Gyepes, Róbert; Císařová, Ivana; Kubišta, Jiří; Horáček, Michal; Mach, Karel

    2015-04-28

    The titanocene-ethene complex [Ti(II)(η(2)-C2H4)(η(5)-C5Me5)2] (1) with simple internal alkynes R(1)C≡CR(2) gives complexes [Ti(II)(η(2)-R(1)C≡CR(2))(η(5)-C5Me5)2] {R(1), R(2): Ph, Ph (3), Ph, Me (4), Me, SiMe3 (5), Ph, SiMe3 (6), t-Bu, SiMe3 (7), and SiMe3, SiMe3 (8). In contrast, alkynes with R(1) = Me and R(2) = t-Bu or i-Pr afford allene complexes [Ti(II)(η(2)-CH2=C=CHR(2))(η(5)-C5Me5)2] (11) and (12), whereas for R(2) = Et a mixture of alkyne complex (13A) and minor allene (13) is obtained. Crystal structures of 4, 6, 7 and 11 have been determined; the latter structure proved the back-bonding interaction of the allene terminal double bond. Only the synthesis of 8 from 1 was inefficient because the equilibrium constant for the reaction [1] + [Me3SiC≡CSiMe3] ⇌ [8] + [C2H4] approached 1. Compound 9 (R(1), R(2): Me), not obtainable from 1, together with compounds 3–6 and 10 (R(1), R(2): Et) were also prepared by alkyne exchange with 8, however this reaction did not take place in attempts to obtain 7. Compounds 1 and 3–9 display the longest-wavelength electronic absorption band in the range 670-940 nm due to the HOMO → LUMO transition. The assignment of the first excitation to be of predominantly a b2 → a1 transition was confirmed by DFT calculations. The calculated first excitation energies for 3–9 followed the order of hypsochromic shifts of the absorption band relative to 8 that were induced by acetylene substituents: Me > Ph ≫ SiMe3. Computational results have also affirmed the back-bonding nature in the alkyne-to-metal coordination.

  3. Designing bifunctional alkene isomerization catalysts using predictive modelling

    NARCIS (Netherlands)

    Landman, I.R.; Paulson, E.R.; Rheingold, A.L.; Grotjahn, D.B.; Rothenberg, G.

    2017-01-01

    Controlling the isomerization of alkenes is important for the manufacturing of fuel additives, fine-chemicals and pharmaceuticals. But even if isomerization seems to be a simple unimolecular process, the factors that govern catalyst performance are far from clear. Here we present a set of models

  4. Detection of Alkynes via Click Chemistry with a Brominated Coumarin Azide by Simultaneous Fluorescence and Isotopic Signatures in Mass Spectrometry.

    Science.gov (United States)

    Yang, Lihua; Chumsae, Chris; Kaplan, Jenifer B; Moulton, Kevin Ryan; Wang, Dongdong; Lee, David H; Zhou, Zhaohui Sunny

    2017-09-20

    Alkynes are a key component of click chemistry and used for a wide variety of applications including bioconjugation, selective tagging of protein modifications, and labeling of metabolites and drug targets. However, challenges still exist for detecting alkynes because most 1,2,3-triazole products from alkynes and azides do not possess distinct intrinsic properties that can be used for their facile detection by either fluorescence or mass spectrometry. To address this critical need, a novel brominated coumarin azide was used to tag alkynes and detect alkyne-conjugated biomolecules. This tag has several useful properties: first, it is fluorogenic and the click-chemistry products are highly fluorescent and quantifiable; second, its distinct isotopic pattern facilitates identification by mass spectrometry; and third, its click-chemistry products form a unique pair of reporter ions upon fragmentation that can be used for the quick screening of data. Using a monoclonal antibody conjugated with alkynes, a general workflow has been developed and examined comprehensively.

  5. A new approach to ferrocene derived alkenes via copper-catalyzed olefination

    Directory of Open Access Journals (Sweden)

    Vasily M. Muzalevskiy

    2015-11-01

    Full Text Available A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps.

  6. Preparation of Substituted Enol Derivatives From Terminal Alkynes and Their Synthetic Utility

    Science.gov (United States)

    DeBergh, John R.; Spivey, Kathleen M.; Ready, Joseph M.

    2009-01-01

    Stereodefined enol derivatives of aldehydes are prepared from terminal alkynes. Specifically, terminal alkynes are known to undergo Cp2ZrCl2-catalyzed methylalumination. Here, we show that the resultant vinylalanes can be oxygenated with peroxyzinc species to generate trisubstituted enolates. Electrophilic trapping with carboxylic anydrides or silyl triflates yields trisubstituted enol esters or silanes, respectively. The tandem carbometalation/oxygenation tolerates free and protected alcohols, heterocycles, olefins and nitriles. Likewise, amination can be accomplished using azodicarboxylates. Stereodefined enol esters can undergo asymmetric dihydroxylation to yield optically-active α-hydroxy aldehydes. Reduction with NaBH4 provides the diols of 1,1-disubstituted olefins in excellent ee. An application of this methodology to the enantioselective synthesis of the insect pheromone frontalin is presented. Finally, α-hydroxy aldehydes are shown to undergo homologation to a terminal alkyne, reductive amination, oxidation and olefination. Preliminary results indicate that tandem carbometalation/amination can be accomplished with azodicarboxylates. In this way, ene-hydrazines are formed in excellent yield. PMID:18517202

  7. An Efficient Synthesis of Substituted Quinolines via Indium(III) Chloride Catalyzed Reaction of Imines with Alkynes

    International Nuclear Information System (INIS)

    Zhu, Mei; Fu, Weijun; Xun, Chen; Zou, Guanglong

    2012-01-01

    An efficient synthetic method for the preparation of quinolines through indium(III) chloride-catalyzed tandem addition-cyclization-oxidation reactions of imines with alkynes was developed. The processes can provide a diverse range of quinoline derivatives in good yields from simple imines and alkynes

  8. 4-Oxalocrotonate tautomerase, its homologue YwhB, and active vinylpyruvate hydratase : Synthesis and evaluation of 2-fluoro substrate analogues

    NARCIS (Netherlands)

    Johnson, William H; Wang, Susan C; Stanley, Thanuja M; Czerwinski, Robert M; Almrud, Jeffrey J; Poelarends, Gerrit J; Murzin, Alexey G; Whitman, Christian P

    2004-01-01

    A series of 2-fluoro-4-alkene and 2-fluoro-4-alkyne substrate analogues were synthesized and examined as potential inhibitors of three enzymes: 4-oxalocrotonate tautomerase (4-OT) and vinylpyruvate hydratase (VPH) from the catechol meta-fission pathway and a closely related 4-OT homologue found in

  9. A Mnemonic for Ozonolysis

    Science.gov (United States)

    Ruekberg, Ben

    2011-01-01

    Many students find product prediction in ozonolysis reactions of alkenes and alkynes difficult, and they often have greater difficulty discerning the starting compounds when presented with ozonolysis products. The mnemonic device suggested here can help students figure out what the ozonolysis product (or products) will be. Once mastered, this…

  10. Diiodination of Alkynes in supercritical Carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香; 尹笃林; 江焕峰

    2003-01-01

    A general,green and efficient method for the synthesis of transdiiodoalkenes in CO2(sc) has been developed.Trans-diiodoalkenes were obtained stereospecifically in quantitative yields via diiodination of both electron-rich and electron-deficient alkynes in the presence of KI,Ce(SO4)2 and water in supercritical carbon dioxide [CO2(sc)]at 40℃.

  11. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill

    2013-07-26

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  12. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  13. Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

    International Nuclear Information System (INIS)

    Key, Hanna M.; Dydio, Paweł; Liu, Zhennan

    2017-01-01

    Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiple modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and

  14. A New Mn–Salen Micellar Nanoreactor for Enantioselective Epoxidation of Alkenes in Water

    Directory of Open Access Journals (Sweden)

    Francesco P. Ballistreri

    2018-03-01

    Full Text Available A new chiral Mn–salen catalyst, functionalized with a long aliphatic chain and a choline group, able to act as surfactant catalyst for green epoxidation in water, is here described. This catalyst was employed with a commercial surfactant (CTABr leading to a nanoreactor for the enantioselective epoxidation of some selected alkenes in water, using NaClO as oxidant. This is the first example of a nanoreactor for enantioselective epoxidation of non-functionalized alkenes in water.

  15. Pd-catalyzed terpolymerization of alkynes, CO, and ethylene: Modification of thermal property of polyketones

    International Nuclear Information System (INIS)

    Lim, Yu Na; Cho, Yu Jin; Jang, Hye Young

    2016-01-01

    The terpolymerization of CO, ethylene, and additional olefins varies the properties of polyketones depending on olefins. In this study, monomer candidates for the terpolymerization of polyketones were expanded to alkynes, in addition to olefins. Thermal properties of polyketones were modified by adding aromatic alkynes during Pd-catalyzed terpolymerization with CO and ethylene. The Tm values of terpolymers were reduced to 192–215°C

  16. Selective C(sp2)-C(sp) bond cleavage: the nitrogenation of alkynes to amides.

    Science.gov (United States)

    Qin, Chong; Feng, Peng; Ou, Yang; Shen, Tao; Wang, Teng; Jiao, Ning

    2013-07-22

    Breakthrough: A novel catalyzed direct highly selective C(sp2)-C(sp) bond functionalization of alkynes to amides has been developed. Nitrogenation is achieved by the highly selective C(sp2)-C(sp) bond cleavage of aryl-substituted alkynes. The oxidant-free and mild conditions and wide substrate scope make this method very practical. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pd-catalyzed terpolymerization of alkynes, CO, and ethylene: Modification of thermal property of polyketones

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yu Na; Cho, Yu Jin; Jang, Hye Young [Div. of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2016-10-15

    The terpolymerization of CO, ethylene, and additional olefins varies the properties of polyketones depending on olefins. In this study, monomer candidates for the terpolymerization of polyketones were expanded to alkynes, in addition to olefins. Thermal properties of polyketones were modified by adding aromatic alkynes during Pd-catalyzed terpolymerization with CO and ethylene. The Tm values of terpolymers were reduced to 192–215°C.

  18. Formation of quinones, indanones and furans by the reaction of molybdenum carbene complexes with alkynes

    International Nuclear Information System (INIS)

    Doetz, K.H.; Larbig, H.

    1992-01-01

    (Alkoxy)carbene complexes of molybdenum react with terminal alkynes to give carbene annulation of cycloaddition products, the skeleton of which depends on the carbene substitution pattern and the alkyne used. (CO) 5 Mo=C(OMe)-p-tol undergoes carbene annulation upon reaction with trimethylsilylacetylene leading to naphthoquinone after oxidative work-up. Similar products are obtained from (CO) 5 Mo=C(OMe)2-furyl and hex-1-yne or oct-1-yne. The reaction of these alkynes results in the formation of indanones as five-membered annulation products. In the presence of 3.3-dimethylbut-1-yne the (phenyl) carbene ligands act as a C 1 -synthon, which is incorporated into the furan cycloaddition products

  19. A shock tube study of C4–C6 straight chain alkenes + OH reactions

    KAUST Repository

    Khaled, Fathi

    2016-06-28

    Alkenes are known to be good octane boosters and they are major components of commercial fuels. Detailed theoretical calculations and direct kinetic measurements of elementary reactions of alkenes with combustion radicals are scarce for C4 alkenes and they are practically absent for C5 and larger alkenes. The overall rate coefficients for the reaction of OH radical with 1-butene (CH CHCH CH, k ), 1-pentene (CH CHCH CH-CH, k ), cis/trans 2-pentene (CH CHCHCH CH, k and k ), 1-hexene (CH CHCH CH CH CH, k ) and cis/trans 2-hexene (CH CHCHCH CH CH, k and k ) were measured behind reflected shock waves over the temperature range of 833-1377K and pressures near 1.5atm. The reaction progress was followed by measuring mole fraction of OH radicals near 306.7nm using UV laser absorption technique. It is found that the rate coefficients of OH+trans-2-alkenes are larger than those of OH+cis-2-alkenes, followed by OH+1-alkenes. The derived Arrhenius expressions for the overall rate coefficients (in cm.mol.s) are:. kI=(4.83±0.03)104.T2.72±0.01.exp(940.8±2.9cal/molRT)(946K-1256K) + kII=(5.66±0.54)10-1.T4.14±0.80.exp(4334±227cal/molRT)(875K-1379K) + kIII=(3.25±0.12)104.T2.76±0.5.exp(1962±83cal/molRT)(877K-1336K) + kIV=(3.42±0.09)104.T2.76±0.5.exp(1995±59cal/molRT)(833K-1265K) + kV=(7.65±0.58)10-4.T5±1.exp(5840±175cal/molRT)(836K-1387K) + kVI=(2.58±0.06)106.T2.17±0.37.exp(1461±55cal/molRT)(891K-1357K) + kVII=(3.08±0.05)106.T2.18±0.37.exp(1317±38cal/molRT)(881K-1377K) +

  20. A shock tube study of C4–C6 straight chain alkenes + OH reactions

    KAUST Repository

    Khaled, Fathi; Badra, Jihad; Farooq, Aamir

    2016-01-01

    Alkenes are known to be good octane boosters and they are major components of commercial fuels. Detailed theoretical calculations and direct kinetic measurements of elementary reactions of alkenes with combustion radicals are scarce for C4 alkenes and they are practically absent for C5 and larger alkenes. The overall rate coefficients for the reaction of OH radical with 1-butene (CH CHCH CH, k ), 1-pentene (CH CHCH CH-CH, k ), cis/trans 2-pentene (CH CHCHCH CH, k and k ), 1-hexene (CH CHCH CH CH CH, k ) and cis/trans 2-hexene (CH CHCHCH CH CH, k and k ) were measured behind reflected shock waves over the temperature range of 833-1377K and pressures near 1.5atm. The reaction progress was followed by measuring mole fraction of OH radicals near 306.7nm using UV laser absorption technique. It is found that the rate coefficients of OH+trans-2-alkenes are larger than those of OH+cis-2-alkenes, followed by OH+1-alkenes. The derived Arrhenius expressions for the overall rate coefficients (in cm.mol.s) are:. kI=(4.83±0.03)104.T2.72±0.01.exp(940.8±2.9cal/molRT)(946K-1256K) + kII=(5.66±0.54)10-1.T4.14±0.80.exp(4334±227cal/molRT)(875K-1379K) + kIII=(3.25±0.12)104.T2.76±0.5.exp(1962±83cal/molRT)(877K-1336K) + kIV=(3.42±0.09)104.T2.76±0.5.exp(1995±59cal/molRT)(833K-1265K) + kV=(7.65±0.58)10-4.T5±1.exp(5840±175cal/molRT)(836K-1387K) + kVI=(2.58±0.06)106.T2.17±0.37.exp(1461±55cal/molRT)(891K-1357K) + kVII=(3.08±0.05)106.T2.18±0.37.exp(1317±38cal/molRT)(881K-1377K) +

  1. Experimental evidence for the involvement of dinuclear alkynylcopper(I) complexes in alkyne-azide chemistry.

    Science.gov (United States)

    Buckley, Benjamin R; Dann, Sandra E; Heaney, Harry

    2010-06-01

    Dinuclear alkynylcopper(I) ladderane complexes are prepared by a robust and simple protocol involving the reduction of Cu(2)(OH)(3)OAc or Cu(OAc)(2) by easily oxidised alcohols in the presence of terminal alkynes; they function as efficient catalysts in copper-catalysed alkyne-azide cycloaddition reactions as predicted by the Ahlquist-Fokin calculations. The same copper(I) catalysts are formed during reactions by using the Sharpless-Fokin protocol. The experimental results also provide evidence that sodium ascorbate functions as a base to deprotonate terminal alkynes and additionally give a convincing alternative explanation for the fact that the Cu(I)-catalysed reactions of certain 1,3-diazides with phenylacetylene give bis(triazoles) as the major products. The same dinuclear alkynylcopper(I) complexes also function as catalysts in cycloaddition reactions of azides with 1-iodoalkynes.

  2. Synthesis of Quinolines through Three-Component Cascade Annulation of Aryl Diazonium Salts, Nitriles, and Alkynes.

    Science.gov (United States)

    Wang, Hao; Xu, Qian; Shen, Sheng; Yu, Shouyun

    2017-01-06

    An efficient and rapid synthesis of multiply substituted quinolines is described. This method is enabled by a three-component cascade annulation of readily available aryl diazonium salts, nitriles, and alkynes. This reaction is catalyst- and additive-free. Various aryl diazonium salts, nitriles, and alkynes can participate in this transformation, and the yields are up to 83%.

  3. Atmospheric Gas-Phase Reactions of Fluorinated Compounds and Alkenes

    DEFF Research Database (Denmark)

    Østerstrøm, Freja From

    Experimental studies have been performed using three different smog chamber setups to investigate the atmospheric chemistry of fluorinated compounds as well as alkenes. The three instruments were at Ford Motor Company, USA, National Center for Atmospheric Research, USA, and Copenhagen Center...

  4. Using Molecular Modeling to Understand Some of the More Subtle Aspects of Aromaticity and Antiaromaticity

    Science.gov (United States)

    Box, Vernon G. S.

    2011-01-01

    pi-Electron delocalization exerts one of the most significant structure or energy influences in organic chemistry. Apart from determining the shapes of alkenes and alkynes, the planarity of aromatic molecules is a hallmark of pi-electron delocalization. Huckel's rules for aromaticity are easily applied in the teaching of undergraduates, but…

  5. Molecular modeling of alkyl monolayers on the Si (100)-2 x 1 surface

    NARCIS (Netherlands)

    Lee, M.V.; Guo, D.; Linford, M.R.; Zuilhof, H.

    2004-01-01

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 × 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal

  6. Covalent biofunctionalization of silicon nitride surfaces

    NARCIS (Netherlands)

    Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, C.G.P.H.; White, R.G.; Li Yang,; Linford, M.R.; Zuilhof, H.

    2007-01-01

    Covalently attached organic monolayers on etched silicon nitride (SixN4; x 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle,

  7. Failure and Redemption of Statistical and Nonstatistical Rate Theories in the Hydroboration of Alkenes.

    Science.gov (United States)

    Bailey, Johnathan O; Singleton, Daniel A

    2017-11-08

    Our previous work found that canonical forms of transition state theory incorrectly predict the regioselectivity of the hydroboration of propene with BH 3 in solution. In response, it has been suggested that alternative statistical and nonstatistical rate theories can adequately account for the selectivity. This paper uses a combination of experimental and theoretical studies to critically evaluate the ability of these rate theories, as well as dynamic trajectories and newly developed localized statistical models, to predict quantitative selectivities and qualitative trends in hydroborations on a broader scale. The hydroboration of a series of terminally substituted alkenes with BH 3 was examined experimentally, and a classically unexpected trend is that the selectivity increases as the alkyl chain is lengthened far from the reactive centers. Conventional and variational transition state theories can predict neither the selectivities nor the trends. The canonical competitive nonstatistical model makes somewhat better predictions for some alkenes but fails to predict trends, and it performs poorly with an alkene chosen to test a specific prediction of the model. Added nonstatistical corrections to this model make the predictions worse. Parametrized Rice-Ramsperger-Kassel-Marcus (RRKM)-master equation calculations correctly predict the direction of the trend in selectivity versus alkene size but overpredict its magnitude, and the selectivity with large alkenes remains unpredictable with any parametrization. Trajectory studies in explicit solvent can predict selectivities without parametrization but are impractical for predicting small changes in selectivity. From a lifetime and energy analysis of the trajectories, "localized RRKM-ME" and "competitive localized noncanonical" rate models are suggested as steps toward a general model. These provide the best predictions of the experimental observations and insight into the selectivities.

  8. Alkyne End Group Production in Polymeric Materials Induced by Swift Heavy Ion Irradiations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Swift heavy ions in matter lose energy mainly through electronic processes.Since the energy deposition is centered in a very small region with a very high energy density,new effects such as production of alkyne end group can be induced.In this work,PET,PS,PC and PI films are irradiated with Ar,Kr,Xe and U ions and the relationship of the alkyne end group production with electronic energy loss is studied by Fourier transformed infrared infrared(FTLR)spectra measurements.

  9. Regio- and stereoselective hydrosilylation of immobilized terminal alkynes

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Henriksen, Jonas; Gotfredsen, Charlotte Held

    2008-01-01

    Regio- and stereoselective hydrosilylation of terminal alkynes on solid support using diisopropyl hydrosilanes yielding b-(E)-vinyl silanes with excellent selectivity is reported. The hydrosilylation is catalyzed by Pt(DVDS)/P(iBuNCH2CH2)3N (DVDS = 1,3-divinyl-1,1,3,3-tetramethyl-disiloxane), in ...

  10. Medium properties and total energy coupling in underground explosions

    International Nuclear Information System (INIS)

    Kurtz, S.R.

    1975-01-01

    A phenomenological model is presented that allows the direct calculation of the effects of variations in medium properties on the total energy coupling between the medium and an underground explosion. The model presented is based upon the assumption that the shock wave generated in the medium can be described as a spherical blast wave at early times. The total energy coupled to the medium is then simply the sum of the kinetic and internal energies of this blast wave. Results obtained by use of this model indicate that the energy coupling is more strongly affected by the medium's porosity than by its water content. These results agree well with those obtained by summing the energy deposited by the blast wave as a function of range

  11. Facile synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters.

    Science.gov (United States)

    Miura, Tomoya; Funakoshi, Yuuta; Fujimoto, Yoshikazu; Nakahashi, Junki; Murakami, Masahiro

    2015-05-15

    A sequential procedure for the synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters is reported. A copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with thionoesters in the presence of a rhodium(II) catalyst. The resulting 3-sulfonyl-4-thiazolines subsequently aromatize into the corresponding 2,5-disubstituted thiazoles by elimination of the sulfonyl group.

