WorldWideScience

Sample records for alkanesulfonates

  1. Crystallization and preliminary X-ray crystallographic studies of the alkanesulfonate FMN reductase from Escherichia coli

    International Nuclear Information System (INIS)

    Gao, Benlian; Bertrand, Adam; Boles, William H.; Ellis, Holly R.; Mallett, T. Conn

    2005-01-01

    Crystallization of the native and SeMet FMN reductase protein of the E. coli alkanesulfonate monooxygenase two-component enzyme system is reported. The alkanesulfonate FMN reductase (SsuE) from Escherichia coli catalyzes the reduction of FMN by NADPH to provide reduced flavin for the monooxygenase (SsuD) enzyme. The vapor-diffusion technique yielded single crystals that grow as hexagonal rods and diffract to 2.9 Å resolution using synchrotron X-ray radiation. The protein crystallizes in the primitive hexagonal space group P622. The SsuE protein lacks any cysteine or methionine residues owing to the role of the SsuE enzyme in the acquisition of sulfur during sulfate starvation. Therefore, substitution of two leucine residues (Leu114 and Leu165) to methionine was performed to obtain selenomethionine-containing SsuE for MAD phasing. The selenomethionine derivative of SsuE has been expressed and purified and crystals of the protein have been obtained with and without bound FMN. These preliminary studies should lead to the structure solution of SsuE. It is anticipated that this new protein structure will provide detailed structural information on specific active-site regions of the protein and insight into the mechanism of flavin reduction and transfer of reduced flavin

  2. The weathervane model, a functional and structural organization of the two-component alkanesulfonate oxidoreductase SsuD from Xanthomonas citri

    International Nuclear Information System (INIS)

    Pegos, V.R.; Oliveira, P.S.L.; Balan, A.

    2012-01-01

    Full text: In Xanthomonas citri, the phytopathogen responsible for the canker citrus disease, we identified in the ssuABCDE operon, genes encoding the alkanesulfonate ABC transporter as well as the two enzymes responsible for oxido reduction of the respective substrates. SsuD and SsuE proteins represent a two-component system that can be assigned to the group of FMNH 2 -dependent monooxygenases. How- ever, despite of the biochemical information about SsuD and SsuE orthologs from Escherichia coli, there is no structural information of how the two proteins work together. In this work, we used ultracentrifugation, SAXS data and molecular modeling to construct a structural/functional model, which consists of eight molecules organized in a weathervane shape. Through this model, SsuD ligand-binding site for NADPH 2 and FMN substrates is clearly exposed, in a way that might allow the protein-protein interactions with SsuE. Moreover, based on molecular dynamics simulations of SsuD in apo state, docked with NADPH 2 , FMN or both substrates, we characterized the residues of the pocket, the mechanism of substrate interaction and transfer of electrons from NADPH 2 to FMN. This is the first report that links functional and biochemical data with structural analyses. (author)

  3. Effect of counterions on properties of micelles formed by alkylpyridinium surfactants .1. Conductometry and H-1-NMR chemical shifts

    NARCIS (Netherlands)

    Bijma, K; Engberts, J.B.F.N.

    1997-01-01

    This paper delineates the influence of counterions on the aggregation behavior of 1-methyl-4-n-dodecylpyridinium surfactants, using conductometry and H-1-NMR spectroscopy. Three types of counterions have been studied: (i) halides, (ii) alkanesulfonates, and (iii) aromatic counterions. The critical.

  4. Water-soluble self-doped 3-substituted polypyrroles

    NARCIS (Netherlands)

    Havinga, E.E.; Hoeve, ten W.; Meijer, E.W.; Wynberg, H.

    1989-01-01

    The prepn. of Na 3-pyrrole(Cn-alkanesulfonates) (I; n = 3, 4, 6) and their electrochem. polymn. was described. The low oxidn. potential of the monomers permitted a direct oxidative electrochem. polymn., without addnl. conduction salts. The exptl. conditions provided, for the first time, solid

  5. Effect of counterions on properties of micelles formed by alkylpyridinium surfactants .1. Conductometry and H-1-NMR chemical shifts

    OpenAIRE

    Bijma, K; Engberts, J.B.F.N.

