WorldWideScience

Sample records for alkalized alumina process

  1. Studies on accelerated deactivation of ruthenium-promoted alumina-supported alkalized cobalt Fischer-Tropsch synthesis catalyst

    Institute of Scientific and Technical Information of China (English)

    Shohreh Tehrani; Mohamad Irani; Ahmad Tavasoli; Yadollah Mortazavi; Abbas A.Khodadadi; Ali Nakhaei Pour

    2011-01-01

    Accelerated deactivation of ruthenium-promoted alumina-supported alkalized cobalt(K-Ru-Co/-γ-Al2O3)Fischer-Tropsch(FT)synthesis catalyst along the catalytic bed over 120 h of time-on-stream(TOS)was investigated.Catalytic bed was divided into three parts and structural changes of the spent catalysts collected from each catalytic bed after FT synthesis were studied using different techniques.Rapid deactivation was observed during the reaction due to high reaction temperature and low feed flow rates.The physico-chemical properties of the catalyst charged in the Bed #1 of the reactor did not change significantly.Interaction of cobalt with alumina and the formation of CoAl2O4 increased along the catalytic bed.Reducibility percentage decreased by 4.5%,7.5% and 12.9% for the catalysts in the Beds #1,#2 and #3,respectively.Dispersion decreased by 8.8%,14.4% and 26.6% for the catalysts in the Beds #1,#2 and #3,respectively.Particle diameter increased by 0.6%,2.4% and 10.4% for the catalysts in the Beds #1,#2 and #3,respectively,suggesting higher rate of sintering at the last catalytic bed.The amount of coke at the last catalytic bed was significantly higher than those of Beds #1 and #2.

  2. Processing and Performance of Alumina Fiber Reinforced Alumina Composites

    Institute of Scientific and Technical Information of China (English)

    P.Y.Lee; T.Uchijima; T.Yano

    2003-01-01

    Processing of alumina fiber-reinforced alumina matrix composites by hot-pressing was described. The mechanical properties of the composites fabricated by different sintering conditions including temperature and pressure have been investigated. The results indicated that the higher sintering temperature and pressure corresponded to the higher bulk density and higher maximum strength of the composite, whereas the pseudo-ductility of the composite was lower. The preliminary results of the composite with monazite-coated fibers showed that maximum strength could be improved up to 35% compared with the noncoated fiber composite in the same sintering condition. Moreover, the fracture behavior of the composite changed from completely brittle fracture to non-brittle fracture under the suitable sintering conditions. SEM observation of the fracture surface indicated that the coating worked as a protective barrier and avoided sintering of the fibers together even at high temperature and pressure during densification process.

  3. A Novel Processing Route for Ni-doped Alumina Composites

    Institute of Scientific and Technical Information of China (English)

    JING Mao-xiang; SHEN Xiang-qian; ZHOU Jian-xin; LI Dong-hong; LI Wang-xing

    2006-01-01

    Alumina-based composites containing 0-15wt% Ni metallic phase were produced by hot press-sintering Ni-coated alumina powders. The Ni-coated alumina powders were prepared by the aqueous heterogeneous precipitation of alumina micro-powders and nickel sulfate salt followed by reduction process. The microstructural features and dispersion of Ni phase in Ni-coated alumina powders and the subsequent alumina-Ni cermets were investigated using scanning electron microscope (SEM), X-ray diffractometer (XRD), and transmission electron microscope (TEM). The relative density of the hot press-sintered composites was measured with the Archimedes' method while the fracture strength and the fracture toughness were defined with the three-point bending method and the micro-indentation fracture method. In the formation of alumina-Ni cermets from sintered Ni-coated alumina powders, Ni phase to some extent limits the densification rate and stifles the coarsening and growing process of alumina grains. The Ni phase is found to be located at the interfaces and the triple-joint junctions of alumina grains which results into alteration of the fracture mode of alumina and its increased fracture strength and fracture toughness if compared with monolithic alumina.

  4. Comparison of deep desulfurization methods in alumina production process

    Institute of Scientific and Technical Information of China (English)

    刘战伟; 李旺兴; 马文会; 尹中林; 武国宝

    2015-01-01

    Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2− in sodium aluminate solution can be removed by adding sodium nitrate or hydrogen peroxide in digestion process, and in this way the effect of S2− on alumina product quality is eliminated. However, the removal efficiency of2-23SOin sodium aluminate solution is very low by this method. Both S2− and2-23SO in sodium aluminate solution can be removed completely by wet oxidation method in digestion process. The cost of desulfurization by wet oxidation is lower than by adding sodium nitrate or hydrogen peroxide. The results of this research reveal that wet oxidation is an economical and feasible method for the removal of sulfur in alumina production process to improve alumina quality, and provide valuable guidelines for alumina production by high-sulfur bauxite.

  5. Processing of silicon nitride and alumina nanosize powders

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.J.; Piermarini, G.; Hockey, B.; Malghan, S.G. [National Inst. of Standard and Technology, Gaithersburg, MD (United States)

    1995-08-01

    The effects of pressure on the compaction and subsequent processing of nanosize {gamma} alumina powders were studied. A 3 mm diameter piston/cylinder die was used to compact the nanosize powders to pressures of 1 and 2.5 GPa. The green bodies were sintered at temperatures up to 1600{degrees}C. Results show that green body density can be increased by higher compaction pressures. It appears that as a result of the {gamma}-to-{alpha} transformation in alumina, higher green density does not necessarily produce a higher density sintered alumina body. The microstructures of the sintered bodies are described in terms of porosity and phase content.

  6. Electrochemical modification process of anodic alumina membrane

    Institute of Scientific and Technical Information of China (English)

    YU Mei; LIU Jian-hua; LI Song-mei

    2006-01-01

    The modification procedure of anodic alumina membrane(AAM) was studied. The AAM structure after modification was characterized by nickel nanowires prepared in AAM. Scanning electron microscopy was used to characterize the topography and structure properties of the AAM and nickel nanowires. The transformation of the current during the voltage reduction was studied. The mechanism of current and structure change during modification was discussed. The results show that a root structure produces after the AAM modification. The length of the root structure depends on the velocity of the voltage reduction. Slow voltage reduction leads to a large length of the root structure,otherwise,a short length of the root structure. At the end of the modification,the barrier layer is thin enough to be passed by electrons. Hence,the direct electrodeposition of one-dimensional nanowires can be carried out on the AAM with barrier layer and aluminum matrix successfully without any other treatments.

  7. Catalyst materials based on plasma-processed alumina nanopowder

    Directory of Open Access Journals (Sweden)

    Dubencovs Konstantins

    2012-01-01

    Full Text Available A platinum catalyst for glycerol oxidation by molecular oxygen has been developed applying the extractive-pyrolytic method and using, as a support, a fine alumina powder with an average particle size of 30-60 nm processed by plasma technology. The extractive-pyrolytic method (EPM allows affixing small amounts of catalytic metals (1-5% with the particle size ranging from several nanometers to several tens of nanometers onto the surface of the support. The prepared material - 4.8 wt. % platinum on nano-sized alumina - can be used as a catalyst for glycerol oxidation by oxygen with conversion up to 84%, in order to produce some organic acids (glyceric and lactic acid with a selectivity of about 60%.

  8. Melt processing of Bi--2212 superconductors using alumina

    Science.gov (United States)

    Holesinger, Terry G.

    1999-01-01

    Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.

  9. Mullite/SiAlON/alumina composites by infiltration processing

    Energy Technology Data Exchange (ETDEWEB)

    Albano, M.P.; Scian, A.N. [Centro de Tecnologia de Recursos Minerales y Ceramica, Buenos Aires (Argentina)

    1997-01-01

    The formation of mullite/SiAlON/alumina composites was studied by infiltrating a SiAlON/alumina-base composite with two different solutions, followed by thermal treatment. The base composite was prepared from a mixture of tabular Al{sub 2}O{sub 3} grains, fume SiO{sub 2}, and aluminum powders. The mixture was pressed into test bars and nitrided in a nitrogen-gas (N{sub 2}) atmosphere at 1,480 C. The infiltrants were prehydrolyzed ethyl polysilicate solution and ethyl polysilicate-aluminum nitrate solution. The composites were infiltrated under vacuum, cured at 100 C, and precalcined in air at 700 C. This infiltration process was repeated several times to produce bars that had been subjected to multiple infiltrations, then the bars were calcined in a N{sub 2} atmosphere at 1,480 C to obtain mullite/SiAlON/alumina composites. The infiltration process increased the percentage of nitrogenous crystalline and mullite phases in the matrix; therefore, a decrease of the composite microporosity was observed. The infiltration increased the mechanical strength of the composites. Of the two composites, the one produced using prehydrolyzed ethyl polysilicate as the infiltrant had a higher mechanical strength, before and after being subjected to a severe thermal shock.

  10. Formation process of a strong water-repellent alumina surface by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Feng Libang, E-mail: lepond@hotmail.com [School of Mechatronic Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou 730070 (China); Li Hui; Song Yongfeng; Wang Yulong [School of Mechatronic Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou 730070 (China)

    2010-03-01

    A novel strong water-repellent alumina thin film is fabricated by chemically adsorbing stearic acid (STA) layer onto the porous and roughened aluminum film coated with polyethyleneimine (PEI). The formation process and the structure of the strong water-repellent alumina film are investigated by means of contact angle measurement and atomic force microscope (AFM). Results show that the water contact angles for the alumina films increase with the increase of the immersion time in the boiling water, and meanwhile, the roughness of the alumina films increases with the dissolution of the boehmite in the boiling water. Finally, the strong water-repellent film with a high water contact angle of 139.1 deg. is obtained when the alumina films have distinct roughened morphology with some papillary peaks and porous structure. Moreover, both the roughened structure and the hydrophobic materials of the STA endow the alumina films with the strong water-repellence.

  11. Formation process of a strong water-repellent alumina surface by the sol-gel method

    Science.gov (United States)

    Feng, Libang; Li, Hui; Song, Yongfeng; Wang, Yulong

    2010-03-01

    A novel strong water-repellent alumina thin film is fabricated by chemically adsorbing stearic acid (STA) layer onto the porous and roughened aluminum film coated with polyethyleneimine (PEI). The formation process and the structure of the strong water-repellent alumina film are investigated by means of contact angle measurement and atomic force microscope (AFM). Results show that the water contact angles for the alumina films increase with the increase of the immersion time in the boiling water, and meanwhile, the roughness of the alumina films increases with the dissolution of the boehmite in the boiling water. Finally, the strong water-repellent film with a high water contact angle of 139.1° is obtained when the alumina films have distinct roughened morphology with some papillary peaks and porous structure. Moreover, both the roughened structure and the hydrophobic materials of the STA endow the alumina films with the strong water-repellence.

  12. Metastable zirconia-yttria-alumina ceramics: Structure, processing and properties

    Science.gov (United States)

    Zhou, Xinzhang

    2002-09-01

    Metastable phases of zirconia-yttria-alumina produced by atmospheric plasma spray and subsequent quenching were studied. Two kinds of quenching methods were used: water quenching and splat quenching. Quenching rates were estimated to be 104°C/s for water quenching and between 105--107°C/s for splat quenching. Five compositions of sprayed dried powders (pure alumina, TZ3Y20A, TZ3Y57A, TZ3Y80A and pure zirconia) were plasma sprayed and quenched. The phases and microstructures of the plasma sprayed powders and thin films were investigated by XRD and FESEM. It was found that at different compositions and quenching rates, different high temperature phases formed. These phases are metastable at room temperature and can be in the form of an extended solid solution phase, an intermediate phase, or an amorphous structure. The grain sizes of the metastable phases are below 50 nm, as determined by XRD peak broadening. At the eutectic composition, zirconia-rich fibers (50 nm in diameter) uniformly distributed in an alumina-rich matrix were observed. 2-D and 3-D metastable phase diagrams were constructed to explain the metastable phase formation. Plasma spraying can be used to fabricate ceramic nanocomposites either by pressure-assisted sintering or spray forming of the metastable powders. Mechanical properties of TZ3Y20A specimens produced by plasma spray forming on steel substrates were studied. The dependence of the 4-point bend strength on plasma spray parameters was studied by a 26-2 statistical experimental design. It was found that the bend strength was sensitive to both standoff distance and scanning speed. The results of study show much promise in applications of the metastable ceramics. Firstly, homogeneous nucleation and growth of stable phases during sintering and high creep rate at elevated temperatures will result in uniformly dense nanoceramic composites. Secondly, extended solid solutions of rare earth elements in glass will greatly enhance the optical

  13. Processing, nano indentation and scratch testing of alumina-coated YTZP

    Energy Technology Data Exchange (ETDEWEB)

    Valle, J.; Anglada, M.; Ferrari, B.; Baudin, C.

    2015-10-01

    In this work, alumina-coated YTZP materials are proposed as means to combine the mechanical reliability of YTZP with the stiffness and hardness of alumina. Additionally, compressive stresses are developed in the alumina coating when cooling from the sintering temperature due to the thermal expansion mismatch between alumina and YTZP. The proposed processing method involves dipping of pre-sintered YTZP specimens in stable alumina suspensions and co-sintering of the dipped specimens. The influence of the processing parameters on the macro and microstructure of the materials has been established. Berkovich indentation has been performed to determine the Young's modulus of the substrates and coatings. The structural integrity of the coatings has been analysed using scratch tests. The Young's modulus. The optimised specimens present high resistance to scratch up to loads of 150 N. (Author)

  14. Plasma Processes : Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Mary Alex; V Balagi; K R Prasad; K P Sreekumar; P V Ananthapadmanabhan

    2000-11-01

    Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our Research Centre. These components act as thin spacers that have good mechanical strength as well as high electrical insulation and replace alumina insulators with the same dimensions. As a result, the design of the beam loss monitor ion chamber for CAT could be simplified by coating the outer surface of the HT electrode with alumina. One of the chambers developed for isotope calibrator for brachytherapy gamma sources has its outer aluminium electrode (60 mm dia × 220 mm long) coated with 250 thick alumina (97%) + titania (3%). In view of potential applications in neutron-sensitive ion chambers used in reactor control instrumentation, studies were carried out on alumina 100 to 500 thick coatings on copper, aluminium and SS components. The electrical insulation varied from 108 ohms to 1012 ohms for coating thicknesses above 200 . The porosity in the coating resulted in some fall in electrical insulation due to moisture absorption. An improvement could be achieved by providing the ceramic surface with moisture-repellent silicone oil coating. Irradiation at Apsara reactor core location showed that the coating on aluminium was found to be unaffected after exposure to 1017 nvt fluence.