  12. Copper-Catalyzed Trifluoromethylazidation of Alkynes: Efficient Access to CF3-Substituted Azirines and Aziridines.

    Science.gov (United States)

    Wang, Fei; Zhu, Na; Chen, Pinhong; Ye, Jinxing; Liu, Guosheng

    2015-08-03

    A novel method for convenient access to CF3-containing azirines has been developed, and involves a copper-catalyzed trifluoromethylazidation of alkynes and a photocatalyzed rearrangement. Both terminal and internal alkynes are compatible with the mild reaction conditions, thus delivering the CF3-containing azirines in moderate to good yields. The azirines can be converted into various CF3-substituted aziridines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Copper-catalyzed azide alkyne cycloaddition polymer networks

    Science.gov (United States)

    Alzahrani, Abeer Ahmed

    -CuAAC reaction and a chain-growth acrylate homopolymerization were demonstrated and used to form branched polymer structures. A bulk, organic soluble initiation system consisting of a Cu(II) salt and a primary amine was also examined in both model reactions and in bulk polymerizations. The system was shown to be highly efficient, leading to nearly complete CuAAC polymerization at ambient temperature. Increasing the ratio of amine to copper from 1 to 4 increases the CuAAC reaction rate significantly from 4 mM/min for 1:1 ratio of Cu(II):hexyalmine to 14mM/min for 1:4 ratio. The concentration dependence of the amine on the reaction rate enables the polymerization rate to be controlled simply by manipulating the hexylamine concentration. Sequential thiol--acrylate and photo-CuAAC click reactions were utilized to form two-stage reactive polymer networks capable of generating wrinkles in a facile manner. The click thiol-Michael addition reaction was utilized to form a cross-linked polymer with residual, reactive alkyne sites that remained tethered throughout the network. The latent, unreacted alkyne sites are subsequently reacted with diazide monomers via a photoinduced Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to increase the cross-link density. Increased cross-linking raised the modulus and glass transition temperature from 1.6 MPa and 2 °C after the thiol-acrylate reaction to 4.4 MPa and 22 °C after the CuAAC reaction, respectively. The double click reaction approach led to micro-wrinkles with well-controlled wavelength and amplitude of 8.50 +/- 1.6 and 1.4 μm, respectively, for a polymer with a 1280 μm total film thickness. Additionally, this approach further enables spatial selectivity of wrinkle formation by photo-patterning. The CuAAC-based polymerization was also used to design smart, responsive porous materials from well-defined CuAAC networks, which possesses a high glass transition temperature (Tg= 115°C) due to the formation of the triazole linkages

  14. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames

    KAUST Repository

    Wang, Yu; Park, Sungwoo; Sarathy, Mani; Chung, Suk-Ho

    2018-01-01

    -alkenes through experiments and numerical simulations for counterflow diffusion flames. Soot and PAH formation tendencies of 1-alkene fuels, including ethylene (C2H4), propene (C3H6), 1-butene (1-C4H8), 1-pentene (1-C5H10), 1-hexene (1-C6H12) and 1-octene

  15. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    Science.gov (United States)

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  16. Secondary amine-initiated three-component synthesis of 3,4-dihydropyrimidinones and thiones involving alkynes, aldehydes and thiourea/urea

    Directory of Open Access Journals (Sweden)

    Jie-Ping Wan

    2014-01-01

    Full Text Available The three-component reactions of aldehydes, electron deficient alkynes and ureas/thioureas have been smoothly performed to yield a class of unprecedented 3,4-dihydropyrimidinones and thiones (DHPMs. The reactions are initiated by the key transformation of an enamine-type activation involving the addition of a secondary amine to an alkyne, which enables the subsequent incorporation of aldehydes and ureas/thioureas. This protocol tolerates a broad range of aryl- or alkylaldehydes, N-substituted and unsubstituted ureas/thioureas and alkynes to yield the corresponding DHPMs with specific regioselectivity.

  17. Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis

    NARCIS (Netherlands)

    Dong, J.; Fernandez Fueyo, E.; Li, Jingbo; Guo, Zheng; Renirie, Rokus; Wever, Ron; Hollmann, F.

    The vanadium-dependent chloroperoxidase from Curvularia inaequalis is a stable and efficient biocatalyst for the hydroxyhalogenation of a broad range of alkenes into halohydrins. Up to 1 200 000 TON with 69 s−1 TOF were observed for the biocatalyst. A bienzymatic cascade to yield epoxides as

  18. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.

    Science.gov (United States)

    Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker

    2015-02-01

    Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2012-04-01

    Full Text Available The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN and 7-deazaguanine urea (DeUG is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylaminopyridine (DMAP-catalyzed peptide synthesis with N-(3-dimethylaminopropyl-N’-ethyl carbodiimide hydrochloride (EDC as activating agent, affording the respective amide products 5, 8, and 10 in 60–71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide–alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange–red in color, and azobenzene coupled DeUG modules 12 and 18 are orange–yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN–DeUG and DAN–UPy (2-ureido-4(1H-pyrimidone quadruply hydrogen-bonding interactions.

  20. Inhibitory effects of C2 to C10 1-alkynes on ammonia oxidation in two Nitrososphaera species.

    Science.gov (United States)

    Taylor, A E; Taylor, K; Tennigkeit, B; Palatinszky, M; Stieglmeier, M; Myrold, D D; Schleper, C; Wagner, M; Bottomley, P J

    2015-03-01

    A previous study showed that ammonia oxidation by the Thaumarchaeota Nitrosopumilus maritimus (group 1.1a) was resistant to concentrations of the C8 1-alkyne, octyne, which completely inhibits activity by ammonia-oxidizing bacteria. In this study, the inhibitory effects of octyne and other C2 to C10 1-alkynes were evaluated on the nitrite production activity of two pure culture isolates from Thaumarchaeota group 1.1b, Nitrososphaera viennensis strain EN76 and Nitrososphaera gargensis. Both N. viennensis and N. gargensis were insensitive to concentrations of octyne that cause complete and irreversible inactivation of nitrite production by ammonia-oxidizing bacteria. However, octyne concentrations (≥20 μM) that did not inhibit N. maritimus partially inhibited nitrite production in N. viennensis and N. gargensis in a manner that did not show the characteristics of irreversible inactivation. In contrast to previous studies with an ammonia-oxidizing bacterium, Nitrosomonas europaea, octyne inhibition of N. viennensis was: (i) fully and immediately reversible, (ii) not competitive with NH4 (+), and (iii) without effect on the competitive interaction between NH4 (+) and acetylene. Both N. viennensis and N. gargensis demonstrated the same overall trend in regard to 1-alkyne inhibition as previously observed for N. maritimus, being highly sensitive to ≤C5 alkynes and more resistant to longer-chain length alkynes. Reproducible differences were observed among N. maritimus, N. viennensis, and N. gargensis in regard to the extent of their resistance/sensitivity to C6 and C7 1-alkynes, which may indicate differences in the ammonia monooxygenase binding and catalytic site(s) among the Thaumarchaeota. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Phenylmercuric hydroxide. A highly selective reagent for the hydration of nonconjugated terminal alkynes

    International Nuclear Information System (INIS)

    Janout, V.; Regen, S.L.

    1982-01-01

    This article describes an unusual and highly selective method for hydrating nonconjugated terminal alkynes based on the use of phenylmercuric hydroxide as a reagent. Unlike classical mercury catalyzed procedures, sigma-bonded mercury acetylides are formed initially as stable intermediates and subsequently reacted with water under neutral pH to form the corresponding methyl ketone. Isolated yields which have been obtained by using this approach lie in the range of 49-65%. The high selectivity toward nonconjugated terminal alkynes which characterizes the procedure described herein should make it a useful supplement to existing hydration methods

  2. Tandem Carbocupration/Oxygenation of Terminal Alkynes

    Science.gov (United States)

    Zhang, Donghui; Ready, Joseph M.

    2008-01-01

    A direct and general synthesis of α-branched aldehydes and their enol derivatives is described. Carbocupration of terminal alkynes and subsequent oxygenation with lithium tert-butyl peroxide generates a metallo-enolate. Trapping with various electrophiles provides α-branched aldehydes or stereo-defined trisubstituted enol esters or silyl ethers. The tandem carbocupration/oxygenation tolerates alkyl and silyl ethers, esters and tertiary amines. The reaction is effective with organocopper complexes derived from primary, secondary and tertiary Grignard reagents and from n-butyllithium. PMID:16321021

  3. Ligand-enabled ortho-C-H olefination of phenylacetic amides with unactivated alkenes.

    Science.gov (United States)

    Lu, Ming-Zhu; Chen, Xing-Rong; Xu, Hui; Dai, Hui-Xiong; Yu, Jin-Quan

    2018-02-07

    Although chelation-assisted C-H olefination has been intensely investigated, Pd(ii)-catalyzed C-H olefination reactions are largely restricted to acrylates and styrenes. Here we report a quinoline-derived ligand that enables the Pd(ii)-catalyzed olefination of the C(sp 2 )-H bond with simple aliphatic alkenes using a weakly coordinating monodentate amide auxiliary. Oxygen is used as the terminal oxidant with catalytic copper as the co-oxidant. A variety of functional groups in the aliphatic alkenes are tolerated. Upon hydrogenation, the ortho -alkylated product can be accessed. The utility of this reaction is also demonstrated by the late-stage diversification of drug molecules.

  4. Chloride ion-catalyzed generation of difluorocarbene for efficient preparation of gem-difluorinated cyclopropenes and cyclopropanes

    KAUST Repository

    Wang, Fei; Zhang, Wei; Zhu, Jieming; Li, Huaifeng; Huang, Kuo-Wei; Hu, Jinbo

    2011-01-01

    A chloride ion-catalyzed generation of difluorocarbene from a relatively non-toxic and inexpensive precursor, Me3SiCF2Cl (1), under mild and neutral conditions leads to an efficient preparation of gem-difluorocyclopropenes and difluorocyclopropanes through [2 + 1] cycloaddition reactions with alkynes and alkenes, respectively. © 2011 The Royal Society of Chemistry.

  5. Kinetics and mechanics of photo-polymerized triazole-containing thermosetting composites via the copper(I)-catalyzed azide-alkyne cycloaddition.

    Science.gov (United States)

    Song, Han Byul; Wang, Xiance; Patton, James R; Stansbury, Jeffrey W; Bowman, Christopher N

    2017-06-01

    Several features necessary for polymer composite materials in practical applications such as dental restorative materials were investigated in photo-curable CuAAC (copper(I)-catalyzed azide-alkyne cycloaddition) thermosetting resin-based composites with varying filler loadings and compared to a conventional BisGMA/TEGDMA based composite. Tri-functional alkyne and di-functional azide monomers were synthesized for CuAAC resins and incorporated with alkyne-functionalized glass microfillers for CuAAC composites. Polymerization kinetics, in situ temperature change, and shrinkage stress were monitored simultaneously with a tensometer coupled with FTIR spectroscopy and a data-logging thermocouple. The glass transition temperature was analyzed by dynamic mechanical analysis. Flexural modulus/strength and flexural toughness were characterized in three-point bending on a universal testing machine. The photo-CuAAC polymerization of composites containing between 0 and 60wt% microfiller achieved ∼99% conversion with a dramatic reduction in the maximum heat of reaction (∼20°C decrease) for the 60wt% filled CuAAC composites as compared with the unfilled CuAAC resin. CuAAC composites with 60wt% microfiller generated more than twice lower shrinkage stress of 0.43±0.01MPa, equivalent flexural modulus of 6.1±0.7GPa, equivalent flexural strength of 107±9MPa, and more than 10 times higher energy absorption of 10±1MJm -3 when strained to 11% relative to BisGMA-based composites at equivalent filler loadings. Mechanically robust and highly tough, photo-polymerized CuAAC composites with reduced shrinkage stress and a modest reaction exotherm were generated and resulted in essentially complete conversion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Synthesis of 1,1-Diborylalkenes through a Bronsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron

    OpenAIRE

    Morinaga, Akira; Nagao, Kazunori; Ohmiya, Hirohisa; Sawamura, Masaya

    2015-01-01

    A method for the synthesis of 1,1-diborylalkenes through a Bronsted base catalyzed reaction between terminal alkynes and bis(pinacolato)diboron has been developed. The procedure allows direct synthesis of functionalized 1,1-diborylalkenes from various terminal alkynes including propiolates, propiolamides, and 2-ethynylazoles.

  7. Facile Preparation of (2Z,4E)-Dienamides by the Olefination of Electron-deficient Alkenes with Allyl Acetate.

    Science.gov (United States)

    Ding, Liyuan; Yu, Chunbing; Zhao, Zhenqiang; Li, Feifei; Zhang, Jian; Zhong, Guofu

    2017-06-21

    Direct cross-coupling between two alkenes via vinylic C-H bond activation represents an efficient strategy for the synthesis of butadienes with high atomic and step economy. However, this functionality-directed cross-coupling reaction has not been developed, as there are still limited directing groups in practical use. In particular, a stoichiometric amount of oxidant is usually required, producing a large amount of waste. Due to our interest in novel 1,3-butadiene synthesis, we describe the ruthenium-catalyzed olefination of electron-deficient alkenes using allyl acetate and without external oxidant. The reaction of 2-phenyl acrylamide and allyl acetate was chosen as a model reaction, and the desired diene product was obtained in 80% isolated yield with good stereoselectivity (Z,E/Z,Z = 88:12) under optimal conditions: [Ru(p-cymene) Cl2]2 (3 mol %) and AgSbF6 (20 mol %) in DCE at 110 ºC for 16 h. With the optimized catalytic conditions in hand, representative α- and/or β-substituted acrylamides were investigated, and all reacted smoothly, regardless of aliphatic or aromatic groups. Also, differently N-substituted acrylamides have proven to be good substrates. Moreover, we examined the reactivity of different allyl derivatives, suggesting that the chelation of acetate oxygen to the metal is crucial for the catalytic process. Deuterium-labeled experiments were also conducted to investigate the reaction mechanism. Only Z-selective H/D exchanges on acrylamide were observed, indicating a reversible cyclometalation event. In addition, a kinetic isotope effect (KIE) of 3.2 was observed in the intermolecular isotopic study, suggesting that the olefinic C-H metalation step is probably involved in the rate-determining step.

  8. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.

    Science.gov (United States)

    Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin

    2014-12-08

    The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Stereoselective chlorothiolation of artemisinin-derived C-10 oxa terminal alkynes.

    Science.gov (United States)

    Surineni, Naresh; Buragohain, Pori; Barua, Nabin C

    2015-11-01

    A mild and efficient strategy is explored on the highly sensitive artemisinin-derived C-10 oxa terminal alkynes. Several novel artemisinin-derived (E)-2-chloroalkenyl sulfides (20) have been synthesized by using this protocol to study their anticancer activities.

  10. A facile copper(I)-catalyzed homocoupling of terminal alkynes to 1,3-diynes with diaziridinone under mild conditions

    OpenAIRE

    Zhu, Yingguang; Shi, Yian

    2013-01-01

    A novel and efficient Cu(I)-catalyzed oxidative homocoupling of terminal alkynes with diaziridinone as oxidant is described. Various terminal alkynes can be transformed into the corresponding 1,3-diynes in good yields. The reaction process is base-free, operationally simple, and amenable to gram scale.

  11. Reactivity of the geminal phosphinoborane tBu2PCH2BPh2 towards alkynes, nitriles, and nitrilium triflates

    NARCIS (Netherlands)

    Habraken, E.R.M.; Mens, L.C.; Nieger, M.; Lutz, M.; Ehlers, A.W.; Slootweg, J.C.

    2017-01-01

    The reactivity of the geminal phosphinoborane tBu2PCH2BPh2 towards terminal alkynes, nitriles and nitrilium salts is investigated. Terminal alkynes react via C–H bond splitting (deprotonation) resulting in the formation of phosphonium borates. In contrast, both nitriles and nitrilium salts undergo

  12. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: substrate scope and mechanistic insights.

    Science.gov (United States)

    Liu, Xin-Yuan; Guo, Zhen; Dong, Sijia S; Li, Xiao-Hua; Che, Chi-Ming

    2011-11-11

    An efficient method for the synthesis of tertiary amines through a gold(I)-catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %), a variety of secondary amines bearing electron-deficient and electron-rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron-deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one-pot reaction from simple and readily available starting materials without the need of isolation of air/moisture-sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI-MS, isotope labeling studies, and DFT calculations on this gold(I)-catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)-alkyne intermediate is more likely than a gold(I)-amine intermediate, a three-coordinate gold(I) intermediate, or a dinuclear gold(I)-alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)-coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gold-catalyzed Bicyclization of Diaryl Alkynes: Synthesis of Polycyclic Fused Indole and Spirooxindole Derivatives.

    Science.gov (United States)

    Cai, Ju; Wu, Bing; Rong, Guangwei; Zhang, Cheng; Qiu, Lihua; Xu, Xinfang

    2018-04-13

    An unprecedented gold-catalyzed bicyclization reaction of diaryl alkynes has been developed for the synthesis of indoles in good to high yields. Mechanistically, this alkyne bifunctionalization transformation was terminated by a stepwise formal X-H insertion reaction to furnish the corresponding polycyclic-frameworks with structural diversity, and the key intermediate 3 H-indole was isolated and characterized for the first time. In addition, further transformation of these generated tetracyclic-indoles with PCC as the oxidant provided straightforward access to the spirooxindoles in high yields.

  14. Well-defined polyethylene-based graft terpolymers by combining nitroxide-mediated radical polymerization, polyhomologation and azide/alkyne “click” chemistry†

    KAUST Repository

    Alkayal, Nazeeha; Durmaz, Hakan; Tunca, Umit; Hadjichristidis, Nikolaos

    2016-01-01

    AAC) “click” chemistry. Three steps were involved in this approach: (i) synthesis of alkyne-terminated polyethylene-b-poly(ε-caprolactone) (PE-b-PCL-alkyne) block copolymers (branches) by esterification of PE-b-PCL-OH with 4-pentynoic acid; the PE

  15. A general one-step synthesis of alkynes from enolizable carbonyl compounds

    Czech Academy of Sciences Publication Activity Database

    Lyapkalo, Ilya; Vogel, M. A. K.; Boltukhina, Ekaterina; Vavřík, Jiří

    -, č. 4 (2009), s. 558-561 ISSN 0936-5214 Institutional research plan: CEZ:AV0Z40550506 Keywords : alkynes * eliminations * regioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 2.718, year: 2009

  16. Recent developments in the trifluoromethylation of alkynes.

    Science.gov (United States)

    Gao, Pin; Song, Xian-Rong; Liu, Xue-Yuan; Liang, Yong-Min

    2015-05-18

    In the last few years, the development of versatile methodologies to incorporate trifluoromethyl groups into organic molecules has attracted significant attention in synthetic chemistry. This review gives an overview over the development on the trifluoromethylation of alkynes, which have not been solely discussed before. Formation of diverse C(sp, sp(2) , sp(3) )-CF3 bonds are all covered in this review. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Metal complex catalysis in the synthesis of organoaluminium compounds

    International Nuclear Information System (INIS)

    Dzhemilev, Usein M; Ibragimov, Askhat G

    2000-01-01

    The published data on the synthesis of organoaluminium compounds involving metal complex catalysts are generalised and systematised. Hydro-, carbo- and cycloalumination reactions of alkenes, conjugated dienes and alkynes catalysed by Ti and Zr complexes are considered in detail. The use of organoaluminium reagents in organic synthesis and novel reactions involving these compounds are discussed. The bibliography includes 240 references.

  18. Are Isomeric Alkenes Used in Species Recognition among Neo-Tropical Stingless Bees (Melipona Spp).

    Science.gov (United States)

    Martin, Stephen J; Shemilt, Sue; da S Lima, Cândida B; de Carvalho, Carlos A L

    2017-12-01

    Our understanding of the role of cuticular hydrocarbons (CHC) in recognition is based largely on temperate ant species and honey bees. The stingless bees remain relatively poorly studied, despite being the largest group of eusocial bees, comprising more than 400 species in some 60 genera. The Meliponini and Apini diverged between 80-130 Myr B.P. so the evolutionary trajectories that shaped the chemical communication systems in ants, honeybees and stingless bees may be very different. The aim of this study was to study if a unique species CHC signal existed in Neotropical stingless bees, as has been shown for many temperate species, and what compounds are involved. This was achieved by collecting CHC data from 24 colonies belonging to six species of Melipona from North-Eastern Brazil and comparing the results with previously published CHC studies on Melipona. We found that each of the eleven Melipona species studied so far each produced a unique species CHC signal based around their alkene isomer production. A remarkable number of alkene isomers, up to 25 in M. asilvai, indicated the diversification of alkene positional isomers among the stingless bees. The only other group to have really diversified in alkene isomer production are the primitively eusocial Bumblebees (Bombus spp), which are the sister group of the stingless bees. Furthermore, among the eleven Neotropical Melipona species we could detect no effect of the environment on the proportion of alkane production as has been suggested for some other species.

  19. A facile copper(I)-catalyzed homocoupling of terminal alkynes to 1,3-diynes with diaziridinone under mild conditions.

    Science.gov (United States)

    Zhu, Yingguang; Shi, Yian

    2013-11-21

    A novel and efficient Cu(I)-catalyzed oxidative homocoupling of terminal alkynes with diaziridinone as an oxidant is described. Various terminal alkynes can be transformed into the corresponding 1,3-diynes in good yields. The reaction process is base-free, operationally simple, and amenable to the gram scale.

  20. Recent advances in the development of alkyne metathesis catalysts

    Directory of Open Access Journals (Sweden)

    Matthias Tamm

    2011-01-01

    Full Text Available The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review.

  1. Cobalt-mediated [3 + 2]-annulation reaction of alkenes with alpha,beta-unsaturated ketones and imines.

    Science.gov (United States)

    Schomaker, Jennifer M; Toste, F Dean; Bergman, Robert G

    2009-08-20

    The utility of cobalt dinitrosyl complexes for the [3 + 2] annulation of alkenes with unsaturated enones and ketimines has been demonstrated. Reaction of a series of cobalt dinitrosyl/alkene adducts with conjugate acceptors in the presence of Sc(OTf)(3)/LHMDS formed two new C-C bonds at the carbons alpha to the nitrosyl groups of the substrate, leading to unusual tri- and tetracycles. Retrocycloaddition of these products in the presence of norbornadiene yielded functionalized tetrasubstituted bicyclic olefins.

  2. Microwave—enhanced Mannich Condensation of Terminal Alkynes,Primary Amines with Paraformaldehyde on cuprous Iodide Doped Alumina under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    王磊; 李品华

    2003-01-01

    A microwave-enhanced,solventless Mannich condensation of terminal alkynes,primary amines with paraformaldehyde on cuprous iodide doped alumina has been investigated.The structures of products depend on the ratio of alkyne to amine and paraformaldehyde.

  3. Zinc(II) catalyzed conversion of alkynes to vinyl triflates in the presence of silyl triflates.

    Science.gov (United States)

    Al-huniti, Mohammed H; Lepore, Salvatore D

    2014-08-15

    The conversion of alkynes to their corresponding vinyl triflates in the presence of stoichiometric TMS-triflate was greatly facilitated by the triflate salt of several transition metal catalysts most especially Zn(OTf)2. Products are formed in high regioselectivity under mild conditions. Internal alkynes bearing an aryl substituent afford vinyl triflates with a modest preference for the Z-isomer especially with larger substituents. A mechanism is put forward to explain the unique role of silicon in this system.

  4. AZIDE-ALKYNE CLICK POLYMERIZATION: AN UPDATE

    Institute of Scientific and Technical Information of China (English)

    Hong-kun Li; Jing-zhi Sun; An-jun Qin; Ben Zhong Tang

    2012-01-01

    The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field.This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles (PTAs) with linear and hyperbranched structures.The Cu(Ⅰ)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.

  5. Nickel(0)-catalyzed enantioselective annulations of alkynes and arylenoates enabled by a chiral NHC ligand: efficient access to cyclopentenones.

    Science.gov (United States)

    Ahlin, Joachim S E; Donets, Pavel A; Cramer, Nicolai

    2014-11-24

    Cyclopentenones are versatile structural motifs of natural products as well as reactive synthetic intermediates. The nickel-catalyzed reductive [3+2] cycloaddition of α,β-unsaturated aromatic esters and alkynes constitutes an efficient method for their synthesis. Here, nickel(0) catalysts comprising a chiral bulky C1-symmetric N-heterocyclic carbene ligand were shown to enable an efficient asymmetric synthesis of cyclopentenones from mesityl enoates and internal alkynes under mild conditions. The bulky NHC ligand provided the cyclopentenone products in very high enantioselectivity and led to a regioselective incorporation of unsymmetrically substituted alkynes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cobalt-Mediated [3+2]-Annulation Reaction of Alkenes with α,β-Unsaturated Ketones and Imines

    Science.gov (United States)

    Schomaker, Jennifer M.; Toste, F. Dean; Bergman, Robert G.

    2009-01-01

    The utility of cobalt dinitrosyl complexes for the [3+2] annulation of alkenes with unsaturated enones and ketimines has been demonstrated. Reaction of a series of cobalt dinitrosyl/alkene adducts with conjugate acceptors in the presence of Sc(OTf)3/LHMDS formed two new C-C bonds at the carbons α to the nitrosyl groups of the substrate, leading to unusual tri- and tetracycles. Retrocycloaddition of these products in the presence of norbornadiene yielded functionalized tetrasubstituted bicyclic olefins. PMID:19639989

  7. Microwave Assisted Regioselective Bromomethoxylation of Alkenes Using Polymer Supported Bromine Resins

    OpenAIRE

    Gopalakrishnan, Geetha; Kasinath, Viswanathan; Singh, N. D. Pradeep; Krishnan, V. P. Santhana; Solomon, K. Anand; Rajan, S. S.

