WorldWideScience

Sample records for alkalized alumina process

  1. Effect of hydrothermal process for inorganic alumina sol on crystal structure of alumina gel

    Directory of Open Access Journals (Sweden)

    K. Yamamura

    2016-09-01

    Full Text Available This paper reports the effect of a hydrothermal process for alumina sol on the crystal structure of alumina gel derived from hydrothermally treated alumina sol to help push forward the development of low temperature synthesis of α-Al2O3. White precipitate of aluminum hydroxide was prepared with a homogeneous precipitation method using aluminum nitrate and urea in aqueous solution. The obtained aluminum hydroxide precipitate was peptized by using acetic acid at room temperature, which resulted in the production of a transparent alumina sol. The alumina sol was treated with a hydrothermal process and transformed into an alumina gel film by drying at room temperature. Crystallization of the alumina gel to α-Al2O3 with 900 °C annealing was dominant for a hydrothermal temperature of 100 °C and a hydrothermal time of 60 min, as production of diaspore-like species was promoted with the hydrothermal temperature and time. Excess treatments with hydrothermal processes at higher hydrothermal temperature for longer hydrothermal time prevented the alumina gel from being crystallized to α-Al2O3 because the excess hydrothermal treatments promoted production of boehmite.

  2. Alumina Yield in the Bayer Process

    Science.gov (United States)

    Den Hond, R.

    The alumina industry has historically been able to reduce alumina production costs, by increasing the liquor alumina yield. To know the potential for further yield increases, the phase diagram of the ternary system Na2O-Al2O -H2O at various temperature levels was analysed. It was found that the maximum theorical precipitation alumina yield is 160 g/l, while that for digestion was calculated to be 675 g/l.

  3. Processing of Alumina-Toughened Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  4. Efficiency of Nepheline Ore Processing for Alumina Production

    Science.gov (United States)

    Arlyuk, B. I.; Pivnev, A. I.

    The comparative economical analysis and energetic analysis of alumina production from various kinds of raw materials were carried out basing on industrial data. The main process parameters of nepheline raw materials processing through sintering adopted at large industrial scale are given. The said technology allows the wasteless utilization of nepheline to produce alumina, soda, potash, potassium sulphate and chloride, portland cement and gallium without polluting the environment. According to industrial data the production cost of alumina while using the sintering of nepheline raw material is considerably lower than in processing of high grade bauxites by the Bayer way due to complete utilization of wastes, and as for capital investments into the process facilities they are lower than those into alumina production from bauxites, production of soda, potash and cement by traditional methods taken together. Are cited the flowsheets of alumina, soda, potash and portland cement production from nepheline ore, the process interrelationships determining the efficiency of raw material processing, and ways of further improvement of the process.

  5. Low Temperature MOCVD-Processed Alumina Coatings

    OpenAIRE

    Gleizes, Alain; Sovar, Maria-Magdalena; Samélor, Diane; Vahlas, Constantin

    2006-01-01

    We first present a Review about the preparation of alumina as thin films by the technique of MOCVD at low temperature (550°C and below). Then we present our results about thin films prepared by the low pressure MOCVD technique, using aluminium tri-isopropoxide as a source, and characterized by elemental analysis (EMPA, EDS, ERDA, RBS), FTIR, XRD and TGA. The films were grown in a horizontal, hot-wall reactor, with N2 as a carrier gas either pure or added with water vapour. The deposition t...

  6. Processing, nanoindentation and scratch testing of alumina-coated YTZP

    Directory of Open Access Journals (Sweden)

    Jorge Valle

    2015-07-01

    The proposed processing method involves dipping of pre-sintered YTZP specimens in stable alumina suspensions and co-sintering of the dipped specimens. The influence of the processing parameters on the macro and microstructure of the materials has been established. Berkovich indentation has been performed to determine the Young's modulus of the substrates and coatings. The structural integrity of the coatings has been analysed using scratch tests. The Young's modulus. The optimised specimens present high resistance to scratch up to loads of 150 N.

  7. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    Science.gov (United States)

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  8. Method for thermal processing alumina-enriched spinel single crystals

    Science.gov (United States)

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  9. The Ammonoalunite Process for Production of Alumina from Clay

    Science.gov (United States)

    Bartlett, Robert W.; Wesely, Rolf J.; Bolles, Thomas R.

    The ammonoalunite process begins with two-stage sulfuric acid leaching of calcined kaolinitic clay. The clarified aluminum sulfate liquor is subjected to modest temperature autoclaving in the presence of ammonium ions to precipitate the ammonium analog of alunite, NH4Al3(SO4)2(OH)6, in a hydrolysis reaction regenerating most of the acid needed in the leach. This acid liquor is recycled while the filtered ammonoalunite is thermally decomposed to alumina. Decomposition gases are scrubbed to recover ammonia and the remaining acid needed for leaching. Experimental results on precipitation parameters, thermal decomposition, energy consumption, and impurity control are given.

  10. Processing and characterization of alumina/LAS bioceramics for ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Alumina allows to recreate the functionality and aesthetics of natural teeth. However, its low frac- ture toughness rises concern regarding use in dental restoration. Structural reliability is addressed here by formulating a material containing alumina and a glass–ceramic from LAS system. The presence of LAS in the.

  11. Processing and characterization of alumina/LAS bioceramics for ...

    Indian Academy of Sciences (India)

    Alumina allows to recreate the functionality and aesthetics of natural teeth. However, its low fracture toughness rises concern regarding use in dental restoration. Structural reliability is addressed here by formulating a material containing alumina and a glass–ceramic from LAS system. The presence of LAS in the mixtures ...

  12. Bauxite mining and alumina refining: process description and occupational health risks.

    Science.gov (United States)

    Donoghue, A Michael; Frisch, Neale; Olney, David

    2014-05-01

    To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Review article. The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures.

  13. Rare earth-doped alumina thin films deposited by liquid source CVD processes

    Energy Technology Data Exchange (ETDEWEB)

    Deschanvres, J.L.; Meffre, W.; Joubert, J.C.; Senateur, J.P. [Ecole Nat. Superieure de Phys. de Grenoble, St. Martin d`Heres (France). Lab. des Materiaux et du Genie Phys.; Robaut, F. [Consortium des Moyens Technologiques Communs, Institut National Polytechnique de Grenoble, BP 75, 38402 St Martin d`Heres (France); Broquin, J.E.; Rimet, R. [Laboratoire d`Electromagnetisme, Microondes et Optoelectronique, CNRS-Ecole Nationale Superieure d`Electronique et Radioelectricite de Grenoble, BP 257, 38016 Grenoble, Cedex (France)

    1998-07-24

    Two types of liquid-source CVD processes are proposed for the growth of rare earth-doped alumina thin films suitable as amplifying media for integrated optic applications. Amorphous, transparent, pure and erbium- or neodymium-doped alumina films were deposited between 573 and 833 K by atmospheric pressure aerosol CVD. The rare earth doping concentration increases by decreasing the deposition temperature. The refractive index of the alumina films increases as a function of the deposition temperature from 1.53 at 573 K to 1.61 at 813 K. Neodymium-doped films were also obtained at low pressure by liquid source injection CVD. (orig.) 7 refs.

  14. Dependence of the Stabilization of α-Alumina on the Spray Process

    Science.gov (United States)

    Stahr, Carl Christoph; Saaro, Sabine; Berger, Lutz-Michael; Dubský, Jiri; Neufuss, Karel; Herrmann, Mathias

    2007-12-01

    A phase change from α-alumina (corundum) in the feedstock powder to predominantly other alumina phases, such as γ-alumina in the coating normally takes place, as a result of the spray process. It is expected that the prevention of this phase transformation will significantly improve the mechanical, electrical, and other properties of thermally sprayed alumina coatings. The results regarding the possibility of stabilization of α-alumina through addition of chromia published in the literature are ambiguous. In this work, stabilization using different spray processes (water-stabilized plasma (WSP), gas-stabilized plasma (APS), and high-velocity oxy-fuel spray (HVOF)) was studied. Mechanical mixtures of alumina and chromia were used, as were prealloyed powders consisting of solid solutions. The investigations focused on mechanical mixtures with both APS and WSP and on prealloyed powders with WSP. The coatings were studied by x-ray diffraction, including Rietveld analysis, and analysis of the lattice parameters. Microstructures were investigated by optical microscopy using metallographic cross-sections. It was shown that in the case of the mechanically mixed powders, the stabilization predominantly depends on the applied spray process. The stabilization of the α phase by use of the WSP process starting from mechanical mixtures was confirmed. It appears that stabilization exhibits a complex dependence on the spray process, the process parameters (in particular the thermal history), the nature of the powder (mechanically mixed or prealloyed), and the chromia content.

  15. Plasma Processes: Plasma sprayed alumina coatings for radiation ...

    Indian Academy of Sciences (India)

    Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our Research ...

  16. Dependence of the Stabilization of -Alumina on the Spray Process

    Czech Academy of Sciences Publication Activity Database

    Stahr, C.Ch.; Saaro, S.; Berger, L.-M.; Herrmann, M.; Dubský, Jiří; Neufuss, Karel

    2007-01-01

    Roč. 16, 5-6 (2007), s. 822-830 ISSN 1059-9630 R&D Projects: GA ČR(CZ) GA106/05/0483 Institutional research plan: CEZ:AV0Z20430508 Keywords : -Al2O3 stabilization * alumina * chromia * solid solution * X-ray diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.204, year: 2007

  17. Mechanical properties correlation to processing parameters for advanced alumina based refractories

    Directory of Open Access Journals (Sweden)

    Dimitrijević Marija M.

    2012-01-01

    Full Text Available Alumina based refractories are usually used in metallurgical furnaces and their thermal shock resistance is of great importance. In order to improve thermal shock resistance and mechanical properties of alumina based refractories short ceramic fibers were added to the material. SEM technique was used to compare the microstructure of specimens and the observed images gave the porosity and morphological characteristics of pores in the specimens. Standard compression test was used to determine the modulus of elasticity and compression strength. Results obtained from thermal shock testing and mechanical properties measurements were used to establish regression models that correlated specimen properties to process parameters.

  18. Synthesis, extrusion processing and ionic conductivity measurements of sodium β-alumina tubes

    Directory of Open Access Journals (Sweden)

    Karanja Avinash

    2015-09-01

    Full Text Available Pure and Li-doped sodium β-alumina (NaMg0.67Al10.33O17 ceramics were prepared from the stoichiometric mixture of raw powders. Pellets and tubes were formed from the precursor (NBA-1S and preformed sodium β-alumina powder through compaction and extrusion processing, respectively. The obtained specimens were finally sintered to dense ceramics. The ceramics were comparatively evaluated for their density, microstructure, phase formation and electrical properties. Both tubes and pellets processed with the preformed sodium β-alumina powder (NBA-2S showed enhanced densification along with relatively better phase purity and crystallinity. The ceramics prepared from the preformed powder exhibited higher density of 94–95% TD (theoretical densities in comparison to the ceramics processed from the raw mixture (NBA-1S with a density of 85–87% TD, which are complemented well through fractographs and microstructures. The ceramics processed using the preformed sodium β-alumina (NBA-2S also exhibited high room temperature AC conductivity of 1.77×10-4 S/cm (1 MHz with an increasing trend with temperature. The higher ionic conductivity at all temperatures in NBA-2S than in NBA-1S ceramics can be attributed to the relatively high phase purity, crystallinity and higher density values of NBA-2S ceramics.

  19. Processing of alumina and zirconia nano-powders and compacts

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yujie; Bandyopadhyay, Amit; Bose, Susmita

    2004-08-25

    Magnesia-doped alumina and yttria-doped zirconia nano-powders were synthesized using sucrose as a chelating agent and template material from the aqueous solutions of aluminium nitrate, magnesium nitrate, ytrrium nitrate and zirconyl nitrate, respectively. Synthesis parameters were optimized with varying sucrose to metal ion ratio, calcinations time, and temperature to produce these nano-powders. As-synthesized powders were characterized by room temperature X-ray diffraction, BET surface area analyzer and transmission electron microscopy. Y{sub 2}O{sub 3}-ZrO{sub 2} nano-powders had particle size in the range of 80-200 nm with specific average surface area of 119 m{sup 2}/g and for MgO-Al{sub 2}O{sub 3} powders, particle sizes were 30-200 nm with the specific average surface area of 250 m{sup 2}/g. Our results indicate that this synthesis method is a versatile one and can be applied to a variety of oxide-based materials to form nano-powders. Nano-powders were compacted uniaxially and densified in a muffle furnace. Sintered discs were used for hardness testing and density measurements, as well as for microstructural characterization.

  20. Optical properties of alumina membranes prepared by anodic oxidation process

    International Nuclear Information System (INIS)

    Li Zhaojian; Huang Kelong

    2007-01-01

    The luminescence property of anodic alumina membranes (AAMs) with ordered nanopore arrays prepared by electrochemically anodizing aluminum in oxalic acid solutions have been investigated. Photoluminescence emission (PL) measurement shows that a blue PL band occurs in the wavelength ranges of 300-600 nm. The PL intensity and peak position of AAMs depend markedly on the excitation wavelength. A new peak located at 518 nm can be observed under a monitoring wavelength at 429 nm in the photoluminescence excitation (PLE) spectra. Convincing evidences have been presented that the PLE would be associated with the residual aluminum ions in the membrane. The PLE and PL of AAMs, as a function of anodizing times, have been discussed. It is found that the oxalic impurities incorporated in the AAMs would have important influences on the optical properties of AAMs in the initial stage of anodization. The PL and PLE spectra obtained show that there are three optical centers, of which the first is originated from the F + centers in AAMs, the second is correlated with the oxalic impurities incorporated in the AAMs, and the third is associated with the excess aluminum ions in the membrane

  1. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  2. Phosphorus Control in DRI-EAF Steelmaking: Thermodynamics, Effect of Alumina, and Process Modeling

    Science.gov (United States)

    Tayeb, Mohammed A.

    improve. Alumina becomes less acidic acting as a diluting agent and probably forming [AlO6 9-]-octahedra according to which alumina is hypothesized to behave amphoterically. While understanding the equilibrium and kinetics of the phosphorus reaction is important in order to improve the ability to remove phosphorus from the melt, practical use of this understanding in industry is limited. Modeling the phosphorus reaction in steelmaking, however, would result in a better and easier use of conceptual understanding by operators and engineers in plants. This work describes dynamic process models for phosphorus and sulfur reactions when using DRI, scrap, and pig iron in EAF steelmaking. The present models are based on the assumption that thermodynamic equilibrium is locally established at the steel-slag interface, the bulk liquid steel and slag remain homogeneous throughout the reaction, and the rate is predominantly controlled by the mass transfer of phosphorus in the metal and slag boundary layers. The models, which consist of a series of rate and mass balance equations, were converted into a Python code and are capable of predicting trajectories of steel and slag phosphorus and sulfur levels as well as slag chemistry and slag liquid and solid phases. The effect of operating variables on the final phosphorus and sulfur contents, for instance the effect of DRI and pig iron P and S concentrations, oxygen use, temperature, melting rates, and flux addition were tested. The results imply that dephosphorization could be improved by maintaining lower bath temperatures for period of time. Additionally, dephosphorization and desulfurization were improved by higher flux addition.

  3. Cooling process of liquid propellant rocket by means of kerosene-alumina nanofluid

    Directory of Open Access Journals (Sweden)

    Mostafa Mahmoodi

    2016-12-01

    Full Text Available Heat transfer augmentation of kerosene-alumina nanofluid is studied for the possible use in the regenerative cooling channel of semi cryogenic engine. The basic partial differential equations are reduced to ordinary differential equations which are solved using differential transformation method. Velocity and temperature profiles as well as the skin friction coefficient and Nusselt number are determined. The influence of pertinent parameters such as nanofluid volume fraction, viscosity parameter and Eckert number on the flow and heat transfer characteristics is discussed. The results indicate that adding alumina into the fuel of liquid rocket engine (kerosene can be considered as the way of enhancing cooling process of chamber and nozzle walls. Nusselt number is an increasing function of viscosity parameter and nanoparticle volume fraction while it is a decreasing function of Eckert number.

  4. Alternative Processing Method Leads to Stronger Sapphire-Reinforced Alumina Composites

    Science.gov (United States)

    Jaskowiak, Martha H.

    1997-01-01

    The development of advanced engines for aerospace applications depends on the availability of strong, tough materials that can withstand increasingly higher temperatures under oxidizing conditions. The need for such materials led to the study of an oxide-based composite composed of an alumina matrix reinforced with zirconia-coated sapphire fibers. Because the nonbrittle behavior of this system depends on the interface and its ability to prevent fiber-to-matrix bonding and reduce interfacial shear stress, the microstructure of the zirconia must be carefully controlled during both coating application and composite processing. When it was both porous and unstabilized, zirconia (which does not react easily with alumina) was found to be the most effective material tested in reducing interfacial shear strength between the fiber and matrix.

  5. Studies on hydrogen separation membrane for IS process. Membrane preparation with porous α-alumina tube

    International Nuclear Information System (INIS)

    Hwang, Gab-Jin; Onuki, Kaoru; Shimizu, Saburo

    1998-01-01

    It was investigated the preparation technique of hydrogen separation membrane to enhance the decomposition ratio of hydrogen iodide in the thermochemical IS process. Hydrogen separation membranes based on porous α-alumina tubes having pore size of 100 nm and 10 nm were prepared by chemical vapor deposition using tetraethylorthosilicate (TEOS) as the Si source. In the hydrogen separation membrane, its pore was closed by the deposited silica and then the permeation of gas was affected by the hindrance diffusion. At 600degC, the selectivity ratios (H 2 /N 2 ) were 5.2 and 160 for the membranes based on porous α-alumina tube having pore size of 100 nm and 10 nm, respectively. (author)

  6. Mechanical and tribological performance of coated ceramic tiles with alumina by thermal spraying process

    Directory of Open Access Journals (Sweden)

    Marilse Araque-Pabón

    2015-07-01

    Full Text Available Mechanical and tribological performance of red clay ceramic tiles uncoated and coated by oxy-fuel thermal spraying process from α-Al2O3 powder was evaluated. The ceramic tile substrates were manufactured by uniaxial pressing at 30 bar pressure, and sintered at 1100°C, while alumina Sulzer-Metco 105SPFTM was used as feedstock powder to elaborate coatings with three different thicknesses. Both, the bending and the deep abrasion resistances were evaluated according to ISO 10545-4 e ISO 10545-6 standards respectively. The results obtained indicate that the deep abrasion in the ceramic tiles decreases when the thickness of alumina coating increases. On the other hand, the bending resistance of ceramic tiles coated increased between 5 and 49% regarding to those uncoated. These results contribute to the development of ceramic products with high value added, which can be used in various technological applications.

  7. Options in the HCl Process for the Production of Alumina from Clay

    Science.gov (United States)

    Shanks, D. E.; Thompson, D. C.; Arington, R. M.; Dan, G. L.; Eisele, J. A.

    The Bureau of Mines has conducted in-depth studies on the recovery of aluminum chloride hexa-hydrate and alumina from domestic kaolinitic clay. The original goal of the studies was to provide the technology for alumina production from domestic raw materials. Current research is focused on process modifications that would improve the economics of clay-HCl leaching and improve chances for transfer of the technology to commercial use. Options under investigation include direct leaching of raw clay, changes in leaching acid concentration and stoichi-ometry, decreased leaching duration, improved solid-liquid separations, elimination of solvent extraction for iron removal, and formation of basic aluminum chloride instead of aluminum chloride hexahydrate as an intermediate product. Implementation could decrease energy, equipment, and reagent costs by eliminating the calcination step, substituting filtration for thickening and washing circuits, and combining iron removal with aluminum chloride crystallization.

  8. Analysis of Material Removal and Surface Characteristics in Machining Multi Walled Carbon Nanotubes Filled Alumina Composites by WEDM Process

    Directory of Open Access Journals (Sweden)

    Annebushan Singh Meinam

    2017-01-01

    Full Text Available The reinforcement of ceramic materials with electrically conductive particles increases the overall conductivity of the ceramic material. This allows the ceramic material to be more readily machined using wire electrical discharge machining process. The current work is an approach to identify the machinability of multi walled carbon nanotubes filled alumina composites in wire electrical discharge machining process. Alumina samples of 5 vol. % and 10 vol. % multi walled carbon nanotubes are machined and analysed for material removal rate and the surface characteristics. An increase in material removal rate is observed with increase in filler concentrations. At the same time, better surface roughness is observed. The surface characteristics of composite alumina are further compared with Monel 400 alloy. It has been observed that spalling action is the dominating material removal mechanism for alumina composites, while melting and evaporation is for the Monel 400 alloy.

  9. Investigation of the influence of the manufacturing process on the mechanical and microstructural properties of alumina

    International Nuclear Information System (INIS)

    Madruga, T.P.; Costa, C.R.C. da

    1986-01-01

    High-purity samples of alumina, without any sintering additives, were prepared using the techniques of slip casting and cold unidirectional pressing. The same sintering parameters (temperature, time and heating and cooling rates) were used for all samples. The mechanical strenght, critical flow strenght (mode I), average grain size and porosity were measured on samples manufactured using both methods. The influence of the manufaturing process on the quality of the finished pieces was inferred from the comparison and evaluation of the results for the two sets of samples. (Author) [pt

  10. Study and utilization of residual sludges rich in alumina from an anodizing process

    International Nuclear Information System (INIS)

    Carranza, Carlos; Montero, Mavis L.; Rodriguez, Ventura

    2006-01-01

    Residual sludges from a process of anodizing were studied by x-ray diffraction as part of research into alternative materials for the chemical industry. The sludge containing mainly bayerite Al(OH) 3 and bohemite AlO(OH). The phases of α and β alumina were identified at 700 degrees, corundum phase is present at 850 degrees. Zeolite A is synthesized from these and by means of hydrothermal, which was identified by X-ray diffraction. Scanning microscopy of zeolite A shows a high degree of crystallinity. (author) [es

  11. A Technological Comparison of Six Processes for the Production of Reduction-Grade Alumina from Non-Bauxitic Raw Materials

    Science.gov (United States)

    Bengtson, K. B.

    The U. S. Bureau of Mines, by means of a contract with Kaiser Engineers and with Kaiser Aluminum & Chemical Corporation as a subcontractor, has sponsored a technological and an economic evaluation of six candidate processes for the manufacture of alumina from certain U. S. raw materials other than bauxite. This paper describes each process. Flow diagrams and the total energy requirement for each process are included. Important characteristics affecting the economics of producing alumina by each process are discussed, and some presently unsolved technical problems are identified. The extraction of alumina from clay via hydrochloric acid with iron separation by solvent extraction, and the crystallization of intermediate AlCl3·6H2O through the introduction of HCl gas into the pregnant mother liquor, appears to be technically feasible and the most attractive of the six raw material/process combinations.

  12. Alumina Extraction from a Pennsylvania Diaspore Clay by an Ammonium Sulfate Process

    Science.gov (United States)

    Fetterman, J. W.; Sun, Shou-Chuan

    A method is proposed for the extraction of alumina from the minerals diaspore, kaolinite and boehmite, the major alumina usinerais in Pennsylvania diaspore clay. The conditions required for optimum alumina extraction and minimum ammonium sulfate loss as determined for the alumina minerals are applied to a naturally occurring diaspore clay. The proposed flowsheet thus obtained is examined in its parts and such variables as particle size, ammonium sulfate to alumina mole ratio, roasting temperature, roasting time, heating rate, leaching cohditions, and purification methods are discussed.

  13. The influence of the processing and the alumina synthesized in laboratory on the polypropylene (PP) properties; Influencia do processamento e da alumina sintetizada em laboratorio nas propriedades do polipropileno

    Energy Technology Data Exchange (ETDEWEB)

    Alves, A.M.; Cavalcanti, S.N.; Arimateia, R.R.; Agrawal, P.; Freitas, N.L. de; Melo, T.J.A., E-mail: amanda.polanski@gmail.com [Universidade Federal de Campina Grande (PPG/CEMat/UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2016-07-01

    This work aimed to evaluate the influence of the processing and the alumina synthesized in laboratory alumina on the polypropylene (PP) properties. The injected PP (PPi), the extruded and injected PP (PPei) and the composite (PP / Al-5pcr), were characterized. The XRD results showed that alumina has a crystalline structure of the corundum type and that it did not alter the crystalline structure of the PP, but it reduced the degree of crystallinity, whereas the processing made the PP more crystalline. The thermal transitions, Tm and Tc of the PP were practically unchanged by processing and alumina. In the mechanical properties, the impact strength was altered by the processing. For the composite, there was increase of the elastic modulus and reduction in tensile and impact strength. In the flammability test, the processing accelerated the burning process and the alumina slowed when compared to the PP. In the rheological analysis all the systems presented pseudoplastic behavior. The viscosity of the PP was reduced with the processing and the presence of the alumina, characterizing degradation. (author)

  14. [Salinization-alkalization of Leymus chinensis grassland in Songnen Plain of Northeast China].

    Science.gov (United States)

    Zhou, Dao-Wei; Li, Qiang; Song, Yan-Tao; Wang, Xue-Zhi

    2011-06-01

    Field survey and site study were conducted to approach the process and causes of salinization-alkalization of Leymus chinensis grassland in Songnen Plain, and to examine the hypothesis of soil disturbance-bareness. In the grassland, surface soil (0-30 cm) had a lower salt content, while deeper soil (> 30 cm) was in adverse. Thereby, the grassland was defined as soil-salted grassland. There was an increasing salt content in surface soil. This process was called as soil salinization-alkalization, and the grassland under the salinization:alkalization was named as alkali-salinized grassland. The leading reason for the surface soil salinization-alkalization was that the surface soil originally with low salt content was disturbed and lost away, subsurface soil rich in salt emerged as new surface soil, and the salt in deeper soil layers accumulated in the new surface soil and other soil layers. Secondary halophyte communities formed on the surface-soil-disturbed new bare land, but the communities had no succession sequence. The degradation process of the grassland was soil degradation first, followed by vegetation degradation, halophyte invasion, and successive evolution from nearly primitive condition.

  15. Processing, structure, and mechanical properties of alumina-nanofilled polystyrene composites

    Science.gov (United States)

    Siengchin, S.

    2010-11-01

    Binary composites composed of polystyrene (PS) and a synthetic boehmite alumina were produced by using the water-mediated melt compounding (WMC) and direct melt compounding (DMC) techniques. The alumina particles were dispersed in water at ambient temperature. The aqueous alumina suspension was injected into molten PS in a twin-screw extruder to prepare reinforced polymer composites. The dispersion of the alumina was studied by transmission and scanning electron microcopy techniques (TEM and SEM, respectively). The mechanical and thermomechanical properties of the composites were determined by employing a dynamic-mechanical thermal analysis (DMTA) and short-time creep and uniaxial static tensile tests. It was found that the direct melt compounding of the alumina with PS resulted in microcomposites, whereas the water-mediated melt compounding technique gave rise to nanocomposites. The incorporation of alumina into the PS nanocomposites increased their stiffness, tensile strength, and creep resistance. However, the elongation of the PS nanocomposites at break was smaller than that of the PS microcomposites.

  16. Influence of the anodizing process variables on the acidic properties of anodic alumina films

    Directory of Open Access Journals (Sweden)

    D.E. Boldrini

    Full Text Available Abstract In the present work, the effect of the different variables involved in the process of aluminum anodizing on the total surface acidity of the samples obtained was studied. Aluminum foils were treated by the electro-chemical process of anodic anodizing within the following variable ranges: concentration = 1.5-2.5 M; temperature = 303-323 K; voltage = 10-20 V; time = 30-90 min. The total acidity of the samples was characterized by two different methods: acid-base titration using Hammett indicators and potentiometric titration. The results showed that anodizing time, temperature and concentration were the main variables that determined the surface acid properties of the samples, and to a lesser extent voltage. Acidity increased with increasing concentration of the electrolytic bath, whereas the rest of the variables had the opposite effect. The results obtained provide a novel tool for variable selection in order to use synthetized materials as catalytic supports, adding to previous research based on the morphology of alumina layers.

  17. Effect of Solution Treatment Process on Hardness of Alumina Reinforced Al-9Zn Composite Produced by Squeeze Casting

    Directory of Open Access Journals (Sweden)

    Dwi Rahmalina

    2014-10-01

    Full Text Available Characteristics of aluminium matrix composites reinforced by alumina have been developed to improve mechanical properties. One of the determining factors in the development of this material is parameter of solution treatment process. This study discusses the performance of the composite matrix of Al-9Zn-6Mg-3Si reinforced by alumina powder of 5 % volume fraction. Composite are manufactured by squeeze casting process with the pressure of 20 Ton in the metal mould. To improve mechanical properties, the precipitation hardening process is conducted through variation of temperature of solution treatment of 450, 475 and 500 °C and holding time of solution treatment of 30, 60 and 90 minutes. Materials are characterized by hardness testing and microstructure observation. The results showed that the optimum condition of hardness was produced by solution treatment temperature of 500 °C and 90 minutes holding time of 86 HRB.

  18. Urine alkalization facilitates uric acid excretion

    Directory of Open Access Journals (Sweden)

    Seyama Issei

    2010-10-01

    Full Text Available Abstract Background Increase in the incidence of hyperuricemia associated with gout as well as hypertension, renal diseases and cardiovascular diseases has been a public health concern. We examined the possibility of facilitated excretion of uric acid by change in urine pH by managing food materials. Methods Within the framework of the Japanese government's health promotion program, we made recipes which consist of protein-rich and less vegetable-fruit food materials for H+-load (acid diet and others composed of less protein but vegetable-fruit rich food materials (alkali diet. Healthy female students were enrolled in this consecutive 5-day study for each test. From whole-day collected urine, total volume, pH, organic acid, creatinine, uric acid and all cations (Na+,K+,Ca2+,Mg2+,NH4+ and anions (Cl-,SO42-,PO4- necessary for the estimation of acid-base balance were measured. Results Urine pH reached a steady state 3 days after switching from ordinary daily diets to specified regimens. The amount of acid generated ([SO42-] +organic acid-gut alkai were linearly related with those of the excretion of acid (titratable acidity+ [NH4+] - [HCO3-], indicating that H+ in urine is generated by the metabolic degradation of food materials. Uric acid and excreted urine pH retained a linear relationship, where uric acid excretion increased from 302 mg/day at pH 5.9 to 413 mg/day at pH 6.5, despite the fact that the alkali diet contained a smaller purine load than the acid diet. Conclusion We conclude that alkalization of urine by eating nutritionally well-designed food is effective for removing uric acid from the body.

  19. Urine alkalization facilitates uric acid excretion

    Science.gov (United States)

    2010-01-01

    Background Increase in the incidence of hyperuricemia associated with gout as well as hypertension, renal diseases and cardiovascular diseases has been a public health concern. We examined the possibility of facilitated excretion of uric acid by change in urine pH by managing food materials. Methods Within the framework of the Japanese government's health promotion program, we made recipes which consist of protein-rich and less vegetable-fruit food materials for H+-load (acid diet) and others composed of less protein but vegetable-fruit rich food materials (alkali diet). Healthy female students were enrolled in this consecutive 5-day study for each test. From whole-day collected urine, total volume, pH, organic acid, creatinine, uric acid and all cations (Na+,K+,Ca2+,Mg2+,NH4+) and anions (Cl-,SO42-,PO4-) necessary for the estimation of acid-base balance were measured. Results Urine pH reached a steady state 3 days after switching from ordinary daily diets to specified regimens. The amount of acid generated ([SO42-] +organic acid-gut alkai) were linearly related with those of the excretion of acid (titratable acidity+ [NH4+] - [HCO3-]), indicating that H+ in urine is generated by the metabolic degradation of food materials. Uric acid and excreted urine pH retained a linear relationship, where uric acid excretion increased from 302 mg/day at pH 5.9 to 413 mg/day at pH 6.5, despite the fact that the alkali diet contained a smaller purine load than the acid diet. Conclusion We conclude that alkalization of urine by eating nutritionally well-designed food is effective for removing uric acid from the body. PMID:20955624

  20. Properties and electronic structures of titanium aluminides-alumina composites from in-situ SHS process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: dinahyfsh@hotmail.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530000 (China); Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004 (China); Zou, Z.G., E-mail: zouzg@glite.edu.cn [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004 (China); Xiao, Z.G.; Liu, K.; Long, F.; Wu, Y. [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004 (China)

    2011-02-25

    Research highlights: {yields} In-situ SHS processing method plus vacuum hot-pressing process were applied. {yields} Mechanical and electronic properties and microscopic structures were studied. {yields} First principle pseudopotential plane-wave-based DFT calculations were performed. - Abstract: Titanium aluminides-alumina composite was synthesized by in-situ self-propagating high-temperature synthesis (SHS) method, followed by hot-pressing process. To understand the fundamental differences between the composite and A1{sub 2}O{sub 3} ceramic, a comparative study was carried out using first-principles plane-wave pseudopotential method based on density functional theory (DFT). XRD analysis of final products confirmed the formation of TiAl, A1{sub 2}O{sub 3} and a small amount of Ti{sub 3}Al phases in the composites and the reaction mechanisms of the process were proposed. SEM observation revealed that a two-phase ({gamma} + {alpha}{sub 2}) TiAl-Ti{sub 3}Al lamellar structure was formed, and the composites exhibited a homogeneous microstructure. Moreover, density of states (DOS), band structure, charge density difference and Mulliken population analysis showed that metallic, covalent and ionic bonding were produced at the interfaces of the composite. O-Al interface bonds showed more covalent character with respect to pure Al{sub 2}O{sub 3}. Therefore, interface combination of the composite was improved, making the composite tougher (a toughness as high as 7.9 MPa m{sup 1/2}) than monophase Al{sub 2}O{sub 3} ceramic.

  1. Reuse of activated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Hobensack, J.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  2. Coating of diamond-like carbon nanofilm on alumina by microwave plasma enhanced chemical vapor deposition process.

    Science.gov (United States)

    Rattanasatien, Chotiwan; Tonanon, Nattaporn; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat

    2012-01-01

    Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.

  3. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  4. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  5. Selected references on alkalic igneous rocks of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.R. (comp.)

    1976-01-01

    A compilation of references is presented providing background information on rock and mineral associations, geochemistry, geophysics, structural relationships, and geochronology of sialic, feldspathoidal, and some mafic alkalic igneous rock exposures in the US. Their locations and major characteristics are cited. No implication regarding U potential in these areas is intended. The first part of the bibliography provides general references to overall features of alkaline igneous rocks by region. The second part is a compilation of references on alkalic igneous rocks by state or groups of states. The third part provides information on rock type, age, and location for most of the references cited in part two. (JSR)

  6. Directions and prospects of using low grade process fuel to produce alumina

    Directory of Open Access Journals (Sweden)

    О. А. Дубовиков

    2016-08-01

    Full Text Available Power consumption across the globe is constantly increasing for a variety of reasons: growing population, industrialization and fast economic growth. The most widespread gaseous fuel – natural gas – has the low production cost. It is 2-3 times cheaper than liquid fuel production and 6-12 times cheaper than coal production. When natural gas is transported to distances from 1.5 to 2.5 thousand km by the pipeline, its cost with account of transportation is 1.5-2 times less than the cost of coal and the fuel storage facilities are not needed. Plants powered by natural gas have the higher efficiency as compared to the plants operating on other types of fuel. They are easier and cheaper to maintain and are relatively simple in automation, thus enhancing safety and improving the production process flow, do not require complicated fuel feeding or ash handling systems. Gas is combusted with a minimum amount of polluting emissions, which adds to better sanitary conditions and environment protection. But due to depletion of major energy resources many experts see the future of the global energy industry in opportunities associated with the use of solid energy carriers. From the environmental perspective solid fuel gasification is a preferred technology. The use of synthetic gas was first offered and then put to mass scale by English mechanical engineer William Murdoch. He discovered a possibility to use gas for illumination by destructive distillation of bituminous coal. After invention of the gas burner by Robert Bunsen, the illumination gas began to be used as a household fuel. The invention of an industrial gas generator by Siemens brothers made it possible to produce a cheaper generator gas which became a fuel for industrial furnaces. As the calorific value of generator gas produced through gasification is relatively low compared to natural gas, the Mining University studied possibilities to use different types of low grade process fuel at the

  7. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  8. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process.

    Science.gov (United States)

    Zhang, Ran; Zheng, Shili; Ma, Shuhua; Zhang, Yi

    2011-05-30

    Bayer red mud (RM) is an alumina refinery waste product rich in aluminum oxides and alkalis which are present primarily in the form of sodium hydro-aluminosilicate desilication product (DSP). A hydrothermal process was employed to recover alumina and alkali from "Fe-rich" and "Fe-lean" RM, the two representative species of RM produced in China. The hydrothermal process objective phase is andradite-grossular hydrogarnet characterized by the isomorphic substitution of Al and Fe. Batch experiments were used to evaluate the main factors influencing the recovery process, namely reaction temperature, caustic ratio (molar ratio of Na(2)O to Al(2)O(3) in sodium solution), sodium concentration and residence time. The results revealed that the Na(2)O content of 0.5 wt% and A/S of 0.3 (mass ratio of Al(2)O(3) to SiO(2)) in leached residue could be achieved with Fe-rich RM under optimal conditions. However, the hydrothermal treatment of Fe-lean RM proved less successful unless the reaction system was enriched with iron. Subsequent experiments examined the effects of the ferric compound's content and type on the substitution ratio. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Stress-strain effects in alumina-Cu reinforced Nb3Sn wires fabricated by the tube process

    International Nuclear Information System (INIS)

    Murase, Satoru; Nakayama, Shigeo; Masegi, Tamaki; Koyanagi, Kei; Nomura, Shunji; Shiga, Noriyuki; Kobayashi, Norio; Watanabe, Kazuo.

    1997-01-01

    In order to fabricate a large-bore, high-field magnet which achieves a low coil weight and volume, a high strength compound superconducting wire is required. For those demands we have developed the reinforced Nb 3 Sn wire using alumina dispersion strengthened copper (alumina-Cu) as a reinforcement material and the tube process of the Nb 3 Sn wire fabrication. The ductility study of the composites which consisted of the reinforcement, Nb tube, Cu, and Cu clad Sn brought a 1 km long alumina-Cu reinforced Nb 3 Sn wire successfully. Using fabricated wires measurements and evaluations of critical current density as parameters of magnetic field, tensile stress, tensile strain, and transverse compressive stress, and those of stress-strain curves at 4.2 K were performed. They showed superior performance such as high 0.3% proof stress (240 MPa at 0.3% strain) and high maximum tolerance stress (320 MPa) which were two times as large as those of conventional Cu matrix Nb 3 Sn wire. The strain sensitivity parameters were obtained for the reinforced Nb 3 Sn wire and the Cu matrix one using the scaling law. Residual stress of the component materials caused by cooling down to 4.2 K from heat-treatment temperature was calculated using equivalent Young's modulus, equivalent yield strength, thermal expansion coefficient and other mechanical parameters. Calculated stress-strain curves at 4.2 K for the reinforced Nb 3 Sn wire and the Cu matrix one based on calculation of residual stress, had good agreement with the experimental values. (author)

  10. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  11. THE ALUMINA-SILICATES IN STABILIZATION PROCESSES IN FLUIDIZED-BED ASH

    Directory of Open Access Journals (Sweden)

    IVANA PERNA

    2011-03-01

    Full Text Available Presented study of coal fluidized-bed ash solidification was accompanied with specific studies of alumino-silicates residues in ashes. The specific technology of fluid coal burning and its relatively low temperature combustion combines coal burning and decomposition of calcium carbonate added to the fluid layer in the main endeavor to capture all sulfur oxides. The burning temperature seems be decisive to the behavior of clayed residues and calcium carbonate decomposition in connection for the future solidification of fluidized bed ash. The calcareous substances in combination with alumino-silicate residues form solid bodies where silicates play decisive role of long-term stability and insolubility of obtained solids. The position of aluminum ions in clayed residues of burned coal were studied by MAS-NMR with attention on aluminum ion coordination to oxygen and formation of roentgen amorphous phase of poly-condensed calcium alumina-silicate.

  12. Bauxite Mining and Alumina Refining

    Science.gov (United States)

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  13. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications; Sintese e processamento de compositos a base de alumina e zirconia com infiltracao de fase vitrea para aplicacoes odontologicas

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Daniel Gomes

    2009-07-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning

  14. Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina.

    Science.gov (United States)

    Naik, Y P; Gupta, N K; Pillai, K T; Rao, G A Rama; Venugopal, V

    2012-01-06

    The stationary phase of alumina adsorbents, prepared by different chemical processes, was used to study the separation behaviour of hydrogen isotopes. Three types of alumina, obtained by conventional hydroxide route alumina coated with silicon oxide and alumina prepared by internal gelation process (IGP), were used as packing material to study the separation of HT and T(2) in a mixture at various temperatures. The conventional alumina and silicon oxide coated alumina resolved HT and T(2) at 77K temperature with different retention times. The retention times on SiO(2) coated columns were found to be higher than those of other adsorbents. However, the column filled with IGP alumina was found to be ideal for the separation of HT and T(2) at 240 K. The peaks were well resolved in less than 5 min on this column. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, Franklin J., E-mail: fmendez@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Rivero-Prince, Sayidh [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Facultad de Ingeniería, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Escalante, Yelisbeth; Villasana, Yanet [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquín L., E-mail: joabrito@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado Postal 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2016-03-01

    Al{sub 2}O{sub 3}–Al sponges were manufactured by sintering and dissolution process with the aim of using these materials as structured catalytic reactors. For this purpose, several synthesis conditions were examined for the design of the cellular material, such as: particle size of NaCl, weight fraction of Al, compaction pressure, and sintering temperature or time. An alumina layers was grown on top of the aluminum surfaces during both: sintering and thermal treatment. The obtained results showed that the synthesized materials could be promising as structured reactors for endothermic or exothermic reactions. - Highlights: • An efficient method for manufactured of aluminum sponges is reported. • Methods for productions of superficial Al{sub 2}O{sub 3} are studied. • Al{sub 2}O{sub 3}–Al sponges could be used as structured reactors.

  16. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    International Nuclear Information System (INIS)

    Rahimi, M.H.; Saramad, S.; Tabaian, S.H.; Marashi, S.P.; Zolfaghari, A.; Mohammadalinezhad, M.

    2009-01-01

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 deg. C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  17. Glass-ceramic waste forms for immobilization of the fluorinel-sodium, alumina, and zirconia calcines stored at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Vinjamuri, K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-12-31

    Glass-ceramics appear to be very good candidate waste forms for immobilization of the calcined high level solid wastes, fluorinel-sodium (Fl/Na), alumina and zirconia that are stored at the Idaho Chemical Processing Plant (ICPP). Candidate experimental glass-ceramics were synthesized at ICPP by hot isostatically pressing (HIPing) a mixture of precompacted pilot plant calcine and additives. The glass-ceramic waste forms for immobilization of the Fl/Na, alumina, and zirconia calcines consist of 70 wt% Fl/Na calcine, 23.9 wt% SiO{sub 2}, 5 wt% Ti, 1.1 wt% B{sub 2}O{sub 3}; 70 wt% alumina calcine, 30 wt% SiO{sub 2}; and 70 wt% zirconia calcine, 20.25 wt% SiO{sub 2}, 5 wt% Ti, 2.25 wt% Na{sub 2}O, 1.75 wt% B{sub 2}O{sub 3}, 0.75 wt% Li{sub 2}O, respectively. The characteristics of the waste forms including density, chemical durability, glass and crystalline phases, and the microstructure are investigated. The 14-day MCC-1 total mass loss rates and the normalized elemental leach rates for aluminum, boron, calcium, cadmium, chromium, cesium, potassium, silicon, sodium, strontium, titanium, and zirconium are all less than 1 g/m{sup 2}-day. The crystalline phases for the Fl/Na and zirconia waste forms include zirconia, zircon, calcium fluoride, and titanates. In addition, cadmium sulphide in Fl/Na, and cadmium metal in zirconia waste form were also identified. The crystalline phases for the alumina waste form are alpha, gamma, and delta alumina, cristobalite, albite, and mullite. Glass phase separation was not observed in alumina and zirconia waste forms. The observed glass phase separation in Fl/Na waste form appears to be chemically durable.

  18. Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing.

    Science.gov (United States)

    Aghajani Derazkola, Hamed; Simchi, Abdolreza

    2018-03-01

    In this study, alumina-reinforced poly(methyl methacrylate) nanocomposites (PMMA/Al 2 O 3 ) containing up to 20vol% nanoparticles with an average diameter of 50nm were prepared by friction stir processing. The effects of nanoparticle volume fraction on the microstructural features and mechanical properties of PMMA were studied. It is shown that by using a frustum pin tool and employing an appropriate processing condition, i.e. a rotational speed of 1600rpm/min and transverse velocity of 120mm/min, defect free nanocomposites at microscale with fine distribution of the nanoparticles can successfully been prepared. Mechanical evaluations including tensile, flexural, hardness and impact tests indicate that the strength and toughness of the material gradually increases with the nanoparticle concentration and reach to a flexural strength of 129MPa, hardness of 101 Shore D, and impact energy 2kJ/m 2 for the nanocomposite containing 20vol% alumina. These values are about 10% and 20% better than untreated and FSP-treated PMMA (without alumina addition). Fractographic studies indicate typical brittle features with crack deflection around the nanoparticles. More interestingly, the sliding wear rate in a pin-on-disk configuration and the friction coefficient are reduced up to 50% by addition of alumina nanoparticles. The worn surfaces exhibit typical sliding and ploughing features. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Control of porosity in alumina for catalytic purposes - a review; Controle de porosidade em aluminas para fins cataliticos - uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Moure, Gustavo Torres [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Hidrorrefino, Lubrificantes e Parafinas; Morgado Junior, Edisson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Craqueamento Catalitico; Figueiredo, Cecilia Maria C.

    1999-12-01

    In recent years, the Alumina Group, of the Catalysts Division of CENPES, has dedicated research to develop and characterize alumina for the catalytic processes of interest to PETROBRAS. Control of the texture of the alumina and, consequently, the alumina based catalysts, is crucially important to their adequacy and performance. Knowledge of the porosity formation mechanisms in alumina was fundamental for the development of catalysts to satisfy the demand from PETROBRAS. This comprises the scope of this review. (author)

  20. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  1. Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite

    Directory of Open Access Journals (Sweden)

    Gangadharudu Talla

    2015-09-01

    Full Text Available Low material removal rate (MRR and high surface roughness values hinder large-scale application of electro discharge machining (EDM in the fields like automobile, aerospace and medical industry. In recent years, however, EDM has gained more significance in these industries as the usage of difficult-to-machine materials including metal matrix composites (MMCs increased. In the present work, an attempt has been made to fabricate and machine aluminum/alumina MMC using EDM by adding aluminum powder in kerosene dielectric. Results showed an increase in MRR and decrease in surface roughness (Ra compared to those for conventional EDM. Semi empirical models for MRR and Ra based on machining parameters and important thermo physical properties were established using a hybrid approach of dimensional and regression analysis. A multi response optimization was also performed using principal component analysis-based grey technique (Grey-PCA to determine optimum settings of process parameters for maximum MRR and minimum Ra within the experimental range. The recommended setting of process parameters for the proposed process has been found to be powder concentration (Cp = 4 g/l, peak current (Ip = 3 A, pulse on time (Ton = 150 μs and duty cycle (Tau = 85%.

  2. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding.

    Directory of Open Access Journals (Sweden)

    Cung Hoa Thien Quach

    Full Text Available To fully understand the glycolytic behavior of cancer cells, it is important to recognize how it is linked to pH dynamics. Here, we evaluated the acute effects of mild acidification and alkalization on cancer cell glucose uptake and glycolytic flux and investigated the role of hexokinase (HK. Cancer cells exposed to buffers with graded pH were measured for 18F-fluorodeoxyglucose (FDG uptake, lactate production and HK activity. Subcellular localization of HK protein was assessed by western blots and confocal microscopy. The interior of T47D breast cancer cells was mildly alkalized to pH 7.5 by a buffer pH of 7.8, and this was accompanied by rapid increases of FDG uptake and lactate extrusion. This shift toward glycolytic flux led to the prompt recovery of a reversed pH gradient. In contrast, mild acidification rapidly reduced cellular FDG uptake and lactate production. Mild acidification decreased and mild alkalization increased mitochondrial HK translocation and enzyme activity. Cells transfected with specific siRNA against HK-1, HK-2 and voltage-dependent anion channel (VDAC1 displayed significant attenuation of pH-induced changes in FDG uptake. Confocal microscopy showed increased co-localization of HK-1 and HK-2 with VDAC1 by alkaline treatment. In isolated mitochondria, acidic pH increased and alkaline pH decreased release of free HK-1 and HK-2 from the mitochondrial pellet into the supernatant. Furthermore, experiments using purified proteins showed that alkaline pH promoted co-immunoprecipitation of HK with VDAC protein. These findings demonstrate that mild alkalization is sufficient to acutely trigger cancer cell glycolytic flux through enhanced activity of HK by promoting its mitochondrial translocation and VDAC binding. This process might serve as a mechanism through which cancer cells trigger the Warburg effect to maintain a dysregulated pH.