  15. Rare earth-doped alumina thin films deposited by liquid source CVD processes

    Energy Technology Data Exchange (ETDEWEB)

    Deschanvres, J.L.; Meffre, W.; Joubert, J.C.; Senateur, J.P. [Ecole Nat. Superieure de Phys. de Grenoble, St. Martin d`Heres (France). Lab. des Materiaux et du Genie Phys.; Robaut, F. [Consortium des Moyens Technologiques Communs, Institut National Polytechnique de Grenoble, BP 75, 38402 St Martin d`Heres (France); Broquin, J.E.; Rimet, R. [Laboratoire d`Electromagnetisme, Microondes et Optoelectronique, CNRS-Ecole Nationale Superieure d`Electronique et Radioelectricite de Grenoble, BP 257, 38016 Grenoble, Cedex (France)

    1998-07-24

    Two types of liquid-source CVD processes are proposed for the growth of rare earth-doped alumina thin films suitable as amplifying media for integrated optic applications. Amorphous, transparent, pure and erbium- or neodymium-doped alumina films were deposited between 573 and 833 K by atmospheric pressure aerosol CVD. The rare earth doping concentration increases by decreasing the deposition temperature. The refractive index of the alumina films increases as a function of the deposition temperature from 1.53 at 573 K to 1.61 at 813 K. Neodymium-doped films were also obtained at low pressure by liquid source injection CVD. (orig.) 7 refs.

  16. High energy density processing of a free form nickel-alumina nanocomposite

    NARCIS (Netherlands)

    Viswanathan, V; Agarwal, A; Ocelik, V; De Hosson, J T M; Sobczak, N; Seal, S

    2006-01-01

    The development of a free form bulk Nickel reinforced Alumina matrix nano composites using Air Plasma Spray and laser processing has been presented. The process consumes less time and requires further minimal machining and therefore is cost effective. The relative differences in using APS over laser

  17. Synthesis of β"-Alumina from Powder Mixtures Using Thermal P lasma Processing

    Science.gov (United States)

    Fukumasa, Osamu; Sakiyama, Satoshi; Esaki, Hirotoshi

    1998-10-01

    Thermal plasma processing, using the plasma jet with high speed and high heat capacity under reduced pressure (generator and the feed ring, and also confirmed that this reactor generates stable plasma jets with high heat capacity for various operation conditions. With the use of this plasma jet reactor, synthesis of thermoelectric materials (β"-alumina) for the Alkali Metal Thermo-Electric Converter (AMTEC) has been studied. Under not only atmospheric pressure but also low pressure, thin-films of β"-alumina are successfully synthesized from the powder mixtures, i.e. α-Al_2O_3, Na_2CO3 and MgO. Powder species ratio, jet temperature, jet power and substrate position affect strongly synthesis of β"-alumina.

  18. Mechanical properties correlation to processing parameters for advanced alumina based refractories

    Directory of Open Access Journals (Sweden)

    Dimitrijević Marija M.

    2012-01-01

    Full Text Available Alumina based refractories are usually used in metallurgical furnaces and their thermal shock resistance is of great importance. In order to improve thermal shock resistance and mechanical properties of alumina based refractories short ceramic fibers were added to the material. SEM technique was used to compare the microstructure of specimens and the observed images gave the porosity and morphological characteristics of pores in the specimens. Standard compression test was used to determine the modulus of elasticity and compression strength. Results obtained from thermal shock testing and mechanical properties measurements were used to establish regression models that correlated specimen properties to process parameters.

  19. Colloidal processing of alumina with MgO additions

    Energy Technology Data Exchange (ETDEWEB)

    Lyckfeldt, O. [Swedish Ceramic Inst., Goeteborg (Sweden); Ferreira, J.M.F. [Dept. of Ceramics and Glass Engineering, Univ. of Aveiro (Portugal)

    1997-12-31

    Both rheological studies and casting studies were made to evaluate the effects of adding MgO (0.10 wt%) to alumina slips with a solids loading of 45 vol%, stabilised either with a polyacrylic acid (Dispex A40, Allied Colloids Ltd, UK) or with a low M{sub w} sulphonic acid (Tiron, Aldrich Chemie, Germany). Tiron and Dispex are expected to give electrostatic and electrosteric stabilisation, respectively. The addition of MgO gave significant effects displayed by increased viscosity and elasticity of the slips and a considerable decrease in density of slip-cast and filter-pressed bodies. When the casting pressure increased, there was also a general tendency that the density of filter-pressed bodies decreased with well-stabilised slips (without MgO), but increased when the slip was weakly flocculated (with MgO). This was explained by the casting rate dependency under stabilised slip conditions, and the compressibility of the filter-pressed cakes formed using flocculated slips. Furthermore, it was shown that Tiron gave a higher degree of deflocculation both with addition of MgO and without MgO, indicating that the electrostatic stabilising mechanism dominates the particle interactions whereas steric effects are less important at the solids loading used. (orig.) 5 refs.

  20. Encapsulating graphene by ultra-thin alumina for reducing process contaminations

    Energy Technology Data Exchange (ETDEWEB)

    Dauber, Jan; Terres, Bernat; Stampfer, Christoph [II. Institute of Physics B, RWTH Aachen University, 52074 Aachen (Germany); JARA Fundamentals of Future Information Technologies, 52425 Juelich (Germany); Peter Gruenberg Institute (PGI-8/9), Forschungszentrum Juelich, 52425 Juelich (Germany); Trellenkamp, Stefan [Peter Gruenberg Institute (PGI-8/9), Forschungszentrum Juelich, 52425 Juelich (Germany)

    2012-12-15

    We discuss a fabrication process for making graphene devices based on encapsulated graphene for reducing contaminations during individual processing steps. A 3-5 nm alumina layer is deposited directly after exfoliating graphene, protecting it during the entire processing. We show that the visibility of the encapsulated graphene is sufficient to identify graphene flakes and Raman spectra exhibit the characteristic finger print. We perform transport measurements to study the sample quality and compare the results with graphene samples processed without an alumina layer. In particular we observe a higher yield and significantly reduced contact resistances for devices fabricated with the here presented method. Graphene flake with metal (Cr/Au) contacts covered with an ultra-thin (3-5 nm) oxidized aluminum layer (left) and without the layer (right). (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites.

    Science.gov (United States)

    Palmero, Paola; Kern, Frank; Sommer, Frank; Lombardi, Mariangela; Gadow, Rainer; Montanaro, Laura

    2014-12-30

    Ceramic nanocomposites, containing at least one phase in the nanometric dimension, have received special interest in recent years. They have, in fact, demonstrated increased performance, reliability and lifetime with respect to monolithic ceramics. However, a successful approach to the production of tailored composite nanostructures requires the development of innovative concepts at each step of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering.This review aims to deepen understanding of some of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on alumina-based composite systems. Two case studies are presented and briefly discussed. The former illustrates the benefits, in terms of sintered microstructure and related mechanical properties, resulting from the application of an engineering approach to a laboratory-scale protocol for the elaboration of nanocomposites in the system alumina-ZrO2-YAG (yttrium aluminium garnet). The latter illustrates the manufacturing of alumina-based composites for large-scale applications such as cutting tools, carried out by an injection molding process. The need for an engineering approach to be applied in all processing steps is demonstrated also in this second case study, where a tailored manufacturing process is required to obtain the desired results.

  2. Processing and characterization of alumina/LAS bioceramics for dental applications

    Indian Academy of Sciences (India)

    M Guedes; V Costa; T Silva; A Teles; X Yang; A C Ferro

    2014-05-01

    Alumina allows to recreate the functionality and aesthetics of natural teeth. However, its low fracture toughness rises concern regarding use in dental restoration. Structural reliability is addressed here by formulating a material containing alumina and a glass–ceramic from LAS system. The presence of LAS in the mixtures result in formation of glass phase during sintering, promoting densification at lower temperature and enhanced surface finishing. A composite microstructure with increased toughness can thus be produced. Powder mixtures containing 0, 20, 50, 80 and 100 wt\\%-LAS were prepared by planetary milling and uniaxial pressing and sintered. The compositions were investigated regarding their processability, mechanical performance and biological behaviour. Aesthetics was evaluated by comparison with a commercial dental matching guide. Variations on hardness and fracture toughness with starting LAS fraction were assessed by indentation. Interaction with biological medium was evaluated by immersion in a simulated body fluid. Resulting microstructures were characterised by FEG–SEM, EDS and XRD.

  3. Tribocorrosion Behavior of Aluminum/Alumina Composite Manufactured by Anodizing and ARB Processes

    Science.gov (United States)

    Jamaati, Roohollah; Toroghinejad, Mohammad Reza; Szpunar, Jerzy A.; Li, Duanjie

    2011-12-01

    In the present work, tribocorrosion behavior of Al/Al2O3 composite strips manufactured by anodizing and accumulative roll bonding (ARB) processes was investigated. The alumina quantity was 0.48, 1.13, and 3.55 vol.% in the aluminum matrix. Tribocorrosion experiments were conducted using a ball-on-plate tribometer, where the sliding contact was fully immersed in 1 wt.% NaCl solution. The composite sample served as a working electrode and its open circuit potential (OCP) was monitored before, during, and after sliding. In order to characterize the electrochemical behavior of the surface before and after sliding electrochemical impedance spectroscopy (EIS) was used and wear was also measured. Furthermore, the influence of quantity and distribution of reinforcement particles in the matrix on OCP and EIS was evaluated. It was found that the quantity, shape, size, and dispersion of alumina particles in the aluminum matrix strongly affected the measured tribocorrosion characteristics. The results showed that inhomogeneous, lower quantity, fine, and acicular-shape alumina particles cause serious materials loss in tribocorrosion process.

  4. Forming of tubes and bars of alumina/LY12 composites by liquid extrusion process

    Institute of Scientific and Technical Information of China (English)

    齐乐华; 李贺军; 崔培玲; 史忠科

    2003-01-01

    Tube and bar products of aluminum alloy composites reinforced by alumina short-fiber were formed in a single process with liquid extrusion technology. The microstructure verifies that the reinforcing effect is obvious in the deformation direction since fibers are distributed along this direction, which is resulted from the flow and crystallization under pressure of liquid metal and large plastic deformation of solidified metal in the process. The interface between fiber and matrix belongs to mechanical bonding. The fractograph demonstrates ductile mode. Liquid extrusion process opens up a new way for fabricating tube, bar and shaped products.

  5. Sol-gel processed alumina based materials in microcalorimeter sensor device fabrication for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakouzi, S.R.; McBride, J.R.; Nietering, K.E.; Narula, C.K. [Ford Motor Co., Dearborn, MI (United States)

    1996-12-31

    The application of sol-gel processed materials in a variety of sensors has been proposed. The authors describe microcalorimeter sensor devices employing sol-gel processed alumina based materials which can be used to monitor pollutants in automotive exhaust. These sensors operate by measuring changes in resistance upon catalysis and are economically acceptable for automotive applications. It is important to point out that automobiles will be required to have a means of monitoring exhaust gases by on-board sensors as mandated by the EPA and the California Air Resources Board (OBD-II).

  6. Treatment of Recirculating Cooling Water by Ion-exchange Micro-alkalizing Process for Approach Zero-discharge%循环冷却水离子交换微碱化趋零排放处理

    Institute of Scientific and Technical Information of China (English)

    曾惠明; 徐天有; 范蕊; 叶金华

    2015-01-01

    研究了趋零排放的敞开式循环冷却水离子交换微碱化处理工艺。小试和中试结果表明,铁质换热器选用强酸RNa型与强碱RHCO3型树脂串联工艺,黄铜换热器选用弱酸RH型、强酸RH型及弱碱ROH树脂串联,末端加入NaOH的处理工艺进行补水。可实现敞开式循环冷却水系统稳定运行和趋零排放,钙镁离子等结垢阳离子,氯根等加速金属腐蚀的阴离子被清除,系统中水质pH和碱度均可控, pH为8.0~9.5之间,碱度为6.0~12.0 mmol/L之间,可延缓金属腐蚀。%The process of the recirculating cooling water micro-alkalizing by ion-exchange resin was studied, which can approach zero discharge of waste water. The bench test and the pilot result indicated that, the heat exchanger made out of iron used the series connection process between RNa resin and RHCO3 resin with the makeup water treating. And the heat exchanger containing copper used the series connection process among RH weak acidic resin, RH strong acerbic resin and ROH weak anionic resin, with NaOH added in the outlet to adjust the alkalinity. The recirculating cooling water system kept stable and approach zero discharge of waste water in the process, at the same time, the scaling cation and the anion, such as chloride ion, had been removed, the pH and alkalinity can be adjusted precisely. The metal corrosion can be restrained when the pH was between 8. 0 and 9. 5 , the alkalinity was between 6 mmol/L and 12. 0 mmol/L.

  7. Characteristics of self-alkalization in high-rate denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate.

    Science.gov (United States)

    Li, Wei; Zheng, Ping; Guo, Jun; Ji, Junyuan; Zhang, Meng; Zhang, Zonghe; Zhan, Enchao; Abbas, Ghulam

    2014-02-01

    Denitrification is a self-alkalization process. In this experiment, the characteristics of self-alkalization in high-rate heterotrophic denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate were investigated, respectively. The results showed that, (1) The self-alkalization of high-rate denitrifying reactors was remarkably strong both with methanol and sodium acetate as carbon sources, while the effluent pH was much lower than the stoichiometric values and the malfunction from self-alkalization of denitrification was far less serious than expected. (2) The self-adaptation of the reactors was attributed to the neutralization of carbon dioxide (oxidization product of organic matter) and the self-adaptation of denitrifying sludge. The formation and discharge of calcium carbonate precipitates gave rise to lower effluent pH and alkalinity than the stoichiometric values.