    2002-01-01

    A facile regio- and chemoselective bromomethoxylation of alkenes under microwave irradiation conditions employing a new polymer supported brominechloride resin is reported. The resin is prepared from the commercially available chloride resin by a simple one step procedure.

  8. Tandem trifluoromethylthiolation/aryl migration of aryl alkynoates to trifluoromethylthiolated alkenes.

    Science.gov (United States)

    Li, Huan; Liu, Shuai; Huang, Yangen; Xu, Xiu-Hua; Qing, Feng-Ling

    2017-09-12

    A trifluoromethylthiolation initiated aryl migration of aryl alkynoates was disclosed. This protocol employs AgSCF 3 as the SCF 3 source and MeCN as both the solvent and the hydrogen source. This provides a new access to trifluoromethylthiolated alkenes from readily available substrates and reagents.

  9. Recent advances in carbocupration of α-heterosubstituted alkynes

    Directory of Open Access Journals (Sweden)

    Ahmad Basheer

    2010-07-01

    Full Text Available Carbocupration of α-heterosubstituted alkynes leads to the formation of stereodefined functionalized vinyl copper species as single isomer. Recent advances in the field show that a simple pre-association of the organometallic derivative with an additional polar functional group in the vicinity of the reaction center may completely change the stereochemical outcome of the reaction. Representative examples are given in this mini-review.

  10. Sequential One-Pot Ruthenium-Catalyzed Azide−Alkyne Cycloaddition from Primary Alkyl Halides and Sodium Azide

    KAUST Repository

    Johansson, Johan R.

    2011-04-01

    An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh 3) 2] and the alkyne yielded the desired cycloaddition product after further microwave irradiation. © 2011 American Chemical Society.

  11. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  12. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  13. Silver-Catalyzed [2+1] Cyclopropenation of Alkynes with Unstable Diazoalkanes: N-Nosylhydrazones as Room-Temperature Decomposable Diazo Surrogates.

    Science.gov (United States)

    Liu, Zhaohong; Li, Qiangqiang; Liao, Peiqiu; Bi, Xihe

    2017-04-06

    The [2+1] cycloaddition of alkynes with diazo compounds represents one of the most powerful and reliable methods for the construction of cyclopropenes. However, it remains a formidable challenge to accomplish the cyclopropenation of alkynes with non-stabilized diazoalkanes, owing to the fact that such compounds are unstable and prone to detonation. Herein, we report a general silver-catalyzed cyclopropenation reaction of alkynes with unstable diazoalkanes, by for the first time the discovery and application of N-nosylhydrazones as room-temperature decomposiable diazo surrogates. This method allows for the efficient assembly a wide variety of cyclopropene derivatives that are otherwise difficult to access by conventional methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Expanding the Strained Alkyne Toolbox: Generation and Utility of Oxygen-Containing Strained Alkynes.

    Science.gov (United States)

    Shah, Tejas K; Medina, Jose M; Garg, Neil K

    2016-04-13

    We report synthetic methodology that permits access to two oxacyclic strained intermediates, the 4,5-benzofuranyne and the 3,4-oxacyclohexyne. In situ trapping of these intermediates affords an array of heterocyclic scaffolds by the formation of one or more new C-C or C-heteroatom bonds. Experimentally determined regioselectivities were consistent with predictions made using the distortion/interaction model and were also found to be greater compared to selectivities seen in the case of trapping experiments of the corresponding N-containing intermediates. These studies demonstrate the synthetic versatility of oxacyclic arynes and alkynes for the synthesis of functionalized heterocycles, while further expanding the scope of the distortion/interaction model. Moreover, these efforts underscore the value of harnessing strained heterocyclic intermediates as a unique approach to building polycyclic heteroatom-containing frameworks.

  15. Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions

    DEFF Research Database (Denmark)

    Kelly, C.; Sidebottom, H.W.; Treacy, J.

    1994-01-01

    Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed.......Rate data for the reactions of CF3O radicals with alkenes and aromatic compounds have been determined at 298 K using a relative rate method. The data are analyzed in terms of structure-reactivity relationships, and their importance to the atmospheric chemistry of CF3O discussed....

  16. Cu(I)-catalyzed preparation of thioacetylenes from terminal alkynes

    Czech Academy of Sciences Publication Activity Database

    Henke, Adam; Šrogl, Jiří

    2009-01-01

    Roč. 103, č. 11 (2009), s. 951-951 ISSN 0009-2770. [Pokroky v organické, bioorganické a farmaceutické chemii /44./. 27.11.2009-29.11.2009, Liblice] R&D Projects: GA ČR GA203/08/1318 Institutional research plan: CEZ:AV0Z40550506 Keywords : copper * thioacetylenes * terminal alkynes Subject RIV: CC - Organic Chemistry

  17. Stereoselective hydrogenation of H-alkynes on boron-nickel catalysts

    International Nuclear Information System (INIS)

    Petrova, S.S.; Sijmer, Eh.Kh.; Amitan, I.I.

    1992-01-01

    It is ascertained that in the course of stereoselective hydrogenation of H-alkynes on boron-nickel catalysts the contact modified by 2-phenyl-1,5 dimethylpyrasol-2-anom in the ratio Ni(2+):BH 4 -=1:5 is the most active and selective one. Moreover, cis-alkane was prepared with the yield of 94.5% and selective of 79%

  18. Microwave Assisted Regioselective Bromomethoxylation of Alkenes Using Polymer Supported Bromine Resins

    Directory of Open Access Journals (Sweden)

    S. S. Rajan

    2002-05-01

    Full Text Available A facile regio- and chemoselective bromomethoxylation of alkenes under microwave irradiation conditions employing a new polymer supported brominechloride resin is reported. The resin is prepared from the commercially available chloride resin by a simple one step procedure.

  19. Alkenylation of Arenes and Heteroarenes with Alkynes.

    Science.gov (United States)

    Boyarskiy, Vadim P; Ryabukhin, Dmitry S; Bokach, Nadezhda A; Vasilyev, Aleksander V

    2016-05-25

    This review is focused on the analysis of current data on new methods of alkenylation of arenes and heteroarenes with alkynes by transition metal catalyzed reactions, Bronsted/Lewis acid promoted transformations, and others. The synthetic potential, scope, limitations, and mechanistic problems of the alkenylation reactions are discussed. The insertion of an alkenyl group into aromatic and heteroaromatic rings by inter- or intramolecular ways provides a synthetic route to derivatives of styrene, stilbene, chalcone, cinnamic acid, various fused carbo- and heterocycles, etc.

  20. Manganese catalyzed cis-dihydroxylation of electron deficient alkenes with H(2)O(2).

    Science.gov (United States)

    Saisaha, Pattama; Pijper, Dirk; van Summeren, Ruben P; Hoen, Rob; Smit, Christian; de Boer, Johannes W; Hage, Ronald; Alsters, Paul L; Feringa, Ben L; Browne, Wesley R

    2010-10-07

    A practical method for the multigram scale selective cis-dihydroxylation of electron deficient alkenes such as diethyl fumarate and N-alkyl and N-aryl-maleimides using H(2)O(2) is described. High turnovers (>1000) can be achieved with this efficient manganese based catalyst system, prepared in situ from a manganese salt, pyridine-2-carboxylic acid, a ketone and a base, under ambient conditions. Under optimized conditions, for diethyl fumarate at least 1000 turnovers could be achieved with only 1.5 equiv. of H(2)O(2) with d/l-diethyl tartrate (cis-diol product) as the sole product. For electron rich alkenes, such as cis-cyclooctene, this catalyst provides for efficient epoxidation.

  1. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Predictable and Regioselective Insertion of Internal Unsymmetrical Alkynes in Rhodium-Catalyzed Cycloadditions with Alkenyl Isocyanates

    Science.gov (United States)

    Friedman, Rebecca Keller; Rovis, Tomislav

    2009-01-01

    A regioselective, rhodium-catalyzed cycloaddition between a variety of internal, unsymmetrical alkynes is described. We document the impact of both steric and electronic properties of the alkyne on reaction course, efficiency and enantioselectivity. The substituent that better stabilizes a positive charge or the larger group, all else being equal, inserts distal to the carbonyl moiety in a predictable and controllable fashion. The reaction scope is broad and the enantioselectivities are high, providing an ‘instruction manual’ for substrate choice when utilizing this reaction as a synthetic tool. PMID:19569692

  3. Fast and Green Microwave-Assisted Conversion of Essential Oil Allylbenzenes into the Corresponding Aldehydes via Alkene Isomerization and Subsequent Potassium Permanganate Promoted Oxidative Alkene Group Cleavage

    DEFF Research Database (Denmark)

    Luu, Thi Xuan Thi; Lam, Trinh To; Le, Thach Ngoc

    2009-01-01

    Essential oil allylbenzenes from have been converted quickly and efficiently into the corresponding benzaldehydes in good yields by a two-step "green" reaction pathway based on a solventless alkene group isomerization by KF/Al2O3 to form the corresponding 1-arylpropene and a subsequent solventles...

  4. Silica-supported tungsten carbynes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; X = 2, y = 1): New efficient catalysts for alkyne cyclotrimerization

    KAUST Repository

    Riache, Nassima

    2015-02-23

    The activity of silica-supported tungsten carbyne complexes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; x = 2, y = 1) toward alkynes is reported. We found that they are efficient precatalysts for terminal alkyne cyclotrimerization with high TONs. We also demonstrate that this catalyst species is active for alkyne cyclotrimerization without the formation of significant alkyne metathesis products. Additional DFT calculations highlight the importance of the W coordination sphere in supporting this experimental behavior.

  5. The mechanism of the phosphine-free palladium-catalyzed hydroarylation of alkynes

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, G.; Cacchi, S.

    2006-01-01

    The mechanism of the Pd-catalyzed hydroarylation and hydrovinylation reaction of alkynes has been studied by a combination of experimental and theoretical methods (B3LYP), with an emphasis on the phosphine-free version. The regioselectivity of the hydroarylation and hydrovinylation shows unexpected...

  6. Catalytic role of nickel in the decarbonylative addition of phthalimides to alkynes

    KAUST Repository

    Poater, Albert; Vummaleti, Sai V. C.; Cavallo, Luigi

    2013-01-01

    Density functional theory calculations have been used to investigate the catalytic role of nickel(0) in the decarbonylative addition of phthalimides to alkynes. According to Kurahashi et al. the plausible reaction mechanism involves a nucleophilic attack of nickel at an imide group, giving a six-membered metallacycle, followed by a decarbonylation and insertion of an alkyne leading to a seven-membered metallacycle. Finally a reductive elimination process produces the desired product and regenerates the nickel(0) catalyst. In this paper, we present a full description of the complete reaction pathway along with possible alternative pathways, which are predicted to display higher upper barriers. Our computational results substantially confirm the proposed mechanism, offering a detailed geometrical and energetical understanding of all the elementary steps. © 2013 American Chemical Society.

  7. Catalytic role of nickel in the decarbonylative addition of phthalimides to alkynes

    KAUST Repository

    Poater, Albert

    2013-11-11

    Density functional theory calculations have been used to investigate the catalytic role of nickel(0) in the decarbonylative addition of phthalimides to alkynes. According to Kurahashi et al. the plausible reaction mechanism involves a nucleophilic attack of nickel at an imide group, giving a six-membered metallacycle, followed by a decarbonylation and insertion of an alkyne leading to a seven-membered metallacycle. Finally a reductive elimination process produces the desired product and regenerates the nickel(0) catalyst. In this paper, we present a full description of the complete reaction pathway along with possible alternative pathways, which are predicted to display higher upper barriers. Our computational results substantially confirm the proposed mechanism, offering a detailed geometrical and energetical understanding of all the elementary steps. © 2013 American Chemical Society.

  8. Microwave-Enhanced Cross-Coupling Reactions Involving Alkynyltrifluoroborates with Aryl Bromides

    Directory of Open Access Journals (Sweden)

    George W. Kabalka

    2013-01-01

    Full Text Available Palladium-catalyzed alkynylation has emerged as one of the most reliable methods for the synthesis of alkynes which are often used in natural product syntheses and material science. An efficient method for coupling alkynyltrifluoroborates with various aryl bromides in the presence of a palladium catalyst has been developed using microwave irradiation. The microwave reactions are rapid and efficient.

  9. Alkyne- and 1,6-elimination- succinimidyl carbonate – terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation

    OpenAIRE

    Xie, Yumei; Duan, Shaofeng; Forrest, M. Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with di...

  10. Unveiling the uncatalyzed reaction of alkynes with 1,2-dipoles for the room temperature synthesis of cyclobutenes.

    Science.gov (United States)

    Alcaide, Benito; Almendros, Pedro; Fernández, Israel; Lázaro-Milla, Carlos

    2015-02-25

    2-(Pyridinium-1-yl)-1,1-bis(triflyl)ethanides have been used as 1,2-dipole precursors in a metal-free direct [2+2] cycloaddition reaction of alkynes. Starting from stable zwitterionic pyridinium salts, the electron deficient olefin 1,1-bis(trifluoromethylsulfonyl)ethene is generated in situ and immediately reacted at room temperature with an alkyne to afford substituted cyclobutenes. Remarkably, this mild and facile uncatalyzed protocol requires neither irradiation nor heating.

  11. Enantioselective Rhodium-Catalyzed [2+2+2] Cycloadditions of Terminal Alkynes and Alkenyl Isocyanates: Mechanistic Insights Lead to a Unified Model that Rationalizes Product Selectivity

    Science.gov (United States)

    Dalton, Derek M.; Oberg, Kevin M.; Yu, Robert T.; Lee, Ernest E.; Perreault, Stéphane; Oinen, Mark Emil; Pease, Melissa L.; Malik, Guillaume; Rovis, Tomislav

    2009-01-01

    This manuscript describes the development and scope of the asymmetric rhodium-catalyzed [2+2+2] cycloaddition of terminal alkynes and alkenyl isocyanates leading to the formation of indolizidine and quinolizidine scaffolds. The use of phosphoramidite ligands proved crucial for avoiding competitive terminal alkyne dimerization. Both aliphatic and aromatic terminal alkynes participate well, with product selectivity a function of both the steric and electronic character of the alkyne. Manipulation of the phosphoramidite ligand leads to tuning of enantio- and product selectivity, with a complete turnover in product selectivity seen with aliphatic alkynes when moving from Taddol-based to biphenol-based phosphoramidites. Terminal and 1,1-disubstituted olefins are tolerated with nearly equal efficacy. Examination of a series of competition experiments in combination with analysis of reaction outcome shed considerable light on the operative catalytic cycle. Through a detailed study of a series of X-ray structures of rhodium(cod)chloride/phosphoramidite complexes, we have formulated a mechanistic hypothesis that rationalizes the observed product selectivity. PMID:19817441

  12. Copper-catalyzed asymmetric ring opening of oxabicyclic alkenes with organolithium reagents

    NARCIS (Netherlands)

    Bos, Pieter H.; Rudolph, Alena; Pérez, Manuel; Fañanás-Mastral, Martín; Harutyunyan, Syuzanna R.; Feringa, Bernard

    2012-01-01

    A highly efficient method is reported for the asymmetric ring opening of oxabicyclic alkenes with organolithium reagents. Using a copper/chiral phosphoramidite complex together with a Lewis acid (BF3·OEt2), full selectivity for the anti isomer and excellent enantioselectivities were obtained for the

  13. A photocleavable affinity tag for the enrichment of alkyne-modified biomolecules

    NARCIS (Netherlands)

    Koopmans, Timo; Dekker, Frank J.; Martin, Nathaniel I.

    2012-01-01

    A new photocleavable affinity tag for use in the enrichment of alkyne-labelled biomolecules is reported. The tag is prepared via a concise synthetic route using readily available materials. The photolytic conditions employed for cleavage of the tag provide for a clean release of enriched

  14. Electrophilic trifluoromethylselenolation of terminal alkynes with Se-(trifluoromethyl 4-methylbenzenesulfonoselenoate

    Directory of Open Access Journals (Sweden)

    Clément Ghiazza

    2017-12-01

    Full Text Available Herein the nucleophilic addition of Se-(trifluoromethyl 4-methylbenzenesulfonoselenoate, a stable and easy-to-handle reagent, to alkynes is described. This reaction provides trifluoromethylselenylated vinyl sulfones with good results and the method was extended also to higher fluorinated homologs. The obtained compounds are valuable building blocks for further syntheses of fluoroalkylselenolated molecules.

  15. Borata-Wittig olefination reactions of ketones, carboxylic esters and amides with bis(pentafluorophenyl)borata-alkene reagents.

    Science.gov (United States)

    Wang, Tongdao; Kohrt, Sonja; Daniliuc, Constantin G; Kehr, Gerald; Erker, Gerhard

    2017-08-07

    The strongly electrophilic borane derivative amino-CH 2 CH 2 CH 2 -B(C 6 F 5 ) 2 6 was α-CH deprotonated with LiTMP to give the borata-alkene {[amino-(CH 2 ) 2 -CH[double bond, length as m-dash]B(C 6 F 5 ) 2 - ][Li + ]} 2 9 which underwent facile [2 + 2] cycloaddition reactions with benzophenone or fluorenone to yield the respective 1,2-oxaboretanides 11a,b. Compounds 9 and 11 were characterized by the X-ray diffraction. Thermolysis or hydrolysis of compounds 11a,b gave the corresponding borata-Wittig olefination products 12a,b. A variety of R-CH 2 -CH 2 -B(C 6 F 5 ) 2 boranes (conveniently generated by hydroboration of terminal alkenes R-CH[double bond, length as m-dash]CH 2 with Piers' borane [HB(C 6 F 5 ) 2 ]) were analogously deprotonated to give the respective borata-alkenes 16a-e (R: Ph-CH 2 -, n C 4 H 9 , t Bu, Cy, PhCH 2 CH 2 -). They underwent "non-classical" borata-Wittig olefination reactions with ethylformate to give the respective enolether carbonylation products, or their C 1 -elongated aldehydes (after hydrolysis). The borata-alkene [Ph-(CH 2 ) 2 -CH[double bond, length as m-dash]B(C 6 F 5 ) 2 - ] [Li + HTMP] (16a) gave the respective "non-classical" borata-Wittig olefination products, the enolethers 25a,b and 27, respectively, upon treatment with methyl- or ethyl acetate or γ-butyrolactone.

  16. Traceless Azido Linker for the Solid-Phase Synthesis of NH-1,2,3-Triazoles via Cu-Catalyzed Azide-Alkyne Cycloaddition Reactions

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil; Jensen, Jakob Feldthusen; Nielsen, Thomas Eiland

    2010-01-01

    A broadly useful acid-labile traceless azido linker for the solid-phase synthesis of NH-1,2,3-triazoles is presented. A variety of alkynes were efficiently immobilized on a range of polymeric supports by Cu(I)-mediated azide-alkyne cycloadditions. Supported triazoles showed excellent compatibility...

  17. On the Mechanism of the Digold(I)-Hydroxide-Catalysed Hydrophenoxylation of Alkynes

    KAUST Repository

    Gó mez-Suá rez, Adriá n; Oonishi, Yoshihiro; Martin, Anthony R.; Vummaleti, Sai V. C.; Nelson, David J.; Cordes, David B.; Slawin, Alexandra M. Z.; Cavallo, Luigi; Nolan, Steven P.; Poater, Albert

    2015-01-01

    Herein, we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes by both experimental and computational methods. The dissociation of [{Au(NHC)}2(μ-OH)][BF4] is essential to enter

  18. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite-Pd nanocomposites

    Science.gov (United States)

    Maghemite-supported ultra-fine Pd (1-2 nm) nanoparticles, prepared by a simple co-precipitation method, find application in the catalytic continuous flow hydrogenation of nitroarenes, azides, and alkenes wherein they play an important role in reduction of various functional group...

  19. Recent developments in Cope-type hydroamination reactions of hydroxylamine and hydrazine derivatives.

    Science.gov (United States)

    Beauchemin, André M

    2013-11-07

    Cope-type hydroaminations are versatile for the direct amination of alkenes, alkynes and allenes using hydroxylamines and hydrazine derivatives. These reactions occur via a concerted, 5-membered cyclic transition state that is the microscopic reverse of the Cope elimination. This article focuses on recent developments, including intermolecular variants, directed reactions, and asymmetric variants using aldehydes as tethering catalysts, and their applications in target-oriented synthesis.

  20. The development and evaluation of a continuous flow process for the lipase-mediated oxidation of alkenes

    Directory of Open Access Journals (Sweden)

    Charlotte Wiles

    2009-06-01

    Full Text Available We report the use of an immobilised form of Candida antarctica lipase B, Novozym® 435, in a preliminary investigation into the development of a continuous flow reactor capable of performing the chemo-enzymatic oxidation of alkenes in high yield and purity, utilising the commercially available oxidant hydrogen peroxide (100 volumes. Initial investigations focussed on the lipase-mediated oxidation of 1-methylcyclohexene, with the optimised reaction conditions subsequently employed for the epoxidation of an array of aromatic and aliphatic alkenes in 97.6 to 99.5% yield and quantitative purity.

  1. A Fluorinated Cobalt(III) Porphyrin Complex for Hydroalkoxylation of Alkynes.

    Science.gov (United States)

    Ushimaru, Richiro; Nishimura, Takuho; Iwatsuki, Toshiki; Naka, Hiroshi

    2017-01-01

    A fluorinated cobalt(III) porphyrin complex [Co(TPFPP)NTf 2 ·2C 2 H 5 OH, where TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, Tf=CF 3 SO 2 ] promotes hydroalkoxylation of alkynes to give acetals in good to excellent yields. The acetals can be directly functionalized with nucleophiles in a one-pot procedure.

  2. Ligand-controlled reactivity, selectivity, and mechanism of cationic ruthenium-catalyzed hydrosilylations of alkynes, ketones, and nitriles: a theoretical study.

    Science.gov (United States)

    Yang, Yun-Fang; Chung, Lung Wa; Zhang, Xinhao; Houk, K N; Wu, Yun-Dong

    2014-09-19

    Density functional theory calculations with the M06 functional have been performed on the reactivity, selectivity, and mechanism of hydrosilylations of alkynes, ketones, and nitriles catalyzed by cationic ruthenium complexes [CpRu(L)(MeCN)2](+), with L = P(i)Pr3 or MeCN. The hydrosilylation of alkynes with L = P(i)Pr3 involves an initial silyl migration mechanism to generate the anti-Markovnikov product, in contrast to the Markovnikov product obtained with L = MeCN. The bulky phosphine ligand directs the silyl group to migrate to Cβ of the alkyne. This explains the anti-Markovnikov selectivity of the catalyst with L = P(i)Pr3. By contrast, the silane additions to either ketone or nitrile proceed through an ionic SN2-Si outer-sphere mechanism, in which the substrate attacks the Si center. The P(i)Pr3 ligand facilitates the activation of the Si-H bond to furnish a η(2)-silane complex, whereas a η(1)-silane complex is formed for the MeCN ligand. This property of the phosphine ligand enables the catalytic hydrosilylation of ketones and nitriles in addition to that of alkynes.