  3. Synthesis of biodiesel from sunflower oil over potassium loaded alumina as heterogeneous catalyst: The effect of process parameters

    Directory of Open Access Journals (Sweden)

    Marinkovic Milos M.

    2016-01-01

    Full Text Available Heterogeneous catalysis is in recent focus of research for biodiesel production from vegetable oils because of advantages such as easy separation and reuse of catalysts, although homogeneous catalysis is most commonly used method. The aim of this study was preparation of γ-Al2O3 support by modified sol-gel procedure, synthesis of the KI/Al2O3 catalyst and testing its activity in the transesterification of sunflower oil with methanol. Influences of different process parameters on conversion of sunflower oil to methyl esters were examined. The gained results implicate that the potassium iodide incorporation into/onto the structure of γ-Al2O3 significantly influences textural and structural properties of the catalyst. Additionally, the catalyst basic strength is increased and all together those properties are positively affecting the activity of the catalyst in the reaction of transesterification of sunflower oil with methanol. The impregnation of alumina with potassium iodide resulted in the additional formation of basic catalytically active sites. The surface properties of the catalyst have an essential impact on its catalytic performance. Under relatively mild process conditions and relatively short reaction time, the usage of the KI/Al2O3 catalyst resulted in very high conversion to fatty acids methyl esters (i.e. 99.99 %. [Projekat Ministarstva nauke Republike Srbije, br. 172061 i br. TR 34008

  4. Noble gas systematics of submarine alkalic lavas near the Hawaiian hotspot

    NARCIS (Netherlands)

    Hanyu, T.; Clague, D.A.; Kaneoka, I.; Dunai, T.J.; Davies, G.R.

    2005-01-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism and hence understand the details of mantle upwelling beneath Hawaii. Samples were collected by dredging or using submersibles from

  5. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    International Nuclear Information System (INIS)

    Ito, Junji; Hanaki, Yasunari; Shen, Qing; Toyoda, Taro

    2012-01-01

    Highlights: ► We determined the decay time of photoexcited electrons of Pt/Al 2 O 3 . ► Faster decay of excited electrons in Pt/Al 2 O 3 leads to its faster oxidation rate. ► Decreasing excited electron lifetime in Pt/Al 2 O 3 may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al 2 O 3 ) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al 2 O 3 and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al 2 O 3 and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO 2 with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt + becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt + returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  6. The application of thermal solar energy to high temperature processes: case study of the synthesis of alumina from boehmite.

    Science.gov (United States)

    Padilla, Isabel; López-Delgado, Aurora; López-Andrés, Sol; Álvarez, Marta; Galindo, Roberto; Vazquez-Vaamonde, Alfonso J

    2014-01-01

    The aim of this paper is to evaluate the feasibility of obtaining alumina from boehmite using a free, clean, and unlimited power source as the solar energy. Boehmite was obtained by hydrothermal treatment of a hazardous waste coming from aluminum slag milling. The waste is considered as a hazardous substance because of it releasing toxic gases (hydrogen, ammonia, methane, and hydrogen sulfide) in the presence of water. The as-obtained boehmite was transformed into alumina, in air atmosphere, using a solar energy concentrator (Fresnel lens). The solar installation provides a power density of 260 W · cm(-2) which allows reaching temperatures upper than 1000 °C at few minutes of exposure. Tests were performed at different periods of time that ranged between 5 and 90 min. The percentage of transformation of boehmite into alumina was followed by the water content of samples after solar radiation exposure. Samples were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetry. Metastable aluminas started to appear at 5 min and the crystalline and stable phase corundum at 10 min of solar radiation exposure.

  7. The Application of Thermal Solar Energy to High Temperature Processes: Case Study of the Synthesis of Alumina from Boehmite

    Directory of Open Access Journals (Sweden)

    Isabel Padilla

    2014-01-01

    Full Text Available The aim of this paper is to evaluate the feasibility of obtaining alumina from boehmite using a free, clean, and unlimited power source as the solar energy. Boehmite was obtained by hydrothermal treatment of a hazardous waste coming from aluminum slag milling. The waste is considered as a hazardous substance because of it releasing toxic gases (hydrogen, ammonia, methane, and hydrogen sulfide in the presence of water. The as-obtained boehmite was transformed into alumina, in air atmosphere, using a solar energy concentrator (Fresnel lens. The solar installation provides a power density of 260 W·cm−2 which allows reaching temperatures upper than 1000°C at few minutes of exposure. Tests were performed at different periods of time that ranged between 5 and 90 min. The percentage of transformation of boehmite into alumina was followed by the water content of samples after solar radiation exposure. Samples were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetry. Metastable aluminas started to appear at 5 min and the crystalline and stable phase corundum at 10 min of solar radiation exposure.

  8. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process.

    Science.gov (United States)

    Zhong, Li; Zhang, Yifei; Zhang, Yi

    2009-12-30

    A mild hydro-chemical process to extract Al(2)O(3) in red mud to produce sodium aluminate hydrate was investigated, and the optimum conditions of Al(2)O(3) extraction were verified by experiments as leaching in 45% NaOH solution with CaO-to-red mud mass ratio of 0.25 and liquid-to-solid ratio of 0.9, under 0.8 MPa at 200 degrees C for 3.5h. Subsequent process of extracting Na(2)O from the residue of Al(2)O(3) extraction was carried out in 7% NaOH solution with liquid-to-solid ratio of 3.8 under 0.9 MPa at 170 degrees C for 2h. Overall, 87.8% of Al(2)O(3) and 96.4% of Na(2)O were extracted from red mud. The final residues with less than 1% Na(2)O could be utilized as feedstock in construction materials. The chemical reactions taking place in both Al(2)O(3) and Na(2)O extractions from red mud are proposed.

  9. Alkalizing reactions streamline cellular metabolism in acidogenic microorganisms.

    Directory of Open Access Journals (Sweden)

    Stefania Arioli

    Full Text Available An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms.

  10. Alkalizer Administration Improves Renal Function in Hyperuricemia Associated with Obesity

    Directory of Open Access Journals (Sweden)

    Jun Saito

    2013-01-01

    Full Text Available We evaluated the combination effect of the alkalizer citrate with the xanthine oxidase inhibitor allopurinol on renal function and uric acid in patients with hyperuricemia associated with obesity and/or metabolic syndrome (MetS, who were extracted from among the subjects enrolled in a prospective randomized controlled study aimed at assessing the efficacy of such a combination for improving renal function. We also conducted a post hoc analysis to examine influences on lipid profiles. Patients who consented to participate in the study were randomly allocated to receive either allopurinol alone (monotherapy or in combination with a citrate preparation (combination therapy. The analysis population consisted of 31 obese patients with a body mass index greater than 25 kg/m 2 (monotherapy, 15 patients; combination therapy, 16 patients. The creatinine clearance rate (Ccr, serum uric acid levels, and lipid profiles were measured before and at 12 weeks after the start of treatment. In the combination therapy group, Ccr increased significantly and serum uric acid levels decreased significantly in obese patients, while Ccr tended to increase and serum uric acid levels decreased, though not significantly, in patients with MetS-related clinical parameters. Overall, blood triglyceride levels tended to improve in the combination therapy group as compared with the monotherapy group.

  11. Produção e caracterização de espumas de alumina pelo processo gelcasting sem controle atmosférico Production and characterization of alumina foams by the gelcasting process without atmospheric contro

    Directory of Open Access Journals (Sweden)

    E. de Sousa

    2009-06-01

    Full Text Available O processo de gelcasting, associado à aeração de suspensões cerâmicas, permite a produção de espumas cerâmicas com uma ampla faixa de porosidade (50-90vol.%. Uma das etapas críticas do processo é o enrijecimento da espuma, o qual se baseia na gelificação por meio da polimerização in situ de monômeros previamente adicionados à suspensão cerâmica. Sabidamente, tal reação é inibida pela presença de oxigênio, o que tornou usual o controle atmosférico durante a produção e gelificação da espuma. Neste trabalho, estudou-se a viabilidade de produzir espumas de alumina pelo processo de gelcasting sem controle atmosférico. Para a produção das espumas, dois diferentes agentes espumantes foram testados. As propriedades físicas e mecânicas das espumas cerâmicas, bem como a microestrutura, foram avaliadas e comparadas com resultados obtidos em condições idênticas, porém com controle atmosférico. Os resultados mostraram que ambos os processos proporcionam características semelhantes e com potencial de aplicação tecnológica.The gelcasting process with the aeration of ceramic suspensions allows the production of ceramic foams with a wide range of porosity (50-90vol.%.. One of the critical steps of the process is the setting of the foam, which is based on a gelling reaction by the in-situ polymerization of monomers previously added in the ceramic suspension. This reaction is inhibited by the presence of oxygen, which requires atmospheric control for the stabilization of the foam. In this work, the feasibility of producing alumina foams by the gelcasting process without atmospheric control was studied. For the foams production, two different foaming agents were tested. The physical and mechanical properties of ceramic foams, as well the microstructure, were evaluated and compared with those produced with the same foaming agents but with atmospheric control. The results obtained using the two procedures were similar and

  12. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    Science.gov (United States)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  13. Effects of processing conditions and ambient environment on the microstructure and fracture strength of copper/niobium/copper interlayer joints for alumina

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Robert Alan [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Partial transient liquid phase (PTLP) bonding is a technique which can be used to join ceramics with metals and is used to form niobium-based joints for alumina. The principal advantage to PTLP bonding is that it enables refractory joints to be fabricated at temperatures below those typically required by solid state diffusion bonding. A thorough review of the important parameters (chemical compatibility, thermal expansion match, sufficient wettability of the liquid phase on the solid phases) in choosing a joining material for ceramics by the PTLP method is provided. As in conventional PTLP joining, the current study uses thin (=3 μm) copper layers sandwiched between the alumina (bulk) and niobium (127 μm). However, unlike the case of copper/nickel/copper obium is limited. Consequently, the copper is not entirely dissolved in the process, resulting in a two phase (copper-rich and niobium-rich phases) microstructure. Different processing conditions (temperature and applied load) result in different morphologies of the copper-rich and niobium-rich phases at the interface. These different microstructures exhibit distinct strength characteristics. Extended annealing of as-processed joints can influence the strengths differently depending on the ambient partial oxygen pressure at the annealing temperature. The focus of this work is to correlate processing conditions, microstructure, and resulting joint strength. Under optimum processing conditions (1400°C, 2.2 MPa), joints with strengths in excess of 200 MPa at 1200°C are fabricated.

  14. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses.

    Science.gov (United States)

    De Aza, A H; Chevalier, J; Fantozzi, G; Schehl, M; Torrecillas, R

    2002-02-01

    Mono-phase bio-ceramics (alumina and zirconia) are widely used as femoral heads in total hip replacements (THR) as an alternative to metal devices. Unfortunately, the orthopaedic community reports significant in-vivo failures. Material scientists are already familiar with composites like alumina zirconia. Since both are biocompatible, this could prove to be a new approach to implants. This paper deals with a new generation of alumina-zirconia nano-composites having a high resistance to crack propagation, and as a consequence may offer the option to improve lifetime and reliability of ceramic joint prostheses. The reliability of the above mentioned three bio-ceramics (alumina, zirconia and zirconia toughened alumina) for THR components is analysed based on the study of their slow crack-growth behaviour. The influence of the processing conditions on the microstructure development, of the zirconia toughened alumina composites and the effect of these microstructures, on its mechanical properties, are discussed.

  15. Design of a Fission 99 Mo Recovery Process and Implications toward Mo Adsorption Mechanism on Titania and Alumina Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C.; Youker, Amanda J.; Krahn, Elizabeth O.; Vandegrift, George F.; Chung, Pei-Lun; Wang, Nien-Hwa Linda

    2017-03-01

    Molybdenum-99 is a parent of the most widely used medical isotope technetium-99m. Proliferation concerns have prompted development of alternative Mo production methods utilizing low enriched uranium. Alumina and titania sorbents were evaluated for separation of Mo from concentrated uranyl nitrate solutions. System, mass transfer, and isotherm parameters were determined to enable design of Mo separation processes under a wide range of conditions. A model-based approach was utilized to design representative commercial-scale column processes. The designs and parameters were verified with bench-scale experiments. The results are essential for design of Mo separation processes from irradiated uranium solutions, selection of support material and process optimization. Mo uptake studies show that adsorption decreases with increasing concentration of uranyl nitrate; howeveL, examination of Mo adsorption as a function of nitrate ion concentration shows no dependency, indicating that uranium competes with Mo for adsorption sites. These results are consistent with reports indicating that Mo forms inner-sphere complexes with titania and alumina surface groups.

  16. Dynamic tensile response of alumina-Al composites

    International Nuclear Information System (INIS)

    Atisivan, R.; Bandyopadhyay, A.; Gupta, Y. M.

    2002-01-01

    Plate impact experiments were carried out to examine the high strain-rate tensile response of alumina-aluminum (Al) composites with tailored microstructures. A novel processing technique was used to fabricate interpenetrating phase alumina-aluminum composites with controlled microstructures. Fused deposition modeling (FDM), a commercially available rapid prototyping technique, was used to produce the controlled porosity mullite ceramic preforms. Alumina-Al composites were then processed via reactive metal infiltration of porous mullite ceramics. With this approach, both the micro as well as the macro structures can be designed via computer aided design (CAD) to tailor the properties of the composites. Two sets of dynamic tensile experiments were performed. In the first, the metal content was varied between 23 and 39 wt. percent. In the second, the microstructure was varied while holding the metal content nearly constant. Samples with higher metal content, as expected, displayed better spall resistance. For a given metal content, samples with finer metal diameter showed better spall resistance. Relationship of the microstructural parameters on the dynamic tensile response of the structured composites is discussed here

  17. Enhanced gastric stability of esomeprazole by molecular interaction and modulation of microenvironmental pH with alkalizers in solid dispersion.

    Science.gov (United States)

    Van Nguyen, Hien; Baek, Namhyun; Lee, Beom-Jin

    2017-05-15

    Due to the instability of esomeprazole magnesium dihydrate (EPM), a proton pump inhibitor, in gastric fluid, enteric-coated dosage form is commonly used for therapeutic application. In this study, we prepared new gastric fluid resistant solid dispersions (SDs) containing alkalizers. Then, new mechanistic evidence regarding the effects of pharmaceutical alkalizers on the aqueous stability of EPM in simulated gastric fluid was investigated. The alkalizer-loaded SD were prepared by dissolving or dispersing EPM, hydroxypropyl methylcellulose (HPMC) 6 cps, and an alkalizer, in ethanol 50% (v/v) followed by spray drying. Nine different alkalizers were assessed for in vitro stability in two media, simulated gastric fluid (pH 1.2 buffer) and simulated intestinal fluid (pH 6.8 buffer). The microenvironmental pH (pH M ) was measured to evaluate the effect of the alkalizer on the pH M of SDs. Drug crystallinity and morphology of the SDs were also examined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The interactions among EPM, the polymer, and the alkalizer were elucidated by Fourier transform infrared (FTIR) spectroscopy. The in vivo absorption studies of the optimized alkalizer-containing SD and the enteric-coated reference tablet Nexium ® were then conducted in beagle dogs. Among alkalizers, MgO loaded in SDs proved to be the best alkalizer to stabilize EPM in simulated gastric fluid. pH M values of the alkalizer-containing SDs were significantly higher than that of the SD without alkalizer. The pH M values decreased in the following order: MgO, Na 2 CO 3 , Ca(OH) 2 , and no alkalizer. DSC and PXRD data exhibited a change in the drug crystallinity of the SDs from crystalline to amorphous form. SEM data showed a relatively spherical shape of the MgO-loaded SD compared to the less-defined shape of pure drug. FTIR indicated a strong molecular interaction among EPM, alkalizer and polymer; in particular

  18. Preparation of micro-fibrillated cellulose from sorghum fibre through alkalization and acetylation treatments

    Science.gov (United States)

    Ismojo; Simanulang, P. H.; Zulfia, A.; Chalid, M.

    2017-07-01

    Recently, the pollution due to non-degradable materials including plastics, has led to needs on the development of environmental-friendly material. Owing to its biodegradability nature, sorghum fibres are interesting to be modified with petro-polymer as a composite. These materials are also expected to reduce the impact of environmental pollution. Surface modification of sorghum through chemical treatment was aimed to enhanced crystalline part of micro-fibrillated cellulose, thus increased compatibility to petro-polymer, as mean to improve composite properties. The experiments were conducted by alkalization process (10% NaOH) followed by acetylation with acetic acid glacial and acetic anhydride (CH3CO2)2 with additions of 1 and 2 drops of 25% H2SO4. Fourier transform infra-red (FTIR) spectroscopy, field-emission scanning electron microscope (FE-SEM) and x-ray diffraction (XRD) were used to characterize the treated and untreated fibres. The results of investigation showed that the chemical treatments have effectively produced MFC with the smallest fibre size around 5.5 - 6.5 microns and reduced lignin and hemicellulose where the highest crystalline part up to 80.64% was obtained through acetate acid treatment of 17.4 M, followed acetic anhydride with 1 drop of H2SO4 addition. Based on the current results, it is promising that the synthesized composites can be improved for their compatibilities.

  19. Petrology and age of alkalic lava from the Ratak Chain of the Marshall Islands

    Science.gov (United States)

    Davis, A.S.; Pringle, M.S.; Pickthorn, L.-B.G.; Clague, D.A.; Schwab, W.C.

    1989-01-01

    Volcanic rock dredged from the flanks of four volcanic edifices in the Ratak chain of the Marshall Islands consist of alkalic lava that erupted above sea level or in shallow water. Compositions of recovered samples are predominantly differentiated alkalic basalt and hawaiite but include strongly alkalic melilitite. Whole rock 40Ar/39Ar total fusion and incremental heating ages of 87.3 ?? 0.6 Ma and 82.2 ?? 1.6 Ma determined for samples from Erikub Seamount and Ratak Guyot, respectively, are within the range predicted by plate rotation models but show no age progression consistent with a simple hot spot model. Variations in isotopic and some incompatible element ratios suggest interisland heterogeneity. -from Authors

  20. Method for preparing Pb-.beta."-alumina ceramic

    Science.gov (United States)

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  1. Fabrication of Meso-Porous Gamma-Alumina Films by Sol-Gel and Gel Casting Processes for Making Moisture Sensors

    Directory of Open Access Journals (Sweden)

    Kalyan Kumar Mistry

    2007-04-01

    Full Text Available Meso-porous g-Al2O3 film may be used as a highly sensitive trace moisture sensor. The crack-free alumina film was developed using a combination of sol-gel and tape casting processes, which produce high porosity, high surface area and small pore dimensions in the range of few nano-meter at uniform distribution. Sol-gel processes are well known in nano-technology and nano-material preparation, but it is difficult to make crack-free thick or thin films using this method. Tape cast methods are used for the fabrication of flexible crack-free thick ceramic sheets. Our objective was to develop nano-structured, crack-free, transparent Al2O3 film a few microns thick, has a highly porous and stable crystallographic nature. A metallic paste was printed by screen printing on both side of the film surface for electrodes to form a sensitive element. A silver wire (dia j=0.1mm lead was connected to a grid structure electrode using a silver paste spot for fine joining. Alumina is absorbs moisture molecules into its meso-porous layer and changes its electrical characteristics according to the moisture content, its dielectric constant increase as moisture increase. Moisture molecules can be conceived of as dipoles in random state before the application of an electric field. When the dipole orientation was changed from random to an equilibrium state under the application of external field, a large change in dielectric constant was observed. The number of water molecules absorbed determines the electrical impedance of the capacitor, which in turn is proportional to water vapor pressure.

  2. Bauxite Mining and Alumina Refining

    OpenAIRE

    Donoghue, A. Michael; Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust,...

  3. Kaolin as a Source of Silica and Alumina For Synthesis of Zeolite Y and Amorphous Silica Alumina

    Directory of Open Access Journals (Sweden)

    Sri Rahayu Endang

    2018-01-01

    Full Text Available Kaolin is the clay mineral which containing silica (SiO2 and alumina (Al2O3 in a high percentage, that can be used as a nutrient in the synthesis of zeolites and amorphous silica alumina (ASA. The objective of this research is to convert the Belitung kaolin into silica and alumina as nutrients for the synthesis of zeolites and amorphous silica alumina, which are required in the preparation of the catalysts. Silica and alumina contained in the kaolin were separated by leaching the active kaolin called as metakaolin, using HCL solution, giving a solid phase rich silica and a liquid phase rich alumina. The solid phase rich silica was synthesized to zeolite Y by adding seed of the Y Lynde type, through the hydrothermal process with an alkaline condition. While, the liquid phase rich alumina was converted into an amorphous silica alumina through a co precipitation method. Characterization of zeolite and ASA were done using XRD, surface area and pore analyzer and SEM. The higher of alumina in liquid phase as a result of the rising molar of HCL in the leaching process was observed, but it didn’t work for its rising time. Products of ASA and zeolite Y were obtained by using liquid phase rich alumina and solid phase rich silica, respectively, which resulted through leaching metakaolin in 2.5 M HCl at temperature of 100° C for 2 hours.

  4. Size dependent phase and morphological transformation of alumina nanoparticles

    Science.gov (United States)

    Dommisa, D. B.; Dash, R. K.

    2018-03-01

    The size effect of the alumina nanoparticles on the phase and morphological transition by thermal treatment at various temperatures is investigated by choosing two different sizes alumina nanoparticles. Our experimental results revealed that phase and morphological transformation behavior is significantly different for smaller size alumina nanoparticles than that of larger size. The more stable alpha phase transformation occurs at a higher temperature for smaller size alumina nanoparticles in comparison to that of the larger size alumina nanoparticles. Moreover, the experimental facts also elucidated that the nucleation and growth process at the nanoscale for the phase transition is also size dependent. Our experimental result from the FESEM and TEM analysis also revealed that there is a direct correlation between phase and morphological transition of alumina nanoparticles size which is consistent with the XRD results. Therefore, we believe that our experimental findings can be extended to other complex nanomaterials for understanding the size-dependent phase and morphological transformation at the nanoscale.

  5. The mineralogy of bauxite for producing smelter-grade alumina

    Science.gov (United States)

    Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.

    2001-12-01

    Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.

  6. High-flux MFI-alumina hollow fibres: a membrane-based process for on-board CO2 capture from internal combustion vehicles

    International Nuclear Information System (INIS)

    Nicolas, C.H.

    2011-01-01

    This work focuses on the conception and development of a membrane-based process for an on-board CO 2 capture/storage application. In a first part, we simulate an on-board CO 2 capture unit based on a membrane process for the case study of a heavy vehicle (≥3500 kg). This study includes an energy analysis of the impact of gas separation and compression on the required membrane surface and module volume, as well the autonomy of the storage unit and the energy overconsumption involved in the process. In a second part, we study the influence of the hollow-fibre support quality on the final intergrowth level of nano-composite MFI-alumina membranes. Special attention is devoted to the influence of the isomorphic substitution of silica by boron and germanium, and replacement of the counter-cation (proton) by other elements, on the CO 2 /N 2 separation and permeance properties. Next, a complete chapter has been devoted to the evaluation of the thermodynamic (adsorption) and kinetic (diffusion) parameters in the CO 2 /N 2 separation. Finally, we analyze the influence of standard pollutants (water, NO x , hydrocarbons) on the CO 2 separation properties of the synthesized membranes. (author)

  7. Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis

    Science.gov (United States)

    Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.

    2018-04-01

    Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.

  8. Enhancement of the Mechanical Properties of Alumina Ceramics by a Granulation Process and Y{sub 2}O{sub 3} Additive

    Energy Technology Data Exchange (ETDEWEB)

    Song, In-Gyu; Kim, Jung-Sik [University of Seoul, Seoul (Korea, Republic of)

    2015-04-15

    This study investigated the effect of powder granulation on the mechanical properties of sintered alumina ceramics. 2 wt% MgO was added to enhance the sintering process, and the effect of Y{sub 2}O{sub 3} addition was investigated at various sintering temperatures (1450 ℃, 1550 ℃ and 1650 ℃) with a granulation process. The sintered density, flexural strength and Vicker's hardness were analyzed according to the amount of Y{sub 2}O{sub 3} addition and the sintering temperature. The sintered density and mechanical properties of the sintered specimens with powder granulation was higher than the as-received commercial Al{sub 2}O{sub 3} powders because granule powders uniformly filled the mold. The mechanical properties of strength and hardness for the sintered Al{sub 2}O{sub 3} specimens increased with addition of Y{sub 2}O{sub 3} up to 1 wt%, and then decreased beyond that. The 1 wt% Y{sub 2}O{sub 3}-added Al{sub 2}O{sub 3} samples (sintered at 1650 ℃) had the maximum flexural strength of 363.53 MPa and a Vicker's hardness of 20.1 GPa.

  9. Preparation of alumina-β'

    International Nuclear Information System (INIS)

    Casarini, J.R.; Souza, D.P.F.

    1984-01-01

    Alumina - (β + β') in powder, with composition of 8.85% Na 2 0 + 0.75% Li 2 0 + 90.40% Al 2 O 3 is obtained using the zeta process. The phase transformation β→β' can be seen with powder X-ray diffraction. It was observed that the efficiency of the transformation is related to the processing and purity of the raw material. Impurities as Ca and Si difficult the phase transformation β→β'. (E.G.) [pt

  10. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  11. Characterization of silane coated hollow sphere alumina-reinforced ...

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  12. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kaul, R.; Ganesh, P.; Shiroman, Ram; Tiwari, Pragya; Sridhar, R.; Kukreja, L.M.

    2013-01-01

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  13. Alkalization of irrigated soils suitable for orchard growing in steppe Crimea and prospects for their use

    Science.gov (United States)

    Klimenko, O. E.

    2016-10-01

    Data of large-scale soil surveys performed by the Ukrgiprosad Institute (Ukrainian Institute for Orchard Growing) in 1997-2013 on irrigated soils of steppe Crimea reserved for orchards on the area of about 3000 ha are discussed. It is shown that all the studied soils are subjected to alkalization with the presence of soda and with an increase in concentrations of sodium and magnesium bicarbonates up to the values toxic for fruit crops. The concentrations and occurrence frequencies of alkaline salts depend on the soil type, the presence of solonetzic features, the amount of carbonates, the particular depth in the soil profile, the subsoiling, and other factors. Within the studied area, some soils are unsuitable or partly suitable for orchard growing. To improve the soil conditions for orchard growing in the areas subjected to alkalization, alkaline salts should be neutralized to nontoxic level, and the soil alkalinity should be reduced using chemical reclamation methods.

  14. Role of Alumina Basicity in CO2Uptake in 3-Aminopropylsilyl-Grafted Alumina Adsorbents.

    Science.gov (United States)

    Potter, Matthew E; Cho, Kyeong Min; Lee, Jason J; Jones, Christopher W

    2017-05-22

    Oxide-supported amine materials are widely known to be effective CO 2 sorbents under simulated flue-gas and direct-air-capture conditions. Most work has focused on amine species loaded onto porous silica supports, though potential stability advantages may be offered through the use of porous alumina supports. Unlike silica materials, which are comparably inert, porous alumina materials can be tuned to have substantial acidity and/or basicity. Owing to their amphoteric nature, alumina supports play a more active role in CO 2 sorption than silica supports, potentially directly participating in the adsorption process. In this work, primary amines associated with 3-aminopropyltriethoxysilane are grafted onto two different mesoporous alumina materials having different levels of basicity. Adsorbent materials with different amine loadings are prepared, and the CO 2 -adsorption behavior of similar amines on the two alumina supports is demonstrated to be different. At low amine loadings, the inherent properties of the support surface play a significant role, whereas at high amine loadings, when the alumina surface is effectively blocked, the sorbents prepared on the two supports behave similarly. At high amine loadings, amine-CO 2 -amine interactions are shown to dominate, leading to adsorbed species that appear similar to the species formed over silica-supported amine materials. The sorbent properties are comprehensively characterized using N 2 physisorption analysis, in situ FTIR spectroscopy, and adsorption microcalorimetry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tritium compatibility of alumina and Fosterite

    Energy Technology Data Exchange (ETDEWEB)

    Coffin, D.O.

    1979-09-01

    Many pressure measurements are required to control processing of the fuel gases associated with fusion power reactors. Since most pressure transducers respond to changes in pressure sensitive electrical parameters, insulators will be required to withstand chronic exposures to concentrated tritium. For this investigation samples of alumina and Fosterite were exposed to concentrated tritium gas for 11 weeks. Gas phase impurities were then analyzed for clues that would indicate decomposition of the exposed materials. The only gaseous impurity resulting from these tritium exposures was tritio-methane, which is always produced when tritium is stored in stainless steel containers. There was no evidence that either alumina or Fosterite decomposed in the presence of tritium.

  16. Alumina Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  17. Bauxite and alumina

    Science.gov (United States)

    Bray, E.L.

    2010-01-01

    The article reports on the global market performance of bauxite and alumina in 2009 and presents an outlook for their 2010 performance. There were only several U.S. states that could produce bauxite and bauxitic clays including Georgia, Arkansas, and Alabama. The prices for imported refractory-grade calcined bauxite ranged between 426 U.S. dollars and 554 dollars per ton.

  18. alumina solid electrolyte

    Indian Academy of Sciences (India)

    -β/β -alumina; solid electrolyte; calcium impurity; specific resistance. 1. Introduction. Since its development in the 1980s, the Na/S battery has been one of the most promising candidates for energy storage applications. The Na/S battery functions based on the elec- trochemical reaction between sodium and sulphur to form.

  19. alumina solid electrolyte

    Indian Academy of Sciences (India)

    alumina was synthesized using a solid-state reaction. The changes in ... sive, because of its abundant lowcost raw materials and is suitable for high-volume mass production. The battery is composed of a sodium anode, a sulphur cathode, and. Na. +.

  20. Characterization and sintering of niobium-ATR alumina

    International Nuclear Information System (INIS)

    Sibuya, N.H.; Iwasaki, H.; Suzuki, C.K.; Pinatti, D.G.

    1987-01-01

    In the niobium aluminothermy a slag is produced, composed mostly of alumina and other compounds such as niobium oxide and silica. The phase composition of this ATR alumina was characterized by X-ray powder diffractometry, and afterwards this alumina was subjected to leaching processes. It was noticed that the original content of 70% α-alumina in slag rose to 95% after the calcination. ATR alumina (leached and calcined, and without any treatment) was used to make pressed bodies which were fired in air at 1200 to 1400 0 C for 1 to 10,5 hours; and in vacuum at 1550 to 1800$0C for 2 hours. Characterization was done by density measurements, X-ray diffractometry and ultrasonic analysis. Ultrasonic analysis of some vacuum fired bodies showed londitudinal velocities close to the value found in literature. Correlation of several techniques measurements disclosed the niobium oxide interference in sintering. (Author) [pt

  1. National carbon emissions from the industry process: Production of glass, soda ash, ammonia, calcium carbide and alumina

    OpenAIRE

    Liu, Zhu

    2016-01-01

    China has become the world’s largest carbon emitter. Its total carbon emission output from fossil fuel combustion and cement production was approximately 10 Gt CO_2 in 2013. However, less is known about carbon emissions from the production of industrial materials, such as mineral products (e.g., lime, soda ash, asphalt roofing), chemical products (e.g., ammonia, nitric acid) and metal products (e.g., iron, steel and aluminum). Carbon emissions from the production processes of these industrial...

  2. Fabrication of Highly Ordered Gold Nanorods Film Using Alumina Nanopores

    Directory of Open Access Journals (Sweden)

    Z. Soltani

    2012-06-01

    Full Text Available A simple method for fabrication of highly ordered gold nanorod film is introduced in this article. The procedure is based on thermal evaporation of gold into a porous anodic alumina film (PAA. The PPA film was fabricated by combining the hard and mild anodization. This combination effectively decreases the processing time of fabrication of highly ordered porous anodic alumina film with controlled pore diameter and length.  It was found that gold nanorods configuration affected by the porous anodic alumina film structure such as pore diameter and length. Furthermore the evaporation process change the rods diameter along the nanopores via the decreasing the pore mouth during the gold deposition.

  3. Method for nanomodulation of metallic thin films following the replica-antireplica process based on porous alumina membranes

    Energy Technology Data Exchange (ETDEWEB)

    Palma, J.L. [Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Central de Chile, Santa Isabel 1186, 8330601 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago (Chile); Denardin, J.C.; Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 9170124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago (Chile)

    2017-03-15

    In this paper we have introduced a method for modulation of metallic thin films by sputtering of metals on anodized aluminum templates. Using a high deposition rate during deposition of the non-magnetic metal on the Al pattern, we have separated the two metallic surfaces and, thus, imprinted a pattern of nanohills on a non-magnetic metallic film, such as Au, Ag or Cu. The morphology of the nanostructured metallic films was determined by scanning electron microscopy. Thus, we have confirmed that the ordering degree of the Al template remained after the replication process. Additionally, and as an example of use of these films, we have prepared Supermalloy thin films deposited by sputtering onto these nanostructured non-magnetic metals. The room temperature magnetic behavior of these thin films is also studied. Interestingly, we have found that when the external magnetic field is applied out of plane of the substrate, the coercivity increases linearly as we increase the radius of the nanohills. These soft magnetic films can open new opportunities for magnetic field sensor applications. - Highlights: • A very soft magnetic film is investigated on ordered nanohills. • It is possible to imprint a metallic pattern directly from the etched aluminum foil. • These nanopatterned substrates add an additional degree of freedom. • A method for modulation of metallic thin films.

  4. Uranyl sorption onto alumina

    International Nuclear Information System (INIS)

    Jacobsson, A.M.M.

    1997-01-01

    The mechanism for the adsorption of uranyl onto alumina from aqueous solution was studied experimentally and the data were modeled using a triple layer surface complexation model. The experiments were carried out at low uranium concentrations (9 x 10 -11 --5 x 10 -8 M) in a CO 2 free environment at varying electrolyte concentrations (0.01--1 M) and pH (4.5--12). The first and second acid dissociation constants, pK a1 and pK a2 , of the alumina surface were determined from potentiometric titrations to be 7.2 ± 0.6 and 11.2 ± 0.4, respectively. The adsorption of uranium was found to be independent of the electrolyte concentration. The authors therefore conclude that the uranium binds as an inner sphere complex. The results were modeled using the code FITEQL. Two reactions of uranium with the surface were needed to fit the data, one forming a uranyl complex with a single surface hydroxyl and the other forming a bridged or bidentate complex reacting with two surface hydroxyls of the alumina. There was no evidence from these experiments of site heterogeneity. The constants used for the reactions were based in part on predictions made utilizing the Hard Soft Acid Base, HSAB, theory, relating the surface complexation constants to the hydrolysis of the sorbing metal ion and the acid dissociation constants of the mineral oxide surface

  5. Dissolution Kinetics of Alumina Calcine

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  6. Efeito do processamento em misturas de alumina/ligantes orgânicos usadas na moldagem por injeção em baixa pressão Effect of processing variables in alumina/organic binders mixtures used in low-pressure injection molding

    Directory of Open Access Journals (Sweden)

    P . A. Ourique

    2013-03-01

    Full Text Available A moldagem por injeção em baixa pressão (MIBP é uma técnica que já vem sendo empregada na produção de peças cerâmicas com formas e geometrias complexas. A homogeneidade da mistura de ligantes orgânicos e pós cerâmicos é um fator determinante que deve ser controlado para minimizar a formação de imperfeições no processamento de feedstocks para MIBP. Defeitos típicos de processamento por MIBP, como bolhas de ar e aglomerados, geram gradientes de densidade nas misturas que, após conformação, possuem poucas possibilidades de remoção. Essas imperfeições comprometem o desempenho dos produtos obtidos por essa técnica. Este trabalho está focado na avaliação dessas heterogeneidades e como elas podem ser correlacionadas com a variação da densidade aparente e com o comportamento reológico dessas misturas. Para tanto, aluminas submicrométricas, como recebida e desaglomerada, foram adicionadas a uma mistura fundida de ligantes a base de parafinas, ceras e aditivos e processada em dois tipos diferentes de misturadores, com e sem o auxílio de vácuo. Foi observada a presença de aglomerados existentes na alumina como recebida, possivelmente gerados durante a etapa de calcinação. Também foi observado que o tipo de misturador e a aplicação ou não de vácuo durante a etapa final do processamento têm grande influência no tempo de mistura necessário para reduzir a viscosidade do feedstock para a injeção.The low-pressure injection molding (LPIM is a technique already being used in the production of ceramic parts with complex shapes and geometries. The homogeneity of the mixture of organic binder and ceramic powder is a determining factor which must be controlled to minimize defects formation while feedstock processing to LPIM. Typical defects of LPIM processing, such as air bubbles and agglomerates, generate density gradients in the mixtures, which, after shaping, have little possibility of removal. These imperfections

  7. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  8. Late Miocene calc-alkalic volcanism in northwestern Mexico: an expression of rift or subduction-related magmatism?

    Science.gov (United States)

    Mora-Klepeis, Gabriela; McDowell, Fred W.

    2004-12-01

    Magmatism in NW Mexico records a Late Miocene transformation from convergence to extension in the Gulf of California rift system. Miocene calc-alkalic rocks in the Baja California peninsula are related to the final subduction of the Farallon plate system, but the heterogeneous nature of volcanism younger than 12.5 Ma has led to conflicting tectonic interpretations. Neogene volcanic rocks in the Sierra Santa Ursula, Sonora, were emplaced in three magma pulses, according to mapping, K-Ar geochronology, and geochemistry. From 23.5 to 15 and 14 to 11.4 Ma, calc-alkalic rocks show an arc-like signature. The 12-11 Ma calc-alkalic dacites, however, are characterized by higher K, Rb, 87Sr/ 86Sr, and light REE abundances than are the older rocks. The timing, petrography, and geochemistry of the 12-11 Ma rocks are interpreted to reflect postsubduction magmatism. A change in magma chemistry from predominantly calc-alkalic to tholeiitic rocks at 10.3 Ma corresponds to orthogonal extension during early Gulf of California evolution. Sr, Nd, and Pb radiogenic isotope signatures show minor changes over time. The volcanic record for 20-12.5 Ma at Sierra Santa Ursula and adjacent areas is consistent with the reconstructed history of the Guadalupe microplate. The interval of magmatism produced from 12 to 11 Ma appears to reflect changes in plate geometry during the transition from subduction to rifting.

  9. In-beam dielectric properties of alumina

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Hodgson, E.R.

    1995-01-01

    The dielectric properties (permittivity and loss tangent) of a 99.7% purity alumina grade have been measured over a wide frequency range (1 kHz-15 GHz) before and after 2 MeV electron irradiation at different temperatures. The dielectric properties at 15 GHz were measured during irradiation. Both prompt and fluence effects are observed together with permanent changes which continue to evolve following irradiation. The behaviour is complex, consistent with both radiation induced electronic effects and aggregation processes. ((orig.))

  10. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  11. Single pyruvate intake induces blood alkalization and modification of resting metabolism in humans.

    Science.gov (United States)

    Olek, Robert A; Luszczyk, Marcin; Kujach, Sylwester; Ziemann, Ewa; Pieszko, Magdalena; Pischel, Ivo; Laskowski, Radoslaw

    2015-03-01

    Three separate studies were performed with the aim to 1) determine the effect of a single sodium pyruvate intake on the blood acid-base status in males and females; 2) compare the effect of sodium and calcium pyruvate salts and establish their role in the lipolysis rate; and 3) quantify the effect of single pyruvate intake on the resting energy metabolism. In all, 48 individuals completed three separate studies. In all the studies, participants consumed a single dose of pyruvate 0.1 g/kg 60 min before commencing the measurements. The whole blood pH, bicarbonate concentration, base excess or plasma glycerol, free fatty acids, glucose concentrations, or resting energy expenditure and calculated respiratory exchange ratio were determined. The analysis of variance for repeated measurements was performed to examine the interaction between treatment and time. The single dose of sodium pyruvate induced blood alkalization, which was more marked in the male than in the female participants. Following the ingestion of sodium or calcium pyruvate, the blood acid-base parameters were higher than in the placebo trial. Furthermore, 3-h postingestion glycerol was lower in both pyruvate trials than in placebo. Resting energy expenditure did not differ between the trials; however, carbohydrate oxidation was increased after sodium pyruvate ingestion. Pyruvate intake induced mild alkalization in a sex-dependent fashion. Moreover, it accelerated carbohydrate metabolism and delayed the rate of glycerol appearance in the blood, but had no effect on the resting energy expenditure. Furthermore, sodium salt seems to have had a greater effect on the blood buffering level than calcium salt. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  13. Alumina-Reinforced Zirconia Composites

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  14. Influence of alumina characteristics on glaze properties

    Directory of Open Access Journals (Sweden)

    Arrufat, S.

    2010-10-01

    Full Text Available Aluminium oxide is a synthetic raw material manufactured from bauxite by the Bayer process, whose Al2O3 content typically exceeds 99%. Four main types of alumina can be defined, depending on the processing used: hydrargillite Al(OH3, boehmite AlOOH, transition aluminas (calcined at low temperatures, 1000 °C, with an intermediary crystallographic structure between hydrates and alpha alumina, and α-Al2O3 (calcined at high temperatures, >1100 °C. In glaze manufacturing, α-Al2O3 is the main type of alumina used. This raw material acts as a matting agent: the matt effect depends on alumina particle size and content in the glaze. This study examines the effect of the degree of alumina calcination on glaze technical and aesthetic properties. For this purpose, aluminas with different degrees of calcination were added to a glaze formulated with a transparent frit and kaolin, in order to simplify the system to be studied. The results show that, depending on the degree of calcination, alumina particles can react with the glaze components (SiO2, CaO, and ZnO to form new crystalline phases (anorthite and gahnite. Both crystallisations extract CaO and ZnO from the glassy phase, increasing glassy phase viscosity. The variation in crystalline phases and glassy phase viscosity yields glazes with different technical and aesthetic properties.

    El óxido de aluminio es una materia prima sintética fabricada a partir de la bauxita por medio del proceso Bayer, cuyo contenido de Al2O3 supera, por regla general, el 99%. Se pueden definir cuatro tipos de alúmina, en función del tipo de proceso usado: hidrargilita Al(OH3, boehmita AlOOH, alúminas de transición (calcinadas a bajas temperaturas, 1000 °C, con una estructura cristalográfica intermedia entre los hidratos y la alfa alúmina, y la α-Al2O3 (calcinada a

  15. Preparation and Characterization of Activated Alumina

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Activated alumina is a high surface area and highly porous form of aluminum oxide that can be employed for contaminant species adsorb from ether gases or liquids without changing its form. The research in getting this material has generated huge interested. Thus, this paper presented preparation of activated alumina from chemical process. Pure aluminum (99.9% pure) reacted at room temperature with an aqueous NaOH in a reactor to produce a solution of sodium aluminate (NaAlO2). This solution was passed through filter paper and the clear filtrate was neutralized with H2SO4, to pH 6, 7 or 8, resulting in the precipitation of a white gel, Al(OH)3·XH2O. The washed gel for sulfate ions were dried at 80 °C for 6 h, a 60 mesh sieve was to separate and sort them into different sizes. The samples were then calcined (burn) for 3h in a muffle furnace, in air, at a heating rate of 2 °C min-1. The prepared activated alumina was further characterized for better understanding of its physical properties in order to predict its chemical mechanism.

  16. Study of preparation and surface morphology of self-ordered nanoporous alumina; Estudo da preparacao e da morfologia de superficie de alumina nanoporosa auto-organizada

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com, E-mail: MG.mdm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG. (Brazil); Silva, Ronald Arreguy, E-mail: arregsilva@yahoo.com.br [Centro Universitario de Belo Horizonte (UniBH), Belo Horizonte, MG (Brazil)

    2013-07-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  17. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    OpenAIRE

    Okikiola Ganiu AGBABIAKA; Isiaka Oluwole OLADELE; Paul Toluwalagbara OLORUNLEYE

    2014-01-01

    Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment) on the mechanical and water absorption properties o...

  18. Experimental investigation of nano-alumina effect on the filling time ...

    African Journals Online (AJOL)

    In this research, by producing composite samples made of glass fibers and epoxy resin with different percentages of nanoparticles (Nano-alumina), the adding effect of nanoparticles of alumina Alpha and Gamma grade on filling time in the vacuum assistant resin transfer molding process (VARTM) is investigated. The grade ...

  19. Attrition resistant gamma-alumina catalyst support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  20. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    % alumina dissolves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors revealed that ...

  1. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Study of alumina–magnesia binary phase diagram reveals that around 40–50 wt% alumina dis- solves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors.

  2. Shockless spalling damage of alumina ceramic

    Science.gov (United States)

    Erzar, B.; Buzaud, E.

    2012-05-01

    Ceramic materials are commonly used to build multi-layer armour. However reliable test data is needed to identify correctly models and to be able to perform accurate numerical simulation of the dynamic response of armour systems. In this work, isentropic loading waves have been applied to alumina samples to induce spalling damage. The technique employed allows assessing carefully the strain-rate at failure and the dynamic strength. Moreover, specimens have been recovered and analysed using SEM. In a damaged but unbroken specimen, interactions between cracks has been highlighted illustrating the fragmentation process.

  3. Transport properties of alumina nanofluids

    International Nuclear Information System (INIS)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-01-01

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m -1 K -1 was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various

  4. Transport properties of alumina nanofluids.

    Science.gov (United States)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  5. Synthesis of alumina powders by precipitation method and solvothermal treatment

    International Nuclear Information System (INIS)

    Politchuk, J.O.; Lima, N.B.; Lazar, D.R.R.; Ussui, V.; Yoshito, W.K.

    2012-01-01

    The improvement of alumina powders synthesis processes has been focused on the preparation of ceramic powders with well defined crystalline structure and with high specific surface area and nanometric particle size without formation of hard agglomerates. For this purpose the precipitation step should be studied and and also the temperature of alumina crystallization should be reduced. The aim of this study was to obtain alumina powders by hydroxide precipitation with ammonia in the presence of cationic surfactant, followed by solvothermal treatment and calcination. The powders were characterized by TG/DTA, X-ray diffraction, surface area measurements by gas adsorption (BET) and scanning electron microscopy. The results showed that powders produced by solvothermal treatment without surfactant have higher crystallinity. However the presence of CTAB enhances 240% the specific surface area compared with powders produced without this reagent (author)

  6. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  7. Alumina column Rb-82 generator

    International Nuclear Information System (INIS)

    Yano, Y.; Roth, E.P.

