Sample records for alkane monolayers studied

  1. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.


    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  2. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. II. Dynamics

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.


    on very different time scales: 1-40 ps (DCS) and 0.1-4 ns (HFBS). The MD simulations were done on corresponding time scales and were used to interpret the neutron spectra. The authors found that the dynamics of the two monolayers are qualitatively similar on the respective time scales...

  3. A thermal stability study of alkane and aromatic thiolate self-assembled monolayers on copper surfaces (United States)

    Carbonell, L.; Whelan, C. M.; Kinsella, M.; Maex, K.


    The thermal stability of 1-decanethiol (C10) and benzenethiol (BT) Self-Assembled Monolayers (SAMs) on metallic and oxidized copper surfaces has been investigated by thermal desorption spectrometry. High quality C10 and BT SAMs exhibit low thermal stabilities on clean copper surfaces with a maximum in decomposition occurring between 100 and 150 ∘C. The decomposition of SAMs follows different mechanisms. For the alkanethiol, a direct interaction between the alkyl group of the thiolate and the metallic copper surface is the dominant pathway for the C-S bond scission. The head group desorbs as oxidized sulfur and this is followed by the desorption of the alkyl fragments of the chain adsorbed on the clean copper surface. In the case of benzenethiol, a simultaneous desorption of the head group as oxidized sulfur and the benzene group occurs. SAM formation on the oxidized copper surface results in complete removal and/or reduction of the CuO layer. Higher SAM surface coverages on the resulting Cu/Cu 2O surface result from the enhanced surface roughness of the substrate. The decomposition mechanisms and thermal stabilities of the C10 and BT SAMs are dependent on the oxidation state of the underlying substrate and the chemical nature of the chain.

  4. Intramolecular diffusive motion in alkane monolayers studied by high-resolution quasielastic neutron scattering and molecular dynamics simulations

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Criswell, L.; Fuhrmann, D


    that these relatively slow motions are observable by high-energy-resolution quasielastic neutron scattering (QNS) thus demonstrating QNS as a technique, complementary to nuclear magnetic resonance, for studying conformational dynamics on a nanosecond time scale in molecular monolayers.......Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of similar to0.1-4 ns. We present evidence...

  5. Products and Kinetics of the Reactions of an Alkane Monolayer and a Terminal Alkene Monolayer with NO₃ Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Simone; Bertram, Allan K.


    The reactions of an alkanethiol and a terminal alkenethiol self-assembled monolayer with NO₃ radicals (in the presence of NO₂ and O₂) were studied. For the alkane monolayer, infrared (IR) spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the formation of organonitrates (RONO₂). The observation of organonitrates is in contrast to the recent X-ray photoelectron spectroscopy (XPS) data, which showed very little nitrogen-containing surface species. The identification of organonitrates may help explain why significant volatilization of the organic chain was not observed in recent studies of alkane monolayer oxidation by NO₃ radicals. The reactive uptake coefficient (g) of NO₃ on alkene monolayers determined in our study is higher than the values obtained in a recent study using liquid and solid alkene bulk films. A possible reason for this difference may be the location of the double bond at the interface. Using the g value determined in our studies, we show that under conditions where NO₃ is high the lifetime of an alkene monolayer in the atmosphere may be short (approximately 20 min). XPS, IR, and ToF-SIMS were used to identify surface functional groups after the oxidation of the alkene monolayers by NO₃. The results are consistent with the formation of C-O, aldehyde/ketone, carboxylic groups, and nitrogen containing species.

  6. Intramolecular and Lattice Melting in n-Alkane Monolayers: An Analog of Melting in Lipid Bilayers

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Herwig, K.W.; Matthies, B.


    Molecular dynamics (MD) simulations and neutron diffraction experiments have been performed on n-dotriacontane (n-C32D66) monolayers adsorbed on a graphite basal-plane surface. The diffraction experiments show little change in the crystalline monolayer structure up to a temperature of similar...

  7. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles. (United States)

    Devi, J Meena


    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Alkane Metathesis

    KAUST Repository

    Basset, Jean-Marie


    Catalytic activation of alkanes which directly transforms light alkanes into higher homologs is a major area in organometallic chemistry and petrochemical chemistry. This transformation is a chemical challenge considering the inertness of the sp3 carbon-hydrogen bond. It is generally accepted that this catalytic process involves the formation of olefins. This reaction is defined as alkane metathesis. To date, two catalytic systems of alkane metathesis exist: (i) a single catalytic system prepared by surface organometallic chemistry, acting as multifunctional-supported catalyst which transforms any alkanes into a mixture of their lower and higher homologs and (ii) the other catalytic systems employing a tandem strategy with two different metals, one metal for alkane (de)hydrogenation and another for olefin metathesis in which the activity of these catalysts is essentially driven by the performance of the (de)hydrogenation steps. In this book chapter, we would focus on the evolution of these two classes of catalysts by looking at their specific reactivity of the catalysts towards alkanes, comparing their performances and studying the mechanism.

  9. Nonlinear optical studies of organic monolayers

    International Nuclear Information System (INIS)

    Shen, Y.R.


    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs

  10. Compressibility study of quaternary phospholipid blend monolayers. (United States)

    Cavalcanti, Leide P; Tho, Ingunn; Konovalov, Oleg; Fossheim, Sigrid; Brandl, Martin


    The mechanical properties of liposome membranes are strongly dependent on type and ratio of lipid compounds, which can have important role in drug targeting and release processes when liposome is used as drug carrier. In this work we have used Brewster's angle microscopy to monitor the lateral compression process of lipid monolayers containing as helper lipids either distearoyl phosphatidylethanolamine (DSPE) or dioleoyl phophatidylethanolamine (DOPE) molecules on the Langmuir trough. The compressibility coefficient was determined for lipid blend monolayers containing the helper lipids above, cholesterol, distearoyl phosphatidylcholine (DSPC) and pegylated-DSPE at room temperature. Two variables, the cholesterol fraction and the ratio ρ between the helper lipid (either DSPE or DOPE) and the reference lipid DSPC, were studied by multivariate analysis to evaluate their impact on the compressibility coefficient of the monolayers. The cholesterol level was found to be the most significant variable for DSPE blends while the ratio ρ was the most significant one for DOPE blend monolayers. It was also found that these two variables can exhibit positive interaction and the same compressibility value can be obtained with different blend compositions. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Semifluorinated alkanes and alkanes

    DEFF Research Database (Denmark)

    Runnsjo, Anna; Kocherbitov, Vitaly; Graf, Gesche


    The binary system perfluorohexyloctane (F6H8)–tetradecane (C14) was investigated in order to increase understanding of interactions of semifluorinated alkanes (SFAs) with hydrophobic molecules. The thermal phase behavior for F6H8 and C14 and their mixtures was determined using DSC. The activity...

  12. The fate of primary cations in radiolysis of alkanes as studied by ESR

    International Nuclear Information System (INIS)

    Iwasaki, M.; Toriyama, K.; Nunome, K.


    The structures and reactions of alkane cations (RH + ) have been studied by ESR to elucidate the fate of primary cations in radiolysis of alkanes. Radical cations of prototype alkanes such as C 2 H 6 , C 3 H 8 , iso-C 4 H 10 and neo-C 5 H 12 etc. as well as their partially deuterated analogues were stabilized in irradiated frozen matrices such as SF 6 , CFCl 2 CF 2 Cl and CFCl 3 having a higher ionization potential than that of these alkanes contained as dilute solutes. RH + in SF 6 and in CFCl 2 CF 2 Cl converts into alkyl radicals by deprotonation probably through bimolecular reactions, whereas RH + in CFCl 3 unimolecularily decomposes into olefinic cations by H 2 and/or CH 4 elimination reactions. It is further found that the electronic structures of propane and isobutane cations in halocarbon matrices are different from those in SF 6 and the difference is drastically reflected in the site preference of their deprotonation reactions. The results are discussed in relation to the mechanisms of pairwise formation of alkyl radicals in low temperature radiolysis of neat alkanes and its suppression by addition of electron scavengers. (author)

  13. STM studies of synthetic peptide monolayers (United States)

    Bergeron, David J.; Clauss, Wilfried; Pilloud, Denis L.; Leslie Dutton, P.; Johnson, Alan T.


    We have used scanning probe microscopy to investigate self-assembled monolayers of chemically synthesized peptides. We find that the peptides form a dense uniform monolayer, above which is found a sparse additional layer. Using scanning tunneling microscopy, submolecular resolution can be obtained, revealing the alpha helices which constitute the peptide. The nature of the images is not significantly affected by the incorporation of redox cofactors (hemes) in the peptides.

  14. Study of iridium silicide monolayers using density functional theory (United States)

    Popis, Minh D.; Popis, Sylvester V.; Oncel, Nuri; Hoffmann, Mark R.; ćakır, Deniz


    In this study, we investigated physical and electronic properties of possible two-dimensional structures formed by Si (silicon) and Ir (iridium). To this end, different plausible structures were modeled by using density functional theory and the cohesive energies calculated for the geometry of optimized structures, with the lowest equilibrium lattice constants. Among several candidate structures, we identified three mechanically (via elastic constants and Young's modulus), dynamically (via phonon calculations), and thermodynamically stable iridium silicide monolayer structures. The lowest energy structure has a chemical formula of Ir2Si4 (called r-IrSi2), with a rectangular lattice (Pmmn space group). Its cohesive energy was calculated to be -0.248 eV (per IrSi2 unit) with respect to bulk Ir and bulk Si. The band structure indicates that the Ir2Si4 monolayer exhibits metallic properties. Other stable structures have hexagonal (P-3m1) and tetragonal (P4/nmm) cell structures with 0.12 and 0.20 eV/f.u. higher cohesive energies, respectively. Our calculations showed that Ir-Si monolayers are reactive. Although O2 molecules exothermically dissociate on the surface of the free-standing iridium silicide monolayers with large binding energies, H2O molecules bind to the monolayers with a rather weak interaction.

  15. Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study. (United States)

    Yin, Huabing; Zheng, Guang-Ping; Gao, Jingwei; Wang, Yuanxu; Ma, Yuchen


    Two-dimensional (2D) piezoelectric materials have potential applications in miniaturized sensors and energy conversion devices. In this work, using first-principles simulations at different scales, we systematically study the electronic structures and piezoelectricity of a series of 2D monolayer phosphorene oxides (POs). Our calculations show that the monolayer POs have tunable band gaps along with remarkable piezoelectric properties. The calculated piezoelectric coefficient d 11 of 54 pm V -1 in POs is much larger than those of 2D transition metal dichalcogenide monolayers and the widely used bulk α-quartz and AlN, and almost reaches the level of the piezoelectric effect in recently discovered 2D GeS. Furthermore, two other considerable piezoelectric coefficients, i.e., d 31 and d 26 with values of -10 pm V -1 and 21 pm V -1 , respectively, are predicted in some monolayer POs. We also examine the correlation between the piezoelectric coefficients and energy stability. The enhancement of piezoelectricity for monolayer phosphorene by oxidation will broaden the applications of phosphorene and phosphorene derivatives in nano-sized electronic and piezotronic devices.

  16. Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol (United States)

    Tan, C. S.; Lim, D. F.; Singh, S. G.; Goulet, S. K.; Bergkvist, M.


    Self-assembled monolayer (SAM) of 1-hexanethiol is applied on copper (Cu) surface to retard surface oxidation during exposure in the ambient. This SAM layer can be desorbed effectively with an annealing step in inert N2 ambient to provide a clean Cu surface. Using this passivation method with SAM, wafers covered with thin Cu layer are passivated, stored, desorbed, and bonded at 250 °C. The bonded Cu layer presents clear evidence of substantial interdiffusion and grain growth despite prolonged exposure in the ambient. This method of passivation is proven to be effective and can be further optimized to enable high quality Cu-Cu direct bonding at low temperature for application in three-dimensional integration.

  17. Molecular dynamics simulation studies of mid-size liquid n-Alkanes, C12–C160

    International Nuclear Information System (INIS)

    Kwon, Tae Woo; Lee, Song Hi


    In this study, we report the results of molecular dynamics simulations (MD) for model systems of mid-size liquid n-alkanes (C 12 –C 160 ) at several temperatures (⁓2700 K) in canonical ensembles to calculate structural and dynamic properties (viscosity η, self-diffusion constant D, and monomeric friction constant ζ). For the small n-alkanes for n ≤ 80, the chains are clearly ≥ 1, which leads to the conclusion that the liquid n-alkanes are far away from the Rouse regime, but for the n-alkanes for n ≥ 120, the chains are ⁓ 1 and they are Gaussian. It is found that the long chains of these n-alkanes at high temperatures show abnormalities in density, viscosity, and monomeric friction constant. The mass and temperature dependences of structural and dynamic properties (η, D, and ζ) are discussed

  18. Microculture system for studying monolayers of functional beta-cells. (United States)

    Dobersen, M J; Scharff, J E; Notkins, A L


    A method is described for growing monolayers of newborn rat beta-cells in microculture trays. After disruption of the pancreas with collagenase, islets were isolated by Ficoll density gradient centrifugation, trypsinized to obtain individual cells, and plated in 96-well tissue culture trays. The cells were incubated for the first 3 days in growth medium containing 0.1 mM 3-isobutyl-1-methylxanthine to promote monolayer formation. The cultures could be maintained in a functional state, as defined by their responsiveness to known modulators of insulin secretion, for at least 2 weeks. As few as 1 X 10(3) islet cells/well gave results that were reproducible within +/- 10%. It is suggested that the microculture system for islet cells might prove to be a rapid and reproducible screening technique for studying drugs, viruses, or other agents that affect beta-cell function.

  19. Fabrication and Characterization of a Stabilized Thin Film Ag/AgCl Reference Electrode Modified with Self-Assembled Monolayer of Alkane Thiol Chains for Rapid Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Tanzilur Rahman


    Full Text Available The fabrication of miniaturized electrical biosensing devices can enable the rapid on-chip detection of biomarkers such as miRNA molecules, which is highly important in early-stage cancer detection. The challenge in realizing such devices remains in the miniaturization of the reference electrodes, which is an integral part of electrical detection. Here, we report on a novel thin film Ag/AgCl reference electrode (RE that has been fabricated on top of a Au-sputtered glass surface, which was coated with a self-assembled monolayer (SAM of 6-mercepto-1-hexanol (MCH. The electrode showed very little measurement deviation (−1.5 mv from a commercial Ag/AgCl reference electrode and exhibited a potential drift of only ± 0.2 mV/h. In addition, the integration of this SAM-modified microfabricated thin film RE enabled the rapid detection (<30 min of miRNA (let-7a. The electrode can be integrated seamlessly into a microfluidic device, allowing the highly stable and fast measurement of surface potential and is expected to be very useful for the development of miniature electrical biosensors.

  20. Seeing phenomena in flatland: studies of monolayers by fluorescence microscopy. (United States)

    Knobler, C M


    Monolayers formed at the interface between air and water can be seen with fluorescence microscopy. This allows the phase behavior of these monolayers to be determined by direct observation and opens up the possibility of following the kinetics of phase transformations in two-dimensional systems. Some unexpected morphologies have been discovered that provide information about the nature of monolayer phases and have connections to pattern formation in other systems.

  1. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes (United States)

    Saxena, Priyank

    In order to enhance the fuel efficiency of an engine and to control pollutant formation, an improved understanding of the combustion chemistry of the fuels at a fundamental level is paramount. This knowledge can be gained by developing detailed reaction mechanisms of the fuels for various combustion processes and by studying combustion analytically employing reduced-chemistry descriptions. There is a need for small detailed reaction mechanisms for alkane and alcohol fuels with reduced uncertainties in their combustion chemistry that are computationally cheaper in multidimensional CFD calculations. Detailed mechanisms are the starting points in identifying reduced-chemistry descriptions of combustion processes to study problems analytically. This research includes numerical, experimental and analytical studies. The first part of the dissertation consists of numerical and experimental studies of ethanol flames. Although ethanol has gained popularity as a possible low-pollution source of renewable energy, significant uncertainties remain in its combustion chemistry. To begin to address ethanol combustion, first a relatively small detailed reaction mechanism, commonly known as the San Diego Mech, is developed for the combustion of hydrogen, carbon monoxide, formaldehyde, methane, methanol, ethane, ethylene, and acetylene, in air or oxygen-inert mixtures. This mechanism is tested for autoignition, premixed-flame burning velocities, and structures and extinction of diffusion flames and of partially premixed flames of many of these fuels. The reduction in uncertainties in the combustion chemistry can best be achieved by consistently updating a reaction mechanism with reaction rate data for the elementary steps based on newer studies in literature and by testing it against as many experimental conditions as available. The results of such a testing for abovementioned fuels are reported here along with the modifications of reaction-rate parameters of the most important

  2. Pulse radiolysis of alkanes: a time-resolved EPR study - Part I. Alkyl radicals

    International Nuclear Information System (INIS)

    Shkrob, I.A.; Trifunac, A.D.


    Time-resolved EPR was applied to detect short-lived alkyl radicals in pulse radiolysis of liquid alkanes. Two problems were addressed: (i) the mechanism of radical formation and (ii) the mechanism of chemically-induced spin polarization in these radicals. (i) The ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation was found to be ≅ 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the proton transfer reaction involving excited radical cations must be a prevailing route of radical generation. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. (ii) The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals gain the emissive polarization in spur reactions. This initial polarization increases with shortening of the aliphatic chain. We suggest that the origin of this polarization is the ST mechanism operating in the pairs of alkyl radicals and hydrogen atoms generated in dissociation of excited alkane molecules. It is also found that a long-chain structure of alkyl radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate (up to 30 times). That suggests prominent steric effects in recombination or the occurrence of through-chain electron exchange. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. (Author)

  3. Cyclic voltammetry and scanning electrochemical microscopy studies of methylene blue immobilized on the self-assembled monolayer of n-dodecanethiol

    International Nuclear Information System (INIS)

    Salamifar, Seyed Ehsan; Mehrgardi, Masoud Ayatollahi; Kazemi, Sayed Habib; Mousavi, Mir Fazllollah


    Electron transfer (ET) kinetics through n-dodecanethiol (C 12 SH) self-assembled monolayer on gold electrode was studied using cyclic voltammetry (CV), scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). An SECM model for compensating pinhole contribution, was used to measure the ET kinetics of solution-phase probes of ferrocyanide/ferricyanide (Fe(CN) 6 4-/3- ) and ferrocenemethanol/ferrociniummethanol (FMC 0/+ ) through the C 12 SH monolayer yielding standard tunneling rate constant (k ET 0 ) of (4 ± 1) x 10 -11 and (3 ± 1) x 10 -10 cm s -1 for Fe(CN) 6 4-/3- and FMC 0/+ respectively. Decay tunneling constants (β) of 0.97 and 0.96 A -1 for saturated alkane thiol chains were obtained using Fe(CN) 6 4- and FMC respectively. Also, it was found that methylene blue (MB) molecules are effectively immobilized on the C 12 SH monolayer and can mediate the ET between the solution-phase probes and underlying gold substrate. SECM-mediated model was used to simultaneously measure the bimolecular ET between the solution-phase probes and the monolayer-immobilized MB molecules, as well as tunneling ET between the monolayer-immobilized MB molecules and the underlying gold electrode, allowing the measurement of k BI = (5 ± 1) x 10 6 and (4 ± 2) x 10 7 cm 3 mol -1 s -1 for the bimolecular ET and k ET/MB 0 =(1±0.3)x10 -3 and (7 ± 3) x 10 -2 s -1 for the standard tunneling rate constant of ET using Fe(CN) 6 4-/3- and FMC 0/+ probes respectively.

  4. Semifluorinated Alkane Eye Drops for Treatment of Dry Eye Disease--A Prospective, Multicenter Noninterventional Study. (United States)

    Steven, Philipp; Scherer, Dieter; Krösser, Sonja; Beckert, Michael; Cursiefen, Claus; Kaercher, Thomas


    Evaporation of the tear film is heavily discussed as one core reason for dry eye disease (DED). Subsequently, new artificial tear products are developed that specifically target this pathomechanism. Perfluorohexyloctane (F6H8, NovaTears(®)) from the family of semifluorinated alkanes is a novel substance that has been approved as a medical device, as a nonblurring wetting agent for the ocular surface. Thirty patients with hyperevaporative dry eye received F6H8 during a prospective, multicenter, observational 6-week study. Patients were advised to apply 1 drop 4 times daily in both eyes. Parameters assessed included best corrected visual acuity, intraocular pressure, Schirmer I test, tear fluid, tear film breakup time (TFBUT), corneal staining, meibum secretion, and Ocular Surface Disease Index (OSDI(©)). From the 30 patients recruited, 25 completed the trial per protocol. Four patients discontinued F6H8 and 1 patient did not present for follow-up. F6H8 treatment led to significant reduction of corneal staining and significant increase of Schirmer I and TFBUT. In addition, OSDI score dropped significantly from a mean of 55 (± 23.0) to 34 (± 22.4). Visual acuity and ocular pressure did not change. This prospective observational study shows significant beneficial effects in patients suffering from evaporative DED, using F6H8 in all the relevant parameters tested. The decrease of the OSDI by a mean of 21 points was particularly remarkable and clearly exceeds minimal, clinical important differences for mild or moderate and severe disease. Overall, F6H8 (NovaTears) seems to be safe and effective in treating mild to moderate hyperevaporative DED.

  5. Semifluorinated Alkane Eye Drops for Treatment of Dry Eye Disease—A Prospective, Multicenter Noninterventional Study (United States)

    Scherer, Dieter; Krösser, Sonja; Beckert, Michael; Cursiefen, Claus; Kaercher, Thomas


    Abstract Purpose: Evaporation of the tear film is heavily discussed as one core reason for dry eye disease (DED). Subsequently, new artificial tear products are developed that specifically target this pathomechanism. Perfluorohexyloctane (F6H8, NovaTears®) from the family of semifluorinated alkanes is a novel substance that has been approved as a medical device, as a nonblurring wetting agent for the ocular surface. Methods: Thirty patients with hyperevaporative dry eye received F6H8 during a prospective, multicenter, observational 6-week study. Patients were advised to apply 1 drop 4 times daily in both eyes. Parameters assessed included best corrected visual acuity, intraocular pressure, Schirmer I test, tear fluid, tear film breakup time (TFBUT), corneal staining, meibum secretion, and Ocular Surface Disease Index (OSDI©). Results: From the 30 patients recruited, 25 completed the trial per protocol. Four patients discontinued F6H8 and 1 patient did not present for follow-up. F6H8 treatment led to significant reduction of corneal staining and significant increase of Schirmer I and TFBUT. In addition, OSDI score dropped significantly from a mean of 55 (±23.0) to 34 (±22.4). Visual acuity and ocular pressure did not change. Conclusions: This prospective observational study shows significant beneficial effects in patients suffering from evaporative DED, using F6H8 in all the relevant parameters tested. The decrease of the OSDI by a mean of 21 points was particularly remarkable and clearly exceeds minimal, clinical important differences for mild or moderate and severe disease. Overall, F6H8 (NovaTears) seems to be safe and effective in treating mild to moderate hyperevaporative DED. PMID:26296040

  6. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes. (United States)

    Tsolas, Nicholas; Lee, Jong Guen; Yetter, Richard A


    The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Experimental study of thermal rectification in suspended monolayer graphene (United States)

    Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie


    Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting.

  8. Simulation studies of pore and domain formation in a phospholipid monolayer

    NARCIS (Netherlands)

    Knecht, Volker; Muller, M; Bonn, M; Marrink, SJ; Mark, AE


    Despite extensive study the phase behavior of phospholipid monolayers at an air-water interface is still not fully understood. In particular recent vibrational sum-frequency generation (VSFG) spectra of DPPC monolayers as a function of area density show a sharp transition in the order of the lipid

  9. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Frances H.


    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  10. Surface Chemistry and Spectroscopic Study of a Cholera Toxin B Langmuir Monolayer. (United States)

    Sharma, Shiv K; Seven, Elif S; Micic, Miodrag; Li, Shanghao; Leblanc, Roger M


    In this article, we explored the surface chemistry properties of a cholera toxin B (CTB) monolayer at the air-subphase interface and investigated the change in interfacial properties through in situ spectroscopy. The study showed that the impact of the blue shift was negligible, suggesting that the CTB molecules were minimally affected by the subphase molecules. The stability of the CTB monolayer was studied by maintaining the constant surface pressure for a long time and also by using the compression-decompression cycle experiments. The high stability of the Langmuir monolayer of CTB clearly showed that the driving force of CTB going to the amphiphilic membrane was its amphiphilic nature. In addition, no major change was detected in the various in situ spectroscopy results (such as UV-vis, fluorescence, and IR ER) of the CTB Langmuir monolayer with the increase in surface pressure. This indicates that no aggregation occurs in the Langmuir monolayer of CTB.

  11. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance (United States)


    Background Hydrocarbon alkanes have been recently considered as important next-generation biofuels because microbial production of alkane biofuels was demonstrated. However, the toxicity of alkanes to microbial hosts can possibly be a bottleneck for high productivity of alkane biofuels. To tackle this toxicity issue, it is essential to understand molecular mechanisms of interactions between alkanes and microbial hosts, and to harness these mechanisms to develop microbial host strains with improved tolerance against alkanes. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels by exploiting cellular mechanisms underlying alkane response. Results To this end, we first confirmed that nonane (C9), decane (C10), and undecane (C11) were significantly toxic and accumulated in S. cerevisiae. Transcriptome analyses suggested that C9 and C10 induced a range of cellular mechanisms such as efflux pumps, membrane modification, radical detoxification, and energy supply. Since efflux pumps could possibly aid in alkane secretion, thereby reducing the cytotoxicity, we formed the hypothesis that those induced efflux pumps could contribute to alkane export and tolerance. In support of this hypothesis, we demonstrated the roles of the efflux pumps Snq2p and Pdr5p in reducing intracellular levels of C10 and C11, as well as enhancing tolerance levels against C10 and C11. This result provided the evidence that Snq2p and Pdr5p were associated with alkane export and tolerance in S. cerevisiae. Conclusions Here, we investigated the cellular mechanisms of S. cerevisiae response to alkane biofuels at a systems level through transcriptome analyses. Based on these mechanisms, we identified efflux pumps involved in alkane export and tolerance in S. cerevisiae. We believe that the results here provide valuable insights into designing microbial engineering strategies to improve cellular tolerance for

  12. Kinetics and mechanistic study of n-alkane hydroisomerization reaction on Pt-doped γ-alumina catalyst

    Directory of Open Access Journals (Sweden)

    Abhishek Dhar


    Full Text Available The catalysts γ-alumina (GA, the reference catalyst and Pt doped γ-alumina (PGA-s were synthesized using a simple sol-gel technique, in which at first preparation of porous base (GA, then impregnation of platinum salt over the base and finally reduction of platinum in the surface of the support were done. These catalysts prepared in different mole ratios of Pt:Al as 2:1, 1:1 and 1:2 are named as PGA-1, PGA-2 and PGA-3 respectively. The isomerization of n-alkanes (n-hexane, n-heptane and n-octane were investigated over the synthesized catalysts. The 2-methyl pentane (2-MP, 2,2-dimethyl pentane (2,2-DMP and 2,3-dimethyl hexane (2,3-DMH are the major products of respective isomerization of n-hexane, n-heptane and n-octane, besides a small amount of other branched isomers are also produced. The product distribution is comparable to that reported for Pt based other catalysts. The optimal mole ratios of Pt:Al is 1:1 (PGA-2 gives quite good catalytic activity for isomerization of n-alkane. Even through in reusability study, PGA-2 gives better performance than others. We have mainly focused on kinetic study, reaction mechanism behind isomerization and calculated the order of reactions and activation energies of the isomerization reactions in the present work. Keywords: Isomerization, n-alkanes, Catalyst, Reaction mechanism, Kinetics study, Activation energy

  13. Nanorheology of Liquid Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.A., Cochran, H.D., Cummings, P.T. [Tennessee Univ., Knoxville, TN (United States). Dept. of Chemical Engineering], [Oak Ridge National Lab., TN (United States)


    We report molecular dynamics simulations of liquid alkanes, squalane and tetracosane, confined between moving walls to which butane chains are tethered, effectively screening the details of the wall. As in an experiment, heat is removed by thermostatting the tethered molecules. Results obtained at high strain rates, typical of practical applications, suggest little or no difference between the bulk rheology and confined flow, and the occurrence of a high degree of slip at the wall-fluid interface at the conditions studied. At relatively low velocities and high densities, tetracosane shows the formation of fully-extended chains at certain wall spacings.

  14. Molecular dynamics studies of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Newton, J. C.; Taub, H.


    The effect of molecular steric properties on the melting of quasi-two-dimensional solids is investigated by comparing results of molecular dynamics simulations of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite. These molecules differ only in their length......, being members of the n-alkane series [CH3(CH2)n−2CH3] where n=4 for butane and n=6 for hexane. The simulations employ a skeletal model, which does not include the hydrogen atoms explicitly, to represent the intermolecular and molecule–substrate interactions. Nearest-neighbor intramolecular bonds...... are fixed in length, but the molecular flexibility is preserved by allowing the bend and dihedral torsion angles to vary. The simulations show a qualitatively different melting behavior for the butane and hexane monolayers consistent with neutron and x-ray scattering experiments. The melting of the low...

  15. A first-principles study of the SnO2 monolayer with hexagonal structure (United States)

    Xiao, Wen-Zhi; Xiao, Gang; Wang, Ling-Ling


    We report the structural, electronic, magnetic, and elastic properties of a two-dimensional (2D) honeycomb stannic oxide (SnO2) monolayer based on comprehensive first-principles calculations. The free-standing and well-ordered 2D centered honeycomb SnO2 (T-SnO2) monolayer with D3d point-group symmetry has good dynamical stability, as well as thermal stability at 500 K. The T-SnO2 monolayer is a nonmagnetic wide-bandgap semiconductor with an indirect bandgap of 2.55/4.13 eV obtained by the generalized gradient approximation with the Perdew-Burke-Ernzerhof/Heyd-Scuseria-Ernzerhof hybrid functional, but it acquires a net magnetic moment upon creation of a Sn vacancy defect. The elastic constants obtained from the relaxed ion model show that the T-SnO2 monolayer is much softer than MoS2. The bandgap monotonically decreases with increasing strain from -8% to 15%. An indirect-to-direct bandgap transition occurs upon applying biaxial strain below -8%. Synthesis of the T-SnO2 monolayer is proposed. We identify the Zr(0001) surface as being suitable to grow and stabilize the T-SnO2 monolayer. The unique structure and electronic properties mean that the T-SnO2 monolayer has promising applications in nanoelectronics. We hope that the present study on the stable free-standing SnO2 monolayer will inspire researchers to further explore its importance both experimentally and theoretically.

  16. A chemotaxonomic approach to the alkane content of three species ...

    African Journals Online (AJOL)

    The chemotaxonomic significance of leaf wax n-alkanes was studied in three species of Anthocleista Afzel. Identification of alkane components were determined by gas chromatography (GC) and gas chromatography – mass spectrometry (GC-MS) data. In all, fourteen alkanes were identified, ranging from tetracosane ...

  17. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes. (United States)

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro


    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  18. Metal adsorption on monolayer blue phosphorene: A first principles study (United States)

    Khan, Imran; Son, Jicheol; Hong, Jisang


    We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.

  19. Carbon Isotopes of Alkanes in Hydrothermal Abiotic Organic Synthesis Processes at High Temperatures and Pressures: An Experimental Study (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.


    Observation of methane in the Martian atmosphere has been reported by different detection techniques [1-4]. With more evidence showing extensive water-rock interaction in Martian history [5-7], abiotic formation by Fischer-Tropsch Type (FTT) synthesis during serpentization reactions may be one possible process responsible for methane generation on Mars [8, 9]. While the experimental studies performed to date leave little doubt that chemical reactions exist for the abiotic synthesis of organic compounds by mineral surface-catalyzed reactions [10-12], little is known about the reaction pathways by which CO2 and/or CO are reduced under hydrothermal conditions. Carbon and hydrogen isotope measurements of alkanes have been used as an effective tool to constrain the origin and reaction pathways of hydrocarbon formation. Alkanes generated by thermal breakdown of high molecular weight organic compounds have carbon and hydrogen isotopic signatures completely distinct from those formed abiotically [13-15]. Recent experimental studies, however, showed that different abiogenic hydrocarbon formation processes (e.g., polymerization vs. depolymerization) may have different carbon and hydrogen isotopic patterns [16]. Results from previous experiments studying decomposition of higher molecular weight organic compounds (lignite) also suggested that pressure could be a crucial factor affecting fractionation of carbon isotopes [17]. Under high pressure conditions, no experimental data are available describing fractionation of carbon isotope during mineral catalyzed FTT synthesis. Thus, hydrothermal experiments present an excellent opportunity to provide the requisite carbon isotope data. Such data can also be used to identify reaction pathways of abiotic organic synthesis under experimental conditions.

  20. Efficient Hydrogenolysis of Alkanes at Low Temperature and Pressure Using Tantalum Hydride on MCM-41, and a Quantum Chemical Study

    KAUST Repository

    Polshettiwar, Vivek


    Hydrogenolysis of hydrocarbons is of considerable technological importance for applications such as the hydroprocessing of petrochemical feedstocks to generate high-value and useful chemicals and fuels. We studied the catalytic activity of tantalum hydride supported on MCM-41 for the hydrogenolysis of alkanes at low temperature and low atmospheric pressure in a dynamic reactor. The reactions proceed with good turnover numbers, and the catalyst could be reused for several times, which makes the overall catalytic process sustainable. We derived the plausible mechanism by using DFT calculations and identified the preferred pathways by the analysis of potential energy surface. Our results and the proposed reaction mechanism demonstrate the viability of the "catalyst-by-design" approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. SAXS study of transient pre-melting in chain-folded alkanes

    International Nuclear Information System (INIS)

    Ungar, G.; Wills, H.H.


    A pronounced pre-melting effect is observed in chain-folded crystals of pure monodisperse n-alkane C 246 H 494 . The effect is reversible on a short time scale, but at longer times the once-folded chain crystals are irreversibly lost as slow chain extension proceeds by solid diffusion well below the melting point. The melting process is thus monitored by rapid time-resolved small-angle X-ray (SAXS) measurements, using synchrotron radiation. The results show that the observed pronounced broadening of the DSC melting endotherm for chain-folded crystals is entirely due to genuine pre-melting of lamellar surfaces. Although a significant portion of material is already molten below the final melting point of chain-folded crystals T F , no recrystallization in the chain-extended form can occur until the cores of the crystalline lamellae melt at T F . Pre-melting of extended chain crystals is significantly less pronounced than that of folded chain crystals

  2. Doping effect on monolayer MoS2 for visible light dye degradation - A DFT study (United States)

    Cheriyan, Silpa; Balamurgan, D.; Sriram, S.


    The electronic and optical properties of, Nitrogen (N), Cobalt (Co), and Co-N co-doped monolayers of MoS2 has been studied by using density functional theory (DFT) for visible light photocatalytic activity. From the calculations, it has been observed that the band gap of monolayer MoS2 has been reduced while doping. However, the band gaps of pristine and N doped MoS2 monolayers only falls in the visible region while for Co and Co-N co-doped systems, the band gap shifted to IR region. The optical calculation also confirms the results. The formation energy values of the doped system reaveal that MoS2 monolayer drops its stability while doping. To evaluate the photocatalytic response, band edge potentials of pristine and N-MoS2 are calculated, and the observed results show that compared to N-doped MoS2 monolayer, pure MoS2 is highly suitable for visible light photocatalytic dye degradation.

  3. IR spectroscopic study of the displacement of an SF6 monolayer on graphite by Xe (United States)

    Hess, G. B.; Xia, Yu


    We report a study of displacement by xenon of a monolayer of sulphur hexafluoride initially condensed on a graphite surface. Earlier work showed that, below 112 K, Xe displaces SF6 almost completely in a first-order transition. Working at higher temperatures, we show that this system has a simple eutectic-like phase diagram, at least for SF6 not too dilute. In our experiment, both adsorbates are in equilibrium with their respective vapors in a cold cell. In our infrared reflection-absorption spectroscopy measurements, the SF6 coverage on the surface is monitored by the frequency shift due to dynamic dipole coupling of the collective mode of the strong SF6 ν3 vibrational resonance. Simulations relate this frequency shift to the SF6 areal density. Below T ≈ 134 K, with increasing Xe pressure, a small amount Xe dissolves in the solid SF6 monolayer preceding its displacement by a solid predominantly Xe monolayer in a first-order transition. Above 134 K, there is a weaker first-order transition to a mixed liquid monolayer, followed by continuous increase in Xe concentration. If the initial SF6 monolayer is near its melting line, the melting transition on adding Xe appears to become continuous.

  4. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida


    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  5. Brewster Angle Microscopy Study of Model Stratum Corneum Lipid Monolayers at the Air-Water Interface (United States)

    Adams, Ellen; Champagne, Alex; William, Joseph; Allen, Heather


    As the first and last barrier in the body, the stratum corneum (SC) is essential to life. Understanding the interactions and organization of lipids within the SC provides insight into essential physiological processes, including water loss prevention and the adsorption of substances from the environment. Langmuir monolayers have long been used to study complex systems, such as biological membranes and marine aerosols, due to their ability to shed light on intermolecular interactions. In this study, lipid mixtures with varying cholesterol and cerebroside ratios were investigated at the air/water interface. Surface tension measurements along with Brewster angle microscopy (BAM) images were used to examine the lipid phase transitions. Results indicate that cholesterol and cerebrosides form miscible monolayers, exhibiting ideal behavior. BAM images of a singular, uniform collapse phase also suggest formation of a miscible monolayer.

  6. Interactions of gas molecules with monolayer MoSe{sub 2}: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Munish, E-mail:; Jamdagni, Pooja; Ahluwalia, P. K. [Department. of Physics, Himachal Pradesh University, Shimla, H. P., 171005 (India); Kumar, Ashok [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001(India)


    We present a first principle study of interaction of toxic gas molecules (NO, NO{sub 2} and SO{sub 2}) with monolayer MoSe{sub 2}. The predicted order of sensitivity of gas molecule is NO{sub 2} > SO{sub 2} > NO. Adsorbed molecules strongly influence the electronic behaviour of monolayer MoSe{sub 2} by inducing impurity levels in the vicinity of Fermi energy. NO and SO{sub 2} is found to induce p-type doping effect while semiconductor to metallic transitions occur on NO{sub 2} adsorption. Our findings may guide the experimentalist for fabricating sensor devices based on MoSe{sub 2} monolayer.

  7. Atomic force microscopy studies of lateral phase separation in mixed monolayers of dipalmitoylphosphatidylcholine and dilauroylphosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Jacqueline; Badia, Antonella


    Atomic force microscopy imaging of dipalmitoylphosphatidylcholine (DPPC)/dilauroylphosphatidylcholine (DLPC) monolayers deposited onto alkanethiol modified-gold surfaces by the Langmuir-Schaefer technique was used to investigate domain formation in a binary system where phase separation arises from a difference in the alkyl chain lengths of the lipids. We have established how the condensed domain structure (shape and size) in DPPC/DLPC monolayers depends on the surface pressure and lipid composition. The mixed monolayers exhibit a positive deviation from an ideal mixing behavior at surface pressures of {<=}32 mN/m. Lateral compression to pressures greater than the liquid-expanded-to-liquid-condensed (LE-to-LC) phase transition pressure of the mixed monolayer ({approx}8-16 mN/m) induces extensive separation into condensed DPPC-rich domains and a fluid DLPC matrix. The condensed structures observed at a few milliNeutons per meter above the LE-to-LC transition pressure resemble those reported for pure DPPC monolayers in the LE/LC co-existence region. At a bilayer equivalence pressure of 32 mN/m and 20 deg. C, condensed domains exist between x{sub DPPC} {approx}0.25 and {approx}0.80, analogous to aqueous DPPC/DLPC dispersions. Compression from 32 to 40 mN/m results in either a striking distortion of the DPPC domain shape or a break-up of the microscopic DPPC domains into a network of nanoscopic islands (at higher DPPC mol fractions), possibly reflecting a critical mixing behavior. The results of this study provide a fundamental framework for understanding and controlling the formation of lateral domain structures in mixed phospholipid monolayers.

  8. Incorporation of lipolysis in monolayer permeability studies of lipid-based oral drug delivery systems. (United States)

    Sadhukha, Tanmoy; Layek, Buddhadev; Prabha, Swayam


    Lipid-based drug delivery systems, a well-tolerated class of formulations, have been evaluated extensively to enhance the bioavailability of poorly soluble drugs. However, it has been difficult to predict the in vivo performance of lipid dosage forms based on conventional in vitro techniques such as cell monolayer permeability studies because of the complexity of the gastrointestinal processing of lipid formulations. In the current study, we explored the feasibility of coupling Caco-2 and Madin-Darby canine kidney monolayer permeability studies with lipolysis, a promising in vitro technique to evaluate lipid systems. A self-emulsifying lipid delivery system was formulated using a blend of oil (castor oil), surfactant (Labrasol® or PL497), and co-surfactant (lecithin). Formulations demonstrating high drug solubility and rapid self-emulsification were selected to study the effect of lipolysis on in vitro cell permeability. Lipolysis of the formulations was carried out using pancreatin as the digestive enzyme. All the digested formulations compromised monolayer integrity as indicated by lowered trans-epithelial electrical resistance (TEER) and enhanced Lucifer yellow (LY) permeability. Further, the changes in TEER value and LY permeability were attributable to the digestion products of the formulation rather than the individual lipid excipients, drug, digestion enzyme, or the digestion buffer. The digested formulations were fractionated into pellet, oily phase, and aqueous phase, and the effect of each of these on cell viability was examined. Interestingly, the aqueous phase, which is considered important for in vivo drug absorption, was responsible for cytotoxicity. Because lipid digestion products lead to disruption of cell monolayer, it may not be appropriate to combine lipolysis with cell monolayer permeability studies. Additional in vivo studies are needed to determine any potential side effects of the lipolysis products on the intestinal permeability barrier

  9. Orientation modulation of a synthetic polypeptide in self-assembled monolayers: a TOF-SIMS study. (United States)

    Leufgen, Kirsten; Mutter, Manfred; Vogel, Horst; Szymczak, Wilfried


    Structure and orientation of molecules are key properties of functionalized surfaces. Using time-of-flight secondary ion mass spectrometry (TOF-SIMS), here we investigate how to modulate these parameters upon the immobilization process varying the conditions of self-assembly. The molecule of interest, a template-assembled synthetic protein (TASP), consists of a central peptide ring with orthogonally arranged residues. Thioalkane chains allow the directed self-assembly of the molecule on a gold surface; four serine residues on the opposite side of the ring can be used as anchoring sites for various functional sensing molecules. The TASP conformation and its orientation in self-assembled monolayers (SAMs) play a central role for the accessibility of these serine residues. To study the influence of the self-assembly conditions, two series of samples were prepared. Pure TASP monolayers of different surface densities are compared to mixed TASP/alkanethiol monolayers prepared by sequential adsorption varying sequence and particular incubation times as well as by coadsorption modifying incubation times and TASP/alkanethiol mass ratios. Switching the TASP orientation from a state where the molecules are lying flat on the surface to an upright orientation turned out to be possible by inserting the TASP into a preformed alkanethiol monolayer of an appropriate surface density. This study demonstrates that TOF-SIMS is an excellent tool not only to investigate the surface composition, but also the molecular structure of functionalized surfaces.

  10. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

    Directory of Open Access Journals (Sweden)

    Xiaoli Sun


    Full Text Available Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te. The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS2 and 2H-WSe2, which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  11. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers. (United States)

    Sun, Xiaoli; Wang, Zhiguo


    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX 2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX 2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX 2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS 2 and 2H-WSe 2 , which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX 2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX 2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries.

  12. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies. (United States)

    Nieciecka, Dorota; Krysinski, Pawel


    We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.

  13. High-resolution ellipsometric study of an n-alkane film, dotriacontane, adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Volkmann, U.G.; Pino, M.; Altamirano, L.A.


    to the interface. At still higher coverages and at temperatures below the bulk melting point at T-b=341 K, solid bulk particles coexist on top of the "perpendicular film." For higher temperatures in the range T-bT-s, a uniformly thick fluid film wets to the parallel film phase. This structure of the alkane/SiO2...

  14. Thermodynamic study of alkane-α,ω-diamines - evidence of odd-even pattern of sublimation properties

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Červinka, C.; Bazyleva, A.; Della Gatta, G.


    Roč. 371, Jun (2014), s. 93-105 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alkane-diamines * odd–even effect * vapor pressure * sublimation and vaporization thermodynamic properties * statistical thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.200, year: 2014

  15. Metathesis of alkanes and related reactions

    KAUST Repository

    Basset, Jean-Marie


    (Figure Presented) The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, (=SiO)2TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of aluminasupported tungsten hydride, W(H)3/Al 2O3, which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis of

  16. First-principles study of adsorption-induced magnetic properties of InSe monolayers (United States)

    Fu, Zhaoming; Yang, Bowen; Zhang, Na; Ma, Dongwei; Yang, Zongxian


    In this work we studied the adsorption-induced magnetic behaviors on the two-dimensional InSe monolayer. Six kinds of adatoms (H, B, C, N, O and F) are taken into account. It is found that the InSe with adsorbing C and F have nonzero magnetic moments and good stability. Importantly, the magnetism of C and F modified InSe monolayers completely comes from p electrons of adatoms and substrates. The strength of magnetic exchange interaction can be controlled by changing the coverage of adsorbates. This p-electron magnetic material is thought to have obvious advantages compared to conventional d- or f-electron magnets. Our research is meaningful for practical applications in spintronic electronics and two dimensional magnetic semiconductors.

  17. Possible doping strategies for MoS 2 monolayers: An ab initio study

    KAUST Repository

    Dolui, Kapildeb


    Density functional theory is used to systematically study the electronic properties of doped MoS2 monolayers, where the dopants are incorporated both via S/Mo substitution or as adsorbates. Among the possible substitutional dopants at the Mo site, Nb is identified as suitable p-type dopant, while Re is the donor with the lowest activation energy. When dopants are simply adsorbed on a monolayer we find that alkali metals shift the Fermi energy into the MoS2 conduction band, making the system n type. Finally, the adsorption of charged molecules is considered, mimicking an ionic liquid environment. We find that molecules adsorption can lead to both n- and p-type conductivity, depending on the charge polarity of the adsorbed species. © 2013 American Physical Society.

  18. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen


    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  19. Diverse carrier mobility of monolayer BNCx: A combined density functional theory and Boltzmann transport theory study. (United States)

    Wu, Tao; Deng, Kaiming; Deng, Wei-Qiao; Lu, Ruifeng


    BNCX monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNCX (x=1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNCX monolayers are semiconductors with band gap ranging from 0.51 to 1.32 eV. The carrier mobility of BNCX varies considerably from tens to millions of cm2 V-1 s-1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNCX monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along y direction and electron mobility along x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNCX layered materials with proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices. © 2017 IOP Publishing Ltd.

  20. Inelastic neutron scattering study on the polytypism of even-numbered n-alkanes (United States)

    Kubota, Hideki; Kaneko, Fumitoshi; Kawaguchi, Tatsuya


    The thermodynamic properties of the two polytypes of n-hexatriacontane ( n- C36H74), single-layered structure Mon and double-layered structure Orth II, have been studied with incoherent inelastic neutron scattering and solubility measurements. The solubility measurements show that Orth II is more stable than Mon, because of its larger entropy. The neutron scattering measurements reveal that the vibrational modes of Orth II shift to the lower frequencies compared with those of Mon in the frequency region below 120 cm-1. The vibrational modes in this region make a dominant contribution to the vibrational entropy of a system, and the advantage of Orth II in vibrational entropy due to the low-frequency shifts is estimated to be 7.8 J K-1 mol-1 at 288 K under the harmonic approximation, which is in good agreement with the entropy difference between Mon and Orth II determined by solubility measurements. These results suggest that the relative stability of polytypic structures of long-chain compounds is mainly determined by the vibrational entropy of the low-frequency modes.

  1. X-ray grazing incidence studies of the 2D crystallization of monolayers of 1-alcohols at the air water interface

    DEFF Research Database (Denmark)

    Legrand, J.F.; Renault, A.; Konovalov, O.


    with relatively short chains crystallize in a hexagonal structure akin to that of alkanes in the Rotator II phase. The high flux obtained under grazing incidence conditions has permitted a detailed investigation to be made of the in-plane (Q(x)) and out-of-plane (Q(z)) diffraction from the monolayers. When...... approaching the 2D melting temperature the diffracted intensity decreases, and this pre-melting effect, which is more pronounced for the shorter chains, is attributed to a critical increase of the Debye-Waller factor. In addition, the Bragg rod profiles along Q(z) show that, in the hexagonal structure...

  2. The Structures of Self-Assembled Monolayer Films of Organosulfur Compounds Adsorbed on Gold Single Crystals: Electron Diffraction Studies. (United States)



  3. Mechanic studies of monolayer formation on H-Si(111) surfaces

    NARCIS (Netherlands)

    Rijksen, B.M.G.


    Covalently attached organic monolayers on silicon surfaces form thermally and chemically stable platforms for (bio)functionalization of the surface. Recent advances in monolayer formation – yielding increases in monolayer quality and the complete exclusion of oxygen at modified surfaces – have

  4. Flash kinetics in liquefied noble gases: Studies of alkane activation and ligand dynamics at rhodium carbonyl centers, and a search for xenon-carbene adducts

    Energy Technology Data Exchange (ETDEWEB)

    Yeston, Jake Simon [Univ. of California, Berkeley, CA (United States)


    A general introduction is given to place the subsequent chapters in context for the nonspecialist. Results are presented from a low temperature infrared (IR) flash kinetic study of C-H bond activation via photoinduced reaction of Cp*Rh(CO)2 (1) with linear and cyclic alkanes in liquid krypton and liquid xenon solution. No reaction was observed with methane; for all other hydrocarbons studied, the rate law supports fragmentation of the overall reaction into an alkane binding step followed by an oxidative addition step. For the binding step, larger alkanes within each series (linear and cyclic) interact more strongly than smaller alkanes with the Rh center. The second step, oxidative addition of the C-H bond across Rh, exhibits very little variance in the series of linear alkanes, while in the cyclic series the rate decreases with increasing alkane size. Results are presented from an IR flash kinetic study of the photoinduced chemistry of Tp*Rh(CO)2 (5; Tp* = hydridotris(3,5-dimethylpyrazolyl)borato) in liquid xenon solution at –50 °C. IR spectra of the solution taken 2 μs after 308 nm photolysis exhibit two transient bands at 1972-1980 cm-1 and 1992-2000 cm-1, respectively. These bands were assigned to (η3-Tp*)Rh(CO)•Xe and (η2-Tp*)Rh(CO)•Xe solvates on the basis of companion studies using Bp*Rh(CO)2 (9; Bp* = dihydridobis(3,5-dimethyl pyrazolyl)borato). Preliminary kinetic data for reaction of 5 with cyclohexane in xenon solution indicate that both transient bands still appear and that their rates of decay correlate with formation of the product Tp*Rh(CO)(C6H11)(H). The preparation and reactivity of the new complex Bp*Rh(CO)(pyridine) (11) are described. The complex reacts with CH3I to yield the novel Rh carbene hydride complex HB(Me2pz)2Rh(H)(I)(C5H5N)(C(O)Me) (12), resulting from formal addition of CH

  5. Perforated monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Regen, S.L.


    Goal of this research program is to create ultrathin organic membranes that possess uniform and adjustable pores ( < 7[angstrom] diameter). Such membranes are expected to possess high permeation selectivity (permselectivity) and high permeability, and to provide the basis for energy-efficient methods of molecular separation. Work carried out has demonstrated feasibility of using perforated monolayer''-based composites as molecular sieve membranes. Specifically, composite membranes derived from Langmuir-Blodgett multilayers of the calix[6]arene-based surfactant shown below plus poly[l-(trimethylsilyl)-l-propyne] (PTMSP) were found to exhibit sieving behavior towards He, N[sub 2] and SF[sub 6]. Results of derivative studies that have also been completed are also described in this report.

  6. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner


    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...... synchrotron radiation. Compression beyond the collapse point does not change the XR data, showing that the film is unchanged at the molecular level, even at areas less than half of that of the collapse. This leads to the conclusion that few macroscopic collapse sites are responsible for reversibly removing...

  7. Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers


    Sun, Xiaoli; Wang, Zhiguo


    Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in bot...

  8. Alkane dimers interaction

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Madsen, Georg Kent Hellerup; Hammer, Bjørk


    The interaction energies of a series of n-alkane dimers, from methane to decane, have been investigated with Density Functional Theory (DFT), using the MGGA-M06-L density functional. The results are compared both to the available wavefunction-based values as well as to dispersion corrected DFT...... values. The MGGA-M06-L density functional is a semi-local functional designed and has proven to provide accurate estimates of dispersion interactions for several systems at moderate computational cost. In the present application, it reproduces the trends obtained by the more expensive wavefunction...

  9. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems (United States)

    Zhu, Yuan-Yan; Zhang, Jian-Min


    We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.

  10. Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study. (United States)

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru


    Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of -0.82 eV and -0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of -1.52 eV and -1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism. Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers.

  11. Sensing properties of monolayer borophane nanosheet towards alcohol vapors: A first-principles study. (United States)

    Nagarajan, V; Chandiramouli, R


    The electronic properties of borophane nanosheet and adsorption behavior of three distinct alcohol vapors namely methanol, ethanol and 1-propanol on borophane nanosheet is studied using density functional theory method for the first time. The state-of-the-art provides insights on to the development of new two dimensional materials with the surface passivation on boron nanostructures. The density of states spectrum provides a clear perception on charge transfer upon adsorption of alcohol vapors on borophane nanosheets. The monolayer of borophane band gap widens upon adsorption of alcohol vapors, which can be used for the detection for volatile organic vapors. The adsorption properties of alcohol vapors on borophane base material are analyzed in terms of natural bond orbital, average energy gap variation, adsorption energy and energy gap. The most suitable adsorption sites of methanol, ethanol and 1-propanol molecules on borophane nanosheet are investigated in atomistic level. The adsorption of alcohol molecules on borophane nanosheet is found to be more favorable. The findings suggest that the monolayer borophane nanosheet can be utilized to detect the presence of alcohol vapors in the atmosphere. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A theoretical study for electronic and transport properties of covalent functionalized MoS2 monolayer (United States)

    Gao, Lijuan; Yang, Zhao-Di; Zhang, Guiling


    The geometries, electronic and electron transport properties of a series of functionalized MoS2 monolayers were investigated using density-functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods. n-Propyl, n-trisilicyl, phenyl, p-nitrophenyl and p-methoxyphenyl are chosen as electron-donating groups. The results show covalent functionalization with electron-donating groups could make a transformation from typical semiconducting to metallic properties for appearance of midgap level across the Fermi level (Ef). The calculations of transport properties for two-probe devices indicate that conductivities of functionalized systems are obviously enhanced relative to pristine MoS2 monolayer. Grafted groups contribute to the major transport path and play an important role in enhancing conductivity. The NDR effect is found. The influence of grafted density is also studied. Larger grafted density leads to wider bandwidth of midgap level, larger current response of I-V curves and larger current difference between peak and valley.