  3. Synthesis of two new alkyne-bearing linkers used for the preparation of siRNA for labeling by click chemistry with fluorine-18

    International Nuclear Information System (INIS)

    Flagothier, Jessica; Kaisin, Geoffroy; Mercier, Frederic; Thonon, David; Teller, Nathalie; Wouters, Johan; Luxen, André

    2012-01-01

    Oligonucleotides (ONs) and more particularly siRNAs are promising drugs but their pharmacokinetics and biodistribution are widely unknown. Positron Emission Tomography (PET) using fluorine-18 is a suitable technique to quantify these biological processes. Click chemistry (Huisgen cycloaddition) is the current method for labeling siRNA. In order to study the influence of a linker bearing by [ 18 F] labeled ONs, on the in vivo pharmacokinetic and metabolism, we have developed two modified ONs by two new linkers. Here we report the synthesis of two alkyne-bearing linkers, the incorporation onto a ONs and the conjugation by click chemistry with a [ 18 F] prosthetic group. - Highlights: ► Synthesis of two new alkyne linkers. ► Functionalization at the 3′-end siRNA by alkyne linker derived of proline. ► Click chemistry between alkyne modified siRNA and [ 18 F] prosthetic group.

  4. Epoxidation of Alkenes with Aqueous Hydrogen Peroxide and Quaternary Ammonium Bicarbonate Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kegnæs, Søren

    2013-01-01

    A range of solid and liquid catalysts containing bicarbonate anions were synthesised and tested for the epoxidation of alkenes with aqueous hydrogen peroxide. The combination of bicarbonate anions and quaternary ammonium cations opens up for new catalytic systems that can help to overcome...

  5. RpA ratio: total shadowing due to running coupling

    OpenAIRE

    Iancu, E.; Triantafyllopoulos, D. N.

    2007-01-01

    We predict that the RpA ratio at the most forward rapidities to be measured at LHC should be strongly suppressed, close to "total shadowing'' (RpA = A^(-1/3)), as a consequence of running coupling effects in the nonlinear QCD evolution.

  6. Estimating Total Fusion Cross Sections by Using a Coupled-Channel Method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki-Seok; Cheoun, Myung-Ki [Soongsil University, Seoul (Korea, Republic of); Kim, K. S. [Korea Aerospace University, Koyang (Korea, Republic of); Kim, T. H.; So, W. Y. [Kangwon National University at Dogye, Samcheok (Korea, Republic of)

    2017-01-15

    We calculate the total fusion cross sections for the {sup 6}He + {sup 209}Bi, {sup 6}Li + {sup 209}Bi,{sup 9}Be + {sup 208}Pb, {sup 10}Be + {sup 209}Bi, and {sup 11}Li + {sup 208}Pb systems by using a coupled-channel (CC) method and compare the results with the experimental data. In the CC approach for the total fusion cross sections, we exploit a globally determined Wood-Saxon potential with Aky¨uz-Winther parameters and couplings of the ground state to the low-lying excited states in the projectile and the target nuclei. The total fusion cross sections obtained with the CC are compared with those obtained without the CC couplings. The latter approach is tantamount to a one-dimensional barrier penetration model. Finally, our approach is applied to understand new data for the {sup 11}Li+{sup 208}Pb system. Possible ambiguities inherent in those approaches are discussed in detail for further applications to the fusion system of halo and/or neutron-rich nuclei.

  7. Vinyldisiloxanes: their synthesis, cross coupling and applications.

    Science.gov (United States)

    Sore, Hannah F; Boehner, Christine M; Laraia, Luca; Logoteta, Patrizia; Prestinari, Cora; Scott, Matthew; Williams, Katharine; Galloway, Warren R J D; Spring, David R

    2011-01-21

    During the studies towards the development of pentafluorophenyldimethylsilanes as a novel organosilicon cross coupling reagent it was revealed that the active silanolate and the corresponding disiloxane formed rapidly under basic conditions. The discovery that disiloxanes are in equilibrium with the silanolate led to the use of disiloxanes as cross coupling partners under fluoride free conditions. Our previous report focused on the synthesis and base induced cross coupling of aryl substituted vinyldisiloxanes with aryl halides; good yields and selectivities were achieved. As a continuation of our research, studies into the factors which influence the successful outcome of the cross coupling reaction with both alkyl and aryl substituted vinyldisiloxanes were examined and a proposed mechanism discussed. Further investigation into expanding the breadth and diversity of substituted vinyldisiloxanes in cross coupling was explored and applied to the synthesis of unsymmetrical trans-stilbenes and cyclic structures containing the trans-alkene architecture.

  8. Ruthenium-Catalyzed Formal Dehydrative [4 + 2] Cycloaddition of Enamides and Alkynes for the Synthesis of Highly Substituted Pyridines: Reaction Development and Mechanistic Study.

    Science.gov (United States)

    Wu, Jicheng; Xu, Wenbo; Yu, Zhi-Xiang; Wang, Jian

    2015-07-29

    Reported herein is a ruthenium-catalyzed formal dehydrative [4 + 2] cycloaddition of enamides and alkynes, representing a mild and economic protocol for the construction of highly substituted pyridines. Notably, the features of broad substrate scope, high efficiency, good functional group tolerance, and excellent regioselectivities were observed for this reaction. Density functional theory (DFT) calculations and experiments have been carried out to understand the mechanism and regiochemistry. DFT calculations suggested that this formal dehydrative [4 + 2] reaction starts with a concerted metalation deprotonation of the enamide by the acetate group in the Ru catalyst, which generates a six-membered ruthenacycle intermediate. Then alkyne inserts into the Ru-C bond of the six-membered ruthenacycle, giving rise to an eight-membered ruthenacycle intermediate. The carbonyl group (which comes originally from the enamide substrate and is coordinated to the Ru center in the eight-membered ruthenacycle intermediate) then inserts into the Ru-C bond to give an intermediate, which produces the final pyridine product through further dehydration. Alkyne insertion step is a regio-determining step and prefers to have the aryl groups of the used alkynes stay away from the catalyst in order to avoid repulsion of aryl group with the enamide moiety in the six-membered ruthenacycle and to keep the conjugation between the aryl group and the triple C-C bond of the alkynes. Consequently, the aryl groups of the used alkynes are in the β-position of the final pyridines, and the present reaction has high regioselectivity.

  9. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes.

    Science.gov (United States)

    Mei, Ruhuai; Sauermann, Nicolas; Oliveira, João C A; Ackermann, Lutz

    2018-06-27

    Electrochemical oxidative C-H/N-H activations have been accomplished with a versatile cobalt catalyst in terms of [4 + 2] annulations of internal alkynes. The electro-oxidative C-H activation manifold proved viable with an undivided cell setup under exceedingly mild reaction conditions at room temperature using earth-abundant cobalt catalysts. The electrochemical cobalt catalysis prevents the use of transition metal oxidants in C-H activation catalysis, generating H 2 as the sole byproduct. Detailed mechanistic studies provided strong support for a facile C-H cobaltation by an initially formed cobalt(III) catalyst. The subsequent alkyne migratory insertion was interrogated by mass spectrometry and DFT calculations, providing strong support for a facile C-H activation and the formation of a key seven-membered cobalta(III) cycle in a regioselective fashion. Key to success for the unprecedented use of internal alkynes in electrochemical C-H/N-H activations was represented by the use of N-2-pyridylhydrazides, for which we developed a traceless electrocleavage strategy by electroreductive samarium catalysis at room temperature.

  10. Metal-Catalyzed Intra- and Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: A Review

    Directory of Open Access Journals (Sweden)

    Javier Francos

    2017-11-01

    Full Text Available The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus, a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or intermolecular versions of this process. In order to reduce the environmental impact of these reactions, considerable efforts have been devoted in recent years to the development of catalytic systems able to operate in aqueous media, which represent a real challenge taking into account the tendency of alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au, Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids to alkynes in a selective manner in aqueous environments have appeared in the literature. In this review article, an overview of this chemistry is provided. The synthesis of β-oxo esters by catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed.

  11. Carbon Dioxide Induced Alkene Extrusion from Bis(pentamethylcyclopentadienyl)titanium(III) Alkyls

    NARCIS (Netherlands)

    Luinstra, Gerrit A.; Teuben, Jan H.

    1987-01-01

    Reaction of titanium(III) alkyls, (η5-C5Me5)2TiR (R = Et or Prn), in toluene solution with CO2 proceeds at room temperature with formation of the titanium formate (η5-C5Me5)2TiO2CH, and the corresponding alkene (ethene or propene).

  12. Combination of Lewis Basic Selenium Catalysis and Redox Selenium Chemistry: Synthesis of Trifluoromethylthiolated Tertiary Alcohols with Alkenes.

    Science.gov (United States)

    Zhu, Zechen; Luo, Jie; Zhao, Xiaodan

    2017-09-15

    A new and efficient method for diaryl selenide catalyzed vicinal CF 3 S hydroxylation of 1,1-multisubstitued alkenes has been developed. Various trifluoromethylthiolated tertiary alcohols could be readily synthesized under mild conditions. This method is also effective for the intramolecular cyclization of alkenes tethered by carboxylic acid, hydroxy, sulfamide, or ester groups and is associated with the introduction of a CF 3 S group. Mechanistic studies have revealed that the pathway involves a redox cycle between Se(II) and Se(IV) and Lewis basic selenium catalysis.

  13. Copper-Catalyzed Sulfonyl Azide-Alkyne Cycloaddition Reactions: Simultaneous Generation and Trapping of Copper-Triazoles and -Ketenimines for the Synthesis of Triazolopyrimidines.

    Science.gov (United States)

    Nallagangula, Madhu; Namitharan, Kayambu

    2017-07-07

    First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.

  14. Silver-Catalyzed Aldehyde Olefination Using Siloxy Alkynes.

    Science.gov (United States)

    Sun, Jianwei; Keller, Valerie A; Meyer, S Todd; Kozmin, Sergey A

    2010-03-20

    We describe the development of a silver-catalyzed carbonyl olefination employing electron rich siloxy alkynes. This process constitutes an efficient synthesis of trisubstituted unsaturated esters, and represents an alternative to the widely utilized Horner-Wadsworth-Emmons reaction. Excellent diastereoselectivities are observed for a range of aldehydes using either 1-siloxy-1-propyne or 1-siloxy-1-hexyne. This mild catalytic process also enables chemoselective olefination of aldehydes in the presence of either ester or ketone functionality. Furthermore, since no by-products are generated, this catalytic process is perfectly suited for development of sequential reactions that can be carried out in a single flask.

  15. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    Science.gov (United States)

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  16. Reactions of sulfur atoms. XV. Absolute rate parameters for the S(3P210) + alkyne reactions

    International Nuclear Information System (INIS)

    van Roodselaar, A.; Safarik, I.; Strausz, O.P.; Gunning, H.E.

    1978-01-01

    Using flash photolysis with vacuum uv kinetic absorption spectroscopy, absolute rate constants and Arrhenius parameters have been measured for the addition of ground state S( 3 P 2 , 1 , 0 ) atoms to alkynes. The decay of sulfur atoms in COS, alkyne, and CO 2 -diluent mixtures is first order in sulfur atom concentration and the first-order decay rate constants are proportional to the alkyne concentration. The following rate constants were determined at room temperature: k(C 2 H 2 ) = k(C 2 D 2 ) + (2.3 +- 0.4) x 10 8 ; k(CHCCH 3 ) = (4.8 +- 0.2) x 10 9 ; k(CHCC 2 H 5 ) = (3.3 +- 0.2) x 10 9 ; k(CH 3 CCCH 3 ) = 1.6 +- 0.2) x 10 10 ; k(CH 3 CCC 2 C 5 ) = 1.8 +- 0.3) x 10 10 ; and k(CF 3 CCCF 3 ) = (2.1 +- 0.4) x 10 8 L mol -1 s -1 . The Arrhenius parameters determined are k(C 2 H 2 ) = (3.4 +- 1.9) x 10 10 exp[(-3000 +- 400)/RT] L mol -1 s -1 and k(CHCCH 3 ) = (2.0 +- 1.2) x 10 10 exp[(-900 +- 200)/RT] L mol -1 s -1 where error limits represent standard deviations. The rate parameters are compared to those obtained for the addition of other electrophilic reagents to alkynes and the results discussed in terms of structural and kinetic factors. Theoretical treatment of the secondary H/D isotope effect in the acetylene reaction satisfactorily reproduces the experimental value. 5 tables, 4 figures, 59 references

  17. Au-Catalyzed Synthesis of 2-Alkylindoles from N-Arylhydroxylamines and Terminal Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Ye, Longwu

    2012-01-01

    The first gold-catalyzed addition of N-arylhydroxylamines to aliphatic terminal alkynes is developed to access O-alkenyl-N-arylhydroxylamines, which undergo facile in situ sequential 3,3-rearrangements and cyclodehydrations to afford 2-alkylindoles with regiospecificity and under exceptionally mild reaction conditions. PMID:21637891

  18. One-pot synthesis of multisubstituted 2-aminoquinolines from annulation of 1-aryl tetrazoles with internal alkynes via double C-H activation and denitrogenation.

    Science.gov (United States)

    Zhang, Lei; Zheng, Liyao; Guo, Biao; Hua, Ruimao

    2014-12-05

    An efficient, one-pot synthesis of multisubstituted 2-aminoquinolines from 1-aryl tetrazoles and internal alkynes has been developed. The reaction involves cyclization of 1-aryl tetrazoles with internal alkynes via rhodium(III)-catalyzed double C-H activation and copper(II)-mediated denitrogenation.

  19. A new united atom force field for adsorption of alkenes in zeolites

    NARCIS (Netherlands)

    Liu, B.; Smit, B.; Rey, F.; Valencia, S.; Calero, S.

    2008-01-01

    A new united atom force field was developed that accurately describes the adsorption properties of linear alkenes in zeolites. The force field was specifically designed for use in the inhomogeneous system and therefore a truncated and shifted potential was used. With the determined force field, we

  20. Mechanisms in manganese catalysed oxidation of alkenes with H2O2

    NARCIS (Netherlands)

    Saisaha, Pattama; de Boer, Johannes W.; Browne, Wesley R.

    2013-01-01

    The development of new catalytic systems for cis-dihydroxylation and epoxidation of alkenes, based on atom economic and environmentally friendly concepts, is a major contemporary challenge. In recent years, several systems based on manganese catalysts using H2O2 as the terminal oxidant have been

  1. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.

    Science.gov (United States)

    Thomas, Anthony W; Dove, Andrew P

    2016-12-01

    Functional aliphatic polycarbonates have attracted significant attention as materials for use as biomedical polymers in recent years. The incorporation of pendent functionality offers a facile method of modifying materials postpolymerization, thus enabling functionalities not compatible with ring-opening polymerization (ROP) to be introduced into the polymer. In particular, polycarbonates bearing alkene-terminated functional groups have generated considerable interest as a result of their ease of synthesis, and the wide range of materials that can be obtained by performing simple postpolymerization modifications on this functionality, for example, through radical thiol-ene addition, Michael addition, and epoxidation reactions. This review presents an in-depth appraisal of the methods used to modify alkene-functional polycarbonates postpolymerization, and the diversity of practical applications for which these materials and their derivatives have been used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China

    Science.gov (United States)

    Shao, Ping; An, Junlin; Xin, Jinyuan; Wu, Fangkun; Wang, Junxiu; Ji, Dongsheng; Wang, Yuesi

    2016-07-01

    Volatile organic compounds (VOCs) were continuously observated in a northern suburb of Nanjing, a typical industrial area in the Yangtze River Delta, in a summer observation period from 15th May to 31st August 2013. The average concentration of total VOCs was (34.40 ± 25.20) ppbv, including alkanes (14.98 ± 12.72) ppbv, alkenes (7.35 ± 5.93) ppbv, aromatics (9.06 ± 6.64) ppbv and alkynes (3.02 ± 2.01) ppbv, respectively. Source apportionment via Positive Matrix Factorization was conducted, and six major sources of VOCs were identified. The industry-related sources, including industrial emissions and industrial solvent usage, occupied the highest proportion, accounting for about 51.26% of the VOCs. Vehicular emissions occupied the second highest proportion, accounting for about 34.08%. The rest accounted for about 14.66%, including vegetation emission and liquefied petroleum gas/natural gas usage. Contributions of VOCs to photochemical O3 formation were evaluated by the application of a detailed chemical mechanism model (NCAR MM). Alkenes were the dominant contributors to the O3 photochemical production, followed by aromatics and alkanes. Alkynes had a very small impact on photochemical O3 formation. Based on the outcomes of the source apportionment, a sensitivity analysis of relative O3 reduction efficiency (RORE), under different source removal regimes such as using the reduction of VOCs from 10% to 100% as input, was conducted. The RORE was the highest (~ 20%-40%) when the VOCs from solvent-related sources decreased by 40%. The highest RORE values for vegetation emissions, industrial emissions, vehicle exhaust, and LPG/NG usage were presented in the scenarios of 50%, 80%, 40% and 40%, respectively.

  3. Synthetic Applications of Flexible SNO-OCT Strained Alkynes and Their Use in Postpolymerization Modifications.

    Science.gov (United States)

    Burke, Eileen G; Schomaker, Jennifer M

    2017-09-01

    SNO-OCTs are eight-membered heterocyclic alkynes that have fast rates of reactivity with 1,3-dipoles. In contrast to many other reported cycloalkynes, SNO-OCTs contain multiple sites for derivatization, display stability under a variety of common reaction conditions, and offer the opportunity for strain-induced ring-opening following the initial reaction of the alkyne moiety. In this paper, we describe how the unique features of SNO-OCTs can be employed to modify an oxime-bearing styrene copolymer and introduce an array of polar functionalities into the polymer. This can be achieved through both the addition of SNO-OCT to the polymer, as well as in the subsequent opening of the sulfamate ring once it has been installed in the polymer.

  4. A General Cp*CoIII -Catalyzed Intramolecular C-H Activation Approach for the Efficient Total Syntheses of Aromathecin, Protoberberine, and Tylophora Alkaloids.

    Science.gov (United States)

    Lerchen, Andreas; Knecht, Tobias; Koy, Maximilian; Daniliuc, Constantin G; Glorius, Frank

    2017-09-07

    Herein, we report a Cp*Co III -catalyzed C-H activation approach as the key step to create highly valuable isoquinolones and pyridones as building blocks that can readily be applied in the total syntheses of a variety of aromathecin, protoberberine, and tylophora alkaloids. This particular C-H activation/annulation reaction was achieved with several terminal as well as internal alkyne coupling partners delivering a broad scope with excellent functional group tolerance. The synthetic applicability of this protocol reported herein was demonstrated in the total syntheses of two Topo-I-Inhibitors and two 8-oxyprotoberberine cores that can be further elaborated into the tetrahydroprotoberberine and the protoberberine alkaloid core. Moreover these building blocks were also transformed to six different tylophora alkaloids in expedient fashion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Regio- and stereochemistry of 1,3-dipolar cycloaddition of nitrile oxides to alkenes

    International Nuclear Information System (INIS)

    Litvinovskaya, Raisa P; Khripach, Vladimir A

    2001-01-01

    The published data on the chemistry of intermolecular 1,3-dipolar cycloaddition of nitrile oxides to different types of alkene derivatives are systematised. Various aspects of stereo- and regiochemistry of this reaction are considered. The bibliography includes 182 references.

  6. The Determination of the Smoke Hazards Resulting from the Burning of Shipboard Materials Utilized by the US Navy.

    Science.gov (United States)

    1981-08-31

    Interior Paairt r’ts RorzotalSapleIeun Forle Tranduer Figure I. Combustion Products Test Chamber. .. 2. *Sold hda 0 Ol~n kb 3’. 8.iIdg IN= W I Vll ue2...hydrocarbons (alkanes, alkenes, and alkynes), alcohols, aldehydes, ketones, ethers, carboxylic acids , aromatic hydrocarbons, polycyclic aromatic hydrocarbons...carboxylic acids , a few nitriles, acetaldehyde, and acetone. A few exotic fluorine containing organic compounds have unusually low refractive indices for

  7. Mild copper-catalyzed trifluoromethylation of terminal alkynes using an electrophilic trifluoromethylating reagent

    KAUST Repository

    Weng, Zhiqiang

    2012-03-01

    A catalytic process for trifluoromethylation of terminal alkynes with Togni\\'s reagent has been developed, affording trifluoromethylated acetylenes in good to excellent yields. The reaction is conducted at room temperature and exhibits tolerance to a range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  8. Build/Couple/Pair Strategy Combining the Petasis 3-Component Reaction with Ru-Catalyzed Ring-Closing Metathesis and Isomerization

    DEFF Research Database (Denmark)

    Ascic, Erhad; Le Quement, Sebastian Thordal; Ishøy, Mette

    2012-01-01

    A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene...

  9. Two Palladium-Catalyzed Domino Reactions from One Set of Substrates/Reagents: Efficient Synthesis of Substituted Indenes and cis-Stilbenoid Hydrocarbons from the Same Internal Alkynes and Hindered Grignard Reagents

    Science.gov (United States)

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2008-01-01

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction and C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides an efficient access to useful polysubstituted indenes and cis-substituted stilbenes, and may offer new means to the development of tandem/domino reactions in a more efficient way. PMID:17217305

  10. Clean and Selective Catalytic C-H alkylation of Alkenes with Environmental friendly Alcohols

    KAUST Repository

    Poater, Albert; Vummaleti, Sai V. C.; Polo, Alfonso; Cavallo, Luigi

    2016-01-01

    Bearing the alkylation of alkene substrates using alcohol as solvent, catalysed by the cationic Ru-based catalyst [(C6H6)(PCy3)(CO)RuH]+, DFT calculations have been carried out to get mechanistic insights of such an environmental friendly reaction

  11. Phosphoramidite accelerated copper(I)-catalyzed [3+2] cycloadditions of azides and alkynes

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Mirfeizi, Leila; Dierckx, Rudi A.; Elsinga, Philip H.; Feringa, Ben L.

    2009-01-01

    Monodentate phosphoramidite ligands are used to accelerate the copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) rapidly yielding a wide variety of functionalized 1,4-disubstituted-1,2,3-triazoles; Cu(I) and Cu(II) salts both function as the copper source in aqueous

  12. Hydrophosphorylation of substituted alkynes by phosphonic acids

    International Nuclear Information System (INIS)

    Nifant'ev, E.F.; Solovetskaya, L.A.; Maslennikova, V.I.; Sergeev, N.M.

    1987-01-01

    Hydrophosphorylation of functionally substituted alkynes by phosphonic acids can be a convenient method for synthesis of functionally substituted mono- and diphosphine oxides. The ease of hydrophosphorylation is determined by the strength of the negative inductive effect of the substituents on the triple bond and the steric factor. The structure of the bis-adducts was confirmed by elementary analysis and the 31 P and 13 C NMR spectra. The 31 P NMR spectrum is an AB two-spin system. The values of the chemical shifts and spin-spin interaction constants 3 J/sub PP/ are in agreement with the data in the literature for similar compounds

  13. Metal-Free Poly-Cycloaddition of Activated Azide and Alkynes toward Multifunctional Polytriazoles: Aggregation-Induced Emission, Explosive Detection, Fluorescent Patterning, and Light Refraction.

    Science.gov (United States)

    Wu, Yongwei; He, Benzhao; Quan, Changyun; Zheng, Chao; Deng, Haiqin; Hu, Rongrong; Zhao, Zujin; Huang, Fei; Qin, Anjun; Tang, Ben Zhong

    2017-09-01

    The metal-free click polymerization (MFCP) of activated alkynes and azides or activated azide and alkynes have been developed into powerful techniques for the construction of polytriazoles without the obsession of metallic catalyst residues problem. However, the MFCP of activated azides and alkynes is rarely applied in preparation of functional polytriazoles. In this paper, soluble multifunctional polytriazoles (PIa and PIb) with high weight-average molecular weights (M w up to 32 000) are prepared via the developed metal-free poly-cycloaddition of activated azide and alkynes in high yields (up to 90%). The resultant PIa and PIb are thermally stable, and show aggregation-induced emission characteristics, enabling their aggregates to detect explosives with superamplification effect. Moreover, thanks to their containing aromatic rings and polar moieties, PIa and PIb exhibit high refractive indices. In addition, they can also be cross-linked upon UV irradiation to generate 2D fluorescent patterning due to their remaining azide groups and containing ester groups. Thus, these multifunctional polytriazoles are potentially applicable in the optoelectronic and sensing fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of chiral terminal-alkene-phosphine hybrid ligands for palladium-catalyzed asymmetric allylic substitutions.