    1997-01-01

    This paper delineates the influence of counterions on the aggregation behavior of 1-methyl-4-n-dodecylpyridinium surfactants, using conductometry and H-1-NMR spectroscopy. Three types of counterions have been studied: (i) halides, (ii) alkanesulfonates, and (iii) aromatic counterions. The critical. micelle concentration is found to decrease with increasing counterion size and increasing counterion hydrophobicity, whereas the degree of counterion binding increases. The aggregation behavior of ...

  6. Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization.

    Science.gov (United States)

    Müller, Daniel B; Schubert, Olga T; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A

    2016-10-01

    Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization*

    Science.gov (United States)

    Müller, Daniel B.; Schubert, Olga T.; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A.

    2016-01-01

    Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. PMID:27457762

  8. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases.

    Science.gov (United States)

    Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Separation of ions in acidic solution by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Michelle [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  10. The cys regulon of Xanthomonas citri

    Energy Technology Data Exchange (ETDEWEB)

    Moutran, A.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil)

    2012-07-01

    Full text: In Escherichia coli, genes involved in metabolic pathway of sulfate and sulfonate compounds are clustered in a cys regulon, which includes three ABC transport system (operons: sbpcysWUA; ssuABC and tauABC), thirteen genes involved in the sulfur reduction (ssuDE; tauD and cysDNCHIJGK) and two regulatory proteins that belong to LysR transcription family: CysB and Cbl. Notably, a search and comparative analysis of these genes in the genomes of the citrus pathogen Xanthomonas citri and other phylogenetically related Xanthomonas species revealed the presence of genes involved with alkanesulfonate, sulfate ester and taurine, only in X. citri, suggesting that proteins from this regulon might be associated with pathogenicity in citrus. Using the molecular modeling associated with a system biology view, we modeled all the protein structures of the X. citri cys regulon as well as characterized the important residues forming the putative active sites. Comparison with orthologs from different microorganisms was made in order to get a phylogenetic relationships. We showed that proteins that are responsible for the affinity and specificity of the alkanesulfonate, sulfate and taurine transport systems conserved the residues involved in the sulfate coordination but are organized in different branches in evolution. Inside these phylogenetic branches, proteins involved in the sulfate transporter are highly conserved when compared to the others. Moreover, we identified that the taurine-binding protein (TauA) of the X. citri belongs to a different evolutionary branch from that one that described for E. coli. These differences were also noticed for components of the tau operon, including a putative new regulator. The function and mechanism of action of each protein is discussed in order to bring light for the sulfur assimilation processes and their importance for X. citri physiology. (author)

  11. The cys regulon of Xanthomonas citri

    International Nuclear Information System (INIS)

    Moutran, A.; Balan, A.

    2012-01-01

    Full text: In Escherichia coli, genes involved in metabolic pathway of sulfate and sulfonate compounds are clustered in a cys regulon, which includes three ABC transport system (operons: sbpcysWUA; ssuABC and tauABC), thirteen genes involved in the sulfur reduction (ssuDE; tauD and cysDNCHIJGK) and two regulatory proteins that belong to LysR transcription family: CysB and Cbl. Notably, a search and comparative analysis of these genes in the genomes of the citrus pathogen Xanthomonas citri and other phylogenetically related Xanthomonas species revealed the presence of genes involved with alkanesulfonate, sulfate ester and taurine, only in X. citri, suggesting that proteins from this regulon might be associated with pathogenicity in citrus. Using the molecular modeling associated with a system biology view, we modeled all the protein structures of the X. citri cys regulon as well as characterized the important residues forming the putative active sites. Comparison with orthologs from different microorganisms was made in order to get a phylogenetic relationships. We showed that proteins that are responsible for the affinity and specificity of the alkanesulfonate, sulfate and taurine transport systems conserved the residues involved in the sulfate coordination but are organized in different branches in evolution. Inside these phylogenetic branches, proteins involved in the sulfate transporter are highly conserved when compared to the others. Moreover, we identified that the taurine-binding protein (TauA) of the X. citri belongs to a different evolutionary branch from that one that described for E. coli. These differences were also noticed for components of the tau operon, including a putative new regulator. The function and mechanism of action of each protein is discussed in order to bring light for the sulfur assimilation processes and their importance for X. citri physiology. (author)

  12. A novel, fast responding, low noise potentiometric sensor containing a carbon-based polymeric membrane for measuring surfactants in industrial and environmental applications.