  8. Hydroxyapatite/alumina nanocrystalline composite powders synthesized by sol-gel process for biomedical applications

    Institute of Scientific and Technical Information of China (English)

    S.Khorsand; M.H.Fathi; S.Salehi; S.Amirkhanlou

    2014-01-01

    Hydroxyapatite/alumina nanocrystalline composite powders needed for various biomedical applications were successfully synthe-sized by sol-gel process. Structural and morphological investigations of the prepared composite powders were performed using X-ray dif-fractometer (XRD), scanning electron microscopy (SEM), X'Pert HighScore software, and Clemex Vision image analysis software. The re-sults show that the crystallite size of the obtained composite powders is in the range of 25 to 90 nm. SEM evaluation shows that the obtained composite powders have a porous structure, which is very useful for biomedical applications. The spherical nanoparticles in the range of 60 to 800 nm are embedded in the agglomerated clusters of the prepared composite powders.

  9. Quantification and morphology studies of nanoporous alumina membranes: a new algorithm for digital image processing.

    Science.gov (United States)

    Choudhari, Khoobaram S; Jidesh, Pacheeripadikkal; Sudheendra, Parampalli; Kulkarni, Suresh D

    2013-08-01

    A new mathematical algorithm is reported for the accurate and efficient analysis of pore properties of nanoporous anodic alumina (NAA) membranes using scanning electron microscope (SEM) images. NAA membranes of the desired pore size were fabricated using a two-step anodic oxidation process. Surface morphology of the NAA membranes with different pore properties was studied using SEM images along with computerized image processing and analysis. The main objective was to analyze the SEM images of NAA membranes quantitatively, systematically, and quickly. The method uses a regularized shock filter for contrast enhancement, mathematical morphological operators, and a segmentation process for efficient determination of pore properties. The algorithm is executed using MATLAB, which generates a statistical report on the morphology of NAA membrane surfaces and performs accurate quantification of the parameters such as average pore-size distribution, porous area fraction, and average interpore distances. A good comparison between the pore property measurements was obtained using our algorithm and ImageJ software. This algorithm, with little manual intervention, is useful for optimizing the experimental process parameters during the fabrication of such nanostructures. Further, the algorithm is capable of analyzing SEM images of similar or asymmetrically porous nanostructures where sample and background have distinguishable contrast.

  10. Effect of Solution Treatment Process on Hardness of Alumina Reinforced Al-9Zn Composite Produced by Squeeze Casting

    Directory of Open Access Journals (Sweden)

    Dwi Rahmalina

    2014-10-01

    Full Text Available Characteristics of aluminium matrix composites reinforced by alumina have been developed to improve mechanical properties. One of the determining factors in the development of this material is parameter of solution treatment process. This study discusses the performance of the composite matrix of Al-9Zn-6Mg-3Si reinforced by alumina powder of 5 % volume fraction. Composite are manufactured by squeeze casting process with the pressure of 20 Ton in the metal mould. To improve mechanical properties, the precipitation hardening process is conducted through variation of temperature of solution treatment of 450, 475 and 500 °C and holding time of solution treatment of 30, 60 and 90 minutes. Materials are characterized by hardness testing and microstructure observation. The results showed that the optimum condition of hardness was produced by solution treatment temperature of 500 °C and 90 minutes holding time of 86 HRB.

  11. A study of color modulation of porous alumina processed by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xulongqi; Zhang Haijun; Zhang Dongxian, E-mail: zhangdx@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027 (China)

    2011-02-01

    With the development of the porous alumina (PA) fabrication technology, more and more scholars plough into the research of its properties, especially optical properties. Recently, we observed an interesting phenomenon that the PA templates processed by Physical Vapor Deposition (PVD) show color differences related to light path difference. Our work attempts to make the principle clear and to find an effective method to modulate the color of PA samples. This article describes the details of our experimental and theoretical results. We successfully prepared some PA templates with different pore-depth by controlling the time of anodization in oxalic acid solution. In order to enhance the reflectivity of air-PA interface, a layer of TiO{sub 2} film of 18 nm is coated with PVD technique, which makes PA templates display quite distinct colors with different hole-depth. By modelling and analyzing PA samples, we make the interpretation of this optical property by taking the PA sample with 150 nm pore-depth as an example, and then put forward a way to simulate sample's color within its hole-depth and material refraction-index. The results are in good agreement with our theoretical analysis, which proves the feasibility of our simulation mode.

  12. Reuse of activated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Hobensack, J.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  13. Urine alkalization facilitates uric acid excretion

    Directory of Open Access Journals (Sweden)

    Seyama Issei

    2010-10-01

    Full Text Available Abstract Background Increase in the incidence of hyperuricemia associated with gout as well as hypertension, renal diseases and cardiovascular diseases has been a public health concern. We examined the possibility of facilitated excretion of uric acid by change in urine pH by managing food materials. Methods Within the framework of the Japanese government's health promotion program, we made recipes which consist of protein-rich and less vegetable-fruit food materials for H+-load (acid diet and others composed of less protein but vegetable-fruit rich food materials (alkali diet. Healthy female students were enrolled in this consecutive 5-day study for each test. From whole-day collected urine, total volume, pH, organic acid, creatinine, uric acid and all cations (Na+,K+,Ca2+,Mg2+,NH4+ and anions (Cl-,SO42-,PO4- necessary for the estimation of acid-base balance were measured. Results Urine pH reached a steady state 3 days after switching from ordinary daily diets to specified regimens. The amount of acid generated ([SO42-] +organic acid-gut alkai were linearly related with those of the excretion of acid (titratable acidity+ [NH4+] - [HCO3-], indicating that H+ in urine is generated by the metabolic degradation of food materials. Uric acid and excreted urine pH retained a linear relationship, where uric acid excretion increased from 302 mg/day at pH 5.9 to 413 mg/day at pH 6.5, despite the fact that the alkali diet contained a smaller purine load than the acid diet. Conclusion We conclude that alkalization of urine by eating nutritionally well-designed food is effective for removing uric acid from the body.

  14. Effect of Cocoa Shell Ash as an Alkalizing Agent on Cocoa Products

    Science.gov (United States)

    Osundahunsi, O. F.; Bolade, M. K.; Akinbinu, A. A.

    Alkalized cocoa nibs were produced using cocoa shell ash as an alkalizing agent. Conventionally, imported alkalizing agents are used to produce alkalized/dutched nibs in cocoa processing industries. Cocoa powder and cocoa butter were produced from nibs treated with cocoa shell=s ash as an alkalizing agent and compared with products from two industries which used imported alkali as the dutching agent. Cocoa products made from cocoa nibs alkalized with ash for the shell were evaluated for physicochemical properties in comparison with product from Oluji and Stanmark Industries located in Southwestern Nigeria. Flame photometry method was used to determine components of the ash. The pH value of cocoa powder were 6.72 and 6.56 for Oluji and Stanmark samples respectively while 6.59 was reported for the Experimental cocoa powder sample. Percent fat content was 11.56 for Stanmark, 12.20 for Oluji and 10.56 for the Experimental sample. Colour reflectance was highest in Stanmark sample with 8.69 while the least was recorded for Experimental sample (7.18). Percent ash was 6.58, 8.16 and 7.13 for Stanmark, Oluji and Experimental samples respectively. Fat parameters for cocoa butter from the three samples were found to be within International standard for cocoa butter. Percent fatty acid ranged from 1.46 to 1.59. Saponification value was 193 mg KOH gG1 sample for Experimental sample, while Stanmark and Oluji cocoa butter had 196 and 198 mg KOH gG1, respectively. Percent unsaponifiable matter content was 0.30 each for Stanmark and Oluji with 0.39 for Experimental sample. Iodine value was between 35.11 and 38.07 Wij=s. Peroxide value ranged from 26-29 ME kgG1. Major components of cocoa shell ash were found to be potassium, 3.1 g/100 g and sodium, 7.2 g/100 g while sodium carbonate was 33.1 g/100 g. The pH of the ash was 10.8. There were no significant differences (p< 0.05) in all the sensory parameter for cocoa powder. Although, chocolate aroma was found to be less pronounced in

  15. Optimization of Flotation Process for Reduction of Alumina and Silica from Screw Classifier Overflow of an Iron Ore Washing Plant

    Directory of Open Access Journals (Sweden)

    T V Vijaya Kumar

    2014-03-01

    Full Text Available Reverse flotation process was optimized by an experimental programme based on statistical analysis for reduction of silica and alumina levels from screw classifier overflow so as to enrich iron values. Flotation of alumina and silica bearing minerals with Sokem 521C and starch as collector and depressant respectively was studied to estimate their optimum levels at different particle sizes. A two-level three factor design of experiments showed that particle size is insignificant in the ranges of study. Tests on an orthogonal design of the hexagonal type were then carried out to determine the effects of the other two variables, on the response, Selectivity Index (SI, a measure of separation efficiency of iron values from alumina and silica. Regression equations were developed as models and response contours were plotted. Maximum response (SI of 2.25 has been optimized at 0.306 kg/t of amine collector, 1.0043 kg/t of starch at a particle size of 40 µm.

  16. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    Science.gov (United States)

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time.

  17. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  18. INTERACTION OF SUB-ZERO PROCESSED Cr-V LEDEBURITIC STEEL WITH ALUMINA, 100Cr6-STEEL AND BRONZE IN DRY SLIDING

    OpenAIRE

    Peter Jurci; Pavel Bílek; Jana Ptačinová; Jana Sobotová

    2014-01-01

    The interaction of the Vanadis 6 steel, processed without/with an application of sub-zero treatment, with alumina (hard counterface), 100Cr6-ball bearing steel (counterface of an intermediate hardness) and CuSn6 (soft counterface) has been examined. Obtained results infer that the wear performance against alumina is the best for no-SZT material quenched from higher austenitizing temperature (highest hardness). In dry sliding against 100 Cr6 ball bearing steel, the best wear resistance has bee...

  19. Effect of Plasma Spheroidization Process on the Microstructure and Crystallographic Phases of Silica, Alumina and Nickel Particles

    Institute of Scientific and Technical Information of China (English)

    HU Peng; YAN Shikai; YUAN Fangli; BAI Liuyang; LI Jinlin; CHEN Yunfa

    2007-01-01

    During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials.

  20. CFD simulation of effect of anode configuration on gas-liquid flow and alumina transport process in an aluminum reduction cell

    Institute of Scientific and Technical Information of China (English)

    詹水清; 李茂; 周孑民; 杨建红; 周益文

    2015-01-01

    Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces (EMFs) play the second role.

  1. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  2. Selected references on alkalic igneous rocks of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.R. (comp.)

    1976-01-01

    A compilation of references is presented providing background information on rock and mineral associations, geochemistry, geophysics, structural relationships, and geochronology of sialic, feldspathoidal, and some mafic alkalic igneous rock exposures in the US. Their locations and major characteristics are cited. No implication regarding U potential in these areas is intended. The first part of the bibliography provides general references to overall features of alkaline igneous rocks by region. The second part is a compilation of references on alkalic igneous rocks by state or groups of states. The third part provides information on rock type, age, and location for most of the references cited in part two. (JSR)

  3. A STUDY ON MEMBRANE PROCESS WITH γ-ALUMINA MEMBRANE REACTOR FOR ETHYLBENZENE DEHYDROGENATION TO STYRENE

    Institute of Scientific and Technical Information of China (English)

    Chen Qingling; Xu Zhongqiang

    2001-01-01

    The membrane reaction of ethylbenzene(EB) dehydrogenation to styrene(ST) has been studied by using K2O/Fe2O3 industrial catalyst and γ-alumina ceramic membrane developed by our institute. In comparison with the packed bed reactor (that is, plug flow reactor, abbr. PFR) in industrial practice, the yield of styrene was increased by 5%~10% in the membrane reactor. Furthermore, mathematical modeling of membrane reaction has been studied to display the principle of optimal match between the catalytic activity and the membrane permeability.

  4. Preparation of continuous alumina gel fibres by aqueous sol–gel process

    Indian Academy of Sciences (India)

    Hongbin Tan; Xiaoling Ma; Mingxing Fu

    2013-02-01

    Continuous alumina gel fibres were prepared by sol–gel method. The spinning sol was prepared by mixing aluminum nitrate, lactic acid and polyvinylpyrrolidone with a mass ratio of 10:3:1.5. Thermogravimetry–differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibres. The Al2O3 fibres with a uniform diameter can be obtained by sintering gel fibres at 1200 °C.

  5. Formation of calcium aluminates in the lime sinter process. [Extraction of alumina from fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Chou, K.S.

    1980-03-01

    A study of the formation of several calcium aluminates from pure components in the lime sinter process was undertaken to determine the kinetics of formation and subsequent leaching using a dilute sodium carbonate solution. The composition CaO 61.98%, SiO/sub 2/ 26.67%, and Al/sub 2/O/sub 3/ 11.53% was used. Isothermal sintering runs of 0.2 to 10.0 h were carried out at 1200, 1250, 1300, and 1350/sup 0/C. When the sintering temperature was below the eutectic temperature (1335/sup 0/C), the ternary mixture behaved like two binary systems, i.e. CaO-Al/sub 2/O/sub 3/ and CaO-SiO/sub 2/. Only one compound, 3CaO.SiO/sub 2/, was formed between CaO and SiO/sub 2/. With lower sintering temperature and shorter sintering time, the ..beta..-phase was dominant. However, when both temperature and time increased, more and more of the ..beta..-C/sub 2/S was transformed into the ..gamma..-phase. Several different aluminates were formed during the sintering of CaO and Al/sub 2/O/sub 3/. The compounds CaO.Al/sub 2/O/sub 3/ and 3CaO.Al/sub 2/O/sub 3/ were observed at all tested sintering temperatures, while the 5CaO.3Al/sub 2/O/sub 3/ phase was found only at 1200/sup 0/C and 12CaO.7Al/sub 2/O/sub 3/ at 1250/sup 0/C or higher. The first compound formed between CaO and Al/sub 2/O/sub 3/ was probably 12CaO.7Al/sub 2/O/sub 3/, but the amount did not increase immediately with time. The first dominant compound between CaO and Al/sub 2/O/sub 3/ was CaO.3Al/sub 2/O/sub 3/. When the calcium ion diffused through the product layer of CaO.Al/sub 2/O/sub 3/, 3CaO.Al/sub 2/O/sub 3/ was formed. If unreacted Al/sub 2/O/sub 3/ were present after the formation of CaO.Al/sub 2/O/sub 3/, CaO.2Al/sub 2/O/sub 3/ would form. Subsequent leaching of the sinters showed that the extractable alumina in the products increased with both sintering temperature and time, reaching a max of about 90%. These extraction data corresponded very well to the quantities of aluminates in the sinters. 59 figures, 13 tables.