    Science.gov (United States)

    Liu, Zhaoqun; Du, Haifeng

    2010-07-02

    A variety of novel chiral terminal-alkene-phosphine hybrid ligands were successfully developed from diethyl L-tartrate for palladium-catalyzed asymmetric allylic alkylations, etherifications, and amination to give the desired products in excellent yields and ee's.

  15. Convenient Transfer Semihydrogenation Methodology for Alkynes Using a PdII-NHC Precatalyst

    NARCIS (Netherlands)

    Drost, R.M.; Bouwens, T.; van Leest, N.P.; de Bruin, B.; Elsevier, C.J.

    2014-01-01

    A convenient and easy-to-use protocol for the Z-selective transfer semihydrogenation of alkynes was developed, using ammonium formate as the hydrogen source and the easily prepared and commercially available, highly stable complex PdC1(eta(3)-C3H5)(IMes) (1) as the (pre)catalyst. Combined with

  16. Insertion of internal alkynes and ethene into permethylated single tucked-in titanocene

    Czech Academy of Sciences Publication Activity Database

    Pinkas, Jiří; Císařová, I.; Gyepes, R.; Horáček, Michal; Kubišta, Jiří; Čejka, Jiří; Gómez-Ruiz, S.; Hey-Hawkins, E.; Mach, Karel

    2008-01-01

    Roč. 27, č. 21 (2008), s. 5532-5547 ISSN 0276-7333 R&D Projects: GA AV ČR IAA400400708; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40400503 Keywords : alkynes * titanocene * ethene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.815, year: 2008

  17. Further studies on hydration of alkynes by the PtCl4-CO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Israelsohn, Osnat; Vollhardt, K. Peter C.; Blum, Jochanan

    2002-01-18

    Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.

  18. Solvent effect on copper-catalyzed azide-alkyne cycloaddition (CuAAC): synthesis of novel triazolyl substituted quinolines as potential anticancer agents.

    Science.gov (United States)

    Ellanki, Amarender Reddy; Islam, Aminul; Rama, Veera Swamy; Pulipati, Ranga Prasad; Rambabu, D; Krishna, G Rama; Reddy, C Malla; Mukkanti, K; Vanaja, G R; Kalle, Arunasree M; Kumar, K Shiva; Pal, Manojit

    2012-05-15

    A regioselective route to novel mono triazolyl substituted quinolines has been developed via copper-catalyzed azide-alkyne cycloaddition (CuAAC) of 2,4-diazidoquinoline with terminal alkynes in DMF. The reaction provided bis triazolyl substituted quinolines when performed in water in the presence of Et(3)N. A number of the compounds synthesized showed promising anti-proliferative properties when tested in vitro especially against breast cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A general A3: coupling reaction based on functionalized alkynes

    International Nuclear Information System (INIS)

    Wendler, Edison P.; Santos, Alcindo A. dos

    2013-01-01

    A range of hydroxypropargylpiperidones were efficiently obtained by a one-pot three-component coupling reaction of aldehydes, alkynols, and a primary amine equivalent (4-piperidone hydrochloride hydrate) in ethyl acetate using copper(I) chloride as a catalyst. The developed protocol proved to be equally efficient using a range of aliphatic aldehydes, including paraformaldehyde, and using protected and unprotected alkynols. (author)

  20. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.

    2012-01-01

    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques

  1. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  2. Silica-supported tungsten carbynes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; X = 2, y = 1): New efficient catalysts for alkyne cyclotrimerization

    KAUST Repository

    Riache, Nassima; Dé ry, Alexandre; Callens, Emmanuel; Poater, Albert; Samantaray, Manoja; Dey, Raju; Hong, Jinhua; Li, Kun; Cavallo, Luigi; Basset, Jean-Marie

    2015-01-01

    demonstrate that this catalyst species is active for alkyne cyclotrimerization without the formation of significant alkyne metathesis products. Additional DFT calculations highlight the importance of the W coordination sphere in supporting this experimental

  3. Stereoselective Synthesis of Tetrasubstituted Furylalkenes via Gold-Catalyzed Cross-Coupling of Enynones with Diazo Compounds.

    Science.gov (United States)

    Liu, Pei; Sun, Jiangtao

    2017-07-07

    A stereoselective, gold-catalyzed, cross-coupling reaction of enynones with diazo compounds has been developed, affording 2-alkenylfurans in moderate to good yields with excellent E-stereoselectivity. Upon using diazo compounds as nucleophiles to trap the in situ formed gold furyl carbene, this protocol provides a novel path toward the formation of unsymmetrical tetrasubstituted alkenes.

  4. Rhodium catalyzed regioselective arene homologation of aryl urea via double C-H bond activation and migratory insertion of alkyne

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Hao Zhou; Ke Xu; Mei-Hua Shen; Hua-Dong Xu

    2017-01-01

    A convenient rhodium catalyzed oxidative arene homologation of aniline derivatives with symmetrical or unsymmetrical alkynes using Cu(OAc)2 as oxidant is described.Urea group is shown to be effective as a directing group for initial ortho C-H activation.Two migratory insertion events of alkyne into Rh-C bond occur successively,both with complete regioselectivity.This method is particularly useful for synthesis of polyarenes with different substituents,which has not been reported with conventional protocol.A mechanism has been proposed to explain the observed data.

  5. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides.

    Science.gov (United States)

    Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P

    2015-01-01

    We report the synthesis of nine new N -heterocyclic carbene gold bifluoride complexes starting from the corresponding N -heterocyclic carbene gold hydroxides. A new methodology to access N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents.

  6. Manganese catalyzed cis-dihydroxylation of electron deficient alkenes with H2O2

    NARCIS (Netherlands)

    Saisaha, Pattama; Pijper, Dirk; van Summeren, Ruben P.; Hoen, Robert; Smit, Christian; de Boer, Johannes W.; Hage, Ronald; Alsters, Paul L.; Feringa, Bernard; Browne, Wesley R.

    2010-01-01

    A practical method for the multigram scale selective cis-dihydroxylation of electron deficient alkenes such as diethyl fumarate and N-alkyl and N-aryl-maleimides using H2O2 is described. High turnovers (>1000) can be achieved with this efficient manganese based catalyst system, prepared in situ from

  7. Chemistry of Volatile Organic Compounds in the Los Angeles basin: Nighttime Removal of Alkenes and Determination of Emission Ratios

    Science.gov (United States)

    de Gouw, J. A.; Gilman, J. B.; Kim, S.-W.; Lerner, B. M.; Isaacman-VanWertz, G.; McDonald, B. C.; Warneke, C.; Kuster, W. C.; Lefer, B. L.; Griffith, S. M.; Dusanter, S.; Stevens, P. S.; Stutz, J.

    2017-11-01

    We reanalyze a data set of hydrocarbons in ambient air obtained by gas chromatography-mass spectrometry at a surface site in Pasadena in the Los Angeles basin during the NOAA California Nexus study in 2010. The number of hydrocarbon compounds quantified from the chromatograms is expanded through the use of new peak-fitting data analysis software. We also reexamine hydrocarbon removal processes. For alkanes, small alkenes, and aromatics, the removal is determined by the reaction with hydroxyl (OH) radicals. For several highly reactive alkenes, the nighttime removal by ozone and nitrate (NO3) radicals is also significant. We discuss how this nighttime removal affects the determination of emission ratios versus carbon monoxide (CO) and show that previous estimates based on nighttime correlations with CO were too low. We analyze model output from the Weather Research and Forecasting-Chemistry model for hydrocarbons and radicals at the Pasadena location to evaluate our methods for determining emission ratios from the measurements. We find that our methods agree with the modeled emission ratios for the domain centered on Pasadena and that the modeled emission ratios vary by 23% across the wider South Coast basin. We compare the alkene emission ratios with published results from ambient measurements and from tunnel and dynamometer studies of motor vehicle emissions. We find that with few exceptions the composition of alkene emissions determined from the measurements in Pasadena closely resembles that of motor vehicle emissions.

  8. Rh-catalyzed Transannulation of N-Tosyl-1,2,3-Triazoles with Terminal Alkynes

    Science.gov (United States)

    Chattopadhyay, Buddhadeb; Gevorgyan, Vladimir

    2011-01-01

    The first transannulation of 1,2,3-triazoles with terminal alkynes into pyrroles is reported. The reaction proceeds in the presence of Rh2(oct)4/AgOCOCF3 binary catalyst system providing a straightforward approach to 1,2,4-trisubstituted pyrroles in good to excellent yields. PMID:21692488

  9. Nonafluorobutanesulfonyl azide as a shelf-stable highly reactive oxidant for the copper-catalyzed synthesis of 1,3-diynes from terminal alkynes.

    Science.gov (United States)

    Suárez, José Ramón; Collado-Sanz, Daniel; Cárdenas, Diego J; Chiara, Jose Luis

    2015-01-16

    Nonafluorobutanesulfonyl azide is a highly efficient reagent for the copper-catalyzed coupling of terminal alkynes to give symmetrical and unsymmetrical 1,3-diynes in good to excellent yields and with good functional group compatibility. The reaction is extremely fast (<10 min), even at low temperature (−78 °C), and requires substoichiometric amounts of a simple copper(I) or copper(II) salt (2–5 mol %) and an organic base (0.6 mol %). A possible mechanistic pathway is briefly discussed on the basis of model DFT theoretical calculations. The quantitative assessment of the safety of use and shelf stability of nonafluorobutanesulfonyl azide has confirmed that this reagent is a superior and safe alternative to other electrophilic azide reagents in use today.

  10. Copper-catalyzed difunctionalization of activated alkynes by radical oxidation-tandem cyclization/dearomatization to synthesize 3-trifluoromethyl spiro[4.5]trienones.

    Science.gov (United States)

    Hua, Hui-Liang; He, Yu-Tao; Qiu, Yi-Feng; Li, Ying-Xiu; Song, Bo; Gao, Pin; Song, Xian-Rong; Guo, Dong-Hui; Liu, Xue-Yuan; Liang, Yong-Min

    2015-01-19

    A copper-catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois' reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3-(trifluoromethyl)-spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon-carbon single bonds and one carbon-oxygen double bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ancillary ligand-free copper catalysed hydrohydrazination of terminal alkynes with NH2NH2.

    Science.gov (United States)

    Peltier, Jesse L; Jazzar, Rodolphe; Melaimi, Mohand; Bertrand, Guy

    2016-02-14

    An efficient and selective Cu-catalysed hydrohydrazination of terminal alkynes with parent hydrazine is reported. The methodology tolerates a broad range of functional groups, allows for the synthesis of symmetrical and unsymmetrical azines, and can be extended to hydrazine derivatives and amines.

  12. A simple and effective approach to the synthesis of alkynyl selenides from terminal alkynes

    Institute of Scientific and Technical Information of China (English)

    Barahman Movassagh; Mozhgan Navidi

    2012-01-01

    Alkynyl selenides were prepared under very mild conditions by reacting terminal alkynes with respective diorganic diselenides in the presence of potassium t-butoxide.The advantages of this protocol include the use of readily available substrates and reagent and good yield of the products.

  13. IR and TPD studies of the interaction of alkenes with Cu + sites in CuNaY and CuNaX zeolites of various Cu content. The heterogeneity of Cu + sites

    Science.gov (United States)

    Datka, J.; Kukulska-Zajaç, E.; Kozyra, P.

    2006-08-01

    Cu + ions in zeolites activate organic molecules containing π electrons by π back donation, which results in a distinct weakening of multiple bonds. In this study, we followed the activation of alkenes (ethene and propene) by Cu + ions in CuY and CuX zeolites of various Cu content. We also studied the strength of bonding of alkenes to Cu + ions. IR studies have shown that there are two kinds of Cu + sites of various electron donor properties. We suppose that they could be attributed to the presence of Cu + ions of various number of oxygen atoms surrounding the cation. IR studies have shown that Cu ions introduced into Y and X zeolites in the first-order (at low Cu content) form Cu + ions of stronger electron donor properties (i.e. activate alkenes to larger extend) than Cu ions introduced in the next order (at higher Cu content). IR and TPD studies of alkenes desorption evidenced that Cu + ions of stronger electron donor properties bond alkenes stronger than less electron donor ones. It suggests that π back donation has more important contribution to the strength of bonding alkenes to cation than π donation.

  14. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    Science.gov (United States)

    Elupula, Ravinder

    . Whereas, anionically prepared A-PS had much higher reliance on the molecular weight changes for its glass transition temperature. However, in thin films, c-PS films have, within error, no confinement effect. In contrast, A-PS has seen large T g reduction with confinement. Ellipsometry analysis suggests that this invariance of the Tg-confinement effect in c-PS is a result of the weak perturbation to Tg near the free surface (i.e. the polymer-air interface). These weak perturbations are the result of the high packing efficiency of cyclic PS segments. The copper-catalyzed alkyne/azide cycloaddition (CuAAC) click reaction has been used to cyclize many linear polymers with complementary azide and alkyne end groups via unimolecular heterodifunctional approach. Cyclic polymers exhibit unique and potentially useful physical properties compared to their linear analogs, hence increasing interest in techniques for preparing this class of polymers. However, a general route for producing high purity cyclic polymers remained elusive. Prior to the discovery of "click" chemistry, it was difficult to produce highly pure cyclic polymers via the ring-closure approach, requiring extensive post-cyclization purification. However, even minor amounts of linear impurities can influence the physical properties of cyclic polymers. Thermal gradient interaction chromatography (TGIC) coupled with Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF MS) allows the fractionation of cyclic polymer samples and produce valuable data for determining both the quantity and identity of linear impurities. This understanding further enables us to optimize cyclization conditions towards the goal of and efficient, general methodology for producing highly pure cyclic polymers. To solve the ever-growing energy needs of the world and capture the renewable energy that is generated sporadically, we need to create devices that can store high amounts of energy and discharge power at

  15. Surface-Activated Coupling Reactions Confined on a Surface.

    Science.gov (United States)

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    -functional theory (DFT) transition-state calculations have been used to shed light on reaction mechanisms and to unravel the trends of different surface materials. In this Account, we discuss recent progress made in two widely studied surface-confined coupling reactions, aryl-aryl (Ullmann-type) coupling and alkyne-alkyne (Glaser-type) coupling, and focus on surface activation effects. Combined experimental and theoretical studies on the same reactions taking place on different metal surfaces have clearly demonstrated that different surfaces not only reduce the reaction barrier differently and render different reaction pathways but also control the morphology of the reaction products and, to some degree, select the reaction products. We end the Account with a list of questions to be addressed in the future. Satisfactorily answering these questions may lead to using the surface-confined coupling reactions to synthesize predefined products with high yield.

  16. Chain-growth cycloaddition polymerization via a catalytic alkyne [2 + 2 + 2] cyclotrimerization reaction and its application to one-shot spontaneous block copolymerization.

    Science.gov (United States)

    Sugiyama, Yu-ki; Kato, Rei; Sakurada, Tetsuya; Okamoto, Sentaro

    2011-06-29

    A cobalt-catalyzed alkyne [2 + 2 + 2] cycloaddition reaction has been applied to polymerizations yielding linear polymers via selective cross-cyclotrimerization of yne-diyne monomers, which occurs in a chain-growth manner. Additionally, through control of the alkyne reactivity of the two monomers, this method was efficiently applied to the spontaneous block copolymerization of their mixture. Here we present the proposed mechanism of the catalyst transfer process of this cycloaddition polymerization.

  17. Rapid Access to β-Trifluoromethyl-Substituted Ketones: Harnessing Inductive Effects in Wacker-Type Oxidations of Internal Alkenes

    KAUST Repository

    Lerch, Michael M.; Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2014-01-01

    We present a practical trifluoromethyl-directed Wacker-type oxidation of internal alkenes that enables rapid access to β-trifluoromethyl-substituted ketones. Allylic trifluoromethyl-substituted alkenes bearing a wide range of functional groups can be oxidized in high yield and regioselectivity. The distance dependence of the regioselectivity was established by systematic variation of the number of methylene units between the double bond and the trifluoromethyl group. The regioselectivity enforced by traditional directing groups could even be reversed by introduction of a competing trifluoromethyl group. Besides being a new powerful synthetic method to prepare fluorinated molecules, this work directly probes the role of inductive effects on nucleopalladation events. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rapid Access to β-Trifluoromethyl-Substituted Ketones: Harnessing Inductive Effects in Wacker-Type Oxidations of Internal Alkenes

    KAUST Repository

    Lerch, Michael M.

    2014-07-18

    We present a practical trifluoromethyl-directed Wacker-type oxidation of internal alkenes that enables rapid access to β-trifluoromethyl-substituted ketones. Allylic trifluoromethyl-substituted alkenes bearing a wide range of functional groups can be oxidized in high yield and regioselectivity. The distance dependence of the regioselectivity was established by systematic variation of the number of methylene units between the double bond and the trifluoromethyl group. The regioselectivity enforced by traditional directing groups could even be reversed by introduction of a competing trifluoromethyl group. Besides being a new powerful synthetic method to prepare fluorinated molecules, this work directly probes the role of inductive effects on nucleopalladation events. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrocarbons by fermenting the juice of the Jerusalem artichoke

    Energy Technology Data Exchange (ETDEWEB)

    Joud, F R

    1976-02-13

    The artichoke juice containing nonfermentable insulins is acidified to pH 3- and heated at 95/sup 0/ for 30 to 40 minutes to hydrolyze the insulins into fermentable sugars which are then fermented to ethanol. The ethanol is dried and reacted with H/sub 2/SO/sub 4/ to form C/sub 2/H/sub 4/ which is treated at 300/sup 0/ under pressure with a powdered Ni catalyst to form alkanes, alkenes, and alkynes.

  20. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    Science.gov (United States)

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation.

  1. Copper on Chitosan: A Recyclable Heterogeneous Catalyst for Azide-alkyne Cycloaddition Reactions in Water

    Science.gov (United States)

    Copper sulfate is immobilized over chitosan by simply stirring an aqueous suspension of chitosan in water with copper sulfate; the ensuing catalyst has been utilized for the azide-alkyne cycloaddition in aqueous media and it can be recycled and reused many time without loosing it...

  2. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    OpenAIRE

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ?drop-in? biofuels. Some microo...

  3. Synthesis of polynorbornene with pendant moiety bearing azide and terminal alkyne groups

    Institute of Scientific and Technical Information of China (English)

    Ze Zhang; Zhi Wei Peng; Kun Zeng Fan

    2011-01-01

    A powerful approach to the synthesis of an unprecedented polynorbornene with pendant moiety bearing azide and terminal alkyne groups is developed. Two key intermediates, namely, 3-azido-5-(2-(trimethylsilyl)ethynyl) benzyl alcohol and 4-(4-aza-tricyclo [5.2.1.02.6]dec-8-en-4-yl) benzoic acid, were optimally synthesized for convergent synthesis of the corresponding monomer.

  4. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2018-02-19

    Alkenes are important components in transportation fuels, and are known to have increased sooting tendencies compared to analogous saturated hydrocarbons with the same carbon number. This work aims to understand the sooting tendencies of various 1-alkenes through experiments and numerical simulations for counterflow diffusion flames. Soot and PAH formation tendencies of 1-alkene fuels, including ethylene (C2H4), propene (C3H6), 1-butene (1-C4H8), 1-pentene (1-C5H10), 1-hexene (1-C6H12) and 1-octene (1-C8H16), were experimentally studied using laser induced-incandescence (LII) and laser-induced fluorescence (LIF) techniques, respectively. From the LII results, 1-C4H8 was found to be the most sooting fuel, followed by C3H6 > 1-C5H10 > 1-C6H12 > 1-C8H16 > C2H4. The LIF data with a detection wavelength of 500 nm indicated the PAH formation tendencies followed the order of 1-C4H8 > 1-C5H10 ∼1-C6H12 > C3H6 > 1-C8H16 > C2H4, which were different from the order of sooting tendencies. Numerical simulations with a comprehensive chemical kinetic model including PAH growth chemistry for the tested 1-alkene fuels were conducted to elucidate the aromatic formation pathways and rationalize the experimentally observed trends. The numerical results highlighted the importance of intermediate species with odd carbon numbers in aromatic species formation, such as propargyl, allyl, cyclopentadienyl and indenyl radicals. Their concentration differences, which could be traced back to the parent fuel molecules through rate of production analysis, rationalize the experimentally observed differences in soot and PAH formation tendencies.

  5. Transition-metal-free synthesis of N-(1-alkenyl)imidazoles by potassium phosphate-promoted addition reaction of alkynes to imidazoles.

    Science.gov (United States)

    Lu, Linhua; Yan, Hong; Liu, Defu; Rong, Guangwei; Mao, Jincheng

    2014-01-01

    The addition reaction of alkynes to N-heterocycles by simply heating in DMSO with potassium phosphate is reported. Good yields with high stereoselectivity could be achieved for a range of substrates. The scope is quite general for both amines and phenylacetylenes. In addition, internal alkynes and α-bromostyrene were also examined in this reaction. This process is efficient and useful for the synthesis of (Z)-N-(1-alkenyl)imidazoles and related Z products. Thus, the reaction is useful because of the importance of the imidazole scaffold. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Reactions of ruthenium and osmium cluster carbonyls with heteroatom-substituted and functionalized alkynes

    International Nuclear Information System (INIS)

    Koridze, A.A.

    2000-01-01

    The results of studies of the reactions of ruthenium and osmium cluster carbonyls with metal (M = Re, Mn, Fe) alkynes, silylalkynes, propargyl alcohols and their derivatives, diynes, enynes, and ferrocenylacetylene are summarized. Intramolecular rearrangements in the cluster complexes including migrations of carbonyl, hydride, and hydrocarbon ligands and the metal core reorganization are considered [ru

  7. Synthesis of 1-((4-methoxyphenyl-3-alkynes-1H-pyrrole-2,5-diones and functionalization to tria

    Directory of Open Access Journals (Sweden)

    Bakhat Ali

    2017-05-01

    Full Text Available A series of alkynyl maleimides were prepared via one-step cross-coupling reaction using bromomaleimide and acetylenes under the Sonogashira conditions, affording 1-((4-methoxyphenyl-3-alkynes-1H-pyrrole-2,5-diones in good to high yields. These products were subsequently converted in the corresponding 1,2,3-triazole using conventional click chemistry approach. The alkynyl maleimide compound (8g crystallized in the triclinic space group P1 with unit cell parameters a = 5.3692(6, b = 9.2513(10, c = 10.3070(11 Å, α = 85.349(4, β = 86.892(4, γ = 86.892(4°, V = 507.31(10 Å3, and Z = 1. In the crystal the molecules are stacked parallel to the c axis and held together through a C–H⋯π and a C–H⋯O interaction.

  8. One pot 'click' reactions : tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Szymanski, Wiktor; Postema, Christiaan P.; Dierckx, Rudi A.; Elsinga, Philip H.; Janssen, Dick B.; Feringa, Ben L.

    2010-01-01

    Halohydrin dehalogenase (HheC) can perform enantioselective azidolysis of aromatic epoxides to 1,2-azido alcohols which are subsequently ligated to alkynes producing chiral hydroxy triazoles in a one-pot procedure with excellent enantiomeric excess.