    1977-10-01

    The use of an alumina column for the adsorption of radioactive Sr for the generator production of 75-sec 82 Rb was evaluated in both batches and column experiments using 85 Sr and cyclotron-produced 82 Sr. Comparisons of alumina, Bio-Rex 70 and Chelex 100 ion exchangers were made to determine Sr adsorption, 82 Rb elution yield and Sr breakthrough. The adsorption of Sr is similar for alumina and Chelex 100 but different for Bio-Rex 70. Alumina and Chelex 100 exhibit a small fraction of poorly bound Sr which appears as higher breakthrough in the early elution volumes. The remaining Sr activity is strongly bound to these ion exchangers and the breakthrough remains stable at a lower breakthrough value through a large number of elutions. Bio-Rex 70 on the other hand does not exhibit the poorly bound Sr fraction and the breakthrough of Sr remains the lowest of the three ion exchangers through a moderate number of elutions and then the Sr breakthrough gradually increases with each additional elution

  8. Effects of ball milling and sintering on alumina and alumina-boron compounds

    Science.gov (United States)

    Cross, Thomas

    Alumina has a wide variety of applications, but the processing of alumina based materials can be costly. Mechanically milling alumina has been shown to enhance the sintering properties while decreasing the sintering temperature. Additions of boron have also proven to increase sintering properties of alumina. These two processes, mechanical milling and boron additions, will be combined to test the sintering properties and determine if they are improved upon even further compared to the individual processes. Multiple samples of pure alumina, 0.2 weight percent boron, and 1.0 weight percent boron are batched and processed in a ball mill for different time intervals. These samples are then characterized to observe the structure and properties of the samples after milling but before sintering. Pellets are dry pressed from the milled powders, sintered at 1200°C for one to 10 hours, and characterized to determine the impact of processing. X-ray diffractometry (XRD) was used on each sample to determine crystallite size and lattice parameters at different stages throughout the experiment. XRD was also used to identify any samples with an aluminum borate phase. Scanning electron microscopy (SEM) was used to observe the powder and pellet morphology and to measure bulk chemical composition. Samples were sputter coated with an Au-Pd coating observed in the SEM to characterize the topography as a function of variables such as milling time, boron composition, and sintering time. Additionally, porosity and change in diameter were measured to track the sintering process. Milling sample for longer periods of time would be unnecessary due to the crystallite size leveling off between 10 and 12 hours of milling time. Samples of alumina with 0.2 weight percent boron prove to have very little effect on the sintering properties. At 1.0 weight percent boron, there are changes in diffraction patterns and topography after being sintered for one hour. The porosities of all of the sintered

  9. Sulfuric Acid and Ammonium Sulfate Leaching of Alumina from Lampang Clay

    Directory of Open Access Journals (Sweden)

    Paweena Numluk

    2012-01-01

    Full Text Available The rapid development of the global alumina industry has led to a considerable increase in the production alumina and processing of alumina from non-bauxitic sources. Lampang clays comprise various minerals that contain about 22.70 wt% of extractable alumina. Local clay was ground, activated by calcination and treated with sulfuric acid to extract alumina. In the activation step, the effects of temperature and time on the extraction of alumina and iron were investigated. The leaching experiments were performed on clay samples with particle sizes less than 200 mesh. The samples were calcined at different temperatures, ranging from 450°C to 1050°C, and for different periods, ranging from 30 to 150 min. The optimum conditions for the extraction of alumina from Lampang clay include grinding the clay to pass through a 200 mesh sieve, calcining the ground clay at 750°C for 30 min, extracting the alumina from the calcined clay by leaching with 3M sulfuric acid, and using an acid to clay ratio of 80 wt% at 100°C for 120 min. An aluminum dissolution efficiency of 95.1 % was achieved under the conditions that resulted in the maximum dissolution efficiency of iron (26.6 %.

  10. Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, A., E-mail: akeyvani@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Saremi, M., E-mail: saremi@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Sohi, M. Heydarzadeh, E-mail: mhsohi@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2011-08-18

    Highlights: > This work aims to study the oxidation behavior of plasma sprayed YSZ-alumina composites coatings. > The composites TBC coatings of YSZ-alumina showed better oxidation resistance than normal YSZ. > The durability of composite coating with alumina is a novel method and has not been reported before. - Abstract: In the present work oxidation behavior of plasma sprayed YSZ-alumina composite TBC coatings on Ni-base (IN-738LC) super alloy substrate was studied and compared to normal YSZ. Cyclic oxidation process in 4 h intervals was performed in an air electrical furnace at 1100 deg. C and the specimens were cooled in the furnace during each cycle. Preliminary checking was done with naked eye and further investigation was achieved using scanning electron microscopy. If there were any cracks or spallation in the coating's edge, the tests were stopped, the time was recorded and coating microstructure was studied. YSZ-alumina composites were made by applying alumina layer at the top of YSZ or mixed with YSZ as a TBC layer on the bond coat. Composite coatings of YSZ-alumina having alumina as a top coat and the mixed YSZ-alumina layer, showed better resistance than normal YSZ in oxidation test. It was observed that alumina overlay on YSZ has promoted the oxidation resistance of the coatings for longer times by preventing infiltration of oxygen through YSZ layer.

  11. Controlled growth of single nanowires within a supported alumina template

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Faniel, S.

    2006-01-01

    A simple technique for fabricating single nanowires with well-defined position is presented. The process implies the use of a silicon nitride mask for selective electrochemical growth of the nanowires in a porous alumina template. We show that this method allows the realization of complex nanowire...

  12. From alumina nanopores to nanotubes: dependence on the geometry of anodization system.

    Science.gov (United States)

    Feil, Adriano F; da Costa, Marlla V; Migowski, Pedro; Dupont, Jaïrton; Teixeira, Sérgio R; Amaral, Lívio

    2011-03-01

    The Conventional anodization of commercial aluminum sheets with a phosphoric acid electrolyte was employed for the preparation of alumina nanopore and/or nanotube structures. Modifying the system geometry (the ratio of platinum to aluminum electrode areas) controlled the nature of the anodization process (mild to hard). Nanotube formation was observed after low temperature preferential chemical etching of the defective corners of the hexagonal alumina cells using the same solution from the anodization process. Electrode geometry can be used to combine mild and hard anodization with low temperature etching to tune the alumina morphology from 100% nanopores to 100% nanotubos coverage.

  13. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  14. Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes.

    Science.gov (United States)

    Stumpp, Meike; Hu, Marian Y; Tseng, Yung-Che; Guh, Ying-Jeh; Chen, Yi-Chih; Yu, Jr-Kai; Su, Yi-Hsien; Hwang, Pung-Pung

    2015-06-08

    The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H(+)/K(+)-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H(+) secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3(-) transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs.

  15. STUDY ON ADSORPTION OF Cd(II BY CHITOSAN-ALUMINA

    Directory of Open Access Journals (Sweden)

    Darjito Darjito

    2010-06-01

    Full Text Available One techniques to reduce the concentration of heavy metal Cd(II in aqueous solution is adsorption by chitosan. To modify the surface textures and expose the active binding sites, composite biosorbent has been prepared by coating chitosan onto alumina. The aims of this research were to identify the functional group of chitosan-alumina, to characterize adsorption of Cd(II by using chitosan-alumina adsorbent including optimum pH, optimum agitation time, and to determine the adsorption capacity of the adsorbent. The functional group of chitosan-alumina was identified by infrared spectrophotometer. Determination of the optimum condition was carried out at 40 ppm Cd(II, 125 rpm and 0,1 g adsorbent. Calculation of adsorpted Cd(II based on its concentration in aqueous phase before and after adsorption process. The concentrations of Cd(II in aqueous phase after adsorption process  were determined by using Atomic Absorption Spectroscopy (AAS. Identified functional groups of chitosan-alumina were -OH (3466.39 cm-1, -NH amine (1625.15 cm-1, C=O (1703.30 cm-1, and Al-O (1302.07 cm-1. The optimum pH was reached at pH 7, optimum agitation time at 15 minutes, and adsorption capacity of chitosan-alumina was 15.35 ± 0.05 mg/g.   Keywords: adsorption, chitosan-alumina, characterization of adsorption

  16. Microstructure-mechanical behaviour relationship in alumina-calcium exaluminate composites; Relaciones microestructura-comportamiento mecanico en materiales de alumina-hexaluminato calcico

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A. J.; Moreno, R.; Baudin, C.

    2001-07-01

    The grain growth behaviour of dense alumina materials has been modified by the addition of calcium hexaluminate particles. Maximum dispersion has been obtained by colloidal processing routes. The influence of sintering temperature (1500-1600 degree centigree) on the size and shape of the alumina grains has been established. The mechanical behaviour of three composite materials with the same composition ({approx}10 vol% CA{sub 6}) and large microstructural differences has been studied in comparison with that of monophasic alumina of the same grain size. The influence of grain size and shape on toughness has been established. R-curve behaviour has been detected during fracture of the material with the alumina grains presenting the largest shape factor. (Author) 18 refs.

  17. Acetic acid mediated interactions between alumina surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kimiyasu, E-mail: sato.kimiyasu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Y Latin-Small-Letter-Dotless-I lmaz, Hueseyin [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Gebze Institute of Technology, Materials Science and Engineering Department, 41400, Gebze-Kocaeli (Turkey); Ijuin, Atsuko; Hotta, Yuji; Watari, Koji [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan)

    2012-02-01

    Low-molecular-weight organic acids have been known to modify colloidal stability of alumina-based suspensions. We investigated interaction forces between alumina surfaces mediated by acetic acid which is one of the simplest organic acids. Forces between alumina surfaces were measured using the colloid-probe method of atomic force microscope (AFM). Repulsive forces attributed to steric repulsion due to adsorbed molecules and electrostatic repulsion dominated the interaction. Results of rheological characterization of the alumina slurry containing acetic acid supported the finding.

  18. Exchange of alkanes with deuterium over γ-alumina

    International Nuclear Information System (INIS)

    John, C.S.; Kemball, C.; Pearce, E.A.; Pearman, A.J.

    1979-01-01

    Exchange reactions of hydrocarbons with deuterium over γ-alumina have been extensively studied but less attention has been directed to the effect of catalyst activation temperature. It has been shown that activity for propane/D 2 exchange passes through a sharp maximum at approximately 823 K and similar behaviour has been shown for the various exchange processes of propene. In this work, the first objective was to examine the effect of varying catalyst activation temperature, Tsub(a), on the subsequent activity of γ-alumina for the exchange of cyclopentane with D 2 ; the effect of chloriding the alumina was also studied. The second objective was to study the influence on the activity for cyclopentane/D 2 exchange of pretreating the catalyst with alkene at various temperatures to determine whether poisoning occurred. The literature indicates that for alkene exchange with deuterium on alumina reaction occurs preferentially for the vinyl hydrogen atoms as opposed to the hydrogen atoms attached to saturated carbon atoms. On this evidence one might expect the presence of alkene to interfere with the exchange of alkanes and indeed there is work which reports that alkene poisons both CH 4 /D 2 and H 2 /D 2 exchange. Finally, the effect of chain-length on the relative rates of methylene and methyl exchange in straight-chain hydrocarbons was examined to follow up previous work on propane and butane. The results are presented and discussed. (author)

  19. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  20. Relationships Between Smelter Grade Alumina Characteristics and Strength Determined by Nanoindentation and Ultrasound-Mediated Particle Breakage

    Science.gov (United States)

    Wijayaratne, Hasini; McIntosh, Grant; Hyland, Margaret; Perander, Linus; Metson, James

    2017-06-01

    The mechanical strength of smelter grade alumina (SGA) is of considerable practical significance for the aluminum reduction process. Attrition of alumina during transportation and handling generates an increased level of fines. This results in generation of dust, poor flow properties, and silo segregation that interfere with alumina feeding systems. These lead to process instabilities which in turn result in current efficiency losses that are costly. Here we are concerned with developing a fundamental understanding of SGA strength in terms of its microstructure. Nanoindentation and ultrasound-mediated particle breakage tests have been conducted to study the strength. Strength of SGA samples both industry calcined and laboratory prepared, decrease with increasing α-alumina (corundum) content contrary to expectation. The reducing strength of alumina with increasing degree of calcination is attributed to the development of a macroporous and abrasion-prone microstructure resulting from the `pseudomorphic' transformation of precursor gibbsite during the calcination process.

  1. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  2. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.

    2009-01-01

    focus our attention to the measurements with the MCP array. The alumina capillaries were prepared by electro-chemical oxidation of aluminium foils. For the present experiments guiding of 3-6 keV Ne ions has been studied in two samples with capillary diameter of about 140 nm and 260 nm and with capillary...... length of about 15 μm. At these energies, the ions have been efficiently guided by the capillaries up to few degrees tilt angle. In this work, we compare the results obtained by the energy dispersive spectrometer to those studied by the MCP array....

  3. Synthesis and structural evaluation of freeze-cast porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Douglas F., E-mail: souzadf@outlook.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Pimenta, Daiana S.; Vasconcelos, Daniela C.L. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nascimento, Jailton F.; Grava, Wilson [Petrobras/CENPES, Avenida Horácio Macedo 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ CEP:21941-915 (Brazil); Houmard, Manuel [Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 1, sala 3304 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil)

    2014-10-15

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observed that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.

  4. Ordering of Octahedral Vacancies in Transition Aluminas

    NARCIS (Netherlands)

    Wang, Yuan Go; Bronsveld, Paul M.; Hosson, Jeff Th.M. De; Djuričić, Boro; McGarry, David; Pickering, Stephen

    1998-01-01

    The microstructure of transition aluminas obtained via the dehydration of boehmite has been characterized by using transmission electron microscopy (TEM). The presence of γ-, δ-, and θ-aluminas was identified by using selected-area electron diffraction. Modifications that resulted from the

  5. alumina phase transformation from thermal decomposition

    African Journals Online (AJOL)

    HOD

    Alumina is one of the major components used as catalyst support, which is especially important with regard to ... alumina, has been a major catalytic support in automotive and petroleum industries, as well as in adsorption ..... Catalyst in Steam Reforming of Dimethyl ether: Cu/γ-Al2O3/Al Catalyst Degradation Behaviors and.

  6. The Porgera gold deposit, Papua, New Guinea, 1: association with alkalic magmatism in a continent-island-arc collision zone

    International Nuclear Information System (INIS)

    Richards, J.P.; Chappell, B.W.; McCulloch, M.T.; McDougall, I.

    1991-01-01

    The meso thermal to epithermal Porgera gold deposit is spatially and temporally associated with shallow level (≤ 2 km emplacement depth) stocks and dykes of the Porgera Intrusive Complex (PIC). Gold mineralization immediately followed emplacement of the PIC, and is dated between 5 and 6 Ma ago. The Porgera intrusive suite is comprised of fine- to medium-grained, porphyritic to euhedral granular, volatile-rich, sodic alkali basalts/gabbros, hawaiites, and mugearites (TAS chemical classification scheme). The rocks display chemical and isotopic characteristics similar to those of intra plate alkalic basalts, but their unusually high volatile contents result in stabilization of hornblende as a phenocryst and intergranular phase in more evolved rock types. The observed order of cotectic crystallization is olivine - clinopyroxene - hornblende -plagioclase, with ubiquitous spinel (chromite/magnetite) and fluor-apatite. (author)

  7. On- and post-treatment symptom relief by repeated instillations of heparin and alkalized lidocaine in interstitial cystitis.

    Science.gov (United States)

    Nomiya, Akira; Naruse, Takashi; Niimi, Aya; Nishimatsu, Hiroaki; Kume, Haruki; Igawa, Yasuhiko; Homma, Yukio

    2013-11-01

    To examine outcomes of intravesical instillations of heparin and alkalized lidocaine in patients with interstitial cystitis. Patients with interstitial cystitis refractory to conventional therapies were given a solution of 20 000 U heparin, 5 mL 4% lidocaine and 25 mL 7% sodium bicarbonate, intravesically, weekly for 12 weeks consecutively. The treatment was regarded as "effective", when patients rated "slightly improved" or "better" on a seven-graded scale of global response assessment. Other assessment measures included O'Leary and Sant's symptom index and problem index, visual analog scale for pain, and frequency volume chart variables. A total of 32 patients were enrolled in the study. The average age was 63.3 years. All participants had received hydrodistension 2.2 times on average, and fulfilled National Institute of Diabetes and Digestive and Kidney Diseases criteria. The therapy was effective in 60.0% of the patients at the fourth instillation, in 76.7% at the last instillation, and 90.0%, 46.7% and 16.7% at 1, 2 and 6 months after the last instillation, respectively. Most of other assessment measures improved significantly at the fourth instillation and further beyond until the end of therapy. On termination of therapy, the efficacy gradually diminished, yet mostly maintained statistical significance by 2 months post-instillation. No severe adverse events occurred. A 12-week course of weekly intravesical instillations of heparin combined with alkalized lidocaine is safe and effective in relieving symptoms in interstitial cystitis patients. The effect of the treatment is maintained for 6 months. Further studies are required to optimize the number of instillations and maintenance intervals in order to maximize the therapeutic potential of simple or combined instillations in the management of interstitial cystitis. © 2013 The Japanese Urological Association.

  8. Preliminary analysis of thermal-infrared multispectral scanner data of the Iron Hill, Colorado carbonatite-alkalic rock complex

    Science.gov (United States)

    Rowan, Lawrence C.; Watson, Kenneth; Miller, Susanne H.

    1992-01-01

    The Iron Hill carbonatite-alkalic igneous rock complex is in the Powderhorn mining district, approximately 40 km south-southwest of Gunnison, Colorado. The complex, which occupies about 30 sq km, was emplaced in metasedimentay and metavolcanic rocks during the later Precambrian or early Cambrian. The main rock types in the complex, from oldest to youngest, are fenite, pyroxenite, uncompahgrite, ijolite, nepheline syenite, and dolomitic carbonatite. The carbonatite is limonitic and forms an elliptially shaped 4 sq km stock. Calcitic and dolomitic carbonatite dikes are also numerous throughout the complex and in the pre-existing rocks. Pyroxenite is the most widespread rock type within the complex, but pyroxene is extensively altered to biotite, phlogopite, and vermiculite. Fenite, which formed through Na, K-metasomatism of the country rocks, typically contains more feldspar and less quartz than the equivalent unaltered country rocks. The other alkalic rock types are less widespread and less well exposed. Parts of the complex are covered by Oligocene ash-flow tuff and alluvial, colluvial, and glacial deposits. Sagebrush and grass cover is moderately dense to very dense at low to intermediate elevations; coniferous tree cover is dense at high elevations and on some north-facing slopes at lower elevations. A new algorithm was used to compute spectral emissivity ratios, independent of any emissivity assumptions. This algorithm has the advantage that any of the possible emissivity ratios can be computed and, thus, a large variety of composite ratio images can be constructed, which permits examination of various geologic hypotheses based on the spectral properties of the surface materials.

  9. Hydrothermal crystallization of α-alumina monohydrate in the presence of copper ions

    Science.gov (United States)

    Brown, N.

    1989-09-01

    The effect of copper ions on the hydrothermal crystallization of α-alumina monohydrate (A1OOH, mineral name boehmite), following oxidation of the organic carbon compounds in sodium aluminate solution of the Bayer process, has been examined using scanning electron microscopy and particle size analyses. The initial effect of the copper ions on the homogeneously nucleated α-alumina monohydrate is to inhibit crystal growth on the (001) faces and direct the growth process to the prismatic faces of the rhombic or diamond shaped crystals. At low copper levels (up to 0.1 wt% in α-alumina monohydrate), this leads to the formation of plate-like crystals up to 25 μm in size which can intergrow and develop into particles with an average size of up to 100 μm. The size and structure of the μ-alumina monohydrate particles, however, depend on the amount of copper present and increasing copper levels (up to 1.0 wt%) lead progressively to a decrease in average particle size of α-alumina monohydrate to about 10 μm and the formation of more rounded oblong-shaped particles having a compact sheaf-like structure. Copper-containing α-alumina monohydrate particles of this size and form can be readily recovered from the oxidized liquor and recycled in the industrial process.

  10. Feasibility study of use alumina waste in compositions containing clay for the mullite synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Dias, G.; Goncalves, W.P.; Santana, L.N.L.

    2016-01-01

    The reuse of alumina residue in addition to reducing environmental impacts can be used as raw material in ceramic masses to mullite produce. This study aims to obtain mullite from compositions containing clays and alumina residue used heating in a conventional oven. The raw materials were processed and characterized. Subsequently, these compositions were formulated containing precursors in appropriate proportions based on the stoichiometry of the mullite 3:2. Then, heat treatment was performed at temperatures of 1300 to 1400°C and 5°C rate/min. The products obtained were characterized by XRD, analyzing qualitatively and quantitatively the phases formed. The results showed that is possible, from compositions containing clays and alumina residue to obtain mullite as major phase (>70%) and high crystallinity (> 80%) The percentage of mullite approached the values obtained with the compositions containing alumina and clays. (author)

  11. Synthesis and characterization of alumina application in support of zeolite membrane

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Rodrigues, M.G.F.

    2012-01-01

    Much interest has been aroused in process applications using zeolite membrane. The physicochemical properties of the support have a strong effect on the quality of zeolite membrane. This work is to synthesize and characterize alumina for use as a support for zeolite membrane. In this work was synthesized α-alumina: 40% alumina, 0.2% for PABA, 0.5% oleic acid and 59.3% ethyl alcohol. The mixture was ground in ball mill and placed in an oven for 24 hours at 60 °C, allowed to stand for 24h. The pressing was performed with 4 tons. The pressed material was subjected to sintering at 1400 °C/hour. The samples were characterized by EDX, XRD and SEM. The results for the media by XRD showed that they are crystalline and pure. By EDX was observed that the supports consist essentially of alumina. (author)

  12. Fabrication of aluminum-alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Hodder, K.J.; Izadi, H. [Department of Chemical and Materials Engineering, University of Alberta, 7th Floor, Electrical and Computer Engineering Research Facility, Edmonton, Alberta, Canada T6G 2V4 (Canada); McDonald, A.G. [Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta, Canada T6G 2G8 (Canada); Gerlich, A.P., E-mail: agerlich@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2012-10-30

    Cold gas dynamic spraying at low pressure (1 MPa gage or 150 psig) was used to fabricate Al-Al{sub 2}O{sub 3} metal matrix composite (MMC) coatings onto 6061 Al alloy. The powder contained Al powder admixed with -10 {mu}m Al{sub 2}O{sub 3} in fractions up to 90 wt.%. Scanning electron microscopy (SEM), Vickers microhardness testing, and image analysis were conducted to determine the microstructure, properties, and volume fraction of reinforcing particles in the coatings. The coatings were then friction-stir processed (FSP) at tool rotation speeds of 894 or 1723 RPM using a flat cylindrical tool. The Al{sub 2}O{sub 3} content and hardness of the final MMC coatings increased with increasing fractions of Al{sub 2}O{sub 3} particles in the feedstock powder, resulting in a maximum Al{sub 2}O{sub 3} content of 48 wt.% and a hardness of 85 HV of the as-sprayed coating when 90 wt.% Al{sub 2}O{sub 3} was used in the feed powder blend. After FSP, the hardness of the MMC increased to a maximum of 137 HV. The as-sprayed coatings contained Al{sub 2}O{sub 3} particles that were segregated between the Al particles, and FSP was effective in dispersing these Al{sub 2}O{sub 3} particles and decreasing their mean free path. It was suggested that this re-distribution and Al{sub 2}O{sub 3} particle size refinement during FSP improved the hardness of the MMC coatings.

  13. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    Science.gov (United States)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  14. A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Kafili, G. [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Movahedi, B., E-mail: b.movahedi@ast.ui.ac.ir [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Milani, M. [Faculty of Advanced Materials and Renewable Energy Research Center, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Alumina/yttria nanocomposite powder as an yttrium aluminum garnet (YAG) precursor was synthesized via partial wet route using urea and ammonium hydrogen carbonate (AHC) as precipitants, respectively. The products were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. The use of urea produced very tiny spherical Y-compounds with chemical composition of Y{sub 2}(CO{sub 3}){sub 3}·nH{sub 2}O, which were attracted to the surface of alumina nanoparticles and consequently, a core-shell structure was obtained. The use of ammonium hydrogen carbonate produced sheets of Y-compounds with chemical composition of Y(OH)CO{sub 3} covering the alumina nanoparticles. A fine-grained YAG ceramic (about 500 nm), presenting a non-negligible transparency (45% RIT at IR range) was obtained by the spark plasma sintering (SPS) of alumina-yttria nanocomposite synthesized in the urea system. This amount of transmission was obtained by only the sintering of the powder specimen without any colloidal forming process before sintering or adding any sintering aids or dopant elements. However, by spark plasma sintering of alumina-yttria nanocomposite powder synthesized in AHC system, an opaque YAG ceramic with an average grain size of 1.2 μm was obtained. - Highlights: • Urea proved to be an appropriate precipitant for obtaining a core-shell alumina/yttria nanocomposite. • Alumina/yttria nanocomposite powders with more appropriate morphology and highly sinterability. • A fine-grained YAG ceramic was obtained by SPS of alumina-yttria nanocomposite.

  15. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    Science.gov (United States)

    Ozawa, Masakuni; Nishio, Yoshitoyo

    2016-09-01

    Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO2. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al2O3 showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al2O3 samples. LaAlO3 nanoparticle formed among alumina particles by the solid phase reaction of Al2O3 and La2O3. The increase of the surface basicity of La modified alumina was demonstrated using CO2 temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  16. The characterization of ceramic alumina prepared by using additive glass beads

    Science.gov (United States)

    Suprapedi; Muljadi; Sardjono, Priyo

    2018-01-01

    The ceramic alumina has been made by using additive glass bead (5 and 10 % wt.). There are two kinds of materials, such as : gamma Alumina and glass bead. Synthesis of alumina was done by ball milling for 24 hours, then the mixed powder was dried in drying oven at 100 °C for 6 hours. Furthermore, the dried powder was mixed by using 2 % of PVA and continued with compacted to form a pellet with pressure of 50 MPA. The next step is sintering process with variation temperature of 1150, 1200, 1250, 1300 and 1400 °C and holding time for 2 hours. The characterization conducted are consist of test density, hardness, shrinkage, and microstructure. The results show that ceramic alumina with addition of 10 % wt. glass bead has the higher value of density, hardness and shrinkage than addition of 5% wt. glass bead. The highest characterization of ceramic alumina with addition 10 % glass bead was achieved at sintering temperature of 1400 °C with density 3.68 g/cm3, hardness vickers 780.40 Hv and shrinkage 15.23 %. The XRD results show that it was founds a corrundum (alpha Alumina) as dominant phase and mullite as minor phase.

  17. Comparative study on sintered alumina for ballistic shielding application; Estudo comparativo entre aluminas sinterizadas visando aplicacao em blindagem balistica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco

    1997-12-31

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull`s modulii and other mechanical properties are able to improve ballistic penetration resistance. (author) 3 refs.

  18. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N.T.

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  19. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  20. Two steps sintering alumina doped with niobia; Sinterizacao em duas etapas de alumina aditivada com niobia

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P., E-mail: lucas.gomes@ufrgs.br [Universidade Federal do Rio Grande do Sul (LACER/UFRGS) Porto Alegre, RS (Brazil). Laboratorio de Materiais Ceramicos

    2014-07-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  1. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Okikiola Ganiu AGBABIAKA

    2014-11-01

    Full Text Available Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment on the mechanical and water absorption properties of selected natural fibers (coconut and sponge fibers reinforced polypropylene composites. In this study, coconut and sponge fiber were extracted from its husk by soaking them in water and was dried before it was cut into 10mm length. Those fibers were chemically treated with sodium hydroxide (NaOH in a shaking water bath before it was used as reinforcement in polypropylene composite. The reinforced polypropylene composite was produced by dispersing the coconut fibers randomly in the polypropylene before it was fabricated in a compression molding machine where the composite was produced. The fiber content used were; 2%wt, 4%wt, 6%wt, 8%wt and 10%wt. Tensile and flexural properties was observed from universal testing machine while water absorption test was carried out on the samples for seven (7 days. It was observed that the influence of NaOH treatment highly enhanced the Flexural and water absorption properties of sponge fiber reinforced polypropylene composites than coconut fiber reinforced composite samples.

  2. Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers

    Science.gov (United States)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan

    2018-04-01

    Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.

  3. Using lithium glass infiltration to enhance the properties of alumina bodies

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2008-12-01

    Full Text Available The use of an infiltration process to improve the properties of sintered materials has been widely investigated. This work describes the research carried out in the manufacturing of lithium glass-infiltrated alumina. The infiltration material consisted of a mixture of elements such as Li2O, ZrO2, SiO2 Al2O3, CaO and La2O3. Alumina specimens were sintered in air at 1400 °C for 2 hours. A number of samples were then submitted to the infiltration process at 1400 °C for 15 minutes. Sintered and infiltrated specimens were characterized by X ray diffraction, apparent density, open porosity, flexural strengths and scanning electron microscopy. The results showed that the infiltration process considerably improves the properties of alumina bodies.

  4. Effect of Mn/Ti surface treatment on voltage-holdoff performance of alumina insulators in vaccum

    International Nuclear Information System (INIS)

    Miller, H.C.; Furno, E.J.

    1978-01-01

    The treatment of the surface of an alumina insulator with a Mn/Ti coating significantly increases its voltage-holdoff capability. Insulators treated with this coating had vacuum-holdoff voltages about 25% higher than did untreated insulators. During processing (quasimetallizing) the coating penetrates into the alumina, so it is fairly insensitive to damage by abrasion or electrical breakdown. The quasimetallized coatings is also comparable with subsequent metallizing and brazing of the alumina insulator. We conclude that the coating (1) decreases the surface resistivity of the insulator, (2) decreases the insulator's secondary-electron-emission yield, and (3) makes the surface of the insulator dielectrically more uniform

  5. The local strength of individual alumina particles

    Science.gov (United States)

    Pejchal, Václav; Fornabaio, Marta; Žagar, Goran; Mortensen, Andreas

    2017-12-01

    We implement the C-shaped sample test method and micro-cantilever beam testing to measure the local strength of microscopic, low-aspect-ratio ceramic particles, namely high-purity vapor grown α-alumina Sumicorundum® particles 15-30 μm in diameter, known to be attractive reinforcing particles for aluminum. Individual particles are shaped by focused ion beam micromachining so as to probe in tension a portion of the particle surface that is left unaffected by ion-milling. Mechanical testing of C-shaped specimens is done ex-situ using a nanoindentation apparatus, and in the SEM using an in-situ nanomechanical testing system for micro-cantilever beams. The strength is evaluated for each individual specimen using bespoke finite element simulation. Results show that, provided the particle surface is free of readily observable defects such as pores, twins or grain boundaries and their associated grooves, the particles can achieve local strength values that approach those of high-perfection single-crystal alumina whiskers, on the order of 10 GPa, outperforming high-strength nanocrystalline alumina fibers and nano-thick alumina platelets used in bio-inspired composites. It is also shown that by far the most harmful defects are grain boundaries, leading to the general conclusion that alumina particles must be single-crystalline or alternatively nanocrystalline to fully develop their potential as a strong reinforcing phase in composite materials.

  6. Alumina-base plasma-sprayed materials part I: Phase stability of alumina and alumina-chromia

    Science.gov (United States)

    Chráska, P.; Dubsky, J.; Neufuss, K.; Písacka, J.

    1997-09-01

    Aluminum oxide is a relatively cheap, abundant material that is widely used for plasma- spray applications. This material, however, exists in many crystallographic modifications with different properties. In addition, most of these modifications are metastable and cannot be used in applications employed at elevated temperatures. Usually γ, δ, or other phases form after spraying, while α phase (corundum) is often the most desirable phase due to high corrosion resistance and hardness. This paper first reviews the method of α stabilization in the as- sprayed materials offered in literature. Then, as an example, it summarizes the results of an extensive study of chromia additions to alumina. Chromia was chosen because of its complete solid solubility in alumina and its crystal lattice type, which is similar to that of alumina. It was demonstrated that the addition of approximately 20 wt% chromia results in the formation of one solid solution of (Al- Cr)2O3 in the α- modification. Finally, this paper discusses the thermal stability of various alumina phases. Phase change routes of heating for different starting alumina modifications are discussed, and a case study of alumina- chromia is presented. Both types of as-sprayed structures, a mixture of α, δ, and γ phases, and 100% (Al- Cr)2O3 were annealed up to 1300 °C and the phase composition checked. At lower temperatures and shorter holding times, the amount of α phase decreases while another metastable θ phase appears, and the fraction of γ + δ, if present, increases. At temperature above 1100 °C, the amount of α phase increases again.

  7. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  8. A hybrid approach to the surface biofunctionalization of nanostructured porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, Miguel Manso; Ruiz, Josefa Predestinacion Garcia [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Unidad Asociada GMNF (ICMM-CSIC), 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Bioingenieria Biomateriales y Nanomedicina (CIBERbbn) (Spain); Gonzalez, Ruy Sanz [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, 28049 Madrid (Spain); Velez, Manuel Hernandez [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Unidad Asociada GMNF (ICMM-CSIC), 28049 Madrid (Spain)

    2010-02-15

    The application of nanostructured porous alumina templates as a solid support in biomedical assays requires a surface biofunctionalization process that has been addressed in this work by an hybrid aminopropyl-triethoxysilane/tetraisopropyl-orthotitanate (APTS/ TIPT) self assembled film. The nanostructured porous alumina templates are activated in a peroxide solution before immersion in the biofunctionalizing APTS/TIPT solution. The biofunctionalization process was followed up by UV-vis spectroscopy, which confirmed the modification of the dielectric structure of the alumina surface. The influence of the biofunctionalization step in an immunological assay was carried out by fluorescence microscopy. Results confirm the gain in activity after the immobilization of an FITC labelled mouse Igg. Specific biological recognition in a bovine serum albumin (BSA)-antiBSA assay is proved afterwards by shifts observed in the reflectance interferograms thus providing a fast biosensing transducer platform. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Synthesis and characterization of alumina precursor and alumina to be used as nano composite; Sintese e caracterizacao de precursores de alumina e alumina para uso em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, M.L.P., E-mail: malu@sorocaba.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Santos, H. Souza [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Santos, P. Souza [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica

    2009-07-01

    With the evolution of nanomaterials technology, mainly in the 90s, it was possible to observe produced composites with alumina matrix and nanomaterial as reinforcing materials. It results in a significant improvement of mechanical proprieties of these composites. Thenceforth the study of synthesis and characterization of nanostructured materials has attracted great scientific interest. In this perspective, the aim of this work is to present an experimental procedure to obtain nordstrandite (aluminum hydroxide) with nanometric dimensions. Nordstrandite synthesis, obtained by the reaction of slightly amalgamated aluminum foil with aqueous ethylene glycol, which allows the control of the size of crystal produced. This control could be confirmed by X-Ray Diffraction and Electron Microscopy. Thermal transformation study is also presented. This study allowed the identification of transition aluminas that have potential to produce nanometric aluminas. (author)

  10. Electrochemically produced alumina as TL detector

    International Nuclear Information System (INIS)

    Osvay, M.

    1996-01-01

    The goal of this work was to compare the TL properties of various electrochemically produced alumina layers (E-AIO) in order to investigate the effect of the electrolyte and the Mg content on the alloys. It has been found that the TL sensitivity of oxidised layers is more influenced by the type of electrolyte, than by the composition of alloy. Hard oxide layer evolved in reduction electrolyte has rather different character compared to other alumina production investigated. The effect of reducing media seems to be very important during preparation of alumina layer. One of the advantages properties of E-AIO is, that it serve a promising method to increase the measuring range of TL method above 10 kGy as well. (author)

  11. Beta-alumina solid electrolyte separators

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.H.; Stead, R.J.

    1989-06-14

    A method of making a composite beta-alumina artifact such as a separator tube for an electrochemical cell, comprising two beta-alumina portions which are sealed together in a sealing zone, namely an inner portion and an outer portion which extends peripherally around the inner portion and embraces it in the sealing zone, comprises pressing the inner and outer portions from powders which, when finally sintered, shrink and form integral beta-alumina artifacts. The portions are made so that the outer portion undergoes a greater degree of shrinkage during sintering than the inner portion and the portions are pressed so that the spacing between the portions where the outer portion extends around and embraces the inner portion is such that, upon sintering, the outer portion shrinks on to the inner portion to provide a hermetic peripheral seal between the portions. (author).

  12. Hydrogen diffusion in Pb β''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.; Dudney, N.J.; Wang, J.C.

    1985-01-01

    The mobile Na + ions in Na β''-alumina can be completely exchanged with Pb 2+ ions by treatment in molten PbCl 2 . When this exchange was carried out in the presence of air, protons in the form of OH - were introduced into the conduction layers along with lead ions. Although the concentration of OH - was low, on the order of 5 x 10 -3 per formula unit of Pb/sub 0.84/Mg/sub 0.67/Al/sub 10.33/O_1_7, the distribution of OH - after ion exchange indicated that the proton mobility in Pb β''-alumina is high. The potential use of Pb β''-alumina as a fast proton conductor that is stable at 400 0 C motivated further studies of hydrogen diffusion. In this report, the results of tracer diffusion measurements by isotope exchange will be presented

  13. Blocking of grain reorientation in self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Ramirez-Rico, J.; Torrecillas, R.

    2011-01-01

    Alumina nanoparticles 10-20 nm in diameter were nucleated on alumina particles, 150 nm average diameter, by a colloidal route followed by calcination. It is shown that after sintering, the final grain size is up to 20% smaller due to the addition of the alumina nanoparticles. Electron backscattered diffraction analysis shows that whereas a correlation in the relative crystalline orientations between neighbouring grains exists in the pure materials, the addition of alumina nanoparticles results in a random crystalline orientation.

  14. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  15. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    Engr Solomn Gajere

    Gamma-alumina was produced at 850°C with 3 h soaking time, having specific surface area of 166 m2/g. The weight percent of Al2O3 ... conversion and gasoline octane number. (Scherzer, 1993). Among the different alumina ... common method of producing alumina is by the hydrothermal technique and the reaction takes.

  16. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  17. Characterization of alumina using small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro

    2007-01-01

    Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)

  18. Ionic and molecular transport in beta- and beta''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.

    1984-03-01

    Investigations of rapid transport of cations and water molecules in the β- and β''-alumina family of superionic conductors are reviewed. Particular topics that are discussed include the Haven ratio and mixed-ion effects in β-alumina, and the influence of superlattice ordering on ionic transport in β''-alumina

  19. Fabrication of a segmented composite stainless steel-alumina discharge tube for a theta-pinch coil

    International Nuclear Information System (INIS)

    Dickinson, J.M.; Stoddard, S.D.; Muller, J.F.

    1975-11-01

    An 80-mm-diam segmented discharge tube that simulated in a simplified way the blanket and first wall of the Reference Theta-Pinch Reactor (RTPR) has been constructed. The segments were fabricated by plasma-arc spraying an alumina coating on tubular stainless steel trapezoids. These were laid up to form a cylinder that was contained in a fully dense alumina vacuum tube. The fabrication processes are discussed in detail

  20. Studies of alumina additions in zirconia - magnesia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1987-01-01

    Ionic conductivity measurements have been carried out in the 500 0 C - 1000 0 C temperature range in Mg - PSZ (Partially Stabilized Zirconia) with 0.5 to 10 mol % alumina additions. All specimens were prepared by pressing followed by pre - and sintering at 1000 0 C/2h and1450 0 C/4h, respectively. Thermal histerysis of the ionic conductivity have been detected, probably due to phase changes in the Mg-PSZ samples. The results show that alumina additions up to 2.1% enhances densification with no major variations in electrical resistivity values. (Author) [pt

  1. Techniques for detection of transition phases in calcined alumina

    International Nuclear Information System (INIS)

    Pandolfelli, V.C.; Folgueras-Dominguez, S.

    1987-01-01

    Detection of transition phases in alumina, is very important in the receiving control and calcination of aluminium hydroxide. The non alfa or transition phases difficults the processability and causes localized shrinkage on sintering compromising the dimensional and mechanical aspects of the product. In this research using refraction index, absorption of dyes, specific density, X-ray diffraction and scanning electron microscopy, analyses, are done in calcined hydroxides submited to different thermal treatments. The limits and facilities of each technique are discussed and compared. (Author) [pt

  2. Recovery of alumina and some heavy metals from sulfate liquor

    Directory of Open Access Journals (Sweden)

    M.N. El Hazek

    2016-05-01

    Full Text Available The gibbsite bearing shale occurrence in the Paleozoic sedimentary sequence of SW Sinai, Egypt, was found to be associated with several metal values. From sulfate liquor prepared by proper leaching, the recovery of these metal values has been studied. Alumina was first separated in the form of potash alum followed by Cu-selective extraction by hydroxyoxime LIX-973N solvent. Then U recovery using an anionic exchange resin Amberlite IRA-400 was achieved. For the associated heavy metal Zn, it was subsequently extracted using di-2-ethylhexyl phosphoric acid. The relevant factors affecting the extraction process were adequately studied.

  3. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica

    Science.gov (United States)

    Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.

    2011-01-01

    Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.

  4. Effects of Starch on Properties of Alumina-based Ceramic Cores

    Directory of Open Access Journals (Sweden)

    LI Fengguang

    2016-12-01

    Full Text Available In order to improve the poor leachability of alumina-based ceramic cores, different amount of starch was added to the specimens as pore former. Alumina-based ceramic cores were prepared by hot injection technology using corundum powder as base material, paraffin wax and beeswax as plasticizer, silica powder and magnesium oxide powder as mineralizing agent, wherein the parameters of the hot injection process were as follows:temperature of the slurry was 90℃, hot injection pressure was 0.5 MPa and holding time was 25 s. The effects of starch content on the properties of alumina-based ceramic cores were studied and discussed. The results indicate that during sintering period, the loss of starch in the specimens makes porosity of the alumina-based ceramic cores increase. When starch content increases, the room-temperature flexural strength of the ceramic cores reduces and the apparent porosity increases; the volatile solvent increases and the bulk density decreases. After being sintered at 1560℃ for 2.5 h, room-temperature flexural strength of the alumina-based ceramic cores with starch content of 8%(mass fraction is 24.8 MPa, apparent porosity is 47.98% when the volatile solvent is 1.92 g/h and bulk density is 1.88 g/cm3, the complex properties are optimal.

  5. Feasibility study of use alumina waste in compositions containing clay for the mullite synthesis; Estudo da viabilidade do uso de residuo de alumina em composicoes contendo argilas destinadas a sintese de mulita

    Energy Technology Data Exchange (ETDEWEB)

    Silva, V.J.; Dias, G.; Goncalves, W.P.; Santana, L.N.L., E-mail: valmir_jspb@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2016-07-01

    The reuse of alumina residue in addition to reducing environmental impacts can be used as raw material in ceramic masses to mullite produce. This study aims to obtain mullite from compositions containing clays and alumina residue used heating in a conventional oven. The raw materials were processed and characterized. Subsequently, these compositions were formulated containing precursors in appropriate proportions based on the stoichiometry of the mullite 3:2. Then, heat treatment was performed at temperatures of 1300 to 1400°C and 5°C rate/min. The products obtained were characterized by XRD, analyzing qualitatively and quantitatively the phases formed. The results showed that is possible, from compositions containing clays and alumina residue to obtain mullite as major phase (>70%) and high crystallinity (> 80%) The percentage of mullite approached the values obtained with the compositions containing alumina and clays. (author)

  6. Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching

    Directory of Open Access Journals (Sweden)

    Thi Thuy Nhi Nguyen

    2018-03-01

    Full Text Available A process consisting of ball milling followed by NaOH leaching was developed to selectively dissolve alumina from black dross. From the ball milling treatment, it was found that milling speed greatly affected the leaching behavior of silica and the oxides of Ca, Fe, Mg, and Ti present in dross. The leaching behavior of the mechanically activated dross was investigated by varying NaOH concentration, leaching temperature and time, and pulp density. In most of the leaching conditions, only alumina and silica were dissolved, while the leaching percentage of other oxides was negligible. The leaching percentage of silica decreased rapidly to nearly zero as pulp density increased to 100 g/L. At the optimum leaching conditions (5 M NaOH, 50 °C, 2 h, pulp density of 100 g/L, the purity of Al in the leaching solution was higher than 98%, but the leaching percentage of alumina was only 35%.

  7. Minimum and Full Fluidization Velocity for Alumina Used in the Aluminum Smelter

    Directory of Open Access Journals (Sweden)

    Paulo Douglas S. de Vasconcelos

    2011-11-01

    Full Text Available Fluidization is an engineering unit operation that occurs when a fluid (liquid or gas ascends through a bed of particles, and these particles get a velocity of minimum fluidization enough to stay in suspension, but without carrying them in the ascending flow. As from this moment the powder behaves as liquid at boiling point, hence the term “fluidization”. This operation is widely used in the aluminum smelter processes, for gas dry scrubbing (mass transfer and in a modern plant for continuous alumina pot feeding (particles’ momentum transfer. The understanding of the alumina fluoride rheology is of vital importance in the design of fluidized beds for gas treatment and fluidized pipelines for pot feeding. This paper shows the results of the experimental and theoretical values of the minimum and full fluidization velocities for the alumina fluoride used to project the state of the art round non‐metallic air‐fluidized conveyor of multiples outlets.

  8. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Stratis V. Sotirchos

    2001-02-01

    The main objective of this research project was the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Since alumina has excellent resistance to corrosion but coefficient than silicon carbide, the key idea of this project has been to develop graded coatings with composition varying smoothly along their thickness between an inner (base) layer of mullite in contact with the silicon carbide component and an outer layer of pure alumina, which would function as the actual protective coating of the component. (Mullite presents very good adhesion towards silicon carbide and has thermal expansion coefficient very close to that of the latter.)

  9. A simple hydrothermal route to bimodal mesoporous nanorod {gamma}-alumina with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Han, Dezhi; Xue, Hongxia; Liu, Xinmei; Yan, Zifeng [China Univ. of Petroleum, Qingdao (China). State Key Lab. of Heavy Oil Processing

    2011-12-15

    In the presence of polyethylene glycol, bimodal mesoporous nanorod {gamma}-alumina was successfully synthesized via the thermal decomposition of ammonium aluminium carbonate hydroxide precursor which was prepared via hydrothermal processing with inorganic aluminium salt. The alumina exhibits high surface area (494 m{sup 2}g{sup -1}), large porosity (1.1 m{sup 3}g{sup -1}) and a particular double-pore structure after calcination at 500 C. The smaller pore diameter is concentrated on about 3 nm and the larger one is exhibited in the range of 10 - 38 nm. The scaffold-like aggregation of {gamma}-alumina nanorods endows this novel material with excellent thermal stability. A possible formation mechanism of bimodal mesoporous structure is also proposed in this study. (orig.)

  10. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  11. Atomic-scale non-contact AFM studies of alumina supported nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Meinander, Kristoffer; Simonsen, Søren Bredmose

    in the society today, both as the means for environmental protection and as the backbone technology for most of the chemical industries. Among important processes based on heterogeneous catalysis are biomass conversion, steam reforming of methane and the synthesis of synthetic fuel from hydrocarbons, coal...... conducting or non-conducting [2]. We use nc-AFM to study the growth, shape and size of nanoparticles on spinel and alumina surfaces. In addition to this, we have grown a transition alumina thin film on a spinel surface in order to characterize such a film as well as studying the catalytic properties...

  12. Preparation of alumina - β'. 2. Effects of the impurities in the ionic conductivity

    International Nuclear Information System (INIS)

    Casarini, J.R.; Souza, D.P.F.

    1984-01-01

    Sinterized samples of alumina - β' with 98% of theoretical density are obtained from alumina powder (β + β') with composition of 8.85% Na 2 O + 0.75% Li 2 O + 90.40% Al 2 O 3 . The concentration of this impurities is controled by the carbothermic reduction at 1300 0 C of aluminium hydroxide used as raw material. The final product of the reduction process is aluminium oxide. The conductivity measurement of the sodium beam is done in samples with (2.5 x 1.0 x 0.3) cm using synchronous phase amplificator. (E.G.) [pt

  13. Stabilization of Self-Assembled Alumina Mesophases

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Perdriau, Sebastien; ten Brink, Gert; Kooi, Bart J.; Heeres, Hero Jan; Melian-Cabrera, Ignacio

    2013-01-01

    An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum

  14. SANS investigation of nanoporous alumina membranes

    Czech Academy of Sciences Publication Activity Database

    Ryukhtin, Vasyl; Šaroun, Jan; Turkevych, I.

    -, č. 6 (2007), s. 35-36 ISSN 0344-9629 R&D Projects: GA ČR(CZ) GP202/06/P198 Institutional research plan: CEZ:AV0Z10480505 Keywords : nanopor * alumina membrane * netron scattering Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Synthesis of alumina-α using aluminium acetate; Sintese de alumina-α utilizando acetato de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Cartaxo, J.M.; Galdino, M.N.; Neves, G.A., E-mail: lulianamelo25@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Menezes, R.R.; Ferreira, H.S. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Engenharia de Materiais

    2011-07-01

    In the face of great technological importance of alumina, this paper aims to synthesize the α-alumina using chemical activation from aluminum acetate. The synthesized powders were characterized by X-ray diffraction and thermal analysis. The results obtained proved the thermal decomposition of the precursor, as well as possible metastable phases of alumina before the phase transformation in α. There was also difficult to obtain α-alumina from aluminum acetate, on the other hand there was, comparatively, that the chemical activation accelerated the synthesis of α-alumina. (author)

  16. Isotope geochemistry of brasiliano age, coarsely porphyritic, K-calc-alkalic granitoids and associated K-diorites, northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.; Mariano, G.; Ferreira, V.P.