  6. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  7. Investigation of mechanical properties based on grain growth and microstructure evolution of alumina ceramics during two step sintering process

    Science.gov (United States)

    Khan, U. A.; Hussain, A.; Shah, M.; Shuaib, M.; Qayyum, F.

    2016-08-01

    Alumina ceramics having small grain size and high density yield good mechanical properties, which are required in most mechanical applications. Two Step Sintering (TSS) is used to develop dense alumina ceramics. In this research work the effect of sintering temperatures on microstructure and density of the alumina specimens developed by using TSS has been investigated. It has been observed that TSS is more efficient in controlling grain growth and increasing the density as compared to One Step Sintering (OSS) of alumina. Scanning electron micrographs of sintered alumina specimens have been compared. It has been observed that TSS proves to be a better technique for increasing density and controlling grain growth of alumina ceramics than OSS. More relative density, hardness, fracture toughness and small grain size was achieved by using TSS over OSS technique.

  8. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M.H. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saramad, S., E-mail: ssaramad@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Hafez Avenue, Tehran (Iran, Islamic Republic of); Tabaian, S.H.; Marashi, S.P. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zolfaghari, A. [Chemistry and Chemical Engineering Research Centre of Iran, Tehran (Iran, Islamic Republic of); Mohammadalinezhad, M. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2009-10-15

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 deg. C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  9. Processamento de concretos refratários zero-cimento contendo alumina e microssílica Processing of zero-cement refractory castables containing alumina and microsilica

    Directory of Open Access Journals (Sweden)

    P. Bonadia Neto

    2000-03-01

    Full Text Available Os concretos auto-escoantes de reduzido teor de cimento aliam facilidade de aplicação a um bom desempenho em temperaturas elevadas. Estudos anteriores mostraram que a auto-escoabilidade e o empacotamento de partículas necessário para redução do teor de cimento são função da granulometria e do estado de dispersão da matriz do concreto. Bonadia e outros propuseram, então, uma metodologia de formulação de concretos baseada nestes dois conceitos, enfocando a otimização dos parâmetros granulométricos. Com a granulometria otimizada, Studart et al. geraram mapas de estabilidade, que fornecem as condições ideais para dispersão de uma matriz contendo apenas alumina. Com o auxílio destes mapas foi possível preparar concretos auto-escoantes isentos de cimento (zero-cimento. Devido à importância da microssílica como precursora da fase mulita no concreto, o objetivo deste trabalho foi gerar mapas de estabilidade para matrizes contendo alumina e microssílica. Os resultados mostraram uma correlação entre a fluidez dos concretos e as regiões de menor viscosidade e tensão de escoamento indicadas nos mapas.Low and ultra-low cement self-flow castables combine good high temperature performance and faster application rate. It has been shown that the castable self-flow ability and packing is a function of its particle size distribution and matrix rheological conditions. Bonadia and others proposed a castable formulation methodology based on these two concepts, focusing mainly the particle size distribution parameters. Stability maps, which predict the ideal matrix dispersion conditions, were generated by Studart et al. for aluminous castables in order to complete the proposed methodology. Such maps allowed the preparation of self-flow zero-cement (without any hydraulic binder castables compatible with industrial applications. Since microsilica is essential for mullite formation in castables, the main objective of this work is to generate

  10. Prediction of Crack for Drilling Process on Alumina Using Neural Network and Taguchi Method

    Directory of Open Access Journals (Sweden)

    Kingsun Lee

    2015-01-01

    Full Text Available This study analyzes a variety of significant drilling conditions on aluminum oxide (with L18 orthogonal array using a diamond drill. The drilling parameters evaluated are spindle speed, feed rate, depth of cut, and diamond abrasive size. An orthogonal array, signal-to-noise (S/N ratio, and analysis of variance (ANOVA are employed to analyze the effects of these drilling parameters. The results were confirmed by experiments, which indicated that the selected drilling parameters effectively reduce the crack. The neural network is applied to establish a model based on the relationship between input parameters (spindle speed, feed rate, depth of cut, and diamond abrasive size and output parameter (cracking area percentage. The neural network can predict individual crack in terms of input parameters, which provides faster and more automated model synthesis. Accurate prediction of crack ensures that poor drilling parameters are not suitable for machining products, avoiding the fabrication of poor-quality products. Confirmation experiments showed that neural network precisely predicted the cracking area percentage in drilling of alumina.

  11. Recent Development of High Alumina Refractories in China

    Institute of Scientific and Technical Information of China (English)

    WANGJin-xiang; LIUJie-hua

    1994-01-01

    The paper reviews the achievements which have been attained recently in China in high alumina refractories raw materials and their products,including 1) homogenization ,urification and electric fusion of high alumina raw materials and synthesizing of spinel from natural raw materials;2) processing principle and characteristics and microstructural features of creep-resistance high alu-mina brick ,alumina-magnesia-carbon brick and thermal shock resistanced high alumina brikc and their application in practice.

  12. Formation of gold mineralization in ultramafic alkalic magmatic complexes

    Science.gov (United States)

    Ryabchikov, I. D.; Kogarko, L. N.; Sazonov, A. M.; Kononkova, N. N.

    2016-06-01

    Study of mineral inclusions within alluvial gold particles of the Guli Complex (East Siberia) and findings of lode gold in rocks of the same intrusion have demonstrated that gold mineralization occurs in interstitions of both early high-magnesium rocks (dunite) and later alkalic and carbonatite rocks. In dunite the native gold occurs in association with Fe-Ni sulfides (monosulfide solid solution, pentlandite, and heazlewoodite). Formation of the gold-bearing alloys took place under a low oxygen potential over a broad range of temperatures: from those close to 600°C down to below 400°C.

  13. Synthesis of biodiesel from sunflower oil over potassium loaded alumina as heterogeneous catalyst: The effect of process parameters

    Directory of Open Access Journals (Sweden)

    Marinkovic Milos M.

    2016-01-01

    Full Text Available Heterogeneous catalysis is in recent focus of research for biodiesel production from vegetable oils because of advantages such as easy separation and reuse of catalysts, although homogeneous catalysis is most commonly used method. The aim of this study was preparation of γ-Al2O3 support by modified sol-gel procedure, synthesis of the KI/Al2O3 catalyst and testing its activity in the transesterification of sunflower oil with methanol. Influences of different process parameters on conversion of sunflower oil to methyl esters were examined. The gained results implicate that the potassium iodide incorporation into/onto the structure of γ-Al2O3 significantly influences textural and structural properties of the catalyst. Additionally, the catalyst basic strength is increased and all together those properties are positively affecting the activity of the catalyst in the reaction of transesterification of sunflower oil with methanol. The impregnation of alumina with potassium iodide resulted in the additional formation of basic catalytically active sites. The surface properties of the catalyst have an essential impact on its catalytic performance. Under relatively mild process conditions and relatively short reaction time, the usage of the KI/Al2O3 catalyst resulted in very high conversion to fatty acids methyl esters (i.e. 99.99 %. [Projekat Ministarstva nauke Republike Srbije, br. 172061 i br. TR 34008

  14. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    Soumen Pal; A K Bandyopadhyay; P G Pal; S Mukherjee; B N Samaddar

    2009-04-01

    Study of alumina–magnesia binary phase diagram reveals that around 40–50 wt% alumina dissolves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors revealed that the exsolution of alumina makes some interlocking structures in between alumina and spinel phases. In the present investigation, refractory grade calcined alumina and spinel powder were used to make different batch compositions. Green pellets, formed at a pressure of 1550 kg cm-2 were fired at different temperatures of 1500°, 1550° and 1600°C for 2 h soaking time. Bulk density, percent apparent porosity, firing shrinkage etc were measured at each temperature. Sintering results were analysed to understand the mechanism of spinel–alumina interactions. SEM study of present samples does not reveal the distinct precipitation of needle shaped -alumina from spinel, but has some effect on densification process of spinel–alumina composites. Microstructural differences between present and previous work suggest an ample scope of further work in spinel–alumina composites.

  15. INTERACTION OF SUB-ZERO PROCESSED Cr-V LEDEBURITIC STEEL WITH ALUMINA, 100Cr6-STEEL AND BRONZE IN DRY SLIDING

    Directory of Open Access Journals (Sweden)

    Peter Jurci

    2014-04-01

    Full Text Available The interaction of the Vanadis 6 steel, processed without/with an application of sub-zero treatment, with alumina (hard counterface, 100Cr6-ball bearing steel (counterface of an intermediate hardness and CuSn6 (soft counterface has been examined. Obtained results infer that the wear performance against alumina is the best for no-SZT material quenched from higher austenitizing temperature (highest hardness. In dry sliding against 100 Cr6 ball bearing steel, the best wear resistance has been achieved for the material after SZT at -196 oC/10 h. The interaction of Vanadis 6 steel with CuSn6 results in a considerable counterpart material transfer to the samples of Vanadis 6-steel whereas the extent of the transfer is rather independent on both the austenitizing temperature and the SZT parameters, within the range of parameters used for the investigations.

  16. Effect of process parameters on growth rate and diameter of nano-porous alumina templates

    Indian Academy of Sciences (India)

    P Chowdhury; K Raghuvaran; M Krishnan; Harish C Barshilia; K S Rajam

    2011-06-01

    Anodic aluminium oxide (AAO) template with hexagonal shaped nano-pores with high aspect ratio was fabricated by two-step anodization processes from high purity aluminium foil. It was observed that pore dimensions were affected by anodizing voltage, electrolyte temperature and the duration of anodization time. The vertical growth rate of the pores (10–250 nm/min) was found to vary exponentially with anodizing voltage; however, it exhibits linear increment with the electrolyte temperature. The measured pore diameter (50–130 nm) shows a linear variation with anodizing voltage. The bottom barrier oxide layer was etched out by pore widening treatment to obtain through holes.

  17. The application of thermal solar energy to high temperature processes: case study of the synthesis of alumina from boehmite.

    Science.gov (United States)

    Padilla, Isabel; López-Delgado, Aurora; López-Andrés, Sol; Álvarez, Marta; Galindo, Roberto; Vazquez-Vaamonde, Alfonso J

    2014-01-01

    The aim of this paper is to evaluate the feasibility of obtaining alumina from boehmite using a free, clean, and unlimited power source as the solar energy. Boehmite was obtained by hydrothermal treatment of a hazardous waste coming from aluminum slag milling. The waste is considered as a hazardous substance because of it releasing toxic gases (hydrogen, ammonia, methane, and hydrogen sulfide) in the presence of water. The as-obtained boehmite was transformed into alumina, in air atmosphere, using a solar energy concentrator (Fresnel lens). The solar installation provides a power density of 260 W · cm(-2) which allows reaching temperatures upper than 1000 °C at few minutes of exposure. Tests were performed at different periods of time that ranged between 5 and 90 min. The percentage of transformation of boehmite into alumina was followed by the water content of samples after solar radiation exposure. Samples were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetry. Metastable aluminas started to appear at 5 min and the crystalline and stable phase corundum at 10 min of solar radiation exposure.

  18. The Application of Thermal Solar Energy to High Temperature Processes: Case Study of the Synthesis of Alumina from Boehmite

    Directory of Open Access Journals (Sweden)

    Isabel Padilla

    2014-01-01

    Full Text Available The aim of this paper is to evaluate the feasibility of obtaining alumina from boehmite using a free, clean, and unlimited power source as the solar energy. Boehmite was obtained by hydrothermal treatment of a hazardous waste coming from aluminum slag milling. The waste is considered as a hazardous substance because of it releasing toxic gases (hydrogen, ammonia, methane, and hydrogen sulfide in the presence of water. The as-obtained boehmite was transformed into alumina, in air atmosphere, using a solar energy concentrator (Fresnel lens. The solar installation provides a power density of 260 W·cm−2 which allows reaching temperatures upper than 1000°C at few minutes of exposure. Tests were performed at different periods of time that ranged between 5 and 90 min. The percentage of transformation of boehmite into alumina was followed by the water content of samples after solar radiation exposure. Samples were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetry. Metastable aluminas started to appear at 5 min and the crystalline and stable phase corundum at 10 min of solar radiation exposure.

  19. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process.

    Science.gov (United States)

    Zhong, Li; Zhang, Yifei; Zhang, Yi

    2009-12-30

    A mild hydro-chemical process to extract Al(2)O(3) in red mud to produce sodium aluminate hydrate was investigated, and the optimum conditions of Al(2)O(3) extraction were verified by experiments as leaching in 45% NaOH solution with CaO-to-red mud mass ratio of 0.25 and liquid-to-solid ratio of 0.9, under 0.8 MPa at 200 degrees C for 3.5h. Subsequent process of extracting Na(2)O from the residue of Al(2)O(3) extraction was carried out in 7% NaOH solution with liquid-to-solid ratio of 3.8 under 0.9 MPa at 170 degrees C for 2h. Overall, 87.8% of Al(2)O(3) and 96.4% of Na(2)O were extracted from red mud. The final residues with less than 1% Na(2)O could be utilized as feedstock in construction materials. The chemical reactions taking place in both Al(2)O(3) and Na(2)O extractions from red mud are proposed.

  20. Synthesis and Microstructure of Doped Alumina Composite Membrane by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-hong; ZHANG Ying; WU Jian-feng; BAI Zhan-liang

    2003-01-01

    The supported membranes of Al2O3 and its modification membranes were prepared.Al2O3,Al2O3-SiO2-TiO2 and Al2O3-SiO2-TiO2-ZrO2 membranes were mamufatured by the slip-casting process using mixing boehmite,silicate,titania and zirconia sols under proper conditions,then the composite membrane was prepared.The structure and characteristics of the membrane were determined by XRD,SEM and AFM measurement.The conditions of preparation of the membrane are discussed.The thickness of the layer is about 1-2μm,the diameter of an average pore is 200-300nm and has a narrow pore distribution without crack forming.By changing the ratios of Al∶Si∶Ti∶Zr(mol),variations of surface pore size of Al2O3-SiO2-TiO2-ZrO2 membrane can be gained.