  9. Catalytic Hydroamination of Alkynes and Norbornene with Neutral and Cationic Tantalum Imido Complexes

    Science.gov (United States)

    Anderson, Laura L.; Arnold, John; Bergman, Robert G.

    2005-01-01

    Several tantalum imido complexes have been synthesized and shown to efficiently catalyze the hydroamination of internal and terminal alkynes. An unusual hydroamination/hydroarylation reaction of norbornene catalyzed by a highly electrophilic cationic tantalum imido complex is also reported. Factors affecting catalyst activity and selectivity are discussed along with mechanistic insights gained from stoichiometric reactions. PMID:15255680

  10. A DFT Study on Selected Physical Organic Aspects of the Fischer Carbene Intermediates [(M(CO4(C(OMeMe

    Directory of Open Access Journals (Sweden)

    Tareq Irshaidat

    2010-01-01

    Full Text Available Fischer carbenes are important starting materials for C-C bond formation via coupling reactions between carbene and wide variety of substituted alkenes or alkynes. This DFT study shed light on unique fundamental organic/organometallic aspects for the C(OMeMe carbene in the free form and in case of bonding with M(CO4 (M= Cr, Mo, W. The data illustrate that the structures of the title intermediates include a unique structure stabilizing intramolecular M…C-H interaction (agostic interaction. This conclusion was made based on calculated NMR data (for carbon and hydrogen, structural parameters, energy calculations of conformers (C-C conformation, selected IR stretching frequencies (C-O, C-C, and C-H, and atomic charges. The agostic interaction is most efficient in case of chromium and in general is described as an overlap between the σ-bond electron pair of C-H with an empty d-orbital of the metal. These characterized examples are new addition to the orbital interaction theory.

  11. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  12. Reactivity of Fe3(CO)12 with Alkynes R-C≡-C-R':Syntheses and Crystal Structures of Substituted Cyclic Ketones and Carbonyl Iron Complexes

    Institute of Scientific and Technical Information of China (English)

    SUO Quan-Ling; WU Le; SU Qian; ZHU Ning; GAO Yuan-Yuan; HONG Hai-Long; XIE Rui-Jun; HAN Li-Min

    2017-01-01

    The reactivity of carbonyl iron cluster with alkynes has been studied by the thermal reaction of Fe3(CO)12 with R-C≡C-R'(R =Fc (Ferrocenyl);R'=Ph (Phenyl),Fc,H).The hexacarbonyldiiron cluster with ferracyclopentadiene ring (μ2,η4-C4Ph4)Fe2(CO)6 (1) and one tetraphenyl substituted cyclopentadienone (Ph4C4CO) (2) were simultaneously obtained by the reaction of Fe3(CO)12 with alkyne (Ph-C≡C-Ph).Only one ferrole cluster (μ2,η4-C4Fc2H2)Fe2(CO)6 (3) was separated by using Fc-C≡C-H as alkyne.One tri-carbonyl iron complex (η4-C4Fc4CO)Fe(CO)3 (4) and an unexpected new cyclic ketone compound 2,2,4,5-tetraferrocenylcyclopenta-4-en-l,3-di-one [Fc4C3(CO)2] (5) were obtained by using Fc-C≡C-Fc as alkyne.A new complex (η4-2,4-diphenyl-3,5-diferrocenylcyclopenta-2,4-dien-l-one)-tricarbonyl iron (η4-C4Ph2Fc2CO)Fe(CO)3 (6)was synthesized by the reaction of Fe3(CO)12 with Fc-C≡C-Ph.The structures of compounds 1~6 were determined by X-ray single-crystal diffraction and spectroscopic characterization.The crystal structures of two new compounds 5 and 6 were analyzed.Our experimental results reveal the structural models of the reaction products are affected by the kinds of substituents from alkynes R-C≡C-R'.

  13. A general A{sup 3}: coupling reaction based on functionalized alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, Edison P.; Santos, Alcindo A. dos, E-mail: alcindo@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica

    2013-10-01

    A range of hydroxypropargylpiperidones were efficiently obtained by a one-pot three-component coupling reaction of aldehydes, alkynols, and a primary amine equivalent (4-piperidone hydrochloride hydrate) in ethyl acetate using copper(I) chloride as a catalyst. The developed protocol proved to be equally efficient using a range of aliphatic aldehydes, including paraformaldehyde, and using protected and unprotected alkynols. (author)

  14. Reactive Energetic Plasticizers Utilizing Cu-Free Azide-Alkyne 1,3-Dipolar Cycloaddition for In-Situ Preparation of Poly(THF-co-GAP-Based Polyurethane Energetic Binders

    Directory of Open Access Journals (Sweden)

    Mingyang Ma

    2018-05-01

    Full Text Available Reactive energetic plasticizers (REPs coupled with hydroxy-telechelic poly(glycidyl azide-co-tetrahydrofuran (PGT-based energetic polyurethane (PU binders for use in solid propellants and plastic-bonded explosives (PBXs were investigated. The generation of gem-dinitro REPs along with a terminal alkyne stemmed from a series of finely designed approaches to not only satisfy common demands as conventional energetic plasticizers, but also to prevent the migration of plasticizers. The miscibility and rheological behavior of a binary mixture of PGT/REP with various REP fractions were quantitatively determined by differential scanning calorimetry (DSC and rheometer, respectively, highlighting the promising performance of REPs in the formulation process. The kinetics on the distinct reactivity of propargyl vs. 3-butynyl species of REPs towards the azide group of the PGT prepolymer in terms of Cu-free azide-alkyne 1,3-dipolar cycloaddition (1,3-DPCA was studied by monitoring 1H nuclear magnetic resonance spectroscopy and analyzing the activation energies (Ea obtained using DSC. The thermal stability of the finally cured energetic binders with the incorporation of REPs indicated that the thermal stability of the REP/PGT-based PUs was maintained independently of the REP content. The tensile strength and modulus of the PUs increased with an increase in the REP content. In addition, the energetic performance and sensitivity of REP and REP triazole species was predicted.

  15. Well-defined polyethylene-based graft terpolymers by combining nitroxide-mediated radical polymerization, polyhomologation and azide/alkyne “click” chemistry†

    KAUST Repository

    Alkayal, Nazeeha

    2016-03-30

    Novel well–defined polyethylene–based graft terpolymers were synthesized via the “grafting onto” strategy by combining nitroxide-mediated radical polymerization (NMP), polyhomologation and copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry. Three steps were involved in this approach: (i) synthesis of alkyne-terminated polyethylene-b-poly(ε-caprolactone) (PE-b-PCL-alkyne) block copolymers (branches) by esterification of PE-b-PCL-OH with 4-pentynoic acid; the PE-b-PCL-OH was obtained by polyhomologation of dimethylsulfoxonium methylide to afford PE-OH, followed by ring opening polymerization of ε-caprolactone using the PE-OH as macroinitiator, (ii) synthesis of random copolymers of styrene (St) and 4-chloromethylstyrene (4-CMS) with various CMS contents, by nitroxide-mediated radical copolymerization (NMP), and conversion of chloride to azide groups by reaction with sodium azide (NaN3) (backbone) and (iii) “click” linking reaction to afford the PE-based graft terpolymers. All intermediates and final products were characterized by high-temperature size exclusion chromatography (HT-SEC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC).

  16. Concentrated Aqueous Sodium Tosylate as Green Medium for Alkene Oxidation and Nucleophilic Substitution Reactions.

    Science.gov (United States)

    Sela, Tal; Lin, Xiaoxi; Vigalok, Arkadi

    2017-11-03

    A hydrotropic solution of highly concentrated sodium tosylate (NaOTs) can be used as a recyclable medium for the environmentally benign oxidation of conjugated alkenes with H 2 O 2 . Both uncatalyzed and metal-catalyzed reactions provided the corresponding oxidation products in higher yields than in pure water or many common organic solvents.

  17. Hydroamination reactions of alkynes with ortho-substituted anilines in ball mills: synthesis of benzannulated N-heterocycles by a cascade reaction.

    Science.gov (United States)

    Weiße, Maik; Zille, Markus; Jacob, Katharina; Schmidt, Robert; Stolle, Achim

    2015-04-20

    It was demonstrated that ortho-substituted anilines are prone to undergo hydroamination reactions with diethyl acetylenedicarboxylate in a planetary ball mill. A sequential coupling of the intermolecular hydroamination reaction with intramolecular ring closure was utilized for the syntheses of benzooxazines, quinoxalines, and benzothiazines from readily available building blocks, that is, electrophilic alkynes and anilines with OH, NH, or SH groups in the ortho position. For the heterocycle formation, it was shown that several stress conditions were able to initiate the reaction in the solid state. Processing in a ball mill seemed to be advantageous over comminution with mortar and pestle with respect to process control. In the latter case, significant postreaction modification occurred during solid-state analysis. Cryogenic milling proved to have an adverse effect on the molecular transformation of the reagents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Analysis of the critical step in catalytic carbodiimide transformation: proton transfer from amines, phosphines, and alkynes to guanidinates, phosphaguanidinates, and propiolamidinates with Li and Al catalysts.

    Science.gov (United States)

    Rowley, Christopher N; Ong, Tiow-Gan; Priem, Jessica; Richeson, Darrin S; Woo, Tom K

    2008-12-15

    While lithium amides supported by tetramethylethylenediamine (TMEDA) are efficient catalysts in the synthesis of substituted guanidines via the guanylation of an amine with carbodiimide, as well as the guanylation of phosphines and conversion of alkynes into propiolamidines, aluminum amides are only efficient catalysts for the guanylation of amides. Density functional theory (DFT) calculations were used to explain this difference in activity. The origin of this behavior is apparent in the critical step where a proton is transferred from the substrate to a metal guanidinate. The activation energies of these steps are modest for amines, phosphines, and alkynes when a lithium catalyst was used, but are prohibitively high for the analogous reactions with phosphines and alkynes for aluminum amide catalysts. Energy decomposition analysis (EDA) indicates that these high activations energies are due to the high energetic cost of the detachment of a chelating guanidinate nitrogen from the aluminum in the proton transfer transition state. Amines are able to adopt an ideal geometry for facile proton transfer to the aluminum guanidinate and concomitant Al-N bond formation, while phosphines and alkynes are not.

  19. Soluble Polymer-supported Synthesis of Indoles via Palladium-mediat -ed Heteroannulation of Terminal Alkynes with o-Iodoanilines

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A soluble polymer-supported synthesis of indoles via palladium-mediated hetero- annulation of terminal alkynes with o-iodoanilines has been described. The protocol provides a useful tool for constructing combinatorial indole libraries.

  20. Oxidative Olefination of Anilides with Unactivated Alkenes Catalyzed by an (Electron-Deficient η(5) -Cyclopentadienyl)Rhodium(III) Complex Under Ambient Conditions.

    Science.gov (United States)

    Takahama, Yuji; Shibata, Yu; Tanaka, Ken

    2015-06-15

    The oxidative olefination of sp(2) C-H bonds of anilides with both activated and unactivated alkenes using an (electron-deficient η(5) -cyclopentadienyl)rhodium(III) complex is reported. In contrast to reactions using this electron-deficient rhodium(III) catalyst, [Cp*RhCl2 ]2 showed no activity against olefination with unactivated alkenes. In addition, the deuterium kinetic isotope effect (DKIE) study revealed that the C-H bond cleavage step is thought to be the turnover-limiting step. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chemical synthesis of dual labeled proteins via differently protected alkynes enables intramolecular FRET analysis.

    Science.gov (United States)

    Hayashi, Gosuke; Kamo, Naoki; Okamoto, Akimitsu

    2017-05-30

    We report a novel method for multisite protein conjugation by setting differently silyl-protected alkynes as conjugation handles, which can remain intact through the whole synthetic procedure and provide sequential and orthogonal conjugation. This strategy enables efficient preparation of a dual dye-labeled protein and structural analysis via an intramolecular FRET mechanism.

  2. Linear Dimerization of Terminal Alkynes by Bis( tetramethylphenylcyclopentadienyl) Titanium-Magnesium Hydride and Acetylide Complexes

    Czech Academy of Sciences Publication Activity Database

    Mach, Karel; Gyepes, R.; Horáček, Michal; Petrusová, Lidmila; Kubišta, Jiří

    2003-01-01

    Roč. 68, č. 10 (2003), s. 1877-1896 ISSN 0010-0765 R&D Projects: GA ČR GA203/02/0774; GA ČR GA203/02/0436 Institutional research plan: CEZ:AV0Z4040901 Keywords : titanium * alkynes * hydrides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003

  3. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.; Morandi, Bill; Grubbs, Robert H.

    2013-01-01

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  4. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  5. Environmental Friendly Azide-Alkyne Cycloaddition Reaction of Azides, Alkynes, and Organic Halides or Epoxides in Water: Efficient "Click" Synthesis of 1,2,3-Triazole Derivatives by Cu Catalyst

    Institute of Scientific and Technical Information of China (English)

    刘建明; 刘慕文; 岳园园; 姚美焕; 卓克垒

    2012-01-01

    An efficient click synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, epoxides, terminal alkynes, and sodium azides in the presence of copper salts and relative benzimidazole salts have been developed. This procedure eliminates the need to handle potentially organic azides, which are generated in situ. A broad spec- trum of substrates can participate in the process effectively to produce the desired products in good yields.

  6. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation.

    Science.gov (United States)

    Zhang, Liming

    2014-03-18

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C-H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The

  7. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation

    Science.gov (United States)

    2015-01-01

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C–H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The

  8. Trisubstituted (E)-Alkene Dipeptide Isosteres as β-Turn Promoters in the Gramicidin S Cyclodecapeptide Scaffold

    Science.gov (United States)

    Xiao, Jingbo; Weisblum, Bernard; Wipf, Peter

    2008-01-01

    A concise synthesis of a gramicidin S analogue with trisubstituted (E)-alkene dipeptide isostere (TEADI) replacements at both DPhe-Pro positions was realized. Conformational analysis demonstrated that TEADIs can serve as type II β-turn promoters in a cyclic scaffold and successfully mimic a proline residue. PMID:17020289

  9. Preparation of palladium nanoparticles on alumina surface by chemical co-precipitation method and catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avvaru Praveen; Kumar, B. Prem; Kumar, A.B.V. Kiran; Huy, Bui The [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Lee, Yong-Ill, E-mail: yilee@changwon.ac.kr [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Facile synthesis of palladium nanoparticles on alumina surface. Black-Right-Pointing-Pointer The surface morphology and properties of the nanocrystalline powders were characterized. Black-Right-Pointing-Pointer The catalytic activities of palladium nanoparticles were investigated. - Abstract: The present work reports a chemical co-precipitation process to synthesize palladium (Pd) nanoparticles using alumina as a supporting material. The optimized temperature for the formation of nanocrystalline palladium was found to be 600 Degree-Sign C. The X-ray diffraction (XRD) and Raman spectroscopy were used to study the chemical nature of the Pd in alumina matrix. The surface morphology and properties of the nanocrystalline powders were examined using thermogravimetric analysis (TG-DTA), XRD, Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The calcinations in different atmospheres including in the inert medium forms the pure nano Pd{sup 0} while in the atmospheric air indicates the existence pure Pd{sup 0} along with PdO nanoparticles. The catalytic activities of the as-synthesized nanocrystalline Pd nanoparticles in the alumina matrix were investigated in Suzuki coupling, Hiyama cross-coupling, alkene and alkyne hydrogenation, and aerobic oxidation reactions.

  10. Iron-functionalized nanoporous silica type SBA-15: Synthesis, characterization and application in alkene epoxidation in presence of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Mahdieh Ghazizadeh

    2017-05-01

    Full Text Available Fe(IIIsalophen complex on a SBA-15 support functionalized with (3-aminopropyltriethoxysilane as a linker. It has been synthesized and characterized by XRD, adsorption–desorption of nitrogen, SEM, FT-IR and UV–Vis. The formation of metal-salophen complex with the amino groups as connectors to the SBA-15 surface was confirmed. This material was successfully used as a heterogeneous catalyst for the epoxidation of alkenes and the effects of reaction time, different solvents and amount of catalyst on catalytic activity were investigated. This catalyst gave suitable and comparable yield and percentage conversion values. It is also stable and can be recycled and reused in the epoxidation of alkenes.

  11. C-84 Selective Porphyrin Macrocycle with an Adaptable Cavity Constructed Through Alkyne Metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. X.; Long, H.; Zhang, W.

    2012-06-21

    A bisporphyrin macrocycle was constructed from a porphyrin-based diyne monomer in one step through alkyne metathesis. The fullerene binding studies (C{sub 60}, C{sub 70} and C{sub 84}) showed the highest binding affinity of the macrocycle for C{sub 84}, which is in great contrast to its bisporphyrin four-armed cage analogue that showed the strongest binding with C{sub 70}.

  12. Polymerization of aliphatic alkynes with heterogeneous Mo catalysts supported on mesoporous molecular sieves

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Topka, Pavel; Sedláček, J.; Zedník, J.; Čejka, Jiří

    2008-01-01

    Roč. 46, č. 7 (2008), s. 2593-2599 ISSN 0887-624X R&D Projects: GA ČR GA203/05/2194; GA AV ČR IAA4040411; GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alkyne polymerization * conjugated polymers * metathesis * Mo heterogeneous catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.821, year: 2008

  13. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements

    Directory of Open Access Journals (Sweden)

    Jungho Jun

    2013-08-01

    Full Text Available Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion–dipole pair.

  14. Copper-catalyzed 1,2-addition of α-carbonyl iodides to alkynes.

    Science.gov (United States)

    Xu, Tao; Hu, Xile

    2015-01-19

    β,γ-Unsaturated ketones are an important class of organic molecules. Herein, copper catalysis has been developed for the synthesis of β-γ-unsaturated ketones through 1,2-addition of α-carbonyl iodides to alkynes. The reactions exhibit wide substrate scope and high functional group tolerance. The reaction products are versatile synthetic intermediates to complex small molecules. The method was applied for the formal synthesis of (±)-trichostatin A, a histone deacetylase inhibitor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rhodium(I)-catalyzed cycloisomerization of benzylallene-alkynes through C-H activation.

    Science.gov (United States)

    Kawaguchi, Yasuaki; Yasuda, Shigeo; Kaneko, Akira; Oura, Yuki; Mukai, Chisato

    2014-07-14

    The efficient Rh(I)-catalyzed cycloisomerization of benzylallene-alkynes produced the tricyclo[9.4.0.0(3,8)]pentadecapentaene skeleton through a C(sp2)-H bond activation in good yields. A plausible reaction mechanism proceeds via oxidative addition of the acetylenic C-H bond to Rh(I), an ene-type cyclization to the vinylidenecarbene-Rh(I) intermediate, and an electrophilic aromatic substitution with the vinylidenecarbene species. It was proposed based on deuteration and competition experiments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Salt-Free Strategy for the Insertion of CO2 into C-H Bonds: Catalytic Hydroxymethylation of Alkynes.

    Science.gov (United States)

    Wendling, Timo; Risto, Eugen; Krause, Thilo; Gooßen, Lukas J

    2018-04-20

    A copper(I) catalyst enables the insertion of carbon dioxide into alkyne C-H bonds by using a suitable organic base with which hydrogenation of the resulting carboxylate salt with regeneration of the base becomes thermodynamically feasible. In the presence of catalytic copper(I) chloride/4,7-diphenyl-1,10-phenanthroline, polymer-bound triphenylphosphine, and 2,2,6,6-tetramethylpiperidine as the base, terminal alkynes undergo carboxylation at 15 bar CO 2 and room temperature. After filtration, the ammonium alkynecarboxylate can be hydrogenated to the primary alcohol and water at a rhodium/molybdenum catalyst, regenerating the amine base. This demonstrates the feasibility of a salt-free overall process, in which carbon dioxide serves as a C1 building block in a C-H functionalization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Visible light-photocatalysed carbazole synthesis via a formal (4+2) cycloaddition of indole-derived bromides and alkynes.

    Science.gov (United States)

    Yuan, Zhi-Guang; Wang, Qiang; Zheng, Ang; Zhang, Kai; Lu, Liang-Qiu; Tang, Zilong; Xiao, Wen-Jing

    2016-04-14

    We successfully developed an unprecedented route to carbazole synthesis through a visible light-photocatalysed formal (4+2) cycloaddition of indole-derived bromides and alkynes. This novel protocol features extremely mild conditions, a broad substrate scope and high reaction efficiency.

  18. Direct Observation of Reduction of Cu(II) to Cu(I) by Terminal Alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanghui; Yi, Hong; Zhang, Guoting; Deng, Yi; Bai, Ruopeng; Zhang, Heng; Miller, Jeffrey T.; Kropf, Arthur J.; Bunel, Emilio E.; Lei, Aiwen

    2014-01-06

    ABSTRACT: X-ray absorption spectroscopy and in situ electron paramagnetic resonance evidence were provided for the reduction of Cu(II) to Cu(I) species by alkynes in the presence of tetramethylethylenediamine (TMEDA), in which TMEDA plays dual roles as both ligand and base. The structures of the starting Cu(II) species and the obtained Cu(I) species were determined as (TMEDA)- CuCl2 and [(TMEDA)CuCl]2 dimer, respectively.

  19. Synthesis of fluoranthenes by hydroarylation of alkynes catalyzed by gold(I or gallium trichloride

    Directory of Open Access Journals (Sweden)

    Sergio Pascual

    2011-11-01

    Full Text Available Electrophilic gold(I catalyst 6 competes with GaCl3 as the catalyst of choice in the synthesis of fluoranthenes by intramolecular hydroarylation of alkynes. The potential of this catalyst for the preparation of polyarenes is illustrated by a synthesis of two functionalized decacyclenes in a one-pot transformation in which three C–C bonds are formed with high efficiency.

  20. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.

    Science.gov (United States)

    Chen, Meng; Zhang, Ling; Yang, Bo; Gao, Mingxia; Zhang, Xiangmin

    2018-03-01

    Alkyne is unique, specific and biocompatible in the Raman-silent region of the cell, but there still remains a challenge to achieve ultrasensitive detection in living systems due to its weak Raman scattering. Herein, a terminal alkyne ((E)-2-[4-(ethynylbenzylidene)amino]ethane-1-thiol (EBAE)) with surface-enhanced Raman scattering is synthesized. The EBAE molecule possesses S- and C-termini, which can be directly bonded to gold nanoparticles and dopamine/silver by forming the Au-S chemical bond and the carbon-metal bond, respectively. The distance between Raman reporter and AuNPs/AgNPs can be reduced, contributing to forming hot-spot-based SERS substrate. The alkyne functionalized nanoparticles are based on Au core and encapsulating polydopamine shell, defined as Au-core and dopamine/Ag-shell (ACDS). The bimetallic ACDS induce strong SERS signals for molecular imaging that arise from the strong electromagnetic field. Furthermore, the EBAE provides a distinct peak in the cellular Raman-silent region with nearly zero background interference. The EBAE Raman signals could be tremendously enhanced when the Raman reporter is located at the middle of the Au-core and dopamine/Ag-shell. Therefore, this work could have huge potential benefits for the highly sensitive detection of intercellular information delivery by connecting the recognition molecules in biomedical diagnostics. Graphical abstract Terminal-alkyne-functionalized Au-core and silver/dopamine-shell nanotags for live-cell surface-enhanced Raman scattering imaging.

  1. The Cycloaddition of the Benzimidazolium Ylides with Alkynes: New Mechanistic Insights.

    Directory of Open Access Journals (Sweden)

    Costel Moldoveanu

    Full Text Available New insights concerning the reaction mechanism in the cycloaddition reaction of benzimidazolium ylides to activated alkynes are presented. The proposed pathway leading both to 2-(1H-pyrrol-1-ylanilines and to pyrrolo[1,2-a]quinoxalin-4(5H-ones involves an opening of the imidazole ring from the cycloaddition product, followed by a nucleophilic attack of the aminic nitrogen to a proximal carbonyl group and the elimination of a leaving group. The mechanistic considerations are fully supported by experimental data, including the XRD resolved structure of the key reaction intermediate.