  13. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity. (United States)

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan


    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  14. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity

    Directory of Open Access Journals (Sweden)

    Shuangming Li


    Full Text Available Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO2 waveguide–based, 36 degree–rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO3 Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO2 layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  15. Electronic and vibrational properties of graphene monolayers with iron adatoms: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Nicholas, E-mail: [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States); Navarro, Nestor E. [Department of Chemistry, University of Texas-Pan American, Edinburg, TX (United States); Velazquez, Julian; Salgado, Andres [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX (United States)


    Highlights: • Periodic density functional calculations were performed on graphene monolayers with and without an iron adatom. • Densities of states, charge transfers, and overlap populations were used to elucidate the effects of weak iron adsorption on graphene compared to CO adsorption on Pt. • Infrared intensities and normal mode analysis verify weak iron adsorption on graphene by studying the shift in prominent vibrational modes and changes in lattice dynamics. - Abstract: Periodic density functional calculations on graphene monolayers with and without an iron adatom have been used to elucidate iron-graphene adsorption and its effects on graphene electronic and vibrational properties. Density-of-states calculations and charge density contour plots reveal charge transfer from the iron s orbitals to the d orbitals, in agreement with past reports. Adsorbed iron atoms covalently bind to the graphene substrate, verified by the strong hybridization of iron d-states with the graphene bands in the energy region just below the Fermi level. This adsorption is weak and compared to the well-analyzed CO adsorption on Pt: It is indicated by its small adsorption energy and the minimal change of the substrate geometry due to the presence of the iron adatoms. Graphene vibrational spectra are analyzed though a systematic variation of the graphene supercell size. The shifts of graphene most prominent infrared active vibrational modes due to iron adsorption are explored using normal mode eigenvectors.

  16. Study of dithiol monolayer as the interface for controlled deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Cichomski, M.; Tomaszewska, E.; Kosla, K.; Kozlowski, W.; Kowalczyk, P.J.; Grobelny, J.


    Self-assembled monolayer of dithiol molecules, deposited on polycrystalline Au (111), prepared at room atmosphere, was studied using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Dithiols were used as interface, which chemically bonds to the deposited gold nanoparticles through strong covalent bonds. The size and size distribution of the deposited nanoparticles were measured using dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The AFM results showed that nanoparticles are immobilized and stable during scanning procedure and do not contaminate the AFM tip. The size of monodisperse nanoparticles obtained from the DLS measurements is slightly higher than that obtained from the AFM and SEM measurements. This is due to the fact that the DLS measures the hydrodynamic radius, dependent on the protective chemical layer on nanoparticles. - Research Highlights: → Dithiols molecules create chemically bounded layers on a Au (111) surface. → Gold nanoparticles can be chemically bounded to a self-assembled monolayer. → Nanoparticles are stable during AFM probe interactions.

  17. Reflectance spectroscopy of organic compounds: 1. Alkanes (United States)

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.


    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  18. Growth of n-alkane films on a single-crystal substrate

    DEFF Research Database (Denmark)

    Wu, Z. U.; Ehrlich, S. N.; Matthies, B.


    The structure and growth mode of alkane films (n-C/sub n/H/sub 2n+2/; n=4, 6, 7) adsorbed on a Ag(111) surface have been investigated by synchrotron X-ray scattering. New models are proposed for the butane (n=4) and hexane (n=6) monolayer and butane bilayer structures. Specular reflectivity scans...

  19. Photooxidation of self-assembled monolayers by exposure to light of wavelength 254 nm: a static SIMS study. (United States)

    Brewer, Nicholas J; Janusz, Stefan; Critchley, Kevin; Evans, Stephen D; Leggett, Graham J


    Self-assembled monolayers (SAMs) of alkanethiols have been photooxidized by exposure to light from a lamp emitting light with a wavelength of 254 nm. The data confirm that SAM oxidation on exposure to UV light sources occurs in the absence of ozone, but also suggest that the mechanism is different from that observed in previous studies using broad-spectrum arc lamps. In particular, for monolayers on both gold and silver, carboxylic acid-terminated SAMs oxidize significantly faster than methyl-terminated SAMs, in contrast to earlier observations for monolayers exposed to light from a mercury arc lamp. The difference in rates of photooxidation for the two classes of monolayer is significantly greater on silver than on gold. These data support our recent suggestion that while methyl-terminated SAMs are able to pack much more closely on silver than on gold, carboxylic acid-terminated thiols are not able to adopt the same close-packed structures, and their rates of photooxidation on silver are similar to, or slightly greater than, those measured for the same adsorbates on gold. Surface potential measurements were made for carboxylic acid- and methyl-terminated SAMs using a Kelvin probe apparatus. It was found that the work functions of carboxylic acid-terminated SAMs are significantly greater than those of methyl-terminated monolayers. It is concluded that these data are consistent with the oxidation reaction being initiated by "hot" electrons generated following the interaction of photons with the metallic substrate.

  20. Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers. (United States)

    Xu, Qingbiao; Fan, Hongbing; Yu, Wenlin; Hong, Hui; Wu, Jianping


    The objective of this study was to investigate the mechanisms of the transport of antihypertensive tripeptides LKP (Leu-Lys-Pro) and IQW (Ile-Gln-Trp) derived from egg white using a coculture system of Caco-2 and HT29 cell monolayers. The results revealed that LKP and IQW have no cytotoxicity to the cell viability after 2 h incubation, could be transported intact across coculture monolayers (apparent permeability coefficient: (18.11 ± 1.57) × 10 -8 and (13.21 ± 1.12) × 10 -8 cm/s, respectively), and were resistant to peptidase secreted by enterocytes. In addition, the transports were significantly inhibited by dipeptide Gly-Pro (P Caco-2/HT29 coculture monolayers.

  1. Graphene adhesion on MoS₂ monolayer: an ab initio study. (United States)

    Ma, Yandong; Dai, Ying; Guo, Meng; Niu, Chengwang; Huang, Baibiao


    The geometric and electronic structures of graphene adsorption on MoS(2) monolayer have been studied by using density functional theory. It is found that graphene is bound to MoS(2) with an interlayer spacing of 3.32 Å and with a binding energy of -23 meV per C atom irrespective of adsorption arrangement, indicating a weak interaction between graphene and MoS(2). A detailed analysis of the electronic structure indicates that the nearly linear band dispersion relation of graphene can be preserved in MoS(2)/graphene hybrid accompanied by a small band-gap (2 meV) opening due to the variation of on-site energy induced by MoS(2). These findings are useful complement to experimental studies of this new synthesize system and suggest a new route to facilitate the design of devices where both finite band-gap and high carrier mobility are needed.

  2. A new tribological experimental setup to study confined and sheared monolayers. (United States)

    Fu, L; Favier, D; Charitat, T; Gauthier, C; Rubin, A


    We have developed an original experimental setup, coupling tribology, and velocimetry experiments together with a direct visualization of the contact. The significant interest of the setup is to measure simultaneously the apparent friction coefficient and the velocity of confined layers down to molecular scale. The major challenge of this experimental coupling is to catch information on a nanometer-thick sheared zone confined between a rigid spherical indenter of millimetric radius sliding on a flat surface at constant speed. In order to demonstrate the accuracy of this setup to investigate nanometer-scale sliding layers, we studied a model lipid monolayer deposited on glass slides. It shows that our experimental setup will, therefore, help to highlight the hydrodynamic of such sheared confined layers in lubrication, biolubrication, or friction on solid polymer.

  3. Phases of phosphatidyl ethanolamine monolayers studied by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Helm, C.A.; Tippmann-Krayer, P.; Möhwald, H.


    For the first time, phospholid monolayers at the air/water interface have been studied by x-ray diffraction and reflection all along the isotherm from the laterally isotropic fluid (the so-called LE phase) to the ordered phases. The model used to analyze the data, and the accuracy of the parameters...... deduced, were tested by comparing the results obtained with two lipids having the same head group but different chain lengths. Compression of the fluid phase leads predominantly to a change of thickness of the hydrophobic moiety, much less of its density, with the head group extension remaining constant....... The main transition involves a considerable increase (approximately 10%) of the electron density in the hydrophobic region, a dehydration of the head group and a positional ordering of the aliphatic tails, albeit with low coherence lengths (approximately 10 spacings). On further compression of the film...

  4. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. (United States)

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S


    stable solid metal oxides as the olefin-metathesis catalysts. Both the pincer complexes and the alkylidene complexes have been supported on alumina via adsorption through basic para-substituents. This process does not significantly affect catalyst activity, and in some cases it increases both the catalyst lifetime and the compatibility of the co-catalysts. These molecular catalysts are the first systems that effect alkane metathesis with molecular-weight selectivity, particularly for the conversion of C(n)n-alkanes to C(2n-2)n-alkanes plus ethane. This molecular-weight selectivity offers a critical advantage over the few previously reported alkane metathesis systems. We have studied the factors that determine molecular-weight selectivity in depth, including the isomerization of the olefinic intermediates and the regioselectivity of the pincer-iridium catalyst for dehydrogenation at the terminal position of the n-alkane. Our continuing work centers on the development of co-catalysts with improved interoperability, particularly olefin-metathesis catalysts that are more robust at high temperature and dehydrogenation catalysts that are more active at low temperature. We are also designing dehydrogenation catalysts based on metals other than iridium. Our ongoing mechanistic studies are focused on the apparently complex combination of factors that determine molecular-weight selectivity.

  5. Distribution and sources of n-alkanes in surface sediments of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Yu Yunlong


    Full Text Available The last study on n-alkanes in surface sediments of Taihu Lake was in 2000, only 13 surface sediment samples were analysed, in order to have a comprehensive and up-to-date understanding of n-alkanes in the surface sediments of Taihu Lake, 41 surface sediment samples were analyzed by GC-MS. C10 to C37 were detected, the total concentrations of n-alkanes ranged from 2109 ng g−1 to 9096 ng g−1 (dry weight. There was strong odd carbon predominance in long chain n-alkanes and even carbon predominance in short chain n-alkanes. When this finding was combined with the analysis results of wax n-alkanes (WaxCn, carbon preference index (CPI, unresolved complex mixture (UCM, hopanes and steranes, it was considered that the long chain n-alkanes were mainly from terrigenous higher plants, and that the short chain n-alkanes mainly originated from bacteria and algae in the lake, compared with previous studies, there were no obvious anthropogenic petrogenic inputs. Terrestrial and aquatic hydrocarbons ratio (TAR and C21−/C25+ indicated that terrigenous input was higher than aquatic sources and the nearshore n-alkanes were mainly from land-derived sources. Moreover, the distribution of short chain n-alkanes presented a relatively uniform pattern, while the long chain n-alkanes presented a trend that concentrations dropped from nearshore places to the middle of lake.

  6. First principles study of optical properties of molybdenum disulfide: From bulk to monolayer (United States)

    Hieu, Nguyen N.; Ilyasov, Victor V.; Vu, Tuan V.; Poklonski, Nikolai A.; Phuc, Huynh V.; Phuong, Le T. T.; Hoi, Bui D.; Nguyen, Chuong V.


    In this paper, we theoretically study the optical properties of both bulk and monolayer MoS2 using first-principles calculations. The optical characters such as: dielectric function, optical reflectivity, and electron energy-loss spectrum of MoS2 are observed in the energy region from 0 to 15 eV. At equilibrium state the dielectric constant in the parallel E∥ x and perpendicular E∥ z directions are of 15.01 and 8.92 for bulk while they are 4.95 and 2.92 for monolayer MoS2, respectively. In the case of bulk MoS2, the obtained computational results for both real and imaginary parts of the dielectric constant are in good agreement with the previous experimental data. In the energy range from 0 to 6 eV, the dielectric functions have highly anisotropic, whereas they become isotropic when the energy is larger than 7 eV. For the adsorption spectra and optical reflectivity, both the collective plasmon resonance and (π + σ) electron plasmon peaks are observed, in which the transition in E∥ x direction is accordant with the experiment data more than the transition in E∥ z direction is. The refractive index, extinction index, and electron energy-loss spectrum are also investigated. The observed prominent peak at 23.1 eV in the energy-loss spectra is in good agreement with experiment value. Our results may provide a useful potential application for the MoS2 structures in electronic and optoelectronic devices.

  7. Revisiting the Kinetics and Thermodynamics of the Low-Temperature Oxidation Pathways of Alkanes: A Case Study of the Three Pentane Isomers

    KAUST Repository

    Bugler, John


    © 2015 American Chemical Society. This paper describes our developing understanding of low-temperature oxidation kinetics. We have investigated the ignition of the three pentane isomers in a rapid compression machine over a wide range of temperatures and pressures, including conditions of negative temperature coefficient behavior. The pentane isomers are small alkanes, yet have structures that are complex enough to allow for the application of their kinetic and thermochemical rules to larger molecules. Updates to the thermochemistry of the species important in the low-temperature oxidation of hydrocarbons have been made based on a thorough literature review. An evaluation of recent quantum-chemically derived rate coefficients from the literature pertinent to important low-temperature oxidation reaction classes has been performed, and new rate rules are recommended for these classes. Several reaction classes have also been included to determine their importance with regard to simulation results, and we have found that they should be included when developing future chemical kinetic mechanisms. A comparison of the model simulations with pressure-time histories from experiments in a rapid compression machine shows very good agreement for both ignition delay time and pressure rise for both the first- and second-stage ignition events. We show that revisions to both the thermochemistry and the kinetics are required in order to replicate experiments well. A broader validation of the models with ignition delay times from shock tubes and a rapid compression machine is presented in an accompanying paper. The results of this study enhance our understanding of the combustion of straight- and branched-chained alkanes.

  8. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam


    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  9. Slow Diffusive Motions in a Monolayer of Tetracosane Molecules Adsorbed on Graphite

    DEFF Research Database (Denmark)

    Taub, H.; Hansen, Flemming Yssing; Criswell, L.


    Monolayers of intermediate-length alkane molecules such as tetracosane (n-C24H50 or C24) serve as prototypes for studying the interfacial dynamics of more complex polymers, including bilayer lipid membranes. Using high-resolution quasielastic neutron scattering (QNS) and exfoliated graphite...... to a temperature of similar to230 K, we observe the QNS energy width to be dispersionless, consistent with molecular dynamics simulations showing rotational motion of the molecules about their long axis. At 260 K, the QNS energy width begins to increase with wave vector transfer, suggesting onset of nonuniaxial...... rotational motion and bounded translational motion. We continue to observe QNS up to the monolayer melting temperature at similar to340 K where our simulations indicate that the only motion slow enough to be visible within our energy window results from the creation of gauche defects in the molecules....

  10. Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Mojica, Dulce C.; López-Urías, Florentino, E-mail:


    Graphical abstract: Single-layer honeycomb heterojunction structures based on alternated and coupled ribbons of BAs and AlN are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different ribbon widths joined along the zigzag and armchair edges. Optimized heterojunction geometries results revealed that BAs narrow ribbons exhibit a corrugation effect at the interface due to a lattice mismatch. From formation energy calculations, it was found that zigzag heterojunctions are more stable than the armchair heterojunctions. - Highlights: • We design new 2D-semiconductor heterojunction nanostructures. • Monolayers formed by alternated strips (heterojunctions) of aluminum-nitride and boron-arsenide, with graphene-like structure are explored by DFT method. • Due to the lattice mismatch, an effect of corrugation was observed in heterojunctions AlN and BAs. • Electronic band gaps are strongly dependent on width and chirality (zigzag or armchair) of the strips. • Formation energy calculations revealed that zigzag heterojunctions are more stable than the armchair heterojunctions. - Abstract: BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation

  11. Reactivity of Monolayer Protected Silver Clusters Towards Excess Ligand: A Calorimetric Study

    KAUST Repository

    Baksi, Ananya


    Reactivity of monolayer protected atomically precise clusters of noble metals is of significant research interest. Till date very few experimental data are available on the reaction thermodynamics of such clusters. Here we report a calorimetric study of the reaction of glutathione (GSH) protected silver clusters in presence of excess ligand, GSH using isothermal titration calorimetry (ITC). We have studied Ag11(SG)7 and Ag32(SG)19 clusters and compared their reactivity with GSH protected silver nanoparticles (AgNPs) and silver ions. Clusters show intermediate reactivity towards excess ligand com-pared to nanoparticles and silver ions. Several control experiments were performed to understand the degradation mech-anism of these silver clusters and nanoparticles. Effect of dissolved oxygen in the degradation process was studied in de-tail and found that it did not have a significant role, although alternate pathways of degradation with the involvement of oxygen cannot be ruled out. Direct confirmation of the fact that functionalized metal clusters fall in-between NPs and atomic systems in their stability is obtained experimentally for the first time. Several other thermophysical parameters of these clusters were also determined including, density, speed of sound, isentropic compressibility and coefficient of thermal expansion.

  12. Reaction of atomic oxygen with alkanes. Regioselective alcohol formation on γ-radiolysis of liquid carbon dioxide solutions of alkanes

    International Nuclear Information System (INIS)

    Hori, A.; Takamuku, S.; Sakurai, H.


    Gamma-radiolysis of liquid carbon dioxide in the presence of cyclohexane, methylcyclohexane, and cis- or trans-decalin has been studied at 0 0 C. The main products were corresponding alcohols and carbonyl compounds. The oxidizing species from carbon dioxide apparently shows selective attack on C--H bonds of alkane in the order tertiary greater than secondary greater than primary. The observed tendency could be rationalized in terms of the reaction of ground state triplet oxygen atoms, O( 3 P), with alkane in liquid carbon dioxide. In the case of cis- and trans-decalin, highly configurational retention of decalol-9 was observed. The formation of a dimer of alkane was negligibly small. The rapid recombination of radical pairs initially formed by the reaction of O( 3 P) atoms with alkane in a solvent cage is proposed. In addition, the production of cyclohexanone from cyclohexanol is described

  13. Monte Carlo study of fractional (1 1 1) monolayers of EuTe

    CERN Document Server

    Holl, S; Giebultowicz, T; Krenn, H


    The magnetic properties depending on the temperature and magnetic field of few (1 1 1) monolayers of antiferromagnetic EuTe are analyzed by means of Monte Carlo simulations. We apply a classical Heisenberg as well as a XY model Hamiltonian with ferromagnetic nearest neighbor (J sub 1 =0.06 K) and antiferromagnetic next-nearest-neighbor (J sub 2 =-0.16 K) exchange constants. Furthermore, dipolar interaction is included which links the spin space to real space and therefore introduces the easy plane anisotropy. Structures consisting of incomplete sets of monolayers, e.g. two perfect monolayers and a finite island as the third monolayer, are investigated. We analyze the atomic spin patterns and compare these results with total magnetization and neutron diffraction experiments. It is emphasized that EuTe in the reduced dimensional limit of few odd numbers of monolayers exhibits a field-induced uniaxial anisotropy, even in the frame of isotropic Heisenberg exchange interaction. A concomitant field-parallel ferrima...

  14. First-principles study of intrinsic phononic thermal transport in monolayer C3N (United States)

    Gao, Yan; Wang, Haifeng; Sun, Maozhu; Ding, Yingchun; Zhang, Lichun; Li, Qingfang


    Very recently, a new graphene-like crystalline, hole-free, 2D-single-layer carbon nitride C3N, has been fabricated by polymerization of 2,3-diaminophenazine and used to fabricate a field-effect transistor device with an on-off current ratio reaching 5. 5 ×1010 (Adv. Mater. 2017, 1605625). Heat dissipation plays a vital role in its practical applications, and therefore the thermal transport properties need to be explored urgently. In this paper, we perform first-principles calculations combined with phonon Boltzmann transport equation to investigate the phononic thermal transport properties of monolayer C3N, and meanwhile, a comparison with graphene is given. Our calculated intrinsic lattice thermal conductivity of C3N is 380 W/mK at room temperature, which is one order of magnitude lower than that of graphene (3550 W/mK at 300 K), but is greatly higher than many other typical 2D materials. The underlying mechanisms governing the thermal transport were thoroughly discussed and compared to graphene, including group velocities, phonon relax time, the contribution from phonon branches, phonon anharmonicity and size effect. The fundamental physics understood from this study may shed light on further studies of the newly fabricated 2D crystalline C3N sheets.

  15. Study of polymorphism using patterned self-assembled monolayers approach on metal substrates (United States)

    Quiñones, Rosalynn; Brown, Ryanne T.; Searls, Noah; Richards-Waugh, Lauren


    Polymorphism is a molecule's ability to possess altered physical crystalline structures and has become an active interest in pharmaceuticals due to its ability to influence a drug's physical and chemical properties. Crystal stability and solubility are crucial in determining a drug's pharmacokinetics and pharmacodynamics. Changes in these properties due to polymorphisms have contributed to recalls and modifications in industrial production. For this study, the effects of surface interactions with pharmaceuticals were examined through surface modification methodology using organic phosphonic and sulfonic acid self-assembled monolayers (SAMs) developed on a nickel or zinc oxide metal substrate. Drugs analyzed included carbamazepine, cimetidine, tolfenamic acid, and flufenamic acid. All drugs were thermodynamically applied to the reformed surface to aid in recrystallization. It was hypothesized and confirmed that intermolecular bonds, especially hydrogen bonds between the SAMs and pharmaceutical drugs, were the force that assisted in polymorph development. The study was successful in revealing multiple forms for each drug, including their commercial form and at least one additional form using micro FT-IR, Raman spectroscopy, and PXRD. Visual comparisons of crystal polymorphisms were performed with IR microscopy.

  16. Structures and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.


    This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases

  17. Interaction between lipid monolayers and poloxamer 188: An X-ray reflectivity and diffraction study

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.


    The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase ...

  18. Neutron scattering study of 36 Ar monolayer films adsorbed on graphite

    DEFF Research Database (Denmark)

    Taub, H.; da Costa Carneiro, Kim; Kjems, Jørgen


    that of a registered √3×√3 overlayer. Thermal expansion of the monolayer is anomalously large; up to 60 K the linear expansion is 4.5 times greater than in the 3D solid. There is no evidence of a sharp melting transition. Instead, the positional correlations (which extend to the full dimensions of the crystallite...

  19. Molecular structure of dipalmitoylphospatidylcholine Langmuir-Blodgett monolayers studied by atomic force microscopy.

    NARCIS (Netherlands)

    Zhai, X.; Kleijn, J.M.


    Monolayers of dipalmitoylphosphatidylcholine (DPPC) on the air-water interface have been transferred at various surface pressures onto quartz substrates using the Langmuir-Blodgett (LB) technique. The topography of these layers, on a molecular scale, has been examined by atomic force microscopy

  20. Surface structures of normal paraffins and cyclohexane monolayers and thin crystals grown on the (111) crystal face of platinum. A low-energy electron diffraction study

    International Nuclear Information System (INIS)

    Firment, L.E.; Somorjai, G.A.


    The surfaces of the normal paraffins (C 3 --C 8 ) and cyclohexane have been studied using low-energy electron diffraction (LEED). The samples were prepared by vapor deposition on the (111) face of a platinum single crystal in ultrahigh vacuum, and were studied both as thick films and as adsorbed monolayers. These molecules form ordered monolayers on the clean metal surface in the temperature range 100--220 K and at a vapor flux corresponding to 10 -7 Torr. In the adsorbed monolayers of the normal paraffins (C 4 --C 8 ), the molecules lie with their chain axes parallel to the Pt surface and Pt[110]. The paraffin monolayer structures undergo order--disorder transitions as a function of temperature. Multilayers condensed upon the ordered monolayers maintained the same orientation and packing as found in the monolayers. The surface structures of the growing organic crystals do not corresond to planes in their reported bulk crystal structures and are evidence for epitaxial growth of pseudomorphic crystal forms. Multilayers of n-octane and n-heptane condensed upon disordered monolayers have also grown with the (001) plane of the triclinic bulk crystal structures parallel to the surface. n-Butane has three monolayer structures on Pt(111) and one of the three is maintained during growth of the crystal. Cyclohexane forms an ordered monolayer, upon which a multilayer of cyclohexane grows exhibiting the (001) surface orientation of the monoclinic bulk crystal structure. Surface structures of saturated hydrocarbons are found to be very susceptible to electron beam induced damage. Surface charging interferes with LEED only at sample thicknesses greater than 200 A

  1. Adsorption of gas molecules on graphene-like InN monolayer: A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiang; Yang, Qun [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Meng, Ruishen [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Tan, Chunjian [Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Liang, Qiuhua [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Jiang, Junke [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Ye, Huaiyu [Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China); Chen, Xianping, E-mail: [Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, 541004 Guilin (China); Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing (China)


    Highlights: • A comprehensive adsorption mechanism of InN monolayer is theoretical studied to distinguish the physic/chemi-sorption. • Different adsorption sites for different gases are systematically discussed. • The influence (enhanced or weakened) of external electric field to InN-gas system is well investigated. • The influences of gas adsorption to the optical properties (work function and light adsorption ability) of InN monolayer are also researched. - Abstract: Using first-principles calculation within density functional theory (DFT), we study the gas (CO, NH{sub 3}, H{sub 2}S, NO{sub 2}, NO, SO{sub 2}) adsorption properties on the surface of single-layer indium nitride (InN). Four different adsorption sites (Bridge, In, N, Hollow) are chosen to explore the most sensitive adsorption site. On the basis of the adsorption energy, band gap and charge transfer, we find that the most energetic favourable site is changeable between In site and N site for different gases. Moreover, our results reveal that InN is sensitive to NH{sub 3}, SO{sub 2}, H{sub 2}S and NO{sub 2}, by a physisorption or a chemisorption nature. We also perform a perpendicular electric field to the system and find that the applied electric field has a significant effect for the adsorption process. Besides, we also observed the desorption effects on NH{sub 3} adsorbed at the hollow site of InN when the electric field applied. In addition, the optical properties of InN monolayer affected by different gases are also discussed. Most of the gas adsorptions will cause the inhibition of light adsorption while the others can reduce the work function or enhance the adsorption ability in visible region. Our theoretical results indicate that monolayer InN is a promising candidate for gas sensing applications.

  2. Studies on the interactions between parabens and lipid membrane components in monolayers at the air/aqueous solution interface. (United States)

    Flasiński, Michał; Gawryś, Maciej; Broniatowski, Marcin; Wydro, Paweł


    The interactions between parabens (PBs) and lipid components of mammalian and bacterial cell membranes were investigated in model systems of Langmuir monolayers. Me-, Et-, Pr- and Bu-paraben studied in this paper are frequently applied as cosmetics and food preservatives, since they possess broad antimicrobial activity. The mode of PB action is connected with their incorporation into the membrane of bacterial organisms, however; it is not known what is the role of the respective lipid species in this mechanism. This problem is crucial to understand the differences in paraben activity toward individual microorganisms and to shed the light onto the problem of PB cytotoxicity reported in studies on mammalian cells. In this paper, the mentioned aspects were investigated with application of the Langmuir monolayer technique complemented with BAM and GIXD. Our experiments revealed that the influence of PBs depends on their chemical structure, solution concentration and on the class of lipid. The strongest modification of the monolayer characteristics, leading to its collapse at low surface pressure, occurred in the presence of BuPB, having the largest chain. PBs interact preferentially with the monolayers possessing low degree of condensation, whereas for LC state, the effect was weaker and observed only as modification of the 2D unit cells. In the model systems, PBs interact with phospholipids characteristic for mammalian membranes (phosphatidylcholine) stronger than with bacterial (phosphatidylglycerol and cardiolipin). This strong influence of parabens on the model systems composed of animal lipids may explain cytotoxic activity of these preservatives. Copyright © 2016 Elsevier B.V. All rights reserved

  3. Plant n-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan (United States)

    Huang, Tung-Yi; Hsu, Bing-Mu; Chao, Wei-Chun; Fan, Cheng-Wei


    n-Alkane and alkane-degrading bacteria have long been used as crucial biological indicators of paleoecology, petroleum pollution, and oil and gas prospecting. However, the relationship between n-alkane and alkane-degrading bacteria in natural forests is still poorly understood. In this study, long-chain n-alkane (C14-C35) concentrations in litterfall, litter layer, and topsoil as well as the diversity and abundance of n-alkane-degrading bacterial communities in litter layers were investigated in three habitats across a lowland subtropical rainforest in southern Taiwan: ravine, windward, and leeward habitats in Nanjenshan. Our results demonstrate that the litterfall yield and productivity of long-chain n-alkane were highest in the ravine habitats. However, long-chain n-alkane concentrations in all habitats were decreased drastically to a similar low level from the litterfall to the bulk soil, suggesting a higher rate of long-chain n-alkane degradation in the ravine habitat. Operational taxonomic unit (OTU) analysis using next-generation sequencing data revealed that the relative abundances of microbial communities in the windward and leeward habitats were similar and different from that in the ravine habitat. Data mining of community amplicon sequencing using the NCBI database revealed that alkB-gene-associated bacteria (95 % DNA sequence similarity to alkB-containing bacteria) were most abundant in the ravine habitat. Empirical testing of litter layer samples using semi-quantitative polymerase chain reaction for determining alkB gene levels confirmed that the ravine habitat had higher alkB gene levels than the windward and leeward habitats. Heat map analysis revealed parallels in pattern color between the plant and microbial species compositions of the habitats, suggesting a causal relationship between the plant n-alkane production and microbial community diversity. This finding indicates that the diversity and relative abundance of microbial communities in the

  4. A Quantitative Study of Tethered Chains in Various Solution Conditions Using Langmuir Diblock Copolymer Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Michael S.


    This article summarizes our investigations of tethered chain systems using Langmuir monolayer of polydimethysiloxane-poly styrene (PDMS-PS) diblock copolymers on organic liquids. In this system, the PDMS block adsorbs to the air surface while the PS block dangles into the subphase liquid. The air surface can be made either repulsive or attractive for the tethered PS chain segments by choosing a subphase liquid which has a surface tension lower or greater than that of PS, respectively. The segment profile of the PS block is determined by neutron reflection as a function of the surface density, the molecular weights of the PS and PDMS blocks, and the solution conditions. We cover the range of reduced surface density (SIGMA) characteristic of the large body of data in the literature for systems of chains tethered onto solid surfaces from dilute solution in good or theta solvent conditions (SIGMA < 12). We emphasize quantitative comparisons with analytical profile forms and scaling predictions. We find that the strong-stretching limit invoked in analytical SCF and scaling theories is not valid over this Z range. On the other hand, over a large portion of this range (SIGMA < 5) tethered layers are well described by a renormalization group theory addressing weakly interacting or noninteracting chains. Simultaneous with the study of the profile form, the free energy of the chains is examined through the surface tension. A strong increase in the surface pressure is observed with increasing surface density which determines the maximum surface density which can be achieved. This apparently nonequilibrium effect is attributed to steric interactions and limited lateral interpenetration. This effect may explain several outstanding discrepancies regarding the adsorption of end-functionalized chains and diblock copolymers onto solid surfaces.

  5. Diverse carrier mobility of monolayer BNC x : a combined density functional theory and Boltzmann transport theory study (United States)

    Wu, Tao; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng


    BNC x monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNC x (x  =  1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNC x monolayers are semiconductors with band gap ranging from 0.51 eV to 1.32 eV. The carrier mobility of BNC x varies considerably from tens to millions of cm2 V‑1 s‑1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNC x monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along the y direction and electron mobility along the x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNC x layered materials with the proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices.

  6. Self-assembled monolayers on gold nanospheres studied by optical second-harmonic generation (United States)

    Yamaguchi, T.; Kajikawa, K.


    Recently plasmonic biosensors consisting of gold nanoparticles have been developed. In order to understand the response of the biosensors, we have investigated how are gold nanospheres immobilized on a surface covered by a self-assembled monolayer (SAM) which is formed by immersion of the substrate in a solution, by use of surface second-harmonic generation (SHG). The surface immobilized gold nanospheres (SIGNs) are supported by a self-assembled monolayer (SAM) of aminoundecanthiol on a gold thin film. The SIGN substrate was immersed in an ethanol solution of hemicyanine-terminated alkanethiol. The capping angles of the hemicyanine SAM with respect to the top of the SIGN were evaluated from polarization dependence of SHG intensity. The SIGNs are not fully covered with the SAM, and the capping angle is found to be approximately 120 degrees.

  7. The Interface between Gd and Monolayer MoS2: A First-Principles Study

    KAUST Repository

    Zhang, Xuejing


    We analyze the electronic structure of interfaces between two-, four- and six-layer Gd(0001) and monolayer MoS2 by first-principles calculations. Strong chemical bonds shift the Fermi energy of MoS2 upwards into the conduction band. At the surface and interface the Gd f states shift to lower energy and new surface/interface Gd d states appear at the Fermi energy, which are strongly hybridized with the Mo 4d states and thus lead to a high spin-polarization (ferromagnetically ordered Mo magnetic moments of 0.15 μB). Gd therefore is an interesting candidate for spin injection into monolayer MoS2.

  8. Numerical study of friction of flake and adsorbed monolayer on atomically clean substrate

    International Nuclear Information System (INIS)

    Matsukawa, Hiroshi; Haraguchi, Kazuhiro; Ozaki, Shinsuke


    Frictional behaviors of flake and adsorbed monolayer on substrate can be observed by Frictional force microscope and Quartz crystal microbalance experiments and are typical problems in nano-friction. Computer simulations had been played important roles in understanding those behaviors, but in most of them the driving direction coincides with one of the crystal axes of the substrate. Here we report our numerical results of direction dependence of friction of flake and adsorbed monolayer. We found a new kind of dynamical phase transition in which flake and adsorbed monlayer change their structure relative to the substrate and make incommensurae structure to reduce kinetic frictional force after certain transition time. When the driving velocity is decreased the transition time tends to diverge at certain critical velocity for the flake. For the adsorbed monlayer the transition time tends to diverge at certain critical magnitudes of the external force or the interaction strength between adsorbates when they are decreased

  9. A first-principles study on the magnetic properties of nonmetal atom doped phosphorene monolayers. (United States)

    Zheng, Huiling; Zhang, Jianmin; Yang, Baishun; Du, Xiaobo; Yan, Yu


    In order to induce magnetism in two-dimensional semiconductors for their applications in spintronic devices and novel chemical and electronic properties of semiconducting phosphorene, the geometrical structure, electronic and magnetic properties of doped phosphorene monolayers with a series of nonmetal atoms, including H, F, Cl, Br, I, B, C, Si, N, As, O, S and Se, were systematically investigated using first-principles calculations. The results show that although the substitutional doping of H, F, Cl, Br, I, B, N, O, S or Se results in large structural deformation at the doping sites of phosphorene monolayers, all neutral nonmetal atom doped systems are stable. The calculated formation energies reveal that the substitutional doping of numerous nonmetal atoms in phosphorene monolayer are possible under appropriate experimental conditions, and the charged dopants C(-), Si(-), S(+) and Se(+) are stable. Moreover, the substitutional doping of H, F, Cl, Br, I, B, N, As, C(-), Si(-), S(+) or Se(+) cannot induce magnetism in phosphorene monolayer due to the saturation or pairing of valence electrons of dopant and its neighboring P atoms, whereas ground states of neutral C, Si, O, S or Se doped systems are magnetic due to the appearance of an unpaired valence electron of C and Si or the formation of a nonbonding 3p electron of a neighboring P atom around O, S and Se. Furthermore, the magnetic coupling between the moments induced by two Si, O, S or Se are long-range anti-ferromagnetic and the coupling can be attributed to the hybridization interaction involving polarized electrons, whereas the coupling between the moments induced by two C is weak.

  10. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity


    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan


    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the s...

  11. Alkane oxidation by osmium tetroxide. (United States)

    Bales, Brian C; Brown, Peter; Dehestani, Ahmad; Mayer, James M


    Aqueous alkaline OsO4 at 85 degrees C oxidizes saturated alkanes, including primary, secondary, and tertiary C-H bonds. Isobutane affords tert-butanol in quantitative yield based on consumed OsO4. Cyclohexane is oxidized to a mixture of adipate and succinate. Ethane and propane are oxidized to acetate, which itself is further oxidized under the reaction conditions. A few turnovers of isobutane oxidation have been accomplished using NaIO4 as the terminal oxidant. The alkane oxidation is an example of ligand accelerated catalysis, as hydroxide binding to OsO4 is required for reaction. A concerted mechanism involving [3+2] addition of a C-H bond to two oxo groups of OsO4(OH)- is suggested, analogous to the pathways for dihydroxylation of alkenes by OsO4(L) and for addition of H2 to OsO4(L).

  12. Hydrogen Bonding to Alkanes: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen; Olesen, Solveig Gaarn


    The structural, vibrational, and energetic properties of adducts of alkanes and strong cationic proton donors were studied with composite ab initio calculations. Hydrogen bonding in [D-H+ H-alkyl] adducts contributes to a significant degree to the interactions between the two components, which...... are stronger in adducts of isobutane and in adducts of stronger acids. Intramolecular hydrogen bonding in protonated long-chain alcohols manifests itself in the same manner as intermolecular hydrogen bonding and can be equally strong. Udgivelsesdato: 12 juni 2009...

  13. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.


    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  14. Alkane inducible proteins in Geobacillus thermoleovorans B23

    Directory of Open Access Journals (Sweden)

    Kato Tomohisa


    Full Text Available Abstract Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21 and superoxide dismutase (P24 whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes.

  15. Ecological response to climate change and human activities indicated by n-alkane proxy during the mid- to late Holocene: a case study from an alpine lake (United States)

    Zhang, C.; Zhao, C.


    Paleolimonological records provide long-term dynamics information of past climate, environment, human activities and ecological variations and give evolutionary perspectives to understand responses process of ecological shift to internal or external trigger. In this study, a powerful biomarkers, n-alkanes, was used to reconstruct the past 5000 years organic matter sources and ecological evolution history of Beilianchi Lake in the southwestern of Loess Plateau after preliminary investigation of modern samples. Climate-environment change and human activities were also traced by total organic matter (TOC), magnetic susceptibility (MS) and relevant proxies. The results showed that the ecosystem related to organic matter composition in Beilianchi Lake might be mainly controlled by climate change before 1400 cal B.P., whereas after that, it was significantly influenced by soil erosion induced by increasing population and enhanced human activities. Lake ecosystem experienced periodical change from relatively stable stage with combination of allochthonous-autochthonous organic sources prior to 1400 cal B.P. to extremely instability and final return to steady state with allochthonous-dominant organic source since 300 cal B.P.. During the period of instability, organic matter composition during 1400-800 cal B.P. indicated a obvious bimodal distribution based on probability density distribution analysis, which reflected the lake ecosystem might stay at bistable state and switched repeatedly from more-macrophytes state (regime A with low ACL) towards less-macrophytes state (regime B with high ACL) controlled by disturbance of soil erosion. The flickering during this period could serve as the early warning signal of transition towards more-macrophytes state or less-macrophytes state in lake ecosystems.

  16. Packing stress reduction in polymer-lipid monolayers at the air-water interface: An X-ray grazing-incidence diffraction and reflectivity study

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, T.L.; Majewski, J.; Howes, P.B.; Kjaer, K.; Nahmen, A. von; Lee, K.Y.C.; Ocko, B.; Israelachvili, J.N.; Smith, G.S.


    Using synchrotron grazing-incidence X-ray diffraction (GIXD) and reflectivity (XR), the authors have determined the in-plane and out-of-plane structure of phospholipid monolayers at the air-water interface as a function of hydrophilic lipid headgroup size. Di-stearoyl-phosphatidyl-ethanolamine (DSPE) lipid monolayers were systematically modified by chemically grafting hydrophilic poly(ethylene glycol) (PEG) chains of MW = 90 g/mol (2 ethylene oxide, EO, units), MW = 350 g/mol (8 EO units), and MW = 750 g/mol (17 EO units) to the lipid headgroups. The monolayers were studied in the solid phase at a surface pressure of 42 mN/m. At these high lipid packing densities, the PEG chains are submerged in the water subphase. The increased packing stresses from these bulky polymer headgroups distort the unit cell and the in-plane packing modes of the monolayers, leading to large out-of-plane alterations and staggering of the lipid molecules. Surprisingly, a change in the molecular packing of the monolayer toward higher packing densities (lower area per molecule) was observed on increasing the PEG MW to 750 g/mol (17 EO units). This rearrangement of the monolayer structure may be due to a conformational change in the PEG chains.

  17. Melting of short 1-alcohol monolayers on water: Thermodynamics and x-ray scattering studies

    DEFF Research Database (Denmark)

    Berge, B.; Konovalov, O.; Lajzerowicz, J.


    From surface tension measurements we extract the melting entropy Delta S-2D of fatty-alcohol monolayers on water. Delta S-2D is found to be 4(kB)/mol lower than in the bulk. Because of the role of the conformational entropy, the melting transition is discontinuous for long chains, but tends...... to be continuous for molecules shorter than 1-nonanol. For 1-decanol Delta S-2D is sufficiently small to allow observation of critical fluctuations; the diffraction peak, measured with a high resolution synchrotron experiment, is described by a power-law singularity which broadens as the temperature approaches...

  18. X-ray diffraction and molecular-dynamics studies: Structural analysis of phases in diglyceride monolayers

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Larsen, Niels Bent; Bjørnholm, T.


    We report a detailed structural analysis of the phases of 1,2-sn-dipalmitoylglycerol Langmuir monolayers at room temperature. Pressure-induced transitions have been investigated by combination of molecular-dynamics simulations and grazing-incidence x-ray diffraction (XRD). The diglyceride film......; At the lowest pressure the tilt angle reaches approximate to 14 degrees in a direction close to a nearest neighbor direction. Both arrangements of the alkyl chains are confirmed by XRD. For higher order and fractional order Bragg peaks, simulations predict higher intensities than observed with XRD. This may...

  19. Study of cluster ion emission from self assembled monolayers of alkanethiols under keV ion bombardment


    Arezki, Bahia


    This work focuses on the emission processes of metal-organic clusters MmMen, (M is the organic molecule and Me the metal atom) ejected from self assembled monolayers (SAMs) of alkanethiols on gold after keV ion bombardment. These aggregates are often observed upon energetic ion bombardment of strongly bound molecules like SAMs. The explanation of this effect remains elusive, especially for large clusters as those observed in our study. The emission of these clusters is investigated using ToF-...

  20. Study of Alkylthiolate Self-assembled Monolayers on Au(111) Using a Semilocal meta-GGA Density Functional

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Pan, Yun-xiang; Grönbeck, Henrik


    We present a density functional theory study of the structure and stability of self-assembled monolayers (SAMs) of alkylthiolate on Au(111) as a function of the alkyl chain length. The most favorable structure of the SAMs involves an RS–Au–SR complex (S being sulfur, R being an alkyl chain) formed...... through sandwiching one Au adatom by two alkylthiolates (RSs). Comparing a generalized gradient (GGA-PBE) and a meta-GGA (MGGA-M06-L) exchange-correlation functional we find that only the meta-GGA functional predicts the experimentally observed attractive intermolecular interactions within the SAMs...

  1. First-principles study of the contractive reconstruction of gold and silver monolayers on gold, silver and aluminum

    International Nuclear Information System (INIS)

    Takeuchi, Noboru.


    Using first-principles calculations in conjunction with modeling techniques, the author has investigated the structures of Au and Ag monolayers on a number of metal surfaces. Au(100) has a c(26 x 68) surface unit cell and the reconstruction has been interpreted as the top layer transforming to a contracted hexagonal-close-packed layer, superimposed on the square lattice of the underlying substrate atoms. Similar reconstructions have been observed on the 5d fcc metals Ir and Pt, but not in the 4d Rh, Pd, and Ag. The author studied the energetics of a monolayer of Au and Ag using first-principles calculations. The author found that it is energetically favorable for both Au and Ag to transform from a square to hexagonal arrangement and to contract to a higher surface density, but Au gains substantially more energy than Ag. This is true both for a monolayer in isolation as well as on top of a jellium surface. The author also calculated the mismatch energy (energy loss when the top layer loses registry with the substrate) for Au and Ag, and found that Ag has a slightly higher mismatch energy. The first-principles results thus offer a strong indication that Au(100) can reconstruct but Ag will not. The reconstruction is further studied with a 2 dimensional Frenkel-Kontorowa model, with parameters extracted from the total energy calculations. The author found that it is indeed energetically favorable for the top layer of Au(100), but not for Ag, to transform to a hexagonal-close-packed structure and contract. 85 refs., 34 figs., 8 tabs

  2. Literature study and experimental investigations into the production of organic iodine compounds from alkane-vapour/air mixtures with radioiodine in the radiation field

    International Nuclear Information System (INIS)

    Leskopf, W.; Holl, S.; Bleier, K.


    It was assumed in these investigations that these compounds originated in the gas phase by irradiation induced reactions with radioiodine. Alkane(methane, ethane, propane, n-butane) vapour/air mixtures were radiolysed with iodine in a Co-60 gamma source. The parameter varied were the concentrations of iodine (6.85 E-09 mol/ml - 3.43 E-06 mol/ml) and of the alkanes (1.81 E-05 mol/ml - 3.72 E-10 mol/ml) as well as the irradiation doses (4.45 E + 02 Gy - 1.17 E + 05 Gy). The gaseous reaction mixtures were analysed qualitatively and quantitatively by an ECD- and a MSD-detector for iodine compounds difficult to separate. (orig.) [de

  3. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.


    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  4. The use of n-alkane markers to estimate the intake and apparent ...

    African Journals Online (AJOL)

    The n-alkane marker (dosed marker, dotriacontane, C32, herbage markers C31, C33 and C35) technique was evaluated for use in feed intake and digestibility studies with horses. The mean retention time of digesta in the digestive tract was determined in horses following a single dose of C32. The n-alkane technique was ...

  5. Synchrotron X-ray diffraction studies of phase transitions in physisorbed monolayers of rare gases on graphite

    International Nuclear Information System (INIS)

    Bohr, J.


    This study is an investigation of phase transition in monoatomic layers adsorbed on graphite. Such effects can be considered physical realizations of two-dimensional systems. The experimental technique used is synchrotron X-ray diffraction. Systems which have been investigated include the commensurate-incommensurate phase transition in krypton monolayer. By adjusting the spreading pressure in the krypton layer by means of a coadsorbent deuterium gas it has been unambiguously demonstrated that at low temperatures the phase transition is of first order. A melting study of incommensurate argon monolayers demonstrates an experimental verification of the possibility for having a continuous melting transition in two-dimensions. Mixtures of two-components have been investigated for their phases. No (chemical) order-disorder transition is seen. A discussion is given on this lack of a chemical order. This lack is utilized to study the commensurate-incommensurate phase transition driven by average particle size. Finally, a special low-temperature phase is identified in a xenon monlayer which is diluted with freon. (Auth.)

  6. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study. (United States)

    Guo, San-Dong; Liu, Jiang-Tao


    Phonon transport in group-VA element (As, Sb and Bi) monolayer semiconductors has been widely investigated in theory, and, of them, monolayer Sb (antimonene) has recently been synthesized. In this work, phonon transport in monolayer SbAs is investigated with a combination of first-principles calculations and the linearized phonon Boltzmann equation. It is found that the lattice thermal conductivity of monolayer SbAs is lower than those of both monolayer As and Sb, and the corresponding sheet thermal conductance is 28.8 W K -1 at room temperature. To understand the lower lattice thermal conductivity in monolayer SbAs than those in monolayer As and Sb, the group velocities and phonon lifetimes of monolayer As, SbAs and Sb are calculated. The calculated results show that the group velocities of monolayer SbAs are between those of monolayer As and Sb, but that the phonon lifetimes of SbAs are smaller than those of both monolayer As and Sb. Hence, the low lattice thermal conductivity in monolayer SbAs is attributed to very small phonon lifetimes. Unexpectedly, the ZA branch has very little contribution to the total thermal conductivity, only 2.4%, which is obviously different from those of monolayer As and Sb with very large contributions. This can be explained by very small phonon lifetimes for the ZA branch of monolayer SbAs. The lower lattice thermal conductivity of monolayer SbAs compared to that of monolayer As or Sb can be understood by the alloying of As (Sb) with Sb (As), which should introduce phonon point defect scattering. We also consider the isotope and size effects on the lattice thermal conductivity. It is found that isotope scattering produces a neglectful effect, and the lattice thermal conductivity with a characteristic length smaller than 30 nm can reach a decrease of about 47%. These results may offer perspectives on tuning the lattice thermal conductivity by the mixture of multiple elements for applications of thermal management and

  7. The adsorption of CO and NO on the MoS{sub 2} monolayer doped with Au, Pt, Pd, or Ni: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongwei, E-mail: [School of Physics, Anyang Normal University, Anyang 455000 (China); Ju, Weiwei [College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Li, Tingxian; Zhang, Xiwei [School of Physics, Anyang Normal University, Anyang 455000 (China); He, Chaozheng, E-mail: [Physics and Electronic Engineering College, Nanyang Normal University, Nanyang 473061 (China); Ma, Benyuan [Physics and Electronic Engineering College, Nanyang Normal University, Nanyang 473061 (China); Lu, Zhansheng; Yang, Zongxian [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China)


    Graphical abstract: The MoS{sub 2} monolayers doped with Au, Pt, Pd, or Ni show enhanced adsorption and sensitivity toward CO or NO molecule. - Highlights: • CO and NO adsorption on the doped MoS{sub 2} monolayers is theoretically studied. • CO and NO are chemisorbed on the doped MoS{sub 2} monolayers. • Charge transfer can be observed between the adsorbed molecule and the substrates. • Molecular adsorption can induce the change in electronic structures of the doped MoS{sub 2} monolayers. - Abstract: By performing the first-principles calculation, the adsorption of CO and NO molecules on the Au, Pt, Pd, or Ni doped MoS{sub 2} monolayer has been studied. The interaction between CO or NO with the doped MoS{sub 2} monolayer is strong and belongs to the chemisorption, as evidenced by the large adsorption energy and the short distance between the adsorbed molecules and the dopants. The charge transfer and the electronic property induced by the molecule adsorption are discussed. It is found that for both CO and NO adsorption, for all the cases charge transfer between the substrates and the adsorbed molecules has been observed. For NO, the adsorption obviously induces new impurity states in the band gap or the redistribution of the original impurity states. These can lead to the change of the transport properties of the doped MoS{sub 2} monolayer, by which the adsorbed CO or NO can be detected. The present work shows that introducing appropriate dopants may be a feasible method to improve the performance of MoS{sub 2}-based gas sensors.

  8. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kang, Min-Kyoung; Zhou, Yongjin J.; Buijs, Nicolaas A.


    performed functional screening to identify efficient ADs that can improve alkane production by S. cerevisiae. Results: A comparative study of ADs originated from a plant, insects, and cyanobacteria were conducted in S. cerevisiae. As a result, expression of aldehyde deformylating oxygenases (ADOs), which......Background: Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore...... are cyanobacterial ADs, from Synechococcus elongatus and Crocosphaera watsonii converted fatty aldehydes to corresponding Cn-1 alkanes and alkenes. The CwADO showed the highest alkane titer (0.13 mg/L/OD600) and the lowest fatty alcohol production (0.55 mg/L/OD600). However, no measurable alkanes and alkenes were...

  9. First-principles study on the electronic, optical, and transport properties of monolayer α - and β -GeSe (United States)

    Xu, Yuanfeng; Zhang, Hao; Shao, Hezhu; Ni, Gang; Li, Jing; Lu, Hongliang; Zhang, Rongjun; Peng, Bo; Zhu, Yongyuan; Zhu, Heyuan; Soukoulis, Costas M.


    The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer α - and β -GeSe, revealing a direct band gap of 1.61 eV for monolayer α -GeSe and an indirect band gap of 2.47 eV for monolayer β -GeSe. For monolayer β -GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93 ×104cm2/Vs along the armchair direction, comparable to that of black phosphorene. Furthermore, for β -GeSe, robust band gaps nearly independent of the applied tensile strain along the armchair direction are observed. Both monolayer α - and β -GeSe exhibit anisotropic optical absorption in the visible spectrum.

  10. Study of the helium cross-section of unsymmetric disulfide self-assembled monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, Via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)


    Highlights: • Unsymmetrtic disulfide (HDD and HOD) self assembled monolayers were grown on Au(111) by supersonic molecular beam deposition. • Helium scattering cross sections for these two different unsymmetric disulfides were determined. • A common low temperature film phase was observed for the studied disulfides. - Abstract: We have investigated the formation of self-assembled monolayers (SAMs) of 11-hydroxyundecyl decyl disulfide (CH{sub 3}-(CH{sub 2}){sub 9}-S-S-(CH{sub 2}){sub 11}-OH, HDD) and 11-hydroxyundecyl octadecyl disulfide (CH{sub 3}-(CH{sub 2}){sub 17}-S-S-(CH{sub 2}){sub 11}-OH, HOD) produced by supersonic molecular beam deposition (SMBD). The study has been carried out by means of helium diffraction at very low film coverage. In this regime helium single molecule cross sections have been estimated in a temperature range between 100 K and 450 K. The results show a different behavior above 300 K that has been interpreted as the starting of mobility with the formation of two thiolate moieties either linked by a gold adatom or distant enough to prevent cross section overlapping. Finally, helium diffraction patterns measured at 80 K for the SAMs grown at 200 K are discussed and the results support the proposed hypothesis of molecular dissociation based on the cross section data.

  11. Catalytic dehydrogenation of light alkanes on metals and metal oxides

    NARCIS (Netherlands)

    Sattler, Jesper J H B|info:eu-repo/dai/nl/328235601; Ruiz-Martinez, Javier|info:eu-repo/dai/nl/341386405; Santillan-Jimenez, Eduardo|info:eu-repo/dai/nl/323171958; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397


    A study is conducted to demonstrate catalytic dehydrogenation of light alkanes on metals and metal oxides. The study provides a complete overview of the materials used to catalyze this reaction, as dehydrogenation for the production of light olefins has become extremely relevant. Relevant factors,

  12. High-resolution TOF-SIMS study of varying chain length self-assembled monolayer surfaces. (United States)

    Wolf, Kurt V; Cole, David A; Bernasek, Steven L


    A high-resolution time-of-flight secondary ionization mass spectrometer (TOF-SIMS) has been used to investigate chain length effects in hydrocarbon seff-assembled monolayer (SAM) surfaces on gold substrates. A wide range of n-alkanethiols was used to make homogeneous SAM surfaces, which included both odd and even hydrocarbon chain length thiols. Variations in coverage, extent of oxidation, and high-mass cluster formation as a function of hydrocarbon chain length of the alkanethiol SAM surfaces were investigated. Long-short chain length effects were observed for the relative coverage of the SAM surfaces, which directly influences the extent of oxidation for the thin films. The formation of gold-sulfur and gold-adsorbate cluster ions was also observed, since the mass range of the TOF-SIMS made it possible to monitor all of the cluster ions that were formed following the high-energy ion/surface interactions.

  13. Thermodynamic parameters for the adsorption of volatile n-alkane ...

    African Journals Online (AJOL)

    alkanes hexane to nonane on ground dried water hyacinth (E. crassipes) root biomass were studied between 40 and 70°C column temperature using inverse gas chromatography, before and after treatment of the root biomass with mineral acid ...

  14. Magnetic monolayers on semiconducting substrates. An in situ FMR study of Fe-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri Lori, K.