    1989-01-01

    Several porphyritic, K-calc-alkalic were syntectonically intruded in NE Brazil during the Brasiliano orogeny. They show bi-(qz) diorite and coarsely porphyritic granodiorite to qz monzonite ('Itaporanga-type') in commingling zones on a scale of cm to m irrespective of whether plutons are at the margins of the NE-trending Cachoeirinha-Salgueiro Fold Belt (CSF) or intruded metasediments of the Serido Fold Belt (SFB). The bi(qz) diorites are found in magmatic or stromatic structures and narrow dikes wich intruded the felsic facies. SiO 2 in the porphyritic facies ranges from 61 to 72% with K 2 O usually > Na 2 O. K-diorities exhibit SiO 2 from 50 to 58%, MgO from 2 to 10% and K 2 O from 2 to 5%. Both facies are usually Ba and Sr-enriched, with similar, highly fractionated REE patterns, lacking free of Eu anomaly. Quartz 180 values are considered homogeneous on the scale of these intrusions in the CSF, (8 to 10 per milSMOW). Bi-(qz) diorites exhibit slightly higher 180 (9.5 to 10.5 per milSMOW). In the SFB both facies are lower than 180. The oxygen isotope data for the porphyritic facies are compatible with I-type source with some metasedimentary component of variable proportion. As bi(qz) diorites were formed pre- to post-porphyritic facies intrusion, their high LREE, K and 180 reflect their source rather than the interaction with the potassic felsic magma. Preliminarly sulfur isotope values suggest that porphyritic facies of granitoids in the SBF are lower in 34S than those in the CSF. Rb and Sr isotopes reflect source heterogeneity, complicated by mixing relations. Ages span from 510 to 630 Ma suggesting that the Itaporanga-type association was formed during uplift and cooling of the Pan-African I and onset of the Pan-African II orogenies, recognized in West Africa. (author) [pt

  17. Combustion chemical vapor deposition (CCVD) of LaPO4 monazite and beta-alumina on alumina fibers for ceramic matrix composites

    International Nuclear Information System (INIS)

    Hwang, T.J.; Hendrick, M.R.; Shao, H.; Hornis, H.G.; Hunt, A.T.

    1998-01-01

    This research used the low cost, open atmosphere combustion chemical vapor deposition (CCVD SM ) method to efficiently deposit protective coatings onto alumina fibers (3M Nextel TM 610) for use in ceramic matrix composites (CMCs). La-monazite (LaPO 4 ) and beta-alumina were the primary candidate debonding coating materials investigated. The coated fibers provide thermochemical stability, as well as desired debonding/sliding interface characteristics to the CMC. Dense and uniform La-phosphate coatings were obtained at deposition temperatures as low as 900-1000 C with minimal degradation of fibers. However, all of the β-alumina phases required high deposition temperatures and, thus, could not be applied onto the Nextel TM 610 alumina fibers. The fibers appeared to have complete and relatively uniform coatings around individual filaments when 420 and 1260 filament tows were coated via the CCVD process. Fibers up to 3 feet long were fed through the deposition flame in the laboratory of MicroCoating Technologies (MCT). TEM analyses performed at Wright-Patterson AFB on the CCVD coated fibers showed a 10-30 nm thick La-rich layer at the fiber/coating interface, and a layer of columnar monazite 0.1-1 μm thick covered with sooty carbon of <50 nm thick on the outside. A single strength test on CCVD coated fibers performed by 3M showed that the strength value fell in the higher end of data from other CVD coated samples. (orig.)

  18. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying

  19. Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Dao, Trung Dung; Jeong, Han Mo; Anjanapura, Raghu V.; Aminabhavi, Tejraj M.

    2015-01-01

    Graphene was oxidized with H 2 O 2 to introduce additional anchoring sites for effective alumina coating on graphene by the sol–gel method. The X-ray photoelectron spectroscopy studies showed that the oxygen-containing groups such as hydroxyl group useful for coating were introduced by the oxidation. The transmission electron microscopy images and thermogravimetric analysis data demonstrated that the additional anchoring sites enhanced the efficiency of the alumina coating. A small amount of alumina-coated graphene synergistically improved the thermal conductivity of the alumina sphere/thermoplastic polyurethane (TPU) composite without any increase in the electrical conductivity, because the electrical conductivity of graphene effectively decreased by the alumina coating. Moreover, the synergistic effect of a small amount of graphene was enhanced by the alumina coating, and the stiffening of the alumina sphere/TPU composite due to the added graphene was alleviated by the alumina coating. - Highlights: • Oxidation of graphene with H 2 O 2 introduced anchoring sites for alumina coating. • The anchoring sites improved the efficiency of alumina coating on graphene. • The alumina-coated graphene synergistically enhanced the thermal conductivity

  20. Electroless Fabrication of Cobalt Alloys Nanowires within Alumina Template

    Directory of Open Access Journals (Sweden)

    Nazila Dadvand

    2007-01-01

    Full Text Available A new method of nanowire fabrication based on electroless deposition process is described. The method is novel compared to the current electroless procedure used in making nanowires as it involves growing nanowires from the bottom up. The length of the nanowires was controlled at will simply by adjusting the deposition time. The nanowires were fabricated within the nanopores of an alumina template. It was accomplished by coating one side of the template by a thin layer of palladium in order to activate the electroless deposition within the nanopores from bottom up. However, prior to electroless deposition process, the template was pretreated with a suitable wetting agent in order to facilitate the penetration of the plating solution through the pores. As well, the electroless deposition process combined with oblique metal evaporation process within a prestructured silicon wafer was used in order to fabricate long nanowires along one side of the grooves within the wafer.

  1. Characterization of metallized alumina: properties. [Diamonite P-3142-1, Wesgo Al-500 alumina ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Swearengen, J.C.; Burchett, O.L., Gieske, J.H.

    1976-12-01

    The effects of metallizing and brazing on the mechanical properties of Diamonite P-3142-1 and Wesgo A1-500 alumina ceramics were evaluated. The information was required for analytical prediction of the performance of ceramic-to-metal joints formed by the metallize-braze process. Residual stresses and fracture strengths were monitored before and after metallizing treatments; micromechanical modelling and surface acoustic wave experiments were utilized to determine density, thermal expansion and elastic moduli within the metallized region of the ceramics. It was observed that the metallizing elements penetrate the ceramics to a depth of about 005 ..mu..m and measurably modify the properties to a depth of about 300 ..mu..m. The moduli and density are increased approximately five percent within the penetration zone. The thermal expansion coefficients are not modified significantly by metallizing; the warping which occurs during metallizing results from microstructural changes within the ceramics and not differential thermal contraction. Fracture toughness of the Diamonite ceramic is greater than that of the Wesgo, although the metallizing treatments increase the toughness of each. Fracture strength of the Diamonite was degraded on the metallized surface, whereas the strength of the Wesgo was essentially unchanged by metallizing. Macroscopic compressive residual stresses, which exist at the surfaces of the ceramics, do not significantly affect the fracture strengths. The implications of these results for calculations of joint performance are discussed.

  2. STUDI RECOVERY ALUMINA DARI TANAH LEMPUNG GAMBUT KAWASAN LANDASAN ULIN KOTA BANJARBARU

    Directory of Open Access Journals (Sweden)

    Sofyan Hadi

    2012-10-01

    Full Text Available Peat clay contains alumina (Al2O3 that has many benefits. The process of recovery of alumina from clay peat can be done by using the method of calcination and elutriasi (stirring. This research aims to recover the alumina from clay peat and study the effect of the addition of CaCl2variations and the effectiveness of stirring speed variations in the process of alumina recovery from clay soils. This research was conducted with several steps. Clay from the peat soil is cleaned and dried by drying. The dry clay that has been done peat milling and sifting to obtain the size of 75 mesh peat clay. A 75 mesh peat clay mixed with a variation ratio of CaCl2 and peat clay is 0,5:1, 1:1, and 1.5:1. Each mixture of CaCl2 and peat clay calcined by heating in a furnace at a temperature of 800°C for 4 hours. Calcined peat clay was performed milling and sifting through a 200 mesh. 80 grams of calcined clay peat size of 200 mesh is added 400 mL of HCl 6 N, then performed solid-liquid separation processes (leaching with stirring for 2 hours with stirring speed of 200 rpm, 300 rpm and 400 rpm. Solution of the leaching process was decanted and filtered. The filtrate of the result of leaching process is heated (evaporated until the remaining 100 mL, then added with 100 mL of aquadest. Heating (evaporating re-mixed filtrate and aquadest until the volume of 100 mL of this process while stirring by using stirer. Liquid contents alumina was tested using volumetric titration method based on SNI 13-6620-2001. Based on the results of the analysis initial sample obtained for the content of alumina in the peat clay is 2.81%. The final result is obtained optimum levels of alumina which can be recover from peat clay soi is 0,622%l using a variation of weight ratio CaCl2 and peat clay 0,5:1 with stirring speed of 400 rpm

  3. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification

    Energy Technology Data Exchange (ETDEWEB)

    Lamouri, S.; Hamidouche, M.; Bouaouadja, N.; Belhouchet, H.; Garnier, V.; Fantozzi, G.; Trelkat, J.F.

    2017-07-01

    In this work, we studied the aptitude to sintering green bodies using γ-Al2O3 transition alumina as raw powder. We focused on the influence of the heating rate on densification and microstructural evolution. Phase transformations from transition alumina γ→δ→θ→α-Al2O3 were studied by in situ X-rays diffraction from the ambient to 1200°C. XRD patterns revealed coexistence of various phase transformations during the heating cycle. DTA and dilatometry results showed that low heating rate leads to a significant reduction of the temperature of the α-Al2O3 alumina formation. Around 1190, 1217 and 1240°C were found when using 5, 10 and 20°C/min of heating rate, respectively. The activation energy for θ-Al2O3→α-Al2O3 transformation calculated by Kissinger and JMA equations using dilatometry method were 464.29 and 488.79kJ/mol, respectively and by DTA method were 450.72 and 475.49kJ/mol, respectively. In addition, the sintering of the green bodies with low heating rate promotes the rearrangement of the grains during θ-Al2O3→α-Al2O3 transformation, enhancing the relative density to 95% and preventing the development of a vermicular structure. (Author)

  4. Alkalization of steam and condensate with 2-amino-1-butanol and hydrazine; Alkalisering av aanga och kondensat med butanolamin och hydrazin

    Energy Technology Data Exchange (ETDEWEB)

    Falk, I. [Studsvik Material AB, Nykoeping (Sweden)

    1996-04-01

    To maintain a low corrosion level in steam- and condensate systems at power and industrial plants, an alkalization of the steam is needed. A low corrosion level lowers the risk of operation disturbances and reduces the cost of the condensate clean up. A better knowledge in the behavior of the alkalis will improve the possibilities to avoid the corrosion attacks. In this work experimental measurements have been carried out during steam boiler conditions as temperature, continuous steam generation and condensation. It has been found that the volatility of 2-amino-1-butanol is very low during stationary dynamic conditions at 250 deg C and 120 deg C. To achieve a high ph-value in the final condensate a very high concentration of 2-amino-1-butanol is thus needed especially when the steam contains acidic compounds. The alkalization effect is obtained from ammonia which is created by thermal decomposition of hydrazine in the boiler water. It is necessary to carry out experimental investigations showing the thermal stability of organic compounds in boiler water before it is possible to recommend them as better volatile alkalis than ammonia and hydrazine. 6 refs, 13 figs

  5. Petrogenesis of Cenozoic, alkalic volcanic lineages at Mount Morning, West Antarctica and their entrained lithospheric mantle xenoliths: Lithospheric versus asthenospheric mantle sources

    Science.gov (United States)

    Martin, Adam P.; Cooper, Alan F.; Price, Richard C.

    2013-12-01

    Two volcanic lineages are identified at Mount Morning, a Cenozoic to recent, eruptive centre in the Ross Sea, West Antarctica, which is part of the McMurdo Volcanic Group. Both the older (at least 18.7-11.4 Ma), mildly alkalic, nepheline- or quartz-normative Mason Spur Lineage, and the younger (at least 6-0.02 Ma), nepheline normative, strongly alkalic Riviera Ridge Lineage evolved by fractional crystallization from nominally anhydrous (Zealandia and eastern Australia share common chemical and isotopic source characteristics and they have been argued to collectively constitute a single diffuse alkaline magmatic province (DAMP). Source characteristic similarities suggest DAMP volcanic rocks inherit at least some of their trace element and isotopic characteristics from the lithospheric mantle. Super-chondritic Nb/Ta values measured in some SCLM xenoliths and volcanic rocks at Mount Morning, and in volcanic rocks across the DAMP, can be explained by addition of ⩽5 wt% carbonatite to the source. The DAMP SCLM is a significant Nb reservoir that offers an explanation for the Nb paradox.

  6. Joining of alumina via copper/niobium/copper interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.; Glaeser, Andreas M.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized alumina bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.

  7. Synthesis of Alumina Thin Films Using Reactive Magnetron Sputtering Method

    Science.gov (United States)

    Angarita, G.; Palacio, C.; Trujillo, M.; Arroyave, M.

    2017-06-01

    Alumina (Al2O3) thin films were deposited on Si (100) by Magnetron Sputtering in reactive conditions between an aluminium target and oxygen 99.99% pure. The plasma was formed employing Argon with an R.F power of 100 W, the dwelling time was 3 hours. 4 samples were produced with temperatures between 350 and 400 ºC in the substrate by using an oxygen flow of 2 and 8 sccm, the remaining parameters of the process were fixed. The coatings and substrates were characterized using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) in order to compare their properties before and after deposition. The films thicknesses were between 47 and 70 nm. The results show that at high oxygen flow the alumina structure prevails in the coatings while at lower oxygen flow only aluminum is deposited in the coatings. It was shown that the temperature increases grain size and roughness while decreasing the thicknesses of the coatings.

  8. Inelastic neutron scattering studies of methyl chloride synthesis over alumina.

    Science.gov (United States)

    Lennon, David; Parker, Stewart F

    2014-04-15

    Not only is alumina the most widely used catalyst support material in the world, it is also an important catalyst in its own right. One major chemical process that uses alumina in this respect is the industrial production of methyl chloride. This is a large scale process (650,000 metric tons in 2010 in the United States), and a key feedstock in the production of silicones that are widely used as household sealants. In this Account, we show how, in partnership with conventional spectroscopic and reaction testing methods, inelastic neutron scattering (INS) spectroscopy can provide additional insight into the active sites present on the catalyst, as well as the intermediates present on the catalyst surface. INS spectroscopy is a form of vibrational spectroscopy, where the spectral features are dominated by modes involving hydrogen. Because of this, most materials including alumina are largely transparent to neutrons. Advantageously, in this technique, the entire "mid-infrared", 0-4000 cm(-1), range is accessible; there is no cut-off at ~1400 cm(-1) as in infrared spectroscopy. It is also straightforward to distinguish fundamental modes from overtones and combinations. A key parameter in the catalyst's activity is the surface acidity. In infrared spectroscopy of adsorbed pyridine, the shifts in the ring stretching modes are dependent on the strength of the acid site. However, there is a very limited spectral range available. We discuss how we can observe the low energy ring deformation modes of adsorbed pyridine by INS spectroscopy. These modes can undergo shifts that are as large as those seen with infrared inspectroscopy, potentially enabling finer discrimination between acid sites. Surface hydroxyls play a key role in alumina catalysis, but in infrared spectroscopy, the presence of electrical anharmonicity complicates the interpretation of the O-H stretch region. In addition, the deformations lie below the infrared cut-off. Both of these limitations are irrelevant

  9. Silica containing highly porous alumina ceramic

    Science.gov (United States)

    Svinka, R.; Svinka, V.; Zake, I.

    2011-04-01

    Porous alumina ceramic were produced by slip casting of aqueous alumina slurry with added small amount of metallic aluminium powder. Pores form in result of chemical reaction of aluminum with water by hydrogen gas evolution reaction and solidification of suspension. Porosity of such materials sintered at a temperature of 1600 - 1750°C varies from 60 to 90%. Pore size distribution and mechanical strength of these materials depend largely on the grain size of used raw materials. The major part of pores in the materials produced without additive of silica are larger than 10 ±m, but with 5 - 10 wt.% additive of silica in the raw mix pore size decreases considerably. The sintering shrinkage decreases to 2.5%. Coefficient of thermal expansion equally decreases from 8.9-10-6 K-1 to 7.1 10-6 K-1 and classification temperature increases to 1600°C, while deformation at high temperature decreases considerably.

  10. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  11. Nitrogen Adsorption Study of Organised Mesoporous Alumina

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Žilková, Naděžda; Rathouský, Jiří; Zukal, Arnošt

    2001-01-01

    Roč. 3, č. 22 (2001), s. 5076-5081 ISSN 1463-9076 R&D Projects: GA AV ČR IAA4040001; GA MŠk ME 404 Grant - others:NATO(XE) SfP 974217 Institutional research plan: CEZ:AV0Z4040901 Keywords : nitrogen adsorption study * organised mesoporous alumina * reference nonporous solid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.787, year: 2001

  12. Effect of Calcination Temperature on Morphological and Topography of Nickel-Alumina Thin Film

    Directory of Open Access Journals (Sweden)

    Sarwani Khairul Ilman

    2016-01-01

    Full Text Available Dip coating process promises good potential of nickel-alumina catalyst deposition on metal substrate for various applications especially in gas conversion reaction. This study was conducted to investigate the effect of different calcination temperature on nickel-alumina catalysts thin film formation. Four different calcination temperature were used, which are 300°C, 400°C, 500°C and 600°C. The calculation process was conducted for a duration of 90 minutes. The deposited thin films were characterized using Atomic Force Microscopy (AFM and X-ray diffraction (XRD equipment. The AFM result showed that the surface roughness of the nickel-alumina increase proportionally from 56 to 275 nm when the calcination temperature increased from 300 to 600°C. From an observation at high calcination temperature, the atom of grains assisted diffusion at the crystallite point causing grain with lower surface energy become larger. As the calcination temperature increase, the surface profile becomes rough and uneven representing high surface roughness. Thus, the effect of calcination temperature greatly influences the surface roughness of the nickel-alumina thin film.

  13. Wet chemical synthesis of nickel supported on alumina catalysts; Sintese de catalisadores de niquel suportado em alumina por via umida

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Ranny Rodrigues; Costa, Talita Kenya Oliveira; Morais, Ana Carla da Fonseca Ferreira; Costa, Ana Cristina Figueiredo de Melo; Freitas, Normanda Lino de, E-mail: normanda@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2016-07-01

    Heterogenic catalysts are those found to be in a different phase on the reaction when compared to the reactants and products. Preferred when compared to homogeneous catalysts due to the easiness on which the separation is processed. The objective of this study is to obtain and characterize Alumina based catalysts impregnated with Nickel (Al{sub 2}O{sub 3}), by wet impregnation. The alumina was synthesized by combustion reaction. Before and after the impregnation the catalysts were characterized by X-ray diffraction (XRD), granulometric analysis, the textural analysis will be held by nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results show a presence of a stable crystalline phase of Al2O3 in all the studied samples and after the impregnation the second phase formed was of NiO and NiAl{sub 2}O{sub 4}. The Al{sub 2}O{sub 3} e Ni/Al{sub 2}O{sub 3} catalysts resulted in clusters with a medium diameter of 18.9 and 14.2 μm, respectively. The catalysts show a medium-pore characteristic (medium pore diameter between 2 and 50 nm), the superficial area to Al{sub 2}O{sub 3} and Ni/Al{sub 2}O{sub 3} catalysts were 8.69 m{sup 2}/g and 5.56 m{sup 2}/g, respectively. (author)

  14. Adsorption of chromium onto activated alumina: kinetics and thermodynamics studies.

    Science.gov (United States)

    Marzouk, Ikhlass; Dammak, Lassaad; Hamrouni, Béchir

    2013-02-01

    In this study, the removal of chromium (VI) by adsorption on activated alumina was investigated and the results were fitted to Langmuir, Freundlich, Dubinin-Redushkevich, and Temkin adsorption models at various temperatures. The constants of each model were evaluated depending on temperature. Thermodynamic parameters for the adsorption system were determined at 10, 25 and 40 degrees C. (deltaH degrees = -21.18 kJ x mol(-1); deltaG degrees = -8.75 to -7.43 kJ x mol(-1) and deltaS degrees = -0.043 kJ x K(-1) x mol(-1)). The obtained values showed that chromium (VI) adsorption is a spontaneous and exothermic process. The kinetic process was evaluated by first-order, second-order and Elovich kinetic models.

  15. Recovering metals from red mud generated during alumina production

    Science.gov (United States)

    Piga, Luigi; Pochetti, Fausto; Stoppa, Luisa

    1993-11-01

    There is growing interest in processing and utilizing the red mud by-product of the Bayer process for alumina extraction from bauxite. This interest stems largely from the environmental impacts associated with red mud and the storage costs involved. Furthermore, complete utilization of the raw materials, in this case bauxite, meets an ecological concept while ensuring raw material conservation. To prepare this article, the authors perused approximately 100 patents and articles in order to provide a concise description of the methods of storing red mud and its uses as a flocculant or construction material and in other minor applications. Special attention has been given to the methods developed for recovering metals contained in the red mud.

  16. Tribological and stability investigations of alkylphosphonic acids on alumina surface

    International Nuclear Information System (INIS)

    Cichomski, M.; Kośla, K.; Grobelny, J.; Kozłowski, W.; Szmaja, W.

    2013-01-01

    Alumina substrates are commonly used for various micro-/nanoelectromechanical systems (MEMS/NEMS). For efficient and lifetime longevity of these devices, lubricant films of self-assembled monolayers (SAMs) with nanometer thickness are increasingly being employed. In the present paper, we report preparation, tribological and stability investigations of alkylphosphonic acids on the alumina surface. The alkylphosphonic acids were prepared on the alumina surface using the liquid phase deposition method. The effectiveness of modification of the alumina surface by alkylphosphonic acids was investigated using water contact angle measurements, secondary ion mass spectrometry, X-ray photoelectron and infrared spectroscopy. Frictional behavior in milinewton load range was studied by microtribometry. It is shown that surface modification of the alumina surface by alkylphosphonic acids reduces the coefficient of friction values compared to the unmodified alumina. In comparison to the non-modified alumina surface, all tested alkylphosphonic acids cause a decrease in the friction coefficients in friction tests for counterparts made from different materials, such as steel, zirconia and silicon nitride. It is also found that the alumina surface modified by alkylphosphonic acids with longer chain has a higher degree of hydrophobicity and lower coefficient of friction. The best frictional properties are obtained for the system consisting of the alumina surface modified by n-octadecylphosphonic acid and silicon nitride counterpart. Stability tests in different environmental conditions: laboratory, acidic and alkaline solutions were also monitored.

  17. Synthesis and characterization of α-alumina col-gel nanometric: elaboration of biomaterials nanostructured for biomedical applications

    International Nuclear Information System (INIS)

    Passoni, L.S.; Feit, G.; Camargo, N.H.A.

    2010-01-01

    The production of nanostructured biomaterials are research themes for these present new characteristics of biocompatibility and bioactivity. The sol-gel process allows obtaining α-alumina nanometric with purity 99.99%. The use of nanoparticles of Al 2 O 3 -α, SiO 2 and TiO 2 are being employed as a second stage in the development of nanocomposites biomaterials. The presence of the second phase within a ceramic matrix leads to obtaining nanomaterials with micropores in micro and nanostructures interconnected, what contributes within the processes of osseous integration, osseous induction. The goal of this work focused on synthesis and characterization of an α- alumina by sol-gel process. Characterization studies were conducted using the various techniques: X-ray diffraction, scanning electron microscopy, exploratory differential scanning calorimetry and infrared spectrometry by Fourier transforms. The preliminary results showed the attainment the nanometric α-alumina powder. (author)

  18. Change in organic molecule adhesion on α-alumina (Sapphire) with change in NaCl and CaCl2 solution salinity

    DEFF Research Database (Denmark)

    Juhl, Klaus; Bovet, Nicolas Emile; Hassenkam, Tue

    2014-01-01

    We investigated the adhesion of two functional groups to α-alumina as a model for the adsorption of organic molecules on clay minerals. Interactions between organic compounds and clay minerals play an important role in processes such as drinking water treatment, remediation of contaminated soil...... protonated surface. The results demonstrate that the alumina surface at pH 3 has a higher affinity for inorganic cations than for -COO(H) or -C5H5N(H+), in spite of the known positive surface charge of α-alumina {0001} wafers. These results demonstrate that solution salinity plays an important role...

  19. Comparative study between yeasts immobilized on alumina beads and on membranes prepared by two routes

    Directory of Open Access Journals (Sweden)

    Kiyohara Pedro K.

    2003-01-01

    Full Text Available Alumina channeled beads and rough surface membranes prepared from aqueous sols of fibrillar pseudoboehmite are able to immobilize yeasts for ethanol fermentation of sugar solutions. This paper describes comparative results of assays carried out with yeasts immobilized onto alpha-alumina beads and membranes prepared under two different conditions of processing and firing. The fermentation tests evaluated by the decrease of fermentable sugars, referred as Brix degrees per hour, indicated that the yeasts immobilized on beads had similar performance, probably because their surfaces, even being morphologically different, presented the same value of open porosity. One type of membrane (asymmetrical; precursor: pseudoboehmite; firing temperature 1,150ºC; crystal structure; alpha-alumina had better performance than the other type (asymmetrical; precursor: fibrillar pseudoboehmite plus aluminum hydroxiacetate mixture; 1,150ºC; alpha-alumina because the yeast cells entered into their porous interior through the surface slits, were immobilized and their growth was easier than on the external surface.

  20. Influence of coprecipitation and mechanical mixture methods on the characteristics of nickel oxide-alumina composites

    International Nuclear Information System (INIS)

    Cordeiro, G.L.; Yoshito, W.K.; Ussui, V.; Lima, N.B. de; Lazar, D.R.R.

    2014-01-01

    Alumina-supported nickel catalysts are currently used in the reforming process due to low cost and high activity for hydrogen production from alcohols. In this work, the effect of preparation methods on nickel oxide-alumina based materials has been investigated. Nickel content was fixed at 15 wt%. Ceramic powders were obtained by coprecipitation in ammonia medium and mechanical mixture. Coprecipitated materials were calcined in air at 750 deg C to obtain the corresponding oxides. Materials obtained by mechanical mixture were prepared by wet milling of nickel oxide and alumina powders, both synthesized by precipitation and calcination in air at 450 and 750 deg C, respectively. Powders were characterized by X-ray diffraction, nitrogen gas sorption by applying the BET method, laser diffraction, scanning electron microscopy, electrophoretic mobility measurements for zeta potential determination and infrared spectroscopy. The results showed that coprecipitation method allowed the production of mixed oxides with high surface area (232,7 ± 3,2 m 2 .g -1 ) and normal granulometric distribution while mechanical mixture led to the formation of materials constituted by gamma alumina and nickel oxide phases, with low surface area (136,2 ± 0,5 m 2 .g -1 ) and bimodal granulometric distribution. (author)

  1. Zirconia dispersion as a toughening agent in alumina - Influence of the cerium oxide

    International Nuclear Information System (INIS)

    Gritti, Olivier

    1987-01-01

    The improvement of mechanical properties of alumina can be obtained by fine dispersion of zirconia particles. The addition of cerium oxide as a stabilizer of the tetragonal phase has been examined. Different powder preparations, based on impregnation of the alumina powder by zirconium and cerium precursor salts, have been studied. Parameters, such as properties of alumina powder and cerium oxide content, for the production of reactive powders have been determined by two laboratory processes. The sintering of these powders in air at 1600 deg. C has resulted in dense materials with homogeneous microstructure. The mechanical properties, in particular the biaxial flexure strength and the toughness, have been determined in the temperature range 20 deg. C-900 deg. C. A reinforcement of about 80 pc in comparison with alumina is achieved. The optimal composition is (Al 2 O 3 ) 0.8 (ZrO 2 ) 0.18 (CeO 2 ) 0.02 . In the other hand, powder preparation by spray drying has been chosen for an approach to a larger scale process. The sintered ceramics made with these powders present a double microstructure which does not affect the mechanical properties. The presence of cerium oxide produces the following improvements: - increased mobility of the intergranular zirconia inclusions which results in a faster densification; - stabilization of a tetragonal phase without prohibiting the stress induced transformation; - increase of the critical sizes of the tetragonal → monoclinic transformation; - a large decrease in the transformation kinetic in water at 300 deg. C in comparison with that observed for alumina-zirconia doped with yttrium oxide. (author) [fr

  2. Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2014-06-01

    Full Text Available Additive manufacturing of alumina by laser is a delicate process and small changes of processing parameters might cause less controlled and understood consequences. The real-time monitoring of temperature profiles, spectrum profiles and surface morphologies were evaluated in off-axial set-up for controlling the laser sintering of alumina ceramics. The real-time spectrometer and pyrometer were used for rapid monitoring of the thermal stability during the laser sintering process. An active illumination imaging system successfully recorded the high temperature melt pool and surrounding area simultaneously. The captured images also showed how the defects form and progress during the laser sintering process. All of these real-time monitoring methods have shown a great potential for on-line quality control during laser sintering of ceramics.

  3. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure

    International Nuclear Information System (INIS)

    Zuzjaková, Š.; Zeman, P.; Kos, Š.

    2013-01-01

    Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes

  4. Zirconia / Alumina Composite Foams with Calcium Phosphate Coating

    Directory of Open Access Journals (Sweden)

    Lenka Novotná

    2016-06-01

    Full Text Available In this study, mechanical properties of calcium phosphate foams were enhanced by zirconia/alumina porous cores prepared by polymer replica technique. This technique was chosen to ensure interconnected pores of optimal size for cell migration and attachment. The porosity of ZA cores (50 – 99% was controlled by multistep impregnation process, the size of pore windows was 300 – 500 μm. Sintered ZA cores were impregnated by hydroxyapatite or β-tricalcium phosphate slurry to improve bioactivity. The bone like apatite layer was formed on coatings when immersed in a simulated body fluid. Neither of tested materials was cytotoxic. Thus, the composite foam can be potentially used as a permanent substitute of cancellous bone.

  5. Current Trends in Nanoporous Anodized Alumina Platforms for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Ganesan Sriram

    2016-01-01

    Full Text Available Pristine aluminum (Al has received great deal of attention on fabrication of nanoporous anodized alumina (NAA with arrays of nanosized uniform pores with controllable pore sizes and lengths by the anodization process. There are many applications of NAA in the field of biosensors due to its numerous key factors such as ease of fabrication, high surface area, chemical stability and detection of biomolecules through bioconjugation of active molecules, its rapidness, and real-time monitoring. Herein, we reviewed the recent trends on the fabrication of NAA for high sensitive biosensor platforms like bare sensors, gold coated sensors, multilayer sensors, and microfluidic device supported sensors for the detection of various biomolecules. In addition, we have discussed the future prospectus about the improvement of NAA based biosensors for the detection of biomolecules.

  6. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  7. Chemical modification/grafting of mesoporous alumina with polydimethylsiloxane (PDMS)

    NARCIS (Netherlands)

    Pinheiro de Melo, A.F.; Nijmeijer, Arian; Sripathi, V.G.P.; Winnubst, Aloysius J.A.

    2015-01-01

    A method for polydimethylsiloxane grafting of alumina powders is described which involves chemical modification of the surface of mesoporous (5 nm) γ-alumina flakes with a linker (3-aminopropyltriethoxysilane: APTES), either by a solution phase (SPD) or a vapour phase (VPD) reaction, followed by

  8. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    Alumina balls worn out ( 14.2 × 10 − 1 mm 3 ) very rapidly with zero wear for diamond ceramic coatings. Since the generation of wear particle is the main problem for load-bearing prosthetic joints, it was concluded that the PCD material can potentially replace existing alumina bio-ceramic for their bettertribological properties ...

  9. Micrometer size grains of hot isostatically pressed alumina and its ...

    Indian Academy of Sciences (India)

    Administrator

    The. Vickers hardness in 5⋅5 μm grain microstructure is around 20 GPa in comparison to about 18 GPa in micro- structure with smaller grains of 2⋅2 μm size. Keywords. Alumina ... the technology of alumina ceramics (Munro 1997; Raha- man et al 2007) by purer ... reported interface-reaction-controlled kinetics of HIPing.

  10. APPLICATION OF VARIOUS TYPES OF ALUMINA AND NANO-γ ...

    African Journals Online (AJOL)

    Preferred Customer

    reported for the synthesis of α-aminonitriles, nucleophilic addition of cyanide ion to imines. (Strecker reaction), is of .... Application of various types of alumina and nano-γ-alumina sulfuric acid. Bull. Chem. Soc. ..... After purification by chromatography on silica gel (ethyl acetate/n-hexane 20:80) α-aminonitriles were obtained.

  11. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  12. Catalytic ozonation of 2,4-dichlorophenoxyacetic acid using alumina in the presence of a radical scavenger.

    Science.gov (United States)

    Guzman-Perez, Carlos A; Soltan, Jafar; Robertson, Jared

    2012-01-01

    Using a laboratory-scale mixed reactor, the performance of alumina in degrading 2,4-Dichlorophenoxyacetic acid with ozone in the presence of tert-butyl alcohol radical scavenger was studied. The operating variables investigated were the dose of alumina catalyst and solution pH. Results showed that using ozone and alumina leads to a significant increase in 2,4-D removal in comparison to non-catalytic ozonation and adsorption processes. The observed reaction rate constants (k(obs)) for 2,4-D during ozonation were found to increase linearly with increasing catalyst dose. At pH 5, the k(obs) value increased from 19.3 to 26 M(-1) s(-1) and 67 M(-1) s(-1) when varying the alumina dose from 1 to 2 and 4 g L(-1), respectively. As pH was increased, higher reaction rates were observed for both non-catalytic ozonation and catalytic ozonation processes. Thus, at pH 3 and using a catalyst dose of 8 g L(-1), the k(obs) values for non-catalytic ozonation and catalytic ozonation processes were 3.4 and 58.9 M(-1) s(-1), respectively, whereas at pH 5 reaction rate constants of 6.5 and 128.5 M(-1) s(-1) were observed, respectively. Analysis of total organic carbon suggested that catalytic ozonation with alumina achieved a considerable level of mineralization of 2,4-D. Adsorption of 2,4-D on alumina was found to play an important role in the catalytic ozonation process. Copyright © Taylor & Francis Group, LLC

  13. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  14. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  15. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems

    International Nuclear Information System (INIS)

    Ilyas, Suhaib Umer; Pendyala, Rajashekhar; Narahari, Marneni; Susin, Lim

    2017-01-01

    Highlights: • Alumina nanoparticles are functionalized with oleic acid. • Functionalization of alumina nanoparticles gives better dispersion in thermal oil. • Thermophysical properties of nanofluids are experimentally measured. • TGA confirms the improvement in life of nanofluids. - Abstract: Thermal oils are widely used as cooling media in heat transfer processes. However, their potential has not been utilised exquisitely in many applications due to low thermal properties. Thermal oil-based nanofluids are prepared by dispersing functionalized alumina with varying concentrations of 0.5–3 wt.% to enhance thermal properties of oil for advanced cooling systems. The oleic acid coated alumina is prepared and then dispersed in the oil to overcome the aggregation of nanoparticles in base fluid. The surface characterizations of functionalized nanoparticles are performed using different analysis such as XRD, EDS, SEM, TEM and FTIR. Dispersion behaviour and agglomeration studies are conducted at natural and functionalized conditions using different analysis to ensure long-term stability of nanofluids. In addition, rheological behaviour of non-Newtonian nanofluids is studied at high shear rates (100–2000 s −1 ). Effective densities and enhancement in thermal conductivities are measured for different nanofluids concentrations. Specific heat capacity is measured using Differential Scanning Calorimetry. The correlations are developed for thermophysical properties of nanofluids. Thermogravimetric analysis is performed with respect to temperature and time to exploit the effect of the addition of nanoparticles on the degradation of nanofluids. Significant improvement in the thermal properties of oil is observed using highly stable functionalized alumina nano-additives.

  16. Development of ceramic composites from mixture of alumina and ceramic precursor polymer poly (silsesquioxane))

    International Nuclear Information System (INIS)

    Machado, Glauson Aparecido Ferreira

    2009-01-01

    Processing of ceramics materials, by polymer precursors pyrolysis, has been intensively researched over the past decades, due to advantages that this path provides, such as: lower temperature process compared to conventional techniques; structure control at molecular level; synthesis possibility of a wide range of ceramic compounds; obtaining parts with dimensions of the final product etc. The active filler controlled polymer pyrolysis (AFCOP) process, enables the synthesis of ceramic composites, by reaction between added filler (oxides, metals, intermetallic etc.) and solid and gaseous products, from polymer decomposition. In this study, based on this process, samples of alumina, with addition of 10 and 20 mass% of poly silsesquioxane polymer precursor, were manufactured. These samples were pyrolyzed at 900 degree C and thermal treated at temperatures of 1100, 1300 and 1500 degree C. The samples were characterized for bulk density, porosity and hardness, after each stage of thermal treatment. Structural transformations were analyzed by X-ray diffraction, scanning electron microscopy and infrared spectroscopy. Samples treated until 1300 degree C resulted in composites of alumina and silicon oxycarbide, while those treated at 1500 degree C, formed composites of mullite and alumina. The samples with 20% of polymer added started to density around 800 degree C and high retraction rate was observed at 1400 degree C. (author)

  17. Fabrication of Densely Packed AlN Nanowires by a Chemical Conversion of Al2O3Nanowires Based on Porous Anodic Alumina Film

    Directory of Open Access Journals (Sweden)

    Wang Da-Jian

    2009-01-01

    Full Text Available Abstract Porous alumina film on aluminum with gel-like pore wall was prepared by a two-step anodization of aluminum, and the corresponding gel-like porous film was etched in diluted NaOH solution to produce alumina nanowires in the form of densely packed alignment. The resultant alumina nanowires were reacted with NH3and evaporated aluminum at an elevated temperature to be converted into densely packed aluminum nitride (AlN nanowires. The AlN nanowires have a diameter of 15–20 nm larger than that of the alumina nanowires due to the supplement of the additional evaporated aluminum. The results suggest that it might be possible to prepare other aluminum compound nanowires through similar process.

  18. Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching

    OpenAIRE

    Thi Thuy Nhi Nguyen; Man Seung Lee; Thi Hong Nguyen

    2018-01-01

    A process consisting of ball milling followed by NaOH leaching was developed to selectively dissolve alumina from black dross. From the ball milling treatment, it was found that milling speed greatly affected the leaching behavior of silica and the oxides of Ca, Fe, Mg, and Ti present in dross. The leaching behavior of the mechanically activated dross was investigated by varying NaOH concentration, leaching temperature and time, and pulp density. In most of the leaching conditions, only alumi...

  19. Thermal exposure effects on the mechanical properties of a polycrystalline alumina fiber/aluminum matrix composite

    Science.gov (United States)

    Olsen, G. C.

    1979-01-01

    The effects of thermal exposures and elevated test temperature on the mechanical properties of a unidirectional polycrystalline alumina fiber reinforced aluminum matrix composite were investigated. Test temperatures up to 590 K and 2500 hours exposures at 590 K did not significantly affect fiber dominated properties but did severely degrade matrix dominated properties. Fiber strength, degraded by the fabrication process, was restored by post fabrication thermal exposures. Possible degradation mechanisms are discussed.

  20. Microstructural evaluation of alumina-niobium and alumina- niobium-zircon ceramics for ballistic application

    International Nuclear Information System (INIS)

    Mota, Juliana Machado da; Lopes, Cristina Moniz Araujo; Melo, Francisco Lourenco Cristovao de

    2009-01-01

    This study aimed to evaluate the microstructural of Alumina- Niobium and Alumina- Niobium-Zircon ceramics. Samples with 3.5 x 4.5 x 34 mm dimensions were prepared by uniaxial pressure (50 MPa) followed by isostatic pressure (300 MPa). The samples were sintered at 1500 ° C for 1 hour. The ceramics obtained were characterized by scanning electron microscopy (SEM) and X-ray diffraction, to evaluate the phases and microstructures. In order to analyze the microstructure, by SEM the samples were prepared using two techniques: heat treatment (1350 ° C for 5 minutes) and thermochemical treatment (500 ° C for 8 minutes in a solution of NaOH and KOH) on polished and fractured surfaces. The results showed that despite differences between the two etchings, both were effective to analyze the microstructure. (author)

  1. Adsorption decontamination of radioactive waste solvent by activated alumina and bauxites

    International Nuclear Information System (INIS)

    Hassan, N.M.; Marra, J.C.; Kyser, E.A.

    1994-01-01

    An adsorption process utilizing activated alumina and activated bauxite adsorbents was evaluated as a function of operating parameters for the removal of low level radioactive contaminants from organic waste solvent generated in the fuel reprocessing facilities and support operations at Savannah River Site. The waste solvent, 30% volume tributyl phosphate in n-paraffin diluent, was degraded due to hydrolysis and radiolysis reactions of tributyl phosphate and n-paraffin diluent, producing fission product binding degradation impurities. The process, which has the potential for removing these activity-binding degradation impurities from the solvent, was operated downflow through glass columns packed with activated alumina and activated bauxite adsorbents. Experimental breakthrough curves were obtained under various operating temperatures and flow rates. The results show that the adsorption capacity of the activated alumina was in the order 10 4 dpm/g and the capacity of the activated bauxite was 10 5 dpm/g. The performance of the adsorption process was evaluated in terms of dynamic parameters (i.e. adsorption capacity, the height and the efficiency of adsorption zone) in such a way as to maximize the adsorption capacity and to minimize the height of the mass transfer or adsorption zone

  2. Dissolution kinetics for alumina in cryolite melts. Distribution of alumina in the electrolyte of industrial aluminium cells

    Energy Technology Data Exchange (ETDEWEB)

    Kobbeltvedt, Ove

    1997-12-31

    This thesis contributes to the understanding of which factors determine the rate of dissolution of alumina added to the bath in alumina reduction cells. Knowing this may help reduce the occurrences of operation interruptions and thus make it possible to produce aluminium using less energy. When alumina powder was added to a stirred cryolite melt, the alumina dissolved in two distinct main stages. In the first stage, the dissolution rate was very high, which reflects dissolution of single alumina grains that are being dispersed in the bath upon addition. In the second stage, lumps of alumina infiltrated with bath dissolved at a rate considerably slower than that of the first stage. The formation of these alumina agglomerates is the most important contributor to slow dissolution. The parameters varied in the experiments were convection, batch size, and temperature of the bath and of the added alumina. Increased gas stirring of the bath speeded up dissolution in both stages but the size of the batch was of little significance. Increasing the bath temperature had no effect in the first stage but speeded up dissolution considerably in the second stage. Compared to adding alumina at room temperature, preheating it to a high temperature (600 {sup o}C) increased the dissolution rate in the first stage while preheating to lower temperatures (100-300 {sup o}C) decreased the dissolution rate. In the second stage, preheating slowed the dissolution. The two latter phenomena of reduced dissolution rates are ascribed to the removal of moisture from the alumina upon preheating. The bath flow and the distribution of alumina in the bath were measured in four different types of cells. It was found that if a certain asymmetry of the magnetic field traverse to the cell was present, due to the presence of risers, then loops of high velocity bath flow occurred near the short ends of the cell. Thus, alumina added near the short ends is effectively transferred away from the feeding

  3. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    Stumpf, Aisha S.G.; Bergmann, Carlos P.; Vicenzi, Juliane; Fetter, Rebecca; Mundstock, Karina S.

    2009-01-01

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 o C. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, K IC , and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 o C, feldspar content up to 10% improved flexural strength and K IC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 o C but a beneficial effect on K IC of ceramics sintered at 1600 o C. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  4. Special requirements for alumina ceramic of ESG electrode bowl

    Science.gov (United States)

    Zhang, Jun-An; Xue, Kai; Zhang, Jia-Tai; Zhang, Qiang

    2004-06-01

    At present ESG (Electrostatic Suspended Gyro) is the most precise inertia element in the world. The electrode bowl, which has direct effect on the precision of ESG, is a key part to ESG. Through the analysis of the function and characteristic of the electrode bowl in hollow rotor ESG and the present situation of new material development in the world, the alumina ceramic is regarded as the best material for the electrode bowl of hollow rotor ESG. By analyzing the present situation of alumina ceramic in the world, main technique requirements have been put forward for the alumina ceramic of ESG electrode bowl which is also fit for solid rotor ESG.

  5. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  6. Dynamical stability of the alpha and theta phases of alumina

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Parlinski, K.

    2003-01-01

    Using density functional calculations the phonon dispersion relations, phonon density of states, and free energy of theta and alpha phases of alumina are investigated. The temperature dependence of the free energy indicates that entropy contributes to the destabilization of the alpha phase...... cations in alumina, and suggest that some other than entropic mechanism exists, which stabilizes transition aluminas up to 1400 K. The present calculations go beyond the ground state energy calculations [C. Wolverton and K.C. Hass, Phys. Rev. B 63, 24102 (2001)], and give an additional understanding...

  7. Crystallography of Alumina-YAG-Eutectic

    Science.gov (United States)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  8. Alumina strength degradation in the elastic regime

    International Nuclear Information System (INIS)

    Furnish, Michael D.; Chhabildas, Lalit C.

    1998-01-01

    Measurements of Kanel et al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. 'Failure' (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime

  9. Optimized alumina coagulants for water treatment

    Science.gov (United States)

    Nyman, May D [Albuquerque, NM; Stewart, Thomas A [Albuquerque, NM

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  10. The nature of the potassium compound acting as a promoter in iron-alumina catalysts for ammonia synthesis

    NARCIS (Netherlands)

    van Ommen, J.G.; Bolink, W.J.; Prasad, J.; Mars, P.

    1975-01-01

    The chemical form of the potassium promoter on an iron-alumina catalyst during ammonia synthesis has been studied by two methods, viz, (i) the measurement of the equilibrium constant of the process KNH2 + H2 KH + NH3, and (ii) chemical analysis of the used catalyst. The equilibrium constant

  11. Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study

    OpenAIRE

    Mohammadi, Maryam; Davoodi, Jamal; Javanbakht, Mahdi; Rezaei, Hamidreza

    2017-01-01

    In this study, the effect of alumina and modified alumina nanoparticles in a PMMA/alumina nanocomposite was investigated. To attain this goal, the glass transition behavior of poly methyl methacrylate (PMMA), PMMA/alumina and PMMA/hydroxylated alumina nanocomposites were investigated by molecular dynamic simulations (MD). All the MD simulations were performed using the Materials Studio 6.0 software package of Accelrys. To obtain the glass transition temperature, the variation of density vs. t...

  12. A Multilayer Model for Alumina Inclusion Transformation by Calcium in the Ladle Furnace

    Science.gov (United States)

    Tabatabaei, Yousef; Coley, Kenneth S.; Irons, Gordon A.; Sun, Stanley

    2018-02-01

    Calcium wire injection is widely used for modification of solid alumina inclusions to liquid or partially liquid calcium aluminate. In the present work, a multilayer growth model is proposed for modification of alumina inclusions. Diffusion through a multiphase product layer and mass transfer of solute through the boundary layer to the inclusion are taken into account in this model. It is assumed that the outer surface of the inclusion is thermodynamically in equilibrium with the local steel composition. The results show that the mass transfer of calcium through the boundary layer and within the inclusion is complete in a matter of seconds; furthermore, once the liquid calcium aluminate forms, it quickly consumes the other solid calcium aluminate phases. Because the calcium is so rapidly consumed by the inclusions, the rate of transformation in a calcium treatment process is controlled by the rate that calcium is supplied to the steel by the calcium bubbles.

  13. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  14. Aqueous Tape Casting of Alumina using an Emulsion of Urethane Polymer

    International Nuclear Information System (INIS)

    Takaishi, T; Inada, H; Sato, M; Sano, S; Kawakami, S

    2011-01-01

    From the viewpoint of solving environmental problems, changeover from organic solvent-based system to water-based system in tape casting process has been required. The effects of organic additives on the rheological properties of water-based alumina slurries were investigated. The aqueous slurries were prepared from low-soda alumina powder, deionized water, ammonium salt of polycarboxylic acid type dispersant, emulsion type urethane polymer binder and defoamer. By means of the zeta potential measurement, the optimum content of added dispersant was estimated. Furthermore, precipitation test, viscosity measurement and so on were performed. From these measurements, it was decided that optimum amounts of dispersant and binder were 0.8 mass% and 12 mass%, respectively. Well-dispersed and high solid content slurry gave good quality green sheets, and high density sintered bodies were obtained.