    Science.gov (United States)

    Samardžić, Mirela; Galović, Olivera; Hajduković, Mateja; Sak-Bosnar, Milan

    2017-01-01

    A new high-sensitivity potentiometric sensor for anionic surfactants was fabricated using the dimethyldioctadecylammonium-tetraphenylborate (DDA-TPB) ion associate as an ionophore that was incorporated into a liquid PVC membrane. Carbon powder was used for immobilization of the ionophore in the membrane, thus significantly reducing its ohmic resistance and reducing its signal drift. The sensor exhibits a sub-Nernstian response for both dodecylbenzenesulfonate (DBS) and dodecyl sulfate (DS) in H 2 O (55.3 and 58.5mV/decade of activity, respectively) in a range between 3.2×10 -7 and 4.6×10 -3 M for DS and 2.5×10 -7 and 1.2×10 -3 M for DBS. The sensor also exhibited a sub-Nernstian response for DS and DBS in 10mM Na 2 SO 4 (55.4 and 57.7mV/decade of activity, respectively) between 2.5×10 -7 and 4.6×10 -3 M for DS and 1.5×10 -7 and 8.8×10 -4 M for DBS. The detection limits for DS and DBS in H 2 O were 2.5×10 -7 and 2.0×10 -7 M and in 10mM Na 2 SO 4 the detection limits were 2.5×10 -7 and 1.2×10 -7 M, respectively. The response time of the sensor was less than 5s for changes at higher concentration levels (above 1×10 -4 M) in both water and 10mM Na 2 SO 4. At lower concentrations (below 1×10 -5 M) the response times were 8 and 6s in water and 10mM Na 2 SO 4 , respectively. The signal drift of the sensor was 1.2mV/hour. The new carbon-based sensor exhibited excellent selectivity performance for DS over almost all of the anions commonly present in commercial formulations and it was successfully employed as an end-point detector in potentiometric titrations of anionic surfactants in a pH range from 3 to 12. Three-component mixtures containing sodium alkanesulfonate (C 10 , C 12 and C 14 ) were successfully differentially titrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Effect of PSII Inhibitors on Kautsky Curve and Chlorophyll Fluorescence in Common Lambsquarters (Chenopodium album L. and Common Purslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    A.A. Chitband

    2016-03-01

    Full Text Available Introduction: Desmedipham + phenmedipham + ethofumesate, phenylcarbamates + benzofuranyl alkanesulfonate herbicides, is widely used for post-emergence broad-leaved weed control in sugar beet. Chloridazon, a pyridazinone herbicide, is used as a pre- and post- emergence herbicide in sugar beet. Desmedipham, phenmedipham and chloridazon, are photosystem II (PSII inhibitors, their translocation via xylem are slow, mostly absorbed not only by roots, but also by foliage. Their mode of action is through the blocking of electron transfer between the primary and secondary quinones (QA and QB of PSII by binding to the QB-binding site and accepting electrons from QA in the chloroplasts. Measures of changes to the chlorophyll fluorescence induction curve (Kautsky curve, is a rapid, non-invasive and simple method for monitoring the physiological status of the photosynthetic apparatus in the plant. There are three phases found on the O, J, I and P steps. These phases primarily point out photochemical events relevant to PSII. The three phases are described as follows: at the O-J phase complete reduction of the primary electron acceptor QA of PSII takes place from 50 μs to 2 ms, the J-I phase corresponds to electron transfer from QA to QB happens between 2 to 30 ms and the I-P phase corresponds to the release of fluorescence quenching by the oxidized plastoquinone pool taking place within 30-500 ms. Materials and Methods: In order to determine how exposure affects the fluorescence induction curve (Kautsky curve and its parameters, two dose-response experiments carried out for chlorophyll fluorescence measuring. The treatments involved desmedipham + phenmedipham + ethofumesate at 0, 51.38, 102.75, 205.5, 308.25, 411, 616.5 and 822 g a.i. ha-1 and chloridazon at 0, 81.25, 162.5, 325, 650, 1300, 1950 and 2600 g a.i. ha-1 on common lambsquarters (Chenopodium album L. and common purslane (Portulaca oleracea L. at the research glasshouse of Agricultural Faculty of