  1. Tribological properties of nanoscale alumina-zirconia composites

    NARCIS (Netherlands)

    Kerkwijk, B.; Winnubst, A.J.A.; Verweij, H.; Mulder, E.J.; Metselaar, H.S.C.; Schipper, D.J.

    1999-01-01

    The tribological properties of zirconia (Y-TZP), alumina and their composites, alumina dispersed in zirconia (ADZ) and zirconia-toughened alumina (ZTA), were investigated. These ceramics are made by colloidal processing methods such that well-defined, homogeneous microstructures with submicron grain

  2. Produção e caracterização de espumas de alumina pelo processo gelcasting sem controle atmosférico Production and characterization of alumina foams by the gelcasting process without atmospheric contro

    Directory of Open Access Journals (Sweden)

    E. de Sousa

    2009-06-01

    Full Text Available O processo de gelcasting, associado à aeração de suspensões cerâmicas, permite a produção de espumas cerâmicas com uma ampla faixa de porosidade (50-90vol.%. Uma das etapas críticas do processo é o enrijecimento da espuma, o qual se baseia na gelificação por meio da polimerização in situ de monômeros previamente adicionados à suspensão cerâmica. Sabidamente, tal reação é inibida pela presença de oxigênio, o que tornou usual o controle atmosférico durante a produção e gelificação da espuma. Neste trabalho, estudou-se a viabilidade de produzir espumas de alumina pelo processo de gelcasting sem controle atmosférico. Para a produção das espumas, dois diferentes agentes espumantes foram testados. As propriedades físicas e mecânicas das espumas cerâmicas, bem como a microestrutura, foram avaliadas e comparadas com resultados obtidos em condições idênticas, porém com controle atmosférico. Os resultados mostraram que ambos os processos proporcionam características semelhantes e com potencial de aplicação tecnológica.The gelcasting process with the aeration of ceramic suspensions allows the production of ceramic foams with a wide range of porosity (50-90vol.%.. One of the critical steps of the process is the setting of the foam, which is based on a gelling reaction by the in-situ polymerization of monomers previously added in the ceramic suspension. This reaction is inhibited by the presence of oxygen, which requires atmospheric control for the stabilization of the foam. In this work, the feasibility of producing alumina foams by the gelcasting process without atmospheric control was studied. For the foams production, two different foaming agents were tested. The physical and mechanical properties of ceramic foams, as well the microstructure, were evaluated and compared with those produced with the same foaming agents but with atmospheric control. The results obtained using the two procedures were similar and

  3. Effects of processing conditions and ambient environment on the microstructure and fracture strength of copper/niobium/copper interlayer joints for alumina

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Robert Alan [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Partial transient liquid phase (PTLP) bonding is a technique which can be used to join ceramics with metals and is used to form niobium-based joints for alumina. The principal advantage to PTLP bonding is that it enables refractory joints to be fabricated at temperatures below those typically required by solid state diffusion bonding. A thorough review of the important parameters (chemical compatibility, thermal expansion match, sufficient wettability of the liquid phase on the solid phases) in choosing a joining material for ceramics by the PTLP method is provided. As in conventional PTLP joining, the current study uses thin (=3 μm) copper layers sandwiched between the alumina (bulk) and niobium (127 μm). However, unlike the case of copper/nickel/copper obium is limited. Consequently, the copper is not entirely dissolved in the process, resulting in a two phase (copper-rich and niobium-rich phases) microstructure. Different processing conditions (temperature and applied load) result in different morphologies of the copper-rich and niobium-rich phases at the interface. These different microstructures exhibit distinct strength characteristics. Extended annealing of as-processed joints can influence the strengths differently depending on the ambient partial oxygen pressure at the annealing temperature. The focus of this work is to correlate processing conditions, microstructure, and resulting joint strength. Under optimum processing conditions (1400°C, 2.2 MPa), joints with strengths in excess of 200 MPa at 1200°C are fabricated.

  4. Calcium aluminate in alumina

    Science.gov (United States)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  5. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    Science.gov (United States)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  6. Alumina para utilização cerâmica, obtida a partir do rejeito de beneficiamento de caulim Alumina for ceramic manufacture using residues of kaolin processing

    Directory of Open Access Journals (Sweden)

    S. M. P. Flores

    1997-12-01

    Full Text Available O beneficiamento de caulim para cobertura de papel produz grandes volumes de rejeito, constituído essencialmente do argilomineral caulinita, usado neste trabalho como material de partida para síntese de alúmen de amônio, visando a obtenção de alumina livre de sódio e de baixa granulometria para utilização cerâmica. O método de síntese desenvolvido para obtenção do alúmen de amônio constitui-se das etapas: calcinação do rejeito, lixiviação sulfúrica da metacaulinita, seguida da neutralização/cristalização da solução de Al2(SO43 com NH4OH concentrado. No processo, são estudadas as variáveis: temperatura de calcinação (650 °C, 700 °C, 750 °C e tempo de calcinação do rejeito (30, 60 e 120 min, concentração de H2SO4, temperatura de lixiviação (70 °C, 80 °C e 90 °C sobre a cinética de lixiviação do alumínio. Estudou-se também o efeito do pH na cristalização do alúmen de amônio, apresentando-se as análises químicas, DRX, ATD, ATG e granulometria dos materiais utilizados e sintetizados.The kaolin processing for paper covering produces a great volume of residues formed primarily by kaolinite claymineral, here the starting material for the synthesis of ammonium alumen aiming to obtain free sodium alumina with fine grade for ceramic manufacturing. The synthesis process to obtain ammonium alumen consisted of the following procedures: residues calcination and sulphuric leaching of metakaolinite followed by neutralization/crystallisation of aluminum sulphate solution with ammonium hydroxide concentrated solution. The effect of calcination temperature (650 °C, 700 °C and 750 °C, calcination time of residues (30 min, 60 min and 120 min, sulphuric acid concentration as well as leaching temperature (70 °C, 80 °C and 90 °C on the kinetics of aluminum leaching were studied. The influence of pH on ammonium alumen crystallization was also studied. Data on chemical analysis, XRD, DTA, TGA and granulometry of

  7. Dissolution Behavior of Alumina-Based Inclusions in CaF2-Al2O3-CaO-MgO-SiO2 Slag Used for the Electroslag Metallurgy Process

    Directory of Open Access Journals (Sweden)

    Yanwu Dong

    2016-11-01

    Full Text Available Removal of non-metallic inclusions to CaF2-based slag is one of the most important functions of electroslag remelting. In this work, the dissolution behavior for alumina-based inclusions in CaF2-Al2O3-CaO-MgO-SiO2 slag has been investigated. Results indicate that the diffusion or permeability capacity of slag components into alumina particles is F−, Ca2+, Si4+, Mg2+, from strongest to weakest, for CaF2-Al2O3-CaO-MgO-SiO2 slag. Alumina inclusions react with F− in liquid slag at first and then react with CaO to form xCaO-yAl2O3 system. Subsequently, MgO substitutes for CaO to form a MgO-Al2O3 system layer surrounding the other product and reactant, and then enters the liquid slag. CaF2 can improve the dissolution capacity of slag to alumina inclusions. A complex region was formed between alumina-based particles and the slag, with different areas dominated by CaF2, CaO-Al2O3, CaO-SiO2 and MgO-Al2O3. The dissolution process of alumina particles in slag is different from the formation of compound inclusions originated from the Al-O deoxidization reaction.

  8. Alkalizing reactions streamline cellular metabolism in acidogenic microorganisms.

    Directory of Open Access Journals (Sweden)

    Stefania Arioli

    Full Text Available An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms.

  9. Alkalizing Reactions Streamline Cellular Metabolism in Acidogenic Microorganisms

    Science.gov (United States)

    Arioli, Stefania; Ragg, Enzio; Scaglioni, Leonardo; Fessas, Dimitrios; Signorelli, Marco; Karp, Matti; Daffonchio, Daniele; De Noni, Ivano; Mulas, Laura; Oggioni, Marco; Guglielmetti, Simone; Mora, Diego

    2010-01-01

    An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms. PMID:21152088

  10. Comprehensive analysis of plant rapid alkalization factor (RALF) genes.

    Science.gov (United States)

    Sharma, Arti; Hussain, Adil; Mun, Bong-Gyu; Imran, Qari Muhammad; Falak, Noreen; Lee, Sang-Uk; Kim, Jae Young; Hong, Jeum Kyu; Loake, Gary John; Ali, Asad; Yun, Byung-Wook

    2016-09-01

    Receptor mediated signal carriers play a critical role in the regulation of plant defense and development. Rapid alkalization factor (RALF) proteins potentially comprise important signaling components which may have a key role in plant biology. The RALF gene family contains large number of genes in several plant species, however, only a few RALF genes have been characterized to date. In this study, an extensive database search identified 39, 43, 34 and 18 RALF genes in Arabidopsis, rice, maize and soybean, respectively. These RALF genes were found to be highly conserved across the 4 plant species. A comprehensive analysis including the chromosomal location, gene structure, subcellular location, conserved motifs, protein structure, protein-ligand interaction and promoter analysis was performed. RALF genes from four plant species were divided into 7 groups based on phylogenetic analysis. In silico expression analysis of these genes, using microarray and EST data, revealed that these genes exhibit a variety of expression patterns. Furthermore, RALF genes showed distinct expression patterns of transcript accumulation in vivo following nitrosative and oxidative stresses in Arabidopsis. Predicted interaction between RALF and heme ligand also showed that RALF proteins may contribute towards transporting or scavenging oxygen moieties. This suggests a possible role for RALF genes during changes in cellular redox status. Collectively, our data provides a valuable resource to prime future research in the role of RALF genes in plant growth and development.

  11. Processing and Characterization of Multi-Walled Carbon Nanotubes Containing Alumina-Carbon Refractories Prepared by Nanocomposite Powder Technology

    Science.gov (United States)

    Liang, Feng; Li, Nan; Liu, Baikuan; He, Zhongyang

    2016-06-01

    Carbon nanotubes (CNTs) have often been used as additives to improve the properties of refractories containing carbon. However, it is very difficult to evenly distribute CNTs in the matrix. In order to solve this difficulty, an alumina/multi-walled carbon nanotube (MWCNT) (AM) composite powder in which MWCNTs had grown on the surfaces of Al2O3 particles was developed and used in alumina-carbon (Al2O3-C) refractories. The effects of the AM composite powders on the microstructure and properties of the Al2O3-C refractories were studied and compared with the commercial MWCNTs. The nanocomposite powders significantly improved the distribution uniformity of MWCNTs in the Al2O3-C matrix. The densification, fracture properties, thermal shock resistance, and slag corrosion resistance were enhanced due to the well-dispersed MWCNTs. On the contrary, no improvement of the densification, fracture properties, and thermal shock resistance of the refractories was achieved by addition of commercial MWCNTs due to the agglomeration of MWCNTs.

  12. Porous Alumina Films with Width-Controllable Alumina Stripes

    Directory of Open Access Journals (Sweden)

    Huang Shi-Ming

    2010-01-01

    Full Text Available Abstract Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface.

  13. Porous Alumina Films with Width-Controllable Alumina Stripes.

    Science.gov (United States)

    Huang, Kai; Huang, Shi-Ming; Pu, Lin; Shi, Yi; Wu, Zhi-Ming; Ji, Li; Kang, Jun-Yong

    2010-08-21

    Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface.

  14. Early warning research on salt-alkalization desertification in western Songnen Plain

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Desertification is an environmental issue in the world. The salt-alkalization desertification land area formed by both primary and secondary salt-alkalization has extended in a large scale, which has become a significant eco-environmental problem. Based on the characteristics of eco-environment and the situation ofdesertification in western Songnen plain, this paper reports the analyzes of its formation in background and cause. An early warning system on the salt-alkalization desertification is established and the GIS technology is used to abstract the information of desertification evaluation index. Supported by the integrated technology of the GIS and ANN, the orientation and quantitative result of desertification are gained, which is helpful to the eco-environment protection and resource development in western Songnen Plain.

  15. Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures.

    Science.gov (United States)

    Guerra, Nelson Pérez; Castro, Lorenzo Pastrana

    2003-10-01

    Synthesis of nisin as well as biomass production by Lactococcus lactis subsp. lactis CECT (Colección Española de Cultivos Tipo) 539 on both hydrolysed mussel-processing waste and whey medium were followed in three fixed volume fed-batch fermentations, with re-alkalization cycles. The two cultures on mussel-processing waste (MPW) were fed with a 240 g/l concentrated glucose and with a concentrated MPW (about 100 g of glucose/l). The culture on whey was fed with a mixture of concentrated whey (48 g of total sugars/l) and a 400 g/l concentrated lactose. The three cultures were mainly characterized with higher nisin titres [49.7, 109.6 and 124.7 bacteriocin activity units (AU)/ml respectively] compared with the batch process on de Man, Rogosa and Sharpe [(1960) J. Appl. Bacteriol. 23, 130-135] medium (49.6 AU/ml), MPW (9.5 AU/ml) and whey (22.5 AU/ml) [1 AU/ml is the amount of antibacterial compound needed to obtain 50% growth inhibition (LD50) compared with control tubes]. In the three fed-batch cultures a shift from homolactic to mixed-acid fermentation was observed, and other products (acetic acid, butane-2,3-diol or ethanol) in addition to lactic acid were detectable in the medium. However, their contributions to the total antibacterial activity of the post-incubates (the cell-free culture supernatant obtained at the end of the fermentation process) of L. lactis CECT 539 against Carnobacterium piscicola CECT 4020 were very low.

  16. Porous Aluminas: The bio template method for the synthesis of stable high surface area aluminas; Aluminas porosas: El metodo de bio-replica para la sintesis de aluminas estables de alta superficie especifica

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Guerrero, M.; Perez Maqueda, L.; Pena Castro, P.; Pascual Cosp, J.