    The growth, magnetic anisotropy, g-factor, and magnetization of Fe monolayers grown on GaAs(001), InAs(001), and InP(001) are investigated by a combination of in situ ferromagnetic resonance and SQUID magnetometry as a function of temperature and film thickness. The effect of stress caused by the lattice mismatch and the surface reconstruction on the magnetic anisotropy is quantified. An in-plane spin reorientation transition as a function of film thickness is observed at room temperature for all systems. A magneto-elastic model is used to explain the direction of the easy axis, the spin reorientation transition, and the contributions to the magnetic anisotropy terms using the stress components measured directly by in situ IV-low-energy electron diffraction. While the model gives a quantitative explanation of the out-of-plane magnetic anisotropy, changes of the electronic interface structure have to be taken into account for the in-plane magnetic anisotropy. The influence of Ag and Au buffer and cap layers on the magnetic anisotropy terms are determined. The temperature dependence of the total magnetic anisotropy, as well as the surface-interface and volume contribution to the magnetic anisotropy are determined for Fe monolayers on GaAs(001). It is demonstrated that the temperature dependence of the magnetic anisotropy is correlated with the temperature dependence of the magnetization according to the Callen-Callen model. The temperature dependence of the volume contribution to the perpendicular magnetic anisotropy is fully explained by the temperature dependence of the magneto-elastic anisotropy. A temperature-driven morphological transformation occurring at a temperature higher than 550 K depending on the film thickness is observed. The thin Fe3Si binary Heusler structure epitaxially grown on MgO(001) is investigated. In addition to the structural properties, magnetic anisotropy, magnetization, g-factor, spin, and orbital magnetism, the magnetic relaxation

  15. X-ray Scattering Studies of Long-Chain Alkanol Monolayers at the Water-Hexane Interface

    Energy Technology Data Exchange (ETDEWEB)

    Schlossman, Mark L.; Tikhonov, Aleksey M.


    X-ray reflectivity and interfacial tension measurements demonstrate that long-chain alkanol monolayers at the water-hexane interface exhibit a well defined chain disorder and partial hexane mixing into the monolayer, in contrast to alkanol monolayers at the water-vapor interface that consist of close-packed rigid rod molecules. At the water-hexane interface triacontanol molecules form a condensed phase with progressive disordering of the chain from the -CH{sub 2}OH to the -CH{sub 3} group. At this interface the density in the head-group region is 10 to 15% greater than bulk water, an effect not seen for the ordered monolayer at the water-vapor interface. Monolayers of shorter length alkanols (consisting of 20, 22, and 24 carbons) and variations with temperature are also discussed.

  16. Oxygen and hydroxyl adsorption on MS{sub 2} (M = Mo, W, Hf) monolayers: a first-principles molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Iordanidou, K.; Houssa, M.; Afanas' ev, V.V.; Stesmans, A. [Department of Physics and Astronomy, University of Leuven (Belgium); Pourtois, G. [IMEC, Leuven (Belgium)


    In this paper, we study the oxygen and hydroxyl adsorption on both pristine and S deficient MS{sub 2} (M = Mo, W, Hf) monolayers, using first-principles molecular dynamics calculations. Our simulations reveal that single-layer HfS{sub 2} suffers severely from oxidation, which results in the formation of strong Hf-O bonds, likely degrading the transport properties of the material. Oxygen adsorption on S deficient monolayers acts as a passivation mechanism, both ''structurally'' by saturating the dangling bonds of neighboring metal atoms and ''electronically'' by removing the S vacancy induced gap states. Hydroxyl adsorption on pristine monolayers generates spin-polarized gap states, and for HfS{sub 2} in particular, causes the Fermi level pinning close to the conduction band edge. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    International Nuclear Information System (INIS)

    Gastegger, Michael; Kauffmann, Clemens; Marquetand, Philipp; Behler, Jörg


    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system’s total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy is constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.

  18. Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate

    Directory of Open Access Journals (Sweden)

    Jiushuai Xu


    Full Text Available Copper films were grown on (3-Mercaptopropyltrimethoxysilane (MPTMS, (3-Aminopropyltriethoxysilane (APTES and 6-(3-(triethoxysilylpropylamino-1,3,5- triazine-2,4-dithiol monosodium (TES self-assembled monolayers (SAMs modified acrylonitrile-butadiene-styrene (ABS substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM and X-ray diffraction (XRD. Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111 preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.

  19. Lipophilization of ascorbic acid: a monolayer study and biological and antileishmanial activities. (United States)

    Kharrat, Nadia; Aissa, Imen; Sghaier, Manel; Bouaziz, Mohamed; Sellami, Mohamed; Laouini, Dhafer; Gargouri, Youssef


    Ascorbyl lipophilic derivatives (Asc-C2 to Asc-C(18:1)) were synthesized in a good yield using lipase from Staphylococcus xylosus produced in our laboratory and immobilized onto silica aerogel. Results showed that esterification had little effect on radical-scavenging capacity of purified ascorbyl esters using DPPH assay in ethanol. However, long chain fatty acid esters displayed higher protection of target lipids from oxidation. Moreover, compared to ascorbic acid, synthesized derivatives exhibited an antibacterial effect. Furthermore, ascorbyl derivatives were evaluated, for the first time, for their antileishmanial effects against visceral (Leishmania infantum) and cutaneous parasites (Leishmania major). Among all the tested compounds, only Asc-C10, Asc-C12, and Asc-C(18:1) exhibited antileishmanial activities. The interaction of ascorbyl esters with a phospholipid monolayer showed that only medium and unsaturated long chain (Asc-C10 to Asc-C(18:1)) derivative esters were found to interact efficiently with mimetic membrane of leishmania. These properties would make ascorbyl derivatives good candidates to be used in cosmetic and pharmaceutical lipophilic formulations.

  20. Aerobic Oxidations of Light Alkanes over Solid Metal Oxide Catalysts. (United States)

    Grant, Joseph T; Venegas, Juan M; McDermott, William P; Hermans, Ive


    Heterogeneous metal oxide catalysts are widely studied for the aerobic oxidations of C 1 -C 4 alkanes to form olefins and oxygenates. In this review, we outline the properties of supported metal oxides, mixed-metal oxides, and zeolites and detail their most common applications as catalysts for partial oxidations of light alkanes. By doing this we establish similarities between different classes of metal oxides and identify common themes in reaction mechanisms and research strategies for catalyst improvement. For example, almost all partial alkane oxidations, regardless of the metal oxide, follow Mars-van Krevelen reaction kinetics, which utilize lattice oxygen atoms to reoxidize the reduced metal centers while the gaseous O 2 reactant replenishes these lattice oxygen vacancies. Many of the most-promising metal oxide catalysts include V 5+ surface species as a necessary constituent to convert the alkane. Transformations involving sequential oxidation steps (i.e., propane to acrylic acid) require specific reaction sites for each oxidation step and benefit from site isolation provided by spectator species. These themes, and others, are discussed in the text.

  1. Cholesterol strongly affects the organization of lipid monolayers studied as models of the milk fat globule membrane: Condensing effect and change in the lipid domain morphology. (United States)

    Murthy, Appala Venkata Ramana; Guyomarc'h, Fanny; Paboeuf, Gilles; Vié, Véronique; Lopez, Christelle


    The biological membrane that surrounds the milk fat globules exhibits phase separation of polar lipids that is poorly known. The objective of this study was to investigate the role played by cholesterol in the organization of monolayers prepared as models of the milk fat globule membrane (MFGM). Differential scanning calorimetry and X-ray diffraction experiments allowed characterization of the gel to liquid crystalline phase transition temperature of lipids, Tm ~35°C, in vesicles prepared with a MFGM lipid extract. For temperature below Tm, atomic force microscopy revealed phase separation of lipids at 30 mN·m(-1) in Langmuir-Blodgett monolayers of the MFGM lipid extract. The high Tm lipids form liquid condensed (LC) domains that protrude by about 1.5 nm from the continuous liquid expanded (LE) phase. Cholesterol was added to the MFGM extract up to 30% of polar lipids (cholesterol/milk sphingomyelin (MSM) molar ratio of 50/50). Compression isotherms evidenced the condensing effect of the cholesterol onto the MFGM lipid monolayers. Topography of the monolayers showed a decrease in the area of the LC domains and in the height difference H between the LC domains and the continuous LE phase, as the cholesterol content increased in the MFGM lipid monolayers. These results were interpreted in terms of nucleation effects of cholesterol and decrease of the line tension between LC domains and LE phase in the MFGM lipid monolayers. This study revealed the major structural role of cholesterol in the MFGM that could be involved in biological functions of this interface (e.g. mechanisms of milk fat globule digestion). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A theoretical study on tunneling based biosensor having a redox-active monolayer using physics based simulation (United States)

    Kim, Kyoung Yeon; Lee, Won Cheol; Yun, Jun Yeon; Lee, Youngeun; Choi, Seoungwook; Jin, Seonghoon; Park, Young June


    We developed a numerical simulator to model the operation of a tunneling based biosensor which has a redox-active monolayer. The simulator takes a realistic device structure as a simulation domain, and it employs the drift-diffusion equation for ion transport, the non-equilibrium Green's function formalism for electron tunneling, and the Ramo-Shockley theorem for accurate calculation of non-faradaic current. We also accounted for the buffer reaction and the immobilized peptide layer. For efficient transient simulation, the implicit time integration scheme is employed where the solution at each time step is obtained from the coupled Newton-Raphson method. As an application, we studied the operation of a recently fabricated reference-electrode free biosensor in various bias conditions and confirmed the effect of buffer reaction and the current flowing mechanism. Using the simulator, we also found a strategy to maximize the sensitivity of the tunneling based sensor.

  3. Functionalized carbon nitride (g-CN) monolayer as a promising energy storage material: A density functional theory study (United States)

    Hussain, T.; Kaewmaraya, T.; Hankel, M.; Amornkitbamrung, V.


    Two-dimensional graphitic carbon nitride (g-CN) sheet, functionalized with polylithiated molecules (CLi2, OLi2), has been investigated to study their structural, electronic and hydrogen (H2) storage properties by van der Waals corrected first principles calculation. A strong binding of both CLi2/OLi2 with two-sided coverage and large enough molecular distance ensures their uniform dispersion over the g-CN monolayer without forming clusters. Each Li in g-CN@2CLi2 (g-CN@2OLi2) adsorbs 3H2, due to its cationic nature through transferring a portion of its charge, resulting into a high H2 storage capacity of 10.34% (9.76%). The calculated H2 adsorption energies are well suited for practical applications.

  4. A study of size-dependent properties of MoS2 monolayer nanoflakes using density-functional theory. (United States)

    Javaid, M; Drumm, Daniel W; Russo, Salvy P; Greentree, Andrew D


    Novel physical phenomena emerge in ultra-small sized nanomaterials. We study the limiting small-size-dependent properties of MoS 2 monolayer rhombic nanoflakes using density-functional theory on structures of size up to Mo 35 S 70 (1.74 nm). We investigate the structural and electronic properties as functions of the lateral size of the nanoflakes, finding zigzag is the most stable edge configuration, and that increasing size is accompanied by greater stability. We also investigate passivation of the structures to explore realistic settings, finding increased HOMO-LUMO gaps and energetic stability. Understanding the size-dependent properties will inform efforts to engineer electronic structures at the nano-scale.

  5. C60-propylamine adduct monolayers at the gas/water interface: A Brewster angle microscopy and x-ray scattering study

    International Nuclear Information System (INIS)

    Fukuto, M.; Penanen, K.; Heilmann, R.K.; Pershan, P.S.; Vaknin, D.


    Brewster angle microscopy (BAM), x-ray specular reflectivity and grazing-incidence x-ray diffraction (GID) studies of C 60 -propylamine adduct monolayers at the gas/water interface as a function of molecular area are reported. At large molecular areas (A>∼150 Angstrom 2 /molecule), BAM images reveal macroscopic heterogeneity in the film, consisting of the coexistence between regions covered with uniform solidlike monolayer and bare water surface. After compression to a limiting molecular area of 150 Angstrom 2 /molecule, the film is observed to be homogeneous, with the uniform monolayer covering the entire available surface. Both the x-ray reflectivity results and the GID patterns are consistent with the formation of a uniform monolayer at A∼150 Angstrom 2 /molecule, while the little dependence that the GID patterns have on the molecular area for A>∼150 Angstrom 2 /molecule is consistent with the heterogeneity in the film. Upon further compression to higher densities (A 2 /molecule), the x-ray reflectivity results suggest the formation of a partial layer either at the molecule/gas interface or at the molecule/water interface. In this high density regime, the shift in the observed GID pattern with molecular area is much smaller than would be expected if the film were to remain a homogeneous monolayer, also consistent with the formation of an inhomogeneous partial layer. The analysis of the broad GID pattern observed from a uniform monolayer in terms of a model 2D radial distribution function, implies a short range positional correlation, extending to only a few molecular distances. The average nearest neighbor distance (d∼13 Angstrom), extracted from the GID analysis, is consistent with the limiting molecular area (A∼150 Angstrom 2 /molecule) assuming local hexagonal packing. (Abstract Truncated)

  6. Study on the formation of self-assembled monolayers on sol-gel processed hafnium oxide as dielectric layers. (United States)

    Ting, Guy G; Acton, Orb; Ma, Hong; Ka, Jae Won; Jen, Alex K-Y


    High dielectric constant (k) metal oxides such as hafnium oxide (HfO2) have gained significant interest due to their applications in microelectronics. In order to study and control the surface properties of hafnium oxide, self-assembled monolayers (SAMs) of four different long aliphatic molecules with binding groups of phosphonic acid, carboxylic acid, and catechol were formed and characterized. Surface modification was performed to improve the interface between metal oxide and top deposited materials as well as to create suitable dielectric properties, that is, leakage current and capacitance densities, which are important in organic thin film transistors. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle goniometry, atomic force microscopy (AFM), and simple metal-HfO2-SAM-metal devices were used to characterize the surfaces before and after SAM modification on sol-gel processed hafnium oxide. The alkylphosphonic acid provided the best monolayer formation on sol-gel processed hafnium oxide to generate a well-packed, ultrathin dielectric exhibiting a low leakage current density of 2x10(-8) A/cm2 at an applied voltage of -2.0 V and high capacitance density of 0.55 microF/cm2 at 10 kHz. Dialkylcatechol showed similar characteristics and the potential for using the catechol SAMs to modify HfO2 surfaces. In addition, the integration of this alkylphosphonic acid SAM/hafnium oxide hybrid dielectric into pentacene-based thin film transistors yields low-voltage operation within 1.5 V and improved performance over bare hafnium oxide.

  7. A raft-associated species of phosphatidylethanolamine interacts with cholesterol comparably to sphingomyelin. A Langmuir-Blodgett monolayer study.

    Directory of Open Access Journals (Sweden)

    Michal Grzybek

    Full Text Available BACKGROUND: Specific interactions between sphingomyelin (SM and cholesterol (Ch are commonly believed to play a key role in the formation of rafts in the biological membranes. A weakness of this model is the implication that these microdomains are confined to the outer bilayer leaflet. The cytoplasmic leaflet, which contains the bulk of phosphatidylethanolamine (PE, phosphatidylserine (PS and phosphatidylinositol (PI, is thought also to harbour half of the membrane cholesterol. Moreover, SLPE (1-stearoyl-2-linoleoyl-sn-glycero-3-phosphatidyl-ethanolamine has recently been shown to be enriched in isolated detergent-resistant membranes (DRM, and this enrichment was independent of the method of isolation of DRM. METHODOLOGY/PRINCIPAL FINDINGS: Here we present quantitative evidence coming from Langmuir-Blodgett monolayer experiments that SLPE forms complex with Ch similar to that between SM and Ch. The energies of these interactions as calculated form the monolayer studies are highly negative. FRAP analysis showed that NBD-Ch recovery was similar in liposomes composed of DOPC/Ch SM or SLPE but not DPPE, providing further evidence that SLPE may form an l(o phase in the presence of high Ch concentration. Experiments on the solubility of DOPC liposomes containing DPPE/Ch (1ratio1, SM/Ch (1ratio1 or SLPE/Ch (1ratio1 showed the presence of Triton X-100 insoluble floating fraction (TIFF in the case of SM/Ch or SLPE/Ch but not in DPPE/Ch containing liposomes. Quantitative determination of particular lipid species in the TIFF fraction confirms the conclusion that SLPE (or similar PE species could be an important constituent of the inner leaflet raft. CONCLUSION: Such interactions suggest a possible existence of inner-leaflet nanoscale assemblies composed of cholesterol complexes with SLPE or similar unsaturated PE species.

  8. Semiconductor-to-metal phase transition in monolayer ZrS{sub 2}: GGA+U study

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok, E-mail:; Tankeshwar, K. [Physics Department, Panjab University Chandigarh-160014 (India); He, Haiying [Valparaiso University Valparaiso, IN (United States); Pandey, Ravindra [Michigan Technological University Houghton, MI (United States); Ahluwalia, P. K. [Himachal Pradesh University Shimla-171005 (India)


    We report structural and electronic properties of ZrS{sub 2} monolayer within density functional theory (DFT) by inclusion of Hubbard on-site Coulomb and exchange interactions. The importance of on-site interactions for both ZrS{sub 2} bulk and monolayer has been highlighted that significantly improves the electronic band-gap. It is demonstrated that mechanical strain induces structural phase transition that results in semiconductor-to-metal transition in monolayer ZrS{sub 2}. This phenomenon has important implications in technological applications such as flexible, low power and transparent electronic devices.

  9. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter


    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are

  10. Study of gas-liquid partitioning of alkane solutes in several organic solvents by using principal component analysis and linear solvation energy relationships

    Energy Technology Data Exchange (ETDEWEB)

    Castells, Cecilia B.; Reta, Mario R


    Principal component analysis (PCA) was used to extract the number of factors which can describe the 737 gas-liquid partition coefficients of five linear, four branched, and two cyclic alkanes in 67 common solvents. Based on the reconstruction of partition coefficient data matrix, we concluded that the experimental dataset could readily be reduced to two relevant factors. Using only these two factors, there were no errors larger than 3%, 7 cases had errors larger than 2%, and in 34 cases, errors were between 1 and 2%. n-Hexane and ethylcyclohexane were chosen as the test factors, and all other partition coefficients were expressed in terms of these two test factors. Prediction of the logarithmic partition coefficient of these alkanes in seven chemically different solvents, which were originally excluded from the data matrix, was excellent: the root mean square error was 0.064, only in 11 cases the errors were larger than 1%, and only 3 had errors larger than 4%. Linear solvation energy relationships (LSERs) using both theoretical and empirical solvent parameters were used to explain the molecular interactions responsible for partition. Several combinations of parameters were tried but the standard deviations were not less than 0.31. This could be attributed to the model itself, imprecisions in the data matrix or in some of the LSER parameters. Solvent cohesive parameters and surface tension in combination with polarity-polarizability or dispersion parameters perform the best. Finally, the two principal component factors were rotated onto the most relevant physicochemical parameters that control the gas-liquid partitioning phenomena.

  11. Effect of nanoparticles on the RII -RI -RV rotator phase transitions of alkanes (United States)

    Mukherjee, Prabir K.


    Experimental studies have shown that nanoparticles play an important role on the rotator phase transitions of n-alkanes. A phenomenological model for predicting the RII -RI -RV phase transitions in mixtures of alkanes and nanoparticles has been proposed by combining Flory-Huggins free energy of isotropic mixing and Landau free energy. The impact of nanoparticles on the RII -RI -RV phase transitions and their transition temperatures is discussed by means of phenomenological theory. The possibility of the tricritical behavior of the RI -RV phase transition in the mixtures of alkanes and nanoparticles is discussed. The theoretical predictions are in good qualitative agreement with available experimental results.

  12. Supported organoiridium catalysts for alkane dehydrogenation (United States)

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo


    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  13. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    Directory of Open Access Journals (Sweden)

    Melissa M Adams


    Full Text Available Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C2, propane (C3, and butane (C4 in anoxic sediments in contrast to methane (C1. In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV, Juan de Fuca Ridge are an ideal site for investigating the anaerobic oxidation of C1-C4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C1-C4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75 °C anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR measurements provide clear evidence for C1-C4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C2-C4 alkanes. Maximum C1-C4 alkane oxidation rates occurred at 55 °C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM. Of the alkanes investigated, C3 was oxidized at the highest rate over time, then C4, C2, and C1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C2-C4 alkanes with AOM for available oxidants and the influence on the fate of C1 derived from these hydrothermal systems.

  14. First-principles study of the sulfur K and L2,3 edges of transition metal disulfide monolayers, MS2 (M=Mo, W and Re) (United States)

    Dadsetani, Mehrdad; Nejatipour, Hajar; Nouri, Tahereh


    By means of the energy loss near edge structure (ELNES) analysis, the electronic structures of layered transition metal disulfides were studied. In the framework of full potential linearized augmented plane wave method, ELNES spectra of sulfur K and L2,3 edges of layered MoS2, WS2 and ReS2 have been calculated at magic angle conditions, and compared with those of bulks and the only existing experimental fine structure. Compared to the bulks, the energy differences between the main peaks in sulfur K and L2,3 edges of monolayers decrease due to the slightly larger bond lengths that it can be used as a fingerprint for monolayers. Sulfur K edges in monolayers include some main features originated from electron transition to pz (π) and px+py (σ) states and their hybridization. The overall dispersions of the sulfur L2,3 edges in all cases are similar to the D-symmetry density of states. The first two features in L2,3 edge of bulks and monolayers can be attributed to electron transition of sulfur 2p to the both unoccupied 3s-like states of sulfur and 4d states of transition metal atoms. Due to the considerable amount of s states at the energy position of a shoulder like structure in L2,3 edge of both bulks and monolayers, these structures can be assigned to the sulfur 2p electron transition to unoccupied sulfur 3s states. The other features at higher energies are due to the transition of sulfur 2p electrons to the D-symmetry states of sulfur. In addition, due to the considerable energy band gaps, it seems that the use of core-hole approximation is essential for accurate reproduction of ELNES features of transition metal disulfides.

  15. Evaluation of n-alkanes and their carbon isotope enrichments (d13C) as diet composition markers

    NARCIS (Netherlands)

    Derseh, M.B.; Pellikaan, W.F.; Tolera, A.; Hendriks, W.H.


    Plant cuticular n-alkanes have been successfully used as markers to estimate diet composition and intake of grazing herbivores. However, additional markers may be required under grazing conditions in botanically diverse vegetation. This study was conducted to describe the n-alkane profiles and the

  16. Adsorption of gas molecules on Cu impurities embedded monolayer MoS{sub 2}: A first- principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B.; Li, C.Y. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Liu, L.L. [Key Lab for Special Functional Materials of Ministry of Eduaction, Henan Province, Henan University, Kaifeng 475004 (China); Zhou, B.; Zhang, Q.K. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Chen, Z.Q., E-mail: [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Tang, Z., E-mail: [Key Laboratory of Polar Materials and Devices, Ministry of Education of China, East China Normal University, Shanghai 200241 (China)


    Highlights: • Embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS{sub 2}. • Transition-metal Cu atom can break the chemical inactivation of MoS{sub 2} surface. • MoS{sub 2}-Cu system is a promising for future application in gas molecules sensing. - Abstract: Adsorption of small gas molecules (O{sub 2}, NO, NO{sub 2} and NH{sub 3}) on transition-metal Cu atom embedded monolayer MoS{sub 2} was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS{sub 2} with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS{sub 2} embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS{sub 2} with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH{sub 3} molecule acts as electron donor after adsorption, which is different from the other gas molecules (O{sub 2}, NO, and NO{sub 2}). The results suggest that MoS{sub 2}-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  17. Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach

    DEFF Research Database (Denmark)

    Tribelli, Paula Maria; Rossi, Leticia; Ricardi, Martiniano M


    Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a...... conditions for cell maintenance or slow growth in a Pseudomonas species and this metabolism could represent an adaptive advantage in polluted environments....

  18. Conformational problem of alkanes in liquid crystals by NMR spectroscopy: a mini-review. (United States)

    Weber, Adrian C J; Chen, Daniel H J


    Recent discoveries of the role of alkane flexibility in determining liquid-crystal behaviour are surveyed. With the impetus for understanding the alkane conformational problem established, recent model dependent (1)H NMR work on the topic will be reviewed where progress is made but the need to circumvent models eventually becomes evident. A closer look at the rigid basic units of alkanes will provide the way forward where it is shown that the orientational ordering and anisotropic potentials of these molecules dissolved in liquid crystals scale with each other. Once this relationship is established, a series of works using anisotropic and isotropic (1)H NMR spectroscopy to study alkane conformational statistics will be covered, wherein the influence of the gas, isotropic condensed and anisotropic condensed phases will be described. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Quasielastic neutron scattering and molecular dynamics simulation studies of the melting transition in butane and hexane monolayers adsorbed on graphite

    DEFF Research Database (Denmark)

    Hervig, K.W.; Wu, Z.; Dai, P.


    neutron diffraction experiments. Butane melts abruptly to a liquid phase where the molecules in the trans conformation translationally diffuse while rotating about their center of mass. In the case of the hexane monolayer, the MD simulations show that the appearance of quasielastic scattering below T-m...... coincides with transformation of Some molecules from trans to gauche conformations. Furthermore, if gauche molecules are prevented from forming in the simulation, the calculated incoherent scattering function contains no quasielastic component below T-m. Modeling of both the neutron and simulated hexane......Quasielastic neutron scattering experiments and molecular dynamics (MD) simulations have been used to investigate molecular diffusive motion near the melting transition of monolayers of flexible rod-shaped molecules. The experiments were conducted on butane and hexane monolayers adsorbed...

  20. Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: A first-principles study (United States)

    Chen, Guo-Xiang; Li, Han-Fei; Yang, Xu; Wen, Jun-Qing; Pang, Qing; Zhang, Jian-Min


    We study the structural, electronic and magnetic properties of 3d transition metal (TM) atoms (Cr, Mn, Fe, Co, Ni and Cu) adsorbed GaN monolayer (GaN-ML) using first-principles calculations. The results show that, for 6 different TM adatoms, the most stable adsorption sites are the same. The adsorption of TM atoms results in significant lattice distortions. A covalent chemical bonding character between TM adatom and GaN-ML is found in TM adsorbed systems. Except for Ni adsorbed system, all TM adsorbed systems show spin polarization implying that the adsorption of TM induces magnetization. The magnetic moments of the adsorbed systems are concentrated on the TM adatoms and the nearest-neighbor N atoms of the adsorption site contributed slightly. Our analysis shows that the GaN-ML properties can be effectively modulated by TM adsorption, and exhibit various electronic and magnetic properties, such as magnetic metals (Fe adsorption), half-metal (Co adsorption), and spin gapless semiconductor (Cu adsorption). These present properties of TM adsorbed GaN-ML may be of value in electronics and spintronics applications.

  1. Selective gas adsorption and I-V response of monolayer boron phosphide introduced by dopants: A first-principle study (United States)

    Cheng, Yongfa; Meng, Ruishen; Tan, Chunjian; Chen, Xianping; Xiao, Jing


    Two-dimensional (2D) materials have gained tremendous research interests for gas sensing applications because of their ultrahigh theoretical specific surface areas and unique electronic properties. Here, we investigate the adsorption of CO, SO2, NH3, O2, NO and NO2 gas molecules on pure and doped boron phosphide (BP) systems using first-principles calculations to exploit their potential in gas sensing. Our results predict that all six gas molecules show stronger adsorption interactions on impurities-doped BP over the pristine monolayer BP. Al-doped BP shows the highest sensitivity to all gas molecules, but N-doped BP is more suitable as a sensing material for SO2, NO and NO2 due to the feasibility of desorption. We further calculated the current-voltage (I-V) relation by mean of nonequilibrium Green's function (NEGF) formalism. The I-V curves indicate that the electronic properties of the doping systems change significantly with gas adsorption by studying the nonparamagnetic molecules NH3 and the paramagnetic molecules NO, which can be more likely to be measured experimentally compared to graphene and phosphorene. This work explores the possibility of BP as a superior sensor through introducing the appropriate dopants.

  2. Self-assembled monolayers with different chemical group substrates for the study of MCF-7 breast cancer cell line behavior

    International Nuclear Information System (INIS)

    Yan, Hongji; Yin, Yanbin; Li, Yu; Tian, Weiming; Zhang, Song; Nie, Yongzhan; He, Jin; Wang, Xiumei; Cui, Fuzhai; Chen, Xiongbiao


    The interactions between cancer cells and the extracellular matrix (ECM) are important with respect to a number of cell behavoirs, yet remain unclear. In this study, self-assembled monolayers with different terminal chemical groups (hydroxyl (-OH), carboxyl (-COOH), animo (-NH 2 ), mercapto (-SH), and methyl (-CH 3 )) were employed as substrates for the culture of MCF-7 cells to examine effects on cell behavior. Cell spreading was investigated by scanning electron microscopy, tallin expression by immunofluorescence, proliferation rate by counting cell numbers, cell cycle by flow cytometry, metabolism by high-performance liquid chromatography and cell migration by live cell imaging. Annexin V-FITC (fluorescein isothiocyanate) and JC-1 assays were performed to determine cell apoptosis and mitochondrial membrane potential, respectively. Our results demonstrate the varied behaviors of MCF-7 cells in response to different chemical groups. Specifically, NH 2 and COOH terminal functional groups promote proliferation, the production of lactic acid and mobility of MCF-7 cells; SH and OH terminal groups enhance the expression and distribution of tallin but result in weak cell proliferation, metabolism, spreading and mobility. These results are meaningful for uncovering the interactions between the ECM and cancer cells; they are potentially useful for designing novel cancer treatment strategies. (paper)

  3. Interaction of Soybean 7S Globulin Peptide with Cell Membrane Model via ITC, QCM-D and Langmuir Monolayer Study. (United States)

    Zou, Yuan; Pan, Run-Ting; Ruan, Qi-Jun; Wan, Zhili; Guo, Jian; Yang, Xiao-Quan


    To understand an underlying molecular mechanism on the cholesterol-lowering effect of soybean 7S globulins, the interactions of their pepsin-released peptides (7S-peptides) with cell membrane models consisting of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL) were systematically studied. The results showed that 7S-peptides were bound to DPPC/DOPC/CHOL liposomes mainly through Van der Waals forces and hydrogen bonds, and the presence of higher CHOL concentrations enhanced the binding affinity (e.g. DPPC/DOPC/CHOL = 1:1:0, binding ratio = 0.114; DPPC/DOPC/CHOL = 1:1:1, binding ratio = 2.02). Compression isotherms indicated that the incorporation of 7S-peptides increased the DPPC/DOPC/CHOL monolayer fluidity and the lipid raft size. The presence of CHOL accelerated the 7S-peptide accumulation on lipid rafts, which could serve as platforms for peptides to develop into β-sheet rich structures. These results allow us to hypothesize that 7S-peptides may indirectly influence membrane protein functions via altering the membrane organization in enterocyte.

  4. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration (United States)

    Ashbaugh, Henry S.; Liu, Lixin; Surampudi, Lalitanand N.


    Previous studies of simple gas hydration have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic hydration is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane hydration using the transferable potentials for phase equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane phase behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane hydration free energies over a range of temperatures. The optimized model reproduces the hydration free energies of the fitted alkanes with a root mean square difference between simulation and experiment of 0.06 kcal/mol over a wide temperature range, compared to 0.44 kcal/mol for the parent model. The optimized model accurately reproduces the temperature dependence of hydrophobic hydration, as characterized by the hydration enthalpies, entropies, and heat capacities, as well as the pressure response, as characterized by partial molar volumes.

  5. A real-time Raman spectroscopy study of the dynamics of laser-thinning of MoS2 flakes to monolayers (United States)

    Gu, Enyao; Wang, Qiyuan; Zhang, Youwei; Cong, Chunxiao; Hu, Laigui; Tian, Pengfei; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun


    Transition metal dichalcogenides (TMDCs) in monolayer form have attracted a great deal of attention for electronic and optical applications. Compared to mechanical exfoliation and chemical synthesis, laser thinning is a novel and unique "on-demand" approach to fabricate monolayers or pattern desired shapes with high controllability and reproducibility. Its successful demonstration motivates a further exploration of the dynamic behaviour of this local thinning process. Here, we present an in-situ study of void formation by laser irradiation with the assistance of temporal Raman evolution. In the analysis of time-dependent Raman intensity, an empirical formula relating void size to laser power and exposure time is established. Void in thinner MoS2 flakes grows faster than in thicker ones as a result of reduced sublimation temperature in the two-dimensional (2D) materials. Our study provides useful insights into the laser-thinning dynamics of 2D TMDCs and guidelines for an effective control over the void formation.

  6. Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first- principles study (United States)

    Zhao, B.; Li, C. Y.; Liu, L. L.; Zhou, B.; Zhang, Q. K.; Chen, Z. Q.; Tang, Z.


    Adsorption of small gas molecules (O2, NO, NO2 and NH3) on transition-metal Cu atom embedded monolayer MoS2 was investigated by first-principles calculations based on the density-functional theory (DFT). The embedded Cu atom is strongly constrained on the sulfur vacancy of monolayer MoS2 with a high diffusion barrier. The stable adsorption geometry, charge transfer and electronic structures of these gas molecules on monolayer MoS2 embedded with transition-metal Cu atom are discussed in detail. It is found that the monolayer MoS2 with embedded Cu atom can effectively capture these gas molecules with high adsorption energy. The NH3 molecule acts as electron donor after adsorption, which is different from the other gas molecules (O2, NO, and NO2). The results suggest that MoS2-Cu system may be promising for future applications in gas molecules sensing and catalysis, which is similar to those of the transition-metal embedded graphene.

  7. Lipoprotein lipase-catalyzed hydrolysis of tri[14C]oleoylglycerol in a phospholipid interface : A monolayer study

    NARCIS (Netherlands)

    Demel, R.A.; Shirai, K.; Jackson, R.L.


    The lipoprotein lipase-catalyzed hydrolysis of triacylglycerol was determined in a lipid monolayer containing egg phosphatidylcholine and tri[14C]oleoylglycerol. In the presence of purified bovine milk lipoprotein lipase and fatty acid-free albumin, the rate of hydrolysis of tri[14C]oleoylglycerol,

  8. Phase transitions in diglyceride monolayers studied by computer simulations, pressure-area isotherms and x-ray diffraction

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.


    1,2-sn-diglyceride monolayers exhibit unique and complex phase transitions as a function of surface pressure. The dynamical response of the layer on expanding the film has been investigated by computer simulations, (π-A) isotherms and grazing-incidence X-ray diffraction. Good agreement is found b...

  9. Photochemical attachment of organic monolayers onto H-terminated Si(111): Radical chain propagation observed via STM studies

    NARCIS (Netherlands)

    Eves, B.J.; Sun, Q.Y.; Lopinski, G.P.; Zuilhof, H.


    Photochemical reactions of terminal alkenes with hydrogen-terminated silicon surfaces are being used by many groups to produce covalently attached organic monolayers with a wide range of terminal functionalities. Despite the considerable activity in this area, the mechanism for these reactions has

  10. Alkane Energy plc annual report 2001

    Energy Technology Data Exchange (ETDEWEB)



    Alkane Energy plc (Alkane) is the UK's leading commercial producer of methane gas from abandoned coal mines. It currently operates five Green Energy Parks in the East Midlands and Yorkshire two of which were opened in the reporting year. Two agreements have been signed to develop sites to supply sites with a capacity of 50 MW of electricity. The annual report outlines achievements and plans and describes the technologies developed to capture methane. It discusses the environmental benefits of producing coal mine methane (CMM), particularly in reducing global warming, and benefits to the deprived former mining communities of the UK.

  11. Alkane Energy plc annual report 2002

    Energy Technology Data Exchange (ETDEWEB)



    Alkane Energy plc (Alkane) is the UK's leading commercial producer of methane gas from abandoned coal mines. It currently operates five Green Energy Parks in the East Midlands and Yorkshire two of which began delivering gas in the reporting year. In March 2003 a contract was signed to develop a 2.7 MW generation facility in Gelsenkirchen, Germany. The annual report outlines achievements and plans and describes the technologies developed to capture methane. It discusses the environmental benefits of producing coal mine methane (CMM), particularly in reducing global warming, and benefits to the deprived former mining communities of the UK.

  12. Perforated monolayers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Regen. Steven L.


    This STI is a final report for a DOE-supported program, ''Perforated Monolayers,'' which focused on the fabrication of ultrathin membranes for gas separations based on Langmuir-Blodgett chemistry.

  13. Enzymes and Genes Involved in Aerobic Alkane Degradation

    Directory of Open Access Journals (Sweden)

    Zongze eShao


    Full Text Available Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes , transport across cell membrane of alkanes , the regulation of alkane degradation gene and initial oxidation.

  14. Adsorption studies of alcohol molecules on monolayer MoS{sub 2} nanosheet—A first-principles insights

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, V.; Chandiramouli, R., E-mail:


    Highlights: • The adsorption of methanol, ethanol & 1-propanol on MoS{sub 2} nanosheet are studied. • The PDOS & band structure confirms adsorption of alcohol vapors on MoS{sub 2} nanosheet. • The adsorption of 1-propanol vapor on MoS{sub 2} nanosheet is more favorable. • The alcohol molecules adsorption on MoS{sub 2} nanosheet is explored in atomistic level. - Abstract: The electronic and adsorption properties of three different alcohol molecules namely methanol, ethanol and 1-propanol vapors on MoS{sub 2} nanosheet is investigated using DFT method. The structural stability of MoS{sub 2} nanosheet is ascertained with formation energy. The adsorption properties of alcohol molecules on MoS{sub 2} base material is discussed in terms of average energy gap variation, Mulliken charge transfer, energy band gap and adsorption energy. The prominent adsorption sites of methanol, ethanol and 1-propanol vapors on MoS{sub 2} nanosheet are studied in atomistic level. The projected density of states (PDOS) spectrum gives the clear insights on the electronic properties of MoS{sub 2} nanosheet. The PDOS and energy band structure confirmed the adsorption of alcohol vapors on MoS{sub 2} nanosheet. The variation in the band structure and PDOS is noticed upon adsorption of methanol, ethanol and 1-propanol molecules on MoS{sub 2} nanosheet. The PDOS spectrum also reveals the variation in peak maxima owing to transfer of electron between alcohol molecules and MoS{sub 2} base material. The adsorption of 1-propanol vapor on MoS{sub 2} nanosheet is observed to be more favorable than other alcohol molecules. The findings confirm that monolayer MoS{sub 2} nanosheet can be used to detect the presence of alcohol vapors in the environment.

  15. Equilibrium and non-equilibrium kinetics of self-assembled surfactant monolayers: a vibrational sum-frequency study of dodecanoate at the fluorite-water interface. (United States)

    Schrödle, Simon; Richmond, Geraldine L


    The adsorption, desorption, and equilibrium monomer exchange processes of sodium dodecanoate at the fluorite(CaF 2)-water interface have been studied. For the first time, we use in situ vibrational sum-frequency spectroscopy (VSFS) to gain insights into the mechanism and kinetics of monolayer self-assembly at the mineral-water interface. By exploiting the nonlinear optical response of the adsorbate, the temporal correlation of headgroup adsorption and alignment of the surfactant's alkyl chain was monitored. Because of the unique surface-specificity of VSFS, changes in the interfacial water structure were also tracked experimentally. The spectra clearly reveal that the structure of interfacial water molecules is severely disturbed at the start of the adsorption process. With the formation of a well-ordered adsorbate layer, it is partially reestablished; however, the molecular orientation and state of coordination is significantly altered. Even at very low surfactant concentrations, overcharging of the mineral surface (i.e., the adsorption of adsorbates past the point of electrostatic equilibrium) was observed. This points out the importance of effects other than electrostatic interactions and it is proposed that cooperative effects of both water structure and surfactant hemimicelle formation at the interface are key factors. The present study also investigates desorption kinetics of partially and fully established monolayers and a statistical model for data analysis is proposed. Additional experiments were performed in the presence of electrolytes and showed that uni- and divalent anions affect the nonequilibrium kinetics of self-assembled monolayers in strikingly different ways.

  16. Scanning tunneling microscopy studies of corrosion passivation and nanometer-scale lithography with self-assembled monolayers (United States)

    Zamborini, Francis Patrick

    The research in this dissertation examines the possible applications of organomercaptan self-assembled monolayers (SAMs) for corrosion passivation and nanometer-scale lithography. We examined linear-chain n-alkanethiol and aromatic SAMs in these studies and used scanning tunneling microscopy (STM) as the main tool for surface characterization. The corrosion passivation properties of n-alkanethiol SAMs were studied on Au in aqueous CN- and Br - solutions and on underpotentially deposited Cu on Au (Au/Cu-UPD) in aqueous HClO4. All SAMs suppress corrosion and shift the potential for corrosion to more positive potentials compared to that on the unmodified metals. We found that corrosion of n-alkanethiol SAM-modified Au begins at defects in the monolayer and the surface morphology depends on the functional end group of the SAM. Corrosion on the unpassivated metal surface begins at high energy sites such as step edges and pits. The chain length and functional end group of SAMs were varied to determine which factors were most important for the best protection against corrosion. We found that corrosion passivation improves with increasing chain length and more hydrophilic functional end groups like OH and COOH protect better than hydrophobic end groups like CH3. The passivation properties of linear-chain SAMs was compared with aromatic SAMs and we found that if they are equally thick and contain the same functional end group, the aromatic SAMs are superior. One goal of this research was to improve the barrier properties of SAMs. We found that depositing a single layer of Cu onto Au before adsorbing the SAM improved its barrier properties dramatically compared to when the SAM was adsorbed directly to the Au. In summary, the corrosion-related studies in this dissertation discuss the corrosion mechanism of SAM-modified metal surfaces, the important factors that determine the passivation properties of SAMs, and a strategy for dramatically improving the barrier properties of

  17. The Roles of Microbial Communities in n-Alkane Distribution of The Nanjenshan Lowland Subtropical Rainforest in Taiwan (United States)

    Chen, Y. W.; Huang, T. Y.; Fan, C. W.; Chao, W. C.; Yang, T. N.; Huang, C. P.; Hsu, B. M.


    Analysis of total organic carbon in Nanjenshan, a lowland subtropical rainforest in southern Taiwan, revealed that the carbon storage of litter-layer was about 35% lower in ravine area than in windward and leeward areas, while the soil storage in these areas were similar. In this one year follow-up study, we aimed to investigate the kinetic changes of n-alkane (C14-C35) concentration from litter fall, litter-layer, surface soil, soil in -10 cm depth, and soil in -30 cm depth by a GC-FID method. The n-alkane distribution and n-alkane flux of these areas were also analyzed. Next generation sequencing was carried out to examine the metagenomics of uncultured microbial community in litter-layer of these areas. Our results showed that the net weight of one year-litter fall in ravine area was 30% higher than the others. The average concentration of n-alkane in leaves in ravine was 90% and 50% higher than in windward area and leeward area, respectively. Although the n-alkane flux in ravine area was twice higher than the other areas, the n-alkane concentrations in litter-layer and soils of different layers were similar among all areas, suggesting a rapid degradation of n-alkane in liter layer in ravine area. Interestingly, the character of odd over even predominance of n-alkane was gradually lost in soil layer in ravine area. Metagenomic data have showed that the structure of microbial abundance in ravine area was different from windward and leeward areas. In ravine area, the numbers in phyla of Bacteroidetes, Actinobacteria, and Proteobacteria, were higher than the other areas, while in phyla of Acidobacteria and Planctomycetes were lower. Our data provided evidence that microbial communities may not only play a role on n-alkane degradation but also change the profile in abundance of high-chain length n-alkanes.

  18. Poly(diacetylene) Monolayers Studied with a Fluorescence Scanning Near-Field Optical Microscope

    NARCIS (Netherlands)

    Moers, Marco H.P.; Moers, M.H.P.; Gaub, Hermann E.; van Hulst, N.F.


    A novel and powerful method to study the optical properties of thin lipid films which a resolution superior to confocal microscopy is presented. With a scanning near-field optical microscope, fluorescence images of a Langmuir-Blodgett film of diethylene glycol diamine pentacosadiynoic amide are

  19. Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

    CERN Document Server

    Laurinavichius, K S


    Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

  20. A New In Vitro Model to Study Cellular Responses after Thermomechanical Damage in Monolayer Cultures (United States)

    Hettler, Alice; Werner, Simon; Eick, Stefan; Laufer, Stefan; Weise, Frank


    Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery), only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC). The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the ‘wound’ within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself to study the

  1. Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide (United States)

    Verma, Akarsh; Parashar, Avinash


    The aim of this article is to study the effects of functional groups such as hydroxyl, epoxide and carboxyl on the fracture toughness of graphene. These functional groups form the backbone of the intrinsic atomic structure of graphene oxide (GO). Molecular dynamics based simulations were performed in conjunction with reactive force field parameters to capture the Mode-I fracture toughness of functionalised graphene. Simulations were performed in stages, to study the effect of these functional groups, individually as well as all together on the fracture toughness of GO nanosheets. The molecular dynamics based simulations performed in this article helps us to conclude that the spatial distribution and concentration of functional groups significantly affects the fracture behavior of GO nanosheets.

  2. Grazing incidence diffraction and X-ray reflectivity studies of the interactions of inorganic mercury salts with membrane lipids in Langmuir monolayers at the air/water interface. (United States)

    Broniatowski, Marcin; Flasiński, Michał; Dynarowicz-Łatka, Patrycja; Majewski, Jarosław


    The interactions of mercury ions with the membrane phospholipids are considered to be of great importance regarding the toxicity of this metal in living organisms. To obtain deeper insight into this problem, we performed systematic studies applying the Langmuir technique complemented with synchrotron X-ray scattering methods (grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XR)). We focused our attention on the interactions of inorganic mercury salts dissolved in the aqueous subphase with lipid monolayers, formed by selected membrane phospholipids, namely, dipalmitoylphosphatidylglicerol (DPPG), dipalmitoylphosphatidylcholine (DPPC), 1-octadecyl 2-sn-phosphatidylcholine (lyso-PC), and sphingomyelin (SM). Two different inorganic mercury salts, one of a hydracid, HgCl(2), and the other of an oxacid, Hg(NO(3))(2), have been investigated. Our results proved that the elastic properties of phospholipid monolayers are a key factor regarding the interactions with mercury ions. Significant differences in mercury ions complexation are observed with double-chain phospholipids (such as DPPG and DPPC) forming fluid layers of low compressibility and phospholipids forming more compressible films (like SM and lyso-PC). Namely, important changes in the monolayer characteristic were observed only for the latter kind of lipids. This is an important finding taking into account the accumulation of mercury in the central nervous system and its neurotoxic effects. SM is one of the most abundant lipids in neurons shells and therefore can be considered as a target lipid complexing mercury ions.

  3. Eukaryotic expression system Pichia pastoris affects the lipase catalytic properties: a monolayer study.

    Directory of Open Access Journals (Sweden)

    Madiha Bou Ali

    Full Text Available Recombinant DNA methods are being widely used to express proteins in both prokaryotic and eukaryotic cells for both fundamental and applied research purposes. Expressed protein must be well characterized to be sure that it retains the same properties as the native one, especially when expressed protein will be used in the pharmaceutical field. In this aim, interfacial and kinetic properties of native, untagged recombinant and tagged recombinant forms of a pancreatic lipase were compared using the monomolecular film technique. Turkey pancreatic lipase (TPL was chosen as model. A kinetic study on the dependence of the stereoselectivity of these three forms on the surface pressure was performed using three dicaprin isomers spread in the form of monomolecular films at the air-water interface. The heterologous expression and the N-His-tag extension were found to modify the pressure preference and decrease the catalytic hydrolysis rate of three dicaprin isomers. Besides, the heterologous expression was found to change the TPL regioselectivity without affecting its stereospecificity contrary to the N-tag extension which retained that regioselectivity and changed the stereospecificity at high surface pressures. The study of parameters, termed Recombinant expression Effects on Catalysis (REC, N-Tag Effects on Catalysis (TEC, and N-Tag and Recombinant expression Effects on Catalysis (TREC showed that the heterologous expression effects on the catalytic properties of the TPL were more deleterious than the presence of an N-terminal tag extension.

  4. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip


    In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... of information that is inaccessible by purely experimental means, and these structures, in turn, strongly suggest that a bifunctional reaction mechanism for alkaline HER will be operative at the interface between the films, the metal substrates, and the surrounding aqueous medium. This bifunctionality produces...... important changes in the calculated barriers of key elementary reaction steps, including water activation and dissociation, as compared to traditional monofunctional Pt surfaces. The successful identification of the structures of thin metal films and three-phase boundary catalysts is not only an important...

  5. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.


    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface...... is further increased. Using a Gaussian theory on an interfacial Ginzburg-Landau model of surfactants, we find that the initial decrease of the bending rigidity is attributed to coupling between fluctuations of the surfactant orientation field to those in the interfacial height. (C) 2000 American Institute......, corresponding to the interfacial tension and the mean bending modulus are determined from the analyses of the long-wavelength behavior of the structure factor of the capillary waves. We found that the interfacial tension decreases with increasing surfactant interfacial coverage and/or surfactant chain length...

  6. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul Davis [Univ. of California, Berkeley, CA (United States)


    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with (√7x√7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  7. Nitrated metalloporphyrins as catalysts for alkane oxidation (United States)

    Ellis, Jr., Paul E.; Lyons, James E.


    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  8. Saponin Interactions with Model Membrane Systems - Langmuir Monolayer Studies, Hemolysis and Formation of ISCOMs. (United States)

    de Groot, Carolin; Müller-Goymann, Christel C


    Saponins are used in medicine due to their pharmacological and immunological effects. To better understand interactions of saponins with model membranes and natural membranes of, for example, erythrocytes, Langmuir film balance experiments are well established. For most saponins, a strong interaction with cholesterol was demonstrated in dependence of both the aglycone part and the sugar moieties and is suggested to be correlated with a strong hemolytic activity, high toxicity, and high surface activity, as was demonstrated for the steroid saponin digitonin. In general, changes in the sugar chain or in substituents of the aglycone result in a modification of the saponin properties. A promising saponin with regard to fairly low hemolytic activity and high adjuvant effect is α -tomatine, which still shows a high affinity for cholesterol. An interaction with cholesterol and lipids has also been proven for the Quillaja saponin from the bark of Quillaja saponaria Molina. This triterpene saponin was approved in marketed vaccines as an adjuvant due to the formation of immunostimulating complexes. Immunostimulating complexes consist of a Quillaja saponin, cholesterol, phospholipids, and a corresponding antigen. Recently, another saponin from Quillaja brasiliensis was successfully tested in immunostimulating complexes, too. Based on the results of interaction studies, the formation of drug delivery systems such as immunostimulating complexes or similar self-assembled colloids is postulated for a variety of saponins. Georg Thieme Verlag KG Stuttgart · New York.

  9. Study of the ability of self-assembled N-vinylcarbazole monolayers to protect copper against corrosion

    Directory of Open Access Journals (Sweden)



    Full Text Available N-Vinylcarbazole (NVC monolayers were self-assembled on copper surfaces. The electrochemical properties of the copper surfaces modified by NVC self-assembled monolayers (SAMs were investigated using polarization and electrochemical impedance spectroscopic (EIS methods. The polarization measurements indicated that the NVC SAMs could reduce the rates of the anodic and cathodic reaction on the surface of copper electrodes in 0.5 mol dm-3 NaCl solution. The EIS results showed the NVC formed a closely packed film that was able to inhibit copper corrosion. X-Ray photoelectron spectroscopy (XPS analysis of the copper samples and atomic adsorption analysis of the solution showed that the copper surfaces were covered by NVC SAMs, and the adsorption of NVC on the copper surfaces was accompanied with dissolution of Cu into the solution.

  10. Monolayer atomic crystal molecular superlattices (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng


    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  11. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.


    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid...... dipaimitoylphosphatidylethanolamine (DPPE) were studied in the solid phase at 23 degreesC and a surface pressure of 45 mN/m. At these concentrations and conditions the two components do not phase-separate and no evidence for domain formation was observed. X-ray scattering measurements reveal that GM, is accommodated within the host...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  12. Computational studies at the density functional theory (DFT) level about the surface functionalization of hexagonal monolayers by chitosan monomer (United States)

    Ebrahimi, Javad; Ahangari, Morteza Ghorbanzadeh; Jahanshahi, Mohsen


    Theoretical investigations based on density functional theory have been carried out to understand the underlying interactions between the chitosan monomer and several types of hexagonal monolayers consisting of pristine and defected graphene and boron-nitride nanosheets. Based on the obtained results, it was found that the type of the interaction for all the systems is of non-covalent nature and the chitosan monomer physically interacts with the surface of mentioned nanostructures. The interaction strength was evaluated by calculating the adsorption energies for the considered systems and it was found that the adsorption of chitosan monomer accompanies by the release of about -0.67 and -0.66 eV energy for pristine graphene and h-BN monolayer, respectively. The role of structural defect has also been considered by embedding a Stone-Wales defect within the structure of mentioned monolayers and it was found that the introduced defect enhances the interactions between the chitosan monomer and nanostructures. The role of dispersion interactions has also been taken into account and it was found that these long-range interactions play the dominating role in the attachment of chitosan monomer onto the graphene sheet, while having strong contribution together with the electrostatic interactions for the stabilization of chitosan onto the surface of h-BN monolayer. For all the cases, the adsorption of chitosan monomer did not change the inherent electronic properties of the nanostructures based on the results of charge transfer analysis and energy gap calculations. The findings of the present work would be very useful in future investigations to explore the potential applications of these hybrid materials in materials science and bio-related fields.

  13. First-principles studies of Te line-ordered alloys in a MoS2 monolayer (United States)

    Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.


    The thermodynamic stability, structural and electronic properties of Te line-ordered alloys are investigated using density functional theory (DFT) methods. Thirty four possible Te line-ordered alloy configurations are found in a 5×5 supercell of a MoS2 monolayer. The calculated formation energies show that the Te line-ordered alloy configurations are thermodynamically stable at 0 K and agree very well with the random alloys. The lowest energy configurations at each concentration correspond to the configuration where the Te atom rows are far apart from each other (avoiding clustering) within the supercell. The variation of the lattice constant at different concentrations obey Vegard's law. The Te line-ordered alloys fine tune the band gap of a MoS2 monolayer although deviating from linearity behavior. Our results suggest that the Te line-ordered alloys can be an effective way to modulate the band gap of a MoS2 monolayer for nanoelectronic, optoelectronic and nanophotonic applications.

  14. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    Directory of Open Access Journals (Sweden)

    Florin Musat


    Full Text Available The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydrocarbon seeps, and included the uncoupling of the sulfate-reduction and anaerobic oxidation of methane rates, the consumption of gaseous alkanes in anoxic sediments, or the enrichment in 13C of gases in interstitial water vs. the source gas. Microorganisms able to degrade gaseous alkanes were recently obtained from deep-sea and terrestrial sediments around hydrocarbon seeps. Up to date, only sulfate-reducing pure or enriched cultures with ethane, propane and n-butane have been reported. The only pure culture presently available, strain BuS5, is affiliated to the Desulfosarcina–Desulfococcus cluster of the Deltaproteobacteria. Other phylotypes involved in gaseous alkane degradation have been identified based on stable-isotope labeling and whole-cell hybridization. Under anoxic conditions, propane and n-butane are activated similar to the higher alkanes, by homolytic cleavage of the CH bond of a subterminal carbon atom, and addition of the ensuing radical to fumarate, yielding methylalkylsuccinates. An additional mechanism of activation at the terminal carbon atoms was demonstrated for propane, which could in principle be employed also for the activation of ethane.

  15. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance (United States)

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.