  15. Synthesis and Thermal Conductivity of Exfoliated Hexagonal Boron Nitride/Alumina Ceramic Composite

    Science.gov (United States)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Lizcano, Maricela; Kelly, Marisabel

    2017-01-01

    Exfoliated hexagonal boron nitride (hBN)/alumina composite can be fabricated by following the process of (1) heating a mixture of hBN, AlCl3, and NaF in nitrogen for intercalation; (2) heating the intercalated product in air for exfoliation and at the same time converting the intercalate (AlCl3) into Al2O3, (3) rinsing the oxidized product, (4) coating individual exfoliated hBN platelets that contain Al2O3 with new layers of aluminum oxide, and finally, (5) hot pressing the product into the composite. The composite thus obtained has a composition of approximately 60 percent by weight hBN and 40 percent by weight alumina. Its in-plane and through-plane thermal conductivity were measured to be 86 and 18 watts per meter Kelvin, respectively, at room temperature.

  16. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    Science.gov (United States)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  17. A Reliable Method for the Preparation of Multiporous Alumina Monoliths by Ice-Templating

    Directory of Open Access Journals (Sweden)

    Jérémy Dhainaut

    2016-03-01

    Full Text Available Alumina supports presenting a bimodal porosity are generally advantageous for the conversion of bulky molecules such as found in biomass, refining, and petrochemistry. However, shaping of such materials, while controlling pores size and orientation, proves to be hard. This problem can be tackled by using a simple method involving sol-gel chemistry, surfactant self-assembly, and ice-templating. Herein, a systematic study of the formulation and process parameters’ influence on the final material properties is presented. This protocol results in the repeatable preparation of centimeter-sized alumina monoliths presenting a uni-directional macroporosity and structured mesopores. These monoliths should be of particular interest in high flow rate catalytic applications.

  18. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  19. Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation

    Science.gov (United States)

    King, M.; Chong, E.; Freedman, M. A.

    2017-12-01

    Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.

  20. Recovery of alkali and alumina from Bayer red mud by the calcification-carbonation method

    Science.gov (United States)

    Zhu, Xiao-feng; Zhang, Ting-an; Wang, Yan-xiu; Lü, Guo-zhi; Zhang, Wei-guang

    2016-03-01

    Red mud produced in the Bayer process is a hazardous solid waste because of its high alkalinity; however, it is rich in valuable components such as titanium, iron, and aluminum. In this study, a novel calcification-carbonation method was developed to recover alkali and alumina from Bayer red mud under mild reaction conditions. Batch experiments were performed to evaluate the potential effects of important parameters such as temperature, amount of CaO added, and CO2 partial pressure on the recovery of alkali and alumina. The results showed that 95.2% alkali and 75.0% alumina were recovered from red mud with decreases in the mass ratios of Na2O to Fe2O3 and of Al2O3 to Fe2O3 from 0.42 and 0.89 to 0.02 and 0.22, respectively. The processed red mud with less than 0.5wt% Na2O can potentially be used as a construction material.

  1. Phase transformation of alumina coating by plasma assisted tempering of aluminized P91 steels

    International Nuclear Information System (INIS)

    Jamnapara, N.I.; Mukherjee, S.; Khanna, A.S.

    2015-01-01

    Highlights: • A novel plasma assisted heat treatment process for aluminized P91 steels is reported. • Plasma plays a vital role in phase transformation of Al 2 O 3 from θ to α phase. • Presence of O ∗ species in plasma facilitates θ to α transformation. - Abstract: α-Al 2 O 3 coating on aluminized surfaces are considered candidate coatings for blanket applications in fusion reactor. In order to generate α-Al 2 O 3 , aluminized P91 steel samples were subjected to normalizing and tempering treatments at 980 °C and 750 °C respectively. Oxygen plasma has been used during tempering treatment of aluminized P91 steel samples at 750 °C for 1 h. The resulting alumina coating on plasma tempered samples were compared with those of thermally tempered samples. The alumina films were characterized using XRD, XPS, and SEM–EDS techniques. Results indicate that the thermally tempered samples had θ-Al 2 O 3 coating while the plasma tempered samples had α-Al 2 O 3 coating after heat treatment. Such transformation of alumina phase was not visible without plasma. A hypothesis of θ to α-Al 2 O 3 transformation in plasma is proposed. This paper emphasizes the role of plasma processing on generation of an improved insulation coating for TBM applications in fusion reactors

  2. Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Thomson, K.E.; Jiang, D.; Yao, W.; Ritchie, R.O.; Mukherjee, A.K.

    2012-01-01

    Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering. Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNT) begin to break down at sintering temperatures >1150 °C. Nuclear magnetic resonance showed that, although thermodynamically unlikely, no Al 4 C 3 formed in the CNT–alumina nanocomposites, such that the nanocomposite can be considered as purely a physical mixture with no chemical bond formed between the nanotubes and ceramic matrix. In addition, in situ single-edge notched bend tests were conducted on niobium and/or CNT-reinforced alumina nanocomposites to assess their toughness. Despite the absence of subcritical crack growth, average fracture toughness values of 6.1 and 3.3 MPa m 1/2 were measured for 10 vol.% Nb and 10 vol.% Nb–5 vol.% SWCNT–alumina, respectively. Corresponding tests for the alumina nanocomposites containing 5 vol.% SWCNT, 10 vol.% SWCNT, 5 vol.% double-walled-CNT and 10 vol.% Nb yielded average fracture toughnesses of 3.0, 2.8, 3.3 and 4.0 MPa m 1/2 , respectively. It appears that the reason for not observing improvement in fracture toughness of CNT-reinforced samples is because of either damage to CNTs or possibly non-optimal interfacial bonding between CNT-alumina.

  3. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Florián-Algarín

    2018-03-01

    Full Text Available This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas welding of aluminum. A206 (Al-4.5Cu-0.25Mg master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  4. Efeito da adição de polímero precursor cerâmico na sinterização de alumina Effect of the addition of ceramic polymeric precursor on alumina sintering

    Directory of Open Access Journals (Sweden)

    A. L. E Godoy

    2010-03-01

    precursor polymers shows a suitable process for alumina-based ceramics, a simple forming route, with high potential for the fabrication of complex shape pieces.

  5. Characterization of the Uptake of Nitrogen Oxides on Alumina Adsorbents

    National Research Council Canada - National Science Library

    Pocengal, David

    1999-01-01

    ...) to quantify nitrate and nitrite (NOx) in aqueous solutions that contained NOx exposed alumina and to correlate the quantities of these surface NOx species with the quantity of gaseous NOx sorbed...

  6. Synthesis of α-Alumina (Corundum) and its Application

    International Nuclear Information System (INIS)

    Nay Thwe Kyi; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    This paper described the preparation of aluminium isopropoxide from aluminium sheet at different heating times.Aluminium sheet is found to have a reaction with absolute isopropyl alcohol and mercury (II) chloride as a catalyst under nitrogen atmosphere. Aluminium isopropoxide was characterized by NMR, XRD and IR. Aluminium isopropoxide serves as a molecular precursor to derive pure alumina gel by hydrolysis under both homogeneous and heterogeneous conditions. Pyrolysis to this alumina gel transforms it into -aluminia (corundum) at 1200'C. The phase transformation during pyrolysis was characterized by XRD, SEM and TEM. The alumina (corundum) has porous crystalline nature with high surface aera, which may be used as efficient adsorbent packing material in coloumn chromatography for the seperation of vitamin A from the leaves. -alumina can be also used in catalysis

  7. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  8. Synthesis of beta alumina from aluminum hydroxide and oxyhydroxide precursors

    CSIR Research Space (South Africa)

    Van Zyl, A

    1993-02-01

    Full Text Available Two aluminium oxyhydroxides, boehmite and pseudoboehmite, and two aluminium hydroxides, bayerite and gibbsite, have been investigated as precursors for the synthesis of the solid electrolyte, beta alumina. Reaction pathways and products have been...

  9. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  10. Superhydrophobic alumina surface based on stearic acid modification

    Energy Technology Data Exchange (ETDEWEB)

    Feng Libang, E-mail: lepond@hotmail.com [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China); Zhang Hongxia; Mao Pengzhi; Wang Yanping; Ge Yang [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2011-02-15

    A novel superhydrophobic alumina surface is fabricated by grafting stearic acid layer onto the porous and roughened aluminum film. The chemical and phase structure, morphology, and the chemical state of the atoms at the superhydrophobic surface were investigated by techniques as FTIR, XRD, FE-SEM, and XPS, respectively. Results show that a super water-repellent surface with a contact angle of 154.2{sup o} is generated. The superhydrophobic alumina surface takes on an uneven flowerlike structure with many nanometer-scale hollows distribute in the nipple-shaped protrusions, and which is composed of boehmite crystal and {gamma}-Al{sub 2}O{sub 3}. Furthermore, the roughened and porous alumina surface is coated with a layer of hydrophobic alkyl chains which come from stearic acid molecules. Therefore, both the roughened structure and the hydrophobic layer endue the alumina surface with the superhydrophobic behavior.

  11. Pressure driven water flow through hydrophilic alumina nanomembranes

    Science.gov (United States)

    Beskok, Ali; Koklu, Anil; Sengor, Sevinc

    2017-11-01

    We present an experimental study that focuses on pressure-driven flow of distilled water through alumina membranes with 5, 10 and 20 nm pore radii. The nanopore geometry, pore size and porosity are characterized using scanning electron microscopy images taken pre and post-flow experiments. Comparisons of these images have shown reduction in the pore size, which is attributed to precipitation of hydroxyl groups on alumina surfaces. Measured flowrates compared with the Hagen-Poiseuille flow relations consistently predict 2.2 nm reductions in the pore size for three different membranes. This behavior can be explained by the formation of a thick stick layer of water molecules over hydroxylated alumina surfaces, evidenced by water droplet contact angle measurements that exhibit increased hydrophilicity of alumina surfaces. Other possible effects of the mismatch between theory and experiments such as unaccounted pressure losses in the system or the streaming potential effects were also considered, but shown to be negligible for current experimental conditions.

  12. Radiological assessment for bauxite mining and alumina refining.

    Science.gov (United States)

    O'Connor, Brian H; Donoghue, A Michael; Manning, Timothy J H; Chesson, Barry J

    2013-01-01

    Two international benchmarks assess whether the mining and processing of ores containing Naturally Occurring Radioactive Material (NORM) require management under radiological regulations set by local jurisdictions. First, the 1 Bq/g benchmark for radionuclide head of chain activity concentration determines whether materials may be excluded from radiological regulation. Second, processes may be exempted from radiological regulation where occupational above-background exposures for members of the workforce do not exceed 1 mSv/year. This is also the upper-limit of exposure prescribed for members of the public. Alcoa of Australia Limited (Alcoa) has undertaken radiological evaluations of the mining and processing of bauxite from the Darling Range of Western Australia since the 1980s. Short-term monitoring projects have demonstrated that above-background exposures for workers do not exceed 1 mSv/year. A whole-of-year evaluation of above-background, occupational radiological doses for bauxite mining, alumina refining and residue operations was conducted during 2008/2009 as part of the Alcoa NORM Quality Assurance System (NQAS). The NQAS has been guided by publications from the International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). The NQAS has been developed specifically in response to implementation of the Australian National Directory on Radiation Protection (NDRP). Positional monitoring was undertaken to increase the accuracy of natural background levels required for correction of occupational exposures. This is important in view of the small increments in exposure that occur in bauxite mining, alumina refining and residue operations relative to natural background. Positional monitoring was also undertaken to assess the potential for exposure in operating locations. Personal monitoring was undertaken to characterise exposures in Similar

  13. Ceramic joining through reactive wetting of alumina with calcium ...

    Indian Academy of Sciences (India)

    investigations are carried out in non-oxide ceramics such as AlN, Si3N4, SiC etc while ZrO2 and Al2O3 are the usu- ally considered oxide materials for many applications. The literature about alumina joining is very much limited when compared to other ceramics like Si3N4 and SiC. Alumina, both as single crystal and in ...

  14. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  15. [Phenotypic plasticity and its regulation of tillers prolonged reproductive growth of Puccinellia tenuiflora population on alkalized meadow in Songnen Plains of China].

    Science.gov (United States)

    Sun, Ju; Yang, Yun-Fei

    2007-04-01

    Puccinellia tenuiflora is a salt-tolerant plant of grass family. By the method of random sampling, big samples of reproductive tillers of P. tenuiflora population on the alkalized meadow in the Songnen Plains of China were collected at early heading, heading, flowering, and milky stages, respectively, and the plasticity of their quantitative characters was analyzed. The results showed that except some fluctuations at flowering stage, the tiller height, tiller biomass, spike length and spike biomass of the reproductive tillers at other three growth stages increased significantly every five days with the increasing time of reproductive growth. At each growth stage, tiller height had a significant positive correlation with spike biomass, but a negative correlation with reproductive allocation. With the time of reproductive growth prolonged, the increasing rate of spike biomass at early heading, flowering and milky stages increased in power function with the increase of tiller height. The reproductive allocation decreased linearly by 43.2% and 44.31% at early heading and heading stages, respectively when the reproductive growth time increased ten days, and by 130% at milky stage when the time increased five days. The regulation of the tiller phenotypic plasticity of P. tenuiflora population at its reproductive growth stage followed definite patterns.

  16. Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system.

    Science.gov (United States)

    Chong, Gang-Gang; He, Yu-Cai; Liu, Qiu-Xiang; Kou, Xiao-Qin; Huang, Xiao-Jun; Di, Jun-Hua; Ma, Cui-Luan

    2017-10-01

    In this study, dilute alkali salts (0.6% NaClO, 0.067% Na 2 S) pretreatment at 10% sulfidity under the autoclave system at 120°C for 40min was used for pretreating bamboo shoot shell (BSS). Furthermore, FT-IR, XRD and SEM were employed to characterize the changes in the cellulose structural characteristics (porosity, morphology, and crystallinity) of the pretreated BSS solid residue. After 72h, the reducing sugars and glucose from the enzymatic in situ hydrolysis of 50g/L pretreated BSS in dilute NaClO/Na 2 S media could be obtained at 31.11 and 20.32g/L, respectively. Finally, the obtained BSS-hydrolysates containing alkalic salt NaClO/Na 2 S resulted in slightly negative effects on the ethanol production. Glucose in BSS-hydrolysates was fermented from 20.0 to 0.17g/L within 48h, and an ethanol yield of 0.41g/g glucose, which represents 80.1% of the theoretical yield, was obtained. This study provided an effective strategy for potential utilization of BSS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Crack defect formation during manufacture of fused cast alumina refractories

    Science.gov (United States)

    Au, Dominic; Cockcroft, Steve; Maijer, Daan

    2002-07-01

    A sequentially coupled mathematical thermal-stress model, based on the commercial finite-element code ABAQUS, has been developed to rationalize crack defect formation in fused cast αβ-alumina refractories used in the glass industry. The thermal model was validated against thermocouple and pyrometer measurements obtained in an industrial setting. The temperature predictions obtained from the thermal model were employed as input to the elastic strain-rate-independent plastic stress model. The constitutive behavior of αβ-alumina has been determined over a range of temperatures for input to the stress model. The distribution of β-alumina that forms in the center of the casting due to rejection of Na2O during solidifcation was introduced in the stress model through a user-defined subroutine in order to account for the effect of differences in the thermal contraction behavior and elastic modulus of the αβ- and β-alumina phases. The stress analysis indicates that temperature gradients as well as the different dilatational behavior of the αβ- and β-alumina phases are the main drivers of stress and strain evolution during solidification and subsequent cooling. The β-alumina core, in particular, plays an important role in the generation of tensile stresses and likely gives rise to the generation of the internal cracks observed in industrial castings.

  18. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  19. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    Science.gov (United States)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  20. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  1. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    Science.gov (United States)

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  2. Nano or micro grained alumina powder? A choose before sintering

    Directory of Open Access Journals (Sweden)

    Román, R.

    2008-12-01

    Full Text Available Two different wet routes have been used to synthesize alumina powders in order to compare the characteristics of the final product and its behaviour during sintering. The Homogeneous Precipitation (HP gives rise to nanoparticulated powders of about 2 nm. However, such particles quickly aggregate and grow with calcination temperature. The Polymerized Organic-Inorganic Synthesis (POI produces homogeneous particle size powders (about 1 micron after resin charring. The characterization of the powder surface is the basis of an efficient process control. Particle characterization parameters (morphology, crystallinity and degree of aggregation are characterized by different techniques, such as DTA/TG, IR, XRD, SEM and TEM, and compared between these synthesis methods. The results show the evolution from the amorphous to the corundum alumina phase for both processes and their ability for sintering, as well discuses the beneficial of nanoparticles obtained by HP during sintering.

    Se han utilizado dos diferentes síntesis por vía húmeda para la preparación de polvos de alúmina con el fin de comparar las características de los productos finales y su comportamiento durante la sinterización. La Precipitación Homogénea (HP da lugar a polvos nanoparticulados de unos 2nm. Se observa sin embargo, como estas partículas se agregan rápidamente y crecen con la temperatura de calcinación. La Síntesis por Polimerización Orgánica-Inorgánica (POI produce polvos de tamaño de partícula homogéneo (en torno a 1 micra después de la descomposión de la resina. La caracterización de la superficie de los polvos es la base de un control eficiente del proceso. Los parámetros de caracterización de las partículas obtenidas (morfología, cristalinidad y grado de agregación se obtienen por diferentes técnicas como DTA/TG, IR, XRD, SEM y TEM, y se comparan entre estos métodos de síntesis. Los resultados muestran la evolución desde el amorfo a la fase

  3. Influence of additives on the stability of the phases of alumina; Influencia de aditivos na estabilidade das fases da alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D.C.C.; Gouvea, D., E-mail: deisedorosario@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Processos Ceramicos

    2011-07-01

    Problems with the stability of gamma alumina in catalytic reactions have been solved with the inclusion of additives during the synthesis of alumina. These additives stabilize the temperature of phase transition allowing the use of metastable alumina at high temperatures, but the mechanisms of action of additives are not well defined. It is known that each family of additive or additives behaves in different ways for this stabilization. This work aimed to study the performance of MgO and ZrO{sub 2}, respectively at different concentrations in alumina synthesized via Pechini. The samples were analyzed by DSC, X-ray diffraction, measurement of specific surface area by BET analysis, and infrared analysis. The results showed an increase in transition temperature for both additives, and a different changes for specific surface area, showing that MgO and ZrO{sub 2} work on improving the stability but with distinct mechanisms. (author)

  4. Preparation of a Pd-Pt alloy on alumina and its application for a gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of)]. E-mail: minm@kaeri.re.kr; Paek, Seungwoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Ahn, Do-Hee [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Kwang-Rag [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Yim, Sung-Paal [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Chung, Hongsuk [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2007-08-30

    In this study we attempted to obtain a Pd-Pt alloy on alumina (PPA) by using an impregnation and alcohol reduction method for the purpose of a hydrogen isotopes separation, in which {alpha}-alumina powder was impregnated into an ethanol water (1/1, w/w) solution containing PdCl{sub 2}, PtCl{sub 2}, and polyvinylpyrrolidone (PVP, MW = 10,000). The sample was dried, reduced by hydrogen, and thermally treated at 1073 K. Thus, two kinds of PPA (Pd content 17 and 29 wt%) were achieved. The produced PPA showed a good crystallinity from the XRD analysis and it exhibited an adequate hydrogen desorption isotherm as a packing material for the separation of hydrogen isotopes. GC columns packed with PPA and Cu powder were used for the separation of a 29.2% D{sub 2}-H{sub 2} gas mixture at 303 and 343 K. The experimental result showed a good separation efficiency of the hydrogen isotopes for the GC process. Consequently, the suggested technique for the production of a Pd-Pt alloy on alumina was proven to be successful.

  5. Effect of surface finishing and heat treatments on the mechanical strength of sintered alumina

    International Nuclear Information System (INIS)

    Lino, U.R.A.

    1982-04-01

    The effect of surface finishing on the mechanical strength of two pure aluminas, one of self-production and another a commercial one, is studied. Three types of finishings: as-sintered, as machined and as-machined with thermal treatment were studied. It was verified that the as-machined alumina is about 50 percent stronger than the as-sintered one, and that a thermal treatment increases even more the mechanical strength of the sintered alumina. The effect of the volume and pressing direction on mechanical strength was studied. The kinetics of crack healing was determined from a series of systematically selected thermal treatments with annealing temperatures between 1200 0 C and 1600 0 C. It was verified that a recently developed theoretical model for crack healing can describe the experimental results; using this model a value for the activation energy of the process of 715 kJ/mcl was obtained, which suggests that crack healing is promoted by volume diffusion. The material behavior under subcritical crack growth action was also studied, and a value of about 40 for the subcritical crack growth exponent N from dynamic loading tests in water was found. A fractographic study intended to localize and measure the flaws that originated the fracture of the tested specimens was performed; the measured flaw sizes were compared with the flaw size calculated from the values of the measured mechanical strength; in this comparison an excellent agreement was observed. (Author) [pt

  6. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications.

    Science.gov (United States)

    Shirazi, F S; Mehrali, M; Oshkour, A A; Metselaar, H S C; Kadri, N A; Abu Osman, N A

    2014-02-01

    The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0-50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500-700nm after sintering process. © 2013 Published by Elsevier Ltd.

  7. Recovery of alumina from khushab bauxite by leaching with sulphuric acid and removal of iron impurity by ethanol

    International Nuclear Information System (INIS)

    Tariq, M.; Iqbal, M.M.; Shafiq, M.; Aziz, A.

    2014-01-01

    Bauxite is heterogeneous material principally composed of aluminum oxide minerals and found in all continents. It is being used in chemical, cement, refractory, abrasive, fertilizer, steel and other industries. In order to extract the alumina, the calcined samples of bauxite of Khushab area were ground to -710 meum. Sulphuric acid of purity 40% was used as leaching agent and slurry of pulp density 14% was prepared by dissolving 60 ml acid in 20 gm sample. The leaching was carried out at 90 degree C for 2 hours. The iron impurity was removed by ethanol of purity 68%. The drying, dehydration and desulphurization temperatures were kept 105 degree C, 450 degree C and 850 degree C respectively in all the stages of the process. Alumina recoveries from four samples of Sultan Mehdhi, Chamil More, Niaz Mine and Nadi locations were 20.8%, 9.81%, 15.47% and 7.78% respectively. Iron was almost completely removed as the analysis shows that the Fe/sub 2/O/sub 3/ removal was from 97.8% to 99.6%. It is concluded that leaching efficiency was quite encouraging except Nadi ore sample. However the iron free alumina recoveries were low as the analysis of Fe/sub 2/O/sub 3/ processed residue shows that it contains 72.72% to 92.94% of leached alumina in all the four experiments. (author)

  8. Uso do resíduo de catalisador de processo de craqueamento catalítico fluído de hidrocarbonetos em refratários silicoaluminosos Use of catalyst waste from hydrocarbon fluid catalytic cracking process in alumina-silica refractories

    Directory of Open Access Journals (Sweden)

    L. P. Garcia

    2009-06-01

    Full Text Available Este trabalho objetivou o desenvolvimento de metodologia para o aproveitamento do resíduo de catalisador de craqueamento de hidrocarbonetos, na produção de refratários silicoaluminosos. Esse resíduo foi utilizado em substituição às matérias-primas convencionais, com o conseqüente ganho ambiental e econômico. Com base em composições químicas e mineralógicas, foram selecionadas formulações de massas refratárias, as quais foram queimadas em temperaturas similares às utilizadas para queima de refratários silicoaluminosos comerciais. A análise das propriedades tecnológicas apresentadas, dentre as formulações propostas, definiu que a formulação que continha 15% em peso de catalisador gasto, obteve as melhores características, sendo estas semelhantes às de um material refratário comercial.This work aimed the development of methodology for the utilization of the residue of catalyst from of hydro-carbons catalytic cracking process in the production of alumina-silica refractory. This residue was used in substitution of part of conventional raw materials, with the consequent ambient and economic profit. It was selected some formulations based on the chemical and mineralogical compositions of refractory masses. They were fired in similar temperatures to the ones used for production of commercial refractories. The analysis of the technological properties of the formulations proposed, defined that the composition that contained 15% wt of catalyst waste got the best characteristics. The final product showed technical parameters similar to the ones of commercial refractory material.

  9. Coprecipitated nickel-alumina methanation catalysts

    International Nuclear Information System (INIS)

    Kruissink, E.C.

    1981-01-01

    In the last few years there has been a renewed interest in the methanation reaction CO+3H 2 =CH 4 +H 2 O. The investigations described in this thesis were performed in relation to the application of this reaction, within the framework of the so-called 'NFE' project, also called 'ADAM' and 'EVA' project. This project, which has been under investigation in West Germany for some years, aims at the investigation of the feasibility of transporting heat from a nuclear high temperature reactor by means of a chemical cycle. A promising possibility to realize such a cycle exists in applying the combination of the endothermic steam reforming of methane and the exothermic methanation reaction. This thesis describes the investigations into a certain type of methanation catalyst, viz. a coprecipitated nickel-alumina catalyst, with the aim to give more insight into the interrelationship between the preparation conditions on the one hand and catalyst properties such as activity and stability on the other hand. (Auth.)

  10. Influence of coprecipitation and mechanical mixture methods on the characteristics of nickel oxide-alumina composites; Influencia dos metodos de coprecipitacao e mistura mecanica nas caracteristicas de compositos oxido de niquel-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, G.L.; Yoshito, W.K.; Ussui, V.; Lima, N.B. de; Lazar, D.R.R., E-mail: gcordeiro@usp.br [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2014-07-01

    Alumina-supported nickel catalysts are currently used in the reforming process due to low cost and high activity for hydrogen production from alcohols. In this work, the effect of preparation methods on nickel oxide-alumina based materials has been investigated. Nickel content was fixed at 15 wt%. Ceramic powders were obtained by coprecipitation in ammonia medium and mechanical mixture. Coprecipitated materials were calcined in air at 750 deg C to obtain the corresponding oxides. Materials obtained by mechanical mixture were prepared by wet milling of nickel oxide and alumina powders, both synthesized by precipitation and calcination in air at 450 and 750 deg C, respectively. Powders were characterized by X-ray diffraction, nitrogen gas sorption by applying the BET method, laser diffraction, scanning electron microscopy, electrophoretic mobility measurements for zeta potential determination and infrared spectroscopy. The results showed that coprecipitation method allowed the production of mixed oxides with high surface area (232,7 ± 3,2 m{sup 2}.g{sup -1}) and normal granulometric distribution while mechanical mixture led to the formation of materials constituted by gamma alumina and nickel oxide phases, with low surface area (136,2 ± 0,5 m{sup 2}.g{sup -1}) and bimodal granulometric distribution. (author)

  11. Alumina-on-alumina total hip replacement for femoral neck fracture in healthy patients

    Directory of Open Access Journals (Sweden)

    Moretti Lorenzo

    2011-02-01

    Full Text Available Abstract Background Total hip replacement is considered the best option for treatment of displaced intracapsular fractures of the femoral neck (FFN. The size of the femoral head is an important factor that influences the outcome of a total hip arthroplasty (THA: implants with a 28 mm femoral head are more prone to dislocate than implants with a 32 mm head. Obviously, a large head coupled to a polyethylene inlay can lead to more wear, osteolysis and failure of the implant. Ceramic induces less friction and minimal wear even with larger heads. Methods A total of 35 THAs were performed for displaced intracapsular FFN, using a 32 mm alumina-alumina coupling. Results At a mean follow-up of 80 months, 33 have been clinically and radiologically reviewed. None of the implants needed revision for any reason, none of the cups were considered to have failed, no dislocations nor breakage of the ceramic components were recorded. One anatomic cementless stem was radiologically loose. Conclusions On the basis of our experience, we suggest that ceramic-on-ceramic coupling offers minimal friction and wear even with large heads.

  12. Experiences with sol-gel bonded high porosity alumina fiber materials for filter applications

    OpenAIRE

    Handrick, Karin E.; Mohlratzer, August; Ostertag, Rolf; Sporn, Dieter; Schmidt, Helmut K.

    1988-01-01

    High porous alumina fiber structures appear promising for hot gas filtration in particular for diesel particulate traps. For this purpose, however, a method is required for manufacturing of stable shapes resisant to the blow-out by the gas flow. The sol-gel process was expected to be the best suited method for fiber bonding to provide the required stability. The main tasks of the development-work were a uniform isotropic fiber-distribution, the adaptation of the sol-gel-process to the applica...

  13. Favouring butyrate production for a new generation biofuel by acidogenic glucose fermentation using cells immobilised on γ-alumina.

    Science.gov (United States)

    Syngiridis, Kostas; Bekatorou, Argyro; Kandylis, Panagiotis; Larroche, Christian; Kanellaki, Maria; Koutinas, Athanasios A

    2014-06-01

    The effect of γ-alumina as a fermentation advancing tool and as carrier for culture immobilisation, regarding VFAs and ethanol production during acidogenic fermentation of glucose, was examined at various process conditions (sugar concentration, pH) and operation modes (continuous with and without effluent recirculation and batch). The results showed that at high initial pH (8.9) the continuous acidogenic fermentation of glucose led to high yields of VFAs and favoured the accumulation of butyric acid. The batch process on the other hand at pH 6.5, favoured the ethanol-type fermentation. The results indicate that in the frame of technology development for new generation biofuels, using γ-alumina as a process advancing tool at optimum process conditions (pH, initial glucose concentration and mode of operation), the produced VFAs profile and ethanol concentration may be manipulated. Copyright © 2014. Published by Elsevier Ltd.

  14. Utilização de alumina para a remoção de fluoretos em águas e efluentes The use of alumina to remove fluorine from water and effluents

    Directory of Open Access Journals (Sweden)

    S. B. Alvarinho

    2000-06-01

    Full Text Available Foram produzidos 12 tipos de adsorventes de flúor a base de alumina granular seguindo duas rotas de processamento distintas. A primeira rota consistiu na precipitação de hidróxido de alumínio utilizando a técnica de sol-gel e a obtenção de microesferas por geleificação interna e externa. Utilizou-se como matéria prima nitrato de alumínio. A segunda rota consistiu na micropelotização mecânica utilizando-se hidróxido de alumínio produzido pelo processo Bayer e o uso de bauxita. Microesferas e micropelotas foram submetidas a diferentes tratamentos térmicos e avaliadas quanto ao seu desempenho no processo de adsorção de flúor em água. Os adsorventes produzidos no presente trabalho apresentaram parâmetros cinéticos e de carga de flúor superiores aos adsorventes de alumina reportados na literatura. Os adsorventes na forma de micropelotas apresentaram propriedades similares aos obtidos pela técnica de sol-gel. O maior valor relacionado à adsorção de flúor (100 h-1 foi obtido com microesferas de alumina produzidas pelo processo de geleificação interna, posteriormente calcinadas a 550 ºC. Microesferas de alumina contendo carvão ativo foram também preparadas e apresentaram capacidade de adsorção de flúor relativamente elevada (88 h-1. Micropelotas de alumina calcinadas a 400 ºC apresentaram a maior razão de flúor adsorvido por tonelada de adsorvente (27855.Twelve different types of fluorine adsorbents based on alumina granules were produced following two processing routes. The first route consisted on the precipitation of aluminum hydroxide by sol-gel technique followed by microsphere production by internal and external gelation. Aluminum nitrite was used as raw material. The second route consisted on the mechanical micro pelletization of aluminum hydroxide produced by the Bayer process, and bauxite. Microspheres and micropellets were heat treated at different conditions and their fluorine adsorption performance

  15. Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan [Chemistry Education Study Program, Universitas Halu Oleo, Jl. HEA Mokodompit, Kendari 93232 (Indonesia); Marsih, I. Nyoman, E-mail: nyoman@chem.itb.ac.id; Ismunandar [Inorganic and Physical Chemistry Division, Departement of Chemistry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Makertihartha, I. G. B. N. [Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Praserthdam, Piyasan; Panpranot, Joongjai [Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand)

    2015-09-30

    This research aimed to compare the physico-chemical properties of the same metal M (M = iron, cobalt, nickel) supported on aluminas with different morphology and pore size as Fischer-Tropsch catalyst. The aluminas applied as support were alumina synthesized through hydrothermal process, alumina formed by pretreatment of catapal and commercial alumina which named as Ahy, Aca, and Aco respectively. Ahy has uniform morphology of nanotubes while Aca and Aco showed non-uniform morphology of particle lumps. The particle lumps of Aca were larger than those of Aco. Ahy, Aca, and Aco respectively has average pore diameter of 2.75, 2.86 and 2.9 nm. Metals were deposited on the supports by incipient-wetness impregnation method. The catalysts were characterized by XRD, H{sub 2}-TPR, and H{sub 2} chemisorption. Catalyst acitivity test for Fischer-Tropsch reaction was carried out in a micro reactor at 200 °C and 1 atm, and molar ratio of H{sub 2}/CO = 2:1. The metal oxide particle size increased in the order M/Aco < M/Aca < M/Ahy. The catalysts reducibility also increased according to the order M/Aco < M/Aca < M/Ahy suggesting that the larger metal oxide particles are more reducible. The number of active site was not proportional to the reducibility because during the reduction, larger metal oxide particles were converted into larger metal particles. On the other hand, the number of active sites was inversely proportional to the particle sizes. The number of active site increased in the order M/Ahy < M/Aco < M/Aca. The catalytic activity also increased in the following order M/Ahy < M/Aco < M/Aca. The activity per active site increased according to the order M/Aca < M/Aco < M/Ahy meaning that for M/Ahy, a little increase in active site will lead to a significance increase in catalytic activity. It showed that Ahy has potential for the better support.

  16. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics

    International Nuclear Information System (INIS)

    Aguiar, Amanda Abati

    2007-01-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation of

  17. Biomass assisted synthesis of alumina by Gardenia Jasminoides Ellis and their application for removal of Ni(II) from aqueous solution

    International Nuclear Information System (INIS)

    Zheng, Nan; Zhao, Yusheng; Song, Qianqian; Jia, Lishan; Fang, Weiping

    2013-01-01

    Highlights: • A simple process has been proposed to synthesis alumina using biomass. • The absorbent with biomass is highly effective for the adsorption of Ni 2+ . • Three adsorption–desorption cycles showed that the adsorbent was basically stable. -- Abstract: A simple and novel process has been proposed to synthesize alumina using gardenia extract and aluminum salts in an aqueous solution. The alumina sample notated as “bio-Al 2 O 3 ” was characterized by X-ray diffraction (XRD) and nitrogen adsorption–desorption experiment. The results indicated that the existence of the gardenia biomass enlarged the surface area of alumina and reached 256 m 2 /g. The thermo gravimetric (TG), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) results showed that gardenia biomass bound to the surface of the alumina has substantially improved the adsorption capacity of Ni(II) and the adsorption behavior of nickel ion was related to the biomass functional groups. The results of three adsorption–desorption cycles showed that the bio-Al 2 O 3 using as the adsorbent for Ni(II) was relatively stable. The kinetic of the Ni(II) adsorption by the bio-Al 2 O 3 followed pseudo-second-order equation. Langmuir and Freundlich isotherm models were applied to analyze the experimental data and the result demonstrated that the adsorption isotherms followed Langmuir isotherm model

  18. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  19. Alkoxide-based precursors for direct electrospinning of alumina fibers

    Science.gov (United States)

    Maneeratana, Vasana

    The vision for space exploration in 2004 reinvigorated excitement that was engendered during the 1960's space race. Looking to assist NASA's agency wide mission to develop new technologies to enhance space travel, it is the ultimate goal of this work to support future missions with a hand-held electrospinning apparatus to instantaneously repair existing crucial ceramic fiber structures, such as spacesuits, insulative foams, and tiles. In this research, a new type of precursor is designed based from aluminum alkoxide-based precursors, since alumina serves as a base material for a majority of high-temperature applications. The structure-processing behavior of these precursors is subsequently studied. New precursors of aluminum alkoxides were prepared by modifying solutions; as a result various types of structures were produced, ranging from continuous hollow fibers, continuous solid fibers, or hollow particles. Direct electrospinning with these alkoxide-based precursors yielded an average of 1.9 g/hr of Al2O3, compared to literature with the highest theoretical yield calculated to be 0.68 g/hr. Further exploration of electrospinning parameters found that flow rate directly related to exposure times; therefore fibers were produced in the atmosphere through hydrolysis/condensation with simultaneous solvent evaporation. Furthermore other processing parameters, including the effect of the microstructure due to processing in an electric field were studied. It was found that electrospinning promotes the reaction of the alkoxide, which thereby reduces trapped solvents. As a result of firing schedules, the fibers' hollow features were preserved, and precursors with volatile species resulted in near net shaped fibers. At low firing temperatures, specific surface areas in the range of 330-345 m 2/g were found electrospun fibers. Additionally modified precursors lowered alpha transitions of fibers down to ˜900°C.

  20. Submarine silicic volcanism: Processes and products

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.

    and these are supported by several experimental studies (Annen et al., 2006). A silicic calc-alkalic magma can form by differentiation from a more mafic parent magma and by crustal anatexis. Several evidences show the origin of some rhyolitic and andesitic magma... to be related due to similar tectonic settings. Fractional crystallisation: This process produces a series of residual liquids of variable compositions as compared to their parental magmas and is best explained by the Bowen’s reaction principle (Bowen, 1922...

  1. Optimization of a novel sequential alkalic and metal salt pretreatment for enhanced delignification and enzymatic saccharification of corn cobs.

    Science.gov (United States)

    Sewsynker-Sukai, Yeshona; Gueguim Kana, E B

    2017-11-01

    This study presents a sequential sodium phosphate dodecahydrate (Na 3 PO 4 ·12H 2 O) and zinc chloride (ZnCl 2 ) pretreatment to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of Na 3 PO 4 ·12H 2 O concentration (5-15%), ZnCl 2 concentration (1-5%) and solid to liquid ratio (5-15%) on reducing sugar yield from corn cobs were investigated. The sequential pretreatment model was developed and optimized with a high coefficient of determination value (0.94). Maximum reducing sugar yield of 1.10±0.01g/g was obtained with 14.02% Na 3 PO 4 ·12H 2 O, 3.65% ZnCl 2 and 5% solid to liquid ratio. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major lignocellulosic structural changes after the optimized sequential pretreatment with 63.61% delignification. In addition, a 10-fold increase in the sugar yield was observed compared to previous reports on the same substrate. This sequential pretreatment strategy was efficient for enhancing enzymatic saccharification of corn cobs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. PENGARUH REGENERASI KOLOM ALUMINA ASAM TERHADAP RECOVERY DAN KUALITAS 99mTc HASIL EKSTRAKSI PELARUT MEK DARI 99Mo HASIL AKTIVASI NEUTRON

    Directory of Open Access Journals (Sweden)

    Adang H G

    2017-01-01

    radiopharmaceutical kit. In this study, the used of acidic alumina column for 99mTc purification was tried more than once by regeneration using 0.1N HNO3 solution after purification process is completed. Parameters observed in this study are the percent recovery, elution profile, pH, radiochemical purity and radionuclida purity. The results of observational studies conducted over 5 days has been obtained pH ~ 5,% recovery > 60%, radiochemical purity of > 95% and 99Mo leakage not detected. The treatment of acidic alumina column with 0,1 N HNO3 solution concluded that acidic alumina column does not need to be replaced every day. Keywords: 99mTc, 99Mo, MEK, acidic alumina column, radiochemical purity.

  3. On the physical and chemical details of alumina atomic layer deposition: A combined experimental and numerical approach

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dongqing; Ma, Lulu; Xie, Yuanyuan; Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Jen, Tien Chien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 and School of Engineering, University of Alaska Anchorage, Anchorage, Alaska 99508 (United States)

    2015-03-15

    Alumina thin film is typically studied as a model atomic layer deposition (ALD) process due to its high dielectric constant, high thermal stability, and good adhesion on various wafer surfaces. Despite extensive applications of alumina ALD in microelectronics industries, details on the physical and chemical processes are not yet well understood. ALD experiments are not able to shed adequate light on the detailed information regarding the transient ALD process. Most of current numerical approaches lack detailed surface reaction mechanisms, and their results are not well correlated with experimental observations. In this paper, the authors present a combined experimental and numerical study on the details of flow and surface reactions in alumina ALD using trimethylaluminum and water as precursors. Results obtained from experiments and simulations are compared and correlated. By experiments, growth rate on five samples under different deposition conditions is characterized. The deposition rate from numerical simulation agrees well with the experimental results. Details of precursor distributions in a full cycle of ALD are studied numerically to bridge between experimental observations and simulations. The 3D transient numerical model adopts surface reaction kinetics and mechanisms based on atomic-level studies to investigate the surface deposition process. Surface deposition is shown as a strictly self-limited process in our numerical studies. ALD is a complex strong-coupled fluid, thermal and chemical process, which is not only heavily dependent on the chemical kinetics and surface conditions but also on the flow and material distributions.

  4. The ultrasonic machining of silicon carbide / alumina composites

    Science.gov (United States)

    Nicholson, Garth Martyn John

    Silicon carbide fibre reinforced alumina is a ceramic composite which was developed in conjunction with the Rolls-Royce Aerospace Group. The material is intended for use in the latest generation of jet engines, specifically for high temperature applications such as flame holders, combustor barrel segments and turbine blade tip seals. The material in question has properties which have been engineered by optimizing fibre volume fractions, weaves and fibre interface materials to meet the following main requirements : high thermal resistance, high thermal shock resistance and low density.Components intended for manufacture using this material will use the "direct metal oxidation" (DIMOX) method. This process involves manufacturing a near net shape component from the woven fibre matting, and infiltrating the matting with the alumina matrix material. Some of the components outlined require high tolerance features to be included in their design. The combustor barrel segments for example require slots to be formed within them for sealing purposes, the dimensions of these features preclude their formation using DIMOX, and therefore require a secondary process to be performed. Conventional machining techniques such as drilling, turning and milling cannot be used because of the brittle nature of the material. Electrodischarge machining (E.D.M.) cannot be used since the material is an insulator. Electrochemical machining (E.C.M.) cannot be used since the material is chemically inert. One machining method which could be used is ultrasonic machining (U.S.M.).The research programme investigated the feasibility of using ultrasonic machining as a manufacturing method for this new fibre reinforced composite. Two variations of ultrasonic machining were used : ultrasonic drilling and ultrasonic milling. Factors such as dimensional accuracy, surface roughness and delamination effects were examined. Previously performed ultrasonic machining experimental programmes were reviewed, as well

  5. Evaluation of Bayer process gibbsite reactivity in magnesium aluminate spinel formation

    International Nuclear Information System (INIS)

    Mora, A.; Gutierrez-Campos, D.; Lavelle, C.; Rodriguez, R.M.

    2007-01-01

    Stoichiometric magnesium aluminate spinel was synthesized by solid-state reaction of calcined magnesia with tabular alumina, calcined alumina and industrial gibbsite at 1100, 1300 and 1500 deg. C for 2 h. The pellets made from both types of alumina and magnesia expanded after the heat treatment, whereas pellets made from industrial gibbsite and magnesia contracted. It was found that shrinkage could be produced by phase transformations in gibbsite and magnesia densification process in unreacted magnesia during the sintering. The X-ray diffraction patterns indicated a minor reactivity for industrial gibbsite in comparison with the calcined alumina and tabular alumina at all firing temperatures

  6. Evaluation of Bayer process gibbsite reactivity in magnesium aluminate spinel formation

    Energy Technology Data Exchange (ETDEWEB)

    Mora, A. [Department of Materials Science, Universidad Simon Bolivar, Caracas 1080-A (Venezuela)], E-mail: abrahanmora@hotmail.com; Gutierrez-Campos, D. [Department of Materials Science, Universidad Simon Bolivar, Caracas 1080-A (Venezuela)], E-mail: dgutierr@usb.ve; Lavelle, C. [Department of Materials Science, Universidad Simon Bolivar, Caracas 1080-A (Venezuela)], E-mail: clavelle@wanadoo.fr; Rodriguez, R.M. [Department of Chemistry, Universidad Metropolitana, Edif. Corimon, Terrazas del Avila, Distribuidor Autopista, Dto. Sucre, Caracas 1070 (Venezuela)], E-mail: rrodriguez@unimet.edu.ve

    2007-04-25

    Stoichiometric magnesium aluminate spinel was synthesized by solid-state reaction of calcined magnesia with tabular alumina, calcined alumina and industrial gibbsite at 1100, 1300 and 1500 deg. C for 2 h. The pellets made from both types of alumina and magnesia expanded after the heat treatment, whereas pellets made from industrial gibbsite and magnesia contracted. It was found that shrinkage could be produced by phase transformations in gibbsite and magnesia densification process in unreacted magnesia during the sintering. The X-ray diffraction patterns indicated a minor reactivity for industrial gibbsite in comparison with the calcined alumina and tabular alumina at all firing temperatures.

  7. Zirconia-alumina composites of high mechanical strength

    International Nuclear Information System (INIS)

    Pyda, W.; Pyda, A.

    2004-01-01

    Commercial zirconia (stabilized with 3 mol% yttria) and alumina powders of submicron size were used to produce ceramic matrix composites in the ZrO 2 -Al 2 O 3 system. Homogeneous mixtures of both constituent powders were prepared by means pf physical mixing in water exploiting a heterofloculation effect. The mixtures were consolidated using two methods: (i). Cold isostatic pressing of the samples under 300 MPa followed by pressureless sintering in air, (ii). hot pressing under 25 MPa in argon. The samples were sintered for 2 h at 1500-1650 o C. Detailed characterization was made with respect of the powder properties, packing of the particles in green compacts and microstructure of the consolidated composites. Studied was an influence of alumina content and the consolidation method on mechanical properties of the composites. A bending strength of 17±0.2 GPa was measured for the TZP material which contained 5 vol.% of alumina particles. (author)

  8. Retrospective dosimetry with alumina substrate from electronic components

    International Nuclear Information System (INIS)

    Ekendahl, D.; Judas, L.

    2012-01-01

    Alumina substrate can be found in electronic components used in portable electronic devices. The material is radiation sensitive and can be applied in dosimetry using thermally or optically stimulated luminescence. Electronic portable devices such as mobile phones, USB flash discs, mp3 players, etc., which are worn close to the body, can represent personal dosemeters for members of the general public in situations of large-scale radiation accidents or malevolent acts with radioactive materials. This study investigated dosimetric properties of alumina substrates and aspects of using mobile phones as personal dosemeters. The alumina substrates exhibited favourable dosimetry characteristics. However, anomalous fading had to be properly corrected in order to achieve sufficient precision in dose estimate. Trial dose reconstruction performed by means of two mobile phones proved that mobile phones can be used for reconstruction of personal doses. (authors)

  9. Modifying alumina red mud to support a revegetation cover

    Science.gov (United States)

    Xenidis, A.; Harokopou, A. D.; Mylona, E.; Brofas, G.

    2005-02-01

    Alumina red mud, a fine-textured, iron-rich, alkaline residue, is the major waste product of bauxite digestion with caustic soda to remove alumina. The high alkalinity and salinity as well as the poor nutrient status are considered to be the major constraints of red mud revegetation. This research was conducted to evaluate the ameliorating effect of gypsum, sewage sludge, ferrous sulfate, ammonium sulfate, ammonium nitrate, and calcium phosphate on alumina red mud. The effectiveness of the mixtures was evaluated by applying extraction tests and performing experiments using six plant species. Gypsum amendment significantly reduced the pH, electrical conductivity, and sodium and aluminum content of red mud. Sewage sludge application had an extended effect in improving both the soil structure and the nutrient status of the gypsum-amended red mud. Together with the gypsum and sewage sludge, calcium phosphate application into red mud enhanced plant growth and gave the most promising results.

  10. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  11. Membranes obtained from alumina from separation water/oil

    International Nuclear Information System (INIS)

    Rosas Neto, M.I.; Lira, H.L; Guimaraes, I.O; Franca, K.B.

    2016-01-01

    This study aims to evaluate by flow test emulsion water/oil a membrane obtained from a crude residue of the alumina industry and see if this membrane is able to filter this emulsion within the limits specified by CONAMA. In this work, tubular membranes composed of the alumina and the residue bentonite clay were produced by extrusion and were sintered at 900, 1000 and 1100 ° C. tangential flow tests were conducted with deionized water and subsequently with an emulsion of water / oil, all done with a pressure of 1.5 bar. The results showed that membranes produced from the crude residue the alumina industry were quite efficient the emulsion's oil removal, reducing the concentration of about 100 ppm in the feed, to below 5ppm and flow rates of around 30L/h.m 2 . (author)

  12. Radiation silver paramagnetic centers in a beta-alumina crystal

    International Nuclear Information System (INIS)

    Badalyan, A.G.; Zhitnikov, R.A.