    2013-07-01

    Development of porous alumina has been the objective of numerous studies in recent decades, due to the intrinsic properties of aluminium oxide, such as high melting point, low thermal conductivity, chemical inertness and corrosion resistance which, in addition to a high surface area and permeability, make aluminas being used for many different industrial and technical applications. The crystallographic and textural stability of alumina acquires significant importance in those processes involving high temperatures; however, most of the synthesis methods yield metastable oxides of little interest in high-temperature processes due to the transformation to alpha phase, with the consequent reduction in surface area. The present article reviews diverse procedures for obtaining porous alumina with high specific surface area, including methods and strategies for preparing high surface alpha-alumina. Within this framework, the paper analyzes the results obtained through bio replica of lignocellulose materials. This technology allows preparing aluminas with the complex structural hierarchy of the lignocellulose templates. (Author)

  17. High contrast laser marking of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Penide, J. [Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Quintero, F., E-mail: fquintero@uvigo.es [Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Riveiro, A. [Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Fernández, A. [Department of Engineering Design, University of Vigo, Escuela de Ingeniería Industrial, Campus Universitario, Vigo E-36310 (Spain); Val, J. del [Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Lusquiños, F.; Pou, J. [Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2015-05-01

    Highlights: • Laser marking of alumina using near infrared (NIR) lasers was experimentally analyzed. • Color change produced by NIR lasers is due to thermally induced oxygen vacancies. • Laser marking results obtained using NIR lasers and green laser are compared. • High contrast marks on alumina were achieved. - Abstract: Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  18. Study of the molybdenum retention in alumina; Estudio de la retencion de molibdeno en alumina

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Maria V.; Mondino, Angel V.; Manzini, Alberto [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza. Radioquimica y Quimica de las Radiaciones

    2002-07-01

    The Argentine National Atomic Energy Commission routinely produces {sup 99} Mo by fission of highly enriched uranium contained in targets irradiated in RA-3 reactor. The current process begins with the dissolution of the irradiated target in a basic media, considering the possibility of changing the targets, it could be convenient to dissolve them in acid media. The use of alumina as a first separation step in acid dissolution processes is already known although it is necessary to determine both the type of alumina to be used and the separation conditions. The study of molybdenum retention in alumina was performed at laboratory scale, using Mo-99 as radiotracer. Different kinds of alumina were tried, varying charge solution acidity. Influence of uranium concentration in the loading solution on molybdenum retention was also studied. (author)

  19. Effect of alumina short fiber and air-cooling processing on solidification microstructure and tensile properties of Al2O3/Al-15Si composites

    Institute of Scientific and Technical Information of China (English)

    张学习; 王德尊; 姚忠凯

    2002-01-01

    The effect of microstructure variation by addition of alumina short fiber and optimization of tensile properties by air-cooling processing in Al2O3/Al-15Si composites were studied. The results show that in Al-15Si alloy matrix composites with 14% and 30%(volume fraction) fiber, the primary silicon is hardly refined, but the eutectic silicon is effectively refined and granulated. Granulation of some eutectic silicon mainly happens in fiber segregation areas. Refining and granulation of the eutectic silicon are related to the physical constraint arising from the fiber. After the 30%Al2O3/Al-15Si composite was remelted and air-cooled, the number of the eutectic silicon on the surface of the fiber increases, which results in the improvement of fiber/matrix interface and tensile properties for the as-cast composite. Air-cooling processing may be reliable for the optimization of the microstructure and properties of fiber reinforced hypereutectic Al-15Si alloy composites.

  20. Novel self assembly behavior for γ-alumina nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Osama Saber

    2012-01-01

    In this study,self assembly behavior was induced for γ-alumina nanoparticles by adsorption of dimethyl disulfide.Following this trend,we have developed a chemical process to obtain γ-alumina in the nano scale.Scanning electron microscopy images of the prepared γ-alumina showed big and strong agglomeration of the nanoparticles indicating that these nanoparticles have strong surface forces.Transmission electron microscopy images confirmed that the γ-alumina nanoparticles 3-7 nm in size were converted to uniform spherical shape in the size range of 1-2 mm after shaking with dimethyl disulfide in the presence of n-hexane at room temperature.This phenomenon did not appear in the case of alumina in the micro scale.The surface properties of the prepared γ-alumina in the nano scale were characterized and compared with the γ-alumina in the micro scale by using low temperature nitrogen adsorption-desorption system,indicating that the specific surface area of the prepared γ-alumina nanoparticles is larger than that of the γ-alumina in the micro scale.Furthermore,micro-and meso-pores were observed for the γ-alumina nanoparticles while only mesoporous structure was detected for the γ-alumina in the micro scale.These experimental results suggested that the self assembly behavior of the γ-alumina nanoparticles may be due to the selective adsorption of dimethyl disulfide in the micropores of these nanoparticles to act as bridge linking the nanoparticles.

  1. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    Science.gov (United States)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-01

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  2. Alkalization of irrigated soils suitable for orchard growing in steppe Crimea and prospects for their use

    Science.gov (United States)

    Klimenko, O. E.

    2016-10-01

    Data of large-scale soil surveys performed by the Ukrgiprosad Institute (Ukrainian Institute for Orchard Growing) in 1997-2013 on irrigated soils of steppe Crimea reserved for orchards on the area of about 3000 ha are discussed. It is shown that all the studied soils are subjected to alkalization with the presence of soda and with an increase in concentrations of sodium and magnesium bicarbonates up to the values toxic for fruit crops. The concentrations and occurrence frequencies of alkaline salts depend on the soil type, the presence of solonetzic features, the amount of carbonates, the particular depth in the soil profile, the subsoiling, and other factors. Within the studied area, some soils are unsuitable or partly suitable for orchard growing. To improve the soil conditions for orchard growing in the areas subjected to alkalization, alkaline salts should be neutralized to nontoxic level, and the soil alkalinity should be reduced using chemical reclamation methods.

  3. Gelcasting polycrystalline alumina

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  4. Microwave fast sintering of submicrometer alumina

    Directory of Open Access Journals (Sweden)

    Romualdo Rodrigues Menezes

    2010-09-01

    Full Text Available Commercially available alumina powder with high-purity submicrometer particle size and narrow particle size distribution was fully densified by a microwave hybrid fast firing technique. The alumina compacts were surrounded by susceptor material, which helped the heating of the samples, and sintered in a microwave oven at a frequency of 2.45 GHz and a power level of 1.8 kW. The sintered samples reached densities of 99% in sintering cycles of 30 to 40 minutes, a much shorter time than conventional sintering processes. The sintered samples showed uniform microstructures with powder particle size/average grain size rations higher than 1:2.

  5. The Effect of Thermomechanical Processing Parameters on the Ambient Behavior of 10% Volume 6061 AL-Alumina

    Science.gov (United States)

    1992-03-01

    of particulate metal-matrix composites", Materials Science Technology, pp. 1160, Vol. 6, November 1990. 20. Askeland , D. R., The Science of Envineering...processing of particulate metal-matrix composites", Materials Science Technology, Vol. 6, pp. 1157-1166, November 1990. 37. Askeland , Donald R., The...pp. 1160, November 1990. 40. Askeland , Donald R., The Science of Engineering Materials, 2nd Edition, p. 571, PWS Kent Publishers, 1989. 41

  6. Method for nanomodulation of metallic thin films following the replica-antireplica process based on porous alumina membranes

    Science.gov (United States)

    Palma, J. L.; Denardin, J. C.; Escrig, J.

    2017-03-01

    In this paper we have introduced a method for modulation of metallic thin films by sputtering of metals on anodized aluminum templates. Using a high deposition rate during deposition of the non-magnetic metal on the Al pattern, we have separated the two metallic surfaces and, thus, imprinted a pattern of nanohills on a non-magnetic metallic film, such as Au, Ag or Cu. The morphology of the nanostructured metallic films was determined by scanning electron microscopy. Thus, we have confirmed that the ordering degree of the Al template remained after the replication process. Additionally, and as an example of use of these films, we have prepared Supermalloy thin films deposited by sputtering onto these nanostructured non-magnetic metals. The room temperature magnetic behavior of these thin films is also studied. Interestingly, we have found that when the external magnetic field is applied out of plane of the substrate, the coercivity increases linearly as we increase the radius of the nanohills. These soft magnetic films can open new opportunities for magnetic field sensor applications.

  7. Design and fabrication of alumina micro reciprocating engine

    Institute of Scientific and Technical Information of China (English)

    JIN Peng; GAO Yu-long; LIU Nan; JIANG Kylie

    2008-01-01

    Microengines are regarded as the potential replacements for batteries. Aimed at the unsatisfactory thermal property of silicon used in the combustion chambers, ceramics are chosen as the construction material in this paper. The fabrication process where alumina has been chosen as the microengine material is discussed. Vigorous FEA has been carried out, and it is found that the material satisfies the stress and deformation require-ments of the design. Then the alumina fabrication process is described. Soft reusable polydimethylsiloxane (PDMS) moulds are produced from SU-8 resist masters, and alumina microengine parts are produced using the PDMS moulds. Images of the ceramic components show that the fabrication satisfies the design requirements.

  8. Effect of La2O3 on Microstructure and Transmittance of Transparent Alumina Ceramics

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Optically transparent alumina ceramics were fabricated by conventional process and sintered without pressure in H2 atmosphere. The results indicate that relative densities of alumina specimens increase to theoretical densities (T.D.) with increasing content of La2O3. With increasing holding time during sintering, much less pores and larger grains were found in the sintered alumina samples. Higher transmittance was achieved in alumina codoped with MgO and La2O3 as compared with that doped with MgO only. The total-transmittance of alumina sample is up to 86% at a wavelength range of 300~800 nm.

  9. Recovery of alumina from circulating fluidized bed combustion Al-rich fly ash using mild hydrochemical process%温和水热法从循环流化床粉煤灰中回收氧化铝

    Institute of Scientific and Technical Information of China (English)

    杨权成; 马淑花; 郑诗礼; 张然

    2014-01-01

    开发一种温和水热法从电厂排放的粉煤灰中提取氧化铝。当处理氧化铝和二氧化硅的质量比(A/S)为0.78、氧化铝含量为32.43%的粉煤灰时,在NaOH浓度45%、初始苛性比(铝酸钠溶液中氧化钠和氧化铝的摩尔比)25、氧化钙和粉煤灰中二氧化硅的摩尔比1.1、液固体积质量比9、反应温度280°C、停留时间1 h的条件下,氧化铝的提取率可达到92.31%。此外,通过结构和化学分析,对氧化铝的浸出机理进行了研究。结果表明,经过碱浸后,含硅的主要物相为理论铝硅比为0的NaCaHSiO4。%To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 °C, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero.

  10. Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes

    Science.gov (United States)

    Fang, Jinghua; Levchenko, Igor; (Ken Ostrikov, Kostya

    2014-08-01

    A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage.

  11. Intestinal alkalization as a possible preventive mechanism in irinotecan (CPT-11)-induced diarrhea.

    Science.gov (United States)

    Ikegami, Tadashi; Ha, Linan; Arimori, Kazuhiko; Latham, Patricia; Kobayashi, Kunihiko; Ceryak, Susan; Matsuzaki, Yasushi; Bouscarel, Bernard

    2002-01-01

    The therapeutic efficacy of irinotecan (CPT-11), a DNA topoisomerase inhibitor, is often limited by the induction of severe late-onset diarrhea. This prodrug and its active metabolite, 7-ethyl-10-hydroxy-camptothecin (SN-38), have a labile alpha-hydroxy-lactone ring that undergoes pH-dependent reversible hydrolysis. At physiological pH and higher, equilibrium favors the less toxic carboxylate form, whereas at acidic pH, the more potent lactone form is favored. We have reported previously that the initial uptake rate of CPT-11 and SN-38 by intestinal cells was significantly different between the respective lactone and carboxylate form. Results from the present study in HT-29 cells further demonstrate the correlation between the CPT-11/SN-38 initial uptake rate and the induced toxicity, cell cycle alteration, apoptosis, and colony-forming efficiency. The exposure of HT-29 cells to SN-38 for a limited period of time (carboxylate resulted in a reduced cellular toxicity, we postulated that the CPT-11-induced diarrhea was preventable by influencing the equilibrium toward the carboxylate form and, thus, reducing its intestinal uptake. In the golden Syrian hamster model, p.o. sodium bicarbonate supplementation (5 mg/ml in drinking water) led to alkalization of the intestinal contents. In addition, this alkalization resulted in the reduction of the histopathological damage to the mucosa of the small and large intestine, as well as a 20% reduction of the intestinal SN-38 lactone concentration of animals receiving CPT-11 (20-50 mg/kg x 7 days). Taken together, these results from in vitro and in vivo studies support intestinal alkalization by sodium bicarbonate supplementation as a preventive mechanism against CPT-11-induced diarrhea. In addition, this provides a strong rationale for the usage of this measure as an adjunct to CPT-11 treatment.

  12. Dissolution Kinetics of Alumina Calcine

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  13. Energy consumption analysis for evaporation process in alumina refinery%氧化铝生产蒸发工序能耗分析

    Institute of Scientific and Technical Information of China (English)

    彭小奇; 伍雁鹏; 李时民; 张建智; 宋彦坡

    2013-01-01

    为降低氧化铝生产蒸发工序的能耗,对测试结果误差进行修正;应用热分析和(煳)分析方法研究四效蒸发器-三级闪蒸器系统的用能状况.研究结果表明:蒸发系统的热效率仅为15.39%,其中Ⅳ效蒸发器的热效率仅为7.23%,其他单元热效率较高;Ⅳ效蒸发器的热损失主要是外排的冷凝水和乏汽带走大量的热所致;蒸发系统的(炯)效率仅为19.51%,其中各效蒸发器的(炯)效率均较低而(炯)损失率均较高,是提高系统(炯)效率的关键因素,因此,应加强乏汽和冷凝水的余热回收利用,并优化或改进蒸发器的操作参数和预热器使用方式.%In order to reduce energy consumption of evaporation process in alumina refinery, the errors of tested results were corrected, and thermal and exergy analysis were applied to study the four-effect evaporators and three-stage flashes evaporation system. The results show that the thermal efficiency of the evaporation system is only 15.39%, and the thermal efficiencies of other units are high in thermal efficiencies except for effect IV, which is only 7.23%. The heat losses in the evaporators of effect IV are large, which are mainly in the form of condensed water and exhausted vapor output. The exergy efficiency of the evaporation system is only 19.51%. The exergy utilizing ratios of the evaporators are low and losing ratios are high, respectively, which are the key factors for the improvement of the exergy efficiency of the evaporation system, thus waste heat recovery and utilization of condensed water and exhausted vapor should be enhanced, and the operating parameters in evaporators and usage ways about preheaters should be optimized.