  2. The Cycloaddition of the Benzimidazolium Ylides with Alkynes: New Mechanistic Insights.

    Science.gov (United States)

    Moldoveanu, Costel; Zbancioc, Gheorghita; Mantu, Dorina; Maftei, Dan; Mangalagiu, Ionel

    2016-01-01

    New insights concerning the reaction mechanism in the cycloaddition reaction of benzimidazolium ylides to activated alkynes are presented. The proposed pathway leading both to 2-(1H-pyrrol-1-yl)anilines and to pyrrolo[1,2-a]quinoxalin-4(5H)-ones involves an opening of the imidazole ring from the cycloaddition product, followed by a nucleophilic attack of the aminic nitrogen to a proximal carbonyl group and the elimination of a leaving group. The mechanistic considerations are fully supported by experimental data, including the XRD resolved structure of the key reaction intermediate.

  3. Acid, silver, and solvent-free gold-catalyzed hydrophenoxylation of internal alkynes

    Directory of Open Access Journals (Sweden)

    Marcia E. Richard

    2013-10-01

    Full Text Available A range of arylgold compounds have been synthesized and investigated as single-component catalysts for the hydrophenoxylation of unactivated internal alkynes. Both carbene and phosphine-ligated compounds were screened as part of this work, and the most efficient catalysts contained either JohnPhos or IPr/SIPr. Phenols bearing either electron-withdrawing or electron-donating groups were efficiently added using these catalysts. No silver salts, acids, or solvents were needed for the catalysis, and either microwave or conventional heating afforded moderate to excellent yields of the vinyl ethers.

  4. Copper(i)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes

    NARCIS (Netherlands)

    Berrocal, J.A.; Nieuwenhuizen, M.M.L.; Mandolini, L.; Meijer, E.W.; Di Stefano, S.

    2014-01-01

    Olefin cross-metathesis of diluted dichloromethane solutions (=0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The

  5. LIQUID COAL CHARACTERISTIC ANALYSIS WITH FOURIER TRANSFORM INFRA RED (FTIR AND DIFFERENTIAL SCANNING CALORIMETER (DSC

    Directory of Open Access Journals (Sweden)

    ATUS BUKU

    2017-02-01

    Full Text Available The aim of this study is to identify the value of compounds contained in liquid coal by using Fourier Transform Infra-Red (FTIR and Differential Scanning Calorimeter (DSC. FTIR was used to analyse the components contained in liquid coal, while the DSC is done to observe the heat reaction to the environment. Based on the Fourier Transform Infra-Red (FTIR test results it is shown that the compound contained in the liquid Coal consisting of alkanes, alkenes and alkyne. These compounds are similar compounds. The alkanes, alkenes and alkynes compounds undergo complete combustion reaction with oxygen and would produce CO2 and water vapour [H2O (g]. If incomplete combustion occurs, the reaction proceeds in the form of Carbon Monoxide CO gas or solid carbon andH2O. Combustion reaction that occurs in all these three compounds also produces a number of considerable energy. And if it has higher value of Carbon then the boiling point would be higher. From the Differential Scanning Calorimetric (DSC test results obtained some of the factors that affect the reaction speed, which are the temperature, the reaction mixture composition, and pressure. Temperature has a profound influence in coal liquefaction, because if liquid coal heated with high pressure, the carbon chain would break down into smaller chains consisting of aromatic chain, hydro-aromatic, or aliphatic. This then triggers a reaction between oil formation and polymerization reactions to form solids (char.

  6. Hydrophilic functionalized silicon nanoparticles produced by high energy ball milling

    Science.gov (United States)

    Hallmann, Steffen

    The mechanochemical synthesis of functionalized silicon nanoparticles using High Energy Ball Milling (HEBM) is described. This method facilitates the fragmentation of mono crystalline silicon into the nanometer regime and the simultaneous surface functionalization of the formed particles. The surface functionalization is induced by the reaction of an organic liquid, such as alkynes and alkenes with reactive silicon sites. This method can be applied to form water soluble silicon nanoparticles by lipid mediated micelle formation and the milling in organic liquids containing molecules with bi-functional groups, such as allyl alcohol. Furthermore, nanometer sized, chloroalkyl functionalized particles can be synthesized by milling the silicon precursor in the presence of an o-chloroalkyne with either alkenes or alkynes as coreactants. This process allows tuning of the concentration of the exposed, alkyl linked chloro groups, simply by varying the relative amounts of the coreactant. The silicon nanoparticles that are formed serve as the starting point for a wide variety of chemical reactions, which may be used to alter the surface properties of the functionalized nanoparticles. Finally, the use of functionalized silicon particles for the production of superhydrophobic films is described. Here HEBM proves to be an efficient method to produce functionalized silicon particles, which can be deposited to form a stable coating exhibiting superhydrophobic properties. The hydrophobicity of the silicon film can be tuned by the milling time and thus the resulting surface roughness of the films.

  7. Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation.

    Science.gov (United States)

    Burnham-Marusich, Amanda R; Plechaty, Anna M; Berninsone, Patricia M

    2014-09-01

    Currently, there are few methods to detect differences in posttranslational modifications (PTMs) in a specific manner from complex mixtures. Thus, we developed an approach that combines the sensitivity and specificity of click chemistry with the resolution capabilities of 2D-DIGE. In "Click-DIGE", posttranslationally modified proteins are metabolically labeled with azido-substrate analogs, then size- and charge-matched alkyne-Cy3 or alkyne-Cy5 dyes are covalently attached to the azide of the PTM by click chemistry. The fluorescently-tagged protein samples are then multiplexed for 2DE analysis. Whereas standard DIGE labels all proteins, Click-DIGE focuses the analysis of protein differences to a targeted subset of posttranslationally modified proteins within a complex sample (i.e. specific labeling and analysis of azido glycoproteins within a cell lysate). Our data indicate that (i) Click-DIGE specifically labels azido proteins, (ii) the resulting Cy-protein conjugates are spectrally distinct, and (iii) the conjugates are size- and charge-matched at the level of 2DE. We demonstrate the utility of this approach by detecting multiple differentially expressed glycoproteins between a mutant cell line defective in UDP-galactose transport and the parental cell line. We anticipate that the diversity of azido substrates already available will enable Click-DIGE to be compatible with analysis of a wide range of PTMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    Science.gov (United States)

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and characterization of supported heteropolymolybdate nanoparticles between silicate layers of Bentonite with enhanced catalytic activity for epoxidation of alkenes

    International Nuclear Information System (INIS)

    Salavati, Hossein; Rasouli, Nahid

    2011-01-01

    Highlights: → The PVMo and nanocomposite catalyst (PVMo/Bentonite) as catalyst for epoxidation of alkenes. → The composite catalyst showed higher catalytic activity than parent heteropolymolybdate (PVMo). →The use of ultrasonic irradiation increased the conversions and reduced the reaction times. → The H 2 O 2 is a green and eco-friendly oxidant in this catalytic system. -- Abstract: A new heterogeneous catalyst (PVMo/Bentonite) consisting of vanadium substituted heteropolymolybdate with Keggin-type structure Na 5 [PV 2 Mo 10 O 40 ].14H 2 O (PVMo) supported between silicate layers of bentonite has been synthesized by impregnation method and characterized using X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy and elemental analysis. X-ray diffraction and scanning electron microscopy analysis indicated that PVMo was finely dispersed into layers of bentonite as support. The PVMo/Bentonite used as an efficient heterogeneous catalyst for epoxidation of alkenes. Various cyclic and linear alkenes were oxidized into the corresponding epoxides in high yields and selectivity with 30% aqueous H 2 O 2 . The catalyst was reused several times, without observable loss of activity and selectivity. The obtained results showed that the catalytic activity of the PVMo/Bentonite was higher than that of pure heteropolyanion (PVMo).

  10. Synthesis and Characterization of Rh-Co Butterfly Clusters Capped by Functionally Substituted 1-Alkynes

    Institute of Scientific and Technical Information of China (English)

    朱保华; 胡斌; 张伟强; 边治国; 赵全义; 殷元骐; 孙杰

    2003-01-01

    By the reactions of [Rh2Co2(CO)12] 1 with functionally substituted alkyne ligands HC≡CR 2 (R = FeCp2) and 3 (R = 2-OH-C6H4COOCH2), respectively in n-hexane at room temperature, two new cluster derivatives [Rh2Co2(CO)6(μ-CO)4(μ4, η2-HC≡CR)] 4 (R = FeCp2) and 5 (R = 2-OH-C6H4COOCH2) were obtained respectively. The alkyne was inserted into the Co-Co bond of cluster 1 to give two butterfly clusters. Cluster 4 has been determined by single-crystal X-ray diffraction. Crystallographic data: C22H10Co2FeO10Rh2, Mr = 813.83, orthorhombic, space group P212121, a = 11.5318(7), b = 12.6572(7), c = 17.018(1) A。, V = 2483.9(3) A。3, Z = 4, Dc = 2.176 g/cm3, F(000) = 1568, μ = 3.233 mm-1, the final R = 0.0366 and wR = 0.0899 for 5367 observed reflections with I > 2σ(I). The two clusters have also been characterized by elemental analysis, IR and 1H-NMR spectroscopy.

  11. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yonghao; Chadha, Arvinder; Zhao, Deyin; Shuai, Yichen; Menon, Laxmy; Yang, Hongjun; Zhou, Weidong, E-mail: wzhou@uta.edu [Nanophotonics Lab, Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Piper, Jessica R.; Fan, Shanhui [Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Jia, Yichen; Xia, Fengnian [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-03

    We demonstrate experimentally close to total absorption in monolayer graphene based on critical coupling with guided resonances in transfer printed photonic crystal Fano resonance filters at near infrared. Measured peak absorptions of 35% and 85% were obtained from cavity coupled monolayer graphene for the structures without and with back reflectors, respectively. These measured values agree very well with the theoretical values predicted with the coupled mode theory based critical coupling design. Such strong light-matter interactions can lead to extremely compact and high performance photonic devices based on large area monolayer graphene and other two–dimensional materials.

  12. Multigram Synthesis of a Chiral Substituted Indoline Via Copper-Catalyzed Alkene Aminooxygenation.

    Science.gov (United States)

    Sequeira, Fatima C; Bovino, Michael T; Chipre, Anthony J; Chemler, Sherry R

    2012-05-01

    (S)-5-Fluoro-2-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-1-tosylindoline, a 2-methyleneoxy-substituted chiral indoline, was synthesized on multigram scale using an efficient copper-catalyzed enantioselective intramolecular alkene aminooxygenation. The synthesis is accomplished in four steps and the indoline is obtained in 89% ee (>98% after one recrystallization). Other highlights include efficient gram-scale synthesis of the (4R,5S)-di-Ph-box ligand and efficient separation of a monoallylaniline from its bis(allyl)aniline by-product by distillation under reduced pressure.

  13. Diazonium salts as grafting agents and efficient radical-hydrosilylation initiators for freestanding photoluminescent silicon nanocrystals.

    Science.gov (United States)

    Höhlein, Ignaz M D; Kehrle, Julian; Helbich, Tobias; Yang, Zhenyu; Veinot, Jonathan G C; Rieger, Bernhard

    2014-04-07

    The reactivity of diazonium salts towards freestanding, photoluminescent silicon nanocrystals (SiNCs) is reported. It was found that SiNCs can be functionalized with aryl groups by direct reductive grafting of the diazonium salts. Furthermore, diazonium salts are efficient radical initiators for SiNC hydrosilylation. For this purpose, novel electron-deficient diazonium salts, highly soluble in nonpolar solvents were synthesized. The SiNCs were functionalized with a variety of alkenes and alkynes at room temperature with short reaction times. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New syntheses of No-carrier-added 123I-labeled agents via organoborane chemistry

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1985-01-01

    No-carrier-added 123 I-labeled agents are readily prepared via the reaction of organoboranes with sodium iodide- 123 I in the presence of mild oxidizing agents. The reactions are rapid and regiospecific, and they produce excellent yields of the labeled products. The organoboranes are readily prepared from alkenes and alkynes via the hydroboration reaction. A wide variety of functional groups are tolerated by the hydroboration-iodination sequence. The sequence has been utilized to prepare 123 I-labeled steroids and fatty acids, as well as a number of labeled esters, and aromatic derivatives

  15. Push-pull alkenes: structure and p-electron distribution

    Directory of Open Access Journals (Sweden)

    ERICH KLEINPETER

    2006-01-01

    Full Text Available Push-pull alkenes are substituted alkenes with one or two electron-donating substituents on one end of C=C double bond and with one or two electron-accepting substituents at the other end. Allowance for p-electron delocalization leads to the central C=C double bond becoming ever more polarized and with rising push-pull character, the p-bond order of this double bond is reduced and, conversely, the corresponding p-bond orders of the C–Don and C–Acc bonds are accordingly increased. This push-pull effect is of decisive influence on both the dynamic behavior and the chemical reactivity of this class of compounds and thus it is of considerable interest to both determine and to quantify the inherent push-pull effect. Previously, the barriers to rotation about the C=C, C–Don and/or C–Acc partial double bonds (DG±, as determined by dynamic NMR spectroscopy or the 13C chemical shift difference of the polarized C=C partial double bond (DdC=C were employed for this purpose. However, these parameters can have serious limitations, viz. the barriers can be immeasurable on the NMR timescale (either by being too high or too low; heavily-biased conformers are present, etc. or DdC=C behaves in a non-additive manner with respect to the combination of the four substituents. Hence, a general parameter to quantify the push-pull effect is not yet available. Ab initio MO calculations on a collection of compounds, together with NBO analysis, provided valuable information on the structure, bond energies, electron occupancies and bonding/antibonding interactions. In addition to DG±C=C (either experimentally determined or theoretically calculated and DdC=C, the bond length of the C=C partial double bond was also examined and it proved to be a reliable parameter to quantify the push-pull effect. Equally so, the quotient of the occupation numbers of the antibonding andbonding p orbitals of the central C=C partial double bond ( p*C=C/ pC=C could also be employed for

  16. Allene or alkyne treatment of olefin conversion catalysts

    International Nuclear Information System (INIS)

    Banks, R.L.

    1986-01-01

    This patent describes a disproportionation process which comprises contacting at least one olefin from the group consisting of: acyclic mono- and polyenes having at least 3 up to 10 carbon atoms per molecule, and cycloalkyl and aryl derivatives thereof; cyclic mono- and polyenes having at least 4 to 10 carbon atoms per molecule, and alkyl and aryl derivatives thereof; mixtures of two or more of the above olefins; and mixtures of ethylene with one or more of the above olefins capable of undergoing disproportionation with a tungsten oxide on silica disproportionation catalyst system under disproportionation conditions, the improvement comprising contacting the catalyst with an activating amount of at least one alkyne conforming to the formula: R-C=C-R wherein each R is independently H or a C/sub 1/-C/sub 6/ carbon radical per mole of tungsten oxide

  17. Silver-catalyzed formal inverse electron-demand Diels-Alder reaction of 1,2-diazines and siloxy alkynes.

    Science.gov (United States)

    Türkmen, Yunus E; Montavon, Timothy J; Kozmin, Sergey A; Rawal, Viresh H

    2012-06-06

    A highly effective silver-catalyzed formal inverse electron-demand Diels-Alder reaction of 1,2-diazines and siloxy alkynes has been developed. The reactions provide ready access to a wide range of siloxy naphthalenes and anthracenes, which are formed in good to high yields, under mild reaction conditions, using low catalyst loadings.

  18. Cobalt(III)-catalyzed alkenylation of arenes and 6-arylpurines with terminal alkynes: efficient access to functional dyes.

    Science.gov (United States)

    Wang, Shan; Hou, Ji-Ting; Feng, Mei-Lin; Zhang, Xiao-Zhuan; Chen, Shan-Yong; Yu, Xiao-Qi

    2016-02-14

    Alkenylation of unactivated arenes and 6-arylpurines with terminal alkynes in high yields using Cp*Co(CO)I2 as catalyst under mild conditions is described. This method shows outstanding functional group compatibility and can be applied in the design of a mitochondria-targeted imaging dye.

  19. α-Diazo-β-ketonitriles: uniquely reactive substrates for arene and alkene cyclopropanation.

    Science.gov (United States)

    Nani, Roger R; Reisman, Sarah E

    2013-05-15

    An investigation of the intramolecular cyclopropanation reactions of α-diazo-β-ketonitriles is reported. These studies reveal that α-diazo-β-ketonitriles exhibit unique reactivity in their ability to undergo arene cyclopropanation reactions; other similar acceptor-acceptor-substituted diazo substrates instead produce mixtures of C-H insertion and dimerization products. α-Diazo-β-ketonitriles also undergo highly efficient intramolecular cyclopropanation of tri- and tetrasubstituted alkenes. In addition, the α-cyano-α-ketocyclopropane products are demonstrated to serve as substrates for SN2, SN2', and aldehyde cycloaddition reactions.

  20. Novel Role of Carbon Dioxide as a Selective Agent in Palladium-Catalyzed Cyclotrimerization of Alkynes

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香

    2004-01-01

    Carbon dioxide was found as a selective agent to promote the palladium-catalyzed cyclotrimerization of alkynes in water. Both aryl and alkylacetylenes afforded the corresponding cyclotrimerization products regioselectively in high yields using PdCl2, CuCl2, and CO2 as the catalytic system. However, tert-butylacetylene bearing a bulky group gave a dimerization product. Mechanism of this reaction was also discussed.

  1. A study of fundamental reaction pathways for transition metal alkyl complexes. I. The reaction of a nickel methyl complex with alkynes. Ii. The mechanism of aldehyde formation in the reaction of a molybdenum hydride with molybdenum alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, John Mitchell [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    1980-06-12

    I. This study reports the rapid reaction under mild conditions of internal or terminal alkynes with methyl (acetyl-acetonato) (triphenylphosphine) nickel (1) in either aromatic or ether solvents. In all cases vinylnickel products 2 are formed by insertion of the alkyne into the nickel=methyl bond. These complexes may be converted into a variety of organic products (e.g. alkenes, esters, vinyl halides) by treatment with appropriate reagents. Unsymmetrical alkynes give selectively the one regioisomer with the sterically largest substituent next to the nickel atom. In order to investigate the stereochemistry of the initial insertion, a x-ray diffraction study of the reaction of 1 with diphenylacetylene was carried out. This showed that the vinylnickel complex formed by overall trans insertion was the product of the reaction. Furthermore, subsequent slow isomerization of this complex, to a mixture of it and the corresponding cis isomer, demonstrated that this trans addition product is the kinetic product of the reaction. In studies with other alkynes, the product of trans addition was not always exclusively (or even predominantly) formed, but the ratio of the stereoisomers formed kinetically was substantially different from the thermodynamic ratio. Isotope labeling, added phosphine, and other experiments have allowed us to conclude that the mechanism of this reaction does involve initial cis addition. However, a coordinatively unsaturated vinylnickel complex is initially formed which can undergo rapid, phosphine-catalyzed cis-trans isomerization in competition with its conversion to the isolable phosphine-substituted kinetic reaction products. II. The reaction of CpMo(CO)3H (1a) with CpMo(CO)3R (2, R= CH3, C2H5) at 50°C in THF gives the aldehyde RCHO and the dimers [CpMo(CO)3]2 (3a) and [CpMo(CO)2]2 (4a). Labeling one of the reactants with a methylcyclopentadienyl ligand

  2. Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry.

    Science.gov (United States)

    Shabanpoor, Fazel; Gait, Michael J

    2013-11-11

    We describe a general methodology for fluorescent labelling of peptide conjugates of phosphorodiamidate morpholino oligonucleotides (PMOs) by alkyne functionalization of peptides, subsequent conjugation to PMOs and labelling with a fluorescent compound (Cy5-azide). Two peptide-PMO (PPMO) examples are shown. No detrimental effect of such labelled PMOs was seen in a biological assay.

  3. Photosensitized oxygenation of alkenes in the presence of bisazafullerene (C59N)2 and hydroazafullerene C59HN

    International Nuclear Information System (INIS)

    Tagmatarchis, Nikos; Shinohara, Hisanori

    2001-01-01

    Bisazafullerene (C 59 N) 2 and hydroazafullerene C 59 HN photosensitize the reaction of alkenes with oxygen. 2-methyl 2-butene and α-terpinene undergo ene and Diels-Alder photooxygenation reactions, respectively, in the presence of minute amounts of azafullerenes to produce the corresponding peroxides

  4. Azide-Alkyne Huisgen [3+2] Cycloaddition Using CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hyunjoon Song

    2012-11-01

    Full Text Available Recent developments in the synthesis of CuO nanoparticles (NPs and their application to the [3+2] cycloaddition of azides with terminal alkynes are reviewed. With respect to the importance of click chemistry, CuO hollow NPs, CuO hollow NPs on acetylene black, water-soluble double-hydrophilic block copolymer (DHBC nanoreactors and ZnO–CuO hybrid NPs were synthesized. Non-conventional energy sources such as microwaves and ultrasound were also applied to these click reactions, and good catalytic activity with high regioselectivity was observed. CuO hollow NPs on acetylene black can be recycled nine times without any loss of activity, and water-soluble DHBC nanoreactors have been developed for an environmentally friendly process.

  5. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC

    Directory of Open Access Journals (Sweden)

    Alessandro Mandoli

    2016-09-01

    Full Text Available The explosively-growing applications of the Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between organic azides and alkynes (CuAAC have stimulated an impressive number of reports, in the last years, focusing on recoverable variants of the homogeneous or quasi-homogeneous catalysts. Recent advances in the field are reviewed, with particular emphasis on systems immobilized onto polymeric organic or inorganic supports.

  6. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides†

    OpenAIRE

    Hein, Jason E.; Fokin, Valery V.

    2010-01-01

    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(i) acetylides of varying nucle...

  7. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    Directory of Open Access Journals (Sweden)

    Aldo I. Ortega-Arizmendi

    2013-01-01

    Full Text Available A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields.

  8. Rhodium(III)-catalyzed three-component reaction of imines, alkynes, and aldehydes through C-H activation.

    Science.gov (United States)

    Huang, Ji-Rong; Song, Qiang; Zhu, Yu-Qin; Qin, Liu; Qian, Zhi-Yong; Dong, Lin

    2014-12-15

    An efficient rhodium(III)-catalyzed tandem three-component reaction of imines, alkynes and aldehydes through CH activation has been developed. High stereo- and regioselectivity, as well as good yields were obtained in most cases. The simple and atom-economical approach offers a broad scope of substrates, providing polycyclic skeletons with potential biological properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural characterization of swift heavy ion irradiated polycarbonate

    International Nuclear Information System (INIS)

    Singh, Lakhwant; Samra, Kawaljeet Singh

    2007-01-01

    Makrofol-N polycarbonate thin films were irradiated with copper (50 MeV) and nickel (86 MeV) ions. The modified films were analyzed by UV-VIS, FTIR and XRD techniques. The experimental data was used to evaluate the formation of chromophore groups (conjugated system of bonds), degradation cross-section of the special functional groups, the alkyne formation and the amorphization cross-section. The investigation of UV-VIS spectra shows that the formation of chromophore groups is reduced at larger wavelength, however its value increases with the increase of ion fluence. Degradation cross-section for the different chemical groups present in the polycarbonate chains was evaluated from the FTIR data. It was found that there was an increase of degradation cross-section of chemical groups with the increase of electronic energy loss in polycarbonate. The alkyne and alkene groups were found to be induced due to swift heavy ion irradiation in polycarbonate. The radii of the alkyne production of about 2.74 and 2.90 nm were deduced for nickel (86 MeV) and copper (50 MeV) ions respectively. XRD analysis shows the decrease of the main XRD peak intensity. Progressive amorphization process of Makrofol-N with increasing fluence was traced by XRD measurements

  10. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    Science.gov (United States)

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Alkene- and alkyne- substituted methylimidazolium bromides: structural effects and Physical properties (Postprint)

    National Research Council Canada - National Science Library

    Schneider, Stefan; Drake, Gregory; Hall, Leslie; Hawkiins, Tommy; Rosander, Michael; Smith, Dennis

    2007-01-01

    .... X-ray structures of 1-(2-butynyl)-3-methylimidazolium bromide, 1-propargyl-3-methylimidazolium bromide as well as the X-ray structure of 1-allyl-3- methylimidazolium bromide which was previously identified as a room temperature ionic...