    1985-01-01

    Silver paramagnetic centers in a β-alumina crystal, formed after X-ray radiation at 77 K, are investigated by the EPR method. Silver enters the β-alumina crystal, substituting sodium and potassium ions in a mirror plane. Crystals with substitution from 0.1 to 100% of alkali metal ions by Ag + ions are investigated. Silver atomic centers (Ag 0 -centers), formed by electron capture with the Ag + ion, are firstly detected and investigated in the β-alumina. Hole Ag 2+ -centers are investigated and detected in crystals with high concentration of Ag + . By studying the orientation dependence of a g-factor it is established that hole capture by the Ag + ion is accompanied by Ag 2+ ion displacement from the position, Ag + being primarity taken up (Beavers-Roth or anti- Beavers-Roth) to the position between two oxygen ions in the mirror plane

  13. Processing and characterization of alumina/LAS bioceramics for ...

    Indian Academy of Sciences (India)

    Administrator

    1Department of Mechanical Engineering, Escola Superior de Tecnologia, Instituto Politécnico de Setúbal,. 2910-761 Setúbal, Portugal. 2Escola Superior de Tecnologia, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal. 3Department of Mechanical Engineering, Instituto Superior Técnico, TU Lisbon, Av. Rovisco ...

  14. Distribution of nickel between copper-nickel and alumina saturated iron silicate slags

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, R.G.; Acholonu, C.C.

    1984-03-01

    The solubility of nickel in slag is determined in this article by equilibrating copper-nickel alloys with alumina-saturated iron silicate slags in an alumina crucible at 1573 K. The results showed that nickel dissolves in slag both as nickel oxide and as nickel metal. The presence of alumina is shown to increase the solubility of nickel in slags.

  15. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  16. Controllable synthesis and characterization of alumina/MWNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Zoltan; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, 6720 Szeged (Hungary); Marko, Kata; Erdohelyi, Andras [Department of Physical Chemistry and Material Science, University of Szeged, Aradi ter 2, 6720 Szeged (Hungary); Forro, Laszlo [Laboratory of Physics of Complex Matter, IPMC, EPFL, 1026 Ecublens (Switzerland)

    2011-11-15

    The aim of this work is to develop a controllable synthesis pathway which produces a stable alumina layer on the surface of carbon nanotubes by impregnation method. Precursor compounds such as aluminium isopropoxide and aluminium-acetyl-acetonate were used to cover the surface of multiwalled carbon nanotubes (MWNTs) under different solvent conditions. As-prepared alumina coverages were characterized by TEM, SEM, SEM-EDX, TG and X-ray diffraction techniques. Results revealed that homogeneous coverage can be achieved in a controllable way. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Machining parameters optimization during machining of Al/5 wt% alumina metal matrix composite by fiber laser

    Science.gov (United States)

    Ghosal, Arindam; Patil, Pravin

    2017-06-01

    This experimental work presents the study of machining parameters of Ytterbium fiber laser during machining of 5 mm thick Aluminium/5wt%Alumina-MMC (Metal Matrix Composite). Response surface methodology (RSM) is used to achieve the optimization i.e. minimize hole tapering and maximize Material Removal Rate (MRR). A mathematical model has been developed and ANOVA has been done for correlating the interactive and higher-order influences of Ytterbium fiber laser machining parameters (laser power, modulation frequency, gas pressure, wait time, pulse width) on Material Removal Rate (MRR) and hole tapering during machining process.

  18. Physicochemical study of zirconium oxides and of the alumina-zirconia dispersoid

    International Nuclear Information System (INIS)

    Orlans, Patrick

    1987-01-01

    This research thesis reports the physicochemical characterization of different zirconium oxides, but also their synthesis in laboratory by using a gel precipitation method. Various techniques are used to characterize gels and powders: electro-kinetic potential measurement, study of rheological properties, granulometry, chemical analysis, X-ray diffraction, thermo-luminescence, differential thermal analysis, specific surface measurements, scanning electronic microscopy. This process is then extended to the synthesis of an alumina-zirconia dispersoid. The measurement of mechanical properties allowed the synthesis to be modulated in order to obtain powders with properties as close as possible to defined properties [fr

  19. Hemispherical Shell Nanostructures from Metal-Stripped Embossed Alumina on Aluminum Templates

    DEFF Research Database (Denmark)

    Nielsen, Peter; Albrektsen, Ole; Simonsen, Adam Cohen

    2011-01-01

    aluminum/ alumina (Al/Al2O3) templates as a novel and versatile nanofabrication procedure, and we demonstrate explicitly how to exploit the technique for developing large-area hexagonally close-packed hemispherical shell nanostructures by stripping noble metal layers from embossed templates fabricated from...... anodized Al. Utilizing for this process the linear relationship between anodization voltage and the resulting interpore distance in the formed oxide, it is possible to tune the radius of curvature of the resulting hemispherical shells continuously, which in turn results in tunable optical properties...

  20. Blue luminescence in porous anodic alumina films: the role of the oxalic impurities

    CERN Document Server

    Gao Tao; Zhang Li

    2003-01-01

    Porous anodic alumina (PAA) films with ordered nanopore arrays have been prepared by electrochemically anodizing aluminium in oxalic acid solutions, and the role of the oxalic impurities in the optical properties of PAA films has been discussed. Photoluminescence (PL) measurements show that the PAA films obtained have a blue PL band with a peak position at around 470 nm; the oxalic impurities, incorporated in the PAA films during the anodization processes and already existing in them, could be being transformed into PL centres and hence responsible for this PL emission.

  1. Alumina-entrapped Ag catalyzed nitro compounds coupled with alcohols using borrowing hydrogen methodology.

    Science.gov (United States)

    Liu, Huihui; Chuah, Gaik Khuan; Jaenicke, Stephan

    2015-06-14

    Supported silver catalysts were reported for the first time to be able to catalyze the coupling reaction between nitroarenes and alcohols via the borrowing hydrogen scheme. The recyclable, non-leaching catalyst is synthesized by the entrapment method, which allows entrapping of silver nanoparticles in an alumina matrix. Alcohols, acting as the reducing agents for nitro-groups, alkylated the resultant amines smoothly over these silver catalysts giving a yield of >98% towards the N-substituted amines. In this process, multiple steps were realized in one-pot over a single catalyst with very high efficiency. It offers another clean and economic way to achieve amination of alcohols.

  2. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Carolina Solis Maldonado

    2014-03-01

    Full Text Available The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS, FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  3. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene

    Science.gov (United States)

    Maldonado, Carolina Solis; De la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J.; Hernández-Ramírez, Aracely; Castillón Barraza, Felipe F.; Valente, Jaime S.

    2014-01-01

    The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%. PMID:28788556

  4. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review.

    Science.gov (United States)

    Rai, Suchita; Wasewar, K L; Agnihotri, A

    2017-06-01

    In the Bayer process of extraction of alumina from bauxite, the insoluble product generated after bauxite digestion with sodium hydroxide at elevated temperature and pressure is known as 'red mud' or 'bauxite residue'. This alumina refinery waste is highly alkaline in nature with a pH of 10.5-12.5 and is conventionally disposed of in mostly clay-lined land-based impoundments. The alkaline constituents in the red mud impose severe and alarming environmental problems, such as soil and air pollution. Keeping in view sustainable re-vegetation and residue management, neutralization/treatment of red mud using different techniques is the only alternative to make the bauxite residue environmentally benign. Hence, neutralization techniques, such as using mineral acids, acidic waste (pickling liquor waste), coal dust, superphosphate and gypsum as amenders, CO 2 , sintering with silicate material and seawater for treatment of red mud have been studied in detail. This paper is based upon and emphasizes the experimental work carried out for all the neutralization techniques along with a comprehensive review of each of the processes. The scope, applicability, limitations and feasibility of these processes have been compared exhaustively. Merits and demerits have been discussed using flow diagrams. All the techniques described are technically feasible, wherein findings obtained with seawater neutralization can be set as a benchmark for future work. Further studies should be focused on exploring the economical viability of these processes for better waste management and disposal of red mud.

  5. Effect of Impurities on O and Al Boundary Diffusion in Alumina: Application Alumina Scale Growth in Alloys

    Science.gov (United States)

    2012-01-24

    500ppm Hafnium doped E 3 25000 01 20000 re 0- • 1250 Q. 15000 • 1400 c 10000 O re •0 ’x 5000 O " K- =1.70*10 15 mVs —• 0 1...jjp, 25000 I s3 20000 15000 10000 5000 Lxperimental data (1300°C 60 h) - Fitting using the quasi steady-state model • Fitting using the...c o I 01 > 3 E 3 Comparison between Yttrium doped and Pur« alumina -•-Yttrium doped -•-Pure alumina 100 110 120 130 140 ISO

  6. SHRIMP U-Pb dating of recurrent Cryogenian and Late Cambrian-Early Ordovician alkalic magmatism in central Idaho: Implications for Rodinian rift tectonics

    Science.gov (United States)

    Lund, K.; Aleinikoff, J.N.; Evans, K.V.; duBray, E.A.; deWitt, E.H.; Unruh, D.M.

    2010-01-01

    Composite alkalic plutonic suites and tuffaceous diamictite, although discontinuously exposed across central Idaho in roof pendants and inliers within the Idaho batholith and Challis volcanic-plutonic complex, define the >200-km-long northwest-aligned Big Creek-Beaverhead belt. Sensitive highresolution ion microprobe (SHRIMP) U-Pb zircon dates on these igneous rocks provide direct evidence for the orientation and location of the Neoproterozoic-Paleozoic western Laurentian rift margin in the northern U.S. Cordillera. Dating delimits two discrete magmatic pulses at ca. 665-650 Ma and 500-485 Ma at the western and eastern ends, respectively, of this belt. Together with the nearby 685 Ma volcanic rocks of the Edwardsburg Formation, there is a 200 Ma history of recurrent extensional magmatic pulses along the belt. A similar history of recurrent uplift is reflected in the stratigraphic record of the associated miogeoclinal and cratonal platform basins, suggesting that the Big Creek-Beaverhead belt originated as a border fault during continental rift events. The magmatic belt is paired with the recurrently emergent Lemhi Arch and narrow miogeoclinal facies belts and it lies inboard of a northwest-striking narrow zone of thinned continental crust. These features define a northeast-extending upper-plate extensional system between southeast Washington and southeast Idaho that formed a segment of the Neoproterozoic-Paleozoic miogeocline. This segment was flanked on the north by the St. Mary-Moyie transform zone (south of a narrow southern Canadian upper-plate margin) and on the south by the Snake River transfer zone (north of a broad Great Basin lower-plate margin). These are the central segments of a zigzagshaped Cordilleran rift system of alternating northwest-striking extensional zones offset by northeast-striking transfers and transforms. The data substantiate polyphase rift and continental separation events that included (1) pre-and syn-Windermere rifting, (2) Windermere

  7. High-frequency characteristics of glass/ceramic composite and alumina multilayer structures

    International Nuclear Information System (INIS)

    Niwa, K.; Suzuki, H.; Yokoyama, H.; Kamechara, N.; Tsubone, K.; Tanisawa, H.; Sugiki, H.

    1990-01-01

    This paper reports the transmission characteristics of glass/ceramic composite (borosilicate glass/alumina) and alumina multilayer structures examined. The triplate stripline formed in the glass/ceramic multilayer shows low conductor and dielectric loss. Alumina multilayer, however, has twice the transmission loss at 10 GHz, because the resistivity of W in the alumina multilayer is higher than the Cu in the glass/ceramic multilayer. Crosstalk between striplines in the glass/ceramics is less than -80 dB up to 11 GHz and 9 GHz for alumina

  8. Studying alumina boundary migration using combined microscopy techniques

    International Nuclear Information System (INIS)

    Riesterer, J L; Farrer, J K; Munoz, N E; Gilliss, S R; Ravishankar, N; Carter, C B

    2006-01-01

    Thermal grooving and migration of grain boundaries in alumina have been investigated using a variety of microscopy techniques. Using two different methods, polycrystalline alumina was used to investigate wet (implying the presence of a glassy phase), and dry grain boundaries. In the first, single-crystal Al 2 O 3 was hot-pressed via liquid phase sintering (LPS) to polycrystalline alumina with an anorthite glass film at the interface. Pulsed laser deposition was used to deposit approximately 100-nm thick glass films. Specimens were annealed in air at 1650 deg. C for 20 h to induce boundary migration. Boundary characterization was carried out using visible light (VLM) and scanning electron (SEM) microscopies. Effects on migration due to surface orientation of grains were investigated using electron backscatter diffraction (EBSD). The second method dealt with heat treating dry boundaries in polycrystalline alumina to monitor boundary migration behavior via remnant thermal grooves. Heat treatments were conducted at 1650 deg. C for 30 min. The same region of the sample was mapped using VLM and atomic force microscopy (AFM) and followed over a series of 30 min heat treatments. Boundary migration through a pore trapped inside the grain matrix was of particular interest

  9. Studying alumina boundary migration using combined microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Riesterer, J L [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States); Farrer, J K [Now at Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Munoz, N E [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States); Gilliss, S R [Now at Robins, Kaplan, Miller and Ciresi, L.L.P., Minneapolis, MN 55402 (United States); Ravishankar, N [Now at Materials Research Centre, Indian Institute of Science, Bangalore, 560 012 (India); Carter, C B [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States)

    2006-02-22

    Thermal grooving and migration of grain boundaries in alumina have been investigated using a variety of microscopy techniques. Using two different methods, polycrystalline alumina was used to investigate wet (implying the presence of a glassy phase), and dry grain boundaries. In the first, single-crystal Al{sub 2}O{sub 3} was hot-pressed via liquid phase sintering (LPS) to polycrystalline alumina with an anorthite glass film at the interface. Pulsed laser deposition was used to deposit approximately 100-nm thick glass films. Specimens were annealed in air at 1650 deg. C for 20 h to induce boundary migration. Boundary characterization was carried out using visible light (VLM) and scanning electron (SEM) microscopies. Effects on migration due to surface orientation of grains were investigated using electron backscatter diffraction (EBSD). The second method dealt with heat treating dry boundaries in polycrystalline alumina to monitor boundary migration behavior via remnant thermal grooves. Heat treatments were conducted at 1650 deg. C for 30 min. The same region of the sample was mapped using VLM and atomic force microscopy (AFM) and followed over a series of 30 min heat treatments. Boundary migration through a pore trapped inside the grain matrix was of particular interest.

  10. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Macroporous silica–alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of ...

  11. Grafting of alumina on SBA-15: Effect of surface roughness

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Šiklová, Helena; Čejka, Jiří

    2008-01-01

    Roč. 24, č. 17 (2008), s. 9837-9842 ISSN 0743-7463 R&D Projects: GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alumina-grafted materials * SBA-15 * Nitrogen adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.097, year: 2008

  12. Significance of structure–property relationship in alumina based ...

    Indian Academy of Sciences (India)

    Unknown

    plimented by drastic reduction in failure and quality pro- blems experienced by insulator manufacturers (Lieberman). However, even alumina insulators manufactured (for use in 25 kV railway traction lines) under stringent ..... early showed plastic deformation and large cracks in and around the indents. Figure 7c shows the ...

  13. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Unknown

    surfactant N-cetyl-N,N,N-trimethylammonium bromide. (CTAB). We describe the macroporous–mesoporous silica– alumina composites with satisfactory/high surface areas. 2. Experimental. Polymethylmethacrylate (PMMA) spheres of diameter. 275 nm were obtained from Soken Chemicals, Japan. These were taken as 1% ...

  14. Encapsulation of proteins into tunable and giant mesocage alumina.

    Science.gov (United States)

    El-Safty, Sherif A; Shenashen, Mohamed A; Ismael, Moahmed; Khairy, Mohamed

    2012-07-07

    Protein bioadsorption has rapidly attracted attention partially because of the promising advances in diagnostic assays, sensors, separations, and gene technology. Tunable and giant mesocage alumina cavities (5 nm to 20 nm) show capability in size-selective encapsulation and diffusivity of large proteins into interior pores.

  15. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    1CSIR–Central Glass & Ceramic Research Institute, Kolkata 700032, India. 2Department of Chemistry, National ... knee implants, etc.), since the coefficient of friction (COF) of diamond is lower than alumina. In this tribological ... Adhesion, friction and wear are the main factors of tribology of contacting or sliding interfaces.

  16. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 µm and. 25 µm, and a sintered silicon ... the sintered silicon carbide was found out to be linked to its previous thermal history. Keywords. Indentation fatigue .... This presence of a grain size effect in the RIF behaviour of the ...

  17. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    In view of potential applications in neutron-sensitive ion chambers used in reactor control instru- mentation, studies were carried out on alumina 100 μ to 500 μ thick coatings on copper, aluminium and SS components. The electrical insulation varied from 10 ohms to 10. 骄 ohms for coating thick- nesses above 200 μ.

  18. Effect of alumina coating and extrusion deformation on ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... (a) TGA–DSC curves of as-received SCF, SCF preform and alumina-coated SCF preforms and (b) XRD .... In order to determine the presence of the reaction product, the composites were fur- ther examined by XRD with a much lower scan speed of. 0.25. ◦ min .... than being parallel to the observing plane.

  19. Alumina and Zirconia Based Layered Composites:Part 1 Preparation

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Maca, K.; Chlup, Zdeněk

    2009-01-01

    Roč. 412, - (2009), s. 221-226 ISSN 1013-9826 R&D Projects: GA ČR(CZ) GA106/06/0724 Institutional research plan: CEZ:AV0Z20410507 Keywords : electrophoretic deposition * alumina * zirconia Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  20. Effect of chemical composition and alumina content on structure and ...

    Indian Academy of Sciences (India)

    Abstract. In the present work, six electrical porcelain compositions with different amount of alumina and silica have been prepared and fired in an industrial furnace at 1300 ◦C. Density, porosity, bending strength and electrical strength were measured in the samples. In order to find a relationship between properties and ...

  1. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte ...

  2. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  3. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    2, April 2016, pp. 587–591. c Indian Academy of Sciences. Microwave-assisted brazing of alumina ceramics for electron tube applications. MAYUR SHUKLA1,2 ... 1Academy of Scientific and Innovative Research (AcSIR), CSIR—-Central Glass and Ceramic Research Institute, ... element is the most popular method [2].

  4. Plasmonic properties of gold-coated nanoporous anodic alumina ...

    Indian Academy of Sciences (India)

    Abstract. Anodization of aluminium surfaces containing linearly oriented scratches leads to the formation of nanoporous anodic alumina (NAA) with the nanopores arranged preferentially along the scratch marks. NAA, when coated with a thin gold film, support plasmonic resonances. Dark-field spectroscopy revealed that ...

  5. State of the art: alumina ceramics for energy applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1978-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development

  6. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Abstract. Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our ...

  7. Optimization of nanocrystalline γ-alumina coating for direct spray ...

    Indian Academy of Sciences (India)

    7, December 2014, pp. 1583–1588. c Indian Academy of Sciences. Optimization of nanocrystalline γ-alumina coating for direct spray water-cooling of optical devices. S N ALAM1,2,∗. , M ANARAKY3, Z SHAFEIZADEH3 and P J PARBROOK1. 1Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, ...

  8. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    In compounded zeolite catalyst it serves as the active matrix which aids the conversion of the bulkiest molecules in the feed owing to its larger pore size than zeolite. Large specific surface area gamma-alumina (γ-Al2O3) was synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment ...

  9. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara

    2014-02-27

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  10. Obtaining alumina-mullite-zirconia composites using alternative raw materials; Avaliacao microestrural de compositos alumina-mulita-zirconia preparados a partir de bauxita como fonte alternativa de alumina

    Energy Technology Data Exchange (ETDEWEB)

    Nakachima, P.M., E-mail: peter.nakachima@curimbaba.com.br [Mineracao Curimbaba Ltda, Pocos de Caldas, MG (Brazil); Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Rodrigues, J.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Traditionally, ceramic composites of alumina-mullite-zirconia are obtained by the sintering of a mixture of alumina and zircon powders at temperatures above 1570°C. Due to the high purity of these raw materials, the cost of this composite is relatively high and sometimes prohibitive for certain applications. This fact motivated the development of a composite using zircon and bauxite (as an alternative source of alumina). The work herein demonstrates the feasibility of using these raw materials to obtain the desired phases, together with other contaminant phases due to the presence of other oxides in the bauxite, in addition to the SiO{sub 2} and Al{sub 2}O{sub 3}. However, the procedure used was not successful on obtaining the desired amount of ZrO{sub 2}, since the dissociation of the zircon was not complete. Composites were chemically and mineralogically characterized using the X-ray fluorescence and the Rietveld method with X-ray diffraction data, respectively, besides the scanning electron microscopy for the microstructure evaluation. (author)

  11. Application of various types of alumina and nano--alumina sulfuric acid in the synthesis of α-aminonitriles derivatives: comparative study

    Directory of Open Access Journals (Sweden)

    A. Teimouri

    2014-09-01

    Full Text Available An efficient and green protocol for the synthesis of α-aminonitrile derivatives by one-pot reaction of different aldehydes with amines and trimethylsilyl cyanide has been developed using natural alumina, alumina sulfuric acid (ASA, nano-g-alumina, nano-g-alumina sulfuric acid (nano-g-ASA under microwave irradiation and solvent-free conditions. The advantages of methods are short reaction times, high yields, milder conditions and easy work up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency. DOI: http://dx.doi.org/10.4314/bcse.v28i3.13

  12. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, Shunta; Kikuchi, Tatsuya, E-mail: kiku@eng.hokudai.ac.jp; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Highlights: • Anodic porous alumina was formed in an arsenic acid solution. • Potential difference (voltage) anodizing at 340 V was achieved. • The porous alumina was slightly ordered under the appropriate conditions. • Pore sealing behavior was not observed in boiling distilled water. • The porous alumina exhibits a white photoluminescence emission under UV irradiation. - Abstract: Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1–0.5 M arsenic acid solutions at 310–340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  13. A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)

    Energy Technology Data Exchange (ETDEWEB)

    Anil Virkar

    2008-03-31

    This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, Na

  14. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  15. Study on the bound water of several high specific surface-area oxides (beryllia, alumina, silica-alumina)

    International Nuclear Information System (INIS)

    Rouquerol, J.

    1964-11-01

    This study is concerned with the bound water of several oxides (beryllia, alumina, silica-alumina) at different steps of their dehydration (heating temperatures between 150 and 1100 deg. C). The following techniques have been used simultaneously: Thermal analysis (a new method has been developed), nitrogen adsorption (study of the texture), Diborane hydrolysis (qualitative and quantitative analysis of surface water), Infra-red spectrography (in the absorption range of water), Nuclear magnetic resonance (in the resonance range of protons). Thanks to these different techniques, five kinds of bound water have been observed. Attention is called on the great influence of the thermal treatment conditions on the evolution of the products resulting from the decomposition of alumina α-trihydrate Al(OH) 3 and beryllium α-hydroxide, in the course of the dehydration. Moreover, the author emphasizes the peculiar properties of the two kinds of oxides (alumina and beryllia) prepared through a new method of treatment under low pressure and constant speed of decomposition. Such particular features concern mainly texture, bound water, and consequently, also catalytic activity. (author) [fr

  16. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  17. The trade-off between tuning ratio and quality factor of BaxSr1-xTiO3 MIM capacitors on alumina substrates

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Liu, J.; Klee, M.; Mauczok, R.; Keur, W.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2008-01-01

    Barium strontium titanate with different compositions is deposited using wet-chemical processing on a glass planarization layer, on top of alumina substrates. Three samples were fabricated with BaxSr1-xTiO3 (BST) with the barium content x varying between 0.8 and 1. The poly-crystalline films are 530

  18. Cyclic Creep and Recovery Behavior of Nextel(Trademark) 720/Alumina Ceramic Matrix Composite at 1200deg C in Air and in Steam Environments

    Science.gov (United States)

    2007-09-01

    cement . Composites today are everyday items. As technology advances so does the need for composites for advanced materials. Aerospace has taken...Furthermore, microstructural deformational failure mechanisms present in air and in steam environments are explored. 4 II. Background 2.1...is processed at high temperatures [6, 2]. Common types of ceramic matrix materials being studied are alumina, silicon nitride and silicon carbide

  19. BaxSr1-xTi1.02O3 metal-insulator-metal capacitors on planarized alumina substrates

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Mauczok, R.; Keur, W.; Hueting, Raymond Josephus Engelbart

    2010-01-01

    Nanocrystalline barium strontium titanate (BaxSr1−xTi1.02O3) thin films with a barium content of x=0.8, 0.9 and 1 have been fabricated in a metal–insulator–metal configuration on glass-planarized alumina substrates. Cost-effective processing measures have been utilized by using poly-crystalline

  20. Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in hte presence of small amounts of water

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Rem, J.B.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films were deposited on stainless steel, type AISI 304. The deposition process was carried out in nitrogen with low partial pressures of water (0–2.6 × 10−2 kPa (0−0.20 mmHg)) by metal-organic chemical vapour deposition (MOCVD) with aluminium-tri-sec-butoxide (ATSB) as the precursor.

  1. Synthesis and Characterization of Nickel-Alumina Composites from Recycled Nickel Powder

    Directory of Open Access Journals (Sweden)

    V. G. Karayannis

    2012-01-01

    Full Text Available The recycling of metallic waste to create more valuable materials and their valorization into upgraded metal-based composites constitutes an important field of study. The composite industry nowadays considers environmental improvements as important as other properties of the materials. In the present paper, nickel powder was recycled from ferrous scrap, a low-cost and largely available material, by an effective hydrometallurgical recovery process. Then, this recycled powder was successfully used along with particulate α-alumina to prepare oblong nickel-based composite specimens with ceramic reinforcement loadings ranging from 0 to 30 wt.% by applying powder processing manufacturing techniques including cold isostatic pressing (CIP and sintering. The microstructures obtained were characterized, the specimens were subjected to three-point bend tests, and their fracture behaviour was evaluated. By increasing the % ceramic reinforcement content, density clearly decreases while strengthening is achieved, thus leading to development of lightweight and enhanced oblong nickel-alumina composites. The composite microstructure, and particularly the metal-ceramic interface bonding, has a strong impact on fracture behaviour upon external loading.

  2. Combining life cycle assessment and qualitative risk assessment: the case study of alumina nanofluid production.

    Science.gov (United States)

    Barberio, Grazia; Scalbi, Simona; Buttol, Patrizia; Masoni, Paolo; Righi, Serena

    2014-10-15

    In this paper the authors propose a framework for combining life cycle assessment (LCA) and Risk Assessment (RA) to support the sustainability assessment of emerging technologies. This proposal includes four steps of analysis: technological system definition; data collection; risk evaluation and impacts quantification; results interpretation. This scheme has been applied to a case study of nanofluid alumina production in two different pilot lines, "single-stage" and "two-stage". The study has been developed in the NanoHex project (enhanced nano-fluid heat exchange). Goals of the study were analyzing the hotspots and highlighting possible trade-off between the results of LCA, which identifies the processes having the best environmental performance, and the results of RA, which identifies the scenarios having the highest risk for workers. Indeed, due to lack of data about exposure limits, exposure-dose relationships and toxicity of alumina nanopowders (NPs) and nanofluids (NF), the workplace exposure has been evaluated by means of qualitative risk assessment, using Stoffenmanager Nano. Though having different aims, LCA and RA have a complementary role in the description of impacts of products/substances/technologies. Their combined use can overcome limits of each of them and allows a wider vision of the problems to better support the decision making process. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Facile Transferring of Wafer-Scale Ultrathin Alumina Membranes onto Substrates for Nanostructure Patterning.

    Science.gov (United States)

    Al-Haddad, Ahmed; Zhan, Zhibing; Wang, Chengliang; Tarish, Samar; Vellacheria, Ranjith; Lei, Yong

    2015-08-25

    Ordered nanostructure arrays have attracted intensive attention because of their various applications. However, it is still a great challenge to achieve ordered nanostructure patterning over a large area (such as wafer-scale) by a technique that allows high throughput, large pattern area and low equipment costs. Here, through a unique design of the fabrication and transferring processes, we achieve a facile transferring of wafer-scale ultrathin alumina membranes (UTAMs) onto substrates without any twisting, folding, cracking and contamination. The most important in our method is fixing the UTAM onto the wafer-scale substrate before removing the backside Al and alumina barrier layer. It is also demonstrated that the thickness and surface smoothing of UTAMs play crucial roles in this transferring process. By using these perfectly transferred UTAMs as masks, various nanostructure patterning including nanoparticle, nanopore (nanomesh) and nanowire arrays are fabricated on wafer-scale substrates with tunable and uniform dimension. Because there are no requirements for UTAMs, substrates and materials to be deposited, the method presented here shall provide a cost-effective platform for the fabrication of ordered nanostructures on large substrates for various applications in nanotechnology.

  4. Pemanfaatan serat silicon carbon dan partikel alumina pada matrik aluminium untuk meningkatkan sifat mekanis material komposit

    Directory of Open Access Journals (Sweden)

    Ketut Suarsana

    2017-03-01

    previous treatment. Indonesia has the potential of naturalresources potential, especially as fiber from plant sources also include metals aluminum (bauxite from fossils. This material canbe used for the needs of the industry as the manufacture of composite base Aluminium and as a reinforcement in the form offibers or particles of alumina. The method of making Aluminum Matrix Composites (AMC with a powder metallurgy process atthe compression force / compaction 2.5 tons using a hydraulic press equipment, holding time 15 minutes, and the treatmentprocess in the variation of the composition by weight (%wt. Variations in the composition of the fiber reinforcement SiliconCarbon (SiC and Al2O3 (alumina on a matrix Aluminium is: 30% SiC + 0% Al203, 27% SiC + 3% Al203, 24% SiC + 6% Al203 and21% SiC + 9% Al203 with a matrix of 70% Al, on condition tempertaur 500oC, 550oC and 600oC. After the composite material isformed, tested for mechanical properties due to the influence of variations in composition between matrix and reinforcement incomposites. Characteristics test performed in the laboratory to knowing strength and hardness properties of composite materials.Furthermore sought the relationship between the nature of each composition fiber reinforcement and an Al2O3 forming SiCcomposites made to know the benefits of reinforcing fibers and particles of alumina.Keywords: Strength, hardness, SiC fibers and Al2O3

  5. Thermocatalytic decomposition of methane/methanol mixture for hydrogen production: Effect of nickel loadings on alumina support

    Science.gov (United States)

    Awad, Ali; Salam, Abdus; Abdullah, Bawadi

    2017-10-01

    Hydrogen produced by thermocatalytic decomposition of methane is termed as clean and alternative fuel however high reaction temperature and fast catalyst deactivation limitize the efficiency of this process. In this study nickel based catalyst supported on alumina with various Ni loadings were prepared by impregnation method and employed for TCD of methane/methanol mixture for hydrogen production. Surface area and pore volume were decreased by increasing the amount of nickel loading on alumina. The results revealed that both reaction temperature and nickel loading affected the reaction rates and catalyst deactivation time. Scanning electron microscope (SEM) and Thermogravematric analysis (TGA) were used for characterization of fresh and spent catalyst. Crystalline carbon was formed on the surface of the catalyst and was proved by TGA analysis. Methane yield increased as the reaction temperature was increased but the catalyst deactivation time was decreased as a lot carbon was encapsulated on the surface of the catalyst.

  6. Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease.

    Science.gov (United States)

    Marquardt, B; Eude, L; Gowtham, M; Cho, G; Jeong, H J; Châtelet, M; Cojocaru, C S; Kim, B S; Pribat, D

    2008-10-08

    Porous alumina templates have been fabricated by applying an exponential voltage decrease at the end of the anodization process. The time constant η of the exponential voltage function has been used to control the average thickness and the thickness distribution of the barrier layer at the bottom of the pores of the alumina structure. Depending on the η value, the thickness distribution of the barrier layer can be made very uniform or highly scattered, which allows us to subsequently fine tune the electrodeposition yield of nickel nanoparticles/nanowires at low voltage. As an illustration, the pore filling percentage with Ni has been varied, in a totally reproducible manner, between ∼3 and 100%. Combined with the ability to vary the pore diameter and repetition step over ∼2 orders of magnitude (by varying the anodization voltage and electrolyte type), the control of the pore filling percentage with metal particles/nanowires could bring novel approaches for the organization of nano-objects.

  7. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  8. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system

    Directory of Open Access Journals (Sweden)

    Valan Arasu Amirtham

    2013-01-01

    Full Text Available Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3. A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3 particles in comparison with simple paraffin wax in a concentric double pipe heat exchanger. Numerical analysis indicates that the charge-discharge rates of thermal energy can be greatly enhanced using paraffin wax with alumina as compared with a simple paraffin wax as PCM.

  9. The concentration of the coolant 7Li in Kozloduy Nuclear Power Plant operating with potassium hydroxide as an alkalizing reagent (possible impact on the occurrence of axial offset anomaly)

    International Nuclear Information System (INIS)

    Dobrevski, I.D.; Minkova, K.F.; Ivanova, R.A.

    2003-01-01

    The phenomenon of axial offset anomaly (AOA) has occurred in a number of PWRs operating with extended fuel cycles and high boiling duty cores. Up to now AOA has been observed in PWRs operating with lithium hydroxide and the alkalizing reagent used for pH adjustment in boric acid water solutions. Since AOA is connected with the LiBO 2 precipitation in porous corrosion product deposits on the fuel cladding surfaces, we could presume that the replacement of lithium hydroxide with potassium hydroxide will avoid AOA. Nowadays there is a lack of observed AOA in VVER, i.e., a lack of formation of lithium metaborate (LiBO 2 ) deposits on the fuel element surfaces by coolant alkalization with potassium hydroxide. Nevertheless, the concentrations of 7 Li appear in the coolant, as a product of the neutron reaction with boron: 10 B (n,α) → 7 Li (n, α). As a consequence the possibility it is not excluded of LiBO 2 formation in VVERs with potassium hydroxide water chemistry. The aim of this study is to inform the reader about the development of the concentration of the coolant lithium concentration during the fuel cycles of VVERs and to discuss the possibility of LiBO 2 formation under VVER operation conditions. (orig.)

  10. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nosbi, Norlin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Akil, Hazizan Md, E-mail: hazizan@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Cluster for Polymer Composite (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-06-15

    Graphical abstract: - Highlights: • We report that, to manipulate carbon nanotubes geometry and number of walls are by controlling the precipitate catalyst size. • Number of walls and geometry effects depend on the milling time of the precipitate catalyst. • Increasing milling of time will decrease the carbon nanotubes number of walls. • Increasing milling of time will increase the carbon nanotubes thermal conductivity. - Abstract: This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5–15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  11. Optimal factor evaluation for the dissolution of alumina from Azaraegbelu clay in acid solution using RSM and ANN comparative analysis

    Directory of Open Access Journals (Sweden)

    P.E. Ohale

    2017-12-01

    Full Text Available Artificial neural network (ANN and Response Surface Methodology based on a 25−1 fractional factorial design were used as tools for simulation and optimisation of the dissolution process for Azaraegbelu clay. A feedforward neural network model with Levenberg–Marquard back propagating training algorithm was adapted to predict the response (alumina yield. The studied input variables were temperature, stirring speed, clay to acid dosage, leaching time and leachant concentration. The raw clay was characterized for structure elucidation via FTIR, SEM and X-ray diffraction spectroscopic techniques and the result indicates that the clay is predominantly kaolinite. Leachant concentration and dosage ratio were found to be the most significant process parameter with p-value of 0.0001. The performance of the ANN and RSM model showed adequate prediction of the response, with AAD of 11.6% and 3.6%, and R2 of 0.9733 and 0.9568, respectively. A non-dominated optimal response of 81.45% yield of alumina at 4.6 M sulphuric acid concentration, 214 min leaching time, 0.085 g/ml dosage and 214 rpm stirring speed was established as a viable route for reduced material and operating cost via RSM. Keywords: Alumina dissolution, ANN modelling, Azaraegbelu, Clay, RSM

  12. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Yang, Xiaojun; Deng, Wenli

    2014-04-09

    In this study, a large-area superhydrophobic alumina surface with a series of superior properties was fabricated via an economical, simple, and highly effective one-step anodization process, and subsequently modified with low-surface-energy film. The effects of the anodization parameters including electrochemical anodization time, current density, and electrolyte temperature on surface morphology and surface wettability were investigated in detail. The hierarchical alumina pyramids-on-pores (HAPOP) rough structure which was produced quickly through the one-step anodization process together with a low-surface-energy film deposition [1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA)] confer excellent superhydrophobicity and an extremely low sliding angle. Both the PDES-modified superhydrophobic (PDES-MS) and the STA-modified superhydrophobic (STA-MS) surfaces present fascinating nonwetting and extremely slippery behaviors. The chemical stability and mechanical durability of the PDES-MS and STA-MS surfaces were evaluated and discussed. Compared with the STA-MS surface, the as-prepared PDES-MS surface possesses an amazing chemical stability which not only can repel cool liquids (water, HCl/NaOH solutions, around 25 °C), but also can show excellent resistance to a series of hot liquids (water, HCl/NaOH solutions, 30-100 °C) and hot beverages (coffee, milk, tea, 80 °C). Moreover, the PDES-MS surface also presents excellent stability toward immersion in various organic solvents, high temperature, and long time period. In particular, the PDES-MS surface achieves good mechanical durability which can withstand ultrasonication treatment, finger-touch, multiple fold, peeling by adhesive tape, and even abrasion test treatments without losing superhydrophobicity. The corrosion resistance and durability of the diverse-modified superhydrophobic surfaces were also examined. These fascinating performances makes the present method suitable for large

  13. Fragmentation analysis of alumina-nickel cermets subjected to Hopkinson bar tests at high strain rates; Analisis de la fragmentacion de cermets de alumina-niquel ensayados en Barra Hopkinson a altas velocidades de deformacion

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, F.; Lecue, E.; Sanchez Herencia, A. J.; Gomez del Rio, T.

    2014-07-01

    A comparative study of the influence of the strain rate on the dynamic mechanical behaviour of an alumina matrix with 15 and 50 % of dispersed nickel is presented. The fragmentation under high speed impact compression loads have been studied using a compression split Hopkinson pressure bar (SHPB). Dense alumina and alumina-nickel composites were processed by slip casting of water based slurries on porous moulds. Samples with the metallic phase dispersed were pre-oxidized to achieve an effective joining interface and sintered under flowing inert atmosphere. The strain rate was determined from the impact experiments. The statistics of the SHPB recovered fragments have been determined and analysed according to the exponential models of Weibull and Rosin y Rammler and the effects of the strain rate on the average fragment size are described according to the existing energy models. Finally the rupture mechanisms of the samples and the sources of fracture have been explored and compared to the quasi static mechanical behaviour of these materials. (Author)

  14. Chemical vapor deposition of silica, alumina, and aluminosilicates from mixtures of aluminum trichloride, chlorosilane, carbon dioxide, and hydrogen

    Science.gov (United States)

    Nitodas, Stephanos F.

    The objective of this study is the comprehensive investigation of the kinetics of the codeposition of silica (SiO2), alumina (Al 2O3), mullite (3Al2O3·2SiO 2), and other aluminosilicates from mixtures of chlorosilane (SiCl 4 or MTS), aluminum trichloride, carbon dioxide, and hydrogen in order to prepare coatings for the protection of SiC-based ceramics from oxidation in high-temperature applications. In an attempt to elucidate some aspects of the codeposition process, the deposition of silica and alumina from chlorosilane and aluminum trichloride, respectively, in carbon dioxide and hydrogen is also studied. Experiments are conducted in a tubular, hot-wall chemical vapor deposition reactor, coupled to an electronic microbalance, using various substrates. The effects of process parameters on deposition rate, film morphology, and film composition are examined over a wide range of experimental conditions. Among the most interesting results of this study is that the presence of AlCl 3 has a catalytic effect on the incorporation of silica in the deposit, leading to codeposition rates that are higher than the deposition rates that are obtained when only one of the two chlorides (chlorosilane or AlCl 3 is present in the feed. The results of the deposition experiments also show that manipulation of the temperature of the reaction and the residence time of the mixture in the reactor offers a way to control the composition of the codeposited films in SiO2 and Al2O3, obtaining deposits with significant alumina and aluminosilicate (e.g., mullite) content. In order to account for the complex chemistry of the formation of the oxide films, detailed homogeneous and heterogeneous mechanisms are developed for the deposition of silica, the deposition of alumina, and the codeposition process. The kinetic mechanisms encompass several reaction sequences for the generation of deposition precursors and the formation of solid phases, and are incorporated into the reaction and transport

  15. Recycling of Coal Fly Ash for the Fabrication of Porous Mullite/Alumina Composites

    Directory of Open Access Journals (Sweden)

    Kyu H. Kim

    2014-08-01

    Full Text Available Coal fly ash with the addition of Al2O3 was recycled to produce mullite/alumina composites and the camphene-based freeze casting technique was processed to develop a controlled porous structure with improved mechanical strength. Many rod-shaped mullite crystals, formed by the mullitization of coal fly ash in the presence of enough silicate, melt. After sintering at 1300–1500 °C with the initial solid loadings of 30–50 wt.%, interconnected macro-sized pore channels with nearly circular-shaped cross-sections developed along the macroscopic solidification direction of camphene solvent used in freeze casting and a few micron-sized pores formed in the walls of the pore channels. The macro-pore size of the mullite/alumina composites was in the range 20–25 μm, 18–20 μm and 15–17 μm with reverse dependence on the sintering temperature at 30, 40 and 50 wt.% solid loading, respectively. By increasing initial solid loading and the sintering temperature, the sintered porosity was reduced from 79.8% to 31.2%, resulting in an increase in the compressive strength from 8.2 to 80.4 MPa.

  16. Synthesis of alumina powder with seeds by Pechini Method using O2 as calcination atmosphere

    International Nuclear Information System (INIS)

    Salem, R.E.P.; Guilherme, K.A.; Chinelatto, A.S.A.; Chinelatto, A. L.

    2012-01-01

    Alumina is a very investigated material due to its excellent refractory characteristics and mechanical properties. Its alpha phase, the most stable one, has a formation temperature of about 1200 ° C. Due to its high temperature of formation, many researches have been trying to reduce it through addition of seeds of alpha phase in chemical processes of synthesis. This work aims to synthesize ultrafine powders of alpha-alumina by the Pechini method with seeding, and using an O 2 atmosphere in the pre-calcination (500 ° C) and calcination (1000 ° C and 1100° C) steps. The resulting powders were characterized through X-ray diffractometry, infrared spectroscopy and scanning electron microscopy. The results were compared with samples calcined on ai. It was verified that the presence of oxygen in the calcination atmosphere favored the elimination of residual carbon from the precursor powders, forthcoming from the great amount of organic material used on the synthesis, modifying its morphology and favoring reduction of particle size. (author)

  17. Nanostructured thin films of indium oxide nanocrystals confined in alumina matrixes

    International Nuclear Information System (INIS)

    Bouifoulen, A.; Edely, M.; Errien, N.; Kassiba, A.; Outzourhit, A.; Makowska-Janusik, M.; Gautier, N.; Lajaunie, L.; Oueriagli, A.

    2011-01-01

    Nanocrystals of indium oxide (In 2 O 3 ) with sizes below 10 nm were prepared in alumina matrixes by using a co-pulverization method. The used substrates such as borosilicate glasses or (100) silicon as well as the substrate temperatures during the deposition process were modified and their effects characterized on the structural and physical properties of alumina-In 2 O 3 films. Complementary investigation methods including X-ray diffraction, optical transmittance in the range 250-1100 nm and transmission electron microscopy were used to analyze the nanostructured films. The crystalline order, morphology and optical responses were monitored as function of the deposition parameters and the post-synthesis annealing. The optimal conditions were found and allow realizing suitable nanostructured films with a major crystalline order of cubic phase for the In 2 O 3 nanocrystals. The optical properties of the films were analyzed and the key parameters such as direct and indirect band gaps were evaluated as function of the synthesis conditions and the crystalline quality of the films.

  18. An electrochemical investigation on the dissolution of bilayered porous anodic alumina

    International Nuclear Information System (INIS)

    Liao, Jinfu; Ling, Zhiyuan; Li, Yi; Hu, Xing

    2015-01-01

    Highlights: • Pulse polarization was introduced to investigate the dissolution of PAA. • Electric field within the bilayers was estimated. • The formation of the barrier layer involves mainly solid-state processes. • The structure should be the determining factor in the dissolution of the bilayers. - Abstract: Anodic alumina attracts much research interest in many disciplines for its versatility. Meanwhile, some aspects regarding its growth are still not well-understood, such as the formation and properties of its bilayer structure. In this paper, along with capacitance measurement, pulse polarization is introduced to study the dissolution of bilayered porous anodic alumina (PAA). Combined with electron microscope observation, the electric field in the outer layer is estimated to be slightly higher than that in the inner layer. By comparing with (oxy-)hydroxide layers, the electric field distribution within barrier layer of PAA confirms that the bilayers are compact and are formed mainly by solid-state ionic migration. The changes of dissolution rates after annealing and application of electric pulses suggest that structure may be a determining factor for the dissolution behaviors of the bilayers.

  19. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)

    1996-10-01

    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  20. An Alumina Toughened Zirconia Composite for Dental Implant Application: In Vivo Animal Results

    Science.gov (United States)

    Schierano, Gianmario; Faga, Maria Giulia; Menicucci, Giulio; Sabione, Cristian; Genova, Tullio; von Degerfeld, Mitzy Mauthe; Peirone, Bruno; Cassenti, Adele; Cassoni, Paola; Carossa, Stefano

    2015-01-01

    Ceramic materials are widely used for biomedical applications because of their remarkable biological and mechanical properties. Composites made of alumina and zirconia are particularly interesting owing to their higher toughness with respect to the monolithic materials. On this basis, the present study is focused on the in vivo behavior of alumina toughened zirconia (ATZ) dental implants treated with a hydrothermal process. A minipig model was implemented to assess the bone healing through histology and mRNA expression at different time points (8, 14, 28, and 56 days). The novel ATZ implant was compared to a titanium clinical standard. The implants were analyzed in terms of microstructure and surface roughness before in vivo tests. The most interesting result deals with a statistically significant higher digital histology index for ATZ implants with respect to titanium standard at 56 days, which is an unprecedented finding, to the authors' knowledge. Even if further investigations are needed before proposing the clinical use in humans, the tested material proved to be a promising candidate among the possible ceramic dental implants. PMID:25945324

  1. Optical meta-films of alumina nanowire arrays for solar evaporation and optoelectronic devices (Conference Presentation)

    Science.gov (United States)

    Kim, Kyoungsik; Bae, Kyuyoung; Kang, Gumin; Baek, Seunghwa

    2017-05-01

    Nanowires with metallic or dielectric materials have received considerable interest in many research fields for optical and optoelectronic devices. Metal nanowires have been extensively studied due to the high optical and electrical properties and dielectric nanowires are also investigated owing to the multiple scattering of light. In this research, we report optical meta-films of alumina nanowire arrays with nanometer scale diameters by fabrication method of self-aggregate process. The aluminum oxide nanowires are transparent from ultraviolet to near infrared wavelength regions and array structures have strong diffusive light scattering. We integrate those optical properties from the material and structure, and produce efficient an optical haze meta-film which has high transparency and transmission haze at the same time. The film enhances efficiencies of optical devices by applying on complete products, such as organic solar cells and LEDs, because of an expanded optical path length and light trapping in active layers maintaining high transparency. On the other hands, the meta-film also produces solar steam by sputtering metal on the aluminum oxide nanowire arrays. The nanowire array film with metal coating exhibits ultrabroadband light absorption from ultraviolet to mid-infrared range which is caused by nanofocusing of plasmons. The meta-film efficiently produces water steam under the solar light by metal-coated alumina arrays which have high light-to-heat conversion efficiency. The design, fabrication, and evaluation of our light management platforms and their applications of the meta-films will be introduced.

  2. Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Chin Lei, Dominique Wong; Pereira, Taj; Losic, Dusan

    2016-11-03

    In this study, we present an advanced nanofabrication approach to produce gradient-index photonic crystal structures based on nanoporous anodic alumina. An apodization strategy is for the first time applied to a sinusoidal pulse anodisation process in order to engineer the photonic stop band of nanoporous anodic alumina (NAA) in depth. Four apodization functions are explored, including linear positive, linear negative, logarithmic positive and logarithmic negative, with the aim of finely tuning the characteristic photonic stop band of these photonic crystal structures. We systematically analyse the effect of the amplitude difference (from 0.105 to 0.840 mA cm -2 ), the pore widening time (from 0 to 6 min), the anodisation period (from 650 to 950 s) and the anodisation time (from 15 to 30 h) on the quality and the position of the characteristic photonic stop band and the interferometric colour of these photonic crystal structures using the aforementioned apodization functions. Our results reveal that a logarithmic negative apodisation function is the most optimal approach to obtain unprecedented well-resolved and narrow photonic stop bands across the UV-visible-NIR spectrum of NAA-based gradient-index photonic crystals. Our study establishes a fully comprehensive rationale towards the development of unique NAA-based photonic crystal structures with finely engineered optical properties for advanced photonic devices such as ultra-sensitive optical sensors, selective optical filters and all-optical platforms for quantum computing.