  14. Direct spray pyrolysis of aluminum chloride solution for alumina preparation

    Institute of Scientific and Technical Information of China (English)

    吕国志; 张廷安; 王龙; 马思达; 豆志河; 刘燕

    2014-01-01

    The effects of pyrolysis mode and pyrolysis parameters on Cl content in alumina were investigated, and the alumina products were characterized by XRD, SEM and ASAP. The experimental results indicate that the spray pyrolysis efficiency is higher than that of static pyrolysis process, and the reaction and evaporation process lead to a multi-plot state of the alumina products by spray pyrolysis. Aluminum phase starts to transform intoγ-Al2O3 at spray pyrolysis temperature of 600 °C, which is about 200 °C lower than that of static pyrolysis process. The primary particle size of γ-Al2O3 product is 27.62 nm, and Cl content in alumina products is 0.38%at 800 °C for 20 min.

  15. Characterization of Glasses in One Type of Alumina Rich Fly Ash by Chemical Digestion Methods: Implications for Alumina Extraction

    Directory of Open Access Journals (Sweden)

    Lijun Zhao

    2016-01-01

    Full Text Available In recent years, one type of alumina rich fly ash (ARFA with about 50 wt% of alumina has been extensively investigated for alumina extraction in China. Due to the silica in ARFA, alumina extraction would have to generate a huge amount of solid waste. There is a growing interest in the glasses in ARFA, because they are composed mainly of silica and could be removed prior to alumina extraction. In this work, the glasses in ARFA have been investigated by chemical methods, that is, acid and base digestions. The chemical compositions have been measured by XRF for ARFA from the digestion processes. The K2O standard, XRD, and FTIR spectroscopies were successfully used to define the digestions processes, and size analysis and SEM-EDX provided rich information on particle transformations. As a result, acid and base digestion methods were found to produce very similar results for the glasses in ARFA. The K2O standard was attributed to the formation of glasses by illites, and TiO2 and Fe2O3 were proposed to originate from ilmenite in alumina rich coals (ARC. Some implications of the results were also discussed for the alumina extraction from ARFA.

  16. Corrosion of Refractory Alumina-Graphite and Alumina-Graphite-Zirconia in Slag Containing Titania

    Institute of Scientific and Technical Information of China (English)

    XU Yuan; LIU Qing-cai; BAI Chen-guang; CHEN Deng-fu; Joseph W Newkirk

    2004-01-01

    The corrosion of refractory alumina-graphite and alumina-graphite-zirconia in the slag containing titania was studied by immersion tests (quasi-static and dynamic tests). Combining direct observation with microscopic investigations, a mechanism for corrosion was proposed based on the oxidation of graphite and the dissolution of refractory components. During the corrosion process, there are some special phenomena and laws that can be explained by the relation between the corrosion rate and the TiO2 mass percent, the rotational refractory velocity and the morphology of the deteriorated layer.

  17. Efeito do processamento em misturas de alumina/ligantes orgânicos usadas na moldagem por injeção em baixa pressão Effect of processing variables in alumina/organic binders mixtures used in low-pressure injection molding

    Directory of Open Access Journals (Sweden)

    P . A. Ourique

    2013-03-01

    Full Text Available A moldagem por injeção em baixa pressão (MIBP é uma técnica que já vem sendo empregada na produção de peças cerâmicas com formas e geometrias complexas. A homogeneidade da mistura de ligantes orgânicos e pós cerâmicos é um fator determinante que deve ser controlado para minimizar a formação de imperfeições no processamento de feedstocks para MIBP. Defeitos típicos de processamento por MIBP, como bolhas de ar e aglomerados, geram gradientes de densidade nas misturas que, após conformação, possuem poucas possibilidades de remoção. Essas imperfeições comprometem o desempenho dos produtos obtidos por essa técnica. Este trabalho está focado na avaliação dessas heterogeneidades e como elas podem ser correlacionadas com a variação da densidade aparente e com o comportamento reológico dessas misturas. Para tanto, aluminas submicrométricas, como recebida e desaglomerada, foram adicionadas a uma mistura fundida de ligantes a base de parafinas, ceras e aditivos e processada em dois tipos diferentes de misturadores, com e sem o auxílio de vácuo. Foi observada a presença de aglomerados existentes na alumina como recebida, possivelmente gerados durante a etapa de calcinação. Também foi observado que o tipo de misturador e a aplicação ou não de vácuo durante a etapa final do processamento têm grande influência no tempo de mistura necessário para reduzir a viscosidade do feedstock para a injeção.The low-pressure injection molding (LPIM is a technique already being used in the production of ceramic parts with complex shapes and geometries. The homogeneity of the mixture of organic binder and ceramic powder is a determining factor which must be controlled to minimize defects formation while feedstock processing to LPIM. Typical defects of LPIM processing, such as air bubbles and agglomerates, generate density gradients in the mixtures, which, after shaping, have little possibility of removal. These imperfections

  18. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Chuanping Li

    2004-12-19

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the {sup 17}O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  19. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  20. Dynamic yield and tensile strengths of spark plasma sintered alumina

    Science.gov (United States)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.

    2014-05-01

    Fully dense alumina samples with 0.6 μm grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to a velocity of about 1 km/s. These tests were aimed to study the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with propagation distance. In the second type of test the samples of ~3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s. These tests were aimed to study the dynamic tensile (spall) strength of the alumina. The data on tensile fracture of the alumina demonstrate a monotonic decline of the spall strength with the amplitude of the loading stress pulse. The data on the decay of the elastic precursor wave allows for determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of shock-induced inelastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation.

  1. Adsorption of itaconic acid from aqueous solutions onto alumina

    Directory of Open Access Journals (Sweden)

    JELENA J. GULICOVSKI

    2008-08-01

    Full Text Available Itaconic acid, IA (C5H6O4, was investigated as a potential flocculant for the aqueous processing of alumina powders. The adsorption of IA, as a function of its concentration and pH value of the solution, onto the alumina surface was studied by the solution depletion method. The stability of the suspensions in the presence of itaconic acid was evaluated in light of the surface charge of the alumina powder used, the degree of dissociation of IA, as well as the sedimentation behavior and rheology of the suspensions. It was found that the adsorption process is extremely pH dependent; the maximum adsorption of IA onto alumina surface occurring at a pH close to the value of the first IA dissociation constant, pKa1. Also, IA does not influence the value of the point of zero charge of alumina. It was shown that IA represents an efficient flocculant for concentrated acidic alumina suspensions.

  2. Alumina-magnesia Refractory Castables

    Institute of Scientific and Technical Information of China (English)

    Wang Jing

    2010-01-01

    @@ 1 Scope This standard specifies the classification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of alumina-magnesia refractory castables.

  3. On the possibility of producing alumina ceramic with a slight electrical conductivity

    CERN Document Server

    Caspers, Fritz

    1989-01-01

    Antistatic alumina ceramic is desirable for certain particle accelerator applications. In general, highly insulating surface close to a charged particle beam must be avoided in order to prevent the formation of ion pockets and other unwanted electrical effects. For the AA vacuum chamber (UHV), an antistatic ferrite has been produced and successfully installed. The fabrication of antistatic alumina might be possible in a similar way. By using certain metal oxides in the cement, which holds the alumina particles together, a slight conductivity could be obtained after the firing and sintering process, without deteriorating the mechanical and outgassing properties of the alumina compound.

  4. Substrate-induced coagulation (SIC) of nano-disperse alumina in non-aqueous media: The dispersibility and stability of alumina in N-methyl-2-pyrrolidinone.

    Science.gov (United States)

    Basch, Angelika; Strnad, Simona

    2011-01-20

    This work investigated colloidal properties such as the zeta-potential, the electrophoretic mobilities and the wetting behaviour of alumina dispersed in non-aqueous media. Non-aqueous dispersions of alumina were prepared in the solvent N-methyl-2-pyrrolidinone (NMP). The wetting behaviour of alumina in NMP was characterized by the powder contact angle method and the Wilhemy plate method. The behaviour of the dispersion should provide information for the development of a substrate-induced coagulation (SIC) coating process of nano-sized alumina in non-aqeous media. SIC is a dip-coating process that coats pretreated but chemically different surfaces with nano-sized particles. It was found that the anionic surfactant dioctyl sulfosuccinate (AOT) had no stabilizing effect on alumina dispersed in NMP.

  5. Tribology of alumina-graphite composites

    Science.gov (United States)

    Yu, Chih-Yuan

    Alumina-graphite composites, which combine high wear resistance and self-lubricity, are a potential and promising candidate for advanced tribological applications. The processing, mechanical properties and tribology of alumina-graphite composites are discussed. Full density is difficult to achieve by a pressureless sintering route. Porosity of the composites increases with graphite content which causes the strength, modulus of elasticity, and hardness of the composites to decrease. The increased porosity does cause the fracture toughness to slightly increases. Tribology of alumina-graphite composites was studied with a pin-on-disk tribometer with emphasis on the following aspects: the graphite content in both pin and disk, the graphite flake size and the orientation of the graphite flakes. Scan electronic microscopy (SEM) and X-ray diffraction are utilized to examine and characterize the wear debris and the worn surface. Results confirmed that it is necessary to optimize the structure and the supply of lubricant to improve the tribological behavior and that the arrangements of sliding couples also affect the tribology of self-lubricated ceramic composites. Continuous measurements of the friction coefficients were collected at high frequency in an attempt to correlate the tribology of alumina-graphite composites to vibrations introduced by friction. While these measurements indicate that the time frequency behavior of tribology is an important area of study, conclusions regarding the frequency response of different sliding couples could not be definitively stated. Finally, a new concept connecting instantaneous wear coefficient and instantaneous contact stress is proposed for prediction of wear behavior of brittle materials.

  6. A geochemical comparison of alkalic lavas in the Trans-Mexican Volcanic Belt, peninsular Baja California and intraplate volcanoes in the eastern Pacific

    Science.gov (United States)

    Tian, L.; Castillo, P. R.

    2011-12-01

    The Trans-Mexican Volcanic Belt (TMVB) is a continental volcanic arc built along the southern edge of the North American plate. The volcanic rocks along TMVB are compositionally diverse and the origin of its alkalic lavas with ocean island basalt (OIB)-like composition is highly controversial. Alkalic lavas from four regions in the western, central, and eastern TMVB [e.g., Verma and Hasenaka, Geochem. J., 58, 2004; Petrone et al., Geol. S. Am. S., 402, 2006; Orozco-Esquivel et al., Geol. Soc. Amer. Bull., 93, 2007] are compared with similar OIB-like alkalic lavas from peninsular Baja California [e.g., Storey et al., Terra Nova, 1, 1989; Castillo, Geol. Soc. Amer. Bull., 120, 2008] and intraplate volcanoes in the eastern Pacific [Tian et al., Geochem. Geophys. Geosyst., 12, 2011] in order to ascertain their geochemical similarities and differences and to constrain the compositions of their respective magma sources. A few of the alkalic lavas from TMVB have very similar trace element and isotopic compositions as the OIB-like alkalic lavas from peninsular Baja California and intraplate volcanoes in the eastern Pacific. Majority of the TMVB alkalic lavas, however, are compositionally more heterogeneous, similar to the less-alkalic Nb-enriched basalts in peninsular Baja California representing OIB-like alkalic lavas that had been contaminated by other mantle components and/or crustal materials. Thus, data seem to indicate that all the OIB-like alkalic lavas can be traced to a similar source, the compositionally heterogeneous Pacific asthenosphere.

  7. 醇-水基料浆凝胶注模成形制备氧化铝多孔陶瓷%Porous alumina ceramics prepared by alcohol-water based gel casting process

    Institute of Scientific and Technical Information of China (English)

    彭俊; 李国栋; 熊翔; 刘靖忠; 霍凌霞

    2014-01-01

    以氧化铝粉为原料,乙醇-水为溶剂,采用凝胶注模成形工艺制备氧化铝多孔陶瓷,并研究溶剂中醇、水体积比对多孔陶瓷坯体和烧结体的收缩率、孔隙度、微观形貌及性能的影响。结果表明:多孔陶瓷的孔隙由溶剂挥发形成的“溶剂孔”和高聚物分解形成的“高聚物孔”两部分组成,孔隙呈三维贯通孔结构。当醇、水体积比由3:7增加至9:1时,制品线收缩率与抗弯强度逐渐减小,孔隙度和气体渗透通量逐渐增加。当醇、水体积比为7:3时,所制备的陶瓷具有优良的综合性能:孔隙率为76.91%,孔隙分布均匀,抗弯强度为13.08 MPa,气体渗透通量达到135.6 m3/(m2·h·kPa)。%Using high purity alumina powder as raw material, alcohol-water mixture as solvent, porous alumina ceramics were fabricated by alcohol-water based gel casting process. The effect of alcohol-water solvent ratio on the shrinking percentage, porosity, microstructure, properties of porous alumina green body and sintered ceramics were investigated. Both evaporation of solvent and decomposition of polymer contribute to the porous microstructure of the as-prepared green body and sintered ceramics, which features three dimensional inter-connected pores. With increasing the alcohol-water ratio from 3:7 to 9:1, the line shrinking percentage and flexural strength decrease, porosity and air permeability increase. When alcohol-water ratio is 7:3, optimal comprehensive performances, including uniformly distributed pores with porosity of 76.91%, flexural strength of 13.08 MPa and air permeability of 135.6 m3/(m2hkPa), can be obtained.

  8. Removal of hazardous anions from aqueous solutions by La(III)- and Y(III)-impregnated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Wasay, Syed Abdul; Tokunaga, Shuzo [National Inst. of Materials and Chemical Research, Ibaraka (Japan); Park, S.W. [Keimyung Univ., Daegu City (Korea, Democratic People`s Republic of)

    1996-06-01

    New adsorbents, La(III)- and Y(III)-impregnated alumina, were prepared for the removal of hazardous anions from aqueous solutions. A commercially available alumina was impregnated with La(III) or Y(III) ions by the adsorption process. The change in the surface charge due to the impregnation was measured by acid/base titration. The adsorption rate and the capacity of the alumina for La(III) and Y(III) ions were determined. The adsorption characteristics of the La(III)- and Y(III)-impregnated alumina and the original alumina for fluoride, phosphate, arsenate and selenite ions were analyzed under various conditions. The pH effect, dose effect, and kinetics were studied. The removal selectivity by the impregnated alumina was in the order fluoride > phosphate > arsenate > selenite. The impregnated alumina has been successfully applied for the removal of hazardous anions from synthetic and high-tech industrial wastewaters.