    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  16. Zitterbewegung in monolayer silicene in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Roldán, J.B. [Departamento de Electrónica y Tecnología de Computadores and CITIC, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, F. de los [Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)


    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS{sub 2}. - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS{sub 2})

  17. Effect of Cd2+ and Cd2+/auxin mixtures on lipid monolayers - Model membrane studies on the role of auxins in phytoremediation of metal ions from contaminated environment. (United States)

    Hąc-Wydro, Katarzyna; Mach, Marzena; Węder, Karolina; Pająk, Katarzyna; Wydro, Paweł


    In this work Langmuir monolayer experiments were performed to analyze the effect of Cd 2+ ions and their mixtures with synthetic auxin (1-naphthaleneacetic acid - NAA) on lipid films. These investigations were motivated by the fact that auxins act effectively as the agents improving the removal of metal ions from contaminated water and soil by plants (phytoextraction), and although their mechanism of action in this area is still unclear, it was suggested that it can be membrane-related. The experiments were done for one component (1,2-dipalmitoyl-sn-glycero-3-phosphocholine - DPPC; 1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC; 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) - DPPG) monolayers and mixed (DPPG/DOPC and DPPG/DPPC) films treated as model of plant leaves membranes. The monolayer properties were analyzed based on the surface pressure-area isotherms obtained during film compression, stability measurements and Brewster angle microcopy studies. The collected results together with the data presented in literature evidenced that both metal ions and auxins modify lipid system properties and by using them in a combination it is possible to weaken the influence of sole metal ions on membrane organization. This seems to be in agreement with the hypothesis that the role of plant growth regulators in increasing phytoextraction effectiveness may be membrane-related. However, further experiments are required to find possible correlations between the type and concentration of metal ion, composition of membrane or structural elements in auxin molecule and observed alterations in membrane properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study (United States)

    Hall, Joshua; Pielić, Borna; Murray, Clifford; Jolie, Wouter; Wekking, Tobias; Busse, Carsten; Kralj, Marko; Michely, Thomas


    Based on an ultra-high vacuum compatible two-step molecular beam epitaxy synthesis with elemental sulphur, we grow clean, well-oriented, and almost defect-free monolayer islands and layers of the transition metal disulphides MoS2, TaS2 and WS2. Using scanning tunneling microscopy and low energy electron diffraction we investigate systematically how to optimise the growth process, and provide insight into the growth and annealing mechanisms. A large band gap of 2.55 eV and the ability to move flakes with the scanning tunneling microscope tip both document the weak interaction of MoS2 with its substrate consisting of graphene grown on Ir(1 1 1). As the method works for the synthesis of a variety of transition metal disulphides on different substrates, we speculate that it could be of great use for providing hitherto unattainable high quality monolayers of transition metal disulphides for fundamental spectroscopic investigations.

  19. A convenient fluorometric method to study sulfur mustard-induced apoptosis in human epidermal keratinocytes monolayer microplate culture. (United States)

    Ray, Radharaman; Hauck, Stephanie; Kramer, Rachel; Benton, Betty


    Sulfur mustard [SM; bis-(2-chloroethyl) sulfide], which causes skin blistering or vesication [(1991). Histo- and cytopathology of acute epithelial lesions. In: Papirmeister, B., Feister, A. J., Robinson, S. I., Ford, R. D., eds. Medical Defense Against Mustard Gas: Toxic Mechanisms and Pharmacological Implications. Boca Raton: CRC Press, pp. 43-78.], is a chemical warfare agent as well as a potential terrorism agent. SM-induced skin blistering is believed to be due to epidermal-dermal detachment as a result of epidermal basal cell death via apoptosis and/or necrosis. Regarding the role of apoptosis in SM pathology in animal skin, the results obtained in several laboratories, including ours, suggest the following: 1) cell death due to SM begins via apoptosis that proceeds to necrosis via an apoptotic-necrotic continuum and 2) inhibiting apoptosis decreases SM-induced microvesication in vivo. To study the mechanisms of SM-induced apoptosis and its prevention in vitro, we have established a convenient fluorometric apoptosis assay using monolayer human epidermal keratinocytes (HEK) adaptable for multiwell plates (24-, 96-, or 384-well) and high-throughput applications. This assay allows replication and multiple types of experimental manipulation in sister cultures so that the apoptotic mechanisms and the effects of test compounds can be compared statistically. SM affects diverse cellular mechanisms, including endoplasmic reticulum (ER) Ca2+ homeostasis, mitochondrial functions, energy metabolism, and death receptors, each of which can independently trigger apoptosis. However, the biochemical pathway in any of these apoptotic mechanisms is characterized by a pathway-specific sequence of caspases, among which caspase-3 is a key member. Therefore, we exposed 80-90% confluent HEK cultures to SM and monitored apoptosis by measuring the fluorescence generated due to hydrolysis of a fluorogenic caspase-3 substrate (acetyl- or benzyl oxycarbonyl

  20. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.


    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  1. Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations (United States)

    Yu, Sheng; Ran, Shunjie; Zhu, Hao; Eshun, Kwesi; Shi, Chen; Jiang, Kai; Gu, Kunming; Seo, Felix Jaetae; Li, Qiliang


    With the advances in two-dimensional (2D) transition metal dichalcogenides (TMDCs) based metal-oxide-semiconductor field-effect transistor (MOSFET), the interface between the semiconductor channel and gate dielectrics has received considerable attention due to its significant impacts on the morphology and charge transport of the devices. In this study, first principle calculations were utilized to investigate the strain effect induced by the interface between crystalline α-Al2O3 (0001)/h-MoS2 monolayer. The results indicate that the 1.3 nm Al2O3 can induce a 0.3% tensile strain on the MoS2 monolayer. The strain monotonically increases with thicker dielectric layers, inducing more significant impact on the properties of MoS2. In addition, the study on temperature effect indicates that the increasing temperature induces monotonic lattice expansion. This study clearly indicates that the dielectric engineering can effectively tune the properties of 2D TMDCs, which is very attractive for nanoelectronics.

  2. Liquid + liquid equilibria for ternary mixtures of (solvent + aromatic hydrocarbon + alkane)

    International Nuclear Information System (INIS)

    Mohsen-Nia, M.; Modarress, H.; Doulabi, F.; Bagheri, H.


    Liquid + liquid equilibrium (LLE) results for the ternary mixtures of (solvent + aromatic hydrocarbon + alkane) at different temperatures from (298.15 to 313.15) K are reported, where the aromatic hydrocarbon is toluene or m-xylene and the alkane is n-heptane or n-octane or cyclohexane and the solvent is tetramethylene sulfone (i.e., sulfolane) or dimethyl sulfoxide (DMSO) or ethylene carbonate. The data were correlated with the UNIQUAC and NRTL equations. The partition coefficients and the selectivity factor of the solvents are calculated. Then, the selectivity of solvents for the extraction of aromatic hydrocarbons from alkanes has been compared. The phase diagrams for the ternary mixtures are presented and the correlated tie line results have been compared with the experimental data. The comparisons indicate the applicability of the UNIQUAC and NRTL activity coefficients model for liquid + liquid equilibrium calculations of the studied mixtures

  3. First principle study on the electronic properties and Schottky contact of graphene adsorbed on MoS2 monolayer under applied out-plane strain (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Nguyen, Chuong V.


    In the present work, electronic properties and Schottky contact of graphene adsorbed on the MoS2 monolayer under applied out-plane strain are studied using density functional theory calculations. Our calculations show that weak van derpp Waals interactions between graphene and monolayer MoS2 are dominated at the interlayer distance of 3.34 Å and the binding energy per C atom of - 25.1 meV. A narrow band gap of 3.6 meV has opened in G/MoS2 heterointerface, and it can be modulated by the out-plane strain. Furthermore, the Schottky barrier and Schottky contact types in the G/MoS2 heterointerface can be controlled by the out-plane strain. At the equilibrium state (d = 3.34 Å), the intrinsic electronic structure of G/MoS2 heterointerface is well preserved and forms an n-type Schottky barrier of 0.49 eV. When the interlayer distance decreases, the transition from n-type to p-type Schottky contact occurs at d = 2.74 Å. Our studies promote the application of ultrathin G/MoS2 heterointerface in the next-generation nanoelectronic and photonic devices such as van-der-Waals-based field effect transistors.

  4. RNAi silencing of a cytochrome P450 monooxygenase disrupts the ability of a filamentous fungus, Graphium sp. to grow on short-chain gaseous alkanes and ethers (United States)

    Graphium sp. (ATCC 58400), a filamentous fungus, is one of the few eukaryotes that grows on short-chain alkanes and ethers. In this study, we investigated the genetic underpinnings that enable this fungus to catalyze the first step in the alkane and ether oxidation pathway. A gene, CYP52L1, was iden...

  5. First-principles study of enhanced magnetic anisotropies in transition-metal atoms doped WS2 monolayer (United States)

    Song, Yu-Xi; Tong, Wen-Yi; Shen, Yu-Hao; Gong, Shi-Jing; Tang, Zheng; Duan, Chun-Gang


    Considerable progress in contemporary spintronics has been made in recent years for developing nanoscale data memory and quantum information processing. It is, however, still a great challenge to achieve the ultimate limit of storage bit. 2D materials, fortunately, provide an alternative solution for designing materials with the expected miniaturizing scale, chemical stability as well as giant magnetic anisotropy energy. By performing first-principles calculations, we have examined two possible doping sites on a WS2 monolayer using three kinds of transition metal (TM) atoms (Mn, Fe and Co). It is found that the TM atoms prefer to stay on the W atom site. Additionally, differently from the case of Mn, doping Co and Fe atoms on the W vacancy can achieve perpendicular magnetic anisotropy with a much larger magnitude, which provides a bright prospect for generating atomic-scale magnets of storage devices.

  6. Structural, electronic and magnetic properties of 3d metal trioxide clusters-doped monolayer graphene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); M.U.E.T, S.Z.A.B, Campus Khairpur Mir' s, Sindh (Pakistan); Shuai, Yong, E-mail: [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping; Hassan, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)


    Highlights: • First-principles calculations are performed for TMO{sub 3} cluster-doped and TM atoms adsorbed at three O atoms-doped graphene. • Significant magnetic coupling behavior is observed between TM atoms and neighboring C and O atoms for both cases. • The direction of charge transfer is always from monolayer graphene to TMO{sub 3} clusters incorporated into graphene. • TiO{sub 3} and VO{sub 3} doped structures display dilute magnetic semiconductor behavior. • Five different orbitals (d{sub xy}, d{sub yz}, d{sub z}{sup 2}, d{sub xz} and d{sub x}{sup 2}{sub -y}{sup 2}) of 3d TM atoms give rise to magnetic moments for both cases. - Abstract: We present first-principles density-functional calculations for the structural, electronic and magnetic properties of monolayer graphene doped with 3d (Ti, V, Cr, Fe, Co, Mn and Ni) metal trioxide TMO{sub 3} halogen clusters. In this paper we used two approaches for 3d metal trioxide clusters (i) TMO{sub 3} halogen cluster was embedded in monolayer graphene substituting four carbon (C) atoms (ii) three C atoms were substituted by three oxygen (O) atoms in one graphene ring and TM atom was adsorbed at the hollow site of O atoms substituted graphene ring. All the impurities were tightly bonded in the graphene ring. In first case of TMO{sub 3} doped graphene layer, the bond length between C−O atom was reduced and bond length between TM-O atom was increased. In case of Cr, Fe, Co and Ni atoms substitution in between the O atoms, leads to Fermi level shifting to conduction band thereby causing the Dirac cone to move into valence band, however a band gap appears at high symmetric K-point. In case of TiO{sub 3} and VO{sub 3} substitution, system exhibits semiconductor properties. Interestingly, TiO{sub 3}-substituted system shows dilute magnetic semiconductor behavior with 2.00 μ{sub B} magnetic moment. On the other hand, the substitution of CoO{sub 3}, CrO{sub 3}, FeO{sub 3} and MnO{sub 3} induced 1.015 μ{sub B}, 2

  7. Alkanes as markers in nutritional studies with wild ruminant and non-ruminant animals Alcanos como indicadores em estudos nutricionais com ruminantes selvagens e animais não-ruminantes

    Directory of Open Access Journals (Sweden)

    Dimas Estrasulas de Oliveira


    Full Text Available Knowledge of information relative to the digestibility, intake and botanical and morphological composition of the diet is important in nutritional studies, since it provides the basis for understanding aspects related to the ingestive behavior and selectivity of animals. N-alkanes have been used successfully as markers in studies with many species of animals, particularly domesticated ruminants, most of the times as replacements for conventional markers as chromium oxide for example. However, for wild ruminants and non-ruminant animals information on this technique is still scarce and, as a consequence, its potential for use unknown. This review reports the use of this technique in studies of feed digestibility, intake and diet composition with wild ruminants and non-ruminant animals, summarizing results and inferring on the feasibility and applicability of the technique.O conhecimento de informações relativas à digestibilidade, consumo, composição botânica e morfológica da dieta é importante em estudos de nutrição, pois fornece a base para a compreensão de aspectos relativos ao comportamento ingestivo e a seletividade dos animais. N-alcanos têm sido usados com sucesso como indicadores em estudos com várias espécies de animais, particularmente ruminantes domésticos, muitas vezes como substitutos a marcadores convencionais como o cromo por exemplo. No entanto, no caso de ruminantes selvagens e animais não-ruminantes as informações sobre essa técnica são ainda escassas e, consequentemente, seu potencial de uso desconhecido. Esta revisão borda o uso dessa metodologia em estudos de digestibilidade, consumo e estimativa da composição da dieta em ruminantes selvagens e animais não-ruminantes, sumarizando resultados e inferindo sobre a viabilidade e aplicabilidade da técnica.

  8. Are additive effects of dietary surfactants on intestinal tight junction integrity an overlooked human health risk? - A mixture study on Caco-2 monolayers. (United States)

    Glynn, Anders; Igra, Annachiara Malin; Sand, Salomon; Ilbäck, Nils Gunnar; Hellenäs, Karl Erik; Rosén, Johan; Aspenström-Fagerlund, Bitte


    Surfactants may cause dysfunction of intestinal tight junctions (TJs), which is a common feature of intestinal autoimmune diseases. Effects of dietary surfactants on TJ integrity, measured as trans-epithelial resistance (TEER), were studied in Caco-2 cell monolayers. Cytotoxicity was assessed as apical LDH leakage. Monolayers were apically exposed for 60 min to the dietary surfactants solanine and chaconine (SC, potato glycoalkaloids, 0-0.25 mM), perfluorooctane sulfonic acid (PFOS, industrial contaminant, 0-0.8 mM), and sucrose monolaurate (SML, food emulsifier E 473, 0-2.0 mM) separately and as a mixture. Dose-response modelling of TEER EC 50 showed that SC were 2.7- and 12-fold more potent than PFOS and SML, respectively. The mixture was composed of 1 molar unit SC, 2.7 units PFOS and 12 units SML ("SC TEER equivalent" proportions 1:1:1). Mixture exposure (0-0.05 mM SC equivalents) dose-response modelling suggested additive action on TJ integrity. Increasing SC and SML concentrations caused increased LDH leakage, but PFOS decreased LDH leakage at intermediate exposure concentrations. In the mixture PFOS appeared to protect from extensive SC- and SML-induced LDH leakage. Complex mixtures of surfactants in food may act additively on intestinal TJ integrity, which should be considered in risk assessment of emulsifier authorisation for use in food production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Studies of the surface structures of molecular crystals and of adsorbed molecular monolayers on the (111) crystal faces of platinum and silver by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Firment, L.E.


    The structures of molecular crystal surfaces were investigated for the first time by the use of low-energy electron diffraction (LEED). The experimental results from a variety of molecular crystals were examined and compared as a first step towards understanding the properties of these surfaces on a microscopic level. The method of sample preparation employed, vapor deposition onto metal single-crystal substrates at low temperatures in ultrahigh vacuum, allowed concurrent study of the structures of adsorbed monolayers on metal surfaces and of the growth processes of molecular films on metal substrates. The systems investigated were ice, ammonia, naphthalene, benzene, the n-paraffins (C 3 to C 8 ), cyclohexane, trioxane, acetic acid, propionic acid, methanol, and methylamine adsorbed and condensed on both Pt(111) and Ag(111) surfaces. Electron-beam-induced damage of the molecular surfaces was observed after electron exposures of 10 -4 A sec cm -2 at 20 eV. Aromatic molecular crystal samples were more resistant to damage than samples of saturated molecules. The quality and orientation of the grown molecular crystal films were influenced by substrate preparation and growth conditions. Forty ordered monolayer structures were observed. 110 figures, 22 tables, 162 references

  10. A theoretical and experimental XAS study of monolayer dispersive supported CuO/γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Chen Dongliang; Wu Ziyu


    The local structures of supported CuO/γ-Al 2 O 3 monolayer dispersive catalysts with different CuO loadings have been investigated by EXAFS and multiple scattering XANES simulations. The EXAFS results show that the first nearest neighbors around the Cu atoms in the CuO/γ-Al 2 O 3 catalysts are similar to that of the polycrystalline CuO powder, which is independent of the CuO loadings. Moreover, the Cu K-XANES FEFF8 calculations for CuO reveal that the monolayer-dispersed CuO species are of small distorted (CuO 4 ) m n+ clusters, which is mainly composed of a distorted CuO 6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al 2 O 3 support. We consider that the CuO species for the CuO/γ-Al 2 O 3 catalysts with loadings of 0.4 and 0.8 mmol/100 m 2 are distorted (CuO 4 ) m n+ clusters composed mainly of a distorted CuO 6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al 2 O 3 support after calcinations at high temperature in air for a few hours. On the contrary, for the CuO/γ-Al 2 O 3 with loading of 1.2 mmol/100 m 2 , the local structure of Cu atoms in CuO/γ-Al 2 O 3 is similar to that of polycrystalline CuO powder

  11. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C{sub 4} grass waxes

    Energy Technology Data Exchange (ETDEWEB)

    Rommerskirchen, F.; Plader, A. [Carl von Ossietzky University, Oldenburg (Germany). Institute of Chemistry and Biology of the Marine Environment; Eglinton, G. [Hanse Institute for Advanced Study, Delmenhorst (Germany); Chikaraishii, Yoshito [Japan Agency for Marine-Earth Science and Technology, Yokosuka (Japan). Institute for Research on Earth Evolution


    -chain n-alkane homologues. The chemical classification on a subfamily level, which is in agreement with previously reported subfamilial phylogeny of grasses, implies an evolutionary wax adaptation of C{sub 4} grasses to warm and arid habitats. Our results confirm the validity of the contents, distribution patterns and molecular stable carbon isotopic compositions of long-chain n-alkanes and alkan-1-ols as indirect proxies of continental climate conditions in environmental studies of the tropics. (author)

  12. Optimized reaction mechanism rate rules for ignition of normal alkanes

    KAUST Repository

    Cai, Liming


    The increasing demand for cleaner combustion and reduced greenhouse gas emissions motivates research on the combustion of hydrocarbon fuels and their surrogates. Accurate detailed chemical kinetic models are an important prerequisite for high fidelity reacting flow simulations capable of improving combustor design and operation. The development of such models for many new fuel components and/or surrogate molecules is greatly facilitated by the application of reaction classes and rate rules. Accurate and versatile rate rules are desirable to improve the predictive accuracy of kinetic models. A major contribution in the literature is the recent work by Bugler et al. (2015), which has significantly improved rate rules and thermochemical parameters used in kinetic modeling of alkanes. In the present study, it is demonstrated that rate rules can be used and consistently optimized for a set of normal alkanes including n-heptane, n-octane, n-nonane, n-decane, and n-undecane, thereby improving the predictive accuracy for all the considered fuels. A Bayesian framework is applied in the calibration of the rate rules. The optimized rate rules are subsequently applied to generate a mechanism for n-dodecane, which was not part of the training set for the optimized rate rules. The developed mechanism shows accurate predictions compared with published well-validated mechanisms for a wide range of conditions.

  13. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils (United States)

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri


    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  14. Crystallisation and chain conformation of long chain n-alkanes

    International Nuclear Information System (INIS)

    Gorce, J.


    Hydrocarbon chains are a basic component in a number of systems as diverse as biological membranes, phospholipids and polymers. A better understanding of the physical properties of n-alkane chains should provide a better understanding of these more complex systems. With this aim, vibrational spectroscopy has been extensively used. This technique, sensitive to molecular details, is the only one able to both identify and quantify conformational disorder present in paraffinic systems. To achieve this, methyl deformations have been widely used as ''internal standards'' for the normalisation of peak areas. However, in the case of n-alkanes with short chain length, such as n-C 44 H 90 for example, the infrared spectra recorded at liquid nitrogen temperature and reported here show the sensitivity of these latter peaks to the various crystal structures formed. Indeed, the main frequencies of the symmetric methyl bending mode were found between 1384 cm -1 and 1368 cm -1 as a function of the crystal form. Changes in the frequency of the first order of the L.A.M. present in the Raman spectra were also observed. At higher temperatures, non all-trans conformers, inferred from different infrared bands present in the wagging mode region, were found to be essentially placed at the end of the n-alkane chains. At the monoclinic phase transition, the concentration of end-gauche conformers, proportional to the area of the infrared band at 1342 cm -1 , increases abruptly. On the contrary, in the spectra recorded at liquid nitrogen temperature no such band is observed. We also studied the degree of disorder in two purely monodisperse long chain n-alkanes, namely n-C 198 H 398 and n-C 246 H 494 . The chain conformation as well as the tilt angle of the chains from the crystal surfaces were determined by means of low frequency Raman spectroscopy and S.A.X.S. measurements on solution-crystallised samples. The increase in the number of end-gauche conformers which was expected to occur with

  15. Dark excitations in monolayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer


    Monolayers of transition metal dichalcogenides (TMDCs) possess unique optoelectronic properties, including strongly bound excitons and trions. To date, most studies have focused on optically active excitations, but recent experiments have highlighted the existence of dark states, which are equally...... important in many respects. Here, we use ab initio many-body calculations to unravel the nature of the dark excitations in monolayer MoSe2, MoS2, WSe2, andWS(2). Our results show that all these monolayer TMDCs host dark states as their lowest neutral and charged excitations. We further show that dark...... excitons possess larger binding energies than their bright counterparts while the opposite holds for trions....

  16. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Mbadinga, Serge Maurice; Li, Kai-Ping; Zhou, Lei; Wang, Li-Ying; Yang, Shi-Zhong; Liu, Jin-Feng; Mu, Bo-Zhong [East China Univ. of Science and Technology, Shanghai (China). State Key Lab. of Bioreactor Engineering and Inst. of Applied Chemistry; Gu, Ji-Dong [Hong Kong Univ. (China). School of Biological Sciences


    Microbial assemblage in an n-alkanes-dependent thermophilic methanogenic enrichment cultures derived from production waters of a high-temperature petroleum reservoir was investigated in this study. Substantially higher amounts of methane were generated from the enrichment cultures incubated at 55 C for 528 days with a mixture of long-chain n-alkanes (C{sub 15}-C{sub 20}). Stoichiometric estimation showed that alkanes-dependent methanogenesis accounted for about 19.8% of the total amount of methane expected. Hydrogen was occasionally detected together with methane in the gas phase of the cultures. Chemical analysis of the liquid cultures resulted only in low concentrations of acetate and formate. Phylogenetic analysis of the enrichment revealed the presence of several bacterial taxa related to Firmicutes, Thermodesulfobiaceae, Thermotogaceae, Nitrospiraceae, Dictyoglomaceae, Candidate division OP8 and others without close cultured representatives, and Archaea predominantly related to uncultured members in the order Archaeoglobales and CO{sub 2}-reducing methanogens. Screening of genomic DNA retrieved from the alkanes-amended enrichment cultures also suggested the presence of new alkylsuccinate synthase alpha-subunit (assA) homologues. These findings suggest the presence of poorly characterized (putative) anaerobic n-alkanes degraders in the thermophilic methanogenic enrichment cultures. Our results indicate that methanogenesis of alkanes under thermophilic condition is likely to proceed via syntrophic acetate and/or formate oxidation linked with hydrogenotrophic methanogenesis. (orig.)

  17. Identification and use of an alkane transporter plug-in for application in biocatalysis and whole-cell biosensing of alkanes

    DEFF Research Database (Denmark)

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia


    relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter...

  18. Antibiotic interaction with phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G


    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids.

  19. Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental study. (United States)

    Zhu, Zhili; Cai, Xiaolin; Yi, Seho; Chen, Jinglei; Dai, Yawei; Niu, Chunyao; Guo, Zhengxiao; Xie, Maohai; Liu, Feng; Cho, Jun-Hyung; Jia, Yu; Zhang, Zhenyu


    Contemporary science is witnessing a rapid expansion of the two-dimensional (2D) materials family, each member possessing intriguing emergent properties of fundamental and practical importance. Using the particle-swarm optimization method in combination with first-principles density functional theory calculations, here we predict a new category of 2D monolayers named tellurene, composed of the metalloid element Te, with stable 1T-MoS_{2}-like (α-Te), and metastable tetragonal (β-Te) and 2H-MoS_{2}-like (γ-Te) structures. The underlying formation mechanism is inherently rooted in the multivalent nature of Te, with the central-layer Te behaving more metal-like (e.g., Mo), and the two outer layers more semiconductorlike (e.g., S). We also show that the α-Te phase can be spontaneously obtained from the magic thicknesses divisible by three layers truncated along the [001] direction of the trigonal structure of bulk Te, and both the α- and β-Te phases possess electron and hole mobilities much higher than MoS_{2}. Furthermore, we present preliminary but convincing experimental evidence for the layering behavior of Te on HOPG substrates, and predict the importance of multivalency in the layering behavior of Se. These findings effectively extend the realm of 2D materials to group-VI elements.

  20. The influence of extra framework aluminium on H-fak catalyzed cracking of light alkanes

    NARCIS (Netherlands)

    Narbeshuber, T.; Narbeshuber, T.F.; Brait, A.; Brait, A.; Seshan, Kulathuiyer; Lercher, J.A.


    The conversion of light linear and branched alkanes on two faujasite samples containing different concentrations of free Brønsted acid sites and extraframework alumina (EFAL) was studied between 733 K and 813 K. Protolytic cracking and bimolecular hydride transfer proceeded solely on Brønsted acid

  1. Study of the selective abstration reaction of the hydrogen atom in the radiolysis and photolysis of alkane mixture at 77 K

    International Nuclear Information System (INIS)

    Guedes, S.M.L.


    The occurence of the selective abstraction reaction of the solute hydrogen atom by hydrogen atom produced during radiolysis or photolysis of the systems such as neopentane/cyclo-hexane/HI, neopentane/2,3 dimethylbutane, n-pentane/HI/cyclo-hexane and cyclo-hexane/HI/n-pentane, at 77 K is studied. Experiments have been undertaken on the kinetics nature of the active species, the H atom, during radiolysis and photolysis of the neopentane/cyclo-hexane/HI system at 77 K, presenting competitive reactions. Studies have also been made on the occurrence of the selective abstraction reaction in inverted systems, in which the concentrations of the components of a system are so much altered that the solute becomes the solvent and vice-versa, in the other system. By means of photolysis at 77 K, it has been observed that for the two systems constitued by the cyclo-hexane and n-pentane the selective abstraction reaction occurs. However, for radiolysis of that same two systems it has been observed that only the hydrogen atom abstraction reaction corresponding to the solvent occurs. (Author) [pt

  2. Feasibility limits and performance of an absorption cooling machine using light alkane mixtures

    International Nuclear Information System (INIS)

    Dardour, H.; Mazouz, S.; Reneaume, J.-M.; Cézac, P.; Bourouis, M.; Bellagi, A.


    The performance of a heat-driven vapor absorption chiller with various alkane mixtures as working pairs was studied. A Thermodynamic analysis showed that under specified operating conditions and with a generator temperature below 130 °C, temperature achievable with a simple flat plate collector when solar energy is expected as the driving heat source, the application of some of the proposed alkane mixtures is not feasible. Simulations using ASPEN Plus flow sheeting program are then done with the selected working pairs. All simulations were done specifying the Peng-Robinson equation of state as the property method. A parametric study was carried out allowing the investigation of the generator temperature effect on the system performance and the comparison between performances released with each working pair. Results revealed that a water-cooled absorption machine using the C3H8/n-C9H20 pair as working fluid releases the best performances from a heat driving temperature level of about 100 °C. - Highlights: • Performance of an absorption chiller with various alkane mixtures was studied. • Some of the proposed alkane mixtures is not feasible. • Only the n-C4/n-C6 mixture may be considered for air-cooled machine. • In case of water cooling, C3/n-C9 and n-C4/n-C9 give the best COP

  3. Self-assembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold--a study of electron transfer reaction using cyclic voltammetry and electrochemical impedance spectroscopy. (United States)

    Ganesh, V; Pal, Santanu Kumar; Kumar, Sandeep; Lakshminarayanan, V


    Self-assembled monolayers (SAMs) of liquid crystalline thiol-terminated alkoxycyanobiphenyl molecules with different alkyl chain lengths on Au surface have been studied for the first time using electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The barrier property of the SAM-modified surfaces was evaluated using two different redox probes, namely potassium ferro/ferri cyanide and hexaammineruthenium(III) chloride. It was found that for short-length alkyl chain thiol (C5) the electron transfer reaction of hexaammineruthenium(III) chloride takes place through tunneling mechanism. In contrast, redox reaction of potassium ferro/ferri cyanide is almost completely blocked by the SAM-modified Au surface. From the impedance data, a surface coverage value of >99.9% was calculated for all the thiol molecules.

  4. Strain tunable magnetic properties of 3d transition-metal ion doped monolayer MoS2: A first-principles study (United States)

    Zhu, Yupeng; Liang, Xiao; Qin, Jun; Deng, Longjiang; Bi, Lei


    In this article, a systematic study on the magnetic properties and strain tunability of 3d transition metal ions (Mn, Fe, Co, Ni) doped MoS2 using first-principles calculations is performed. Antiferromagnetic coupling is observed between Mn, Fe ions and the nearest neighbor Mo ions; whereas ferromagnetic coupling is observed in Co and Ni systems. It is also shown that by applying biaxial tensile strain, a significant change of the magnetic moment is observed in all transition metal doped MoS2 materials with a strain threshold. The changes of total magnetic moment have different mechanisms for different doping systems including an abrupt change of the bond lengths, charge transfer and strain induced structural anisotropy. These results demonstrate applying strain as a promising method for tuning the magnetic properties in transition metal ion doped monolayer MoS2.

  5. Evolution of chemical bonding and electron density rearrangements during D(3h) → D(3d) reaction in monolayered TiS2: a QTAIM and ELF study. (United States)

    Ryzhikov, Maxim R; Slepkov, Vladimir A; Kozlova, Svetlana G; Gabuda, Svyatoslav P


    Monolayered titanium disulfide TiS2, a prospective nanoelectronic material, was previously shown to be subject to an exothermic solid-state D3h -D3d reaction that proceeds via a newly discovered transition state. Here, we study the reaction in detail using topological methods of quantum chemistry (quantum theory of atoms in molecules and electron localization function analysis) and show how electron density and chemical bonding between the atoms change in the course of the reaction. The reaction is shown to undergo a series of topological catastrophes, associated with elementary chemical events such as break and formation of bonds (including the unexpected formation of S-S bonding between sulfur layers), and rearrangement of electron density of outer valence and core shells. Copyright © 2014 Wiley Periodicals, Inc.

  6. Reactivity of C-Amino-1,2,4-triazoles toward Electrophiles: A Combined Computational and Experimental Study of Alkylation by Halogen Alkanes. (United States)

    Chernyshev, Victor M; Vlasova, Anna G; Astakhov, Alexander V; Shishkina, Svitlana V; Shishkin, Oleg V


    A combination of computational and experimental methods was used to examine the structure-reactivity relationships in the reactions of C-amino-1H-1,2,4-triazoles with electrophiles. The global nucleophilicity of 3-amino- and 3,5-diamino-1H-1,2,4-triazoles was predicted to be higher than that of 5-amino-1H-1,2,4-triazoles. Fukui functions and molecular electrostatic potential indicate that reactions involving an amino group should occur more easily for the 3-amino- than for the 5-amino-1H-1,2,4-triazoles. Increasing electrophile hardness should increase the probability of attack at the N-4 atom of the triazole ring, whereas increasing softness should enhance the probability of attack at the N-2 atom and 3-NH2 group. Calculated transition state energies of model SN2 reactions and experimental studies showed that quaternization of 1-substituted 3-amino- and 3,5-diamino-1H-1,2,4-triazoles by many alkyl halides proceeds with low selectivity and can involve the N-2 and N-4 atoms as well as the 3-NH2 group as reaction centers. A new method for the selective synthesis of 1,4-disubstituted 3-amino- and 3,5-diamino-1,2,4-triazoles based on quaternization of readily available 1-substituted 3-acetylamino-1,2,4-triazoles with subsequent removal of the acetyl protecting group by acid hydrolysis was developed.

  7. Effect of nickel monolayer deposition on the structural and electronic properties of the low miller indices of (bcc) iron: A DFT study

    International Nuclear Information System (INIS)

    Kwawu, Caroline R.; Tia, Richard; Adei, Evans; Dzade, Nelson Y.; Catlow, C. Richard A.; Leeuw, Nora H. de


    Highlights: • Thermodynamically, mono-layer deposition is exothermic on Fe (111) and (100) but endothermic on the Fe (110) facet. • The preferred adsorption site is the hollow site on all surface coverages except the 1 ML covered (110) surface, where the top site is most preferred. • Deposition leads to surface relaxation and no reconstruction, most profound on the stepped (111) surface, with the highest Ni-Fe interactions. • Work function of the bare (100), (110) and (111) surfaces were found to be 3.80 eV, 4.76 eV and 3.84 eV respectively. • Nickel monolayer deposition increases the work function on the (100) and (111) surfaces implying reduced corrosion tendencies. - Abstract: Metal clusters of both iron (Fe) and nickel (Ni) have been found in nature as active electro-catalytic sites, for example in the enzyme carbon mono-oxide dehydrogenase found in autotrophic organisms. Thus, surface modification of iron with nickel could improve the surface work function to enhance catalytic applications. The effects of surface modifications of iron by nickel on the structural and electronic properties have been studied using spin-polarised density functional theory calculations within the generalised gradient approximation. The thermodynamically preferred sites for Ni adsorption on the Fe (100), (110) and (111) surfaces have been studied at varying monolayer coverages (including 0.25 ML and 1 ML). The work function of the bare Fe surfaces is found to be of the order (100) ∼ (111) < (110) i.e. 3.80 eV ∼ 3.84 eV < 4.76 eV, which is consistent with earlier studies. The adsorption energies show that monolayer Ni deposition is thermodynamically favoured on the (100) and (111) surfaces, but not on the (110) surface. Expansion of the first interlayer spacing (d 12 ) of all three Fe surfaces is observed upon Ni deposition with the extent of expansion decreasing in the order (111) > (110) > (100), i.e. 6.78% > 5.76% > 1.99%. The extent of relaxation is magnified on the

  8. Effect of nickel monolayer deposition on the structural and electronic properties of the low miller indices of (bcc) iron: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Kwawu, Caroline R., E-mail: [Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Tia, Richard, E-mail: [Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Adei, Evans [Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Dzade, Nelson Y., E-mail: [Department of Earth Sciences, Utrecht University, Princetonplein 9, 3584 CC, Utrecht (Netherlands); Catlow, C. Richard A. [Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London (United Kingdom); School of Chemistry, Cardiff University, Main Building, Park PI, Cardiff CF10 3AT (United Kingdom); Leeuw, Nora H. de, E-mail: [Department of Earth Sciences, Utrecht University, Princetonplein 9, 3584 CC, Utrecht (Netherlands); Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London (United Kingdom); School of Chemistry, Cardiff University, Main Building, Park PI, Cardiff CF10 3AT (United Kingdom)


    Highlights: • Thermodynamically, mono-layer deposition is exothermic on Fe (111) and (100) but endothermic on the Fe (110) facet. • The preferred adsorption site is the hollow site on all surface coverages except the 1 ML covered (110) surface, where the top site is most preferred. • Deposition leads to surface relaxation and no reconstruction, most profound on the stepped (111) surface, with the highest Ni-Fe interactions. • Work function of the bare (100), (110) and (111) surfaces were found to be 3.80 eV, 4.76 eV and 3.84 eV respectively. • Nickel monolayer deposition increases the work function on the (100) and (111) surfaces implying reduced corrosion tendencies. - Abstract: Metal clusters of both iron (Fe) and nickel (Ni) have been found in nature as active electro-catalytic sites, for example in the enzyme carbon mono-oxide dehydrogenase found in autotrophic organisms. Thus, surface modification of iron with nickel could improve the surface work function to enhance catalytic applications. The effects of surface modifications of iron by nickel on the structural and electronic properties have been studied using spin-polarised density functional theory calculations within the generalised gradient approximation. The thermodynamically preferred sites for Ni adsorption on the Fe (100), (110) and (111) surfaces have been studied at varying monolayer coverages (including 0.25 ML and 1 ML). The work function of the bare Fe surfaces is found to be of the order (100) ∼ (111) < (110) i.e. 3.80 eV ∼ 3.84 eV < 4.76 eV, which is consistent with earlier studies. The adsorption energies show that monolayer Ni deposition is thermodynamically favoured on the (100) and (111) surfaces, but not on the (110) surface. Expansion of the first interlayer spacing (d{sub 12}) of all three Fe surfaces is observed upon Ni deposition with the extent of expansion decreasing in the order (111) > (110) > (100), i.e. 6.78% > 5.76% > 1.99%. The extent of relaxation is magnified on

  9. Nickel(II) complexes of pentadentate N5 ligands as catalysts for alkane hydroxylation by using m-CPBA as oxidant: a combined experimental and computational study. (United States)

    Sankaralingam, Muniyandi; Balamurugan, Mani; Palaniandavar, Mallayan; Vadivelu, Prabha; Suresh, Cherumuttathu H


    A new family of nickel(II) complexes of the type [Ni(L)(CH(3)CN)](BPh(4))(2), where L=N-methyl-N,N',N'-tris(pyrid-2-ylmethyl)-ethylenediamine (L1, 1), N-benzyl-N,N',N'-tris(pyrid-2-yl-methyl)-ethylenediamine (L2, 2), N-methyl-N,N'-bis(pyrid-2-ylmethyl)-N'-(6-methyl-pyrid-2-yl-methyl)-ethylenediamine (L3, 3), N-methyl-N,N'-bis(pyrid-2-ylmethyl)-N'-(quinolin-2-ylmethyl)-ethylenediamine (L4, 4), and N-methyl-N,N'-bis(pyrid-2-ylmethyl)-N'-imidazole-2-ylmethyl)-ethylenediamine (L5, 5), has been isolated and characterized by means of elemental analysis, mass spectrometry, UV/Vis spectroscopy, and electrochemistry. The single-crystal X-ray structure of [Ni(L(3))(CH(3)CN)](BPh(4))(2) reveals that the nickel(II) center is located in a distorted octahedral coordination geometry constituted by all the five nitrogen atoms of the pentadentate ligand and an acetonitrile molecule. In a dichloromethane/acetonitrile solvent mixture, all the complexes show ligand field bands in the visible region characteristic of an octahedral coordination geometry. They exhibit a one-electron oxidation corresponding to the Ni(II) /Ni(III) redox couple the potential of which depends upon the ligand donor functionalities. The new complexes catalyze the oxidation of cyclohexane in the presence of m-CPBA as oxidant up to a turnover number of 530 with good alcohol selectivity (A/K, 7.1-10.6, A=alcohol, K=ketone). Upon replacing the pyridylmethyl arm in [Ni(L1)(CH(3)CN)](BPh(4))(2) by the strongly σ-bonding but weakly π-bonding imidazolylmethyl arm as in [Ni(L5)(CH(3)CN)](BPh(4))(2) or the sterically demanding 6-methylpyridylmethyl ([Ni(L3)(CH(3)CN)](BPh(4))(2) and the quinolylmethyl arms ([Ni(L4)(CH(3)CN)](BPh(4))(2), both the catalytic activity and the selectivity decrease. DFT studies performed on cyclohexane oxidation by complexes 1 and 5 demonstrate the two spin-state reactivity for the high-spin [(N5)Ni(II)-O(.)] intermediate (ts1(hs), ts2(doublet)), which has a low-spin state located closely in

  10. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.


    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  11. Electrochemical and structural characterization of self-assembled thiol monolayers on gold

    NARCIS (Netherlands)

    Sondag-Huethorst, J.A.M.


    Self-assembled alkanethiol monolayers on gold are used as model systems in a fundamental study of the potential-dependent wetting and of the galvanic metal deposition. For using such monolayers as model systems, well-defined and ordered monolayers are required. In order to control the

  12. Interaction of plasma apolipoproteins with lipid monolayers

    NARCIS (Netherlands)

    Jackson, R.L.; Pattus, F.; Demel, R.A.


    The monolayer technique has been used to study the interaction of lipids with plasma apolipoproteins. Apolipoprotein C-II and C-III from human very low density lipoproteins, apolipoprotein A-I from human high density lipoproteins and arginine-rich protein from swine very low density lipoproteins

  13. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  14. Molecular simulations of mixed self-assembled monolayer coated gold nanoparticles in water. (United States)

    J, Meena Devi


    Molecular dynamics simulations have been employed to study the hydration of a series of nanoparticles, each of which was coated with a mixed self-assembled monolayer (SAM) comprising methyl- and hydroxy-terminated alkane thiol chains. The mixing ratio of those chains are different for each nanoparticle. The simulations focused on the wetting behavior of the SAM-coated gold nanoparticles and the distribution and structure of their interfacial water molecules. The interactions of the mixed SAM-coated gold nanoparticles with water were analyzed by evaluating the radial distribution function, hydrogen bonds, the dipole orientations of the water molecules, and the water residence time in the interfacial region. The wettability of the mixed SAM-coated gold nanoparticles improved as the concentration of terminal hydroxy moieties was increased. The distribution and dynamics of the interfacial water molecules were found to be influenced by the mixing ratio of the terminal moieties of the SAM chains. The results of our simulations suggest that the surface interactions of the mixed SAM-coated gold nanoparticles with the aqueous medium can be modulated by systematically altering the mixing ratio of the terminal methyl and hydroxy moieties. This work may lead to new biological and technological applications and inspire the development of novel biomimetic materials. Graphical Abstract Mixed SAM-coated gold nanoparticles.

  15. Gas-phase reactions of the bare Th2+ and U2+ ions with small alkanes, CH4, C2H6, and C3H8: experimental and theoretical study of elementary organoactinide chemistry. (United States)

    Di Santo, Emanuela; Santos, Marta; Michelini, Maria C; Marçalo, Joaquim; Russo, Nino; Gibson, John K


    The gas-phase reactions of two dipositive actinide ions, Th(2+) and U(2+), with CH(4), C(2)H(6), and C(3)H(8) were studied by both experiment and theory. Fourier transform ion cyclotron resonance mass spectrometry was employed to study the bimolecular ion-molecule reactions; the potential energy profiles (PEPs) for the reactions, both observed and nonobserved, were computed by density functional theory (DFT). The experiments revealed that Th(2+) reacts with all three alkanes, including CH(4) to produce ThCH(2)(2+), whereas U(2+) reacts with C(2)H(6) and C(3)H(8), with different product distributions than for Th(2+). The comparative reactivities of Th(2+) and U(2+) toward CH(4) are well explained by the computed PEPs. The PEPs for the reactions with C(2)H(6) effectively rationalize the observed reaction products, ThC(2)H(2)(2+) and UC(2)H(4)(2+). For C(3)H(8) several reaction products were experimentally observed; these and additional potential reaction pathways were computed. The DFT results for the reactions with C(3)H(8) are consistent with the observed reactions and the different products observed for Th(2+) and U(2+); however, several exothermic products which emerge from energetically favorable PEPs were not experimentally observed. The comparison between experiment and theory reveals that DFT can effectively exclude unfavorable reaction pathways, due to energetic barriers and/or endothermic products, and can predict energetic differences in similar reaction pathways for different ions. However, and not surprisingly, a simple evaluation of the PEP features is insufficient to reliably exclude energetically favorable pathways. The computed PEPs, which all proceed by insertion, were used to evaluate the relationship between the energetics of the bare Th(2+) and U(2+) ions and the energies for C-H and C-C activation. It was found that the computed energetics for insertion are entirely consistent with the empirical model which relates insertion efficiency to the

  16. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions. (United States)

    Johnson, Jamie M; Wawrik, Boris; Isom, Catherine; Boling, Wilford B; Callaghan, Amy V


    Based on the transient exposure of Chesapeake Bay sediments to hydrocarbons and the metabolic versatility of known anaerobic alkane-degrading microorganisms, it was hypothesized that distinct Bay sediment communities, governed by geochemical gradients, would have intrinsic alkane-utilizing potential under sulfate-reducing and/or methanogenic conditions. Sediment cores were collected along a transect of the Bay. Community DNA was interrogated via pyrosequencing of 16S rRNA genes, PCR of anaerobic hydrocarbon activation genes, and qPCR of 16S rRNA genes and genes involved in sulfate reduction/methanogenesis. Site sediments were used to establish microcosms amended with n-hexadecane under sulfate-reducing and methanogenic conditions. Sequencing of 16S rRNA genes indicated that sediments associated with hypoxic water columns contained significantly greater proportions of Bacteria and Archaea consistent with syntrophic degradation of organic matter and methanogenesis compared to less reduced sediments. Microbial taxa frequently associated with hydrocarbon-degrading communities were found throughout the Bay, and the genetic potential for hydrocarbon metabolism was demonstrated via the detection of benzyl-(bssA) and alkylsuccinate synthase (assA) genes. Although microcosm studies did not indicate sulfidogenic alkane degradation, the data suggested that methanogenic conversion of alkanes was occurring. These findings highlight the potential role that anaerobic microorganisms could play in the bioremediation of hydrocarbons in the Bay. © FEMS 2014. All rights reserved. For permissions, please e-mail:

  17. Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study (United States)

    Wang, Yu; Yuan, Hao; Li, Yafei; Chen, Zhongfang


    Searching for low-cost non-Pt catalysts for oxygen reduction reaction (ORR) has been a key scientific issue in the development of fuel cells. In this work, the potential of utilizing the experimentally available two-dimensional (2D) Fe-phthalocyanine (Fe-Pc) monolayer with precisely-controlled distribution of Fe atoms as a catalyst of ORR was systematically explored by means of comprehensive density functional theory computations. The computations revealed that O2 molecules can be sufficiently activated on the surface of the Fe-Pc monolayer, and the subsequent ORR steps prefer to proceed on the Fe-Pc monolayer through a more efficient 4e pathway with a considerable limiting potential of 0.68 V. Especially, the Fe-Pc monolayer is more stable than the Fe-Pc molecule in acidic medium, and can present good catalytic performance for ORR on the addition of axial ligands. Therefore, the Fe-Pc monolayer is quite a promising single-atom-catalyst with high efficiency for ORR in fuel cells.Searching for low-cost non-Pt catalysts for oxygen reduction reaction (ORR) has been a key scientific issue in the development of fuel cells. In this work, the potential of utilizing the experimentally available two-dimensional (2D) Fe-phthalocyanine (Fe-Pc) monolayer with precisely-controlled distribution of Fe atoms as a catalyst of ORR was systematically explored by means of comprehensive density functional theory computations. The computations revealed that O2 molecules can be sufficiently activated on the surface of the Fe-Pc monolayer, and the subsequent ORR steps prefer to proceed on the Fe-Pc monolayer through a more efficient 4e pathway with a considerable limiting potential of 0.68 V. Especially, the Fe-Pc monolayer is more stable than the Fe-Pc molecule in acidic medium, and can present good catalytic performance for ORR on the addition of axial ligands. Therefore, the Fe-Pc monolayer is quite a promising single-atom-catalyst with high efficiency for ORR in fuel cells. Electronic

  18. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers

    NARCIS (Netherlands)

    Schutte, M.E.; Freidig, A.P.; Sandt, J.J.M. van de; Alink, G.M.; Rietjens, I.M.C.M.; Groten, J.P.


    The present study describes the effect of different flavonoids on the absorption of the pro-carcinogen PhIP through Caco-2 monolayers and the development of an in silico model describing this process taking into account passive diffusion and active transport of PhIP. Various flavonoids stimulated

  19. Investigating C4 Grass Contributions to N-alkane Based Paleoclimate Reconstructions (United States)

    Doman, C. E.; Enders, S. K.; Chadwick, O.; Freeman, K. H.


    Plant wax n-alkanes are long-chain, saturated hydrocarbons contained within the protective waxy cuticle on leaves. These lipids are pervasive and persistent in soils and sediments and thus are ideal biomarkers of ancient terrestrial organic matter. In ecosystems dominated by C3 plants, the relationship between the carbon isotopic value of whole leaves and lipids is fairly well documented, but this relationship has not been fully investigated for plants that use C4 photosynthesis. In both cases, it is unclear if the isotopic relationships are sensitive to environmental conditions, or reflect inherited characteristics. This study used a natural climate gradient on the Kohala peninsula of Hawaii to investigate relationships between climate and the δ13C and δ2H values of n-alkanes in C3 and C4 plants. δ13C of C3 leaves and lipids decreased 5 ‰ from the driest to the wettest sites, consistent with published data. Carbon isotope values of C4 plants showed no relationship to moisture up to 1000 mm mean annual precipitation (MAP). Above this threshold, δ 13C values were around 10‰ more depleted, likely due to a combination of canopy effects and C4 grasses growing in an uncharacteristically wet and cold environment. In C3 plants, the fractionation between leaf and lipid carbon isotopes did not vary with MAP, which allows estimations of δ13C leaf to be made from alkanes preserved in ancient sediments. Along this transect, C3 plants produce around twice the quantity of n-alkanes as C4 grasses. C4 grasses produce longer carbon chains. As a result, n-alkanes in the geologic record will be biased towards C3 plants, but the presence of alkanes C33 and C35 indicate the contributions of C4 grasses. In both C3 and C4 plants, average chain length increased with mean annual precipitation, but the taxonomic differences in chain length were greater than environmental differences. Hydrogen isotopes of n-alkanes show no trends with MAP, but do show clear differences between plant

  20. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis. (United States)

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang


    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  1. Biodegradation of n-alkanes on oil-seawater interfaces at different temperatures and microbial communities associated with the degradation. (United States)

    Lofthus, Synnøve; Netzer, Roman; Lewin, Anna S; Heggeset, Tonje M B; Haugen, Tone; Brakstad, Odd Gunnar


    Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil-seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil-seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical-chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil-seawater interfaces over a large temperature interval.

  2. Luminescent Organic Semiconducting Langmuir Monolayers. (United States)

    Agina, Elena V; Mannanov, Artur A; Sizov, Alexey S; Vechter, Olga; Borshchev, Oleg V; Bakirov, Artem V; Shcherbina, Maxim A; Chvalun, Sergei N; Konstantinov, Vladislav G; Bruevich, Vladimir V; Kozlov, Oleg V; Pshenichnikov, Maxim S; Paraschuk, Dmitry Yu; Ponomarenko, Sergei A


    In recent years, monolayer organic field-effect devices such as transistors and sensors have demonstrated their high potential. In contrast, monolayer electroluminescent organic field-effect devices are still in their infancy. One of the key challenges here is to create an organic material that self-organizes in a monolayer and combines efficient charge transport with luminescence. Herein, we report a novel organosilicon derivative of oligothiophene-phenylene dimer D2-Und-PTTP-TMS (D2, tetramethyldisiloxane; Und, undecylenic spacer; P, 1,4-phenylene; T, 2,5-thiophene; TMS, trimethylsilyl) that meets these requirements. The self-assembled Langmuir monolayers of the dimer were investigated by steady-state and time-resolved photoluminescence spectroscopy, atomic force microscopy, X-ray reflectometry, and grazing-incidence X-ray diffraction, and their semiconducting properties were evaluated in organic field-effect transistors. We found that the best uniform, fully covered, highly ordered monolayers were semiconducting. Thus, the ordered two-dimensional (2D) packing of conjugated organic molecules in the semiconducting Langmuir monolayer is compatible with its high-yield luminescence, so that 2D molecular aggregation per se does not preclude highly luminescent properties. Our findings pave the way to the rational design of functional materials for monolayer organic light-emitting transistors and other optoelectronic devices.

  3. Alkane oxidation by Pseudomonas oleovorans : genes and proteins

    NARCIS (Netherlands)

    van Beilen, Jan Berthold


    This thesis deals with the molecular genetics and biochemistry of oxidation of medium chainlength alkanes by P. oleovorans, as part of a program to develop biotechnological processes, based on oxygenases.

  4. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes (United States)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.


    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  5. A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries (United States)

    Lv, Xingshuai; Wei, Wei; Sun, Qilong; Huang, Baibiao; Dai, Ying


    There is a great desire to search for suitable anodes with good performance for rechargeable metal-ion batteries, which require not only large capacity but excellent rate performance and cycling stability. In this work, the electronic properties of NbSe2 monolayer were explored based on first-principles calculations. We performed a full geometry optimization for Li/Na-adsorbed structures and obtained favorable adsorption sites. The metallic character for both pristine NbSe2 monolayer and the Li/Na-adsorbed NbSe2 ensures good electrical conduction. In addition, we find that NbSe2 monolayer is more inclined to adsorb Li and Na atoms with smaller adsorption energy under Li/Na-rich condition, indicating the superiority of NbSe2 monolayer as an electrode. Then, we obtained a relatively low diffusion barrier of approximately 0.205 eV for Li and, in particular, a significantly small diffusion barrier of about 0.086 eV for Na, which ensures excellent cycling performance of NbSe2 monolayer as a battery electrode. Most importantly, the Li and Na adsorption density in NbSe2 monolayer can be as high as Li2NbSe2 and Na4NbSe2, corresponding to theoretical specific capacities of 203 and 312 mAh·g-1, respectively. And the average electrode potentials were predicted to be 0.51 V for the chemical stoichiometry of Li2NbSe2 and 0.22 V for Na4NbSe2. In view of these excellent properties, our work predicts that NbSe2 monolayer can be a promising anode material for the development of low-cost high-performance Li- and Na-ion batteries.

  6. Thermodynamic and structural studies of mixed monolayers: Mutual mixing of DPPC and DPPG with DoTAP at the air-water interface

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Amiya Kumar, E-mail: [Department of Chemistry, University of North Bengal, Darjeeling-734 013, West Bengal (India); Vasilev, Krasimir [Mawson Institute for Advanced Manufacturing, Mawson Lakes, University of South Australia, SA-5095 (Australia); Orgeig, Sandra [Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000 (Australia); Prestidge, Clive A. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia)


    Phospholipid monomolecular films at the air-water interface are useful model membranes to understand miscibility among various components. Surface pressure ({pi})-area (A) isotherms of pure and mixed monolayers of dioleoyltrimethylammonium propane (DoTAP)-dipalmitoylphosphatidylcholine (DPPC) and DoTAP-dipalmitoyphosphatidylglycerol (DPPG) were constructed using a surface balance. DPPC and DPPG produced isotherms as expected and reported earlier. DoTAP, an unsaturated lipid, demonstrated a continuous {pi}-A isotherm. Associative interactions were identified in DPPC-DoTAP mixtures compared to the pure components, while DPPG-DoTAP mixtures showed repulsive interaction up to an equimolar ratio. Compression moduli of the monolayers revealed that DPPC-DoTAP mixtures had increasing stability with increasing surface pressure, but addition of DoTAP to DPPG showed instability at low and intermediate concentrations. In both cases increased stability was returned at higher X{sub DoTAP} values and surface pressures. Lipid monolayer film thickness values, determined on a gold coated glass substrate by surface plasmon resonance spectroscopy (SPR), indicated a systematic change in height profile for DPPC-DoTAP mixtures with increasing X{sub DoTAP}. However, DPPG-DoTAP mixed monolayer systems demonstrated a biphasic response. The SPR data were in excellent agreement with our interpretation of the structure of solid supported lipid monolayers.