  3. Fabrication of TiO2 Nanotanks Embedded in a Nanoporous Alumina Template

    Directory of Open Access Journals (Sweden)

    C. Massard

    2015-01-01

    Full Text Available The feasibility of surface nanopatterning with TiO2 nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2 gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM. The TiO2 nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM with selected area electron diffraction (SAED were used to investigate the TiO2 structure. The optical properties were studied using UV-Vis spectroscopy.

  4. Removal of Phosphate Using Red Mud: An Environmentally Hazardous Waste By-Product of Alumina Industry

    Directory of Open Access Journals (Sweden)

    Shivkumar S. Prajapati

    2016-01-01

    Full Text Available The industrial waste, bauxite residue generated in the Bayer chemical process of alumina production, commonly known as red mud (RM has been used as the adsorbent for selective removal of phosphate in aqueous solutions. RM collected from the storage area of alumina industry was characterized by chemical analysis and physical methods such as BET surface area, Scanning Electron Microscopy (SEM, particle size analysis, and X-ray diffraction (XRD methods. Among the various red mud samples (0.2–200 μ studied, the samples treated with 1 M HCl for 2 h were found better for the selective adsorption of phosphate in comparison with untreated and heat treated RM samples. The presence of phosphate in the aqueous samples collected after adsorption studies with red mud was determined by standard spectrophotometric procedure using ammonium molybdate and ascorbic acid in nitrate medium at λmax 880 nm. The studies reported significant adsorption of phosphate on acid treated red mud in comparison with adsorption of phosphate on untreated and heat treated red mud, respectively. The adsorption of phosphate on raw red mud and activated red mud was further investigated with respect to stirring time, pH of the solution, dose of adsorbent, and varying phosphate concentration. Acid treated RM is observed as an efficient and cost-effective adsorbent for selective removal of phosphate in aqueous solutions.

  5. An Alumina Toughened Zirconia Composite for Dental Implant Application: In Vivo Animal Results

    Directory of Open Access Journals (Sweden)

    Gianmario Schierano

    2015-01-01

    Full Text Available Ceramic materials are widely used for biomedical applications because of their remarkable biological and mechanical properties. Composites made of alumina and zirconia are particularly interesting owing to their higher toughness with respect to the monolithic materials. On this basis, the present study is focused on the in vivo behavior of alumina toughened zirconia (ATZ dental implants treated with a hydrothermal process. A minipig model was implemented to assess the bone healing through histology and mRNA expression at different time points (8, 14, 28, and 56 days. The novel ATZ implant was compared to a titanium clinical standard. The implants were analyzed in terms of microstructure and surface roughness before in vivo tests. The most interesting result deals with a statistically significant higher digital histology index for ATZ implants with respect to titanium standard at 56 days, which is an unprecedented finding, to the authors’ knowledge. Even if further investigations are needed before proposing the clinical use in humans, the tested material proved to be a promising candidate among the possible ceramic dental implants.

  6. Adsorptive capacity and evolution of the pore structure of alumina on reaction with gaseous hydrogen fluoride.

    Science.gov (United States)

    McIntosh, Grant J; Agbenyegah, Gordon E K; Hyland, Margaret M; Metson, James B

    2015-05-19

    Brunauer-Emmet-Teller (BET) specific surface areas are generally used to gauge the propensity of uptake on adsorbents, with less attention paid to kinetic considerations. We explore the importance of such parameters by modeling the pore size distributions of smelter grade aluminas following HF adsorption, an industrially important process in gas cleaning at aluminum smelters. The pore size distributions of industrially fluorinated aluminas, and those contacted with HF in controlled laboratory trials, are reconstructed from the pore structure of the untreated materials when filtered through different models of adsorption. These studies demonstrate the presence of three distinct families of pores: those with uninhibited HF uptake, kinetically limited porosity, and pores that are surface blocked after negligible scrubbing. The surface areas of the inaccessible and blocked pores will overinflate estimates of the adsorption capacity of the adsorbate. We also demonstrate, contrary to conventional understanding, that porosity changes are attributed not to monolayer uptake but more reasonably to pore length attenuation. The model assumes nothing specific regarding the Al2O3-HF system and is therefore likely general to adsorbate/adsorbent phenomena.

  7. Ultrasonic characterization of zirconia-toughened alumina ceramics

    International Nuclear Information System (INIS)

    Phani, K.K.; Mukherjee, S.; Basu, D.

    1996-01-01

    Ultrasonic pulse-echo technique was used for the characterization of sintered zirconia-toughened alumina (ZTA) ceramics. The variation of the ultrasonic velocity and elastic constants with the volume fraction of zirconia in the alumina matrix was studied. The ultrasonic velocity variation in these materials also was modeled using a mean-value approach. The zirconia grains in ZTA were modeled by oblate spheroids, whose aspect ratio was estimated from the two-dimensional microstructure of the material using stereological relations. The aspect ratio was then used as a parameter to estimate the ultrasonic velocity variation in the material using self-consistent spheroidal inclusion theory, and the model was validated by comparing the estimated data with the measured velocity values, which showed very good agreement

  8. Applying Taguchi method for optimization of the synthesis condition of nano-porous alumina membrane by slip casting method

    Energy Technology Data Exchange (ETDEWEB)

    Barmala, Molood [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Moheb, Ahmad, E-mail: ahmad@cc.iut.ac.i [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Emadi, Rahmatollah [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-10-19

    In this work thin disc type pure alumina membranes have been prepared by slip casting technique. The colloidal stabilization of micro-sized alumina suspensions with different amount of 1,2-dihydroxy-3,5-benzenedisulfonic acid disodium salt (Tiron) at various suspension concentration were examined and the suspension stability was characterized by measuring sedimentation height. Also the necessary ball milling time (used as a deflocculating process) to prepare defect free membranes was investigated. A statistical experimental design method (Taguchi method with L9 orthogonal array design) was implemented to optimize experimental conditions for the preparation of Al{sub 2}O{sub 3} nano-porous membrane. Sintering temperature, solid content and polyvinyl alcohol (PVA) content were recognized and selected as important effecting parameters. Also structural studies by means of isopropanol adsorption and scanning electron microscopy were carried out on membranes. As the result of Taguchi analysis in this study, sintering temperature was the most influencing parameter on the membrane porosity. Reasonable membrane characteristics were obtained at an optimum temperature of 1400 deg. C, 20% solid content and 20 cc PVA solution per 100 g of alumina powder.

  9. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-12-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 wt% NaCl solution. Empirical relationship was established to predict the corrosion rate of plasma sprayed alumina coatings by incorporating process parameters. The experiments were conducted based on a three factor, five-level, central composite rotatable design matrix. The developed relationship can be effectively used to predict the corrosion rate of alumina coatings at 95% confidence level. The results indicate that the input power has the greatest influence on corrosion rate, followed by stand-off distance and powder feed rate.

  10. ECCI, EBSD and EPSC characterization of rhombohedral twinning in polycrystalline α-alumina deformed in a D-DIA apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kaboli, Shirin; Burnley, Pamela C.

    2017-11-03

    Rhombohedral twinning in alumina (aluminium oxide, α-Al2O3) is an important mechanism for plastic deformation under high-temperature–pressure conditions. Rhombohedral twins in a polycrystalline alumina sample deformed in a D-DIA apparatus at 965 K and 4.48 GPa have been characterized. Three classes of grains were imaged, containing single, double and mosaic twins, using electron channeling contrast imaging (ECCI) in a field emission scanning electron microscope. These twinned grains were analyzed using electron backscatter diffraction (EBSD). The methodology for twin identification presented here is based on comparison of theoretical pole figures for a rhombohedral twin with experimental pole figures obtained with EBSD crystal orientation mapping. An 85°(02{\\overline 2}1) angle–axis pair of misorientation was identified for rhombohedral twin boundaries in alumina, which can be readily used in EBSD post-processing software to identify the twin boundaries in EBSD maps and distinguish the rhombohedral twins from basal twins. Elastic plastic self-consistent (EPSC) modeling was then used to model the synchrotron X-ray diffraction data from the D-DIA experiments utilizing the rhombohedral twinning law. From these EPSC models, a critical resolved shear stress of 0.25 GPa was obtained for rhombohedral twinning under the above experimental conditions, which is internally consistent with the value estimated from the applied load and Schmid factors determined by EBSD analysis.

  11. The removal of Tartrazine dye by modified Alumina with sodium dodecyl sulfate from aqueous solutions: equilibrium and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    A. Parchebaf Jadid

    2017-11-01

    Full Text Available Edible colors are materials which in the case of adding to food and drinks cause transferring color to them. Most of these colors are not acceptable in terms of applying in human food and underlies various diseases like gastrointestinal disorders, renal, liver and blood toxicity. The goal of this study was investigating the efficiency of improved alumina by sodium dodecyl sulfate (SDS in eliminating Tartrazine from aqueous environments. In this research, the impact of effective parameters such as initial concentration of Tartrazine, time, pH, alumina dose and SDS value were studied in order to approach an optimal condition for eliminating the color. Also, absorption behavior was evaluated by Freundlich and Langmuir isotherms. The highest efficiency of Tartrazine elimination in the solution resulted in optimal pH of 2, the amount of adsorbent 1.5 g/L, 16 min duration and value 0.04 SDS g/l which was obtained for dye concentration 5 mg/L about 94.13%. Also, results suggested that Tartrazine absorption follows Langmuir isotherm (R2 = 0.9867. Obtained results from thermodynamic studies such as Gibbs free energy (-5.728 Kj/mol and enthalpy (-85.86 Kj/mol and entropy (-271.102 J/mol.K also suggested that the absorption process was exothermic. The results of this research suggested that improved alumina by sodium dodecyl sulfate had a relative good capability in Tartrazine elimination from aqueous environments. Thus

  12. Removal of Aluminum from the Dissolved Alumina Matrix by NH{sub 4}OH Precipitation and Chelate Ion Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jung Ki; Kim, Chang Soo; Han, Myung Sub; Lee, Hwa Shim [Korea Research Institute of Standardsand Science, Daejeon (Korea, Republic of)

    2016-03-15

    Many studies have been devoted to the determination of trace elements in alumina matrices using high sensitivity techniques such as inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS). The dissolved alumina samples contain high concentrations of aluminum (Al) and sulfuric acid. High Al concentrations can cause high background emission from 190 to 250 nm and can increase the detection limit of ICP-OES. Furthermore, reactions between the Al matrix and quartz from the quartz torch used in high temperature plasmas can result in the formation of aluminosilicate (3Al{sub 2}O{sub 3}–2SiO{sub 2}), which reduce the torch lifetime. High concentration of Al matrix can also form a white deposit on the skimmer and the sampler cone, and block the orifice. These problems prevent the long-term use of ICP-MS seriously. NIST SRM 699 alumina was used as a test sample for the removal of the Al and the recovery of trace metals from matrix. First, about 1 g of NIST SRM 699 alumina standard was dissolved with 40 mL of 25% H{sub 2}SO{sub 4} for 65 h at 230 °C in PolytetraFluoroethylene (PTFE) vessel and diluted with deionized water to be about 100 g. For fast and simple separation of the two solid layers, 5 mL aliquots of 0.1 M NH4OH solution were added and the solutions were shaken gently; then, only the swollen resin layer was transferred to another tube. This transfer process was repeated several times.

  13. Controlled fabrication of patterned lateral porous alumina membranes

    International Nuclear Information System (INIS)

    Gowtham, M; Eude, L; Cojocaru, C S; Marquardt, B; Jeong, H J; Legagneux, P; Song, K K; Pribat, D

    2008-01-01

    Confined lateral alumina templates are fabricated with different pore sizes by changing the acid electrolyte and the anodization voltage. The control of the number of pore rows down to one dimension is also achieved, by controlling the thickness of the starting aluminum film as well as the anodization voltage. We observe that the mechanism of pore formation in the lateral regime is very similar to that in the classical vertical situation

  14. Glass properties in the yttria-alumina-silica system

    Science.gov (United States)

    Hyatt, M. J.; Day, D. E.

    1987-01-01

    The glass formation region in the yttria-alumina-silica system was investigated. Properties of glasses containing 25 to 55 wt pct yttria were measured and the effect of the composition was determined. The density, refractive index, thermal-expansion coefficient, and microhardness increased with increasing yttria content. The dissolution rate in 1N HCl increased with increasing yttria content and temperature. These glasses were also found to have high electrical resistivity.

  15. Porous Alumina and Zirconia Ceramics With Tailored Thermal Conductivity

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, Jiří

    2012-01-01

    Roč. 395, č. 1 (2012), 012022-012022 ISSN 1742-6588. [European Thermal Sciences Conference (Eurotherm)/6./. Poitiers, 04.09.2012-07.09.2012] Institutional support: RVO:61389021 Keywords : Ceramics * alumina * zirconia * porosity * thermal conductivity * pore-forming agent * oxide ceramics * starch * porosity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://iopscience.iop.org/1742-6596/395/1/012022/pdf/1742-6596_395_1_012022.pdf

  16. Efective infrared reflectivity and dielectric function of polycrystalline alumina ceramics

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Borodavka, Fedir; Vaněk, Přemysl; Šimek, Daniel; Trunec, D.; Maca, K.

    2017-01-01

    Roč. 254, č. 5 (2017), s. 1-8, č. článku 1600607. ISSN 0370-1972 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : alumina * ceramics * effective dielectric function * effective medium approximation * geometrical resonances * infrared reflectivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.674, year: 2016

  17. Organized Mesoporous Alumina: Synthesis, Structure and Potential in Catalysis

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří

    2003-01-01

    Roč. 254, - (2003), s. 327-338 ISSN 0926-860X R&D Projects: GA AV ČR IAA4040001; GA ČR GA104/02/0571; GA MŠk ME 404 Institutional research plan: CEZ:AV0Z4040901 Keywords : organized mesoporous alumina * mesoporous molecular sieves * synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  18. Development of Internal Stresses in Alumina-Zirconia Laminates

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Hadraba, Hynek; Drdlík, D.; Maca, K.; Dlouhý, Ivo

    2012-01-01

    Roč. 507, č. 1 (2012), s. 221-226 ISSN 1013-9826. [International Conference on Electrophoretic Deposition: Fundamentals and Applications /4./. Puerto Vallarta, 02.10.2011-27.10.2011] R&D Projects: GA ČR(CZ) GAP108/11/1644 Institutional research plan: CEZ:AV0Z20410507 Keywords : Alumina * Zirconia * Residual stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics http://www.scientific.net/KEM.507

  19. Advances in Zirconia Toughened Alumina Biomaterials for Total Joint Replacement

    Science.gov (United States)

    Kurtz, Steven M.; Kocagöz, Sevi; Arnholt, Christina; Huet, Roland; Ueno, Masaru; Walter, William L.

    2014-01-01

    The objective of this article is to provide an up-to-date overview of zirconia-toughened alumina (ZTA) components used in total hip arthroplasties. The structure, mechanical properties, and available data regarding the clinical performance of ZTA are summarized. The advancements that have been made in understanding the in vivo performance of ZTA are investigated. This article concludes with a discussion of gaps in the literature related to ceramic biomaterials and avenues for future research. PMID:23746930

  20. MeV ion beam polishing of anodically grown alumina

    International Nuclear Information System (INIS)

    Daudin, B.; Martin, P.

    1988-01-01

    When bombarded with 1 MeV N + ions, the surface of anodically grown alumina films is smoothened. This polishing effect was studied as a function of the ion bombardment fluence and of the substrate temperature in the range 80 - 650 K. The techniques used to characterize the surface roughness were Rutherford Backscattering Spectrometry, Scanning Electron Microscopy and small angle X-rays diffusion. It is suggested that atomic and/or electronic sputtering is responsible for the smoothing effect which was observed

  1. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  2. Vitrification of high-level alumina nuclear waste

    International Nuclear Information System (INIS)

    Brotzman, J.R.

    1979-01-01

    Borophosphate glass compositions have been developed for the vitrification of a high-alumina calcined defense waste. The effect of substituting SiO 2 , P 2 O 5 and CuO for B 2 O 3 on the viscosity and leach resistance was measured. The effect of the alkali to borate ratio and the Li 2 O:Na 2 O ratio on the melt viscosity and leach resistance was also measured

  3. Fractography of Alumina Fibre Reinforced Ex-polysiloxane Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Rudnayová, E.; Glogar, Petr

    2002-01-01

    Roč. 223, - (2002), s. 119-124 ISSN 1013-9826. [Fractography of Advanced Ceramic s 2001. Stará Lesná, 13.05.2001-16.05.2001] R&D Projects: GA ČR GA104/00/1140; GA ČR GA106/99/0096 Institutional research plan: CEZ:AV0Z3046908 Keywords : alumina fibre * fibrous composite * fracture features Subject RIV: JI - Composite Materials Impact factor: 0.497, year: 2002

  4. Simulator of Non-homogenous Alumina and Current Distribution in an Aluminum Electrolysis Cell to Predict Low-Voltage Anode Effects

    Science.gov (United States)

    Dion, Lukas; Kiss, László I.; Poncsák, Sándor; Lagacé, Charles-Luc

    2018-04-01

    Perfluorocarbons are important contributors to aluminum production greenhouse gas inventories. Tetrafluoromethane and hexafluoroethane are produced in the electrolysis process when a harmful event called anode effect occurs in the cell. This incident is strongly related to the lack of alumina and the current distribution in the cell and can be classified into two categories: high-voltage and low-voltage anode effects. The latter is hard to detect during the normal electrolysis process and, therefore, new tools are necessary to predict this event and minimize its occurrence. This paper discusses a new approach to model the alumina distribution behavior in an electrolysis cell by dividing the electrolytic bath into non-homogenous concentration zones using discrete elements. The different mechanisms related to the alumina distribution are discussed in detail. Moreover, with a detailed electrical model, it is possible to calculate the current distribution among the different anodic assemblies. With this information, the model can evaluate if low-voltage emissions are likely to be present under the simulated conditions. Using the simulator will help the understanding of the role of the alumina distribution which, in turn, will improve the cell energy consumption and stability while reducing the occurrence of high- and low-voltage anode effects.

  5. Simulator of Non-homogenous Alumina and Current Distribution in an Aluminum Electrolysis Cell to Predict Low-Voltage Anode Effects

    Science.gov (United States)

    Dion, Lukas; Kiss, László I.; Poncsák, Sándor; Lagacé, Charles-Luc

    2018-01-01

    Perfluorocarbons are important contributors to aluminum production greenhouse gas inventories. Tetrafluoromethane and hexafluoroethane are produced in the electrolysis process when a harmful event called anode effect occurs in the cell. This incident is strongly related to the lack of alumina and the current distribution in the cell and can be classified into two categories: high-voltage and low-voltage anode effects. The latter is hard to detect during the normal electrolysis process and, therefore, new tools are necessary to predict this event and minimize its occurrence. This paper discusses a new approach to model the alumina distribution behavior in an electrolysis cell by dividing the electrolytic bath into non-homogenous concentration zones using discrete elements. The different mechanisms related to the alumina distribution are discussed in detail. Moreover, with a detailed electrical model, it is possible to calculate the current distribution among the different anodic assemblies. With this information, the model can evaluate if low-voltage emissions are likely to be present under the simulated conditions. Using the simulator will help the understanding of the role of the alumina distribution which, in turn, will improve the cell energy consumption and stability while reducing the occurrence of high- and low-voltage anode effects.

  6. γ-radiolysis of methane adsorbed on γ-alumina

    International Nuclear Information System (INIS)

    Norfolk, D.J.; Swan, T.

    1978-01-01

    An earlier study showed that γ-alumina surfaces outgassed above 570 K contain sites involving exposed lattice ions at which methane is chemisorbed during γ-irradiation. When the species so formed are heated they decompose yielding C 1 , C 2 and C 3 alkanes and alkanes together with hydrogen. The present study investigates the kinetics of the reactions occurring during irradiation. These reactions are shown to be the activation of surface sites and the dissociative chemisorption of methane, in accord with the mechanism previously suggested. Overall product yields are chiefly determined by the rate at which excited charge carriers reach the surface, the highest rate observed being G(- CH 4 ) = 2.0 but declining when fewer than approximately 3 x 10 15 m -2 chemisorption sites remain unoccupied. A kinetic scheme is proposed to account for the variation in yields with methane coverage, radiation dose and dose rate, and specific surface area of the γ-alumina. It is also shown that the individual products formed when the precursors decompose depend on the configuration of the methane chemisorption sites, and so on the origin of the γ-alumina and the outgassing temperature used. Two subsidiary reactions are identified. The first of these resembles normal radiolysis but occurs at sites less accessible to methane. In the second, however, new surface species are formed when irradiation continues after either the methane or the chemisorption sites have been exhausted. These scavenge part of the adsorbed hydrocarbon material. (author)

  7. Dielectric properties of alumina/zirconia composites at millimeter wavelengths

    International Nuclear Information System (INIS)

    Molla, J.; Heidinger, R.; Ibarra, A.; Link, G.

    1994-01-01

    Alumina-zirconia composites with ZrO 2 contents up to 20% and negligible porosity were investigated at millimeter (mm) wavelengths to determine the changes appearing in the dielectric properties of pure alumina ceramics when unstabilized or partially stabilized ZrO 2 is added to improve the mechanical strength. It is demonstrated that it essential to distinguish between the contributions of the monoclinic and the tetragonal phase of zirconia (m-ZrO 2 , t-ZrO 2 ). Permittivity is raised with increasing content of either phases; the effective permittivity can be assessed by the rule of mixtures (Maxwell-Garnett formulation of the generalized Clasussius-Mossotti relation) using permittivity values of 10 for Al 2 O 3 , 14-21 for m-ZrO 2 and 40-45 for t-ZrO 2 . The permittivity data show only a small variation in the investigated range of 9-145 GHz. For the dielectric loss, there is evidence of a predominant contribution of m-ZrO 2 ; in addition, the marked increase in loss with frequency becomes sharper. The t-ZrO 2 , which is responsible for strengthening, does not show any significant influence on losses. It is therefore concluded, that ZrO 2 strengthening of alumina is feasible without affecting mm-wave losses at room temperature as long as the presence of m-ZrO 2 is avoided

  8. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    Directory of Open Access Journals (Sweden)

    Morteza Aramesh

    2015-08-01

    Full Text Available A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

  9. Investigation of vapor explosions with alumina droplets in sodium

    International Nuclear Information System (INIS)

    Zimmer, H.J.

    1991-02-01

    Within the analysis of severe hypothetical fast breeder accidents the consequence of a fuel-coolant interaction has to be considered i.e. the thermal interaction between hot molten fuel and sodium. Experiments have been performed to study the thermal fragmentation of a molten alumina droplet in sodium. Alumina temperatures up to 3100 K and sodium temperatures up to 1143 K were used. For the first time film boiling of alumina drops in sodium was achieved. With some droplets undergoing film boiling, the fragmentation was triggered by an externally applied pressure wave. The trigger was followed promptly by a strong reaction pressure wave if and only if a contact temperature threshold of T I =2060±160 K was exceeded. In agreement with similar experiments in which other materials were studied this threshold corresponds to an interfacial temperature close to the homogeneous nucleation temperature of the vaporising liquid. Based on the present and previous experimental results a model concept of thermal fragmentation is developed. (orig.) [de

  10. Physical Properties of Copper Based MMC Strengthened with Alumina

    Directory of Open Access Journals (Sweden)

    Kaczmar J. W.

    2014-06-01

    Full Text Available The aim of this work is the development of Cu-Al2O3 composites of copper Cu-ETP matrix composite materials reinforced by 20 and 30 vol.% Al2O3 particles and study of some chosen physical properties. Squeeze casting technique of porous compacts with liquid copper was applied at the pressure of 110 MPa. Introduction of alumina particles into copper matrix affected on the significant increase of hardness and in the case of Cu-30 vol. % of alumina particles to 128 HBW. Electrical resistivity was strongly affected by the ceramic alumina particles and addition of 20 vol. % of particles caused diminishing of electrical conductivity to 20 S/m (34.5% IACS. Thermal conductivity tests were performed applying two methods and it was ascertained that this parameter strongly depends on the ceramic particles content, diminishing it to 100 Wm-1K-1 for the composite material containing 30 vol.% of ceramic particles comparing to 400 Wm-1K-1 for the unreinforced copper. Microstructural analysis was carried out using SEM microscopy and indicates that Al2O3 particles are homogeneously distributed in the copper matrix. EDS analysis shows remains of silicon on the surface of ceramic particles after binding agent used during preparation of ceramic preforms.

  11. Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor.

    Science.gov (United States)

    Nguyen, Binh Thi Thanh; Peh, Alister En Kai; Chee, Celine Yue Ling; Fink, Katja; Chow, Vincent T K; Ng, Mary M L; Toh, Chee-Seng

    2012-12-01

    The Faradaic electrochemical impedance technique is employed to characterize the impedance change of a nanoporous alumina biosensor in response towards the specific binding of dengue serotype 2 (Denv2) viral particles to its serotype 2-specific immunoglobulin G antibody within the thin alumina layer. The optimal equivalent circuit model that matches the impedimetric responses of the sensor describes three distinct regions: the electrolyte solution (R(s)), the porous alumina channels (including biomaterials) (Q(1), R(1)) and the conductive electrode substrate layer (Q(2), R(2)). Both channel resistance R(1) and capacitance Q(1) change in response to the increase of the Denv2 virus concentration. A linear relationship between R(1) and Denv2 concentration from 1 to 900 plaque forming unit per mL (pfu mL(-1)) can be derived using Langmuir-Freundlich isotherm model. At 1pfu mL(-1) Denv2 concentration, R(1) can be distinguished from that of the cell culture control sample. Moreover, Q(1) doubles when Denv2 is added but remains unchanged in the presence of two other non-specific viruses - West Nile virus and Chikungunya virus indicates biosensor specificity can be quantitatively measured using channel capacitance. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A Study on the Effect of Nano Alumina Particles on Fracture Behavior of PMMA

    Directory of Open Access Journals (Sweden)

    Arezou Sezavar

    2015-04-01

    Full Text Available In the current research, the role of nano-sized alumina on deformation and fracture mechanism of Poly Methyl Methacrylate (PMMA was investigated. For this purpose, PMMA matrix nanocomposite reinforced with different wt% of alumina (i.e., 5, 10 and 15 were fabricated using the compression molding technique. Tensile properties of produced nanocomposites were studied using Zwick Z250 apparatus at cross head speed of about 5 mm/min. In order to specify the role of alumina nanoparticles on deformation and fracture mechanism of PMMA, microscopic evaluation was performed using scanning electron microscope (SEM. The achieved results prove that tensile properties of PMMA depend on alumina wt%. For example, addition of 15 wt% alumina to PMMA causes an increase of about 25% modulus of elasticity. Micrographs taken from the fracture surface of PMMA and its nanocomposites show deformation and fracture mechanism of PMMA changes as alumina is added to it.

  13. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Dartmouth College, Hanover, NH (United States); Baker, Ian [Dartmouth College, Hanover, NH (United States)

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  14. Heterogeneous burnable poisons. Sinterability study in oxidizing atmosphere of alumina-gadolinia and alumina-boron carbide compounds

    International Nuclear Information System (INIS)

    Agueda, H.C.; Leiva, S.F.; Russo, D.O.

    1990-01-01

    Solid burnable poisons are used in reactors cooled by pressure light water (PLWR) with the purpose of controlling initial reactivity in the first reactor's core. The burnable poisons may be uniformly mixed with the fuel -known as 'homogeneous' poisons-; or constituting separate elements -known as heterogeneous poisons-. The purpose of this work is to present the results of two sinterability studies, performed on Al 2 O 3 -Gd 2 O 3 and Al 2 O 3 -B 4 C, where alumina acts as inert matrix, storing the absorbing elements as Gd 2 O 3 or B 4 C. The elements were sintered at an air atmosphere and additives permitting the obtention of a greater density alumina were tested at lower temperatures than the characteristic for this material, in order to determine its compatibility with the materials dealt with herein. (Author) [es

  15. Produksi Biogasoline Dari Minyak Sawit Melalui Reaksi Perengkahan Katalitik Dengan Katalis γ-Alumina

    OpenAIRE

    Anondho Wijanarko; Dadi Ahmad Mawardi; Mohammad Nasikin

    2006-01-01

    Biogasoline Production from Palm Oil Via Catalytic Hydrocracking over Gamma-Alumina Catalyst. Bio gasolineconversion from palm oil is an alternative energy resources method which can be substituted fossil fuel base energyutilization. Previous research resulted that palm oil can be converted into hydrocarbon by catalytic cracking reactionwith γ-alumina catalyst. In this research, catalytic cracking reaction of palm oil by γ-alumina catalyst is done in a stirrerbatch reactor with th...

  16. Improved alumina sol FCC catalysts meet challenges of the 1990s

    International Nuclear Information System (INIS)

    Alkemade, V.; Cartlidge, S.; Thompson, J.M.

    1990-01-01

    This paper discusses how improved alumina sol, fluid catalytic cracking (FCC) catalysts allow refiners to upgrade heavier feeds containing high amounts of vanadium and nickel to give premium octane gasolines. When an alumina sol binder is used in catalyst preparation, the desired nickel and vanadium-tolerant alumina phase is formed by precise control of the catalyst finishing conditions. New zeolite formulas also increase gasoline motor octane number and lower gasoline octane sensitivity maintaining gasoline yields

  17. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee

    2014-04-11

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  18. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    Science.gov (United States)

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  19. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Halder, A.; Chattopadhyay, R.; Majumder, S.; Paul, M. C.; Das, S.; Bhadra, S. K., E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India); Bysakh, S.; Unnikrishnan, M. [Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India)

    2015-01-05

    An efficient visible fluorescent optical fiber embedded with silver nanoclusters (Ag-NCs) having size ∼1 nm, uniformly distributed in alumina-silica composite core glass, is reported. Fibers are fabricated in a repetitive controlled way through modified chemical vapour deposition process associated with solution doping technique. Fibers are drawn from the transparent preforms by conventional fiber drawing process. Structural characteristics of the doped fibers are studied using transmission electron microscopy and electron probe micro analysis. The oxidation state of Ag within Ag-NCs is investigated by X-ray photo electron spectroscopy. The observed significant fluorescence of the metal clusters in fabricated fibers is correlated with electronic model. The experimentally observed size dependent absorption of the metal clusters in fabricated fibers is explained with the help of reported results calculated by ab-initio density functional theory. These optical fibers may open up an opportunity of realizing tunable wavelength fiber laser without the help of rare earth elements.

  20. The Conversion and Sustainable Use of Alumina Refinery Residues: Global Solution Examples

    Science.gov (United States)

    Fergusson, Lee

    This paper introduces current industry best practice for the conversion of alumina refinery residues (or "red mud") from hazardous waste to benign, inert material. The paper will examine four neutralization methods and Basecon Technology, a sustainable conversion process. The paper will consider ways through which this converted material can be combined and processed for sustainable applications in the treatment of hazardous waste streams (such as industrial wastewater and sludges, biosolids, and CCA wastes), contaminated brownfield sites, and mine site wastes. Recent discoveries and applications, such as the successful treatment of high levels of radium in drinking water in the USA, will also be discussed. Examples of global solutions and their technical merits will be assessed.

  1. Removal of Arsenic from Drinking Water Using Modified Activated Alumina

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2005-09-01

    Full Text Available Considering contamination of drinking water to arsenic in some villages ofIran. In order to develop a simple method for household water treatment in rural areas, efficiency of  modified activated alumina with iron compounds- a product of Alcan Company with trade name of AAFS-50- was studied Equilibrium batch experiments were carried out using shaker incubator and arsenic was analyzed with SDDC method. Effects of initial concentration of arsenic, adsorbent dose, oxidation state of arsenic, pH and oxidation with chlorine on adsorption were studied. Correlation coefficient of Freundlich and Laungmuier  isotherms  for As(V and As(III were 0.964 , 0.991 and 0.970, 0.978 respectively . These results show that adsorption of arsenic on modified activated alumina is compatible with both models specially Laungmuier models. Removal efficiency of As(V at 0.5 ,1 and 2 hr increased with doubling the adsorbent dose from 44.8 to 72%, 69.6 to 90.8 and 92.4 to 98% ; respectively. Experiments using different concentrations of arsenic showed that adsorption of arsenic on activated alumina are a first order reaction that is, rate of reaction is dependent on intial; concentration of arsenic. Removal efficiency for concentration of 0.250 mg/L of arsenic, with increasing of reaction time from 15 min to 60 min, increased 1.54 times and reached from 61% to 94%. During 2hrs, removal of As(V and As(III were 96% and 16% respectively. Using 1.5 mg/L Chlorine as oxidant agent, removal of As(III was increased to 94%. In the case of pH effect, rate of adsorption increased for arsenite, with increasing of pH to 8 and decreased with more increasing, so that adsorption at pH 14 was equal to pH 2. For arsenate, the most adsorption was observed at pH between 6 to 8 . These results show that by using the studied activated alumina, there will not be need for adjustment of pH and the activated alumina used in this study could have application as a safe adsorbent for removal of

  2. The Effect of Novel Synthetic Methods and Parameters Control on Morphology of Nano-alumina Particles

    Science.gov (United States)

    Xie, Yadian; Kocaefe, Duygu; Kocaefe, Yasar; Cheng, Johnathan; Liu, Wei

    2016-05-01

    Alumina is an inorganic material, which is widely used in ceramics, catalysts, catalyst supports, ion exchange and other fields. The micromorphology of alumina determines its application in high tech and value-added industry and its development prospects. This paper gives an overview of the liquid phase synthetic method of alumina preparation, combined with the mechanism of its action. The present work focuses on the effects of various factors such as concentration, temperature, pH, additives, reaction system and methods of calcination on the morphology of alumina during its preparation.

  3. The statistical average of optical properties for alumina particle cluster in aircraft plume

    Science.gov (United States)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin

    2018-04-01

    We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.

  4. Determination of calcium and magnesium in nuclear grade alumina by ion chromatography technique

    International Nuclear Information System (INIS)

    Hespanhol, E.C.B.; Pires, M.A.F.; Atalla, L.T.

    1987-07-01

    A simple method for solubilization of alumina and separation of magnesium and calcium from alumina matrix was developed by initial coprecipitation of those elements with iron(III) hydroxide. Calcium and magnesium were later separated from iron chloride anionic complex in a Dowex 1-X 10 anionic exchange resin. The ion chromatography tecnnique was employed for the analysis of calcium and magnesium. One hundred percent recovery for calcium and magnesium was obtained in their separation from alumina. A precision of 6% and 10% for magnesium and calcium, respectively, was obtained in alumina samples analysis which contain less than 0,02% of magnesium and less than 0,08% of calcium. (Author) [pt

  5. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    Yusof Abdullah; Abd Fatah Awang Mat; Mohd Ali Sufi; Sarimah Mahat; Razali Kassim; Nurhaslinda Abdullah.

    1996-03-01

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  6. The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite

    Directory of Open Access Journals (Sweden)

    Ben Hasan Somaya Ahmed

    2014-01-01

    Full Text Available Composites with the addition of alumina nanofillers show improvement in mechanical properties. The PMMA polymer was used as a matrix and two different types of nanofillers, having extremely different shapes were added in the matrix to form the composite. Reinforcements were based on alumina nanoparticles having either spherical shape or whiskers having the length to diameter ratio of 100. The influence of alumina fillers size, shape and fillers loading on mechanical properties of prepared composite were studied using the nanoindentation measurements and dynamic mechanical analysis. It was observed that both alumina whiskers and alumina spherical nanoparticles added in the PMMA matrix improved the mechanical properties of the composite but the improvement was significantly higher with alumina whisker reinforcement. The concentration of the reinforcing alumina spherical nanoparticles and alumina whiskers in PMMA matrix varied up to 5 wt. %. The best performance was obtained by the addition of 3 wt. % of alumina whiskers in the PMMA matrix with regard to mechanical properties of the obtained composite.

  7. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  8. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  9. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  10. Gelcasting Alumina Cores for Investment Casting

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M A; Klug, F J

    2001-01-01

    General Electric currently uses silica investment casting cores for making superalloy turbine blades. The silica core technology does not provide the degree of dimensional control needed for advanced turbine system manufacture. The sum of the various process variables in silica core manufacturing produces cores that have more variability than is allowed for in advanced, power-generation gas turbine airfoils.

  11. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2017-11-01

    Full Text Available A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF state to low resistance (ON state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  12. Low-cost fabrication and polar-dependent switching uniformity of memory devices using alumina interfacial layer and Ag nanoparticle monolayer

    Science.gov (United States)

    Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei

    2017-11-01

    A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.

  13. Heat-Resistant SiO2-Al2O3-TiO2 Ceramics with Nanostructured Alumina Filler and Their Properties

    Science.gov (United States)

    Ulyanova, T. M.; Krutko, N. P.; Vitiaz, P. A.; Ovseenko, L. V.; Titova, L. V.

    This chapter deals with preparation processes of SiO2-Al2O3-TiO2 composite materials doped by nanostructured fibrous powders γ- and α-Al 2O3. Physical and chemical interaction of active nanostructured fillers γ-and α-Al2O3 with a ceramic matrix of SiO2-Al2O3-TiO2 was investigated. Introduction of nanostructured fibrous powders γ- and α-alumina initiated solid-phase reactions—formation of mullite and tialite when heating in the field of temperatures in the range of 1350-1500 °C. The formed acicular crystals of mullite served as the centers of energy dissipation and strengthened a composite. The compounds of alumina titanate reduced the value of linear expansion thermal coefficient of composite material and increased its thermal stability. It has been shown that alumina nanostructured fillers changed structure and improved the properties of silica-alumina-titania composite materials.

  14. Imobilização da pancreatina em carvão ativado e em alumina para o preparo de hidrolisados de soro de leite = Immobilization of pancreatin in activated carbon and in alumina for preparing whey hydrolysates

    Directory of Open Access Journals (Sweden)

    Viviane Dias Medeiros Silva

    2005-07-01

    Full Text Available Tendo como objetivo a redução de custos do processo de fabricação dehidrolisados protéicos, estudou-se neste trabalho a imobilização da pancreatina, por adsorção, em carvão ativado e em alumina. Para isso, foram testadas diferentes condições de imobilização (30, 60 e 90min a 25°C, e 12h a 5°C. Para verificar a taxa de imobilização, determinou-se indiretamente a enzima não adsorvida nos suportes. Ao se utilizar o carvão ativado, não foi observada diferença significativa entre as condições testadas, tendo-se obtido 100% de imobilização enzimática. Para a alumina, a melhor condição foi a de 90min, na qual se obteve 37% de imobilização. A medida do grau de exposição da fenilalanina, pela espectrofotometria derivada segunda, foi empregada para a determinação da estabilidade operacional da enzima, tendo sido mostrado que a imobilização em carvão ativado e emalumina permitiu a reutilização da pancreatina por até 5 vezes e 2 vezes, respectivamente.Immobilization of pancreatin in activated carbon and in alumina was studied for producing protein hydrolysates, in order to reduce the process costs. Different immobilization conditions were tested (30, 60 and 90min at 25°C, and 12h at 5°C. For estimating the immobilization rate the amount of the non-adsorbed enzyme on the supports was indirectly determined. When activated carbon was used, no significant difference was observed among the tested conditions, obtaining 100% of enzymatic immobilization. In case of alumina, the best condition showed to be the 90min treatment which produced 37% of immobilization. The evaluation of the degree of exposition ofphenylalanine, by second derivative spectrophotometry, was used for the determination of the enzyme operational stability, and showed that the immobilization in activated carbon and in alumina allowed the reusability of the pancreatin for 5 times and 2 times,respectively.

  15. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  16. Formation and characterization of nanotubes of La(OH)(3) obtained using porous alumina membranes.

    Science.gov (United States)

    González-Rovira, L; Sánchez-Amaya, J M; López-Haro, M; Hungria, A B; Boukha, Z; Bernal, S; Botana, F J

    2008-12-10

    An electrodeposition process is used to synthesize nanotubes of a lanthanum-containing phase, employing porous alumina membranes as templates. This method should lead to the formation of La(OH)(3) nanowires, according to the previous results presented by Bocchetta et al (2007 Electrochem. Commun. 9 683-8), which can be decomposed to La(2)O(3), as the latter shows more interest for different applications. The results obtained by means of different electron microscopy techniques indicate that this method leads to the formation of nanotubes of about 200 nm in diameter and 30-40 µm in length, instead of the nanowires proposed in the literature. Additionally, the chemical characterization demonstrates that the material synthesized is composed of lanthanum hydroxycarbonate. The presence of carbonates is found to be crucial in determining the conditions for the preparation of La(2)O(3) from the nanotubes here obtained.

  17. Study of the mechanical properties of hybrid composite basalt / alumina / shells for brake lining pads

    Science.gov (United States)

    Adi Atmika, I. K.; Ary Subagia, IDG.; Surata, I. W.; Sutantra, I. N.

    2017-05-01

    Brake lining pad as one of the active safety components in motor vehicles has been studied thoroughly. Asbestos is the main material forming the brake in addition to other alloy materials that have a negative impact on health and the environment. This paper explain the behavior of hybrid composites phenolic resin with basalt/alumina/clamshell powder reinforced on brake lining pad. This materials has been manufactured use compaction and sintering process through any steps, that an emphasis of 2,000 kg for 30 minutes at a constant temperature of 150° C. The research aims to investigate hardness characteristic of hybrid composite that test using the vickers according to standard ASTM E-384. The reinforced materials and phenolic resin composition is 60%: 40%. The results show for the average hardness VHN to 24.18, 25.11, 26.34, 27.21 and 28.83. The average hardness hybrid composite shows the hardness harder than asbestos materials.

  18. Formation and characterization of nanotubes of La(OH)3 obtained using porous alumina membranes

    Science.gov (United States)

    González-Rovira, L.; Sánchez-Amaya, J. M.; López-Haro, M.; Hungria, A. B.; Boukha, Z.; Bernal, S.; Botana, F. J.

    2008-12-01

    An electrodeposition process is used to synthesize nanotubes of a lanthanum-containing phase, employing porous alumina membranes as templates. This method should lead to the formation of La(OH)3 nanowires, according to the previous results presented by Bocchetta et al (2007 Electrochem. Commun. 9 683-8), which can be decomposed to La2O3, as the latter shows more interest for different applications. The results obtained by means of different electron microscopy techniques indicate that this method leads to the formation of nanotubes of about 200 nm in diameter and 30-40 µm in length, instead of the nanowires proposed in the literature. Additionally, the chemical characterization demonstrates that the material synthesized is composed of lanthanum hydroxycarbonate. The presence of carbonates is found to be crucial in determining the conditions for the preparation of La2O3 from the nanotubes here obtained.

  19. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  20. Improving the quality of alumina-containing sinter using water-cooled furnace shell

    Directory of Open Access Journals (Sweden)

    Aleksandrov A.V.

    2012-01-01

    Full Text Available This article deals with the use of computer modeling to develop technical solutions to ensure better quality of alumina-containing sinter. The simulation accounted for the influence of the feed materials on the thermal processes in the furnace. The energy balance (including thermal conductivity, heat convection and radiant heat exchange was solved assuming steady state. A good correlation was observed for the actual and calculated temperatures of the solids and gases, with less than 15% discrepancy. Using the model of the furnace investigated the possibility of lowering the temperature of sintering by removing heat from the outside of the furnace shell. To reduce the sintering temperature to 1000 °C length of the refractory lined steel is 5 m, the height of the lining should not exceed - 0.06 m, the required rate of cold water - 54.7 m3/h

  1. Shape induced magnetic vortex state in hexagonal ordered cofe nanodot arrays using ultrathin alumina shadow mask

    Science.gov (United States)

    Sellarajan, B.; Saravanan, P.; Ghosh, S. K.; Nagaraja, H. S.; Barshilia, Harish C.; Chowdhury, P.

    2018-04-01

    The magnetization reversal process of hexagonal ordered CoFe nanodot arrays was investigated as a function of nanodot thickness (td) varying from 10 to 30 nm with fixed diameter. For this purpose, ordered CoFe nanodots with a diameter of 80 ± 4 nm were grown by sputtering using ultra-thin alumina mask. The vortex annihilation and the dynamic spin configuration in the ordered CoFe nanodots were analyzed by means of magnetic hysteresis loops in complement with the micromagnetic simulation studies. A highly pinched hysteresis loop observed at 20 nm thickness suggests the occurrence of vortex state in these nanodots. With increase in dot thickness from 10 to 30 nm, the estimated coercivity values tend to increase from 80 to 175 Oe, indicating irreversible change in the nucleation/annihilation field of vortex state. The measured magnetic properties were then corroborated with the change in the shape of the nanodots from disk to hemisphere through micromagnetic simulation.

  2. Microencapsulation of silicon nitride particles with yttria and yttria-alumina precursors

    International Nuclear Information System (INIS)

    Garg, A.K.; De Jonghe, L.C.

    1990-01-01

    Procedures are described to deposit uniform layers of yttria and yttria-alumina precursors on fine powders and whiskers of silicon nitride. The coatings were produced by aging at elevated temperatures aqueous systems containing the silicon nitride core particles, yttrium and aluminum nitrates, and urea. Optimum concentrations of the core particles, in relation to the reactants, were established to promote surface deposition of the oxide precursors. Polymeric dispersants were used effectively to prevent agglomeration of the solids during the microencapsulation process. The morphology of the powders was characterized using scanning and transmission electron microscopy. The mechanisms for the formation of the coated layers are discussed. A description is provided that allows qualitative assessment of the experimental factors that determine microencapsulation by a slurry method

  3. Chemical elimination of alumina in suspension in nuclear reactors heavy water

    International Nuclear Information System (INIS)

    Ledoux, A.

    1967-02-01

    Corrosion of aluminium in contact with moderating water in nuclear reactor leads to the formation of an alumina hydrosol which can have an adverse effect on the operation of the reactor. Several physical methods have been used in an attempt to counteract this effect. The method proposed here consists in the elimination of the aluminium by dissolution and subsequent fixation in the ionic form on mixed-bed ion-exchange resin. In order to do this, the parameters and the values of these parameters most favorable to the dissolution process have been determined. If the moderator is heavy water, the deuterated acid can be prepared by converting a solution in heavy water to a salt of the acid using a deuterated cationic resin. (author) [fr

  4. Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants.

    Science.gov (United States)

    Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc

    2016-12-01

    Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the

  5. Synthesis and characterization of metal oxide promoted alumina catalyst for biofuel production

    Science.gov (United States)

    Anisuzzaman, S. M.; Krishnaiah, D.; Bono, A.; Abang, S.; Sundang, M.; Suali, E.; Lahin, F. A.; Shaik Alawodeen, A.

    2016-06-01

    Alumina has been widely used as a support in catalysis process which owing to its extremely thermal and mechanical stability, high surface area, large pore size and pore volume. The aim of this study was to synthesize calcium oxide-supported basic alumina catalysts (CaO/Al2O3) by impregnation method and to characterize the properties of the catalyst based on its surface area and porosity, functional group, surface morphology and particle size. Impregnation method was chosen for the synthesization of catalyst which involved contacting the support with the impregnating solution for a particular period of time, drying the support to remove the imbibed liquid and calcination process. In the preparation of catalyst, catalytic performance of CaO/Al2O3 catalyst was measured at different calcined temperatures (650°C, 750°C and 800°C). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Mercury intrusion porosimetry (MIP), and particle size analyzer (Zetasizer) was used to characterize the catalyst. The highest total specific area and the total porosity of the catalyst was obtained at 750oC. FTIR analysis basically studied on the functional groups present in each catalyst synthesized, while SEM analysis was observed to have pores on its surface. Moreover, CaO/Al2O3 catalysts at 650°C produced the smallest particle size (396.1 mn), while at 750°C produced the largest particle size (712.4 mn). Thus it can be concluded that CaO/Al2O3 catalysts has great potential coimnercialization since CaO has attracted many attentions compared to other alkali earth metal oxides especially on the transesterification reaction.

  6. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    Science.gov (United States)

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

  7. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  8. The Assessment of Alumina Production Waste Impact on Natural Water

    Directory of Open Access Journals (Sweden)

    Vladimir Sergeevich Kuznetsov

    2018-03-01

    Full Text Available The paper is dedicated to the issue of assessment of alumina (red mud production waste on natural water. The growth of the number of aluminium-producing facilities leads to the expansion of exclusion areas to store the production waste – sludge dumps. A considerable part of research on red mud utilisation is focused on its use in the iron-and-steel industry. Furthermore, the technologies of red mud usage in the construction industry gain substantial significance for land reclamation, isolation of polluted industrial and agricultural lands as well as the effluent and industrial emissions treatment.