  12. Alkene- and Alkyne- Substituted Methylimidazolium Bromides: Structural Effects and Physical properties (Preprint)

    National Research Council Canada - National Science Library

    Schneider, Stefan; Drake, Gregory; Hall, Leslie; Hawkiins, Tommy; Rosander, Michael; Smith, Dennis

    2007-01-01

    .... X-ray structures of 1-(2-butynyl)-3-methylimidazolium bromide, 1-propargyl-3-methylimidazolium bromide as well as the X-ray structure of 1-allyl-3- methylimidazolium bromide which was previously identified as a room temperature ionic...

  13. A comparative study of thermodynamic properties of binary mixtures containing alkynes

    International Nuclear Information System (INIS)

    Falconieri, Danilo; Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia

    2004-01-01

    Literature data on molar excess enthalpies (H E ) and molar excess Gibbs energies (G E ) of linear alkynes+n-alkanes, cycloalkanes, benzene or tetrachloromethane are treated in the framework of DISQUAC, an extended quasichemical group-contribution theory. The systems are characterized by three types of contact surfaces: acetylenic (C-C group), aliphatic (CH 3 or CH 2 groups), cycloaliphatic (c-CH 2 group), aromatic (C 6 H 6 group) and chlorine (CCl 4 group). Using a limited number of adjusted contact interchange energies parameters, the model provides a fairly consistent description of the thermodynamic properties as a function of concentration. The model may serve to predict missing data

  14. Detailed Mechanistic Studies on Palladium-Catalyzed Selective C-H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling.

    Science.gov (United States)

    Deb, Arghya; Hazra, Avijit; Peng, Qian; Paton, Robert S; Maiti, Debabrata

    2017-01-18

    Directing group-assisted regioselective C-H olefination with electronically biased olefins is well studied. However, the incorporation of unactivated olefins has remained largely unsuccessful. A proper mechanistic understanding of olefination involving unactivated alkenes is therefore essential for enhancing their usage in future. In this Article, detailed experimental and computational mechanistic studies on palladium catalyzed C-H olefination with unactivated, aliphatic alkenes are described. The isolation of Pd(II) intermediates is shown to be effective for elucidating the elementary steps involved in catalytic olefination. Reaction rate and order determination, control experiments, isotopic labeling studies, and Hammett analysis have been used to understand the reaction mechanism. The results from these experimental studies implicate β-hydride elimination as the rate-determining step and that a mechanistic switch occurs between cationic and neutral pathway. Computational studies support this interpretation of the experimental evidence and are used to uncover the origins of selectivity.

  15. A Theoretical Study of the Relationship between the Electrophilicity ω Index and Hammett Constant σp in [3+2] Cycloaddition Reactions of Aryl Azide/Alkyne Derivatives

    Directory of Open Access Journals (Sweden)

    Hicham Ben El Ayouchia

    2016-10-01

    Full Text Available The relationship between the electrophilicity ω index and the Hammett constant σp has been studied for the [2+3] cycloaddition reactions of a series of para-substituted phenyl azides towards para-substituted phenyl alkynes. The electrophilicity ω index—a reactivity density functional theory (DFT descriptor evaluated at the ground state of the molecules—shows a good linear relationship with the Hammett substituent constants σp. The theoretical scale of reactivity correctly explains the electrophilic activation/deactivation effects promoted by electron-withdrawing and electron-releasing substituents in both azide and alkyne components.

  16. Infrared study of the nature of the copper ion--alkyne bond in Y zeolite

    International Nuclear Information System (INIS)

    Pichat, P.

    1975-01-01

    The infrared spectra of acetylene, deuterated acetylene, propyne, and but-2-yne, chemisorbed in Cu, Na--Y zeolites, which have undergone various treatments, were studied. It is concluded that the OH groups interact only with the weakly absorbed molecules, the Cu + ions are not involved, the acetylenic hydrogen atoms do not take part in the bonding, the Cu 2+ ion--alkyne bone results mainly from π donation from the unsaturated hydrocarbon to the metallic ion. (auth)

  17. Multi-wall carbon nanotubes supported molybdenyl acetylacetonate: Efficient and highly reusable catalysts for epoxidation of alkenes with tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Esnaashari, Fariba; Moghadam, Majid; Mirkhani, Valiollah; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Khosropour, Ahmad Reza; Zakeri, Maryam

    2012-01-01

    Efficient epoxidation of olefins catalyzed by MoO 2 (acac) 2 supported on amines functionalized MWCNTs is reported. The MWCNTs bearing carboxylic acid groups were modified with 2-aminophenol and 2-aminothiophenol. These amine–MWCNTs act as bidentate ligand for attachment of Mo catalyst. These catalysts were characterized by elemental analysis, scanning electron microscopy, FT-IR and diffuse reflectance UV–Vis spectroscopic methods. The prepared catalysts were used for efficient epoxidation of different alkenes such as cyclic and linear ones with tert-butyl hydroperoxide in refluxing 1,2-dichloroethane. These heterogeneous catalysts can be reused several times without significant loss of their catalytic activity. Highlights: ► Supporting of molybdenyl acetylacetonate on amine-modified MWCNTs. ► Heterogeneous catalysts were prepared. ► These catalysts were highly efficient in the epoxidation of alkenes with TBHP. ► Makes the catalysts reusable.

  18. DFT Rationalization of the Diverse Outcomes of the Iodine(III)-Mediated Oxidative Amination of Alkenes.

    Science.gov (United States)

    Funes-Ardoiz, Ignacio; Sameera, W M C; Romero, R Martín; Martínez, Claudio; Souto, José A; Sampedro, Diego; Muñiz, Kilian; Maseras, Feliu

    2016-05-23

    A computational study of the mechanism for the iodine(III)-mediated oxidative amination of alkenes explains the experimentally observed substrate dependence on product distribution. Calculations with the M06 functional have been carried out on the reaction between PhI(N(SO2 Me)2 )2 and three different representative substrates: styrene, α-methylstyrene, and (E)-methylstilbene. All reactions start with electrophilic attack by a cationic PhI(N(SO2 Me)2 )(+) unit on the double bond, and formation of an intermediate with a single C-I bond and a planar sp(2) carbocationic center. The major path, leading to 1,2-diamination, proceeds through a mechanism in which the bissulfonimide initially adds to the alkene through an oxygen atom of one sulfonyl group. This behavior is now corroborated by experimental evidence. An alternative path, leading to an allylic amination product, takes place through deprotonation at an allylic C-H position in the common intermediate. The regioselectivity of this amination depends on the availability of the resonant structures of an alternate carbocationic intermediate. Only in cases where a high electronic delocalization is possible, as in (E)-methylstilbene, does the allylic amination occur without migration of the double bond. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transformations of diaziridines and their fused analogues induced by electrophilic reagents

    International Nuclear Information System (INIS)

    Makhova, Nina N; Shevtsov, Alexander V; Petukhova, Vera Yu

    2011-01-01

    The review deals with transformations of mono- and bicyclic diaziridine derivatives with different types of substitution induced by electrophilic reagents (protic acids, Lewis acids, alkylating and acylating agents, carbonyl compounds, heterocumulenes, activated alkenes and alkynes and transition metal salts). The characteristic features of the reactions are considered as functions of the structures of the starting diaziridines and the nature of the reaction medium (organic solvents, ionic liquids). Prospects of the use of diaziridine derivatives as readily available precursors for the synthesis of various nitrogen-containing heterocyclic systems based on the diaziridine ring expansion reactions are considered. The bibliography includes 136 references.

  20. C-H Activation and Alkyne Annulation via Automatic or Intrinsic Directing Groups: Towards High Step Economy.

    Science.gov (United States)

    Zheng, Liyao; Hua, Ruimao

    2018-06-01

    Direct transformation of carbon-hydrogen bond (C-H) has emerged to be a trend for construction of molecules from building blocks with no or less prefunctionalization, leading high atom and step economy. Directing group (DG) strategy is widely used to achieve higher reactivity and selectivity, but additional steps are usually needed for installation and/or cleavage of DGs, limiting step economy of the overall transformation. To meet this challenge, we proposed a concept of automatic DG (DG auto ), which is auto-installed and/or auto-cleavable. Multifunctional oxime and hydrazone DG auto were designed for C-H activation and alkyne annulation to furnish diverse nitrogen-containing heterocycles. Imidazole was employed as an intrinsic DG (DG in ) to synthesize ring-fused and π-extended functional molecules. The alkyne group in the substrates can also be served as DG in for ortho-C-H activation to afford carbocycles. In this account, we intend to give a review of our progress in this area and brief introduction of other related advances on C-H functionalization using DG auto or DG in strategies. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Carboxymethyl glycoside lactone(CMGL) synthons:Scope of the method and preliminary results on step growth polymerization of α-azide-ω-alkyne glycomonomers

    Institute of Scientific and Technical Information of China (English)

    CHAMBERT; Stéphane; BERNARD; Julien; FLEURY; Etienne; QUENEAU; Yves

    2010-01-01

    Carboxymethyl glycoside lactones(CMGLs) are bicyclic synthons which open readily for accessing new types of pseudo-glycoconjugates,such as sugar-amino acid hybrids,neoglycolipids,pseudodisaccharides,and membrane imaging systems.After lactone opening,free OH-2 is available for further functionalization,leading to 1,2-bisfunctionalized derivatives.This strategy is illustrated herein with new polymerizable systems of the AB type bearing both azide and alkyne functions prepared from α or β gluco-CMGL synthons.After the reaction of lactones with propargylamine,an azido group was introduced by two different sequences leading to either the 2-manno-azido or the 6-gluco-azido products.The capability of these AB monomers to undergo step growth polymerization through copper(I) catalyzed alkyne-azide cycloaddition(CuAAC) and generate glycopolytriazoles was evidenced.

  2. Controlled Rh-Catalyzed Mono- and Double-decarbonylation of Alkynyl α-Diones To Form Conjugated Ynones and Disubstituted Alkynes.

    Science.gov (United States)

    Whittaker, Rachel E; Dong, Guangbin

    2015-11-06

    A Rh-catalyzed controlled decarbonylation of alkynyl α-diones is described. By using different ligand and solvent combinations, mono- and double-decarbonylation can be selectively achieved to give conjugated ynones and disubstituted alkynes, respectively. A fundamental study on catalytic activation of unstrained C-C bonds under nonoxidative conditions is presented.

  3. Synthesis and Characterization of Rh—Co Butterfly Clusters Capped by Functionally Substituted 1—Alkynes

    Institute of Scientific and Technical Information of China (English)

    ZHUBao-Hua; SUNJie; 等

    2003-01-01

    By the reactions of [Rh2Co2(CO2)12]1 with functionaly substituted alkyne ligands HC≡CR 2(R=FeCp2) and 3(R=2-OH-C6H4COOCH2),respectively in n-hexane at room temperature,two new cluster derivatives [Rh2Co2(CO)6(μ-CO)4(μ4,η2-HC≡CR)] 4(R=FeCp2) and 5 (R=2-OH-C6H4COOCH2) were obtained respectively,The alkyne was inserted into the Co-Co bond of cluster 1 to give two butterfly clusters.Cluster 4 has been determined by single-crystal X-ray diffraction,Crystallographic data:C22H10Co2FeO18Rh2,Mr=813.83,orthorhombic ,space group P212121,a=11.53187(7),b=12.6572(7),c=17.018(1)°↑A,V=2483.9(3)°↑A3,Z=4,Dc=2.176 g/cm3,F(000)=1568,μ=3.233mm-1,the final R=0.0366 and wR=0.0899 for 5367 observed reflections with I>2σ(I).The two clusters have also been characterized by elemental analysis ,IR and 1H-NMR spectroscopy.

  4. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    Science.gov (United States)

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  5. Copper(I)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes.

    Science.gov (United States)

    Berrocal, José Augusto; Nieuwenhuizen, Marko M L; Mandolini, Luigi; Meijer, E W; Di Stefano, Stefano

    2014-08-28

    Olefin cross-metathesis of diluted dichloromethane solutions (≤0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The composition of the libraries is strongly dependent on the monomer concentration, but independent of whether C1 or 1 is used as feedstock, as expected for truly equilibrated systems. Accordingly, the limiting value 0.022 M approached by the equilibrium concentration of C1 when the total monomer concentration approaches the critical value, as predicted by the Jacobson-Stockmayer theory, provides a reliable estimate of the thermodynamically effective molarity. Catenand 1 behaves as a virtual component of the dynamic libraries, in that there is no detectable trace of its presence in the equilibrated mixtures, but becomes the major component - in the form of its copper(I) complex - when olefin cross-metathesis is carried out in the presence of a copper(I) salt.

  6. Multi-wall carbon nanotubes supported molybdenyl acetylacetonate: Efficient and highly reusable catalysts for epoxidation of alkenes with tert-butyl hydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Esnaashari, Fariba [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mirkhani, Valiollah, E-mail: mirkhani@sci.ui.ac.ir [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Khosropour, Ahmad Reza; Zakeri, Maryam [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2012-11-15

    Efficient epoxidation of olefins catalyzed by MoO{sub 2}(acac){sub 2} supported on amines functionalized MWCNTs is reported. The MWCNTs bearing carboxylic acid groups were modified with 2-aminophenol and 2-aminothiophenol. These amine-MWCNTs act as bidentate ligand for attachment of Mo catalyst. These catalysts were characterized by elemental analysis, scanning electron microscopy, FT-IR and diffuse reflectance UV-Vis spectroscopic methods. The prepared catalysts were used for efficient epoxidation of different alkenes such as cyclic and linear ones with tert-butyl hydroperoxide in refluxing 1,2-dichloroethane. These heterogeneous catalysts can be reused several times without significant loss of their catalytic activity. Highlights: Black-Right-Pointing-Pointer Supporting of molybdenyl acetylacetonate on amine-modified MWCNTs. Black-Right-Pointing-Pointer Heterogeneous catalysts were prepared. Black-Right-Pointing-Pointer These catalysts were highly efficient in the epoxidation of alkenes with TBHP. Black-Right-Pointing-Pointer Makes the catalysts reusable.

  7. Degradation of Hydrocarbons by Members of the Genus Candida II. Oxidation of n-Alkanes and 1-Alkenes by Candida lipolytica

    Science.gov (United States)

    Klug, M. J.; Markovetz, A. J.

    1967-01-01

    Candida lipolytica ATCC 8661 was grown in a mineral-salts hydrocarbon medium. n-Alkanes and 1-alkenes with 14 through 18 carbon atoms were used as substrates. Ether extracts of culture fluids and cells obtained from cultures grown on the various substrates were analyzed by thin-layer and gas-liquid chromatography. Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and α-methylene group was occurring. The significance of these two mechanisms in the degradation of n-alkanes by this organism was not evident from the data presented. Analyses of fluids from cultures grown on 1-alkenes indicated the presence of 1,2-diols, as well as ω-unsaturated fatty acids, of the same chain length as the substrate. Alcohols present were all unsaturated. Saponifiable and nonsaponifiable material obtained from cells contained essentially the same products. The presence of 1,2-diols and ω-unsaturated fatty acids of the same chain length as the substrate from cultures grown on 1-alkenes indicated that both the terminal methyl group and the terminal double bond were being attacked. PMID:6025303

  8. Double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor.

    Science.gov (United States)

    Qi, Honglan; Li, Min; Zhang, Rui; Dong, Manman; Ling, Chen

    2013-08-20

    A double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor was developed. As a proof-of-concept, a designed alkyne functionalized human IgG was used as a capture antibody and a HRP-labeled rabbit anti-goat IgG was used as signal antibody for the determination of the anti-human IgG using the sandwich model. The immunosensor was fabricated by electrochemically grafting a phenylazide on the surface of a glassy carbon electrode, and then, by coupling the alkyne functionalized human IgG with the phenylazide group through an electro-click chemistry in the presence of Cu(II). The amperometric measurement for the determination of the anti-human IgG was performed after the fabricated immunosensor was incubated with the target anti-human IgG and then with the HRP-labeled anti-goat IgG at -0.25V in 0.10M PBS (pH 7.0) containing 0.1mM hydroquinone and 2.0mM H2O2. The results showed that the increased current was linear with the logarithm of the concentration of the anti-human IgG in the range from 1.0×10(-10)g mL(-1) to 1.0×10(-8)g mL(-1) with a detection limit of 3×10(-11)g mL(-1). Furthermore, the feasibility of the double electrochemical covalent coupling method proposed in this work for fabricating the amperometric immunosensor array was explored. This work demonstrates that the double electrochemical covalent coupling method is a promising approach for the fabrication of the immunosensor and immunosensor array. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A detachable ester bond enables perfect Z-alkylations of olefins for the synthesis of tri- and tetrasubstituted alkenes.

    Science.gov (United States)

    Nishikata, Takashi; Nakamura, Kimiaki; Inoue, Yuki; Ishikawa, Shingo

    2015-06-25

    2-Vinyl-substituted phenol and an alpha-bromoester undergo a tandem esterification-alkylation reaction in the presence of a Cu-amine catalyst system to produce benzene-fused lactone. Z-Alkylated styrene is obtained after hydrolysis of the lactone with perfect selectivity. The simple protocol developed in this work opens a new avenue in the multi-substitution chemistry of alkenes.

  10. Olefination of Electron-Deficient Alkenes with Allyl Acetate: Stereo- and Regioselective Access to (2Z,4E)-Dienamides.

    Science.gov (United States)

    Li, Feifei; Yu, Chunbing; Zhang, Jian; Zhong, Guofu

    2016-09-16

    A Ru-catalyzed direct olefination of electron-deficient alkenes with allyl acetate via C-H bond activation is disclosed. By using N,N-disubstituted aminocarbonyl as the directing group, this external oxidant-free protocol resulted in high reaction efficiency and good stereo- and regioselectivities, which opens a novel synthetic passway for access to (Z,E)-butadiene skeletons.

  11. Designer HF-Based Fluorination Reagent: Highly Regioselective Synthesis of Fluoroalkenes and gem-Difluoromethylene Compounds from Alkynes

    Science.gov (United States)

    2015-01-01

    Hydrogen fluoride (HF) and selected nonbasic and weakly coordinating (toward cationic metal) hydrogen-bond acceptors (e.g., DMPU) can form stable complexes through hydrogen bonding. The DMPU/HF complex is a new nucleophilic fluorination reagent that has high acidity and is compatible with cationic metal catalysts. The gold-catalyzed mono- and dihydrofluorination of alkynes using the DMPU/HF complex yields synthetically important fluoroalkenes and gem-difluoromethlylene compounds regioselectively. PMID:25260170

  12. Synthesis of ketene N,N-acetals by copper-catalyzed double-amidation of 1,1-dibromo-1-alkenes.

    Science.gov (United States)

    Coste, Alexis; Couty, François; Evano, Gwilherm

    2009-10-01

    An efficient procedure for the preparation of ketene N,N-acetals by copper-catalyzed double amidation of 1,1-dibromo-1-alkenes is reported. The reaction was found to be general, and ketene aminals could be obtained in good yields when potassium phosphate in toluene was used at 80 degrees C. The reaction was found to proceed through a regioselective monocoupling reaction followed by dehydrobromination and hydroamidation.

  13. N-Chloro and N-bromosaccharins: valuable reagents for halogenation of electron rich aromatics and cohalogenation of alkenes

    Directory of Open Access Journals (Sweden)

    Souza Soraia P. L. de

    2003-01-01

    Full Text Available N-Chloro- and N-bromosaccharins react with electron rich aromatic compounds (anisole, acetanilide, N,N-dimethylaniline producing halogenated compounds. The reaction with N-bromosaccharin gives para- substituted compounds only, whereas N-chlorosaccharin produces orto and para mixtures (para isomer predominantly, ca. 4-5 : 1. The reactions of the N-halosaccharins with alkenes (cyclohexene, styrene, a-methylstyrene, and 1-hexene give the corresponding halohydrins.

  14. Rhodium-catalyzed annulation of arenes with alkynes through weak chelation-assisted C-H activation.

    Science.gov (United States)

    Yang, Yudong; Li, Kaizhi; Cheng, Yangyang; Wan, Danyang; Li, Mingliang; You, Jingsong

    2016-02-18

    The purpose of this article is to give a brief review of weak chelation-assistance as a powerful means for the rhodium-catalyzed annulation of arenes with alkynes. The use of commonly occurring functional groups (e.g., ketones, aldehydes, carboxylic acids and alcohols) as the directing groups enriches the versatility of auxiliary ligands and extends the scope of products. This short article offers an overview on emerging procedures, highlights their advantages and limitations, and covers the latest progress in the rapid synthesis of organic functional materials and natural products.

  15. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    Science.gov (United States)

    Socaci, Crina; Rybka, Miriam; Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-06-01

    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-( O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or α-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  16. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    International Nuclear Information System (INIS)

    Socaci, Crina; Rybka, Miriam; Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-01-01

    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-(O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or α-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  17. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Socaci, Crina [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Rybka, Miriam [Humboldt-University Berlin, Department of Chemistry (Germany); Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Juergen, E-mail: liebscher@chemie.hu-berlin.de [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania)

    2013-06-15

    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-(O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or {alpha}-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  18. Distribution of electron density and internal rotation in phospha-alkenes according to data from quantum-chemical calculations by the MNDO method

    International Nuclear Information System (INIS)

    Boldeskul, I.E.; Pen'kovskii, V.V.; Povolotskii, M.I.

    1988-01-01

    A quantum-chemical investigation of the characteristics of the phosphorus-carbon bond and the internal rotation around it in phospha-alkenes has been carried out in the MNDO approximation. The results of the calculation have been compared with experimental dynamic 1 H NMR data

  19. A C-25 highly branched isoprenoid alkene and C-25 and C-27 n-polyenes in the marine diatom Rhizosolenia setigera

    NARCIS (Netherlands)

    Sinninghe Damste, J.S; Rijpstra, W.I C; Schouten, S; Peletier, H.; van der Maarel, M.J.E.C.; Gieskes, W.W C

    1999-01-01

    A North Atlantic strain of the marine diatom Rhizosolenia setigera was examined for the presence of hydrocarbons. This strain biosynthesizes a highly branched isoprenoid (HBI) C-25 pentaene, in contrast to Australian strains of R. setigera which produce HBI C-30 alkenes. The more widespread

  20. Facile solid-phase ruthenium assisted azide-alkyne cycloaddition (RuAAC) utilizing the Cp*RuCl(COD)-catalyst

    DEFF Research Database (Denmark)

    Engholm, Ebbe; sgz228, sgz228; Blixt, Klas Ola

    2017-01-01

    The ruthenium assisted azide-alkyne cycloaddition (RuAAC) reaction is a well-established method for the generation of 1,5- and 1,4,5-substituted 1,2,3-triazoles, which we have extended to the solid-phase synthesis of 1,2,3-triazole-peptides. The 1,2,3-triazole moieties were formed upon the reacti...