  7. Monolayer CS as a metal-free photocatalyst with high carrier mobility and tunable band structure: a first-principles study (United States)

    Yang, Xiao-Le; Ye, Xiao-Juan; Liu, Chun-Sheng; Yan, Xiao-Hong


    Producing hydrogen fuel using suitable photocatalysts from water splitting is a feasible method to harvest solar energy. A desired photocatalyst is expected to have suitable band gap, moderate band edge position, and high carrier mobility. By employing first-principles calculations, we explore a α-CS monolayer as a metal-free efficient photocatalyst. The α-CS monolayer shows good energetic, dynamic, and thermal stabilities and is insoluble in water, suggesting its experimental practicability. Monolayer and bilayer α-CS present not only appropriate band gaps for visible and ultraviolet light absorption but also moderate band alignments with water redox potentials in pH neutral water. Remarkably, the α-CS monolayer exhibits high (up to 8453.19 cm2 V-1s-1 for hole) and anisotropic carrier mobility, which is favorable to the migration and separation of photogenerated carriers. In addition, monolayer α-CS experiences an interesting semiconductor-metal transition by applying uniaxial strain and external electric field. Moreover, α-CS under certain strain and electric field is still dynamically stable with the absence of imaginary frequencies. Furthermore, we demonstrate that the graphite (0 0 1) surface is a potential substrate for the α-CS growth with the intrinsic properties of α-CS maintaining. Therefore, our results could pave the way for the application of α-CS as a promising photocatalyst.

  8. Molecular dynamics study of the effect of calcium ions on the monolayer of SDC and SDSn surfactants at the vapor/liquid interface. (United States)

    Yan, Hui; Guo, Xin-Li; Yuan, Shi-Ling; Liu, Cheng-Bu


    The effect of Ca(2+) ions on the hydration shell of sodium dodecyl carboxylate (SDC) and sodium dodecyl sulfonate (SDSn) monolayer at vapor/liquid interfaces was studied using molecular dynamics simulations. For each surfactant, two different surface concentrations were used to perform the simulations, and the aggregation morphologies and structural details have been reported. The results showed that the aggregation structures relate to both the surface coverage and the calcium ions. The divalent ions can screen the interaction between the polar head and Na(+) ions. Thus, Ca(2+) ions locate near the vapor/liquid interface to bind to the headgroup, making the aggregations much more compact via the salt bridge. The potential of mean force (PMF) between Ca(2+) and the headgroups shows that the interaction is decided by a stabilizing solvent-separated minimum in the PMF. To bind to the headgroup, Ca(2+) should overcome the energy barrier. Among contributions to the PMF, the major repulsive interaction was due to the rearrangement of the hydration shell after the calcium ions entered into the hydration shell of the headgroup. The PMFs between the headgroup and Ca(2+) in the SDSn systems showed higher energy barriers than those in the SDC systems. This result indicated that SDSn binds the divalent ions with more difficulty compared with SDC, so the ions have a strong effect on the hydration shell of SDC. That is why sulfonate surfactants have better efficiency in salt solutions with Ca(2+) ions for enhanced oil recovery.

  9. Excitons and trions in monolayer transition metal dichalcogenides: A comparative study between the multiband model and the quadratic single-band model (United States)

    Van der Donck, M.; Zarenia, M.; Peeters, F. M.


    The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides are investigated using both a multiband and a single-band model. In the multiband model we construct the excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave functions. As a comparison, we also consider the simple single-band model which is often used in numerical studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method (SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We find good agreement between the results of both methods, as well as with other theoretical works for excitons, and we also compare with available experimental data. For trions the agreement between both methods is not as good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models, we see that the presence of the valence bands in the mutiband model leads to differences with the single-band model when (interband) interactions are strong.

  10. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis

    International Nuclear Information System (INIS)

    Liu, Peng; Le, Jiawei; Wang, Lanlan; Pan, Tieying; Lu, Xilan; Zhang, Dexiang


    Highlights: • Curve-fitting method was used to quantify the accurate contents of structural carbon. • Effect of carbon structure in coal with different rank on formation of pyrolysis tar was studied. • Numerical interrelation between carbon types in coal structure and tar yield is elaborated. • Effect of carbon structure on formation of liquid alkane during coal pyrolysis is discussed. - Abstract: The relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis were discussed extensively. The pyrolysis tests were carried out in a tube reactor at 873 K and keep 15 min. The carbon distribution in coals was investigated by solid state 13 C nuclear magnetic resonance (N.M.R.). The curve-fitting method was used to quantify the accurate contents of structural carbon. The alkanes in coal tar were analyzed by Gas Chromatograph–Mass Spectrometer (GC–MS). The results show that oxygen-linked aromatic carbon decreases with the increasing of coal rank. The aliphatic carbon contents of Huainan (HN) coal are 44.20%, the highest among the four coals. The carbon types in coal structure have a significant influence on the formation of tar and liquid alkane. The coal tar yields are related to the aliphatic substituted aromatic carbon, CH 2 /CH 3 ratio and oxygen-linked carbon in coal so that the increasing order of tar yield is Inner Mongolia lignite (IM, 6.30 wt.%) < Sinkiang coal (SK, 7.55 wt.%) < Shenmu coal (SM, 12.84 wt.%) < HN (16.29 wt.%). The highest contents of oxygen-linked aromatic carbon in IM lead to phenolic compound of 41.06% in IM-tar. The contents of alkane in SM-tar are the highest because the appropriate CH 2 /CH 3 ratio and the highest aliphatic side chains on aromatic rings in SM leading to generate aliphatic hydrocarbon with medium molecular weight easily. The mechanism on formation of tar and liquid alkane plays an important role in guiding the industrialization of pyrolysis-based poly-generation producing tar with high

  11. Measurement and modelling of hydrogen bonding in 1-alkanol plus n-alkane binary mixtures

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Jensen, Lars; Kofod, Jonas L.


    Two equations of state (simplified PC-SAFT and CPA) are used to predict the monomer fraction of 1-alkanols in binary mixtures with n-alkanes. It is found that the choice of parameters and association schemes significantly affects the ability of a model to predict hydrogen bonding in mixtures, eve...... studies, which is clarified in the present work. New hydrogen bonding data based on infrared spectroscopy are reported for seven binary mixtures of alcohols and alkanes. (C) 2007 Elsevier B.V. All rights reserved....... though pure-component liquid densities and vapour pressures are predicted equally accurately for the associating compound. As was the case in the study of pure components, there exists some confusion in the literature about the correct interpretation and comparison of experimental data and theoretical...

  12. Scanning tunneling microscopy, Fourier transform infrared spectroscopy, and electrochemical characterization of 2-naphthalenethiol self-assembled monolayers on the Au surface: a study of bridge-mediated electron transfer in Ru(NH3)6(2+)/Ru(NH3)6(3+) redox reactions. (United States)

    Ganesh, V; Lakshminarayanan, V


    We have studied the structure, adsorption kinetics, and barrier properties of self-assembled monolayers of 2-naphthalenethiol on Au using electrochemical techniques, grazing-angle Fourier transform infrared (FTIR) spectroscopy, and scanning tunneling microscopy (STM). The results of cyclic voltammetric and impedance measurements using redox probes show that 2-naphthalenethiol on Au forms a stable and reproducible, but moderately blocking, monolayer. Annealing of the self-assembled monolayer (SAM)-modified surface at 72 +/- 2 degrees C remarkably improves the blocking property of the monolayer of 2-naphthalenethiol on Au. From the study of kinetics of SAM formation, we find that the self-assembly follows Langmuir adsorption isotherm. Our STM and FTIR results show that the molecules are adsorbed with the naphthalene ring tilted from the surface normal by forming a square root 3 x 3 R30 degrees overlayer structure. From our studies, we conclude that the electron-transfer reaction of ferro/ferricyanide in the freshly formed monolayer occurs predominantly through the pinholes and defects present in the monolayer. However, in the case of thermally annealed specimen, although the ferro/ferricyanide reaction is almost completely blocked, the electron-transfer reaction of hexaammineruthenium(III) chloride is not significantly inhibited. It is proposed that the electron-transfer reaction in the case of the ruthenium redox couple takes place by a tunneling mechanism through the high-electron-density aromatic naphthalene ring acting as a bridge between the monolayer-modified electrode and the ruthenium complex.

  13. Influence of N-alkanes on adhesion of an air bubble to the surface of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Janczuk, B.; Wojcik, W.; Bialopiotrowicz, T. (Maria Curie-Sklodowska University, Lublin (Poland). Dept. of Physical Chemistry)


    Measurements of the detachment force of an air bubble from the surface of coals of the ranks: 31.1, 31.2, 32.1 and 32.2 were carried out. The coal surface was precovered with n-alkane film in the homologous series from n-hexane to n-hexadecane. The forces were compared with those calculated theoretically on the basis of the previously determined values of the surface free energy components and of the contact angles measured in a coal/n-alkane film-air bubble-water system. On the basis of the conducted measurements and calculations it was confirmed that the stability of the coal/n-alkane film-air bubble-water systems depends on the rank of the coal studied, the thickness and kind of the hydrocarbon film present on the coal surface, and on the water film pressure under the air bubble. The stability of n-alkane films on the surface of the coals studied is confirmed as smaller than the stability of these films on the surface of typical hydrophobic solids. By comparison of the measured and calculated stabilities of the coal/n-alkane film-air bubble-water system it appeared that the stabilities of such systems may be predicted on the basis of the contact angle of the coal/n-alkane film-air bubble-water system and of the dispersion and nondispersion components of the surface free energy of coal. 28 refs., 3 figs., 3 tabs.

  14. Perspective: what is known, and not known, about the connections between alkane oxidation and metal uptake in alkanotrophs in the marine environment. (United States)

    Austin, Rachel Narehood; Kenney, Grace E; Rosenzweig, Amy C


    Should iron and copper be added to the environment to stimulate the natural bioremediation of marine oil spills? The key enzymes that catalyze the oxidation of alkanes require either iron or copper, and the concentration of these ions in seawater is vanishingly low. Nevertheless, the dependence of alkane oxidation activity on external metal concentrations remains unclear. This perspective will summarize what is known about the co-regulation of alkane oxidation and metal acquisition and pose a series of critical questions to which, for the most part, we do not yet have answers. The paucity of answers points to the need for additional studies to illuminate the cellular biology connecting microbial growth on alkanes to the acquisition of metal ions.

  15. Unsupported single-atom-thick copper oxide monolayers (United States)

    Yin, Kuibo; Zhang, Yu-Yang; Zhou, Yilong; Sun, Litao; Chisholm, Matthew F.; Pantelides, Sokrates T.; Zhou, Wu


    Oxide monolayers may present unique opportunities because of the great diversity of properties of these materials in bulk form. However, reports on oxide monolayers are still limited. Here we report the formation of single-atom-thick copper oxide layers with a square lattice both in graphene pores and on graphene substrates using aberration-corrected scanning transmission electron microscopy. First-principles calculations find that CuO is energetically stable and its calculated lattice spacing matches well with the measured value. Furthermore, free-standing copper oxide monolayers are predicted to be semiconductors with band gaps ∼3 eV. The new wide-bandgap single-atom-thick copper oxide monolayers usher a new frontier to study the highly diverse family of two-dimensional oxides and explore their properties and their potential for new applications.

  16. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast

    DEFF Research Database (Denmark)

    Zhu, Zhiwei; Zhou, Yongjin J.; Kang, Min Kyoung


    Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7–C13) by yeast Saccharomyces cerevisiae...... of fatty acids to 1-alkenes, which could be synthesized at a level of 3 mg/L, 25-fold higher than that of alkanes produced via aldehydes....

  17. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko


    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  18. High Selectivity of Alkanes Production by Calcium Basic Soap Thermal Decarboxylation

    Directory of Open Access Journals (Sweden)

    Neonufa Godlief F.


    Full Text Available Renewable fuel production from vegetable oil and fat or its fatty acids by direct decarboxylation has been widely reported. An innovative approach to produce drop-in fuel via thermal catalytic decarboxylation of basic soap derived from palm stearin reported in this research. The catalytic effect of the calcium and magnesium metals in the basic soap and its decarboxylation on drop-in fuel yield and product distribution was studied. The catalytic effect was tested in the temperature range up to 370°C and atmospheric pressure for 5 hours in a batch reactor. It has been proved that the calcium basic soap decarboxylation, effectively produce the drop-in fuel in carbon ranges C8 – C20, in which more than 78% selectivity toward alkane. Whereas, only 70% selectivity toward alkane has been resulted from the magnesium basic soap decarboxylation.

  19. Grafting of benzylic amide macrocycles onto acid-terminated self-assembled monolayers studied by XPS, RAIRS, and contact angle measurements

    NARCIS (Netherlands)

    Cecchet, F; Pilling, M; Hevesi, L; Schergna, S; Wong, JKY; Clarkson, GJ; Leigh, DA; Rudolf, P; Wong, Jenny K.Y.; Clarkson, Guy J.


    The grafting of benzylic amide macrocycles, the basic units of more complex mechanically interlocked architectures such as catenanes and rotaxanes, was performed via the functionalization of an acid-terminated self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid (11-MUA). Both chemical and

  20. Monolayer Cu2Si as a potential gas sensor for NOx and COx (x = 1, 2): A first-principles study (United States)

    Zhu, Hao-Hao; Ye, Xiao-Juan; Liu, Chun-Sheng; Yan, Xiao-Hong


    Although the metal-decoration can enhance the sensing properties of two-dimensional (2D) materials, the cyclic utilization of materials is hindered by the clustering tendency of metal atoms. Furthermore, there exists a risk of explosion of combustible gases with the electrical measure. Based on first-principles calculations, we investigate the adsorption of various gas molecules (O2, NO, NO2, NH3, N2, CO, CH4 and CO2) on the 2D Cu-Si extended system (Cu2Si). The NOx molecules are chemisorbed on the Cu2Si monolayer, while other gas molecules (except CH4 and N2) are held by an interaction intermediating between the physisorbed and chemisorbed states. The strong hybridizations between N 2p and Si 3p (Cu 4p) orbitals lead to the large adsorption energies. Interestingly, the adsorption of NOx (1 μB) and CO2 (2 μB) can induce magnetic moments on the intrinsically nonmagnetic Cu2Si monolayer. The magnetic moment of NO-Cu2Si mainly arises from the molecule, while the magnetic moments for the NO2 and CO2 adsorption almost origin from the monolayer. In addition, an antiferromagnetic coupling is found in CO-Cu2Si. The changes in magnetization upon the gas adsorption may be detected sensitively and safely, suggesting the Cu2Si monolayer is potential for gas sensing.

  1. C14–22 n-Alkanes in Soil from the Freetown Layered Intrusion, Sierra Leone: Products of Pt Catalytic Breakdown of Natural Longer Chain n-Alkanes?

    Directory of Open Access Journals (Sweden)

    John F. W. Bowles


    Full Text Available Soil above a platinum-group element (PGE-bearing horizon within the Freetown Layered Intrusion, Sierra Leone, contains anomalous concentrations of n-alkanes (CnH2n+2 in the range C14 to C22 not readily attributable to an algal or lacustrine origin. Longer chain n-alkanes (C23 to C31 in the soil were derived from the breakdown of leaf litter beneath the closed canopy humid tropical forest. Spontaneous breakdown of the longer chain n-alkanes to form C14–22 n-alkanes without biogenic or abiogenic catalysts is unlikely as the n-alkanes are stable. In the Freetown soil, the catalytic properties of the PGE (Pt in particular may lower the temperature at which oxidation of the longer chain n-alkanes can occur. Reaction between these n-alkanes and Pt species, such as Pt2+(H2O2(OH2 and Pt4+(H2O2(OH4 can bend and twist the alkanes, and significantly lower the Heat of Formation. Microbial catalysis is a possibility. Since a direct organic geochemical source of the lighter n-alkanes has not yet been identified, this paper explores the theoretical potential for abiogenic Pt species catalysis as a mechanism of breakdown of the longer n-alkanes to form C14–22 alkanes. This novel mechanism could offer additional evidence for the presence of the PGE in solution, as predicted by soil geochemistry.

  2. A comparative study on magnetic properties of Mo doped AlN, GaN and InN monolayers from first-principles (United States)

    Xiao, Gang; Wang, Ling-Ling; Rong, Qing-Yan; Xu, Hai-Qing; Xiao, Wen-Zhi


    First-principles calculations are performed to comparatively study the structural, electronic structures and magnetic properties of Mo doped AlN, GaN and InN monolayers (MLs). After Mo atom doping, the semiconducting GaN and InN MLs transform to metal, while the AlN ML keeps semiconducting with a reduced gap. Total magnetic moments of 1.0 and 0.54 μB, which mainly arising from the localized Mo 4d states, are induced by doping in AlN and InN MLs, respectively, while the doped GaN ML is still nonmagnetic. Nevertheless, the excessive localization and strongly ionic character of the Mo-4d states in AlN ML directly impedes the magnetic coupling, leading to a paramagnetic ground states. A similar case is observed in Mo atoms doped InN ML. The firm N-Mo interaction prevent the impurity states permeating out the range of N-Mo pair, resulting in a quick vanishing of ferromagnetic coupling as the distance between two Mo atoms increasing. All configurations of Mo atoms doped GaN ML in this paper are room temperature ferromagnetic. Spin polarized itinerant electrons mediate the magnetic interaction between two Mo atoms. Increasing the Mo concentration may stabilize the FM state and produce a higher Curie temperature. Our calculations show that GaN nanosheets with Mo atoms doped may be a nice candidate for future spintronic devices. And we conclude that a appropriate magnitude of localization (or delocalization) is what the key point to produce room temperature ferromagnetism from this comparative study.

  3. Exchange of alkanes with deuterium over γ-alumina

    International Nuclear Information System (INIS)

    John, C.S.; Kemball, C.; Pearce, E.A.; Pearman, A.J.


    Exchange reactions of hydrocarbons with deuterium over γ-alumina have been extensively studied but less attention has been directed to the effect of catalyst activation temperature. It has been shown that activity for propane/D 2 exchange passes through a sharp maximum at approximately 823 K and similar behaviour has been shown for the various exchange processes of propene. In this work, the first objective was to examine the effect of varying catalyst activation temperature, Tsub(a), on the subsequent activity of γ-alumina for the exchange of cyclopentane with D 2 ; the effect of chloriding the alumina was also studied. The second objective was to study the influence on the activity for cyclopentane/D 2 exchange of pretreating the catalyst with alkene at various temperatures to determine whether poisoning occurred. The literature indicates that for alkene exchange with deuterium on alumina reaction occurs preferentially for the vinyl hydrogen atoms as opposed to the hydrogen atoms attached to saturated carbon atoms. On this evidence one might expect the presence of alkene to interfere with the exchange of alkanes and indeed there is work which reports that alkene poisons both CH 4 /D 2 and H 2 /D 2 exchange. Finally, the effect of chain-length on the relative rates of methylene and methyl exchange in straight-chain hydrocarbons was examined to follow up previous work on propane and butane. The results are presented and discussed. (author)

  4. Fully atomistic molecular-mechanical model of liquid alkane oils: Computational validation. (United States)

    Zahariev, Tsvetan K; Slavchov, Radomir I; Tadjer, Alia V; Ivanova, Anela N


    Fully atomistic molecular dynamics simulations were performed on liquid n-pentane, n-hexane, and n-heptane to derive an atomistic model for middle-chain-length alkanes. All simulations were based on existing molecular-mechanical parameters for alkanes. The computational protocol was optimized, for example, in terms of thermo- and barostat, to reproduce properly the properties of the liquids. The model was validated by comparison of thermal, structural, and dynamic properties of the normal alkane liquids to experimental data. Two different combinations of temperature and pressure coupling algorithms were tested. A simple differential approach was applied to evaluate fluctuation-related properties with sufficient accuracy. Analysis of the data reveals a satisfactory representation of the hydrophobic systems behavior. Thermodynamic parameters are close to the experimental values and exhibit correct temperature dependence. The observed intramolecular geometry corresponds to extended conformations domination, whereas the intermolecular structure demonstrates all characteristics of liquid systems. Cavity size distribution function was calculated from coordinates analysis and was applied to study the solubility of gases in hexane and heptane oils. This study provides a platform for further in-depth research on hydrophobic solutions and multicomponent systems. Copyright © 2014 Wiley Periodicals, Inc.

  5. Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: effect of electrolytes. (United States)

    Lendrum, Conrad D; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F; McGrath, Kathryn M


    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ∼6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase. © 2011 American Chemical Society

  6. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)


    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  7. Diffusive spreading and mixing of fluid monolayers

    International Nuclear Information System (INIS)

    Popescu, M N; Dietrich, S; Oshanin, G


    The use of ultra-thin, i.e. monolayer, films plays an important role in the emerging field of nano-fluidics. Since the dynamics of such films is governed by the interplay between substrate-fluid and fluid-fluid interactions, the transport of matter in nanoscale devices may eventually be efficiently controlled by substrate engineering. For such films, the dynamics is expected to be captured by two-dimensional lattice-gas models with interacting particles. Using a lattice-gas model and the non-linear diffusion equation derived from the microscopic dynamics in the continuum limit, we study two problems of relevance in the context of nano-fluidics. The first one is the case in which along the spreading direction of a monolayer a mesoscopic-sized obstacle is present, with a particular focus on the relaxation of the fluid density profile upon encountering and passing the obstacle. The second one is the mixing of two monolayers of different particle species which spread side by side following the merger of two chemical lanes, here defined as domains of high affinity for fluid adsorption surrounded by domains of low affinity for fluid adsorption

  8. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua


    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  9. Growth factor controls on the distribution and carbon isotope composition of n-alkanes in leaf wax (United States)

    Jia, C.; Xie, S.; Huang, X.


    Cuticular wax plays pivotal physiological and ecological roles in the interactions between plants and the environments in which they grow. Plant-derived long-chain alkanes are more resistant to decay than other biochemical polymers. n-Alkane distributions (Carbon Preference Index (CPI) values and Average Chain Length (ACL) values) and carbon isotopic values are used widely in palaeoenvironmental reconstruction. However, there is little information available on how growth stages of the plant might influence the abundance of n-alkanes in the natural environment. In this study, we analyzed n-alkane distributions and carbon isotope data from two tree species (Cinnamomum camphora (L.) Presl. and Liquidambar formosana Hance) collected monthly from 2009 to 2011 in Nanwang Shan, Wuhan, Hubei Province. CPI values for n-alkanes from C. camphora remained stable in autumn and winter but fluctuated dramatically during spring and autumn each year. Positive correlations between CPI values and the relative content of (C27+C29) were observed in both sun and shade leaves of C. camphora from April to July. In L. formosana, CPI values decreased gradually from April to December. A similar trend was observed in all three years suggesting that growth stages rather than temperature or relative humidity affected the CPI values on a seasonal timescale. In the samples of L. formosana ACL values were negatively correlated with CPI values in the growing season (from April to July) and positively correlated with CPI values in the other seasons. The δ13C values of C29 and C31 n-alkanes displayed more negative carbon isotopic values in autumn and winter compared with leaves sampled at the start of the growing season from both trees. The δ13C values of C29 and C31 n-alkanes of L. formosana decreased from April to December. These results demonstrate the importance of elucidating the growing factors that influence the distribution and δ13C values of alkanes in modern leaves prior to using CPI

  10. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests (United States)

    Graham, H. V.; Freeman, K. H.


    characteristics associated with canopy effect. A biomass flux-weighted model of alkane chain-length distribution and δ13Cleaf indicate n-alkanes extracted from bulk rock are consistent with inputs integrated over time from plants represented by fossil leaves. In a modern rainforest, we found leaf lipid amounts markedly higher in the shaded and moist understory, consistent with studies that show alkanes proffer fungal protection. Shade tolerance is associated with higher plant orders and, consistent with this, literature data for modern plants from 30 plant orders shows alkane production in asterids and rosids is 2 to 3 times greater than in basal angiosperms or gymnosperms. The lower clades tend to contain greater amounts of terpenoids and novel benzylisoquinoline alkaloids, rather than alkanes. For our three fossil floras, alkane abundance is strongly influenced by depositional setting, with preservation best in the lacustrine setting. Within each site, abundance patterns are potentially influenced by both taxonomic affiliation and by canopy structure as measured by δ13Cleaf values, and such relationships shed light on the combined influences of plant evolution, canopy structure and the function of biochemical resources on the geochemical record of the first rainforests.

  11. Alkane and polycyclic aromatic hydrocarbons in sediments and benthic invertebrates of the northern Chukchi Sea (United States)

    Harvey, H. Rodger; Taylor, Karen A.


    The Hanna Shoal region represents an important northern gateway for transport and deposition in the Chukchi Sea. This study determined the concentration and distribution of organic contaminants (aliphatic hydrocarbon and polycyclic aromatic hydrocarbons, PAHs) in surface sediments from 34 sites across Hanna Shoal. Up to 31 total PAHs, including parent and alkyl homologues were detected with total concentrations ranging from a low of 168 ng g-1 the western flank of Hanna Shoal (station H34) to 1147 ng g-1 at station in Barrow Canyon (station BarC5). Alkyl PAHs were more abundant than parent structures and accounted for 53-64% of the summed concentrations suggesting overall at background levels (< 1600 ng g-1) in sediments. Alkane (C15-C33) hydrocarbons ranged from 4.3 μg g-1 on the southern flank of Hanna shoal to 31 μg g-1 at a northern station. Sediments were often dominated by short chain (C15-C22) alkanes with overall terrestrial aquatic ratios (TAR) for the region averaging 0.20. Based on the ratio of Fl/(Fl+ Py) and BaF/(Baf+BeP) verses (BA/BA+Ch) in sediments, PAHs are largely derived from petrogenic sources with minor amounts of mixed combustion sources. A diversity of PAHs were detected in the northern whelk Neptunea heros foot muscle with total concentrations ranging from 0.14 to 1.5 μg g-1 dry tissue wt. Larger (and presumably older) animals showed higher levels of PAH per unit muscle tissue, suggesting that animals may bioaccumulate PAHs over time, with low but increasing concentrations also present in internal and external eggs. Alkane hydrocarbons were also higher in whelks with distributions similar to that seen in sediments. The mussel Muscularus discors collected in Barrow Canyon showed constrained distributions and substantially lower concentrations of both PAHs and alkanes than the surrounding surface sediments.

  12. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption. (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng


    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  13. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira, E-mail: [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Armini, Silvia; Zhang, Yu [IMEC, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Kakizaki, Takeaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Krause-Rehberg, Reinhard [Department of Physics, Martin Luther University Halle, 06099 Halle (Germany); Anwand, Wolfgang; Wagner, Andreas [Institute for Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)


    Graphical abstract: - Highlights: • Pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the low-k film. • For the sample without the SAM sealing process, metal atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. Almost all pore interiors were covered by those metals. • For the sample damaged by a plasma etch treatment before the SAM sealing process, self-assembled molecules diffused into the OSG film, and they were preferentially trapped by larger pores. - Abstract: Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C{sub 4}F{sub 8} plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C{sub 4}F{sub 8} plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

  14. Studies of endothelial monolayer formation on irradiated poly-L-lactide acid with ions of different stopping power and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, Claudia R. [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); UNQ – IMBICE – CCT – CONICET – LA PLATA (Argentina); Grosso, Mariela F. del [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Ibañez, Irene L. [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Behar, Moni [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Grasselli, Mariano [UNQ – IMBICE – CCT – CONICET – LA PLATA (Argentina); Bermúdez, Gerardo García [Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina)


    In this work we study cell viability, proliferation and morphology of bovine aortic endothelial cells (BAEC) cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. In a previous study comparing ions beams with the same stopping power we observed an increase in cell density and a better cell morphology at higher ion velocities. In the present work we continued this study using heavy ions beam with different stopping power and ion velocities. To this end thin films of 50 μm thickness were irradiated with 2 MeV/u and 0.10 MeV/u ion beams provided the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The results suggest that a more dense and elongated cell shapes, similar to the BAEC cells on the internal surface of bovine aorta, was obtained for stopping power of 18.2–22.1 MeV cm{sup 2} mg{sup −1} and ion velocity of 2 MeV/u. On the other hand, for low ion velocity 0.10 MeV/u the cells present a more globular shapes.

  15. Studies of endothelial monolayer formation on irradiated poly-L-lactide acid with ions of different stopping power and velocity (United States)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Ibañez, Irene L.; Behar, Moni; Grasselli, Mariano; Bermúdez, Gerardo García


    In this work we study cell viability, proliferation and morphology of bovine aortic endothelial cells (BAEC) cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. In a previous study comparing ions beams with the same stopping power we observed an increase in cell density and a better cell morphology at higher ion velocities. In the present work we continued this study using heavy ions beam with different stopping power and ion velocities. To this end thin films of 50 μm thickness were irradiated with 2 MeV/u and 0.10 MeV/u ion beams provided the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The results suggest that a more dense and elongated cell shapes, similar to the BAEC cells on the internal surface of bovine aorta, was obtained for stopping power of 18.2-22.1 MeV cm2 mg-1 and ion velocity of 2 MeV/u. On the other hand, for low ion velocity 0.10 MeV/u the cells present a more globular shapes.

  16. Succession of Alkane Conformational Motifs Bound within Hydrophobic Supramolecular Capsular Assemblies. (United States)

    Barnett, J Wesley; Gibb, Bruce C; Ashbaugh, Henry S


    n-Alkane encapsulation experiments within dimeric octa-acid cavitand capsules in water reveal a succession of packing motifs from extended, to helical, to hairpin, to spinning top structures with increasing chain length. Here, we report a molecular simulation study of alkane conformational preferences within these host-guest assemblies to uncover the factors stabilizing distinct conformers. The simulated alkane conformers follow the trends inferred from 1 H NMR experiments, while guest proton chemical shifts evaluated from Gauge Invariant Atomic Orbital calculations provide further evidence our simulations capture guest packing within these assemblies. Analysis of chain length and dihedral distributions indicates that packing under confinement to minimize nonpolar guest and host interior contact with water largely drives the transitions. Mean intramolecular distance maps and transfer free energy differences suggest the extended and helical motifs are members of a larger family of linear guest structures, for which the guest gauche population increases with increasing chain length to accommodate the chains within the complex. Breaks observed between the helical/hairpin and hairpin/spinning top motifs, on the other hand, indicate the hairpin and spinning top conformations are distinct from the linear family. Our results represent the first bridging of empirical and simulation data for flexible guests encapsulated within confined nanospaces, and constitute an effective strategy by which guest packing motifs within artificial or natural compartments can be rationalized and/or predicted a priori.

  17. Squeezing molecularly thin alkane lubrication films: Layering transistions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.


    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C(3)H(8); C(4)H(10); C(8)H(18); C(9)H(20); C(10)H......(22); C(12)H(26), and C(14)H(30) confined between smooth gold surfaces. We observe well-defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous changes in the number n of lubricant...

  18. Regioselective alkane hydroxylation with a mutant AlkB enzyme (United States)

    Koch, Daniel J.; Arnold, Frances H.


    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  19. Subcellular topological effect of particle monolayers on cell shapes and functions. (United States)

    Miura, Manabu; Fujimoto, Keiji


    We studied topological effects of subcellular roughness displayed by a closely packed particle monolayer on adhesion and growth of endothelial cells. Poly(styrene-co-acrylamide) (SA) particles were prepared by soap-free emulsion copolymerization. Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527 (SA053) and 1270 nm (SA127) in diameter. After 24-h incubation, cells tightly adhered on a tissue culture polystyrene dish and randomly spread. On the other hand, cells attached on particle monolayers were stretched into a narrow stalk-like shape. Lamellipodia spread from the leading edge of cells attached on SA053 monolayer to the top of the particles and gradually gathered to form clusters. This shows that cell-cell adhesion became stronger than cell-substrate interaction. Cells attached to SA127 monolayer extended to the reverse side of a particle monolayer and engulfed particles. They remained immobile without migration 24h after incubation. This shows that the inhibition of extensions on SA127 monolayer could inhibit cell migration and cell proliferation. Cell growth on the particle monolayers was suppressed compared with a flat TCPS dish. The number of cells on SA053 gradually increased, whereas that on SA127 decreased with time. When the cell seeding density was increased to 200,000 cells cm(-2), some adherent cells gradually became into contact with adjacent cells. F-actin condensations were formed at the frame of adherent cells and the thin filaments grew from the edges to connect each other with time. For the cell culture on SA053 monolayer, elongated cells showed a little alignment. Cells showed not arrangement of actin stress fibers but F-actin condensation at the contact regions with neighboring cells. Interestingly, the formed cell monolayer could be readily peeled from the particle monolayer. These results indicate that endothelial cells could recognize the surface roughness displayed by particle monolayers and

  20. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek


    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  1. Sensitive detection of n-alkanes using a mixed ionization mode proton-transfer-reaction mass spectrometer

    Directory of Open Access Journals (Sweden)

    O. Amador-Muñoz


    Full Text Available Proton-transfer-reaction mass spectrometry (PTR-MS is a technique that is widely used to detect volatile organic compounds (VOCs with proton affinities higher than water. However, n-alkanes generally have a lower proton affinity than water and therefore proton transfer (PT by reaction with H3O+ is not an effective mechanism for their detection. In this study, we developed a method using a conventional PTR-MS to detect n-alkanes by optimizing ion source and drift tube conditions to vary the relative amounts of different primary ions (H3O+, O2+, NO+ in the reaction chamber (drift tube. There are very few studies on O2+ detection of alkanes and the mixed mode has never been proposed before. We determined the optimum conditions and the resulting reaction mechanisms, allowing detection of n-alkanes from n-pentane to n-tridecane. These compounds are mostly emitted by evaporative/combustion process from fossil fuel use. The charge transfer (CT mechanism observed with O2+ was the main reaction channel for n-heptane and longer n-alkanes, while for n-pentane and n-hexane the main reaction channel was hydride abstraction (HA. Maximum sensitivities were obtained at low E ∕ N ratios (83 Td, low water flow (2 sccm and high O2+ ∕ NO+ ratios (Uso =  180 V. Isotopic 13C contribution was taken into account by subtracting fractions of the preceding 12C ion signal based on the number of carbon atoms and the natural abundance of 13C (i.e., 5.6 % for n-pentane and 14.5 % for n-tridecane. After accounting for isotopic distributions, we found that PT cannot be observed for n-alkanes smaller than n-decane. Instead, protonated water clusters of n-alkanes (M  ⋅  H3O+ species were observed with higher abundance using lower O2+ and higher water cluster fractions. M  ⋅  H3O+ species are probably the source for the M + H+ species observed from n-decane to n-tridecane. Normalized sensitivities to O2+ or to the sum of O2++

  2. Density functional study on the mechanism for the highly active palladium monolayer supported on titanium carbide for the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Mao, Jianjun; Zhang, Yanxing; Chu, Xingli; Li, Shasha; Yang, Zongxian


    The adsorption, diffusion, and dissociation of O 2 on the palladium monolayer supported on TiC(001) surface, MLPd/TiC(001), are investigated using ab initio density functional theory calculations. Strong adhesion of palladium monolayer to the TiC(001) support, accompanied by a modification of electronic structure of the supported palladium, is evidenced. Compared with Pt(111) surface, the MLPd/TiC(001) can enhance the adsorption of O 2 , leading to comparable dissociation barrier and a smaller diffusion barrier of O 2 . Whilst the adsorption strength of atomic O (the dissociation product of O 2 ) on MLPd/TiC(001) is similar to that on the Pt(111) surface, possessing high mobility, our theoretical results indicate that MLPd/TiC(001) may serve as a good catalyst for the oxygen reduction reaction.

  3. Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy. (United States)

    Su, Yudan; Han, Hui-Ling; Cai, Qun; Wu, Qiong; Xie, Mingxiu; Chen, Daoyong; Geng, Baisong; Zhang, Yuanbo; Wang, Feng; Shen, Y R; Tian, Chuanshan


    Sum-frequency vibrational spectroscopy was employed to probe polymer contaminants on chemical vapor deposition (CVD) graphene and to study alkane and polyethylene (PE) adsorption on graphite. In comparing the spectra from the two surfaces, it was found that the contaminants on CVD graphene must be long-chain alkane or PE-like molecules. PE adsorption from solution on the honeycomb surface results in a self-assembled ordered monolayer with the C-C skeleton plane perpendicular to the surface and an adsorption free energy of ∼42 kJ/mol for PE(H(CH2CH2)nH) with n ≈ 60. Such large adsorption energy is responsible for the easy contamination of CVD graphene by impurity in the polymer during standard transfer processes. Contamination can be minimized with the use of purified polymers free of PE-like impurities.

  4. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    KAUST Repository

    Szeto, Kaï Chung


    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product is unprecedented, asymmetrically distributed towards heavier alkanes. This journal is © 2012 The Royal Society of Chemistry.

  5. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    African Journals Online (AJOL)

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  6. n-Alkanes in surficial sediments of Visakhapatnam harbour, east ...

    Indian Academy of Sciences (India)

    characterised at molecular level, they provide valu- able information on the sources of OM (Meyers. 2003; Volkman 2006). For example, lipid com- pounds such as n-alkanes, sterols, alcohols and fatty acids are used to assess sources of OM in marine and terrestrial sediments (Volkman et al. 1992; Tolosa et al. 2009).

  7. Thermodynamic parameters for the adsorption of volatile n-alkane ...

    African Journals Online (AJOL)


    Thermodynamic parameters for the adsorption of volatile n-alkane hydrocarbons on water hyacinth. (Eichhornia crassipes) root biomass: Effect of organic solvent and mineral acid treatment. Netai Mukaratirwa-Muchanyereyi1,2, Jameson Kugara1 and Mark Fungayi Zaranyika1*. 1Chemistry Department, University of ...

  8. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). (United States)

    Hassanshahian, Mehdi; Ahmadinejad, Mohammad; Tebyanian, Hamid; Kariminik, Ashraf


    Petroleum products spill and leakage have become two major environmental challenges in Iran. Sampling was performed in the petroleum reservoir waste water of Tehran and Kerman Provinces of Iran. Alkane degrading bacteria were isolated by enrichment in a Bushnel-Hass medium, with hexadecane as sole source of carbon and energy. The isolated strains were identified by amplification of 16S rDNA gene and sequencing. Specific primers were used for identification of alkane hydroxylase gene. Fifteen alkane degrading bacteria were isolated and 8 strains were selected as powerful degradative bacteria. These 8 strains relate to Rhodococcus jostii, Stenotrophomonas maltophilia, Achromobacter piechaudii, Tsukamurella tyrosinosolvens, Pseudomonas fluorescens, Rhodococcus erythropolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa genera. The optimum concentration of hexadecane that allowed high growth was 2.5%. Gas chromatography results show that all strains can degrade approximately half of hexadecane in one week of incubation. All of the strains have alkane hydroxylase gene which are important for biodegradation. As a result, this study indicates that there is a high diversity of degradative bacteria in petroleum reservoir waste water in Iran. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal (United States)

    Solowey, Douglas P.; Mane, Manoj V.; Kurogi, Takashi; Carroll, Patrick J.; Manor, Brian C.; Baik, Mu-Hyun; Mindiola, Daniel J.


    Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

  10. Oil contamination in surface sediment of Anzali Wetland in Iran is primarily even carbon number n-alkanes. (United States)

    Azimi-Yancheshmeh, Rokhsareh; Riyahi-Bakhtiari, Alireza; Savabieasfahani, Mozhgan


    To determine the extent of oil contamination and biodegradation in Anzali Wetland of Iran, we examined aliphatic hydrocarbons in surface sediment of this area (n=20). Petroleum hydrocarbon levels (mean 1585 ± 1117; range 316 to 4358 μg g- 1 dry weight) were similar in value to reports from other highly contaminated areas, such as New York Bight, Saudi and Kuwaiti coasts of the Persian Gulf, and Dubai shorelines. Even carbon homologs dominated distribution of n-alkanes in surface sediment of Anzali, which is rarely reported elsewhere. Multiple factors used in our study point to petrogenic source for n-alkanes in Anzali Wetland. Anzali receives multiple industrial and agricultural runoffs from the surrounding area. Shipping industry and oil industry are responsible for a major portion of pollutants entering Anzali. Municipal wastewater discharges are another source of Anzali pollution. To determine why even carbon number n-alkanes predominate in Anzali, we examined the following indices: existence of unresolved complex mixtures (UCM), ratio of UCM to resolved alkanes (RA), ratio of low-molecular weight to high-molecular weight molecules, presence of degraded oil residue, high-relative biodegradation, and the degree of hydrocarbon weathering in the surface sediment of the area. Our findings corroborate with such predominance.

  11. Leaf physiological processes strongly affect δH2 values of leaf wax n-alkanes in C3 and C4 grasses. (United States)

    Gamarra, Bruno; Sachse, Dirk; Kahmen, Ansgar


    Leaf wax n-alkanes are naturally synthesized saturated hydrocarbons. They are synthesized as part of plant leaf cuticle as a mechanism to prevent water losses. Two of the most important features of n-alkanes are their enormous environmental persistence and terrestrial ubiquity making them a solid and reliable long-term and large-scale biomarker. Their hydrogen isotopic composition (δH2) of leaf wax n-alkanes has been traditionally related to precipitation. Leaf wax n-alkanes and their δH2 values have thus been celebrated as biomarkers to reconstruct hydrological changes. δH2 values of leaf wax n-alkanes are yet to be fully comprehended. They are basically determined by three mechanisms: (1) The δH2 value of the plant source water (2) leaf water evaporative enrichment in H2 and (3) biosynthetic fractionation and depletion in H2during their biosynthesis from leaf water. Out of these three, the exact degree by which the evaporative H2-enrichment of leaf water influences the δH2 values of leaf wax n-alkanes is still unknown. We conducted an experiment where we tested and quantified the effects of leaf water evaporative H2-enrichment on the leaf wax n-alkane δH2 values of different grass species. We grew 12 C3 and C4 grass species under controlled environmental conditions in growth chambers. The plants were exposed to 3 different levels of air relative humidity (45, 65 and 85%). These treatments were to generate different degrees of leaf water H2-enrichment in the plants. The goal of our experiment was to determine by what degree the different levels of leaf water H2-enrichment influence the δH2 values of the different C3 and C4 grass species. Additional measurements of gas exchange, evapotranspiration and leaf length and area accompanied the isotopic analysis in order to explain species variability. Our experiments showed that leaf water evaporative H2-enrichment has a critical impact on leaf wax n-alkane δH2 values of all studied plants. The magnitude was

  12. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers (United States)

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin


    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  13. Evaluation of the organic matter sources using the δ13C composition of individual n-alkanes in sediments from Brazilian estuarine systems by GC/C/IRMS (United States)

    Maioli, Otávio Luiz Gusso; de Oliveira, Cristiane Rossi; Dal Sasso, Marco Aurélio; Madureira, Luiz Augusto dos Santos; Azevedo, Débora de Almeida; de Aquino Neto, Francisco Radler


    The δ13C composition of individual n-alkanes (from C16 to C34) was measured from surface sediments of five Brazilian estuarine systems affected by different organic matter sources, such as harbor area, industries, urban centers and sugar cane crops, in order to determine the origins of the organic matter. The aliphatic hydrocarbon fraction was analyzed by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS). The levels of n-alkanes in the studied areas ranged from 0.34 to 18.14 μg kg-1, being relatively low in comparison to high polluted environments. The Carbon Preference Index (CPI) calculated in the C23-C34 range indicates that n-alkanes are mainly inherited from cuticular waxes of higher plants. The δ13C composition of all n-alkanes detected in the sediment samples ranged from -39.6 to -18.3‰ showing different sources for the studied estuarine systems. Through Principal Component Analysis (PCA) it was possible to verify the petrogenic influence in the n-alkane sources, especially in the Paraíba do Sul sediment samples. Differences up to 15‰ of the δ13C values between n-alkanes of odd and even carbon number (C26 and C27) also indicated mixture of petrogenic and biogenic sources in Paraíba do Sul River. High (less negative) δ13C n-alkane values of odd carbon number were obtained from two sampling sites located close to an ethanol plant, indicating residues discharge of sugar cane (C4 plant). Influence of C3 plants that are the main components of dense ombrophile forest was observed in the Itajaí-Açu sediments by the decrease of δ13C (about 10‰ compared to the Paraíba do Sul River δ13C).

  14. Stability of defects in monolayer MoS{sub 2} and their interaction with O{sub 2} molecule: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072 (China); Shang, C. [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074 (China); Qi, N. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072 (China); Chen, Z.Y. [School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100 (China); Chen, Z.Q., E-mail: [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan, 430072 (China)


    Highlights: • Defects can exist steadily in monolayer MoS{sub 2} and break surface chemical inertness. • Activated surfaces are beneficial to the adsorption of O{sub 2} through the introduction of defect levels. • Adsorbed O{sub 2} on defective surface can dissociate with low activation energy barrier. • Defective system may be a potential substrate to design MoS{sub 2}-based gas sensor or catalysts. - Abstract: The stability of various defects in monolayer MoS{sub 2}, as well as their interactions with free O{sub 2} molecules were investigated by density functional theory (DFT) calculations coupled with the nudged elastic band (NEB) method. The defects including S vacancy (monosulfur and disulfue vacancies), antisite defect (Mo{sub S}) and external Mo atom can exist steadily in monolayer MoS{sub 2}, and introduce defect levels in these defective systems, which breaks the surface chemical inertness and significantly enhances the adsorption capacity for free O{sub 2}. The adsorption energy calculations and electronic properties analysis suggest that there is a strong interaction between O{sub 2} molecule and defective system. The adsorbed O{sub 2} on the defective surface can dissociate with a lower activation energy barrier, which produce two active oxygen atoms. Especially, two Mo atoms can occupy one Mo lattice site, and adsorbed O{sub 2} on the top of the Mo atom can then dissociate directly with the lowest activation energy barrier. Hence, our work may provide useful information to design MoS{sub 2}-based gas sensor or catalysts.

  15. A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective (United States)

    Ganji, M. D.; Jameh-Bozorgi, S.; Rezvani, M.


    In order to develop the potential applications of monolayer sheets as gas sensors, the adsorption of formaldehyde (H2CO) molecule on graphene, hexagonal silicon carbide (h-SiC) as well as hexagonal aluminum nitride (h-AlN) monolayer sheets have been investigated. In this work we have used the so-called van der Waals density functional (vdW-DF) method. It was found that H2CO molecule adsorption on h-AlN nanosheet had relatively higher adsorption energy and shorter binding distance and finally much more reactive in the adsorption of H2CO compared with the h-SiC and graphene sheets. The density of states (DOS) was calculated and the results show that the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of h-AlN and h-SiC sheets is significantly reduced upon the H2CO adsorption compared to the graphene which leads to an enhancement in the electrical conductivity of respective systems. We have evaluated these findings by well-known Mulliken as well as Hirshfeld and Voronoi charges analyses for aforementioned systems. The purpose of this work is to achieve deep insights into the influence of H2CO molecule on the electronic properties of h-AlN and h-SiC monolayer sheets, and how these effects could be used to design more sensitive gas sensing devices. Based on the DFT calculation results, the h-AlN and also h-h-SiC sheets are anticipated to be potential novel sensor for detecting the presence of H2CO toxic gas.

  16. Image Charge Effects in the Wetting Behavior of Alkanes on Water with Accounting for Water Solubility

    Directory of Open Access Journals (Sweden)

    Kirill A. Emelyanenko


    Full Text Available Different types of surface forces, acting in the films of pentane, hexane, and heptane on water are discussed. It is shown that an important contribution to the surface forces originates from the solubility of water in alkanes. The equations for the distribution of electric potential inside the film are derived within the Debye-Hückel approximation, taking into account the polarization of the film boundaries by discrete charges at water-alkane interface and by the dipoles of water molecules dissolved in the film. On the basis of above equations we estimate the image charge contribution to the surface forces, excess free energy, isotherms of water adsorption in alkane film, and the total isotherms of disjoining pressure in alkane film. The results indicate the essential influence of water/alkane interface charging on the disjoining pressure in alkane films, and the wettability of water surface by different alkanes is discussed.

  17. Magnetic phase stability of monolayers: Fe on Ta.sub.x./sub.W.sub.1-x./sub.(001) random alloy as a case study

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Martin; Bengone, O.; Kudrnovský, Josef; Drchal, Václav; Máca, František; Turek, Ilja


    Roč. 81, č. 6 (2010), 064410/1-064410/8 ISSN 1098-0121 R&D Projects: GA ČR GA202/07/0456; GA MŠk OC09028; GA AV ČR IAA100100616; GA ČR GA202/09/0775 Grant - others:ANR(FR) ANR-06-NANO-053-01 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520; CEZ:AV0Z20410507 Keywords : magnetic phases * exchange integrals * magnetic monolayer Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  18. [Eco-environmental evolution inferred from n-alkanes and delta13C records in the sediments of Shijiu Lake]. (United States)

    Ou, Jie; Wang, Yan-Hua; Yang, Hao; Hu, Jian-Fang; Chen, Xia; Zou, Jun; Xie, Yun


    The study of global changes has focused on the reconstruction of paleovegetation and paleoclimate by n-alkanes and delta13C. 210Pb contents were measured for dating. The distribution characteristics of n-alkanes and delta13C were used to indicate the source of the organic matter in the sediments of Shijiu Lake. The relationship between modern eco-environmental evolution and human behaviors was discussed in this paper. The combination characteristics of n-alkanes showed a significant odd-even predominance in high-carbon number and main peak at C29, suggesting that the organic matter in the sediments were mainly derived from macrophytes and terrestrial higher plants. The delta13C contents of C27, C29 and C31 n-alkanes were analyzed. Results indicated that C3 plants are the dominant species. The distribution characteristics of n-alkanes and delta13C in different periods revealed the impact of human behaviors on Shijiu Lake. From 1862 to 1970, the low relative content of TOC, TN, C17-C25 and the light delta13C25-31 values showed that there were less human behaviors effects on Shijiu Lake and the eco-environment around the lake was stable. From 1970 to 1983, the relative content of TOC, TN and C17-C25 increased significantly, the delta13C25-31 values became weight. In this period, large areas of Shijiu Lake turned into farmland; pollution by fertilizers and pesticides was serious; large amounts of industrial and domestic wastewater were discharged into the lake. All these human behaviors resulted in the degradation of terrestrial higher plants around the lake. Meanwhile, the eutrophication levels were significantly increased. From 1983 to 2010, the relative contents of TOC, TN and C17-C25 were still in high-value ranges, the problem of eutrophication was not effectively controlled and the eco-environment of Shijiu Lake was relatively degradated.

  19. Role of MoS2 and WS2 monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO4: a first-principles study

    CSIR Research Space (South Africa)

    Opoku, F


    Full Text Available stream_source_info Opoku_19655_2017.pdf.txt stream_content_type text/plain stream_size 2585 Content-Encoding UTF-8 stream_name Opoku_19655_2017.pdf.txt Content-Type text/plain; charset=UTF-8 New Journal of Chemistry, VOL.... 41(20): 11701-11713 Role of MoS2 and WS2 monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO4: a first-principles study Opoku F Govender K van Sittert CGCE Govender PP ABSTRACT: The global...

  20. Phase behavior of lipid monolayers containing DPPC and cholesterol analogs. (United States)

    Stottrup, Benjamin L; Keller, Sarah L


    We investigate the miscibility phase behavior of lipid monolayers containing a wide variety of sterols. Six of the sterols satisfy a definition from an earlier study of "membrane-active sterols" in bilayers (cholesterol, epicholesterol, lathosterol, dihydrocholesterol, ergosterol, and desmosterol), and six do not (25-hydroxycholesterol, lanosterol, androstenolone, coprostanol, cholestane, and cholestenone). We find that monolayers containing dipalmitoyl phosphatidylcholine mixed with membrane-active sterols generally produce phase diagrams containing two distinct regions of immiscible liquid phases, whereas those with membrane-inactive sterols generally do not. This observation establishes a correlation between lipid monolayers and bilayers. It also demonstrates that the ability to form two regions of immiscibility in monolayers is not one of the biophysical attributes that explains cholesterol's predominance in animal cell membranes. Furthermore, we find unusual phase behavior for dipalmitoyl phosphatidylcholine monolayers containing 25-hydroxycholesterol, which produce both an upper and a lower miscibility transition. The lower transition correlates with a sharp change of slope in the pressure-area isotherm.

  1. Evidence of indirect gap in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting


    Monolayer transition metal dichalcogenides, such as MoS2 and WSe2, have been known as direct gap semiconductors and emerged as new optically active materials for novel device applications. Here we reexamine their direct gap properties by investigating the strain effects on the photoluminescence of monolayer MoS2 and WSe2. Instead of applying stress, we investigate the strain effects by imaging the direct exciton populations in monolayer WSe2–MoS2 and MoSe2–WSe2 lateral heterojunctions with inherent strain inhomogeneity. We find that unstrained monolayer WSe2 is actually an indirect gap material, as manifested in the observed photoluminescence intensity–energy correlation, from which the difference between the direct and indirect optical gaps can be extracted by analyzing the exciton thermal populations. Our findings combined with the estimated exciton binding energy further indicate that monolayer WSe2 exhibits an indirect quasiparticle gap, which has to be reconsidered in further studies for its fundamental properties and device applications.

  2. Piezoelectric effect on the thermal conductivity of monolayer gallium nitride (United States)

    Zhang, Jin


    Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.

  3. Triptycene-terminated thiolate and selenolate monolayers on Au(111

    Directory of Open Access Journals (Sweden)

    Jinxuan Liu


    Full Text Available To study the implications of highly space-demanding organic moieties on the properties of self-assembled monolayers (SAMs, triptycyl thiolates and selenolates with and without methylene spacers on Au(111 surfaces were comprehensively studied using ultra-high vacuum infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy and thermal desorption spectroscopy. Due to packing effects, the molecules in all monolayers are substantially tilted. In the presence of a methylene spacer the tilt is slightly less pronounced. The selenolate monolayers exhibit smaller defect densities and therefore are more densely packed than their thiolate analogues. The Se–Au binding energy in the investigated SAMs was found to be higher than the S–Au binding energy.

  4. Sulfonation of alkyl phenyl ether self-assembled monolayers. (United States)

    Katash, Irit; Luo, Xianglin; Sukenik, Chaim N


    The sulfonation of phenyl ether decorated self-assembled monolayers (SAMs) was studied with an eye toward creating surfaces with a particularly high negative charge density based on a close-packed array of phenyl rings with more than one sulfonic acid group per molecule. The product distribution and kinetics of this process were studied by ultraviolet, infrared, and photoelectron spectroscopies and by monitoring changes in the thickness and wetting properties of the SAM. The sulfonation chemistry could be effected without undermining monolayer integrity and the isomer distribution of ortho- and para-monosulfonated material, along with the percentages of mono- and disulfonated molecules could be established throughout the process. As doubly sulfonated molecules appeared, the reaction slowed drastically. Ultimately, sulfonation stops completely with approximately 60% of the molecules disulfonated and 20% each of the two monosulfonated isomers. This striking constraint on monolayer reactivity and the relationship between the surface chemistry and variations in SAM structure are discussed.