  9. Effects of Variable Aspect-Ratio Inclusions on the Electrical Impedance of an Alumina Zirconia Composite at Intermediate Temperatures

    Science.gov (United States)

    Goldsby, Jon C.

    2010-01-01

    A series of alumina-yttria-stabilized zirconia composites containing either a high aspect ratio (5 and 30 mol%) hexagonal platelet alumina or an alumina low aspect ratio (5 and 30 mol%) spherical particulate was used to determine the effect of the aspect ratio on the temperature-dependent impedance of the composite material. The highest impedance across the temperature range of 373 to 1073 K is attributed to the grain boundary of the hexagonal platelet second phase in this alumina zirconia composite.

  10. Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing

    Directory of Open Access Journals (Sweden)

    Valinčius Gintaras

    2007-01-01

    Full Text Available AbstractSimple nanoporous alumina matrix modification procedure, in which the electrically highly insulating alumina barrier layer at the bottom of the pores is replaced with the conductive layer of the gold beds, was described. This modification makes possible the direct electron exchange between the underlying aluminum support and the redox species encapsulated in the alumina pores, thus, providing the generic platform for the nanoporous alumina sensors (biosensors with the direct amperometric signal readout fabrication.

  11. Measurement of Elastic Modulus of Alumina and Barium Strontium Titanate Wafers Produced by Tape Casting Method

    Science.gov (United States)

    2014-02-01

    DATES COVERED (From – To) 4. TITLE AND SUBTITLE MEASUREMENT OF ELASTIC MODULUS OF ALUMINA AND BARIUM STRONTIUM TITANATE WAFERS PRODUCED BY...configuration testing method. Samples of barium strontium titanate (BST) were made using a regular powder pressing, sintering, pelletizing, and...fabricated using thin wafers of barium strontium titanate (BST) and aluminum oxide (alumina) ceramic during launch of a system. Sandia National

  12. All cause mortality and incidence of cancer in workers in bauxite mines and alumina refineries

    NARCIS (Netherlands)

    Fritschi, Lin; Hoving, Jan Lucas; Sim, Malcolm R.; del Monaco, Anthony; Macfarlane, Ewan; McKenzie, Dean; Benke, Geza; de Klerk, Nicholas

    2008-01-01

    Bauxite is a reddish clay that is refined to produce alumina, which is then reduced to aluminium. There have been studies examining the health of workers in aluminium smelters, but not workers in bauxite mining and alumina refining. A cohort of employees of 1 large aluminium company since 1983 was

  13. Study of aluminium oxide from high-alumina refractory ceramics by ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. This work is focused on the study of the thermally stimulated blue emission of aluminium oxide. (Al2O3) that has been removed from twenty different high alumina-rich refractory bricks. The glow curve sensitivity of several alumina grains are defined by (i) a maximum centred at about 165°C that can be decon-.

  14. Scattering properties of alumina particle clusters with different radius of monomers in aerocraft plume

    Science.gov (United States)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin; Gong, Yanjun

    2017-11-01

    In this paper, diffusion limited aggregation (DLA) algorithm is improved to generate the alumina particle cluster with different radius of monomers in the plume. Scattering properties of these alumina clusters are solved by the multiple sphere T matrix method (MSTM). The effect of the number and radius of monomers on the scattering properties of clusters of alumina particles is discussed. The scattering properties of two types of alumina particle clusters are compared, one has different radius of monomers that follows lognormal probability distribution, another has the same radius of monomers that equals the mean of lognormal probability distribution. The result show that the scattering phase functions and linear polarization degrees of these two types of alumina particle clusters are of great differences. For the alumina clusters with different radius of monomers, the forward scatterings are bigger and the linear polarization degree has multiple peaks. Moreover, the vary of their scattering properties do not have strong correlative with the change of number of monomers. For larger booster motors, 25-38% of the plume being condensed alumina. The alumina can scatter radiation from other sources present in the plume and effect on radiation transfer characteristics of plume. In addition, the shape, size distribution and refractive index of the particles in the plume are estimated by linear polarization degree. Therefore, accurate scattering properties calculation is very important to decrease the deviation in the related research.

  15. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics.

    Science.gov (United States)

    Tinschert, J; Zwez, D; Marx, R; Anusavice, K J

    2000-09-01

    The objective of this study was to test the hypothesis that industrially manufactured ceramic materials, such as Cerec Mark II and Zirconia-TZP, have a smaller range of fracture strength variation and therefore greater structural reliability than laboratory-processed dental ceramic materials. Thirty bar specimens per material were prepared and tested. The four-point bend test was used to determine the flexure strength of all ceramic materials. The fracture stress values were analyzed by Weibull analysis to determine the Weibull modulus values (m) and the 1 and 5% probabilities of failure. The mean strength and standard deviation values for these ceramics are as follows: (MPa+/-SD) were: Cerec Mark II, 86.3+/-4.3; Dicor, 70.3+/-12.2; In-Ceram Alumina, 429. 3+/-87.2; IPS Empress, 83.9+/-11.3; Vitadur Alpha Core, 131.0+/-9.5; Vitadur Alpha Dentin, 60.7+/-6.8; Vita VMK 68, 82.7+/-10.0; and Zirconia-TZP, 913.0+/-50.2. There was no statistically significant difference among the flexure strength of Cerec Mark II, Dicor, IPS Empress, Vitadur Alpha Dentin, and Vita VMK 68 ceramics (p>0.05). The highest Weibull moduli were associated with Cerec Mark II and Zirconia-TZP ceramics (23.6 and 18.4). Dicor glass-ceramic and In-Ceram Alumina had the lowest m values (5.5 and 5.7), whereas intermediate values were observed for IPS-Empress, Vita VMK 68, Vitadur Alpha Dentin and Vitadur Alpha Core ceramics (8.6, 8.9, 10.0 and 13.0, respectively). Except for In-Ceram Alumina, Vitadur Alpha and Zirconia-TZP core ceramics, most of the investigated ceramic materials fabricated under the condition of a dental laboratory were not stronger or more structurally reliable than Vita VMK 68 veneering porcelain. Only Cerec Mark II and Zirconia-TZP specimens, which were prepared from an industrially optimized ceramic material, exhibited m values greater than 18. Hence, we conclude that industrially prepared ceramics are more structurally reliable materials for dental applications although CAD

  16. Temperature history and microstructure of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiang Tsair.

    1992-05-01

    A simple process for the attainment of fully dense and improved microstructure for Al{sub 2}O{sub 3} ceramics has been developed. Pure, narrow size distribution, submicron powder is used. Homogenization heat treatment of Al{sub 2}O{sub 3} powder compacts at 800{degree}C for 50 hours produces more uniform pore structure and higher green strength. Pore size distribution becomes narrower. Near fully dense, fine-grained (< 1.2{mu}m) and uniform grain size-distribution, undoped Al{sub 2}O{sub 3} ceramics can be produced using a high quality powder, a high-pressure cold isostatic forming method, and a two-step sintering technique. Improvements in the microstructure of Al{sub 2}O{sub 3} ceramics homogenized at 800{degree}C/50 h include a smaller pore size and a more uniform pore size distribution. Prevention of differential densification in the early stages and delay of pore channel closure to the later stages of sintering are believed to be the primary mechanisms for the microstructure improvement in two-step sintering. Two-step sintering is an alternate way to improve the microstructure of Al{sub 2}O{sub 3} ceramics compared to fast firing or MgO doping. When a homogenization heat treatment and the fast firing are combined, the final density is higher than from fast firing alone. However, the two-step sintering technique is simple and there is no size limit. Generalization of two-step sintering to more systems is needed. For 250 ppM MgO-doped Al{sub 2}O{sub 3} ceramics, homogenization of powder compacts at 800{degree}C for 50 hours produces 0.80{mu}m. This improvement is explained by the distribution of MgO becoming more uniform during the homogenization heat treatment, which enhances the effectiveness of MgO doping.

  17. High toughness alumina/aluminate: The role of hetero-interfaces

    International Nuclear Information System (INIS)

    Brito, M.E.; Yasuoka, M.; Kanzaki, S.

    1996-01-01

    Silica doped alumina/aluminate materials present a combination of high strength and high toughness not achieved before in other alumina systems, except for transformation toughened alumina. The authors have associated the increase in toughness to crack bridging by anisotropically grown alumina grains with concurrent interfacial debonding of these grains. A HREM study of grain boundaries and hetero-interface structures in this material shows the absence of amorphous phases at grain boundaries. Local Auger electron analysis of fractured surfaces revealed the coexistence of Si and La at the grain facets exposed by the noticeable intergranular fracture mode of this material. It is concluded that a certain and important degree of boundaries weakness is related to both presence of Si at the interfaces and existence of alumina/aluminate hetero-interfaces

  18. Safety Assessment of Alumina and Aluminum Hydroxide as Used in Cosmetics.

    Science.gov (United States)

    Becker, Lillian C; Boyer, Ivan; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    This is a safety assessment of alumina and aluminum hydroxide as used in cosmetics. Alumina functions as an abrasive, absorbent, anticaking agent, bulking agent, and opacifying agent. Aluminum hydroxide functions as a buffering agent, corrosion inhibitor, and pH adjuster. The Food and Drug Administration (FDA) evaluated the safe use of alumina in several medical devices and aluminum hydroxide in over-the-counter drugs, which included a review of human and animal safety data. The Cosmetic Ingredient Review (CIR) Expert Panel considered the FDA evaluations as part of the basis for determining the safety of these ingredients as used in cosmetics. Alumina used in cosmetics is essentially the same as that used in medical devices. This safety assessment does not include metallic or elemental aluminum as a cosmetic ingredient. The CIR Expert Panel concluded that alumina and aluminum hydroxide are safe in the present practices of use and concentration described in this safety assessment. © The Author(s) 2016.

  19. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  20. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics : The effect of surface conditioning

    NARCIS (Netherlands)

    Felipe Valandro, Luiz; Ozcan, Mutlu; Bottino, Marco Cicero; Bottino, Marco Antonio; Scotti, Roberto; Della Bona, Alvaro

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  1. Temperature history and microstructure of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiang Tsair [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    A simple process for the attainment of fully dense and improved microstructure for Al2O3 ceramics has been developed. Pure, narrow size distribution, submicron powder is used. Homogenization heat treatment of Al2O3 powder compacts at 800°C for 50 hours produces more uniform pore structure and higher green strength. Pore size distribution becomes narrower. Near fully dense, fine-grained (< 1.2μm) and uniform grain size-distribution, undoped Al2O3 ceramics can be produced using a high quality powder, a high-pressure cold isostatic forming method, and a two-step sintering technique. Improvements in the microstructure of Al2O3 ceramics homogenized at 800°C/50 h include a smaller pore size and a more uniform pore size distribution. Prevention of differential densification in the early stages and delay of pore channel closure to the later stages of sintering are believed to be the primary mechanisms for the microstructure improvement in two-step sintering. Two-step sintering is an alternate way to improve the microstructure of Al2O3 ceramics compared to fast firing or MgO doping. When a homogenization heat treatment and the fast firing are combined, the final density is higher than from fast firing alone. However, the two-step sintering technique is simple and there is no size limit. Generalization of two-step sintering to more systems is needed. For 250 ppM MgO-doped Al2O3 ceramics, homogenization of powder compacts at 800°C for 50 hours produces 0.80μm. This improvement is explained by the distribution of MgO becoming more uniform during the homogenization heat treatment, which enhances the effectiveness of MgO doping.

  2. Dissolution of alumina, copper oxide and nitrogen in molten slags: Thermodynamics and kinetics

    Science.gov (United States)

    Fan, Peng

    Three studies have been conducted concerning thermodynamics and kinetics of dissolution of alumina, copper oxides and nitrogen in various molten slags. In the first study, the dissolution rate of alumina particles in molten CaO-Al2O3-SiO2 slag was measured at 1500--1550°C by direct sampling method for the purpose of understanding the dissolution behavior of alumina inclusion in molten slags. It was found that the dissolution rate decreased with increasing SiO2 and Al2O3 contents in slag, but increased with increasing temperature. In the ladle type slags, alumina particles dissolved much faster than in the tundish type slags. In the second study, solubility of solid CuO in molten Na2O-B 2O3 slag and liquid Cu2O in molten CaO-B 2O3-SiO2 slag was measured at 1000°C and 1250°C, with attempts to find suitable slags for the fluxing stage of the proposed oxidizing-fluxing process to remove copper from steel scrap. Experimental results showed that the minimum solubility occurred at neutral slag compositions, demonstrating amphoteric nature of CuO and Cu2O A regular solution model was employed to interpret the solubility data of CuO in Na2O-B 2O3 slag to obtain the interaction energies of CuO-NaO 0.5 and CuO-BO1.5, and then solubility curve, iso-activity curves and isothermal section of phase diagram of CuO-Na2O-B 2O3 system at 1000°C were drawn from the model calculation. Basic Na2O-B2O3 slag is expected to be a suitable slag for the fluxing process. The objective of the third study is to investigate the feasibility of removing nitrogen from molten steel by two newly proposed slag systems, TiO slag and Ti2O3 slag. Nitrogen distribution ratios between slag and steel were measured at 1600°C, for CaO-Al2O3-TiO, CaO-Al2O3-Ti 2O, CaO-Al2O3-TiO2 and CaO-Al 2O3 by two new slag-metal equilibration techniques, i.e., liquid sealing method and static atmosphere method. Activity coefficients of AIN and TiN, as useful indexes of measuring ability of slag to remove nitrogen, were

  3. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    International Nuclear Information System (INIS)

    Orosco, Pablo; Barbosa, Lucía; Ruiz, María del Carmen

    2014-01-01

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl 2 –N 2 flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al 2 O 3 (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl 2 atmosphere of the MgO–Al 2 O 3 mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C

  4. Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL; Brady, Michael P [ORNL; Yamamoto, Yukinori [ORNL; Santella, Michael L [ORNL; Maziasz, Philip J [ORNL; Matthews, Wendy [Capstone Turbines

    2011-01-01

    A corrosion- and creep-resistant austenitic stainless steel has been developed for advanced recuperator applications. By optimizing the Al and Cr contents, the alloy is fully austenitic for creep strength while allowing the formation of a chemically stable external alumina scale at temperatures up to 900 C. An alumina scale eliminates long-term problems with the formation of volatile Cr oxy-hydroxides in the presence of water vapor in exhaust gas. As a first step in producing foil for primary surface recuperators, three commercially cast heats have been rolled to 100 m thick foil in the laboratory to evaluate performance in creep and oxidation testing. Results from initial creep testing are presented at 675 C and 750 C, showing excellent creep strength compared with other candidate foil materials. Laboratory exposures in humid air at 650 800 C have shown acceptable oxidation resistance. A similar oxidation behavior was observed for sheet specimens of these alloys exposed in a modified 65 kW microturbine for 2871 h. One composition that showed superior creep and oxidation resistance has been selected for the preparation of a commercial batch of foil. DOI: 10.1115/1.4002827

  5. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina); Barbosa, Lucía [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo Parque General San Martín, Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina)

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  6. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  7. Stability of amorphous silica-alumina in hot liquid water.

    Science.gov (United States)

    Hahn, Maximilian W; Copeland, John R; van Pelt, Adam H; Sievers, Carsten

    2013-12-01

    Herein, the hydrothermal stability of amorphous silica-alumina (ASA) is investigated under conditions relevant for the catalytic conversion of biomass, namely in liquid water at 200 °C. The hydrothermal stability of ASA is much higher than that of pure silica or alumina. Interestingly, the synthetic procedure used plays a major role in its resultant stability: ASA prepared by cogelation (CG) lost its microporous structure, owing to hydrolysis of the siloxane bonds, but the resulting mesoporous material still had a considerable surface area. ASA prepared by deposition precipitation (DP) contained a silicon-rich core and an aluminum-rich shell. In hot liquid water, the latter structure was transformed into a layer of amorphous boehmite, which protected the particle from further hydrolysis. The surface area showed relatively minor changes during the transformation. Independent of the synthetic method used, the ASAs retained a considerable concentration of acid sites. The concentration of acid sites qualitatively followed the changes in surface area, but the changes were less pronounced. The performance of different ASAs for the hydrolysis of cellobiose into glucose is compared. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structure transformations in ion implanted anodic alumina films

    International Nuclear Information System (INIS)

    Cherenda, N.N.; Uglov, V.V.; Litvinovich, G.V.; Daniluyk, A.L.

    2002-01-01

    The effect of ion implantation on aluminium oxide has been widely studied. The change of mechanical, electrical, optical and chemical properties were investigated. Most studies were performed on a single crystal (a- or c-oriented) α-Al 2 O 3 though polycrystalline α-Al 2 O 3 or amorphous aluminium oxide films were the subject of the investigation too. Porous anodic alumina films were the object of the investigation of this work. An unique structure, low cost, controllability and ease of production allow it application in developing of microelectronic devices. Earlier it was shown that implantation of metal ions in anodic alumina films decreases its surface resistance to tens of Ωm. The aim of this work was the investigation of anodic alumina films structure changes after implantation. The implantation of Ti and Cu ions was carried out using a MEVVA source with an impulse duration of 1 ms. The applied acceleration voltage was 80 kV, the ions current density - 53 μA/cm 2 , the doses -1·10 17 ions/cm 2 and 1.5·10 18 ions/cm 2 . Implantation was carried out into two types of crystalline structure: amorphous and γ-Al 2 O 3 . The latter structure was produced by annealing at 830 deg. C. A variety of techniques were used for phase and element composition investigations: X-ray diffraction analysis, Auger electron spectroscopy, Rutherford backscattering analysis and scanning electron microscopy. It was found that implantation into amorphous film results in the formation of γ-AO 2 O 3 while implantation into γ-Al 2 O 3 film - in the formation of an amorphous structure. Implantation both to amorphous and crystalline AA films also led to the formation of θ-Al 2 O 3 phase inclusions in the film structure. The whole structure of AA films with the thickness of 200 μm undergoes these transformations. Implantation also lead to sputtering of the surface barrier layer thus resulting in the shift of the ions depth profile to the surface at higher doses. Diffusion of Ti

  9. Sinterização de cerâmicas em microondas. Parte III: Sinterização de zircônia, mulita e alumina Microwave sintering of ceramics. Part III: Sintering of zirconia, mullite and alumina

    Directory of Open Access Journals (Sweden)

    R. R. Menezes

    2007-09-01

    Full Text Available O aquecimento utilizando microondas possui muitas vantagens com relação aos métodos convencionais de aquecimento, como redução no tempo de processamento, economia de energia e melhora na uniformidade microestrutural dos corpos cerâmicos. Assim esse trabalho tem por objetivo a utilização da sinterização híbrida com microondas na queima rápida de materiais cerâmicos. Foram utilizados materiais que requerem altas temperaturas para densificação. Foram sinterizados materiais que apresentam bruscas e acentuadas mudanças nas suas propriedades dielétricas com a elevação da temperatura, zircônia, e materiais com baixas perdas dielétricas na temperatura ambiente, que apresentam dificuldades de aquecimento com microondas em baixas temperaturas, alumina e mulita. Foi utilizando material susceptor como agente auxiliar de aquecimento. Com base nos resultados obtidos pode-se concluir que o sistema de sinterização híbrida desenvolvido pode ser utilizado com sucesso na sinterização rápida e uniforme dos materiais estudados, sendo possível a sinterização de zircônia em ciclos de 20 min, mulita em ciclos de 16 min e alumina em ciclos de 40 min.Thermal processing by microwaves offers several advantages over conventional heating methods, such as shorter processing times, energy savings and improved microstructural homogeneity of ceramic bodies. Thus, this work focused on the fast hybrid microwave sintering of ceramic materials that require high sintering temperatures for densification. The materials studied here were zirconia, which displays abrupt and severe increases in dielectric loss with rising temperature, and alumina and mullite, which show low dielectric losses at ambient temperature and are difficult to microwave at low temperatures. A susceptor was used as an auxiliary heating agent. The results indicate that the sintering system developed here can be used efficiently for the rapid, homogeneous sintering of all the ceramics

  10. Electro-oxidation of some non-steroidal anti-inflammatory drugs on an alumina nanoparticle-modified glassy carbon electrode

    OpenAIRE

    TABESHNIA, Mahla; HELI, Hossein; JABBARI, Ali

    2010-01-01

    The electro-oxidation of mefenamic acid, diclofenac, and indomethacin on glassy carbon and alumina nanoparticle-modified glassy carbon electrodes in a phosphate buffer solution at physiological pH was studied. The techniques of cyclic voltammetry, chronoamperometry, impedance spectroscopy, and steady state polarization measurements were applied. The drugs were irreversibly oxidized on bath electrodes via an anodic peak and the process was controlled by diffusion in the bulk of soluti...

  11. Estudo da conformação de substratos cerâmicos por laminação a partir de suspensões concentradas de alumina Rolling study of ceramic substrates from concentrate alumina suspensions

    Directory of Open Access Journals (Sweden)

    L. F. G. Setz

    2011-12-01

    Full Text Available A produção de substratos cerâmicos por laminação, ou conformação viscoplástica, é interessante, pois minimiza problemas inerentes ao processamento como a aglomeração dos pós. Quando a preparação das massas a serem conformadas por esta técnica é realizada a partir de suspensões estáveis, estes problemas quase inexistem, possibilitando a obtenção de produtos íntegros com microestrutura homogênea. Neste trabalho é apresentado o comportamento reológico das suspensões concentradas e das massas de alumina contendo diferentes teores do espessante/plastificante hidroxipropil metilcelulose (HPMC e também o estudo das variáveis de processo envolvidas na conformação por calandragem. Como resultado deste estudo foi possível obter substratos de alumina calandrados densos, utilizando-se uma suspensão concentrada (60% vol., estabilizada com 0,02% de Viscocrete 20HE e com adição de 1,5%m. de HPMC.The ceramic substrates production by calendering, or viscous plastic processing, is interesting because inherent problems as a powder agglomeration is minimized. When the ceramic pastes shaping for this technique are produced from stabilized suspensions these problems almost inexist. This work presents the concentrate suspensions and pastes with different hydroxypropyl methyl cellulose (HPMC thickener content rheological behaviors. The variables involved in calendering shaping were studied, too. The production of dense alumina substrates shaped by calendaring from concentrate suspensions (60 vol.%, stabilized with 0.02 wt.% Viscocrete 20HE and 1.5 wt.% HPMC is possible.

  12. Microstructural changes in copper-graphite-alumina nanocomposites produced by mechanical alloying.

    Science.gov (United States)

    Rodrigues, Ivan; Guedes, Mafalda; Ferro, Alberto C

    2015-02-01

    Microstructural features of nanostructured copper-matrix composites produced via high-energy milling were studied. Copper-graphite-alumina batches were planetary ball milled up to 16 h; copper-graphite batches were also prepared under the same conditions to evaluate the effect of contamination from the milling media. The microstructure of the produced materials was characterized by field emission gun scanning electron microscopy/energy-dispersive spectroscopy and related to Raman, X-ray diffraction, and particle size analysis results. Results showed that alumina was present in all milled powders. However, size reduction was effective at shorter times in the copper-graphite-alumina system. In both cases the produced powders were nanostructured, containing graphite and alumina nanoparticles homogeneously distributed in the copper matrix, especially for longer milling times and in the presence of added alumina. Copper crystallite size was significantly affected above 4 h milling; nanographite size decreased and incipient amorphization occurred. A minimum size of 15 nm was obtained for the copper crystallite copper-alumina-graphite composite powders, corresponding to 16 h of milling. Contamination from the media became more significant above 8 h. Results suggest that efficient dispersion and bonding of graphite and alumina nanoparticles in the copper matrix is achieved, envisioning high conductivity, high strength, and thermal stability.

  13. [Characterization of alumina adobe and sintered body of GI-infiltrated ceramic].

    Science.gov (United States)

    Wang, H; Chao, Y; Liao, Y; Liang, X; Zhu, Z; Gao, W

    2001-06-01

    This study was conducted to elucidate the mechanism of formation of porous structure by investigating the porosity of the alumina adobe and sintered body of GI-II Infiltrate Ceramic, and its role in strengthening and toughening this kind of ceramic composite. The alumina powder size-mass distribution was obtained by BI-XDC powder size analysis device; the open pore parameters of alumina adobe and sintered body were analyzed using the mercury pressure method. Their fracture surfaces were observed under scanning electronic microscope. Fine powder had two main size groups of 0.09-0.1 micron and 0.2-0.5 micron, respectively, and coarse powder, with size between 1.5 to 4.5 microns, occupied the majority of powder mass. Alumina adobe's pores became larger after sintering. The median pore radii of adobe and sintered body were 0.2531 micron and 0.3081 micron, respectively; the average pore radii changed from 0.0956 micron to 0.1102 micron. Under scanning electronic microscope, fine alumina powders were fused partially together and their surfaces were blunted, but coarse powders did not show such phenomena. The alumina size distribution contributes to the formation of porous structure of alumina sintered body. This porous structure is not only the shape skeleton but also the mechanical skeleton of GI-II Infiltrated Ceramic. It plays an important role in raising the mechanical properties of this kind of ceramic composite.

  14. Epoxy/α-alumina nanocomposite with high electrical insulation performance

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2017-10-01

    Full Text Available An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 1018 Ω cm and 76.1 kV mm−1 respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink. Keywords: Nanocomposite, Epoxy resin, Insulation, α-alumina

  15. Fabrication and Enhanced Thermoelectric Properties of Alumina Nanoparticle-Dispersed Bi0.5Sb1.5Te3 Matrix Composites

    Directory of Open Access Journals (Sweden)

    Kyung Tae Kim

    2013-01-01

    Full Text Available Alumina nanoparticle-dispersed bismuth-antimony-tellurium matrix (Al2O3/BST composite powders were fabricated by using ball milling process of alumina nanoparticle about 10 nm and p-type bismuth telluride nanopowders prepared from the mechanochemical process (MCP. The fabricated Al2O3/BST composite powders were a few hundreds of nanometer in size, with a clear Bi0.5Sb1.5Te3 phase. The composite powders were consolidated into p-type bulk composite by spark plasma sintering process. High-resolution TEM images reveal that alumina nanoparticles were dispersed among the grain boundary or in the matrix grain. The sintered 0.3 vol.% Al2O3/BST composite exhibited significantly improved power factor and reduced thermal conductivity in the temperature ranging from 293 to 473 K compared to those of pure BST. From these results, the highly increased ZT value of 1.5 was obtained from 0.3 vol.% Al2O3/BST composite at 323 K.

  16. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    Energy Technology Data Exchange (ETDEWEB)

    Louaer, Seif-Eddine; Wang, Yao, E-mail: yao@buaa.edu.cn; Guo, Lin, E-mail: guolin@buaa.edu.cn

    2014-11-14

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work.

  17. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    International Nuclear Information System (INIS)

    Louaer, Seif-Eddine; Wang, Yao; Guo, Lin

    2014-01-01

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work

  18. Investigation of Removal Efficiency of Nano Sized Alumina for Removal of Acid Red 18 from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    M.H. Dehghani

    2014-08-01

    Full Text Available Background and Objectives: Acid Red 18 dye was one of the Azo colors that are used in textile and dyeing industries. These dyes are often toxic and carcinogenic to humans and the environment as pollution. This study was conducted with the aim of investigating on nano alumina efficiency for removal of Acid Red 18 dye from aqueous solutions. Materials and Methods: This study was carried out in the laboratory scales and effect of The initial concentration of dye (25 to 100 mg/l, pH solution (3, 7, 11, nano alumina concentration (0.1, 0.4, 1, 1.5 g/l and contact time in range 5 to 240 min on dye removal efficiency were evaluated. Also kinetic and isotherm models of adsorption process were evaluated. Results: The high removal efficiency was observed in pH=3, contact time=60 min and Adsorbent concentration of 0.4 g/L. The rate of color removal were 63/24, 50/84 and 20 percent respectively at pH of 3, 7 and 11 for the initial dye concentration of 25 mg/l and 0.4 g/l mass absorbent that showing with increasing pH removal efficiency is reduced. the studied dye absorption isotherm was fitted Langmuir model (R2=0.994 which was 83.33 mg/g for maximum adsorption. The results from kinetic studies showed that removal of the studied dye was best described by pseudo-second order kinetic model (r2=0.999. Conclusion: The present study shows nano alumina powder is promising adsorbent for removal of Acid Red 18 from aqueous solution.

  19. The effect of repeated firings on the color of an alumina ceramic system with two different veneering porcelain shades.

    Science.gov (United States)

    Sahin, V; Uludag, B; Usumez, A; Ozkir, S E

    2010-12-01

    Possible sources of processing variables in porcelain firing include thickness and color of the opaque; thickness, color, and translucency of the body and enamel layers; firing temperature; and number of firings. The purpose of this in vitro study was to investigate the color changes of an alumina ceramic system veneered with different veneering porcelain shades and fired different numbers of times. Twenty disc-shaped ceramic specimens (10 mm in diameter, with a core thickness of 1 mm), with 2 different veneering porcelain shades (A1, A3), were fabricated from an alumina ceramic system (Turkom-Cera) (n=10). Repeated firings (3, 5, 7, or 9 firings) were performed, and color differences (ΔE) were determined using a spectrophotometer. Repeated-measures ANOVA was used to analyze the data (number of firings, veneering porcelain color). The Duncan test and paired 2-tailed tests were used for multiple comparisons (α=.05). The L*a*b* values of the ceramic system were affected by the number of firings (3, 5, 7, or 9) (Pveneering porcelain shade (Pveneering porcelain shade for L* (P=.002), a* (P=.001), and b* (P=.001) values. A1 shade specimens maintained their L* value independent of the number of firings, whereas A3 shade specimens became lighter after an increased number of firings. For both A1 and A3 veneering porcelain shades, the a* value decreased after repeated firings, which resulted in less reddish specimens, and the b* value decreased after repeated firings, which resulted in less yellowish specimens. Imperceptible (ΔE<1.6) and clinically acceptable color changes (ΔE<3.7) were demonstrated by the alumina ceramic system tested. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  20. Residual stress profiles in veneering ceramic on Y-TZP, alumina and ZTA frameworks: measurement by hole-drilling.

    Science.gov (United States)

    Fukushima, K A; Sadoun, M J; Cesar, P F; Mainjot, A K

    2014-02-01

    The residual stress profile developed within the veneering ceramic during the manufacturing process is an important predicting factor in chipping failures, which constitute a well-known problem with yttria-tetragonal-zirconia polycrystal (Y-TZP) based restorations. The objectives of this study are to measure and to compare the residual stress profile in the veneering ceramic layered on three different polycrystalline ceramic framework materials: Y-TZP, alumina polycrystal (AL) and zirconia toughened alumina (ZTA). The stress profile was measured with the hole-drilling method in bilayered disk samples of 19 mm diameter with a 0.7 mm thick Y-TZP, AL or ZTA framework and a 1.5mm thick layer of the corresponding veneering ceramic. The AL samples exhibited increasing compressive stresses with depth, while compressive stresses switching into interior tensile stresses were measured in Y-TZP samples. ZTA samples exhibited compressive stress at the ceramic surface, decreasing with depth up to 0.6mm from the surface, and then becoming compressive again near the framework. Y-TZP samples exhibited a less favorable stress profile than those of AL and ZTA samples. Results support the hypothesis of the occurrence of structural changes within the Y-TZP surface in contact with the veneering ceramic to explain the presence of tensile stresses. Even if the presence of Y-TZP in the alumina matrix seems to negatively affect the residual stress profiles in ZTA samples in comparison with AL samples, the registered profiles remain positive in terms of veneer fracture resistance. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Composition and process for making an insulating refractory material

    Science.gov (United States)

    Pearson, A.; Swansiger, T.G.

    1998-04-28

    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  2. Remote microwave plasma enhanced chemical vapor deposition (RMPECVD) of silica and alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Desmaison, J.; Hidalgo, H.; Tristant, P.; Naudin, F.; Merle, D. [Limoges Univ. (France). Lab. de Sciences des Procedes Ceramiques et Traitements de Surface

    2002-07-01

    Alumina or silica are attractive as insulation and protective layers for sensitive substrates. Oxides are deposited by remote microwave plasma enhanced chemical vapor deposition (RMPECVD) using an oxygen plasma and a mixture of precursor gas silane or trimethylaluminum (TMA) diluted in argon, respectively for silica and alumina, injected in the afterglow. This technique allows to deposit films of SiO{sub 2} and Al{sub 2}O{sub 3} with satisfactory characteristics (density, etch rate, stoichiometry) and high deposition rate. The comparison of the best deposition conditions reveals that in case of alumina higher temperatures and lower pressures are needed. (orig.)

  3. Radiation degradation in the mechanical properties of Polyetheretherketone–alumina composites

    International Nuclear Information System (INIS)

    Lawrence, Falix; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.; Ponraju, D.; Seshadri, S.K.; Sampath Kumar, T.S.

    2012-01-01

    Polyetheretherketone (PEEK) is extensively employed in corrosive and radiation environments. To improve the radiation tolerance of PEEK in the presence of high energetic radiation, PEEK was reinforced with micron sized alumina powder (5–25% by weight) and PEEK–alumina composite sheets fabricated were irradiated to 10 MGy. Mechanical properties of the irradiated composites revealed significant reduction in the degradation of PEEK with addition of alumina as the polymer reinforced with ceramic additives is expected to increase the interface area of the constituents in the system resulting in an improvement in the performance of the reinforced material.

  4. Structural analysis of anodic porous alumina used for resistive random access memory

    International Nuclear Information System (INIS)

    Lee, Jeungwoo; Nigo, Seisuke; Kato, Seiichi; Kitazawa, Hideaki; Kido, Giyuu; Nakano, Yoshihiro

    2010-01-01

    Anodic porous alumina with duplex layers exhibits a voltage-induced switching effect and is a promising candidate for resistive random access memory. The nanostructural analysis of porous alumina is important for understanding the switching effect. We investigated the difference between the two layers of an anodic porous alumina film using transmission electron microscopy and electron energy-loss spectroscopy. Diffraction patterns showed that both layers are amorphous, and the electron energy-loss spectroscopy indicated that the inner layer contains less oxygen than the outer layer. We speculate that the conduction paths are mostly located in the oxygen-depleted area.

  5. Crack shielding degradation in alumina during cyclic fatigue

    Energy Technology Data Exchange (ETDEWEB)

    El Attaoui, H.; Saadaoui, M. [LERSIM, Rabat (Morocco); INSA de Lyon, Villeurbanne (France). GEMPPM; Chevalier, J.; Fantozzi, G. [INSA de Lyon, Villeurbanne (France). GEMPPM

    2002-07-01

    R curve measurements before and after cyclic fatigue were performed on SENB specimens of coarse grain alumina to investigate fatigue effect. A significant drop of the crack growth resistance was observed after cyclic loading which could be associated to a decrease of the shielding effect due to bridging degradation. No variation was observed on the amount of degradation as the number of cycles increased for a maximum applied load, K{sub max} of 50% of the K{sub R} value before cyclic loading, K{sub f}, whereas an increase was observed for K{sub max}/K{sub f} = 0.7, when the critical number of cycles corresponding to failure was approached. (orig.)

  6. Crack growth resistance under thermal shock loading of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Saadaoui, M. [Ecole Mohammadia d`Ingenieurs (EMIL), Rabat (Morocco); Fantozzi, G. [GEMPPM-UMR CNRS 5510, INSA Lyon, Villeurbanne (France)

    1998-06-01

    Thermal shock experiments, conducted in an apparatus in which all the parameters can be controlled, are modelled by a two dimensional cooling model, allowing a precise determination of the induced stress intensity factors (SIF). Fracture mechanics analysis in terms of stress intensity factors is applied to determine R-curve behaviour of indentation cracks in alumina materials subjected to thermal shock. The instant of unstable crack growth was obtained by acoustic emission (AE). As in bending tests, the coarse grained material showed a more pronounced R-curve behaviour than the fine grained material. The results are discussed considering the influence of the R-curve behaviour on the retained strength after thermal shock. (orig.) 25 refs.

  7. Fatigue strength testing of LTCC and alumina ceramics bonds

    Science.gov (United States)

    Dąbrowski, A.; Matkowski, P.; Golonka, L.

    2012-12-01

    In this paper the results of fatigue strength tests of ceramic joints are presented. These tests have been performed on the samples subjected to thermal and vibration fatigue as well as on the reference samples without any additional loads. The main goal of the investigation was to determine the strength of hybrid ceramics joints using tensile testing machine. The experiment enabled evaluation of fatigue effects in the mentioned joints. Geometry of test samples has been designed according to FEM simulations, performed in ANSYS FEM environment. Thermal stress as well as the stress induced by vibrations have been analyzed in the designed model. In the experiments two types of ceramics have been used — LTCC green tape DP951 (DuPont) and alumina ceramic tape. The samples have been prepared by joining two sintered ceramic beams made of different types of material. The bonds have been realized utilizing low temperature glass or a layer of LTCC green tape.

  8. Microstructural features of alumina refractories with mullite-zirconia aggregates

    Directory of Open Access Journals (Sweden)

    Ferrari, C. R.

    2003-02-01

    Full Text Available Refractory materials are often subjected to high temperatures and loads and their performance depends on their microstructural evolution during use. In this context, microstructural changes were monitored in alumina-based refractories containing mullite-zirconia aggregates and heat-treated at 1400°C and 1500°C for 2, 6, and 18 days. With the purpose of inducing in situ mullite formation, bricks containing microsilica were also prepared and heat-treated at 1500°C for 6 days for the sake of comparison. These heat treatments allowed for an evaluation of the use of refractories from the standpoint of temperature and time. In this work, scanning electron microscopy and X-ray diffraction analyses were made to identify the phases in the materials. The Rietveld method was also used for quantitative phase analyses. Interfacial reactions occurred between alumina and aggregates and between alumina and microsilica, causing the system to become mullitized. The effect of in situ-formed mullite was particularly evident in the results of the modulus of rupture of the materials containing microsilica. Creep tests revealed a reduction in the creep rate of materials treated at 1500°C for 18 days.

    El comportamiento de los materiales refractarios, cuando sometidos a altas temperaturas y a grandes esfuerzos mecánicos, está íntimamente relacionado con la evolución microestuctural, durante su uso. En este contexto, fue realizado un estudio de la evolución microestructural de los materiales refractarios de alumina conteniendo diferentes porcentajes de agregado de mullita–circona, sometidos a tratamientos térmicos por 2, 6 y 18 días, en temperaturas de 1400 y 1500oC. Fueron confeccionados, algunos ladrillos conteniendo microsílice, con la idea de se introducir la formación de mullita en situ. Para la comparación de los ladrillos, fueron realizados tratamientos térmicos por un periodo de 6 días en 1500oC. Estos tratamientos térmicos permitieron

  9. Ordered Nanomaterials Thin Films via Supported Anodized Alumina Templates

    Directory of Open Access Journals (Sweden)

    Mohammed eES-SOUNI

    2014-10-01

    Full Text Available Supported anodized alumina template films with highly ordered porosity are best suited for fabricating large area ordered nanostructures with tunable dimensions and aspect ratios. In this paper we first discuss important issues for the generation of such templates, including required properties of the Al/Ti/Au/Ti thin film heterostructure on a substrate for high quality templates. We then show examples of anisotropic nanostructure films consisting of noble metals using these templates, discuss briefly their optical properties and their applications to molecular detection using surface enhanced Raman spectroscopy. Finally we briefly address the possibility to make nanocomposite films, exemplary shown on a plasmonic-thermochromic nanocomposite of VO2-capped Au-nanorods.

  10. Quantitative convergent beam electron diffraction measurements of bonding in alumina

    International Nuclear Information System (INIS)

    Johnson, A.W.S.

    2002-01-01

    Full text: The QCBED technique of measuring accurate structure factors has been made practical by advances in energy filtering, computing and in the accurate measurement of intensity. Originally attempted in 1965 by the late Peter Goodman (CSIRO, Melbourne) while working with Gunter Lehmpfuhl (Fritz Haber Institut, Berlin), QCBED has been successfully developed and tested in the last decade on simple structures such as Si and MgO. Our work on Alumina is a step up in complexity and has shown that extinction in X-ray diffraction is not correctable to the precision required. In combination with accurate X-ray diffraction, QCBED promises to revolutionize the accuracy of bonding charge density measurements, experimental results which are of significance in the development of Density Functional Theory used in predictive chemistry. Copyright (2002) Australian Society for Electron Microscopy Inc

  11. Characterization of AMC commercial bricks with different alumina qualities

    International Nuclear Information System (INIS)

    Muñoz, V.; Camerucci, Maria A.; Martinez, A.G. Tomba

    2011-01-01

    The study of commercial bricks Al 2 O 3 -MgO-C (AMC) has some advantages over the analysis of materials prepared in the laboratory, but requires a complete characterization. This paper presents the results of the characterization of commercial bricks AMC with different types of alumina aggregates used in ladles floor. The same is done by several complementary techniques: XRD, DTA / TGA, EPR, volume density and apparent porosity, dilatometric analysis, microstructural analysis by low magnification and scanning electron microscopy (SEM) coupled with analysis Energy dispersive X-ray (EDX) and determination of mechanical properties at room temperature (Young's modulus, stress and strain at fracture). The main characteristics and differences in the composition and microstructure, essential data for further analysis of the mechanical behavior and resistance to slag attack of these refractories, are determined. (author)

  12. New generation biofuel from whey: Successive acidogenesis and alcoholic fermentation using immobilized cultures on γ-alumina

    International Nuclear Information System (INIS)

    Boura, Konstantina; Kandylis, Panagiotis; Bekatorou, Argyro; Kolliopoulos, Dionysios; Vasileiou, Dimitrios; Panas, Panayiotis; Kanellaki, Maria; Koutinas, Athanasios A.

    2017-01-01

    Highlights: • Successive continuous alcoholic fermentation and acidogenesis of whey. • UASB culture (acidogenesis) and kefir (alcoholic fermentation) fixed on γ-alumina. • Alcoholic fermentation-acidogenesis process led to 10-fold higher ethanol content. • Organic acids production was increased by 2.5-fold. • The process is promising for new generation ester-based biofuels from whey. - Abstract: Cheese whey exploitation in a biorefinery manner is proposed involving anaerobic acidogenesis by a UASB mixed anaerobic culture and alcoholic fermentation by kefir. Both cultures were immobilized on γ-alumina. The produced organic acids (OAs) and ethanol could be esterified to obtain a novel ester-based biofuel similar to biodiesel. During acidogenesis, lactic acid-type fermentation occurred leading to 12 g L −1 total OAs and 0.2 g L −1 ethanol. The fermented substrate was subsequently supplied to a second bioreactor with immobilized kefir, which increased the OAs content (15 g L −1 ), especially lactic acid, and slightly the ethanol concentration (0.3–0.4 g L −1 ). To further increase ethanol concentration, a second experiment was conducted supplying whey firstly to the immobilized kefir bioreactor and then pumping the effluent into the acidogenesis bioreactor, resulting in 40% increase of OAs and 10-fold higher ethanol content. The residual sugar was ∼50% of the initial whey lactose; consequently, future research could result to further increase of ethanol and OAs.

  13. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Camille Desrousseaux

    Full Text Available Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1 to nanostructure acrylonitrile-butadiene-styrene (ABS, a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2 to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3 to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.

  14. Si nanopatterning by reactive ion etching through an on-chip self-assembled porous anodic alumina mask

    Science.gov (United States)

    Gianneta, Violetta; Olziersky, Antonis; Nassiopoulou, Androula G.

    2013-02-01

    We report on Si nanopatterning through an on-chip self-assembled porous anodic alumina (PAA) masking layer using reactive ion etching based on fluorine chemistry. Three different gases/gas mixtures were investigated: pure SF6, SF6/O2, and SF6/CHF3. For the first time, a systematic investigation of the etch rate and process anisotropy was performed. It was found that in all cases, the etch rate through the PAA mask was 2 to 3 times lower than that on non-masked areas. With SF6, the etching process is, as expected, isotropic. By the addition of O2, the etch rate does not significantly change, while anisotropy is slightly improved. The lowest etch rate and the best anisotropy were obtained with the SF6/CHF3 gas mixture. The pattern of the hexagonally arranged pores of the alumina film is, in this case, perfectly transferred to the Si surface. This is possible both on large areas and on restricted pre-defined areas on the Si wafer.

  15. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  16. Chemical rescue of ΔF508-CFTR in C127 epithelial cells reverses aberrant extracellular pH acidification to wild-type alkalization as monitored by microphysiometry.

    Science.gov (United States)

    Luckie, Douglas B; Van Alst, Andrew J; Massey, Marija K; Flood, Robert D; Shah, Aashish A; Malhotra, Vishal; Kozel, Bradley J

    2014-09-05

    Cystic fibrosis (CF) is caused by mutations in the gene for CFTR, a cAMP-activated anion channel expressed in apical membranes of wet epithelia. Since CFTR is permeable to HCO3(-), and may regulate bicarbonate exchangers, it is not surprising evidence of changes in extracellular pH (pHo) have been found in CF. Previously we have shown that tracking pHo can be used to differentiate cells expressing wild-type CFTR from controls in mouse mammary epithelial (C127) and fibroblast (NIH/3T3) cell lines. In this study we characterized forskolin-stimulated extracellular acidification rates in epithelia where chemical correction of mutant ΔF508-CFTR converted an aberrant response in acidification (10%+ increase) to wild-type (25%+ decrease). Thus treatment with corrector (10% glycerol) and the resulting increased expression of ΔF508-CFTR at the surface was detected by microphysiometry as a significant reversal from acidification to alkalization of pHo. These results suggest that CFTR activation as well as correction can be detected by carefully monitoring pHo and support findings in the field that extracellular pH acidification may impact the function of airway surface liquid in CF. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A method for the control of alumina concentration in aluminum reduction cells

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1992-01-01

    Full Text Available The paper presents a new method for the control of the concentration of the alumina in electrolysis cells for the production of aluminium. The method is based upon the well known fact that apparent resistivity of the cell is a function of the alumina concentration so that the resistivity has the lowest value around the concentration of three per cent and increases in both directions. The method uses the cross correlation between a perturbation of the feed flow of alumina into the cell and the resulting response in measured voltage across the cell. The cross-correlation is proportional to the slope of the resistivity against concentration curve, making it possible to control the alumina flow, to achieve a desired slope. The method has much in common with other methods presently in use which require a much more complicated computation scheme.

  18. Promoting effect of tin oxides on alumina-supported gold catalysts used in CO oxidation

    Science.gov (United States)

    Somodi, Ferenc; Borbáth, Irina; Hegedűs, Mihály; Lázár, Károly; Sajó, István E.; Geszti, Olga; Rojas, Sergio; Fierro, Jose Luis Garcia; Margitfalvi, József L.

    2009-11-01

    In this study the influence of SnO x nanoparticles on the catalytic performance of alumina-supported gold catalysts was investigated in CO oxidation. The tin modified supports were prepared by grafting of tetraethyltin onto the surface of alumina via its hydroxyl groups. The decomposition of organometallic surface species in oxygen yielded highly dispersed tin oxide on the surface of alumina. Gold was introduced onto the tin modified alumina support by both deposition-precipitation with urea and direct anionic exchange techniques using HAuCl 4 solution. Based on catalytic and different spectroscopic measurements it is suggested that the presence of "Sn n+ -Au ensemble sites" is responsible for the increased activity of these catalysts.

  19. Reaction products between Bi-Sr-Ca-Cu-oxide thick films and alumina substrates

    International Nuclear Information System (INIS)

    Alarco, J.A.; Ilushechkin, A.; Yamashita, T.; Bhargava, A.; Barry, J.; Mackinnon, I.D.R.

    1997-01-01

    The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr 4 Al 6 O 12 SO 4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212+10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 +20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a=24.5 A and approximate composition Al 3 Sr 2 CaBi 2 CuO x has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (orig.)

  20. High Activity of Highly Loaded MoS2 Hydrodesulfurization Catalysts Supported on Organised Mesoporous Alumina

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Zdražil, Miroslav; Žilková, Naděžda; Čejka, Jiří

    2002-01-01

    Roč. 3, - (2002), s. 151-157 ISSN 1566-7367 R&D Projects: GA ČR GA104/01/0544 Keywords : hydrodesulfurization * Mo sulfide catalyst * organised mesoporous alumina Subject RIV: CF - Physical ; Theoretical Chemistry