  5. Fibrinogen monolayer characterization by colloid deposition. (United States)

    Nattich-Rak, Małgorzata; Adamczyk, Zbigniew; Wasilewska, Monika; Sadowska, Marta


    Colloid particle deposition was applied to characterize bovine and human fibrinogen (Fb) monolayers on mica produced by controlled adsorption under diffusion transport at pH 3.5. The surface concentration of Fb was determined by AFM enumeration of single molecules adsorbed over the substrate surface. The electrokinetic properties of Fb monolayers for various ionic strength were studied using the in situ streaming potential measurements. It was shown that Fb adsorbs irreversibly on mica for a broad range of ionic strength of 4 × 10(-4) to 0.15 M, NaCl. The overcharging of initially negative mica surface occurred for fibrinogen surface concentrations higher than 1400 μm(-2). The orientation of fibrinogen molecules in the monolayers was evaluated by the colloid deposition method involving negatively charged polystyrene latex microspheres, 820 nm in diameter. An anomalous deposition of negative latex particles on substrates exhibiting a negative zeta potential was observed, which contradicts the mean-field DLVO predictions. Measurable deposition was observed even at low ionic strength where the minimum approach distance of latex particles to the interface exceeds 70 nm (for 6 × 10(-4) M NaCl). This confirms that, at this pH, fibrinogen molecules adsorb end-on on mica assuming extended conformations with the positive charge located mostly in the end part of the αA chains. This agrees with previous experimental and theoretical results discussed in the literature (Santore, M. M.; Wertz Ch. F. Protein spreading kinetics at liquid-solid interfaces via an adsorption probe method. Langmuir 2005, 21, 10172-10178 (experimental); Adamczyk, Z.; Barbasz, J.; Cieśla, M.; Mechanisms of fibrinogen adsorption at solid substrates. Langmuir, 2011, 25, 6868-6878 (theoretical)). This unusual latex deposition on Fb monolayers was quantitatively interpreted in terms of the model developed in ref 55 (Jin, X.; Wang, N. H. L.; Tarjus, G.; Talbot, J. Irreversible adsorption on nonuniform

  6. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers

    International Nuclear Information System (INIS)

    Ding Yi; Wang Yanli; Ni Jun; Shi Lin; Shi Siqi; Tang Weihua


    Using first principles calculations, we investigate the structural, vibrational and electronic structures of the monolayer graphene-like transition-metal dichalcogenide (MX 2 ) sheets. We find the lattice parameters and stabilities of the MX 2 sheets are mainly determined by the chalcogen atoms, while the electronic properties depend on the metal atoms. The NbS 2 and TaS 2 sheets have comparable energetic stabilities to the synthesized MoS 2 and WS 2 ones. The molybdenum and tungsten dichalcogenide (MoX 2 and WX 2 ) sheets have similar lattice parameters, vibrational modes, and electronic structures. These analogies also exist between the niobium and tantalum dichalcogenide (NbX 2 and TaX 2 ) sheets. However, the NbX 2 and TaX 2 sheets are metals, while the MoX 2 and WX 2 ones are semiconductors with direct-band gaps. When the Nb and Ta atoms are doped into the MoS 2 and WS 2 sheets, a semiconductor-to-metal transition occurs. Comparing to the bulk compounds, these monolayer sheets have similar structural parameters and properties, but their vibrational and electronic properties are varied and have special characteristics. Our results suggest that the graphene-like MX 2 sheets have potential applications in nano-electronics and nano-devices.

  7. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils (United States)

    Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng


    Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

  8. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers

    International Nuclear Information System (INIS)

    Ljungman, M.


    To assess the influence of chromatin structure on the frequency of radiation-induced DNA strand breaks, the alkaline unwinding technique was applied to nuclear and nucleoid monolayers. These chromatin substrates were prepared by treating human fibroblasts grown as monolayers with the nonionic detergent Triton X-100 and varying concentrations of cations. The chromatin structure was modified either by a stepwise removal of DNA-bound proteins by extraction in increasing concentrations of monovalent salt, or by the addition or deletion of mono- and divalent cations to condense or decondense the chromatin, respectively. It was found that the stepwise removal of DNA-bound proteins from the chromatin dramatically increased the frequency of radiation-induced DNA strand breaks. The DNA-bound proteins showed a qualitative difference in their ability to protect the DNA where proteins removed by salt concentrations above 1.0 M exerted the greatest protection. Furthermore, the frequency of radiation-induced DNA strand breaks was found to be 6 times lower in condensed chromatin than in decondensed chromatin and about 80 times lower than in protein-depleted chromatin. It is concluded that the presence of DNA-bound proteins and the folding of the chromatin into higher-order structures protect the DNA against radiation-induced strand breaks

  9. Binding of the GTPase Sar1 to a Lipid Membrane Monolayer: Insertion and Orientation Studied by Infrared Reflection–Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Christian Schwieger


    Full Text Available Membrane-interacting proteins are polyphilic polymers that engage in dynamic protein–protein and protein–lipid interactions while undergoing changes in conformation, orientation and binding interfaces. Predicting the sites of interactions between such polypeptides and phospholipid membranes is still a challenge. One example is the small eukaryotic GTPase Sar1, which functions in phospholipid bilayer remodeling and vesicle formation as part of the multimeric coat protein complex (COPII. The membrane interaction of Sar1 is strongly dependent on its N-terminal 23 amino acids. By monolayer adsorption experiments and infrared reflection-absorption spectroscopy (IRRAS, we elucidate the role of lipids in inducing the amphipathicity of this N-terminal stretch, which inserts into the monolayer as an amphipathic helix (AH. The AH inserting angle is determined and is consistent with the philicities and spatial distribution of the amino acid monomers. Using an advanced method of IRRAS data evaluation, the orientation of Sar1 with respect to the lipid layer prior to the recruitment of further COPII proteins is determined. The result indicates that only a slight reorientation of the membrane-bound Sar1 is needed to allow coat assembly. The time-course of the IRRAS analysis corroborates a role of slow GTP hydrolysis in Sar1 desorption from the membrane.

  10. Use of self assembled monolayers at variable coverage to control interface bonding in a model study of interfacial fracture: Pure shear loading

    Energy Technology Data Exchange (ETDEWEB)



    The relationships between fundamental interfacial interactions, energy dissipation mechanisms, and fracture stress or fracture toughness in a glassy thermoset/inorganic solid joint are not well understood. This subject is addressed with a model system involving an epoxy adhesive on a polished silicon wafer containing its native oxide. The proportions of physical and chemical interactions at the interface, and the in-plane distribution, are varied using self-assembling monolayers of octadecyltrichlorosilane (ODTS). The epoxy interacts strongly with the bare silicon oxide surface, but forms only a very weak interface with the methylated tails of the ODTS monolayer. The fracture stress is examined as a function of ODTS coverage in the napkin-ring (pure shear) loading geometry. The relationship between fracture stress and ODTS coverage is catastrophic, with a large change in fracture stress occurring over a narrow range of ODTS coverage. This transition in fracture stress does not correspond to a wetting transition of the epoxy. Rather, the transition in fracture stress corresponds to the onset of deformation in the epoxy, or the transition from brittle to ductile fracture. The authors postulate that the transition in fracture stress occurs when the local stress that the interface can support becomes comparable to the yield stress of the epoxy. The fracture results are independent of whether the ODTS deposition occurs by island growth (T{sub dep} = 10 C) or by homogeneous growth (T{sub dep} = 24 C).

  11. Critical wetting of n-alkanes on water; Mouillage critique des alcanes sur l`eau

    Energy Technology Data Exchange (ETDEWEB)

    Ragil, K.


    This study concerns the wetting properties of n-alkanes on water under thermodynamic equilibrium conditions, a problem that is interesting for the petroleum industry as well as for the fundamental understanding of wetting phenomena. An experimental study using ellipsometry reveals that pentane on water undergoes a continuous or critical wetting transition at a temperature equal to 53.1 deg. C. This is the first experimental observation of such a transition, confirming theoretical predictions made on this subject over ten years. This transition is characterized by a continuous and reversible evolution of the thickness of the film of pentane with temperature from a thick (but finite film) to a macroscopic film. The critical wetting transition occurs when the Hamaker constant of the system, which gives the net interaction between the two interfaces bounding the wetting layer of pentane in terms of the van der Waals forces, changes sign. A theoretical approach based on the Cahn-Landau theory, which takes into account long range forces (van der Waals forces), enables us to explain the mechanism of the critical wetting transition and to show that a first-order wetting transition should precede it. Because of their similar dispersive properties, linear alkanes could all be able to show such a succession of transitions. An ellipsometry study performed on a brine/hexane/vapor system confirms that a discontinuous transition from a thin microscopic film to a thick but finite adsorbed film takes place. THis study demonstrates that the wetting of alkanes on water is determined by subtle interplay between short range and long range forces, which can lead to an intermediary state between partial and complete wetting. (author)

  12. Resonance Raman spectra of phthalocyanine monolayers on different supports. A normal mode analysis of zinc phthalocyanine by means of the MNDO method

    NARCIS (Netherlands)

    Palys, Barbara J.; van den Ham, Dirk M.W.; van den Ham, D.M.W.; Briels, Willem J.; Feil, D.; Feil, Dirk


    Resonance Raman spectra of monolayers of transition metal phthalocyanines reveal specific interaction with the support. To elucidate its mechanism, Raman spectra of zinc phthalocyanine monolayers were studied. The analysis was based largely on the results of MNDO calculations. Calculated wavenumbers

  13. Flash Points of Secondary Alcohol and n-Alkane Mixtures. (United States)

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R


    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures.

  14. Cavity plasmon polaritons in monolayer graphene

    International Nuclear Information System (INIS)

    Kotov, O.V.; Lozovik, Yu.E.


    Plasmon polaritons in a new system, a monolayer doped graphene embedded in optical microcavity, are studied here. The dispersion law for lower and upper cavity plasmon polaritons is obtained. Peculiarities of Rabi splitting for the system are analyzed; particularly, role of Dirac-like spinor (envelope) wave functions in graphene and corresponding angle factors are considered. Typical Rabi frequencies for maximal (acceptable for Dirac-like electron spectra) Fermi energy and frequencies of polaritons near polariton gap are estimated. The plasmon polaritons in considered system can be used for high-speed information transfer in the THz region. -- Highlights: → Plasmon polaritons in a monolayer doped graphene embedded in optical microcavity, are studied here. → The dispersion law for lower and upper cavity plasmon polaritons is obtained. → Peculiarities of Rabi splitting for the system are analyzed. → Role of Dirac-like wave functions in graphene and corresponding angle factors are considered. → Typical Rabi frequencies and frequencies of polaritons near polariton gap are estimated.

  15. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    Energy Technology Data Exchange (ETDEWEB)

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R., E-mail: [Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg, Freiburg (Germany)


    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  16. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    International Nuclear Information System (INIS)

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.


    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  17. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn


    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  18. Chromium oxide catalysts in the dehydrogenation of alkanes


    Airaksinen, Sanna


    Light alkenes, such as propene and butenes, are important intermediates in the manufacture of fuel components and chemicals. The direct catalytic dehydrogenation of the corresponding alkanes is a selective way to produce these alkenes and is frequently carried out using chromia/alumina catalysts. The aim of this work was to obtain structure–activity information, which could be utilised in the optimisation of this catalytic system. The properties of chromia/alumina catalysts were investigated ...

  19. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments (United States)

    Sibert, R.; Joye, S. B.; Hunter, K.


    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes are important in terms of the possible 'oxidative overprinting' of alkane isotopic signatures produced at depth, possibly obscuring typical microbial isotopic signals.

  20. Disorder-dependent valley properties in monolayer WSe2

    KAUST Repository

    Tran, Kha


    We investigate the effect of disorder on exciton valley polarization and valley coherence in monolayer WSe2. By analyzing the polarization properties of photoluminescence, the valley coherence (VC) and valley polarization (VP) are quantified across the inhomogeneously broadened exciton resonance. We find that disorder plays a critical role in the exciton VC, while affecting VP less. For different monolayer samples with disorder characterized by their Stokes shift (SS), VC decreases in samples with higher SS while VP does not follow a simple trend. These two methods consistently demonstrate that VC as defined by the degree of linearly polarized photoluminescence is more sensitive to disorder, motivating further theoretical studies.

  1. Molecular modeling of alkyl and alkenyl monolayers on hydrogen-terminated Si(111). (United States)

    Scheres, Luc; Rijksen, Bart; Giesbers, Marcel; Zuilhof, Han


    On H-Si(111) surfaces monolayer formation with 1-alkenes results in alkyl monolayers with a Si-C-C linkage, while 1-alkynes yield alkenyl monolayers with a Si-C═C linkage. Recently, considerable structural differences between both types of monolayers were observed, including an increased thickness, improved packing, and higher surface coverage for the alkenyl monolayers. The precise origin thereof could experimentally not be clarified yet. Therefore, octadecyl and octadecenyl monolayers on Si(111) were studied in detail by molecular modeling via PCFF molecular mechanics calculations on periodically repeated slabs of modified surfaces. After energy minimization the packing energies, structural properties, close contacts, and deformations of the Si surfaces of monolayers structures with various substitution percentages and substitution patterns were analyzed. For the octadecyl monolayers all data pointed to a substitution percentage close to 50-55%, which is due the size of the CH(2) groups near the Si surface. This agrees with literature and the experimentally determined coverage of octadecyl monolayers. For the octadecenyl monolayers the minimum in packing energy per chain is calculated around 60% coverage, i.e., close to the experimentally observed value of 65% [Scheres et al. Langmuir 2010, 26, 4790], and this packing energy is less dependent on the substitution percentage than calculated for alkyl layers. Analysis of the chain conformations, close contacts, and Si surface deformation clarifies this, since even at coverages above 60% a relatively low number of close contacts and a negligible deformation of the Si was observed. In order to evaluate the thermodynamic feasibility of the monolayer structures, we estimated the binding energies of 1-alkenes and 1-alkynes to the hydrogen-terminated Si surface at a range of surface coverages by composite high-quality G3 calculations and determined the total energy of monolayer formation by adding the packing energies

  2. Formation of Underbrushes on thiolated Poly (ethylene glycol) PEG monolayers by Oligoethylene glycol (OEG) terminated Alkane Thiols on Gold

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.


    of the molecule in superior resistance towards protein adsorption. The surfaces with underbrushes were imaged using atomic force microscopy (AFM) to detect any changes in mechanical properties of PEG thiol covered surfaces upon addition of OEG thiol. References: 1. Katsumi Uchida, Yuki Hoshino, Atsushi Tamura...

  3. Influence of compost amendments on the diversity of alkane degrading bacteria in hydrocarbon contaminated soils

    Directory of Open Access Journals (Sweden)

    Michael eSchloter


    Full Text Available Alkane degrading microorganisms play an important role for bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the diversity of alkane monooxygenase gene (alkB harboring bacteria in oil-contaminated soil originated from an industrial zone in Celje, Slovenia, to improve our understanding about the bacterial community involved in alkane degradation and the effects of amendments. Soil without any amendments (control soil and soil amended with compost of different maturation stages, i 1 year and ii 2 weeks, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12 and 36 weeks of incubation. By using quantitative real-time PCR higher number of alkB genes could be detected in soil samples with compost compared to the control soil after 6, 12 and 36 weeks mainly if the less maturated compost was added. To get an insight into the composition of the alkB harboring microbial communities, we performed next generation sequencing of alkB gene fragment amplicons. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soil after 6, 12 and 36 weeks again with stronger effects of the less maturated compost. Comparison of communities detected in different samples and time points based on principle component analysis revealed that the addition of compost in general stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost compared to the control soils. In addition alkB harboring proteobacteria like Shewanella or Hydrocarboniphaga as well as proteobacteria of the genus Agrobacterium responded positively to the addition of compost to soil The amendment of the less maturated compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla mainly at the early sampling

  4. Langmuir monolayers composed of single and double tail sulfobetaine lipids. (United States)

    Hazell, Gavin; Gee, Anthony P; Arnold, Thomas; Edler, Karen J; Lewis, Simon E


    Owing to structural similarities between sulfobetaine lipids and phospholipids it should be possible to form stable Langmuir monolayers from long tail sulfobetaines. By modification of the density of lipid tail group (number of carbon chains) it should also be possible to modulate the two-dimensional phase behaviour of these lipids and thereby compare with that of equivalent phospholipids. Potentially this could enable the use of such lipids for the wide array of applications that currently use phospholipids. The benefit of using sulfobetaine lipids is that they can be synthesised by a one-step reaction from cheap and readily available starting materials and will degrade via different pathways than natural lipids. The molecular architecture of the lipid can be easily modified allowing the design of lipids for specific purposes. In addition the reversal of the charge within the sulfobetaine head group relative to the charge orientation in phospholipids may modify behaviour and thereby allow for novel uses of these surfactants. Stable Langmuir monolayers were formed composed of single and double tailed sulfobetaine lipids. Surface pressure-area isotherm, Brewster Angle Microscopy and X-ray and neutron reflectometry measurements were conducted to measure the two-dimensional phase behaviour and out-of-plane structure of the monolayers as a function of molecular area. Sulfobetaine lipids are able to form stable Langmuir monolayers with two dimensional phase behaviour analogous to that seen for the well-studied phospholipids. Changing the number of carbon tail groups on the lipid from one to two promotes the existence of a liquid condensed phase due to increased Van der Waals interactions between the tail groups. Thus the structure of the monolayers appears to be defined by the relative sizes of the head and tail groups in a predictable way. However, the presence of sub-phase ions has little effect on the monolayer structure, behaviour that is surprisingly different to

  5. Effect of lipid composition and packing on the adsorption of apolipoproteins to lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.; Lund-Katz, S.; Phillips, M.C.


    The monolayer system has been used to study the effects of lipoprotein surface lipid composition and packing on the affinities of apolipoproteins for the surfaces of lipoprotein particles. The adsorption of apolipoproteins injected beneath lipid monolayers prepared with pure lipids or lipoprotein surface lipids is evaluated by monitoring the surface pressure of the film and the surface concentration (Gamma) of 14 C-labelled apolipoprotein. At a given initial film pressure (π/sub i/) there is a higher adsorption of human apo A-I to unsaturated phosphatidylcholine (PC) monolayers compared to saturated PC monolayers (e.g., at π/sub i/ = 10 mN/m, Gamma = 0.35 and 0.06 mg/m 2 for egg PC and distearoyl PC, respectively, with 3 x 10 -4 mg/ml apo A-I in the subphase). In addition, adsorption of apo A-I is less to an egg sphingomyelin monolayer than to an egg PC monolayer. The adsorption of apo A-I to PC monolayers is decreased by addition of cholesterol. Generally, apo A-I adsorption diminishes as the lipid molecular area decreases. Apo A-I adsorbs more to monolayers prepared with HDL 3 surface lipids than with LDL surface lipids. These studies suggest that lipoprotein surface lipid composition and packing are crucial factors influencing the transfer and exchange of apolipoproteins among various lipoprotein classes during metabolism of lipoprotein particles

  6. Screening the best catalyst with group 9, 10 and 11 metals monolayer loading on NbC(001) from first-principles study (United States)

    Kan, Dongxiao; Zhang, Xilin; Zhang, Yanxing; Yang, Zongxian


    The supported catalysts have received great attentions due to their high catalytic activity, low cost and good stability. Here we report the stability, wetting ability, corrosion resistance and catalytic activity of the supported catalysts with group 9, 10 and 11 metals (M = Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) monolayers (ML) deposited on NbC(001), denoted as MML/NbC(001). The PdML/NbC(001) and PtML/NbC(001) are testified as the most stable and active ones with the former even better on the whole. The catalytic activities toward oxygen reduction reactions (ORR) are clarified by the dissociation and the change in Gibbs free energies for the elementary reaction steps of O2 on PdML/NbC(001).

  7. Atomistic modeling of interfacial interaction between polyvinyl chloride and polypropylene with Boron-Nitride monolayer sheet: A density functional theory study (United States)

    Hamed Mashhadzadeh, A.; Fereidoon, A.; Ghorbanzadeh Ahangari, M.


    In present work, we performed Density Functional Theory calculation (DFT) to prepare polypropylene (PP) and polyvinyl chloride (PVC) nanocomposite. For mentioned purpose, we chose Boron-Nitride graphene (BN-graphene) sheet as nano reinforcement. Next, we calculated adsorbed energy between these two polymeric matrixes with BN-monolayer sheet. Our DFT results demonstrated that interaction energy between PP/BN-graphene and PVC/BN-graphene are equal, approximately, because in mentioned two nanocomposite systems, polymer matrix approached to nano reinforcement from hydrogen atom in optimized structure. Then, the adsorbed energy and equilibrium distance between mentioned polymeric matrixes and BN-graphene sheet in nanocomposite with increasing the number of polymer monomers onto surface of BN-graphene were calculated. Finally, we modeled van der Waals interfacial interaction between polymer matrixes and nano reinforcement with linear classical spring by using lennard-jones parameters.

  8. A theoretical and experimental XAS study of monolayer dispersive supported CuO/{gamma}-Al{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongliang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China)]. E-mail:


    The local structures of supported CuO/{gamma}-Al{sub 2}O{sub 3} monolayer dispersive catalysts with different CuO loadings have been investigated by EXAFS and multiple scattering XANES simulations. The EXAFS results show that the first nearest neighbors around the Cu atoms in the CuO/{gamma}-Al{sub 2}O{sub 3} catalysts are similar to that of the polycrystalline CuO powder, which is independent of the CuO loadings. Moreover, the Cu K-XANES FEFF8 calculations for CuO reveal that the monolayer-dispersed CuO species are of small distorted (CuO{sub 4}) {sub m} {sup n+} clusters, which is mainly composed of a distorted CuO{sub 6} octahedron incorporated in the surface octahedral vacant sites of the {gamma}-Al{sub 2}O{sub 3} support. We consider that the CuO species for the CuO/{gamma}-Al{sub 2}O{sub 3} catalysts with loadings of 0.4 and 0.8 mmol/100 m{sup 2} are distorted (CuO{sub 4}) {sub m} {sup n+} clusters composed mainly of a distorted CuO{sub 6} octahedron incorporated in the surface octahedral vacant sites of the {gamma}-Al{sub 2}O{sub 3} support after calcinations at high temperature in air for a few hours. On the contrary, for the CuO/{gamma}-Al{sub 2}O{sub 3} with loading of 1.2 mmol/100 m{sup 2}, the local structure of Cu atoms in CuO/{gamma}-Al{sub 2}O{sub 3} is similar to that of polycrystalline CuO powder.

  9. DPPC Monolayers Exhibit an Additional Phase Transition at High Surface Pressure

    DEFF Research Database (Denmark)

    Shen, Chen; de la Serna, Jorge B.; Struth, Bernd


    Pulmonary surfactant forms a monolayer at the air/aqueous interface within the lung. During the breath process, the surface pressure (Π) periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. Pulmonary surfactant consists of ~90......% of lipid with 10% integrated proteins. Among its lipid compounds, di-palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). DPPC is the only known lipid that can be compressed to very high surface pressure (~70mN/m) before its monolayer collapses. Most probably, this feature contributes to the mechanical...... stability of the alveoli monolayer. Still, to the best of our knowledge, some details of the compression isotherm presented here and the related structures of the DPPC monolayer were not studied so far. The liquid-expanded/liquid-condensed phase transition of the DPPC monolayer at ~10mN/m is well known...

  10. Rhodococcus rhodochrous ATCC12674 becomes alkane-tolerant upon GroEL2 overexpression and survives in the n-octane phase in two phase culture. (United States)

    Takihara, Hayato; Matsuura, Chiaki; Ogihara, Jun; Iwabuchi, Noriyuki; Sunairi, Michio


    We recently reported that the overexpression of GroEL2 played an important role in increasing the alkane tolerance of Rhodococcus erythropolis PR4. In the present study, we examined the effects of the introduction of groEL2 on the alkane tolerance of other Rhodococcus strains. The introduction of groEL2 into Rhodococcus strains led to increased alkane tolerance. The translocation of R. rhodochrous ATCC12674 cells to and survival in the n-octane (C8) phase in two phase culture were significantly enhanced by the introduction of groEL2 derived from strain PR4, suggesting that engineering cells to overexpress GroEL2 represents an effective strategy for enhancing organic solvent tolerance in Rhodococcus.

  11. Magnetic and Structural Phases of Monolayer 02 on Graphite

    DEFF Research Database (Denmark)

    McTague, J. P.; Nielsen, Mourits


    Neutron diffraction studies of O2 thin films physisorbed on the basal plane of graphite show three distinct two-dimensional crystalline phases, all incommensurate with the substrate lattice. The low-temperature monolayer phase has a distorted triangular structure analogous to the closest...

  12. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.


    The melting of butane and hexane monolayers adsorbed on a graphite basal-plane surface has been studied by molecular-dynamics simulations and experimentally by neutron diffraction. The simulation results are qualitatively consistent with the observed diffraction patterns and suggest a general...

  13. Tailoring self-assembled monolayers at the electrochemical interface

    Indian Academy of Sciences (India)


    SAM could be studied by this method. The IR beam is reflected at a small grazing angle from the monolayer surface and the intensity of the reflected beam is recorded. .... strates a strong decrease in capacity. 3.7b Blocking of electron transfer kinetics: With the decrease in the current for the SAM-covered electrode, one can ...

  14. Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes (United States)

    Riva, Matthieu; Da Silva Barbosa, Thais; Lin, Ying-Hsuan; Stone, Elizabeth A.; Gold, Avram; Surratt, Jason D.


    We report the formation of aliphatic organosulfates (OSs) in secondary organic aerosol (SOA) from the photooxidation of C10-C12 alkanes. The results complement those from our laboratories reporting the formation of OSs and sulfonates from gas-phase oxidation of polycyclic aromatic hydrocarbons (PAHs). Both studies strongly support the formation of OSs from the gas-phase oxidation of anthropogenic precursors, as hypothesized on the basis of recent field studies in which aromatic and aliphatic OSs were detected in fine aerosol collected from several major urban locations. In this study, dodecane, cyclodecane and decalin, considered to be important SOA precursors in urban areas, were photochemically oxidized in an outdoor smog chamber in the presence of either non-acidified or acidified ammonium sulfate seed aerosol. Effects of acidity and relative humidity on OS formation were examined. Aerosols collected from all experiments were characterized by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS). Most of the OSs identified could be explained by formation of gaseous epoxide precursors with subsequent acid-catalyzed reactive uptake onto sulfate aerosol and/or heterogeneous reactions of hydroperoxides. The OSs identified here were also observed and quantified in fine urban aerosol samples collected in Lahore, Pakistan, and Pasadena, CA, USA. Several OSs identified from the photooxidation of decalin and cyclodecane are isobars of known monoterpene organosulfates, and thus care must be taken in the analysis of alkane-derived organosulfates in urban aerosol.

  15. Even-odd alternation of the formation of dimer isomers in irradiated polycrystalline alkanes: evidence from product analysis

    International Nuclear Information System (INIS)

    Baudson, T.; Tilquin, B.


    Recent ESR studies on n-alkanes from n-C 11 to n-C 25 have shown that a prominent chain end (-CH 2 -CH 2 ) alkyl radical is formed in odd members of the series. In this preliminary discussion of our study, we shall report the capillary chromatogram in the dimer isomers range for n-alkanes ranging from n-C 11 to n-C 17 irradiated at 80 kGy. Dimer isomers, produced in part by the combination of chain end radicals, are eluted at the end chromatogram. The combination of two chain end radicals gives the dimer (D 11 ) isomer eluted at the last place. It is shown that dimers produced by the combination of chain end alkyl radicals are more important for the odd members of the series than for the even members. (author)

  16. UNIQUAC interaction parameters for alkane/amine systems determined by Molecular Mechanics

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Klein, R. A.; Rasmussen, Kjeld


    UNIQUAC interaction parameters have been successfully determined for three alkane/primary amine systems using a Molecular Mechanics method called the Consistent Force Field. Interaction parameters for alkane/alkane and alkane/ketone systems had been determined previously using this method...... and in this contribution the method has been extended to polar systems with extensive hydrogen bonding. It is thus possible to predict reliable vapor liquid equilibrium data using pure component data only. A method for finding the global minimum on the potential energy surface of a pair of molecules was developed. Good...

  17. Artificial Neural Network Modeling of Liquid Thermal Conductivity for alkanes, ketones and silanes (United States)

    Latini, G.; Di Nicola, G.; Pierantozzi, M.; Coccia, G.; Tomassetti, S.


    The values of thermal conductivity λ at different temperatures for organic and inorganic compounds in the liquid phase is essential in the study of numerous processes, but experimental data are frequently not available with acceptable reliability or not available at all, since rigorous theoretical or semi-theoretical models of the liquid state are usually of poor practical use for engineering purposes. The Artificial Neural Network (ANN) approach is a very powerful tool and it can be a good indicator of the lowest limit achievable with a selected database and with a selected set of inputs. This study investigates the applicability of the ANN as an efficient tool for the prediction of pure organic compounds’ thermal conductivity of three important families such as alkanes, ketones and silanes, for a wide range of temperatures. The families of n-alkanes, ketones and silanes were chosen to verify the general reliability of the proposed method when used in large temperature ranges for very different organic families, above all the silanes (compounds containing silicon), whose liquid thermal conductivity is experimentally investigated in very few cases. This method appears to be successful: in all reduced temperature range, along or near the saturation line, the average absolute deviations between calculated and experimental thermal conductivity data are 0.19% and the maximum absolute ones 2.44%

  18. Potential of amino acid/dipeptide monoester prodrugs of floxuridine in facilitating enhanced delivery of active drug to interior sites of tumors: a two-tier monolayer in vitro study. (United States)

    Tsume, Yasuhiro; Hilfinger, John M; Amidon, Gordon L


    To evaluate the advantages of amino acid/dipeptide monoester prodrugs for cancer treatments by assessing the uptake and cytotoxic effects of floxuridine prodrugs in a secondary cancer cell monolayer following permeation across a primary cancer cell monolayer. The first Capan-2 monolayer was grown on membrane transwell inserts; the second monolayer was grown at the bottom of a plate. The permeation of floxuridine and its prodrugs across the first monolayer and the uptake and cell proliferation assay on secondary layer were sequentially determined. All floxuridine prodrugs exhibited greater permeation across the first Capan-2 monolayer than the parent drug. The correlation between uptake and growth inhibition in the second monolayer with intact prodrug permeating the first monolayer suggests that permeability and enzymatic stability are essential for sustained action of prodrugs in deeper layers of tumors. The correlation of uptake and growth inhibition were vastly superior for dipeptide prodrugs to those obtained with mono amino acid prodrugs. Although a tentative general overall correlation between intact prodrug and uptake or cytotoxic action was obtained, it appears that a mixture of floxuridine prodrugs with varying beneficial characteristics may be more effective in treating tumors.

  19. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes (United States)

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M.; Baganz, Frank


    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.

  20. Utilização dos componentes da cera das plantas, em especial os n-alcanos, em estudos de nutrição de ruminantes The utilization of plant wax components, especially n-alkanes, in ruminants nutrition studies

    Directory of Open Access Journals (Sweden)

    Dimas Estrásulas de Oliveira


    Full Text Available A utilização de métodos indiretos para estimar o consumo e a digestibilidade dos alimentos por ruminantes é bastante importante, porque pode representar uma economia de tempo, dinheiro e trabalho em relação aos experimentos convencionais e, também, por permitir tais estimativas sob condições extensivas de pastejo. Dentre esses métodos, sobressai-se o dos indicadores fecais. Várias substâncias têm sido utilizadas para esse fim. Este artigo é uma revisão de alguns aspectos sobre o uso de n-alcanos como indicadores em estudos de nutrição de ruminantes.The indirect methods used to estimate the intake and digestibility of feedstuffs by ruminants are very important because these methods represent an economy of time, money and work, in relation to conventional trials. Also, they permit estimates in grazing conditions. Among these methods, the faecal markers stand out and lots of substances have been used. This paper is a review about the use of n-alkanes as markers in ruminant nutrition studies.

  1. Geochemical characteristics of n-alkanes and isoprenoids in coal seams from Zhuji coal mine, Huainan coalfield, China, and their relationship with coal-forming environment. (United States)

    Wang, Shanshan; Liu, Guijian; Liu, Jingjing


    Ten coal seams in Upper Shihezi Formation, Lower Shihezi Formation, and Shanxi Formation from the Zhuji mine, Huainan coalfield, China, were analyzed for n-alkanes and isoprenoids (pristine and phytane) using gas chromatography-mass spectrometry (GC-MS), with an aim of reconstructing the coal-forming plants and depositional environments along with organic carbon isotope analyses. The total n-alkane concentrations ranged from 34.1 to 481 mg/kg. Values of organic carbon isotope (δ 13 C org ) ranged from - 24.6 to - 23.7‰. The calorific value (Q b,d ), maximum vitrinite reflectance (Ro max ), proximate, and ultimate analysis were also determined but showed no correlation with n-alkane concentrations. Carbon Preference Index (CPI) values ranged from 0.945 to 1.30, suggesting no obvious odd/even predominance of n-alkane. The predominance of C 11 and C 17 n-alkanes implied that the coal may be deposited in the fresh and mildly brackish environment. According to the contrary changing trend of pristine/phytane (Pr/Ph) ratio and boron concentrations, Pr/Ph can be used as an indicator to reconstruct the marine transgression-regression in sedimentary environment of coal formation. The influence of marine transgression may lead to the enrichment of pyrite sulfur in the coal seam 4-2. C3 plants (- 32 to - 21‰) and marine algae (- 23 to - 16‰) were probably the main coal-forming plants in the studied coal seams. No correlation of the n-alkane concentration and redox condition of the depositional environment with organic carbon isotope composition were found.

  2. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation. (United States)

    Nie, Yong; Liang, Jieliang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei


    Two alkane hydroxylase-rubredoxin fusion gene homologs (alkW1 and alkW2) were cloned from a Dietzia strain, designated DQ12-45-1b, which can grow on crude oil and n-alkanes ranging in length from 6 to 40 carbon atoms as sole carbon sources. Both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase (AlkB) conserved domain and a rubredoxin (Rd) conserved domain which are fused together. Phylogenetic analysis showed that these two AlkB-fused Rd domains formed a novel third cluster with all the Rds from the alkane hydroxylase-rubredoxin fusion gene clusters in Gram-positive bacteria and that this third cluster was distant from the known AlkG1- and AlkG2-type Rds. Expression of the alkW1 gene in DQ12-45-1b was induced when cells were grown on C(8) to C(32) n-alkanes as sole carbon sources, but expression of the alkW2 gene was not detected. Functional heterologous expression in an alkB deletion mutant of Pseudomonas fluorescens KOB2Δ1 suggested the alkW1 could restore the growth of KOB2Δ1 on C(14) and C(16) n-alkanes and induce faster growth on C(18) to C(32) n-alkanes than alkW1ΔRd, the Rd domain deletion mutant gene of alkW1, which also caused faster growth than KOB2Δ1 itself. In addition, the artificial fusion of AlkB from the Gram-negative P. fluorescens CHA0 and the Rds from both Gram-negative P. fluorescens CHA0 and Gram-positive Dietzia sp. DQ12-45-1b significantly increased the degradation of C(32) alkane compared to that seen with AlkB itself. In conclusion, the alkW1 gene cloned from Dietzia species encoded an alkane hydroxylase which increased growth on and degradation of n-alkanes up to C(32) in length, with its fused rubredoxin domain being necessary to maintain the functions. In addition, the fusion of alkane hydroxylase and rubredoxin genes from both Gram-positive and -negative bacteria can increase the degradation of long-chain n-alkanes (such as C(32)) in the Gram-negative bacterium.

  3. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli. (United States)

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo


    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani


    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.

  5. Equivalent Alkane Carbon Number of Live Crude Oil: A Predictive Model Based on Thermodynamics

    Directory of Open Access Journals (Sweden)

    Creton Benoit


    Full Text Available We took advantage of recently published works and new experimental data to propose a model for the prediction of the Equivalent Alkane Carbon Number of live crude oil (EACNlo for EOR processes. The model necessitates the a priori knowledge of reservoir pressure and temperature conditions as well as the initial gas to oil ratio. Additionally, some required volumetric properties for hydrocarbons were predicted using an equation of state. The model has been validated both on our own experimental data and data from the literature. These various case studies cover broad ranges of conditions in terms of API gravity index, gas to oil ratio, reservoir pressure and temperature, and composition of representative gas. The predicted EACNlo values reasonably agree with experimental EACN values, i.e. determined by comparison with salinity scans for a series of n-alkanes from nC8 to nC18. The model has been used to generate high pressure high temperature data, showing competing effects of the gas to oil ratio, pressure and temperature. The proposed model allows to strongly narrow down the spectrum of possibilities in terms of EACNlo values, and thus a more rational use of equipments.

  6. Prediction of the Flash Point of Binary and Ternary Straight-Chain Alkane Mixtures

    Directory of Open Access Journals (Sweden)

    X. Li


    Full Text Available The flash point is an important physical property used to estimate the fire hazard of a flammable liquid. To avoid the occurrence of fire or explosion, many models are used to predict the flash point; however, these models are complex, and the calculation process is cumbersome. For pure flammable substances, the research for predicting the flash point is systematic and comprehensive. For multicomponent mixtures, especially a hydrocarbon mixture, the current research is insufficient to predict the flash point. In this study, a model was developed to predict the flash point of straight-chain alkane mixtures using a simple calculation process. The pressure, activity coefficient, and other associated physicochemical parameters are not required for the calculation in the proposed model. A series of flash points of binary and ternary mixtures of straight-chain alkanes were determined. The results of the model present consistent experimental results with an average absolute deviation for the binary mixtures of 0.7% or lower and an average absolute deviation for the ternary mixtures of 1.03% or lower.

  7. Heritability of the Structures and 13C Fractionation in Tomato Leaf Wax Alkanes: A Genetic Model System to Inform Paleoenvironmental Reconstructions

    Directory of Open Access Journals (Sweden)

    Amanda L. D. Bender


    Full Text Available Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs between two interfertile Solanum (tomato species: S. lycopersicum cv M82 (hereafter cv M82 and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso- to total alkanes. Between Solanum pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2–1.4‰ over n-alkanes. The broad-sense heritability values (H2 of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13–0.19, suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments

  8. Heritability of the structures and 13C fractionation in tomato leaf wax alkanes: a genetic model system to inform paleoenvironmental reconstructions (United States)

    Bender, Amanda L. D.; Chitwood, Daniel H.; Bradley, Alexander S.


    Leaf wax n-alkanes are broadly used to reconstruct paleoenvironmental information. However, the utility of n-alkanes as a paleoenvironmental proxy may be modulated by the extent to which biological as well as environmental factors influence the structural and isotopic variability of leaf waxes. In paleoclimate applications, there is usually an implicit assumption that most variation of leaf wax traits through a time series can be attributed to environmental change and that biological sources of variability within plant communities are small. For example, changes in hydrology affect the δ2H of waxes via rainwater and the δ13C of leaf waxes by changing plant communities. We measured the degree of genetic control over δ13C variation in leaf waxes within closely related species with an experimental greenhouse growth study. We measured the proportion of variability in structural and isotopic leaf wax traits that is attributable to genetic variation using a set of 76 introgression lines (ILs) between two interfertile Solanum (tomato) species: S. lycopersicum cv M82 (hereafter cv M82) and S. pennellii. Leaves of S. pennellii, a wild desert tomato relative, produced significantly more iso-alkanes than cv M82, a domesticated tomato cultivar adapted to water-replete conditions. We report a methylation index to summarize the ratio of branched (iso- and anteiso-) to total alkanes. Between S. pennellii and cv M82, the iso-alkanes were found to be enriched in 13C by 1.2-1.4‰ over n-alkanes. The broad-sense heritability values (H2) of leaf wax traits describe the degree to which genetic variation contributes to variation of these traits. Variation of individual carbon isotopic compositions of alkanes were of low heritability (H2 = 0.13-0.19), suggesting that most variation in δ13C of leaf waxes in this study can be attributed to environmental variance. This supports the interpretation that variation in the δ13C of wax compounds recorded in sediments reflects

  9. In situ and real-time atomic force microscopy studies of the stability of oligothiophene langmuir-blodgett monolayers in liquid

    KAUST Repository

    Yin, Naining


    Oligothiophene thin films have been considered as promising material for molecular electronics due to their desirable electronic properties and high structural stability under ambient conditions. To ensure performance in devices the functional structures, such as individual ordered domains, must be stable under practical and operational conditions or environments including exposure to various media. This work investigates the structure of oligothiophene Langmuir-Blodgett (LB) films upon exposure to liquid media such as water, ethanol (EtOH), and mixed tetrahydrofuran (THF)/EtOH solutions. The LB films form islands ranging from 500 nm up to 1 μm consisting of densely packed oligothiophene molecules. These islands are surrounded by bare substrate and loosely packed adsorbates. In situ and time-dependent AFM images were acquired to reveal the structural evolution, from which degradation pathways and kinetics are extracted. Degradation of these LB films initiates and propagates from intraisland defect sites, such as cracks and pin holes, whereas the edges of islands remain intact on the surface. The observations appear to be in contrast to the known degradation mechanism among self-assembled monolayers, such as alkanethiols on gold, which initiates and progresses at domain boundaries. Rationale for the observed degradation processes will also be discussed. © 2014 American Chemical Society.

  10. Adsorption and Fibrillization of Islet Amyloid Polypeptide at Self-Assembled Monolayers Studied by QCM-D, AFM, and PM-IRRAS. (United States)

    Hajiraissi, Roozbeh; Hanke, Marcel; Yang, Yu; Duderija, Belma; Gonzalez Orive, Alejandro; Grundmeier, Guido; Keller, Adrian


    Aggregation and fibrillization of human islet amyloid polypeptide (hIAPP) plays an important role in the development of type 2 diabetes mellitus. Understanding the interaction of hIAPP with interfaces such as cell membranes at a molecular level therefore represents an important step toward new therapies. Here, we investigate the fibrillization of hIAPP at different self-assembled alkanethiol monolayers (SAMs) by quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM), and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). We find that hydrophobic interactions with the CH 3 -terminated SAM tend to retard hIAPP fibrillization compared to the carboxylic acid-terminated SAM where attractive electrostatic interactions lead to the formation of a three-dimensional network of interwoven fibrils. At the hydroxyl- and amino-terminated SAMs, fibrillization appears to be governed by hydrogen bonding between the peptide and the terminating groups which may even overcome electrostatic repulsion. These results thus provide fundamental insights into the molecular mechanisms governing amyloid assembly at interfaces.

  11. Topography and instability of monolayers near domain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, H.; Witten, T. A.; Ege, C.; Gopal, A.; Lee, K. Y. C.


    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of {open_quotes}mesas,{close_quotes} where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K({delta}c{sub 0}){sup 2} ({delta}c{sub 0} being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about K{delta}c{sub 0}. The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films.

  12. Surface plasmon resonance for detecting clenbuterol: Influence of monolayer structure (United States)

    Suherman; Morita, Kinichi; Kawaguchi, Toshikazu


    Surface plasmon resonance sensor equipped with a fabricated immunosensor chip is used for detecting clenbuterol in this study. Since clenbuterol is a small analyte, indirect competitive inhibition immunoassay is employed. For fabricating the immunosurface, the Au-chip was functionalized by succinimidyl-terminated alkanethiol, and the terminal N-hydroxysuccinimide group of the self-assembled monolayer was either replaced with clenbuterol or blocked with ethanolamine. Scanning tunneling microscope experiments and electrochemical measurements depicted the domain structures of the succinimide group of succinimidyl-terminated propanethiol monolayer. The surface concentration and the orientation of succinimide group was significantly dependent on the concentration of dithiobis(succinimidyl) propionate (DSP) used in fabricating the monolayer. Furthermore, the structure of monolayer significantly influenced both the surface concentration and the orientation of clenbuterol on the sensor surface. Consequently, high coverage and standing-up configuration of clenbuterol showed high affinity for clenbuterol antibody. However, high affinity constant exhibited by the sensor surface was coupled with a low sensitivity. By contrast, lowest concentration of DSP solution (0.1 mM) used in fabricating the immunosurface showed a detection sensitivity of 3 ppt - the highest reported sensitivity for clenbuterol. For regeneration the immunosurface, 0.1 M NaOH was used and the same sensor surface could be reused for performing >100 rapid immunoreaction.

  13. Monolayer adsorption of noble gases on graphene (United States)

    Maiga, Sidi M.; Gatica, Silvina M.


    We report our results of simulations of the adsorption of noble gases (Kr, Ar, Xe) on graphene. For Kr, we consider two configurations: supported and free-standing graphene, where atoms are adsorbed only on one or two sides of the graphene. For Ar and Xe, we studied only the case of supported graphene. For the single-side adsorption, we calculated the two-dimensional gas-liquid critical temperature for each adsorbate. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton. For double side adsorption of Kr, we do not see evidence of an ordering transition driven by the interlayer forces.

  14. Ion beam analysis with monolayer depth resolution (United States)

    Carstanjen, H. D.


    The paper is concerned with the analysis of surfaces and near-surface layers with monolayer depth resolution by means of high resolution Rutherford backscattering (HRBS) and elastic recoil detection (HERDA) of ions with an energy of a few MeV, in combination with an electrostatic spectrometer. With this instrument, which has recently been set up at the 6 MV Pelletron accelerator of the Max-Planck-Institut für Metallforschung in Stuttgart, depth resolutions of 0.1 nm are obtained in HRBS and 0.3 nm in HERDA experiments. This paper gives a short outline of the design and performance of the spectrometer followed by various examples of applications. These comprise examples showing the analyzing power of the instrument, the analysis of an X-ray mirror by HRBS, the study of the initial oxidation of surfaces of aluminum single crystals by HERDA and recent results concerning charge exchange in ion backscattering.

  15. Pronounced Environmental Effects on Injection Currents in EGaln Tunneling Junctions Comprising Self-Assembled Monolayers

    NARCIS (Netherlands)

    Carlotti, Marco; Degen, Maarten; Zhang, Yanxi; Chiechi, Ryan C.


    Large-area tunneling junctions using eutectic Ga-In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in

  16. Au-Interaction of Slp1 Polymers and Monolayer from Lysinibacillus sphaericus JG-B53 - QCM-D, ICP-MS and AFM as Tools for Biomolecule-metal Studies. (United States)

    Suhr, Matthias; Raff, Johannes; Pollmann, Katrin


    In this publication the gold sorption behavior of surface layer (S-layer) proteins (Slp1) of Lysinibacillus sphaericus JG-B53 is described. These biomolecules arrange in paracrystalline two-dimensional arrays on surfaces, bind metals, and are thus interesting for several biotechnical applications, such as biosorptive materials for the removal or recovery of different elements from the environment and industrial processes. The deposition of Au(0) nanoparticles on S-layers, either by S-layer directed synthesis or adsorption of nanoparticles, opens new possibilities for diverse sensory applications. Although numerous studies have described the biosorptive properties of S-layers, a deeper understanding of protein-protein and protein-metal interaction still remains challenging. In the following study, inductively coupled mass spectrometry (ICP-MS) was used for the detection of metal sorption by suspended S-layers. This was correlated to measurements of quartz crystal microbalance with dissipation monitoring (QCM-D), which allows the online detection of proteinaceous monolayer formation and metal deposition, and thus, a more detailed understanding on metal binding. The ICP-MS results indicated that the binding of Au(III) to the suspended S-layer polymers is pH dependent. The maximum binding of Au(III) was obtained at pH 4.0. The QCM-D investigations enabled the detection of Au(III) sorption as well as the deposition of Au(0)-NPs in real-time during the in situ experiments. Further, this method allowed studying the influence of metal binding on the protein lattice stability of Slp1. Structural properties and protein layer stability could be visualized directly after QCM-D experiment using atomic force microscopy (AFM). In conclusion, the combination of these different methods provides a deeper understanding of metal binding by bacterial S-layer proteins in suspension or as monolayers on either bacterial cells or recrystallized surfaces.

  17. A class of monolayer metal halogenides MX{sub 2}: Electronic structures and band alignments

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Feng; Wang, Weichao; Luo, Xiaoguang; Cheng, Yahui; Dong, Hong; Liu, Hui; Wang, Wei-Hua, E-mail: [Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 (China); Xie, Xinjian [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)


    With systematic first principles calculations, a class of monolayer metal halogenides MX{sub 2} (M = Mg, Ca, Zn, Cd, Ge, Pb; M = Cl, Br, I) has been proposed. Our study indicates that these monolayer materials are semiconductors with the band gaps ranging from 2.03 eV of ZnI{sub 2} to 6.08 eV of MgCl{sub 2}. Overall, the band gap increases with the increase of the electronegativity of the X atom or the atomic number of the metal M. Meanwhile, the band gaps of monolayer MgX{sub 2} (X = Cl, Br) are direct while those of other monolayers are indirect. Based on the band edge curvatures, the derived electron (m{sub e}) and hole (m{sub h}) effective masses of MX{sub 2} monolayers are close to their corresponding bulk values except that the m{sub e} of CdI{sub 2} is three times larger and the m{sub h} for PbI{sub 2} is twice larger. Finally, the band alignments of all the studied MX{sub 2} monolayers are provided using the vacuum level as energy reference. These theoretical results may not only introduce the monolayer metal halogenides family MX{sub 2} into the emerging two-dimensional materials, but also provide insights into the applications of MX{sub 2} in future electronic, visible and ultraviolet optoelectronic devices.

  18. Structural investigations of basic amphipathic model peptides in the presence of lipid vesicles studied by circular dichroism, fluorescence, monolayer and modeling. (United States)

    Mangavel, C; Maget-Dana, R; Tauc, P; Brochon, J C; Sy, D; Reynaud, J A


    A cationic amphiphilic peptide made of 10 leucine and 10 lysine residues, and four of its fluorescent derivatives in which leucines were substituted by Trp residues at different locations on the primary sequence have been synthesized. The interactions of these five peptides with neutral anionic or cationic vesicles were investigated using circular dichroism, steady state and time-resolved fluorescence with a combination of Trp quenching by brominated lipid probes, monolayers, modeling with minimization and simulated annealing procedures. We show that all the five peptides interact with neutral and anionic DMPC, DMPG, DOPC or egg yolk PC vesicles. The binding takes place whatever the peptide conformation in solution is. In the case of DMPC bilayers the binding free energy DeltaG is estimated at -8 kcal mole-1 and the number of phospholipid molecules involved is about 20-25 per peptide molecule. Peptides are bound as single-stranded alpha helices orientated parallel to the bilayer surface. In the anchoring of phospholipid head groups around the peptides, the lipid molecules are not smeared out in a plane parallel to the membrane surface but are organized around the hydrophilic face of the alpha helices like 'wheat grains around an ear' and protrude outside the bilayer towards the solvent. We suggest that such a lipid arrangement generates transient structural defects responsible for the membrane permeability enhancement. When an electrical potential is applied, the axis of the peptide helices remains parallel to the membrane surface and does not reorient to give rise to a bundle of helix monomers that forms transmembrane channels via a 'barrel stave' mechanism. The penetration depth of alpha helices in relation to the position of phosphorus atoms in the unperturbed lipid leaflet is estimated at 3.2 A. Copyright 1998 Elsevier Science B.V. All rights reserved.

  19. The Effect of Compositional Changes of Binary Mixtures of n-alkane ...

    African Journals Online (AJOL)

    The Effect of Compositional Changes of Binary Mixtures of n-alkane solvents on the Precipitation of Heavy Organics from a Solution of Crude Oil Residue. ... The results have shown that the quantity of HO precipitate decreases with increasing quantity of higher carbon number of n-alkane solvent to a minimum value at 2:1 ...

  20. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines. (United States)

    Tang, Xinxin; Jia, Xiangqing; Huang, Zheng


    Alkanes, the main constituents of petroleum, are attractive feedstocks for producing value-added chemicals. Linear aldehydes and amines are two of the most important building blocks in the chemical industry. To date, there have been no effective methods for directly converting n-alkanes to linear aldehydes and linear amines. Here, we report a molecular dual-catalyst system for production of linear aldehydes via regioselective carbonylation of n-alkanes. The system is comprised of a pincer iridium catalyst for transfer-dehydrogenation of the alkane using t-butylethylene or ethylene as a hydrogen acceptor working sequentially with a rhodium catalyst for olefin isomerization-hydroformylation with syngas. The system exhibits high regioselectivity for linear aldehydes and gives high catalytic turnover numbers when using ethylene as the acceptor. In addition, the direct conversion of light alkanes, n-pentane and n-hexane, to siloxy-terminated alkyl aldehydes through a sequence of Ir/Fe-catalyzed alkane silylation and Ir/Rh-catalyzed alkane carbonylation, is described. Finally, the Ir/Rh dual-catalyst strategy has been successfully applied to regioselective alkane aminomethylation to form linear alkyl amines.

  1. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers

    International Nuclear Information System (INIS)

    Schutte, Maaike E.; Freidig, Andreas P.; Sandt, Johannes J.M. van de; Alink, Gerrit M.; Rietjens, Ivonne M.C.M.; Groten, John P.


    The present study describes the effect of different flavonoids on the absorption of the pro-carcinogen PhIP through Caco-2 monolayers and the development of an in silico model describing this process taking into account passive diffusion and active transport of PhIP. Various flavonoids stimulated the apical to basolateral PhIP transport. Using the in silico model for flavone, kaempferol and chrysoeriol, the apparent Ki value for inhibition of the active transport to the apical side was estimated to be below 53 μM and for morin, robinetin and taxifolin between 164 and 268 μM. For myricetin, luteolin, naringenin and quercetin, the apparent Ki values were determined more accurately and amounted to 37.3, 12.2, 11.7 and 5.6 μM respectively. Additional experiments revealed that the apical to basolateral PhIP transport was also increased in the presence of a typical BCRP or MRP inhibitor with apparent Ki values in the same range as those of the flavonoids. This observation together with the fact that flavonoids are known to be inhibitors of MRPs and BCRP, corroborates that inhibition of these apical membrane transporters is involved in the flavonoid-mediated increased apical to basolateral PhIP transport. Based on the apparent Ki values obtained, it is concluded that the flavonols, at the levels present in the regular Western diet, are capable of stimulating the transport of PhIP through Caco-2 monolayers from the apical to the basolateral compartment. This points to flavonoid-mediated stimulation of the bioavailability of PhIP and, thus, a possible adverse effect of these supposed beneficial food ingredients

  2. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N


    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  3. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Directory of Open Access Journals (Sweden)

    Arpita eBose


    Full Text Available Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5 and longer alkanes. C2-C4 alkanes such as ethane, propane and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4 then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist. Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4‰ and 4.5‰ respectively. The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively. Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  4. Characterization of polychlorinated n-alkanes using comprehensive two-dimensional gas chromatography-electron-capture negative ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Korytar, P.; Parera, J.; Leonards, P.E.G.; Santos, F.J.; Boer, de J.; Brinkman, U.A.Th.


    Comprehensive two-dimensional gas chromatography with electron-capture negative ionization time-of-flight mass spectrometry (GC × GC¿ECNI-TOF-MS) is used to study the composition and characteristics of short-, medium- and long-chain polychlorinated n-alkane (PCA) mixtures. Distinct ordered

  5. Long-term Renewable Human Intestinal Epithelial Stem Cells as Monolayers: A Potential for Clinical Use (United States)

    Scott, Andrew; Rouch, Joshua D; Jabaji, Ziyad; Khalil, Hassan A; Solorzano, Sergio; Lewis, Michael; Martín, Martín G.; Stelzner, Matthias G.; Dunn, James C.Y.


    Purpose Current culture schema for human intestinal stem cells (hISCs) frequently rely on a 3D culture system using Matrigel™, a laminin-rich matrix derived from murine sarcoma that is not suitable for clinical use. We have developed a novel 2D culture system for the in vitro expansion of hISCs as an intestinal epithelial monolayer without the use of Matrigel. Methods Cadaveric duodenal samples were processed to isolate intestinal crypts from the mucosa. Crypts were cultured on a thin coat of type I collagen or laminin. Intestinal epithelial monolayers were supported with growth factors to promote self-renewal or differentiation of the hISCs. Proliferating monolayers were sub-cultured every 4–5 days. Results Intestinal epithelial monolayers were capable of long-term cell renewal. Less differentiated monolayers expressed high levels of gene marker LGR5, while more differentiated monolayers had higher expressions of CDX2, MUC2, LYZ, DEF5, and CHGA. Furthermore, monolayers were capable of passaging into a 3D culture system to generate spheroids and enteroids. Conclusion This 2D system is an important step to expand hISCs for further experimental studies and for clinical cell transplantation. PMID:26995514

  6. Large-area synthesis of high-quality monolayer 1T’-WTe2 flakes (United States)

    Naylor, Carl H.; Parkin, William M.; Gao, Zhaoli; Kang, Hojin; Noyan, Mehmet; Wexler, Robert B.; Tan, Liang Z.; Kim, Youngkuk; Kehayias, Christopher E.; Streller, Frank; Zhou, Yu Ren; Carpick, Robert; Luo, Zhengtang; Park, Yung Woo; Rappe, Andrew M.; Drndić, Marija; Kikkawa, James M.; Johnson, A. T. Charlie


    Large-area growth of monolayer films of the transition metal dichalcogenides is of the utmost importance in this rapidly advancing research area. The mechanical exfoliation method offers high quality monolayer material but it is a problematic approach when applied to materials that are not air stable. One important example is 1T’-WTe2, which in multilayer form is reported to possess a large non saturating magnetoresistance, pressure induced superconductivity, and a weak antilocalization effect, but electrical data for the monolayer is yet to be reported due to its rapid degradation in air. Here we report a reliable and reproducible large-area growth process for obtaining many monolayer 1T’-WTe2 flakes. We confirmed the composition and structure of monolayer 1T’-WTe2 flakes using x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, Raman spectroscopy and aberration corrected transmission electron microscopy. We studied the time dependent degradation of monolayer 1T’-WTe2 under ambient conditions, and we used first-principles calculations to identify reaction with oxygen as the degradation mechanism. Finally we investigated the electrical properties of monolayer 1T’-WTe2 and found metallic conduction at low temperature along with a weak antilocalization effect that is evidence for strong spin-orbit coupling.

  7. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong


    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44monolayer is topologically nontrivial for 0.48monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  8. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.


    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  9. Molecular diffusion in monolayer and submonolayer nitrogen

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter


    The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal plane...

  10. Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wanpeng [State Oceanic Administration, Xiamen (China). Key Lab. of Marine Biogenetic Resources; Xiamen Univ. (China). School of Life Sciences; Shao, Zongze [State Oceanic Administration, Xiamen (China). Key Lab. of Marine Biogenetic Resources


    Alcanivorax hongdengensis A-11-3 is a newly identified type strain isolated from the surface water of the Malacca and Singapore Straits that can degrade a wide range of alkanes. To understand the degradation mechanism of this strain, the genes encoding alkane hydroxylases were obtained by PCR screening and shotgun sequencing of a genomic fosmid library. Six genes involved in alkane degradation were found, including alkB1, alkB2, p450-1, p450-2, p450-3 and almA. Heterogeneous expression analysis confirmed their functions as alkane oxidases in Pseudomonas putida GPo12 (pGEc47{delta}B) or Pseudomonas fluorescens KOB2{delta}1. Q-PCR revealed that the transcription of alkB1 and alkB2 was enhanced in the presence of n-alkanes C{sub 12} to C{sub 24}; three p450 genes were up-regulated by C{sub 8}-C{sub 16} n-alkanes at different levels, whereas enhanced expression of almA was observed when strain A-11-3 grew with long-chain alkanes (C{sub 24} to C{sub 36}). In the case of branched alkanes, pristane significantly enhanced the expression of alkB1, p450-3 and almA. The six genes enable strain A-11-3 to degrade short (C{sub 8}) to long (C{sub 36}) alkanes that are straight or branched. The ability of A. hongdengensis A-11-3 to thrive in oil-polluted marine environments may be due to this strain's multiple systems for alkane degradation and its range of substrates. (orig.)

  11. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie


    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  12. Exciton Binding Energy of Monolayer WS2 (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong


    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  13. n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation

    NARCIS (Netherlands)

    Schellekens, J.; Buurman, P.


    n-Alkane distributions are frequently used as palaeoclimate proxies in ombrotrophic peat deposits. Although n-alkane distributions differ strongly between plant species, n-alkanes are not species-specific molecules. For a proper interpretation, it is important to understand the different abundances

  14. Mass spectrometric analysis of monolayer protected nanoparticles (United States)

    Zhu, Zhengjiang

    Monolayer protected nanoparticles (NPs) include an inorganic core and a monolayer of organic ligands. The wide variety of core materials and the tunable surface monolayers make NPs promising materials for numerous applications. Concerns related to unforeseen human health and environmental impacts of NPs have also been raised. In this thesis, new analytical methods based on mass spectrometry are developed to understand the fate, transport, and biodistributions of NPs in the complex biological systems. A laser desorption/ionization mass spectrometry (LDI-MS) method has been developed to characterize the monolayers on NP surface. LDI-MS allows multiple NPs taken up by cells to be measured and quantified in a multiplexed fashion. The correlations between surface properties of NPs and cellular uptake have also been explored. LDI-MS is further coupled with inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively measure monolayer stability of gold NPs (AuNPs) and quantum dots (QDs), respectively, in live cells. This label-free approach allows correlating monolayer structure and particle size with NP stability in various cellular environments. Finally, uptake, distribution, accumulation, and excretion of NPs in higher order organisms, such as fish and plants, have been investigated to understand the environmental impact of nanomaterials. The results indicate that surface chemistry is a primary determinant. NPs with hydrophilic surfaces are substantially less toxic and present a lower degree of bioaccumulation, making these nanomaterials attractive for sustainable nanotechnology.

  15. On the large σ-hyperconjugation in alkanes and alkenes. (United States)

    Wu, Judy I-Chia; Wang, Changwei; McKee, William Chadwick; Schleyer, Paul von Ragué; Wu, Wei; Mo, Yirong


    The conventional view that the σCC and σCH bonds in alkanes and unsaturated hydrocarbons are so highly localized that their non-steric interactions are negligible is scrutinized by the block-localized wavefunction (BLW) method. Even molecules considered conventionally to be "strain free" and "unperturbed" have surprisingly large and quite significant total σ-BLW-delocalization energies (DEs) due to their geminal and vicinal hyperconjugative interactions. Thus, the computed BLW-DEs (in kcal mol(-1)) for the antiperiplanar conformations of the n-alkanes (C(N)H(2N+2), N = 1-10) range from 11.6 for ethane to 82.2 for n-decane and are 50.9 for cyclohexane and 91.0 for adamantane. Although σ-electron delocalization in unsaturated hydrocarbons usually is ignored, the σ-BLW-DEs (in kcal mol(-1)) are substantial, as exemplified by D2h ethylene (9.0), triplet D2d ethylene (16.4), allene (19.3), butadiene (19.0), hexatriene (28.3), benzene (28.1), and cyclobutadiene (21.1). While each individual geminal and vicinal hyperconjugative interaction between hydrocarbon σ-bonding and σ-antibonding orbitals tends to be smaller than an individual π conjugative interaction (e.g., 10.2 kcal mol(-1) in anti-1,3-butadiene, the presence of many σ-hyperconjugative interactions (e.g., a total of 12 in anti-1,3-butadiene, see text), result in substantial total σ-stabilization energies (e.g., 19.0 kcal mol(-1) for butadiene), which may surpass those from the π interactions. Although large in magnitude, σ-electron delocalization energies often are obscured by cancellation when two hydrocarbons are compared. Rather than being strain-free, cyclohexane, adamantane, and diamantane suffer from their increasing number of intramolecular 1,4-C…C repulsions resulting in elongated C-C bond lengths and reduced σ-hyperconjugation, compared to the (skew-free) antiperiplanar n-alkane conformers. Instead of being inconsequential, σ-bond interactions are important and merit consideration.

  16. n-alkanes from Paepalanthus Mart. species (Eriocaulaceae n-alcanos de espécies de Paepalanthus Mart. (Eriocaulaceae

    Directory of Open Access Journals (Sweden)

    Lourdes Campaner dos Santos


    Full Text Available This work presents the study of nonpolar compounds from plants belonging to the genus Paepalanthus Mart. (Eriocaulaceae. Long-chain linear aliphatic hydrocarbons were identified by GC-FID and GC-MS. The results indicate that Paepalanthus subg. Platycaulon species present a very homogenous profile, with carbon chains of n-alkanes ranging from C25 to C31, most samples presenting higher frequencies of C27 and C29 homologues. Paepalanthus subg. Paepalocephalus species may be distinguished from one another by the distribution of main n-alkanes. P. macrocephalus, subsect. Aphorocaulon species, presents alkanes with odd-carbon numbers and P. denudatus and P. polyanthus, Actinocephalus species, present alkanes with quite distinctive profiles, with many shorter chains and a high frequency of even-carbon number, especially P. polyanthus. The results obtained indicate that the distribution of alkanes can be a useful taxonomic character, as do polar compounds like flavonoid glycosides.Este trabalho apresenta o estudo de substâncias apolares obtidas a partir de plantas pertencentes ao gênero Paepalanthus Mart. (Eriocaulaceae. Hidrocarbonetos alifáticos de cadeias longas lineares foram identificados por CG-DIC e CG-EM. Os resultados indicam que as espécies de Paepalanthus subg. Platycaulon apresentam perfil homogêneo, com cadeias carbônicas de n-alcanos variando de C25 a C31, com a maioria das amostras apresentando freqüências maiores dos homólogos C27 e C29. As espécies do subgênero Paepalocephalus podem ser diferenciadas pela distribuição dos n-alcanos principais. P. macrocephalus, uma espécie da subseção Aphorocaulon, apresenta perfil com alcanos de cadeia ímpar, enquanto P. denudatus e P. polyanthus, espécies da seção Actinocephalus, apresentam perfil bem distinto, com grande número de cadeias mais curtas e alta freqüência de cadeias com número par de carbonos, especialmente P. polyanthus. Os resultados obtidos indicam que a

  17. TU-H-CAMPUS-TeP3-01: Gold Nanoparticle-Enhanced Radiation Therapy in In Vitro A549 Lung Carcinoma: Studies in Both Traditional Monolayer and Three Dimensional Cell Culture Models

    Energy Technology Data Exchange (ETDEWEB)

    Oumano, M [Baystate Medical Center, Springfield, MA (United States); University of Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [University of Massachusetts Lowell, Lowell, MA (United States); Harvard Medical School, Boston, MA (United States); Celli, J; Hempstead, J; Petrovic, L [University of Massachusetts Boston, Boston, MA (United States); Arnoldussen, M; Hanlon, J [Oraya Therapeutics inc., Newark, CA (United States)


    Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factor reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.

  18. Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from Southwest Caspian coast, Iran: implications for identifying petroleum hydrocarbon inputs. (United States)

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud


    The occurrence of n-alkanes and biomarkers (hopane and sterane) in surface sediments from Southwestern coasts of Caspian Sea and 28 rivers arriving to this lake, determined with a gas chromatography-mass spectrometry method, was used to assess the impacts of anthropogenic activities in the studied area. The concentrations of total n-alkanes (Σ21 n-alkane) in costal and riverine sediments varied from 249.2 to 3899.5 and 56 to 1622.4 μg g(-1), respectively. An evaluation of the source diagnostic indices indicated that petroleum related sources (petrogenic) were mainly contributed to n-alkanes in costal and most riverine sediments. Only the hydrocarbons in sediment of 3 rivers were found to be mainly of biogenic origin. Principal component analysis using hopane diagnostic ratios in costal and riverine sediments, and Anzali, Turkmenistan, and Azerbaijan oils were used to identify the sources of hydrocarbons in sediments. It was indicated that the anthropogenic contributions in most of the costal sediment samples are dominated with inputs of oil spills from Turkmenistan and Azerbaijan countries.

  19. Shock tube measurements of the rate constants for seven large alkanes+OH

    KAUST Repository

    Badra, Jihad


    Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.


    Energy Technology Data Exchange (ETDEWEB)



    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  1. Voltammetry and In Situ Scanning Tunnelling Microscopy of De Novo Designed Heme Protein Monolayers on Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Albrecht, Tim; Li, Wu; Haehnel, Wolfgang


    In the present work, we report the electrochemical characterization and in situ scanning tunnelling microscopy (STM) studies of monolayers of an artificial de novo designed heme protein MOP-C, covalently immobilized on modified Au(111) surfaces. The protein forms closely packed monolayers, which ...

  2. UV-Induced Reaction Kinetics of Dilinoleoylphosphatidylethanolamine Monolayers


    Viitala, Tapani; Peltonen, Jouko


    The UV-induced reactivity of dilinoleoylphosphatidylethanolamine (DLiPE) Langmuir and Langmuir-Blodgett films has been studied by in situ measurements of the changes in the mean molecular area, UV-vis and Fourier transform infrared spectroscopy, and atomic force microscopy (AFM). Optimum orientation and packing density of the DLiPE molecules in the monolayer were achieved by adding uranyl acetate to the subphase. A first-order reaction kinetic model was successfully fitted to the experimental...

  3. Biodegradation of Variable-Chain-Length Alkanes at Low Temperatures by a Psychrotrophic Rhodococcus sp. (United States)

    Whyte, Lyle G.; Hawari, Jalal; Zhou, Edward; Bourbonnière, Luc; Inniss, William E.; Greer, Charles W.


    The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5°C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C10 to C21 alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5°C. Mineralization of hexadecane at 5°C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-dodecanol and 2-dodecanone, respectively) by solid-phase microextraction–gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25°C. PMID:9647833

  4. The effect of hyperosmosis on paracellular permeability in Caco-2 cell monolayers. (United States)

    Inokuchi, Hitoshi; Takei, Takuto; Aikawa, Katsuyoshi; Shimizu, Makoto


    The intestinal epithelium is a significant barrier to oral absorption of hydrophilic compounds, and their passage through the intercellular space is restricted by the tight junctions. In this study we found that hyperosmosis is a significant factor altering paracellular transport in Caco-2 cell monolayers. Osmotic regulators, such as sodium chloride, mannitol, and raffinose, decreased transepithelial electrical resistance and enhanced lucifer yellow permeability. The effect of these osmotic regulators on Caco-2 cell monolayers was not likely to be caused by gross cytotoxicity. Although certain amino acids and oligosaccharides have been reported to have specific tight junction-modulating activity, we found that the increased paracellular permeability of Caco-2 monolayers induced by these compounds was at least partly due to the increased osmotic pressure of the test solutions. These findings provide a new potential precaution in the evaluation of paracellular permeability-modulating substances using the Caco-2 cell monolayer system.

  5. Responses of Monolayer Membrances of Thiol-Containing Lipids to Odor Substances (United States)

    Miyazaki, Yoshio; Hayashi, Kenshi; Toko, Kiyoshi; Yamafuji, Kaoru; Nakashima, Naotoshi


    It is known that thiol-containing compounds form monolayer membranes on a gold surface via chemisorption from organic solvents in terms of a strong connection ability between thiol and the metal. Here we prepared different kinds of thiol-containing lipids and fabricated monolayer membranes on the gold disk electrode whose surface structures were similar to biological membranes. Responses of this lipid-coated electrode to odor substances were examined by an electrochemical method of a cyclic voltammetry. Blocking ability for the redox reaction of Fe(CN)63- was found to change upon adsorption of odor substances into monolayer membranes. The order of threshold values to detect the odorants was β-iononeamyl acetate; this order was the same as that in the human olfactory sense. The present study indicates that the monolayer membrane of thiol-containing lipids can be useful as a transducer of an odor sensor.

  6. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application

    DEFF Research Database (Denmark)

    Yang, Xiaonian; Li, Qiang; Hu, Guofeng


    . Monolayer MoS2 so far can be obtained by mechanical exfoliation or chemical vapor deposition (CVD). However, controllable synthesis of large area monolayer MoS2 with high quality needs to be improved and their growth mechanism requires more studies. Here we report a systematical study on controlled...... synthesis of high-quality monolayer MoS2 single crystals using low pressure CVD. Large-size monolayer MoS2 triangles with an edge length up to 405 mu m were successfully synthesized. The Raman and photoluminescence spectroscopy studies indicate high homogenous optical characteristic of the synthesized......) V-1 s(-1), indicating excellent electronic property comparing with previously reported CVD grown MoS2 monolayer. The MoS2 FETs also show a high photoresponsivity of 7 A W-1, as well as a fast photo-response time of 20 ms. The improved synthesis method recommended here, which makes material...

  7. Suitability of using monolayered and multilayered emulsions for microencapsulation of ω-3 fatty acids by spray drying

    DEFF Research Database (Denmark)

    Jiménez-Martín, Estefanía; Gharsallaoui, Adem; Pérez-Palacios, Trinidad


    Microencapsulation of ω-3 fatty acids by spray drying was studied using both monolayered (lecithin) and multilayered (lecithin-chitosan) fish oil emulsions with maltodextrin as wall material. Stability of the multilayered emulsions was higher than the monolayered ones, and increased with the incr......Microencapsulation of ω-3 fatty acids by spray drying was studied using both monolayered (lecithin) and multilayered (lecithin-chitosan) fish oil emulsions with maltodextrin as wall material. Stability of the multilayered emulsions was higher than the monolayered ones, and increased...... with the highest concentration of chitosan (1 % w/w), being related with lower detection of TBARS at high storage temperatures. Overall, this study shows the suitability of microencapsulating ω-3 fatty acids by spray drying using both monolayered and multilayered fish oil emulsions with maltodextrin as wall...

  8. Surface investigation of chitosan film with fatty acid monolayers

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian


    Full Text Available The surface pressure- molecular area (-A isotherm curves of two fatty acids of different chain lengths, i.e. stearic (C18 and arachidic (C20 acids, were obtained by using Langmuir-Blodgett (LB technique. Results showed clear isotherm plots with limiting mean molecular area around 21 Å2 for both acids. However, the monolayer was found to collapse at higher than 33 mN m-1 and 21 mN m-1 for stearic acid and arachidic acid respectively. The effect of Langmuir-Blodgett monolayers of the acids was investigated by atomic force microscopy (AFM. Chitosan film, before and after dipping in water, was also studied by means of AFM so that it could be used for comparison. It was found that the surface of chitosan was more homogeneous and smoother after dipping in water. In addition, more homogeneous surfaces were achieved after transferring a layer of the fatty acid onto the substrate.

  9. MgO monolayer epitaxy on Ni (100) (United States)

    Sarpi, B.; Putero, M.; Hemeryck, A.; Vizzini, S.


    The growth of two-dimensional oxide films with accurate control of their structural and electronic properties is considered challenging for engineering nanotechnological applications. We address here the particular case of MgO ultrathin films grown on Ni (100), a system for which neither crystallization nor extended surface ordering has been established previously in the monolayer range. Using Scanning Tunneling Microscopy and Auger Electron Spectroscopy, we report on experiments showing MgO monolayer (ML) epitaxy on a ferromagnetic nickel surface, down to the limit of atomic thickness. Alternate steps of Mg ML deposition, O2 gas exposure, and ultrahigh vacuum thermal treatment enable the production of a textured film of ordered MgO nano-domains. This study could open interesting prospects for controlled epitaxy of ultrathin oxide films with a high magneto-resistance ratio on ferromagnetic substrates, enabling improvement in high-efficiency spintronics and magnetic tunnel junction devices.

  10. Phase diagram of the CF₄ monolayer and bilayer on graphite. (United States)

    Thomas, Petros; Hess, George B


    We report an experimental study of physisorbed monolayers and bilayers of CF4 on graphite using infrared reflection absorption spectroscopy supplemented by ellipsometry. The symmetric C-F stretch mode ν3 near 1283 cm(-1) in the gas is strongly blue shifted in the film by dynamic dipole coupling. This blue shift provides a very sensitive measure of the inter-molecular spacing in the monolayer and, less directly, in the bilayer. We find that important corrections are necessary to the volumetric coverage scales used in previous heat capacity and x-ray diffraction studies of this system. This requires quantitative and some qualitative changes to the previously proposed phase diagram. We find evidence for a new phase transition in the middle of the hexagonal incommensurate region and construct new phase diagrams in both the variables coverage-temperature and chemical potential-temperature. We determine the compressibility and thermal expansion in the low-pressure hexagonal incommensurate phase and values for the entropy change in several phase transitions. Below about 55 K there is evidence of solution of up to 7% of an impurity, most likely CO, in our monolayer but not the bilayer film.

  11. Towards optimised drug delivery: structure and composition of testosterone enanthate in sodium dodecyl sulfate monolayers. (United States)

    Saaka, Yussif; Allen, Daniel T; Luangwitchajaroen, Yuvared; Shao, Yanan; Campbell, Richard A; Lorenz, Christian D; Lawrence, M Jayne


    Surface tension and specular neutron reflectivity measurements have been used, for the first time to systematically study both the interfacial structure and composition of monolayers of the soluble surfactant, sodium dodecyl sulfate containing a low-dose, poorly water soluble drug, testosterone enanthate. Modelling of the specular neutron reflectivity data suggests that the hydrophobic testosterone enanthate was adsorbed in the C12 hydrophobic tail region of the surfactant monolayer, regardless of the concentration of surfactant at the interface and whether or not additional drug was added to the interface. The location of the hydrophobic drug in the tail region of the surfactant monolayer is supported by the results of classical, large-scale molecular dynamics simulations. The thickness of the surfactant monolayer obtained, in the presence and absence of drug, using molecular dynamics simulations was in good agreement with the corresponding values obtained from the specular neutron reflectivity measurements. The stoichiometry of surfactant:drug at the air-water interface at sodium dodecyl sulfate concentrations above the critical micelle concentration was determined from specular neutron reflectivity measurements to be approximately 3 : 1, and remained constant after the spreading of further testosterone enanthate at the interface. Significantly, this stoichiometry was the same as that obtained in the micelles from bulk solubilisation studies. Important insights into the preferred location of drug in surfactant monolayers at the air-water interface as well as its effect on the structure of the monolayer have been obtained from our combined use of experimental and simulation techniques.

  12. [Bis(TrimethylsilylMethyl]Lithium and -Sodium: Solubility in Alkanes and Complexes with O- and N- Donor Ligands

    Directory of Open Access Journals (Sweden)

    Markus von Pilgrim


    Full Text Available In contrast to alkyl compounds of lithium, which play an important role in organometallic chemistry, the corresponding heavier alkali metal compounds are less investigated. These compounds are mostly insoluble in inert solvents or undergo solvolysis in coordinating solvents due to their high reactivity. An exception from this typical behavior is demonstrated by bis(trimethylsilylmethylsodium. This study examines alkane solutions of bis(trimethylsilylmethyllithium and -sodium by NMR spectroscopic and cryoscopic methods. In addition, structural studies by X-ray crystallography of the corresponding compounds coordinated by O- and N- ligands (tetrahydrofuran and tetramethylethylenediamine present possible structural motifs of the uncoordinated compounds in solution.

  13. Influence of calcium on ceramide-1-phosphate monolayers

    Directory of Open Access Journals (Sweden)

    Joana S. L. Oliveira


    Full Text Available Ceramide-1-phosphate (C1P plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM, infrared reflection–absorption spectroscopy (IRRAS and grazing incidence X-ray diffraction (GIXD. The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

  14. Combined atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) studies of glucose oxidase (GOx) immobilised onto self-assembled monolayer on the gold film

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.; Gooding, J.; Erokin, P.; Short, K.


    In fabrication of biosensors, self-assembled monolayers (SAM) are an attractive method of immobilising enzymes at electrode surface since it allows precise control over the amount and spatial distribution of the immobilized enzyme. The covalent attachment of glucose oxidase (GOx) to a carboxylic terminated SAM chemisorbed onto gold films was achieved via carbodiimide activation of the carboxylic acids to a reactive intermediate susceptible to nucleophilic attack by amines on free lysine chains of the enzyme. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) measurements were used for characterisation of GOx modified gold surfaces. Tapping mode AFM studies have revealed that GOx molecules form slightly disordered arrays of pentagonal or hexagonal clusters. Observed features of immobilised GOx are distributed as a submonolayer on the SAM surface which has allowed visualisation of native and unfolded enzyme structure. The presence of the SAM and enzyme on the gold surface was detected by XPS spectroscopy. Spectra show typical peaks for the C 1s, O 1s and N 1s regions. A kinetic study of the adsorption of GOx onto activated SAM using in-situ QCM allowed determination the amount of immobilised GOx on the layer and consequently the optimal immobilisation conditions. Performance parameters of the biosensor such as sensitivity to glucose concentration as a function of enzyme loading were evaluated amperometrically using the redox mediator p-benzoquinone

  15. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    International Nuclear Information System (INIS)

    Zhang Lei; Hao Changchun; Feng Ying; Gao Feng; Lu Xiaolong; Li Junhua; Sun Runguang


    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure–area ( π – A ) and pressure–time ( π – T ) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. (special topic)

  16. A trough for improved SFG spectroscopy of lipid monolayers (United States)

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias


    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  17. Strain engineering on transmission carriers of monolayer phosphorene (United States)

    Zhang, Wei; Li, Feng; Hu, Junsong; Zhang, Ping; Yin, Jiuren; Tang, Xianqiong; Jiang, Yong; Wu, Bozhao; Ding, Yanhuai


    The effects of uniaxial strain on the structure, band gap and transmission carriers of monolayer phosphorene were investigated by first-principles calculations. The strain induced semiconductor-metal as well as direct–indirect transitions were studied in monolayer phosphorene. The position of CBM which belonged to indirect gap shifts along the direction of the applied strain. We have concluded the change rules of the carrier effective mass when plane strains are applied. In band structure, the sudden decrease of band gap or the new formation of CBM (VBM) causes the unexpected change in carrier effective mass. The effects of zigzag and armchair strain on the effective electron mass in phosphorene are different. The strain along zigzag direction has effects on the electrons effective mass along both zigzag and armchair direction. By contrast, armchair-direction strain seems to affect only on the free electron mass along zigzag direction. For the holes, the effective masses along zigzag direction are largely affected by plane strains while the effective mass along armchair direction exhibits independence in strain processing. The carrier density of monolayer phosphorene at 300 K is calculated about 1.25× {{10}6} cm‑2, which is greatly influenced by the temperature and strain. Strain engineering is an efficient method to improve the carrier density in phosphorene.

  18. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization. (United States)

    Ortmann, Thomas; Ahrens, Heiko; Lawrenz, Frank; Gröning, Andreas; Nestler, Peter; Günther, Jens-Uwe; Helm, Christiane A


    Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.

  19. Bright monolayer tungsten disulfide via exciton and trion chemical modulations. (United States)

    Tao, Ye; Yu, Xuechao; Li, Jiewei; Liang, Houkun; Zhang, Ying; Huang, Wei; Wang, Qi Jie


    Atomically thin transition metal dichalcogenides (TMDCs) with exceptional electrical and optical properties have drawn tremendous attention for use in novel optoelectronic applications as photodetectors, transistors, light emitters, etc. However, electron bound trions formed through the combination of neutral excitons and electrons significantly decrease the photoluminescence (PL) efficiency of TMDCs. In this study, we report a simple yet efficient chemical doping strategy to modulate the optical properties of monolayer tungsten disulfide (WS2). As a demonstrative example, a chemically doped monolayer of WS2 exhibits remarkable PL enhancement of about one order of magnitude higher than that of pristine WS2. This outstanding PL enhancement is attributed to the fact that excess electrons, which promote the formation of electron-bound trions, are reduced in number through charge transfer from WS2 to the chemical dopant. Furthermore, an improved degree of circular polarization from ∼9.0% to ∼41.5% was also observed in the chemically doped WS2 monolayer. This work describes a feasible strategy to manipulate the optical properties of TMDCs via exciton modulation, making TMDCs promising candidates for versatile semiconductor-based photonic devices.

  20. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella


    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  1. Self-Assembled Monolayers for Dental Implants

    Directory of Open Access Journals (Sweden)

    Sidónio C. Freitas


    Full Text Available Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available, combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials.

  2. Equilibrium electrostatics of responsive polyelectrolyte monolayers. (United States)

    Wang, Kang; Zangmeister, Rebecca A; Levicky, Rastislav


    The physical behavior of polyelectrolytes at solid-liquid interfaces presents challenges both in measurement and in interpretation. An informative, yet often overlooked, property that characterizes the equilibrium organization of these systems is their membrane or rest potential. Here a general classification scheme is presented of the relationship between the rest potential and structural response of polyelectrolyte films to salt concentration. A numerical lattice theory, adapted from the polymer community, is used to analyze the rest potential response of end-tethered polyelectrolyte layers in which electrostatics and short-range contact interactions conspire to bring about different structural states. As an experimental quantity the rest potential is a readily accessible, nonperturbing metric of the equilibrium structure of a polyelectrolyte layer. A first set of measurements is reported on monolayers of end-tethered, single-stranded DNA in monovalent (NaCl) and divalent (MgCl(2)) counterion environments. Intriguingly, in NaCl electrolyte at least two different mechanisms appear by which the DNA layers can structurally relax in response to changing salt conditions. In MgCl(2) the layers appear to collapse. The possible molecular mechanisms behind these behaviors are discussed. These studies provide insight into phenomena more generally underlying polyelectrolyte applications in the chemical, environmental, and biotechnological fields.

  3. Chromium oxide catalysts in the dehydrogenation of alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, S.


    Light alkenes, such as propene and butenes, are important intermediates in the manufacture of fuel components and chemicals. The direct catalytic dehydrogenation of the corresponding alkanes is a selective way to produce these alkenes and is frequently carried out using chromia/alumina catalysts. The aim of this work was to obtain structure-activity information, which could be utilised in the optimisation of this catalytic system. The properties of chromia/alumina catalysts were investigated by advanced in situ and ex situ spectroscopic methods, and the activities were measured in the dehydrogenation of isobutane. The dehydrogenation activity of chromia/alumina was attributed to coordinatively unsaturated redox and non- redox Cr{sup 3+} ions at all chromium loadings. In addition, the oxygen ions in the catalyst appeared to participate in the reaction. The reduction of chromia/alumina resulted in formation of adsorbed surface species: hydroxyl groups bonded to chromia and alumina were formed in reduction by hydrogen and alkanes, and carbon- containing species in reduction by carbon monoxide and alkanes. Prereduction with hydrogen or carbon monoxide decreased the dehydrogenation activity. The effect by hydrogen was suggested to be related to the amount of OH/H species on the reduced surface affecting the number of coordinatively unsaturated chromium sites, and the effect by carbon monoxide to the formation of unselective chromium sites and carboncontaining species. The chromia/alumina catalysts were deactivated with time on stream and in cycles of (pre)reduction- dehydrogenation-regeneration. The deactivation with time on stream was caused mainly by coke formation. The nature of the coke species changed during dehydrogenation. Carboxylates and aliphatic hydrocarbon species formed at the beginning of the reaction and unsaturated/aromatic hydrocarbons and graphite- like species with increasing time on stream. The deactivation in several dehydrogenation- regeneration

  4. ESR and electronic spectra of alkane radical cations formed in γ-irradiated 3-methylpentane and 3-methylhexane glasses containing alkane solutes

    International Nuclear Information System (INIS)

    Ichikawa, T.; Ohta, N.


    Electron spin resonance (ESR) and optical difference spectra of photobleaching are measured, and the radical cations from some higher alkanes (C 9 -C 11 ) and some methyl-branched butanes are found to be trapped in 3-methylpentane or 3-methylhexane matrices at 77 K. The ESR spectra show close agreement with those of radical cations produced in CCl 2 FCClF 2 matrices. The cations of methyl-branched butanes give the absorption bands with λ/sub max/ ranging from 300 to 260 nm and the bands are attributed to σ-localized cations, while the higher alkane cation bands appearing in the near-IR region are ascribed to σ-delocalized cations. The cations of higher alkanes are found to be mobilized by light with λ > 900 nm to recombine with the negative ions formed by electron scavenging

  5. Monolayer-by-monolayer growth of platinum films on complex carbon fiber paper structure

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Liuqing; Zhang, Yunxia [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Liu, Shengzhong, E-mail: [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)


    Graphical abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer strategy. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. - Highlights: • Developed a controlled monolayer-by-monolayer Pt deposition using a dual buffer strategy. • The present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. • This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. - Abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer (Au/Ni) strategy. The X-ray diffraction, electrochemical quartz crystal microbalance, current density analyses, and X-ray photoelectron spectroscopy results conclude that the monolayer deposition process accomplishes full coverage on the substrate and that the thickness of the deposition layer can be controlled on a single atom scale. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value.

  6. Abundance of macroalgal organic matter in biofilms: Evidence from n-alkane biomarkers

    Digital Repository Service at National Institute of Oceanography (India)

    Garg, A.; Bhosle, N.B.

    Biofilm development on titanium panels immersed in the surface waters of Dona Paula Bay, Goa, India was investigated using molecular biomarkers such as n-alkanes and other chemical and biological parameters. Biofilm biomass measured as organic...

  7. Critical constants and acentric factors for long-chain alkanes suitable for corresponding states applications

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Dimitrios, Tassios


    Several methods for the estimation of the critical temperature T-c, the critical pressure P-c, and the acentric factor omega for long-chain n-alkanes are reviewed and evaluated for the prediction of vapor pressures using Corresponding States (CS) methods, like the Lee-Kesler equation and the cubic...... equations of state. Most reliable and recent literature methods proposed for the estimation of the acentric factor of heavy alkanes yield similar values and the emphasis is, thus, given to the determination of the best sets of T-c and P-c. Various extrapolation schemes proposed for this purpose and several....... Anselme, Correlation of the critical properties of alkanes and alkanols, Fluid Phase Equilibria, 56 (1990) 153-169; W. Hu, J. Lovland and P. Vonka. Generalized vapor pressure equations for n-alkanes, 1-alkenes, and 1-alkanols, Presented at the 11th Int. Congress of Chemical Engineering, Chemical Equipment...

  8. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens


    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial...... hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  9. High-quality monolayer superconductor NbSe2grown by chemical vapour deposition. (United States)

    Wang, Hong; Huang, Xiangwei; Lin, Junhao; Cui, Jian; Chen, Yu; Zhu, Chao; Liu, Fucai; Zeng, Qingsheng; Zhou, Jiadong; Yu, Peng; Wang, Xuewen; He, Haiyong; Tsang, Siu Hon; Gao, Weibo; Suenaga, Kazu; Ma, Fengcai; Yang, Changli; Lu, Li; Yu, Ting; Teo, Edwin Hang Tong; Liu, Guangtong; Liu, Zheng


    The discovery of monolayer superconductors bears consequences for both fundamental physics and device applications. Currently, the growth of superconducting monolayers can only occur under ultrahigh vacuum and on specific lattice-matched or dangling bond-free substrates, to minimize environment- and substrate-induced disorders/defects. Such severe growth requirements limit the exploration of novel two-dimensional superconductivity and related nanodevices. Here we demonstrate the experimental realization of superconductivity in a chemical vapour deposition grown monolayer material-NbSe 2 . Atomic-resolution scanning transmission electron microscope imaging reveals the atomic structure of the intrinsic point defects and grain boundaries in monolayer NbSe 2 , and confirms the low defect concentration in our high-quality film, which is the key to two-dimensional superconductivity. By using monolayer chemical vapour deposited graphene as a protective capping layer, thickness-dependent superconducting properties are observed in as-grown NbSe 2 with a transition temperature increasing from 1.0 K in monolayer to 4.56 K in 10-layer.Two-dimensional superconductors will likely have applications not only in devices, but also in the study of fundamental physics. Here, Wang et al. demonstrate the CVD growth of superconducting NbSe2 on a variety of substrates, making these novel materials increasingly accessible.

  10. Alkanephosphonates on hafnium-modified gold: a new class of self-assembled organic monolayers. (United States)

    Jespersen, Michael L; Inman, Christina E; Kearns, Gregory J; Foster, Evan W; Hutchison, James E


    A new method for assembling organic monolayers on gold is reported that employs hafnium ions as linkers between a phosphonate headgroup and the gold surface. Monolayers of octadecylphosphonic acid (ODPA) formed on gold substrates that had been pretreated with hafnium oxychloride are representative of this new class of organic thin films. The monolayers are dense enough to completely block assembly of alkanethiols and resist displacement by alkanethiols. The composition and structure of the monolayers were investigated by contact angle goniometry, XPS, PM-IRRAS, and TOF-SIMS. From these studies, it was determined that this assembly strategy leads to the formation of ODPA monolayers similar in quality to those typically formed on metal oxide substrates. The assembly method allows for the ready generation of patterned surfaces that can be easily prepared by first patterning hafnium on the gold surface followed by alkanephosphonate assembly. Using the bifunctional (thiol-phosphonate) 2-mercaptoethylphosphonic acid (2-MEPA), we show that this new assembly chemistry is compatible with gold-thiol chemistry and use TOF-SIMS to show that the molecule attaches through the phosphonate functionality in the patterned region and through the thiol in the bare gold regions. These results demonstrate the possibility of functionalizing metal substrates with monolayers typically formed on metal oxide surfaces and show that hafnium-gold chemistry is complementary and orthogonal to well-established gold-thiol assembly strategies.

  11. Multifunctional Self-Assembled Monolayers for Organic Field-Effect Transistors (United States)

    Cernetic, Nathan

    Organic field effect transistors (OFETs) have the potential to reach commercialization for a wide variety of applications such as active matrix display circuitry, chemical and biological sensing, radio-frequency identification devices and flexible electronics. In order to be commercially competitive with already at-market amorphous silicon devices, OFETs need to approach similar performance levels. Significant progress has been made in developing high performance organic semiconductors and dielectric materials. Additionally, a common route to improve the performance metric of OFETs is via interface modification at the critical dielectric/semiconductor and electrode/semiconductor interface which often play a significant role in charge transport properties. These metal oxide interfaces are typically modified with rationally designed multifunctional self-assembled monolayers. As means toward improving the performance metrics of OFETs, rationally designed multifunctional self-assembled monolayers are used to explore the relationship between surface energy, SAM order, and SAM dipole on OFET performance. The studies presented within are (1) development of a multifunctional SAM capable of simultaneously modifying dielectric and metal surface while maintaining compatibility with solution processed techniques (2) exploration of the relationship between SAM dipole and anchor group on graphene transistors, and (3) development of self-assembled monolayer field-effect transistor in which the traditional thick organic semiconductor is replaced by a rationally designed self-assembled monolayer semiconductor. The findings presented within represent advancement in the understanding of the influence of self-assembled monolayers on OFETs as well as progress towards rationally designed monolayer transistors.

  12. Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. (United States)

    Shi, Hongyan; Yan, Rusen; Bertolazzi, Simone; Brivio, Jacopo; Gao, Bo; Kis, Andras; Jena, Debdeep; Xing, Huili Grace; Huang, Libai


    Femtosecond transient absorption spectroscopy and microscopy were employed to study exciton dynamics in suspended and Si₃N₄ substrate-supported monolayer and few-layer MoS₂ 2D crystals. Exciton dynamics for the monolayer and few-layer structures were found to be remarkably different from those of thick crystals when probed at energies near that of the lowest energy direct exciton (A exciton). The intraband relaxation rate was enhanced by more than 40 fold in the monolayer in comparison to that observed in the thick crystals, which we attributed to defect assisted scattering. Faster electron-hole recombination was found in monolayer and few-layer structures due to quantum confinement effects that lead to an indirect-direct band gap crossover. Nonradiative rather than radiative relaxation pathways dominate the dynamics in the monolayer and few-layer MoS₂. Fast trapping of excitons by surface trap states was observed in monolayer and few-layer structures, pointing to the importance of controlling surface properties in atomically thin crystals such as MoS₂ along with controlling their dimensions.

  13. High Selective Gas Detection for small molecules based on Germanium selenide monolayer (United States)

    Liu, Lian; Yang, Qun; Wang, Zeping; Ye, Huaiyu; Chen, Xianping; Fan, Xuejun; Zhang, Guoqi


    Predictive calculations based on density functional theory (DFT) are used here to study the electronic and optical properties of GeSe monolayer after adsorbing gas molecules (O2, NH3, SO2, H2, CO2, H2S, NO2, CH4, H2O, NO, CO). Our results reveal that for all the gas molecules considered, only NH3 is adsorbed on GeSe monolayer by physisorption. Whereas SO2 and NO2 are chemisorbed on GeSe monolayer with strong adsorption energies. In addition, the adsorption of O2, NO and NO2 distinctly enhances the optical absorbance and broaden the absorbance range of GeSe monolayer in visible light region. Also, it is found that the adsorption of H2S, NO and NH3 can reduce the work function of the GeSe monolayer. The results indicate that GeSe monolayer is not only a promising candidate for the sensing, capture, and storage of NH3, but also an anticipated disposable gas sensor or metal-free catalyst for detecting and catalyzing SO2 and NO2. Furthermore, it has excellent potential to be applied to optical sensors, solar cells, nanoelectronics or optoelectronics devices.

  14. Quantum chemical study of hydroxylation of alkanes by hypofluorous acid

    Czech Academy of Sciences Publication Activity Database

    Ončák, Milan; Srnec, Martin; Zahradník, Rudolf


    Roč. 82, č. 4 (2008), s. 649-659 ISSN 0137-5083 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : electronic structure * nonheme iron * basis-set Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.518, year: 2008

  15. Liquid–liquid extraction of toluene from alkane with pyridinium based ionic liquid ([BPy][NO3] and [HPy][NO3]) at 298.15 K and atmospheric pressure

    International Nuclear Information System (INIS)

    Enayati, Mobin; Mokhtarani, Babak; Sharifi, Ali; Anvari, Sanam; Mirzaei, Mojtaba


    Highlights: • Extraction of toluene from alkane with pyridinium based ionic liquid was studied. • The ionic liquids [BPy][NO 3 ] and [HPy][NO 3 ] were used. • The effect of alkane chain length on selectivity of toluene was evaluated. • The effect of alkyl chain length of ionic liquids on toluene selectivity was investigated. • The experimental data were correlated with the NRTL model. - Abstract: The focus of this paper is to study the liquid−liquid extraction process for the separation of toluene from alkane employing the ionic liquids N-butylpyridinium nitrate, [BPy][NO 3 ], and N-hexylpyridinium nitrate, [HPy][NO 3 ], as a new solvents. New experimental data for the ternary systems of {[BPy][NO 3 ] (1) + heptane, or octane, or decane (2) + toluene (3)} and {[HPy][NO 3 ] (1) + heptane, or octane, or decane (2) + toluene (3)} at T = 298.15 K and atmospheric pressure are reported. The Othmer-Tobias and Hand correlation are examined to check the reliability of the experimental LLE data. The toluene distribution ratios and selectivity were calculated form the experimental data. The selectivity values are higher than unity which indicates the ILs, [BPy][NO 3 ] and [HPy][NO 3 ], used in this work are potential solvents to separate toluene from alkane. Besides, the effect of the alkane chain length in the selectivity values was evaluated. In addition, the result of the NRTL thermodynamic modeling shows, the experimental data were satisfactorily correlated.

  16. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia


    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  17. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. (United States)

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M


    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of n-Alkanes and Methane/n-Alkane Mixtures

    DEFF Research Database (Denmark)

    P. C. M. Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios M.


    and the asymptotic one near the critical point. Although several crossover EOSs have been developed in the last decades their use in modeling industrial processes is rather limited. In this work, we use the crossover Soave–Redlich–Kwong (CSRK) to describe phase equilibrium and critical properties of pure n......-alkanes and methane/n-alkane binary mixtures and compare the results to two other modeling approaches of the SRK EOS. In the case of the pure fluids, CSRK gives an accurate overall description of the phase equilibrium and critical properties; nevertheless, a minor increase in the deviation of the saturation pressure...

  19. Collisional energy transfer in polyatomic molecules at high temperatures: Master equation analysis of vibrational relaxation of shock-heated alkanes (United States)

    Matsugi, Akira


    Collisional energy transfer plays an important role in unimolecular reaction kinetics. This Letter presents classical trajectory calculations of the energy transfer processes in collisions between selected alkanes (ethane, propane, isobutane, and neopentane) and krypton at high temperature. The primary aim of this study was to elucidate the validity of the predicted energy transfer parameters by performing master equation analyses of their vibrational relaxation times and comparing the predicted values with the available experimental data. The results demonstrate the ability of classical trajectory calculations to accurately predict the parameters for vibrational energy transfer.

  20. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    International Nuclear Information System (INIS)

    Megeed, A.A.


    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  1. Effect of pore confinement on the adsorption of mono-branched alkanes of naphtha in ZSM-5 and Y zeolites (United States)

    Fu, Jia; Feng, Xiang; Liu, Yibin; Yang, Chaohe


    Branched alkanes are important parts of naphtha, and their conversions are related to the adsorption stabilities in the pore of zeolites. In this work, the adsorption stabilities of C7-C10 mono-branched alkanes in the pores of HY (ca. 0.74 nm) and HZSM-5 (ca. 0.55 nm) zeolites are investigated using DFT calculation. After excluding the effect of Brønsted acid by subtracting the adsorption energy on 8T cluster from the total adsorption energy, it is found that confinement effect plays an essential role in stabilizing mono-branched alkanes. With the increase in the carbon number of alkanes, there is gradual increase of adsorption energy on both HZSM-5 and HY zeolites. Moreover, in the narrow channel of HZSM-5 zeolite, the change of adsorption energy (ethyl-alkane methyl-alkane > n-alkane), which is mainly due to confinement effect rather than effect of Brønsted acid. Methyl-alkanes prefer to stay in the pore of HZSM-5, while ethyl-alkanes and propyl-alkanes are more likely absorbed in the pore of HY zeolite. By analyzing the total electron densities of adsorbates, it is concluded that only when there is a certain distance between zeolite fragment and the adsorbate and low electron density region occupies the remaining space of the pore, the confinement effect is the strongest.

  2. Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors. (United States)

    Lambe, Andrew T; Onasch, Timothy B; Croasdale, David R; Wright, Justin P; Martin, Alexander T; Franklin, Jonathan P; Massoli, Paola; Kroll, Jesse H; Canagaratna, Manjula R; Brune, William H; Worsnop, Douglas R; Davidovits, Paul


    Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.

  3. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus. (United States)

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs


    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHS) in urban and industrial aerosol of Algiers, Algeria. (United States)

    Ladji, R; Yassaa, N; Balducci, C; Cecinato, A


    The distribution of ambient air n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to particles with aerodynamic diameters lesser than 10 μm (PM(10)) into six fractions (five stages and a backup filter) was studied for the first time in Algeria. Investigation took place during September of 2007 at an urban and industrial site of Algiers. Size-resolved samples (<0.49, 0.49-0.95, 0.95-1.5, 1.5-3.0, 3.0-7.2, and 7.2-10 μm) were concurrently collected at the two sampling sites using five-stage high-volume cascade impactors. Most of n-alkanes (~72 %) and PAHs (~90 %) were associated with fine particles ≤ 1.5 μm in both urban and industrial atmosphere. In both cases, the n-alkane contents exhibited bimodal or weakly bimodal distribution peaking at the 0.95-1.5-μm size range within the fine mode and at 7.3-10 μm in the coarse mode. Low molecular weight PAHs displayed bimodal patterns peaking at 0.49-0.95 and 7.3-10 μm, while high molecular weight PAHs exhibited mono-modal distribution with maximum in the <0.49-μm fraction. While the mass mean diameter of total n-alkanes in the urban and industrial sites was 0.70 and 0.84 μm, respectively, it did not exceed 0.49 μm for PAHs. Carbon preference index (~1.1), wax% (10.1-12.8), and the diagnostic ratios for PAHs all revealed that vehicular emission was the major source of these organic compounds in PM(10) during the study periods and that the contribution of epicuticular waxes emitted by terrestrial plants was minor. According to benzo[a]pyrene-equivalent carcinogenic power rates, ca. 90 % of overall PAH toxicity across PM(10) was found in particles ≤ 0.95 μm in diameter which could induce adverse health effects to the population living in these areas.

  5. Semiconductor monolayer assemblies with oriented crystal faces

    KAUST Repository

    Ma, Guijun


    Fabrication of two-dimensional monolayers of crystalline oxide and oxynitride particles was attempted on glass plate substrates. X-Ray diffraction patterns of the assemblies show only specific crystal facets, indicative of the uniform orientation of the particles on the substrate. The selectivity afforded by this immobilization technique enables the organization of randomly distributed polycrystalline powders in a controlled manner.

  6. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique


    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  7. Shadow mask evaporation through monolayer modified nanostencils

    NARCIS (Netherlands)

    Kolbel, M.; Tjerkstra, R.W.; Brugger, J.P.; van Rijn, C.J.M.; Nijdam, W.; Huskens, Jurriaan; Reinhoudt, David


    Gradual clogging of the apertures of nanostencils used as miniature shadow masks in metal evaporations can be reduced by coating the stencil with self-assembled monolayers (SAM). This is quantified by the dimensions (height and volume) of gold features obtained by nanostencil evaporation as measured

  8. Mode damping in a commensurate monolayer solid

    DEFF Research Database (Denmark)

    Bruch, Ludwig Walter; Hansen, Flemming Yssing


    The normal modes of a commensurate monolayer solid may be damped by mixing with elastic waves of the substrate. This was shown by Hall, Mills, and Black [Phys. Rev. B 32, 4932 (1985)], for perpendicular adsorbate vibrations in the presence of an isotropic elastic medium. That work is generalized...

  9. Imidazolide monolayers for versatile reactive microcontact printing

    NARCIS (Netherlands)

    Hsu, S.H.; Reinhoudt, David; Huskens, Jurriaan; Velders, Aldrik


    Imidazolide monolayers prepared from the reaction of amino SAMs with N,N-carbonyldiimidazole (CDI) are used as a versatile platform for surface patterning with amino-, carboxyl- and alcohol-containing compounds through reactive microcontact printing (µCP). To demonstrate the surface reactivity of

  10. Patterned monolayers of nitronyl nitroxide radicals

    NARCIS (Netherlands)

    Mannini, Matteo; Rovai, Donella; Sorace, Lorenzo; Perl, A.; Ravoo, B.J.; Reinhoudt, David


    We report here the results of the preliminary characterization of the monolayer obtained both by self-assembling and microcontact printing of a di-alkyl sulfide nitronyl nitroxide derivative, 11-decyl sulfanyl-undecanyl nitronyl nitroxide of which we describe the synthesis. The sulfide unit has been

  11. Fullerene monolayer formation by spray coating

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Flipse, C.F.J.


    Roč. 21, č. 6 (2010), 065302/1-065302/7 ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  12. Elasticity of a quantum monolayer solid

    DEFF Research Database (Denmark)

    Bruch, Ludwig Walter


    A perturbation-theory formulation of the zero-temperature elastic constants is used to verify symmetry relations for a (monolayer) triangluar lattice. A generalization of the Cauchy relation between the two elastic constants of the triangular lattice with central-pair-potential interactions...

  13. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: Implications for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongli [Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China)] [Institute of Tibetan and Plateau Research, Chinese Academy of Sciences, Beijing 100085 (China); Fang Xiaomin, E-mail: [Institute of Tibetan and Plateau Research, Chinese Academy of Sciences, Beijing 100085 (China)] [Key Laboratory of Western Resources and Environment of Education Ministry, College at Earth and Environment Sciences, University of Lanzhou, Lanzhou 730000 (China); Zhang Tongwei [Key Laboratory of Western Resources and Environment of Education Ministry, College at Earth and Environment Sciences, University of Lanzhou, Lanzhou 730000 (China); Li Yuanmao; Wu Yingqin; He Daxiang; Wang Youxiao [Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China)


    Research highlights: {yields} This study reports the first observation of predominant even carbon-numbered n-alkanes of sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. {yields} Certain types of special autochthonous bacteria are a possible source for the special distribution of even carbon-numbered n-alkanes in lacustrine sediments. {yields} These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change. {yields} A close correspondence among the low ratio of n-C{sub 27}/n-C{sub 31}, the heavy {delta}{sup 13}C values of TOC and a strong even carbon-number predominance (low OEP{sub 16-20} values) from approximately 6.5 to 4.4 Ma and at approximately 8 Ma in the studied section suggests that n-alkanes with a high predominance of even carbon-numbers may be treated as geochemical proxies for arid climate. - Abstract: This study reports the first observation of predominant even C-numbered n-alkanes from sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. The n-alkanes showed a bimodal distribution that is characterised by a centre at n-C{sub 16}-n-C{sub 20} with maximum values at n-C{sub 18} and n-C{sub 27}-n-C{sub 31} as well as at n-C{sub 29}. The first mode shows a strong even C-number predominance (OEP{sub 16-20} 0.34-0.66). In contrast, the second mode has a strong odd C-number predominance (OEP{sub 27-31} 1.20-2.45). Certain types of special autochthonous bacteria are a possible source for this distribution of even C-numbered n-alkanes in lacustrine sediments. These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded

  14. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: Implications for climate change

    International Nuclear Information System (INIS)

    Wang Yongli; Fang Xiaomin; Zhang Tongwei; Li Yuanmao; Wu Yingqin; He Daxiang; Wang Youxiao


    Research highlights: → This study reports the first observation of predominant even carbon-numbered n-alkanes of sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. → Certain types of special autochthonous bacteria are a possible source for the special distribution of even carbon-numbered n-alkanes in lacustrine sediments. → These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change. → A close correspondence among the low ratio of n-C 27 /n-C 31 , the heavy δ 13 C values of TOC and a strong even carbon-number predominance (low OEP 16-20 values) from approximately 6.5 to 4.4 Ma and at approximately 8 Ma in the studied section suggests that n-alkanes with a high predominance of even carbon-numbers may be treated as geochemical proxies for arid climate. - Abstract: This study reports the first observation of predominant even C-numbered n-alkanes from sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13-4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. The n-alkanes showed a bimodal distribution that is characterised by a centre at n-C 16 -n-C 20 with maximum values at n-C 18 and n-C 27 -n-C 31 as well as at n-C 29 . The first mode shows a strong even C-number predominance (OEP 16-20 0.34-0.66). In contrast, the second mode has a strong odd C-number predominance (OEP 27-31 1.20-2.45). Certain types of special autochthonous bacteria are a possible source for this distribution of even C-numbered n-alkanes in lacustrine sediments. These bacteria may have a high production rate in weak oxic-anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change.

  15. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang


    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  16. Thermodynamic properties of (an ester+an alkane). XVII. Experimental H{sub m}{sup E} and V{sub m}{sup E} values for (an alkyl propanoate+an alkane) at 318.15K

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071-Las Palmas de Gran Canaria (Spain)]. E-mail:; Espiau, F. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071-Las Palmas de Gran Canaria (Spain); Toledo, F.J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071-Las Palmas de Gran Canaria (Spain); Dieppa, R. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071-Las Palmas de Gran Canaria (Spain)


    In this article, we record the experimental values of H{sub m}{sup E} and V{sub m}{sup E}, obtained at a temperature of T=318.15K and atmospheric pressure for a set of 30 binary mixtures comprised of five alkyl propanoates (methyl to pentyl) with six odd alkanes (heptane to heptadecane). The net values obtained for these properties are the result of different effects of the selected compounds on the mixing process. These effects and the variation with temperature are studied. The H{sub m}{sup E} are positive in all cases and increase with the saturated hydrocarbon chain and diminish with the alkanolic portion of the ester. The variation in V{sub m}{sup E} is similar to that occurring in the H{sub m}{sup E}. For the data correlation, a new form of polynomial equation is used in which the variable is the so-called active fraction which, in turn, is a function of the concentration of the mixture, giving acceptable estimations for simultaneous correlations between the values of Gibbs function obtained in the isobaric (liquid+vapour) equilibria and the enthalpies of the mixture, for some of the mixtures studied. The results are explained with the molecular model proposed for (ester+alkane) mixtures. Finally, the application of two versions of the UNIFAC groups contribution method to estimate enthalpies of the mixtures does not give satisfactory results, although the modified UNIFAC gives somewhat better results.

  17. Thermodynamic properties of (an ester+an alkane). XVII. Experimental HmE and VmE values for (an alkyl propanoate+an alkane) at 318.15K

    International Nuclear Information System (INIS)

    Ortega, J.; Espiau, F.; Toledo, F.J.; Dieppa, R.


    In this article, we record the experimental values of H m E and V m E , obtained at a temperature of T=318.15K and atmospheric pressure for a set of 30 binary mixtures comprised of five alkyl propanoates (methyl to pentyl) with six odd alkanes (heptane to heptadecane). The net values obtained for these properties are the result of different effects of the selected compounds on the mixing process. These effects and the variation with temperature are studied. The H m E are positive in all cases and increase with the saturated hydrocarbon chain and diminish with the alkanolic portion of the ester. The variation in V m E is similar to that occurring in the H m E . For the data correlation, a new form of polynomial equation is used in which the variable is the so-called active fraction which, in turn, is a function of the concentration of the mixture, giving acceptable estimations for simultaneous correlations between the values of Gibbs function obtained in the isobaric (liquid+vapour) equilibria and the enthalpies of the mixture, for some of the mixtures studied. The results are explained with the molecular model proposed for (ester+alkane) mixtures. Finally, the application of two versions of the UNIFAC groups contribution method to estimate enthalpies of the mixtures does not give satisfactory results, although the modified UNIFAC gives somewhat better results

  18. Thermal analysis as an aid to forensics: Alkane melting and oxidative stability of wool

    International Nuclear Information System (INIS)

    Alan Riga, D.


    Interdisciplinary methods and thermal analytical techniques in particular are effective tools in aiding the identification and characterization of materials in question involved in civil or criminal law. Forensic material science uses systematic knowledge of the physical or material world gained through analysis, observation and experimentation. Thermal analytical data can be used to aid the legal system in interpreting technical variations in quite often a complex system.Calorimetry and thermal microscopic methods helped define a commercial product composed of alkanes that was involved in a major law suit. The solid-state structures of a number of normal alkanes have unique crystal structures. These alkanes melt and freeze below room temperature to more than 60C below zero. Mixtures of specific alkanes have attributes of pure chemicals. The X-ray diffraction structure of a mixture of alkanes is the same as a pure alkane, but the melting and freezing temperature are significantly lower than predicted. The jury ruled that the product containing n-alkanes had the appropriate melting characteristics. The thermal-physical properties made a commercial fluid truly unique and there was no advertising infringement according to the law and the jury trialA combination of thermogravimetry, differential thermal analysis, infrared spectroscopy and macrophotography were used to conduct an extensive modeling and analysis of physical evidence obtained in a mobile home fire and explosion. A person's death was allegedly linked to the misuse of a kerosene space heater. The thermal analytical techniques showed that external heating was the cause of the space heater's deformation, not a firing of the heater with gasoline and kerosene. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Alkane Hydroxylase Gene (alkB Phylotype Composition and Diversity in Northern Gulf of Mexico Bacterioplankton

    Directory of Open Access Journals (Sweden)

    Conor Blake Smith


    Full Text Available Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM, a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with alkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter. Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables.

  20. Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers

    Directory of Open Access Journals (Sweden)

    Stella W. Nowotarska


    Full Text Available Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms. The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE, 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin. Surface pressure–area (π-A and surface potential–area (Δψ-A isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial –lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers. The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.

  1. Cyclooctane metathesis catalyzed by silica-supported tungsten pentamethyl [(ΞSiO)W(Me)5]: Distribution of macrocyclic alkanes

    KAUST Repository

    Riache, Nassima


    Metathesis of cyclic alkanes catalyzed by the new surface complex [(ΞSiO)W(Me)5] affords a wide distribution of cyclic and macrocyclic alkanes. The major products with the formula CnH2n are the result of either a ring contraction or ring expansion of cyclooctane leading to lower unsubstituted cyclic alkanes (5≤n≤7) and to an unprecedented distribution of unsubstituted macrocyclic alkanes (12≤n≤40), respectively, identified by GC/MS and by NMR spectroscopies.

  2. Interactions of phospholipid monolayer with single-walled carbon nanotube wrapped by lysophospholipid

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Siwool; Kim, Hyungsu, E-mail:


    In this study, we prepared single-walled carbon nanotubes (SWNTs) wrapped by 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1 Prime -rac-glycerol) (LPG), leading to a complex of SWNT-LPG. In an attempt to investigate the interactions of SWNT-LPG with a mimicked cell surface, SWNT-LPG solution was injected into the sub-phase of Langmuir trough to form a mixed monolayer with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), respectively. In addition to the measurement of typical surface pressure-area isotherms under compression mode, area changes occurring during insertion of SWNT-LPG into the monolayer were recorded at various surface pressures. Changes in surface potential were also measured for evident tracing of the degree of interactions between sub-phase and monolayer. A systematic comparison of relaxation patterns and insertion behavior along with surface potential data provided a rational basis to distinguish the degree of interactions between SWNT-LPG and the designated monolayer. The observed tendencies were found to be in accordance with the surface topography as revealed by the tapping mode atomic force microscopy. It was consistently observed that SWNT-LPG interacted with DPPC to a greater extent than with DPPG, when the sufficient coverage of nanotube surface by LPG molecules was assured. - Highlights: Black-Right-Pointing-Pointer Complex of single-walled carbon nanotubes and lysophospholipid (SWNT-LPG) is formed. Black-Right-Pointing-Pointer Composite monolayer is formed by inserting SWNT-LPG into the phospholipid monolayer. Black-Right-Pointing-Pointer We measure area-pressure responses and dipole potentials during the insertion process. Black-Right-Pointing-Pointer Properties of composite monolayer depend on the kind of phospholipid and LPG content.

  3. Thermodynamic properties of (an ester + an alkane). XVI. Experimental HmE and VmE values and a new correlation method for (an alkyl ethanoate + an n-alkane) at 318.15 K

    International Nuclear Information System (INIS)

    Ortega, J.; Espiau, F.; Toledo, F.J.


    This work presents the measurements of H m E and V m E , obtained at a temperature of T=318.15 K and atmospheric pressure for a set of 30 binary mixtures composed of five alkyl ethanoates (methyl to pentyl) with six odd n-alkanes (C 7 to C 17 ). The results show that the mixing processes are endothermic in all cases, with regular increases in H m E with the molecular weight of the saturated hydrocarbon and diminishing with the alkanolic part of the ester. The change in V m E is also regular and similar to that of H m E . For data correlation, a new form of polynomial equation is used. In this, the so-called active fraction is used as a variable which, in turn, depends on the concentration of the mixture, giving acceptable estimations of the Gibbs function obtained in the isobaric (liquid + vapor) equilibria for some of the mixtures studied. Finally, a molecular model which interprets the behavior of mixtures of alkyl ethanoates + n-alkanes and the results of residual quantities is proposed. To these binary systems some group contribution models are applied. A modified version of the UNIFAC model gives satisfactory results for enthalpies

  4. First-Principles Investigation of Phase Stability, Electronic Structure and Optical Properties of MgZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan


    Full Text Available MgZnO bulk has attracted much attention as candidates for application in optoelectronic devices in the blue and ultraviolet region. However, there has been no reported study regarding two-dimensional MgZnO monolayer in spite of its unique properties due to quantum confinement effect. Here, using density functional theory calculations, we investigated the phase stability, electronic structure and optical properties of MgxZn1−xO monolayer with Mg concentration x range from 0 to 1. Our calculations show that MgZnO monolayer remains the graphene-like structure with various Mg concentrations. The phase segregation occurring in bulk systems has not been observed in the monolayer due to size effect, which is advantageous for application. Moreover, MgZnO monolayer exhibits interesting tuning of electronic structure and optical properties with Mg concentration. The band gap increases with increasing Mg concentration. More interestingly, a direct to indirect band gap transition is observed for MgZnO monolayer when Mg concentration is higher than 75 at %. We also predict that Mg doping leads to a blue shift of the optical absorption peaks. Our results may provide guidance for designing the growth process and potential application of MgZnO monolayer.

  5. Effects of lipid composition and packing on the adsorption of apolipoprotein A-I to lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.; Phillips, M.C.


    To better understand the factors controlling the binding of apolipoprotein molecules at the surfaces of serum lipoprotein particles, the adsorption of human apolipoprotein A-I to phospholipid monolayers has been studied. The influence of lipid packing was investigated by spreading the monolayers at various initial surface pressures (π/sub i/) and by using various types of lipid. The adsorption of 14 C-methylated apolipoprotein A-I was monitored by simultaneously following the surface radioactivity and the change in surface pressure (Δπ). In general, increasing the π/sub i/ of lipid monolayers reduces the adsorption of apolipoprotein A-I. The degree of adsorption of the apolipoprotein is also influenced by the physical state of the lipid monolayers. Addition of cholesterol generally decreases the adsorption of apolipoprotein A-I to egg PC monolayers. Analysis of the adsorption data suggests that the lateral compressibility of a lipid monolayer is a major determinant of the extent to which apolipoprotein A-I adsorbs. The protein penetrates into the interface to occupy space made available by the concomitant compression of phospholipid molecules so Gamma is higher for relatively compressible lipid monolayers. Lipid-protein interactions appear to influence the degree of adsorption to only a minor degree

  6. Synthesis of Renewable Lubricant Alkanes from Biomass-Derived Platform Chemicals. (United States)

    Gu, Mengyuan; Xia, Qineng; Liu, Xiaohui; Guo, Yong; Wang, Yanqin


    The catalytic synthesis of liquid alkanes from renewable biomass has received tremendous attention in recent years. However, bio-based platform chemicals have not to date been exploited for the synthesis of highly branched lubricant alkanes, which are currently produced by hydrocracking and hydroisomerization of long-chain n-paraffins. A selective catalytic synthetic route has been developed for the production of highly branched C 23 alkanes as lubricant base oil components from biomass-derived furfural and acetone through a sequential four-step process, including aldol condensation of furfural with acetone to produce a C 13 double adduct, selective hydrogenation of the adduct to a C 13 ketone, followed by a second condensation of the C 13 ketone with furfural to generate a C 23 aldol adduct, and finally hydrodeoxygenation to give highly branched C 23 alkanes in 50.6 % overall yield from furfural. This work opens a general strategy for the synthesis of high-quality lubricant alkanes from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    International Nuclear Information System (INIS)

    Alonso, Victor; Garcia, Mario; Gonzalez, Juan Antonio; Garcia De La Fuente, Isaias; Cobos, Jose Carlos


    Highlights: → LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. → UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. → For the latter mixtures, UCST increases with the size of the alkyl group attached. → Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  8. Thermodynamics of mixtures containing alkoxyethanols. XXVIII: Liquid-liquid equilibria for 2-phenoxyethanol + selected alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Victor; Garcia, Mario [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Gonzalez, Juan Antonio, E-mail: [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain); Garcia De La Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid (Spain)


    Highlights: {yields} LLE coexistence curves were determined for mixtures of 2PhEE with alkanes. {yields} UCST values are higher for n-alkane systems than for solutions with cyclic alkanes. {yields} For the latter mixtures, UCST increases with the size of the alkyl group attached. {yields} Alkoxyethanol-alkoxyethanol interactions are enhanced by aromatic group in cellosolve. - Abstract: The coexistence curves of the liquid-liquid equilibria (LLE) for systems of 2-phenoxyethanol (2PhEE) with heptane, octane, cyclohexane, methylcyclohexane or ethylcyclohexane have been determined by the method of the critical opalescence using a laser scattering technique. All the curves show an upper critical solution temperature (UCST), have a rather horizontal top and their symmetry depends on the relative size of the mixture compounds. UCST values are higher for systems with linear alkanes than for solutions including cyclic alkanes. For these mixtures, the UCST increases with the size of the alkyl group attached to the cyclic part of the molecule. It is shown that interactions between alkoxyethanol molecules are stronger when the hydroxyether contains an aromatic group. Data are used to determine the critical exponent for the order parameter mole fraction. Values obtained are consistent with those provided by the Ising model or by the renormalization group theory.

  9. Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes

    KAUST Repository

    Wang, Zhandong


    Comprehensive low-temperature oxidation mechanisms are needed to accurately predict fuel auto-ignition properties. This paper studies the effects of a previously unconsidered third O2 addition reaction scheme on the simulated auto-ignition of n-alkanes. We demonstrate that this extended low-temperature oxidation scheme has a minor effect on the simulation of n-pentane ignition; however, its addition significantly improves the prediction of n-hexane auto-ignition under low-temperature rapid compression machine conditions. Additional simulations of n-hexane in a homogeneous charge compression ignition engine show that engine-operating parameters (e.g., intake temperature and combustion phasing) are significantly altered when the third O2 addition kinetic mechanism is considered. The advanced combustion phasing is initiated by the formation and destruction of additional radical chain-branching intermediates produced in the third O2 addition process, e.g. keto-dihydroperoxides and/or keto-hydroperoxy cyclic ethers. Our results indicate that third O2 addition reactions accelerate low-temperature radical chain branching at conditions of relevance to advance engine technologies, and therefore these chemical pathways should also be considered for n-alkanes with 6 or more carbon atoms. © 2015 The Combustion Institute.

  10. Validation of a δ2Hn-alkane-δ18Ohemicellulose based paleohygrometer: Implications from a climate chamber experiment (United States)

    Hepp, Johannes; Kathrin Schäfer, Imke; Tuthorn, Mario; Wüthrich, Lorenz; Zech, Jana; Glaser, Bruno; Juchelka, Dieter; Rozanski, Kazimierz; Zech, Roland; Mayr, Christoph; Zech, Michael


    Leaf wax-derived biomarkers, e.g. long chain n-alkanes and fatty acids, and their hydrogen isotopic composition are proved to be of a value in paleoclimatology/-hydrology research. However, the alteration of the isotopic signal as a result of the often unknown amount of leaf water enrichment challenges a direct reconstruction of the isotopic composition of paleoprecipitation. The coupling of ^2H/^1H results of leaf wax-derived biomarkers with 18O/16O results of hemicellulose-derived sugars has the potential to overcome this limitation and additionally allows reconstructing relative air humidity (RH) (Zech et al., 2013). This approach was recently validated by Tuthorn et al. (2015) by applying it to topsoil samples along a climate transect in Argentina. Accordingly, the biomarker-derived RH values correlate significantly with modern actual RH values from the respective study sites, showing the potential of the established 'paleohygrometer' approach. However, a climate chamber validation study to answer open questions regarding this approach, e.g. how robust biosynthetic fractionation factors are, is still missing. Here we present coupled δ2Hn-alkane-δ18Ohemicellulose results obtained for leaf material from a climate chamber experiment, in which Eucalyptus globulus, Vicia faba and Brassica oleracea were grown under controlled conditions (Mayr, 2003). First, the 2H and 18O enrichment of leaf water strongly reflects actual RH values of the climate chambers. Second, the biomarker-based reconstructed RH values correlate well with the actual RH values of the respective climate chamber, validating the proposed 'paleohygrometer' approach. And third, the calculated fractionation factors between the investigated leaf biomarkers (n-C29 and n-C31 for alkanes; arabinose and xylose for hemicellulose) and leaf water are close to the expected once reviewed from the literature (+27\\permil for hemicellulose; -155\\permil for n-alkanes). Nevertheless, minor dependencies of these

  11. Comparison of electronic structure between monolayer silicenes on Ag (111) (United States)

    Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi


    The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  12. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.


    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  13. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers. (United States)

    Ding, Long; Wang, Liying; Zhang, Yan; Liu, Jingbo


    The objective of this study was to investigate the transepithelial transport of RVPSL (Arg-Val-Pro-Ser-Leu), an egg-white-derived peptide with angiotensin I-converting enzyme (ACE) inhibitory and antihypertensive activity, in human intestinal Caco-2 cell monolayers. Results revealed that RVPSL could be passively transported across Caco-2 cell monolayers. However, during the process of transport, 36.31% ± 1.22% of the initial RVPSL added to the apical side was degraded, but this degradation decreased to 23.49% ± 0.68% when the Caco-2 cell monolayers were preincubated with diprotin A (P transport from the apical side to the basolateral side was investigated, the apparent permeability coefficient (Papp) was (6.97 ± 1.11) × 10(-6) cm/s. The transport route of RVPSL appears to be the paracellular pathway via tight junctions, as only cytochalasin D, a disruptor of tight junctions (TJs), significantly increased the transport rate (P transport across Caco-2 cell monolayers was studied by mutation of RVPSL. It was found that N-terminal Pro residues were more beneficial for transport of pentapeptides across Caco-2 cell monolayers than Arg and Val. Furthermore, RVPSL could be more easily transported as smaller peptides, especially in the form of dipeptides and tripeptides.

  14. Probing molecular interactions with methylene blue derivatized self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    Eleni Koutsoumpeli


    Full Text Available The emergence of stratified and personalised medicine and the associated need for highly multiplexed detection strategies are driving the development of innovative sensor technology. Electronic immunosensor arrays capable of label-free and highly parallel monitoring of ligand binding have emerged as a particularly promising technology capable of meeting these new diagnostic challenges. In this study, we present an approach for interrogating molecular interactions electronically using redox active molecular monolayers. Specifically, we have synthesised self-assembled molecular monolayers assembled from long-chain alkanethiols (LCAT incorporating oligoethyleneglycol (OEG linkers that can be derivatized with a range of functional groups, including the redox active molecule methylene blue. Critically, we show that the electron transport properties of this redox-active monolayer are highly sensitive to the electrochemical environment, including the local concentration of protons and the electrostatic potential at the plane of electron transfer. Using a combination of cyclic voltammetry and QCM-D to study in detail the behaviour of the monolayer during functionalisation and analyte binding, we demonstrate that these redox properties can be exploited for the electrochemical sensing of molecular interactions (biotin–avidin in our case on SAMs. Given the versatility of LCAT-OEG monolayers, in terms of linker lengths, choice of functional group, and ability to create mixed component layers and the straight-forward assembly of mixed SAMs of high quality, our electrochemical sensing approach forms an excellent and generic label-free platform for probing a wide range of molecular interactions.

  15. Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Terasaki, T.; Takakuwa, S.; Moritani, S.; Tsuji, A.


    The kinetics and mechanism of the transport of monocarboxylic acids (MCAs) were studied by using primary cultured bovine brain capillary endothelial cells. Concentration-dependent uptake of acetic acid was observed, and the kinetic parameters were estimated as follows: the Michaelis constant, Kt, was 3.41 ± 1.87 mM, the maximum uptake rate, Jmax, was 144.7 ± 55.7 nmol/mg of protein/min and the nonsaturable first-order rate constant, Kd, was 6.66 ± 1.98 microliters/mg of protein/min. At medium pH below 7.0, the uptake rate of [3H]acetic acid increased markedly with decreasing medium pH, whereas pH-independent uptake was observed in the presence of 10 mM acetic acid. An energy requirement for [3H]acetic acid uptake was also demonstrated, because metabolic inhibitors (2,4-dinitrophenol and rotenone) reduced significantly the uptake rate (P less than .05). Carbonylcyanide-p-trifluoro-methoxyphenylhydrazone, a protonophore, inhibited significantly the uptake of [3H]acetic acid at medium pH of 5.0 and 6.0, whereas 4,4'-diisothiocyanostilben-2,2'-disulfonic acid did not. Several MCAs inhibited significantly the uptake rate of [3H]acetic acid, whereas di- and tricarboxylic acids did not. The uptake of [3H]acetic acid was competitively inhibited by salicylic acid, with an inhibition constant, Ki, of 3.60 mM, suggesting a common transport system between acetic acid and salicylic acid. Moreover, at the medium pH of 7.4, salicylic acid and valproic acid inhibited significantly the uptake of [3H]acetic acid, demonstrating that the transport of MCA drugs could also be ascribed to the MCA transport system at the physiologic pH

  16. Transport of curcumin derivatives in Caco-2 cell monolayers. (United States)

    Zeng, Zhen; Shen, Zhe L; Zhai, Shuo; Xu, Jia L; Liang, Hui; Shen, Qin; Li, Qing Y


    Curcumin (Cur) is a strong natural antioxidant, who can prevent multiple diseases such as anti-cancer, anti-inflammatory, have a resistance to alzheimer's disease and various malignant diseases. But it has poor oral bioavailability due to its poor aqueous solubility, as well as instability. While its novel derivatives (CB and FE), showed better anti-tumor activity, better anti-oxidant activity and better stability than the original drug (Cur). The aim of this study was to study the intestinal transport of Cur, CB and FE using an in vitro Caco-2 cell monolayer model. The results showed that Cur had a lower permeability coefficient (1.13×10 -6 ±0.11×10 -6 cm/s) for apical-to-basolated (AP-BL) transport at 25μM, while the transport rate for AP to BL flux of CB (3.18×10 -6 ±0.31×10 -6 cm/s) and FE (5.28×10 -6 ±0.83×10 -6 cm/s) were significantly greater than that of Cur. The efflux ratio (ER) value at the concentration of 25μM was 1.31 for Cur, 1.26 for CB and 1.33 for FE, suggesting there was no active efflux involved in the translocation across the Caco-2 cell monolayers for the three compounds. Furthermore, the transport flux of CB and FE was in a concentration dependent manner, suggesting the intestinal transport mechanism in them was passive transport. In summary, the results demonstrated that both the intestinal permeability of CB and FE across Caco-2 cell monolayers was significantly improved compare to Cur. Thus they might show a higher oral bioavailability in vivo, and show the potential application in clinic or nutraceutical. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Wilhelmy plate artifacts in elastic monolayers (United States)

    Witten, T. A.; Wang, Jin; Pocivavsek, L.; Lee, K. Y. C.


    A recent article [L. Pocivavsek et al., Soft Matter4, 2019 (2008)] by some of us pointed out difficulties in interpreting Wilhelmy plate measurements on elastic Langmuir monolayers that support anisotropic stress. Using a simplified geometry it showed conditions in which the Wilhelmy plate measures significantly different stress from the ambient stress. We correct a serious error in this analysis and strengthen its conclusion, showing that the Wilhelmy stress and the ambient stress can have opposite signs.

  18. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.


    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two....... As ceramide incorporates the lipid backbone common to all sphingolipids, this arrangement may be relevant to the understanding of the molecular organization of lipid rafts....

  19. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account. (United States)

    Sun, XiaoYing; Han, Peng; Li, Bo; Mao, ShanJun; Liu, TianFu; Ali, Sajjad; Lian, Zan; Su, DangSheng


    Recent progress from first principles computational studies is presented for catalytic properties of nanostructured carbon catalysts in the oxidative dehydrogenation (ODH) reaction of short alkanes. Firstly, a brief introduction is given on the development of carbon catalysts in ODH since 1970. Oxygen functional groups have pivotal importance for ODH on nanostructured carbon catalysts. We discuss the oxidation process by HNO 3 on pristine and defective carbon materials. The interactions between the oxygen molecule (oxidant) and the nanostructured carbon catalysts are quantitatively calibrated. Moreover the different nucleophilic abilities of oxygen functional groups are carefully compared and the strongest nucleophilic sites are proposed. The active sites and detailed reaction pathway are revealed from several computational studies. Diketone/quinone groups are generally considered to be the active centers in ODH. A reaction pathway via radical formation is considered as the favorable path. Furthermore, single ketone and carbon sites are verified to be active in ODH from the analysis of aromaticity. Heteroatom doping effects in ODH are examined. Nitrogen doping is found to be very reactive towards oxygen molecule activation. Other dopants such as boron, phosphorous and sulfur also have positive effects on the reactivity of ODH. Extensive calculations suggest that the BEP relation is applicable for the doped nanostructured carbon catalysts. In the end, an outlook for the future direction of the computational study is supplied.

  20. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu


    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  1. Large-area monolayer hexagonal boron nitride on Pt foil. (United States)

    Park, Ji-Hoon; Park, Jin Cheol; Yun, Seok Joon; Kim, Hyun; Luong, Dinh Hoa; Kim, Soo Min; Choi, Soo Ho; Yang, Woochul; Kong, Jing; Kim, Ki Kang; Lee, Young Hee


    Hexagonal boron nitride (h-BN) has recently been in the spotlight due to its numerous applications including its being an ideal substrate for two-dimensional electronics, a tunneling material for vertical tunneling devices, and a growth template for heterostructures. However, to obtain a large area of h-BN film while maintaining uniform thickness is still challenging and has not been realized. Here, we report the systematical study of h-BN growth on Pt foil by using low pressure chemical vapor deposition with a borazine source. The monolayer h-BN film was obtained over the whole Pt foil (2 × 5 cm(2)) under foil size. A borazine source was catalytically decomposed on the Pt surface, leading to the self-limiting growth of the monolayer without the associating precipitation, which is very similar to the growth of graphene on Cu. The orientation of the h-BN domains was largely confined by the Pt domain, which is confirmed by polarizing optical microscopy (POM) assisted by the nematic liquid crystal (LC) film. The total pressure and orientation of the Pt lattice plane are crucial parameters for thickness control. At high pressure (∼0.5 Torr), thick film was grown on Pt (111), and in contrast, thin film was grown on Pt (001). Our advances in monolayer h-BN growth will play an important role to further develop a high quality h-BN film that can be used for vertical tunneling, optoelectronic devices and growth templates for a variety of heterostructures.

  2. Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers (United States)

    Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.


    Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.

  3. Strain tuned magnetocrystalline anisotropy in ferromagnetic H-FeCl2 monolayer (United States)

    Zheng, Huiling; Han, Hecheng; Zheng, Jun; Yan, Yu


    For the utilization of two-dimensional materials with ferromagnetism in high density storage, it is very important to find an effective method to enhance their perpendicular magnetocrystalline anisotropy. In this paper, we investigated the impact of strain on structure and magnetism of the H-FeCl2 monolayer by employing first-principles calculations. Our results show that stressless H-FeCl2 monolayer not only is dynamically stable, but also has intrinsic ferromagnetism and perpendicular magnetocrystalline anisotropy. Under the strains ranging from -3% to 3%, the structure of the H-FeCl2 monolayer is always dynamically stable and its ground state is always ferromagnetic (FM) configuration. Interestingly, applying compressive strain can enhance the FM. More importantly, we found the compressive strain can enhance the perpendicular magnetocrystalline anisotropy of H-FeCl2 monolayer by 20.9%. Contrarily, tensile strian can make the perpendicular magnetocrystalline anisotropy decrease by 14.5%. The analysis of density of state (DOS) and the dedications to magnetocrystalline anisotropy energy (MAE) of 3d orbitals of Fe atom demonstrate that the comepressive (tensile) strain influence depends on the decrease (increase) of the negative part to MAE from the hybridization between 3dyz and 3dz2 states through spin-orbit coupling interaction. Our study indicates that applying compressive strain can effectively enhance the ferromagnetism and perpendicular magnetocrystalline anisotropy of H-FeCl2 monolayer for its application in high density data storage.

  4. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chien-Ching [Iowa State Univ., Ames, IA (United States)


    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pKa of phenylcarboxylic acids and pyridylcarboxylic acids monolayers on Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.

  5. Transepithelial transport of putrescine across monolayers of the human intestinal epithelial cell line, Caco-2 (United States)

    Milovic, Vladan; Turchanowa, Lyudmila; Stein, Jürgen; Caspary, Wolfgang F.


    AIM: To study the transepithelial transport characteristics of the polyamine putrescine in human intestinal Caco-2 cell monolayers to elucidate the mechanisms of the putrescine intestinal absorption. METHODS: The transepithelial transport and the cellular accumulation of putrescine was measured using Caco-2 cell monolayers grown on permeable filters. RESULTS: Transepithelial transport of putrescine in physiological concentrations ( > 0.5 mM) from the apical to basolateral side was linear. Intracellular accumulation of putrescine was higher in confluent than in fully differentiated Caco-2 cells, but still negligible (less than 0.5%) of the overall transport across the monolayers in apical to basolateral direction.EGF enhanced putrescine accumulation in Caco-2 cells by four fold, as well as putrescine conversion to spermidine and spermine by enhancing the activity of S adenosylmethionine decarboxylase. However, EGF did not have any significant influence on putrescine flux across the Caco- 2 cell monolayers. Excretion of putrescine from Caco-2 cells into the basolateral medium did not exceed 50 picomoles, while putrescine passive flux from the apical to the basolateral chamber, contributed hundreds of micromoles polyamines to the basolateral chamber. CONCLUSION: Transepithelial transport of putrescine across Caco-2 cell monolayers occurs in passive diffusion, and is not influenced when epithelial cells are stimulated to proliferate by a potent mitogen such as EGF. PMID:11819759

  6. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. (United States)

    Kim, Changsik; Moon, Inyong; Lee, Daeyeong; Choi, Min Sup; Ahmed, Faisal; Nam, Seunggeol; Cho, Yeonchoo; Shin, Hyeon-Jin; Park, Seongjun; Yoo, Won Jong


    Electrical metal contacts to two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) are found to be the key bottleneck to the realization of high device performance due to strong Fermi level pinning and high contact resistances (R c ). Until now, Fermi level pinning of monolayer TMDCs has been reported only theoretically, although that of bulk TMDCs has been reported experimentally. Here, we report the experimental study on Fermi level pinning of monolayer MoS 2 and MoTe 2 by interpreting the thermionic emission results. We also quantitatively compared our results with the theoretical simulation results of the monolayer structure as well as the experimental results of the bulk structure. We measured the pinning factor S to be 0.11 and -0.07 for monolayer MoS 2 and MoTe 2 , respectively, suggesting a much stronger Fermi level pinning effect, a Schottky barrier height (SBH) lower than that by theoretical prediction, and interestingly similar pinning energy levels between monolayer and bulk MoS 2 . Our results further imply that metal work functions have very little influence on contact properties of 2D-material-based devices. Moreover, we found that R c is exponentially proportional to SBH, and these processing parameters can be controlled sensitively upon chemical doping into the 2D materials. These findings provide a practical guideline for depinning Fermi level at the 2D interfaces so that polarity control of TMDC-based semiconductors can be achieved efficiently.

  7. Landau levels in biased graphene structures with monolayer-bilayer interfaces (United States)

    Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Ketabi, S. A.; Peeters, F. M.


    The electron energy spectrum in monolayer-bilayer-monolayer and in bilayer-monolayer-bilayer graphene structures is investigated and the effects of a perpendicular magnetic field and electric bias are studied. Different types of monolayer-bilayer interfaces are considered as zigzag (ZZ) or armchair (AC) junctions which modify considerably the bulk Landau levels (LLs) when the spectra are plotted as a function of the center coordinate of the cyclotron orbit. Far away from the two interfaces, one obtains the well-known LLs for extended monolayer or bilayer graphene. The LL structure changes significantly at the two interfaces or junctions where the valley degeneracy is lifted for both types of junctions, especially when the distance between them is approximately equal to the magnetic length. Varying the nonuniform bias and the width of this junction-to-junction region in either structure strongly influence the resulting spectra. Significant differences exist between ZZ and AC junctions in both structures. The densities of states (DOSs) for unbiased structures are symmetric in energy whereas those for biased structures are asymmetric. An external bias creates interface LLs in the gaps between the LLs of the unbiased system in which the DOS can be quite small. Such a pattern of LLs can be probed by scanning tunneling microscopy.

  8. Fullerene nanostructures, monolayers and thin films

    International Nuclear Information System (INIS)

    Cotier, B.N.


    The interaction of submonolayer, monolayer and multilayer coverages of C 60 with the Ag/Si(111)-(√3x√3)R30 deg. (√3Ag/Si) and Si(111)-7x7 surfaces has been investigated using atomic force microscopy (AFM), photoelectron spectroscopy (PES) and ultra high vacuum scanning tunneling microscopy (UHV-STM). It is shown that it is possible to preserve the √3Ag/Si surface, normally corrupted by exposure to air, in ambient conditions when immersed beneath a few layers of C 60 molecules. Upon removal of the fullerene layers in the UHV-STM some corruption is observed which is linked to the morphology of the fullerene film (defined by the nature of the interaction of C 60 with √3Ag/Si). This technique opens up the possibility of performing experiments on the clean √3Ag/Si surface outside of UHV conditions. With the discovery of techniques whereby structures may be formed that are composed of only a few atoms/molecules, there is a need to perform electrical measurements in order to probe the fascinating properties of these 'nano-scale' devices. Using AFM, PES and STM evaporated metals and ion implantation have been investigated as materials for use in forming sub-micron scale contacts to nanostructures. It is found that ion implantation is a more promising approach after studying the response to annealing of treated surfaces. Electrical measurements between open/short circuited contacts and through Ag films clearly demonstrate the validity of the method, further confirmed by a PES study which probes the chemical nature of the near surface region of ion-implanted samples. Attempts have been made to form nanostructure templates between sub-micron scale contacts as a possible precursor to forming nanostructures. The bonding state of C 60 molecules on the Si(111)-7x7 surface has been in dispute for many years. To properly understand the system a comprehensive AFM, PES and STM study has been performed. PES results indicate covalent bond formation, with the number of bonds

  9. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments (United States)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.


    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  10. Effects of surfactants on bacteria and the bacterial degradation of alkanes in crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Bruheim, Per


    This thesis investigates the effects of surfactants on the bacterial degradation of alkanes in crude oil. Several alkane oxidising Gram positive and Gram negative were tested for their abilities to oxidise alkanes in crude oil emulsified with surfactants. The surfactants used to make the oil in water emulsions were either of microbial or chemical origin. Oxidation rates of resting bacteria oxidising various crude oil in water emulsions were measured by Warburg respirometry. The emulsions were compared with non-emulsified oil to see which was the preferred substrate. The bacteria were pregrown to both the exponential and stationary phase of growth before harvesting and preparation for the Warburg experiments. 123 refs., 4 figs., 14 tabs.

  11. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels

    Directory of Open Access Journals (Sweden)

    Shaohui Sun


    Full Text Available An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C5–C20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  12. Observation of Weak C-H...O Hydrogen Bonding by Unactivated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Woo, Hin-koon; Boggavarapu, Kiran; Wang, Lai S.


    Weak C-H...O hydrogen bonding has been recognized to play a major role in biological molecular structures and functions. A newly developed low-temperature photoelectron spectroscopy apparatus is used here to study the C-H...O hydrogen bonding between unactivated alkanes and the carboxylate functional group. We observed that gaseous linear carboxylates, CH3(CH2)nCO2-, assume folded structures at low temperatures due to weak C-H...O hydrogen bonding between the terminal CH3 and CO2- groups for n-5. Temperature-dependent studies showed that the folding transition depends on both the temperature and the aliphatic chain length. Theoretical calculations revealed that for n = 3-8, the folded conformations are more stable than the linear structures, but C-H...O hydrogen bonding only forms for species with n-5 due to steric constraint in the smaller species. One C-H...O hydrogen-bond is formed in the n = 5 and 6 species, whereas two C-H...O hydrogen-bonds are formed for n = 7 and 8. Comparison of the photoelectron spectral shifts for the folded relative to the linear conformations yielded lower limits for the strength of the C-H...O hydrogen-bonds in CH3(CH2)nCO2-, ranging from 1.2 kcal/mol for n = 5 to 4.4 kcal/mol for n = 8.

  13. An investigation of heat effects in N-alkanes and asphaltenes systems

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, C.; Grolier, J.P.E.; Randzio, S.L. [Univ. Blaise Pascal, Lab. de Thermodynamiqueet Genie Chimique, Aubiere (France); Achard, C.; Rogalski, M.; Voguie, J.R. [Univ. de Metz, Lab. de Thermodynamique et d' Analyse Chimique, Metz (France)


    We report results of studies carried out on the heat effects observed during the dilution of asphaltenic crude oil by n-alkanes. The dilution process induces aspheltene flocculation. However, the flocculation is not a first order phase transition and no strong heat effect is expected. The experimental results show that significant endo- and exo-thermic effects occur in this case. Titration calorimetry and inverse chromatography were used to elucidate the nature and the intensity of these thermal phenomena. The calorimetric titration of two crude oils by n-heptane was performed at ambient temperature. Then, the two oils were stabilised with behenic and titrated by n-heptane. Behenic acid, CH{sub 3}(CH{sub 2}){sub 20} CO{sub 2}H, has dispersing effect on asphaltenes and influences the flocculation onset. The chromatographic study was performed using columns coated with asphaltenes or with mixtures containing asphaltenes, in the temperature range between 340 and 520 K. Indirect enthalpic data obtained by this method over wide temperature ranges complete the direct calorimetric measurements. It can be hypothesised that observed heat effects are mainly due to the modifications of the asphaltenes structure. The objective of this work is to evaluate the possibility of using calorimetric methods to controlling flocculation processes in crude oils. (ln)

  14. Normal alkanes and the unresolved complex mixture as diagnostic indicators of hydrocarbon source contributions to marine sediments of the Northern Gulf of Alaska

    International Nuclear Information System (INIS)

    Short, J.W.; Heintz, R.A.


    Coal beds, hydrocarbon source rocks, and natural oil seeps represent potentially significant sources of hydrocarbons contamination of marine sediments in the northern Gulf of Alaska. Intensive studies of several supposedly diagnostic polycyclic aromatic (PAH) and aliphatic hydrocarbon compounds have been conducted to solve the controversy of whether the hydrocarbons come from natural or anthropogenic sources. These hydrocarbons could be associated with a refractory matrix not biologically available, as strongly suggested by the n-alkane profile characteristic of the marine sediments. There are similarities between the unresolved complex mixture (UCM) profile of the marine sediments and those of eroding coals and source rocks. However, there were differences with the UCM of seep oils entering the Gulf of Alaska. The seep-oils possess low concentrations of n-alkanes due to biodegradation before entering the Gulf of Alaska, and have large UCM and PAH concentrations. Additional strong constraints are placed on hydrocarbon contributions from natural sources to the marine sediments of the northern portion of the Gulf of Alaska as a result of inclusion of n-alkane and UCM results into hydrocarbon source allocation models. The authors indicated that seep-oils are unlikely to be significant contributors. 19 refs., 1 tab., 6 figs

  15. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli

    DEFF Research Database (Denmark)

    Grant, Chris; Woodley, John; Baganz, Frank


    , successful n-dodecane oxidation for the production of 1-dodecanol or dodecanoic acid has proven elusive in the past when using alkB-expressing recombinants. This article demonstrates, for the first time in vivo, by using the Escherichia coli GEC137 pGEc47ΔJ strain, that n-dodecane oxidation using this enzyme......The alkane-1-monoxygenase (alkB) complex of Pseudomonas putida GPo1 has been extensively studied in the past and shown to be capable of oxidising aliphatic C5–C12 alkanes to primary alcohols both in the wild-type organism by growth on C5–C12 alkanes as sole carbon source and in vitro. Despite this...... aqueous phase and 200mL of n-dodecane as a second phase. The maximum volumetric rate of combined alcohol and acid production achieved was 1.9g/Lorganic/h (0.35g/Ltotal/h). The maximum specific activity of combined alcohol and acid production was 7-fold lower on n-dodecane (3.5μmol/min/gdcw) than on n...

  16. Plant Wax n-Alkane and n-Alkanoic Acid Signatures Overprinted by Microbial Contributions and Old Carbon in Meromictic Lake Sediments (United States)

    Makou, Matthew; Eglinton, Timothy; McIntyre, Cameron; Montluçon, Daniel; Antheaume, Ingrid; Grossi, Vincent


    Specific n-alkanes and n-alkanoic acids are commonly used as biomarkers in paleoenvironmental reconstruction, yet any individual homologue may originate from multiple biological sources. Here we improve source and age controls for these compounds in meromictic systems by measuring the radiocarbon (14C) ages of specific homologues preserved in twentieth century Lake Pavin (France) sediments. In contrast to many studies, 14C ages generally decreased with increasing carbon chain length, from 7.3 to 2.6 ka for the C14-C30 n-alkanoic acids and from 9.2 to 0.3 ka for the C21-C33 n-alkanes. Given a known hard water effect, these values suggest that aquatic microbial sources predominate and contributed to most of the homologues measured. Only the longest chain n-alkanes exclusively represent inputs of higher plant waxes, which were previously sequestered in soils over centennial to millennial timescales prior to transport and deposition. These findings suggest that biomarker source and age should be carefully established for lacustrine settings.

  17. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley


    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  18. Chemical similarity among domesticated and wild genotypes of peanut based on n-alkanes profiles

    Directory of Open Access Journals (Sweden)

    Renata Janaína Carvalho de Souza


    Full Text Available The objective of this work was to analyze the epicuticular n-alkane profile of domesticated and wild peanut genotypes. Foliar epicuticular n-alkanes of four Arachis hypogaea genotypes and two wild species - A. monticola and A. stenosperma - were analyzed by gas chromatography. Chemical relationships between them were evaluated using the Dice coefficient and UPGMA method. Two clusters were formed: one with four A. hypogaea genotypes and the other with the two wild species. There is more similarity between the BR1 and LIGO-PE06 genotypes and between the BRS 151 L-7 and BRS Havana genotypes.

  19. Toxics release inventory: List of toxic chemicals within the polychlorinated alkanes category and guidance for reporting

    Energy Technology Data Exchange (ETDEWEB)



    Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) requires certain facilities manufacturing, processing, or otherwise using listed toxic chemicals to report their environmental releases of such chemicals annually. On November 30, 1994 EPA added 286 chemicals and chemical categories. Six chemical categories (nicotine and salts, strychnine and salts, polycyclic aromatic compounds, water dissociable nitrate compounds, diisocyanates, and polychlorinated alkanes) are included in these additions. At the time of the addition, EPA indicated that the Agency would develop, as appropriate, interpretations and guidance that the Agency determines are necessary to facilitate accurate reporting for these categories. This document constitutes such guidance for the polychlorinated alkanes category.

  20. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan


    -liquid equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...... mixtures, is related with the values of the melting temperatures by a function common to the entire homologous series. When applied to systems with a symmetric behavior, this yields a correct description of both the enthalpic and entropic parts of the excess Gibbs free energy with the CDLP model...

  1. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme (United States)

    Koch, Daniel J.; Arnold, Frances H.


    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  2. Thermodynamics of the hydrophobic effect. III. Condensation and aggregation of alkanes, alcohols, and alkylamines. (United States)

    Matulis, D


    Knowledge of the energetics of the low solubility of non-polar compounds in water is critical for the understanding of such phenomena as protein folding and biomembrane formation. Solubility in water can be considered as one leg of the three-part thermodynamic cycle - vaporization from the pure liquid, hydration of the vapor in aqueous solution, and aggregation of the substance back into initial pure form as an immiscible phase. Previous studies on the model compounds n-alkanes, 1-alcohols, and 1-aminoalkanes have noted that the thermodynamic parameters (Gibbs free energy, DeltaG; enthalpy, DeltaH; entropy, DeltaS; and heat capacity, DeltaC(p)) associated with these three processes are generally linear functions of the number of carbons in the alkyl chains. Here we assess the accuracy and limitations of the assumption of additivity of CH(2) group contributions to the thermodynamic parameters for vaporization, hydration, and aggregation. Processes of condensation from pure gas to liquid and aqueous solution to aggregate are compared. Hydroxy, amino, and methyl headgroup contributions are estimated, liquid and solid aggregates are distinguished. Most data in the literature were obtained for compounds with short aliphatic hydrocarbon tails. Here we emphasize long aliphatic chain behavior and include our recent experimental data on long chain alkylamine aggregation in aqueous solution obtained by titration calorimetry and van't Hoff analysis. Contrary to what is observed for short compounds, long aliphatic compound aggregation has a large exothermic enthalpy and negative entropy.

  3. Modification by SiO2 of Alumina Support for Light Alkane Dehydrogenation Catalysts

    Directory of Open Access Journals (Sweden)

    Giyjaz E. Bekmukhamedov


    Full Text Available Due to the continuously rising demand for C3–C5 olefins it is important to improve the performance of catalysts for dehydrogenation of light alkanes. In this work the effect of modification by SiO2 on the properties of the alumina support and the chromia-alumina catalyst was studied. SiO2 was introduced by impregnation of the support with a silica sol. To characterize the supports and the catalysts the following techniques were used: low-temperature nitrogen adsorption; IR-spectroscopy; magic angle spinning 29Si nuclear magnetic resonance; temperature programmed desorption and reduction; UV-Vis-, Raman- and electron paramagnetic resonance (EPR-spectroscopy. It was shown that the modifier in amounts of 2.5–7.5 wt % distributed on the support surface in the form of SiOx-islands diminishes the interaction between the alumina support and the chromate ions (precursor of the active component. As a result, polychromates are the compounds predominantly stabilized on the surface of the modified support; under thermal activation of the catalyst and are reduced to the amorphous Cr2O3. This in turn leads to an increase in the activity of the catalyst in the dehydrogenation of isobutane.

  4. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J


    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  5. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.


    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  6. QSPR models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Jonsdottir, Svava Osk


    for alkanes, alcohols, diols, ethers, and oxyalcohols, including cyclic alkanes and alcohols. Several good models, having good predictability, have been developed. To enhance the applicability of the QSPR models, simpler expressions for each descriptor have also been developed. This allows for the prediction...

  7. Data from: Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.


    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  8. 40 CFR 721.10178 - Distillates (Fischer-Tropsch), hydroisomerized middle, C10-13-branched alkane fraction. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Distillates (Fischer-Tropsch), hydroisomerized middle, C10-13-branched alkane fraction. 721.10178 Section 721.10178 Protection of Environment...), hydroisomerized middle, C10-13-branched alkane fraction. (a) Chemical substance and significant new uses subject...

  9. Alkane-degrading bacteria at the soil-litter interface: comparing isolates with T-RFLP-based community profiles. (United States)

    Giebler, Julia; Wick, Lukas Y; Chatzinotas, Antonis; Harms, Hauke


    Alkane-degrading bacteria were isolated from uncontaminated soil microcosms, which had been incubated with maize litter as natural alkane source. The isolates served to understand spatio-temporal community changes at the soil-litter interface, which had been detected using alkB as a functional marker gene for bacterial alkane degraders. To obtain a large spectrum of isolates, liquid subcultivation was combined with a matrix-assisted enrichment (Teflon membranes, litter). Elevated cell numbers of alkane degraders were detected by most probable number counting indicating enhanced alkane degradation potential in soil in response to litter treatment. Partial 16S rRNA gene sequencing of 395 isolates revealed forty different phylogenetic groups [operational taxonomic units (OTUs)] and spatio-temporal shifts in community composition. Ten OTUs comprised so far unknown alkane degraders, and five OTUs represented putative new bacterial genera. The combination of enrichment methods yielded a higher diversity of isolates than liquid subcultivation alone. Comparison of 16S rRNA gene T-RFLP profiles indicated that many alkane degraders present in the enrichments were not detectable in the DNA extracts from soil microcosms. These possibly rare specialists might represent a seed bank for the alkane degradation capacity in uncontaminated soil. This relevant ecosystem function can be fostered by the formation of the soil-litter interface. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear. (United States)


    ...-alkane, branched and linear. 721.10103 Section 721.10103 Protection of Environment ENVIRONMENTAL..., branched and linear. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS No...

  11. Silicene on Monolayer PtSe2: From Strong to Weak Binding via NH3 Intercalation

    KAUST Repository

    Sattar, Shahid


    We study the properties of silicene on monolayer PtSe2 by first-principles calculations and demonstrate a much stronger interlayer interaction than previously reported for silicene on other semiconducting substrates. This fact opens the possibility of a direct growth. A band gap of 165 meV results from inversion symmetry breaking and large spin-splittings in the valence and conduction bands from proximity to monolayer PtSe2 and its strong spin–orbit coupling. It is also shown that the interlayer interaction can be effectively reduced by intercalating NH3 molecules between silicene and monolayer PtSe2 without inducing charge transfer or defect states near the Fermi energy. A small NH3 diffusion barrier makes intercalation a viable experimental approach to control the interlayer interaction.

  12. Magnetic field induced polarization enhancement in monolayers of tungsten dichalcogenides: effects of temperature (United States)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Molas, M. R.; Nogajewski, K.; Faugeras, C.; Potemski, M.; Kossacki, P.


    Optical orientation of localized/bound excitons is shown to be effectively enhanced by the application of magnetic fields as low as 20 mT in monolayer WS2. At low temperatures, the evolution of the polarization degree of different emission lines of monolayer WS2 with increasing magnetic fields is analyzed and compared to similar results obtained on a WSe2 monolayer. We study the temperature dependence of this effect up to T=60 K for both materials, focusing on the dynamics of the valley pseudospin relaxation. A rate equation model is used to analyze our data and from the analysis of the width of the polarization dip in magnetic field we conclude that the competition between the dark exciton pseudospin relaxation and the decay of the dark exciton population into the localized states are rather different in these two materials which are representative of the two extreme cases for the ratio of relaxation rate and depolarization rate.

  13. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering (United States)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili


    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  14. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng


    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  15. Completely flat 2D Zn3O2 monolayer with triangle and pentangle coordinated networks (United States)

    Meng, Lingbiao; Zhang, Yingjuan; Zhang, Jicheng; Wu, Weidong


    Two-dimensional (2D) materials with strictly planar hyper-coordinated motifs are of great importance in fundamental science and potential applications but extremely rare. Here we theoretically design a novel 2D IIB-VIA inorganic system, namely Zn3O2 monolayer, by comprehensive first-principles computations. This Zn3O2 monolayer is composed from highly symmetrical tri-coordinated oxygen and tetra-coordinated zinc, featuring planar and peculiar triangle and pentangle combined bonded network. The newly predicted Zn3O2 monolayer possesses excellent dynamic and thermal stabilities and is also the lowest-energy structure of its 2D space indicated by particle swarm search, supporting its experimentally synthetic viability. A relatively wide band gap of 4.46 eV means it has potential applications in electronics and optoelectronics. The present findings provide a new field of hyper-coordinated 2D nanomaterials for study.

  16. Investigating phosphonate monolayer stability on ALD oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Brittany [Nanoscience and Microsystems Engineering and Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States); Dubey, Manish [Lujan Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Anderson, Aaron S. [Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Artyushkova, Kateryna [Nanoscience and Microsystems Engineering and Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States); Baldwin, J. Kevin [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Petsev, Dimiter [Nanoscience and Microsystems Engineering and Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States); Dattelbaum, Andrew M., E-mail: [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)


    We report a series of studies aimed at investigating the stability of phosphonate self-assembled monolayers (SAMs) made from octadecylphosphonic acid (ODPA) or a perfluorinated phosphonic acid (PFPA) on hafnium and aluminum oxide surfaces deposited by atomic layer deposition (ALD). The monolayers were deposited by a series of techniques including self-assembly from solution, tethering by aggregation and growth, and the Langmuir–Blodgett (LB) method. SAMs prepared by LB method were primarily used in our stability investigations because they were found to be the most uniform and reproducible. All films deposited on ALD oxide-coated substrates were characterized by means of water contact angle measurements, spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS data conclusively showed covalent phosphonate formation on both substrates. SAMs formed on both Al{sub 2}O{sub 3} and HfO{sub 2} were stable upon exposure to water. PFPA SAMs on HfO{sub 2} were found to be the most stable SAMs studied here in either water or phosphate buffer (PBS) at room temperature. We also show that similar silane-based SAMs made from octadecyltrichlorosilane (OTS) on silicon oxide (SiO{sub 2}) are less stable in PBS than phosphonate SAMs on atomic layer deposited HfO{sub 2} substrates. These data suggest that phosphonate SAMs should be considered for use in (bio)molecular sensing and actuator devices that utilize ALD and require longer-term stability under aqueous conditions.

  17. Anisotropic Negative Differential Resistance in Monolayer Black Phosphorus (United States)

    Zhang, Wanting; Kang, Peng; Chen, Huahui


    The tremendous potential application in emerging two-dimensional layered materials such as black phosphorus (BP) has attracted great attention as nanoscale devices. In this paper, the effect of anisotropic negative differential resistance (NDR) in monolayer black phosphorus field-effect transistors (FETs) is reported by the first-principles computational study based on the non-equilibrium Green’s function approach combined with density functional theory. The transport properties including current-voltage (I-V) relation and transmission spectrum of monolayer BP are investigated at different gate voltages (Vg). Further studies indicate that NDR occurs at a specific gate voltage in the armchair direction rather than in the zigzag direction. The decrease of current in I-V characteristics can be understood from the generation of non-conducting states region moving towards the Fermi level resulting in a reduction of the integration within corresponding energy range in the transmission spectrum. Our results offer useful guidance for designing FETs and other potential applications in nanoelectronic devices based on BP.

  18. Distribution and variability of n-alkanes in epicuticular waxes of sedum species from the central Balkan Peninsula: chemotaxonomic importance. (United States)

    Jovanović, Snežana Č; Zlatković, Bojan K; Stojanović, Gordana S


    For the first time, the n-alkane distribution and variability of the epicuticular waxes within 22 Sedum taxa was reported with focus on the chemotaxonomy of native Sedum representatives from the central Balkan Peninsula, compared to their relations with four other species of the Crassulaceae family. By GC/MS and GC-FID identification and quantification, it was established that n-alkanes C27 , C29 , C31 , C33 , and C35 were the dominant constituents of the examined epicuticular wax samples. Applying multivariate statistical analyses including agglomerative hierarchical clustering (AHC) and principal component analysis (PCA), the relation according to the n-alkane composition between the examined samples was established. It was shown that the n-alkane variability of the central Balkan Sedum species was considerable and that n-alkanes might not be very reliable taxonomic markers for these species. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Stress and strain effects on the electronic structure and optical properties of ScN monolayer (United States)

    Tamleh, Shirin; Rezaei, Ghasem; Jalilian, Jaafar


    Based on the density functional theory, electronic and optical properties of a monolayer scandium nitride structure have been studied under different strain conditions. Our results indicate that both biaxial compressive and tensile strain effects lead to change the band gap of this structure with different rates. Also, optical absorption spectrum peaks experience an obvious red and blue shifts with the exerting of tensile and compressive strains, respectively. Our results express that ScN monolayer can be the promising candidate for the future nano-base electrical and optical devices.

  20. Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer. (United States)

    Pan, Hui


    Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts is essential to the development of this technology. In the work, we present a first-principles study on the effects of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer. Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production from water electrolysis.