  9. Microstructural evolution of alumina-zirconia nanocomposites; Evolucao microestrutural de nanocompositos alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Pallone, E.M.J.A., E-mail: christianelago@yahoo.com.br [Universidade de Sao Paulo (USP), Pirassununga, Sao Paulo, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos

    2012-07-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  10. Study of preparation and surface morphology of self-ordered nanoporous alumina; Estudo da preparacao e da morfologia de superficie de alumina nanoporosa auto-organizada

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com, E-mail: MG.mdm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG. (Brazil); Silva, Ronald Arreguy, E-mail: arregsilva@yahoo.com.br [Centro Universitario de Belo Horizonte (UniBH), Belo Horizonte, MG (Brazil)

    2013-07-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  11. Study on Filtration Performance of Silica/Alumina Slurry in the Process of Recycling Mother Liquor of NaY Zeolite

    Institute of Scientific and Technical Information of China (English)

    Guo Yaoqing; Ma Yuelong; Deng Jinghui

    2004-01-01

    In order to recover the SiO2 contained in the mother liquor in the course of NaY zeolite synthesis to minimize pollution, the influence of various preparation conditions on the filtering velocity of gel slurry was studied using the SiO2/Al2O3 gel recovered from the NaY mother liquor in the laboratory. The results of study had shown that at a SiO2/A12O3 ratio in the feed equating to 9:1 the SiO2 recovery rate and Al2O3utilization rate were high with a faster flow velocity of the filtrate. The pH value of the system had great impact on the flow velocity of filtrate. Between the two methods for regulating the pH value, the one for formation of silica/alumina gel slurry by addition of sulfuric acid prior to adding aluminium sulfate in the solution could secure a faster filtration velocity. The filtration velocity was decreased in tandem with increasing SiO2 concentration in mother liquor, meanwhile an increase in dry filter cake yield.

  12. Nanotube Arrays in Porous Anodic Alumina Membranes

    Institute of Scientific and Technical Information of China (English)

    Liang LI; Naoto KOSHIZAKI; Guanghai LI

    2008-01-01

    This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metals, semiconductors, organics, biomoleculars, and heterojunctions as typical examples, attention will be focused on the recently established methods to fabricate nanotubes in AAM, including electrochemical deposition, surface sol-gel, modified chemical vapor deposition, atomic layer deposition, and layer-by-layer growth. Every method is demonstrated by one or two reported results. Finally, this review is concluded with some perspectives on the research directions and focuses on the AAM-based nanotubes fields.

  13. The mechanical reliability of alumina scales and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, K.B.; Pruebner, K.; Tortorelli, P.F. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    The mechanical integrity of oxide scales ultimately determines their ability to protect materials from corrosion and other environmental effects arising from deleterious reactions with gases and condensable products. The microstructure and mechanical behavior of alumina products thermally grown or deposited on Fe-28 at.% Al intermetallic alloys are being characterized in order to develop the knowledge and means to control the mechanical reliability of alumina scales by microstructural manipulation through design and processing. Mechanical characterization involved gravimetric data from cyclic oxidation experiments, in-situ observation of oxidized specimens undergoing flexural loading in a scanning electron microscope, and measurements of hardness, elastic modulus and cracking resistance by nanoindentation. Values of cracking thresholds for Al{sub 2}O{sub 3} scales were consistent with other measurements for surface and bulk alumina. The oxidation behavior of Fe{sub 3}Al alloys coated with a thin (0.5 - 1 {mu}m) alumina film deposited by plasma synthesis has been studied. During exposure in the oxidizing environment, new oxide was formed between the coating and the substrate. The presence of the deposited amorphous oxide inhibited the subsequent thermal oxidation of the metal. Because the thermally grown alumina forms under the deposit, the adherence of the coating is controlled by the strength of the metal/oxide interface that develops during oxidation.

  14. Transport properties of alumina nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kau-Fui Vincent; Kurma, Tarun [Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33124 (United States)], E-mail: kwong@miami.edu

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m{sup -1} K{sup -1} was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were

  15. Transport properties of alumina nanofluids.

    Science.gov (United States)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  16. A Review of Alumina Feeding and Dissolution Factors in Aluminum Reduction Cells

    Science.gov (United States)

    Lavoie, Pascal; Taylor, Mark P.; Metson, James B.

    2016-08-01

    Modern aluminum reduction cells use point feeding technology to replenish alumina as it is consumed by the electrolytic process. The dissolution of alumina has become increasingly difficult to control as the cell sizes and electrolysis intensity have increased. The mass of alumina added per unit time is now much higher than a decade ago, and must take place within a smaller electrolyte mixing volume. In order to replenish the alumina concentration evenly, the alumina needs to be delivered, dispersed, dissolved, and distributed throughout the reduction cell. The dissolution itself follows a 4-step process that can be limited by a multitude of factors. The status of the research on each of these factors is reviewed in the present paper. Although research in laboratory cells has been conducted many times, and the impact of many factors on dissolution has been measured, published observations of alumina feeding on industrial cells are very sparse, especially regarding the dissolution dynamics in the space-time domain and the impact of the feeder hole condition. The present paper therefore presents a qualitative model of the factors governing alumina dissolution in industrial cells and offers the hypothesis that maintenance of the feeder hole condition is central to ensuring alumina dissolution and prevention of sludging.

  17. Anisotropic shrinkage characteristics of tape cast alumina

    Science.gov (United States)

    Patwardhan, Jaideep Suresh

    Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and

  18. Mechanical properties of tricalcium phosphate-alumina composites

    Science.gov (United States)

    Sakka, S.; Ben Ayed, F.; Bouaziz, J.

    2012-02-01

    Tricalcium phosphate and alumina powder were mixed in order to elaborate biphasic ceramics composites. This study deals to produce bioceramics composites sintered at various temperatures for differents times. The characterization of samples, before and after the sintering process was investigated, using X-Ray diffraction, scanning electronic microscopy, 31P and 27Al nuclear magnetic resonance and differential thermal analysis. Mechanical properties of biphasic composites were studied using Brazilian test. The tricalcium phosphate - 75 wt% alumina composites mechanical resistance increased with sintered temperature. The mechanical resistance reach it's optimum value (8.6 MPa) at 1550°C for two hours.

  19. Factors contributing to the breakdown of sodium beta-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Buechele, A.C.

    1982-05-01

    Clarification of the breakdown process occurring during charge transfer in sodium beta alumina solid electrolytes was derived from: (1) studying the effects of molten sodium contact at 350/sup 0/C on single crystal sodium beta alumina and polycrystalline sodium beta alumina; (2) determination of critical current density by monitoring acoustic emissions accompanying crack growth in sodium/sodium beta alumina/sodium cells subjected to linear current ramping at 1 mA cm/sup -2/ sec/sup -1/; (3) failure analysis conducted on cycled electrolytes, some from commercial sodium/sulfur cells, which had been subjected to up to 703 Ahr cm/sup -2/ of charge transfer. Gray coloration developing in beta aluminas in contact with molten sodium was found to be a consequence of formation, through reduction by sodium, of oxygen vacancies charge compensated by electrons. Electronic conductivity of the electrolyte increases as a result. No second phase formation was detected. Colored electrolytes from sodium/sulfur cells show evidence of a newly recognized degradation mechanism in which fracture occurs when sodium is reduced and deposited internally under pressure as metal in regions where an electronic conductivity gradient exists. Heating colored beta aluminas in air produces reoxidation and bleaching. Kinetics and other properties of the coloration and bleaching processes were determined. Critical current density was found to bear an inverse relation to average electrolyte grain size. Evidence was found in the cycled electrolytes for a slow crack growth mechanism and a progressive mode of degradation advancing from the sulfur electrode interface. Implications of the findings for the construction and operation of sodium/sulfur battery systems are discussed.

  20. Alumina Coating on Carbon Fibers by Sol-Gel Method

    OpenAIRE

    2006-01-01

    Alumina precursor film was coated on carbon fibers by a sol-gel method using aluminum alkoxide solution. The optimum coating condition for the concentration of alumina alkoxide and silane coupling agent was determined to uniformly coat alumina precursor on carbon fibers. Alumina precursor converted to alumina ceramics by heating at 750℃. SEM and EPMA showed that alumina ceramics was uniformly coated on carbon fibers. The thickness of alumina layer increased with increasing coating times. The ...

  1. Mechanical performance of alumina reinforced with NbC, TiC and WC

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2012-12-01

    Full Text Available The incorporation of refractory hard particles in Al2O3-based composites may inhibit grain growth of the matrix, which could significantly contribute to mechanical performance of the composite. The present study aimed to investigate the potential use of NbC as alumina reinforcing material, as an alternative to other carbides such as TiC and WC. Alumina was mixed with a fixed carbide concentration of 30 wt.(% in a ball mill and uniaxially hot-pressed at 1650 ºC under a load of 30 MPa in an inert atmosphere. X-ray diffraction revealed no oxidation products were present after the sintering process. Microstructure analyses indicate a homogeneous carbide distribution in the alumina matrix. Results obtained in this study show that alumina reinforced with NbC is a composite material with properties comparable to those of alumina reinforced with WC and TiC, thereby making it good reinforcing material.

  2. Capillary condensation in porous alumina observed by positronium lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Eugeniu [National Institute for Nuclear Physics and Engineering-Horia Hulubei, Atomistilor Street 407, CP MG 06, Magurele, Bucharest (Romania); Center for Advanced Studies in Physics of the Roumanian Academy, Casa Academiei Romane, Calea 13 Septembrie No. 13, Bucharest (Romania); Vata, Ion [National Institute for Nuclear Physics and Engineering-Horia Hulubei, Atomistilor Street 407, CP MG 06, Magurele, Bucharest (Romania)], E-mail: vata@ifin.nipne.ro; Toderian, Stefan; Dudu, Dorin; Rusen, Ion; Stefan, Nitisor [National Institute for Nuclear Physics and Engineering-Horia Hulubei, Atomistilor Street 407, CP MG 06, Magurele, Bucharest (Romania)

    2008-10-31

    The PALS method based on time distribution measurements has been used to study capillary condensation of different gases adsorbed in microporous alumina powder. The isotherms exhibit features which are associated with a shifted gas-liquid transition. The sorption and desorption processes are irreversible presenting a hysteresis effect. Suggestions on some new aspects of the capillary condensation dynamics are made.

  3. Modified-starch Consolidation of Alumina Ceramics

    Institute of Scientific and Technical Information of China (English)

    JU Chenhui; WANG Yanmin; YE Jiandong; HUANG Yun

    2008-01-01

    The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt%of a modified starch as a consolidator/binder.The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope,and two other corn starches(common corn starch and high amylose COrn starch)were also analyzed for comparison.The modified starch used as a binder for the consolidation swelled at about 55℃.began to gelatinize at 65℃ and then was completely gelatinized at 75℃.But the corn starches could not be completely gelatinized even at 80℃for 1 h.The high-strength green bodies(10.6 MPa)with the complex shapes were produced.The green bodies were sintered without any binder burnout procedure at 1700℃and a relative density of 95.3% was obtained for the sintered bodies,which is similar to that of the sintered sample formed by conventional slip casting.In addition,the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated,and the corresponding mechanism for the starch consolidation was discussed.

  4. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique

    Science.gov (United States)

    Dai, Hongqin; Gong, Jian; Kim, Hakyong; Lee, Doukrae

    2002-10-01

    Alumina-borate/PVA composite fibres were prepared using sol-gel processing and an electrospinning technique. After calcination of the thin fibres, ultra-fine fibres of alumina-borate oxide with a diameter of about 550 nm could be prepared. The fibres were characterized by SEM, XRD and FT-IR. The results showed that the crystalline phase and morphology of alumina-borate fibres were largely influenced by the calcination temperature.

  5. Synthesis of alumina-α using chemical and activation energy por microwave; Sintese de alumina-α utilizando ativacao quimica e energia por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Cartaxo, J.M.; Galdino, M.N.; Neves, G.A., E-mail: juliana@dema.ufcg.edu.br [Universidade Federal de Campina Grande (DEMA/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Campos, L.F.A.; Menezes, R.R. [Universidade Federal da Paraiba (UFPB), PB (Brazil). Dept. de Engenharia de Materiais; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil)

    2012-07-01

    With the great technological advances of alumina, this study aimed to synthesize the α-alumina and chemical activation using microwave energy from aluminum nitrate precursor. The synthesized powders were characterized by X-ray diffraction, thermal analysis (DTA and TGA) and surface area by BET. The chemical activation process was conducted by varying the concentration of the acid solution and exposure time of the material solution. The results proved the effectiveness of chemical activation by accelerating the synthesis process. The results of thermal analysis can observe the thermal decomposition temperature and the possible nucleation of new phases of alumina. The results of X-ray diffraction showed that the powders have the structure of α-alumina with specific areas ranging from 3 to 15m{sup 2}/g pore diameters between 190 to 485nm. (author)

  6. Interactions of L-alanine with alumina as studied by vibrational spectroscopy.

    Science.gov (United States)

    Garcia, Ana R; de Barros, Ricardo Brito; Fidalgo, Alexandra; Ilharco, Laura M

    2007-09-25

    The interactions of L-alanine with gamma- and alpha-alumina have been investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). L-alanine/alumina samples were dried from aqueous suspensions, at 36.5 degrees C, with two amino acid concentrations (0.4 and 0.8 mmol g-1) and at different pH values (1, 6, and 13). The vibrational spectra proved that the nature of L-alanine interactions with both aluminas is the same (hydrogen bonding), although the groups involved depend on the L-alanine form and on alumina surface groups, both controlled by the pH. For samples prepared at pH 1, cationic L-alanine [CH3CH(NH3+)COOH] displaces physisorbed water from alumina, and strong hydrogen bonds are established between the carbonyl groups of alanine, as electron donors, and the surface Al-OH2+ groups of alumina. This occurs at the expense of alanine dimer dissociation and breaking of intramolecular bonds. When samples are prepared at pH 6, the interacting groups are Al-OH2+ and the carboxylate groups of zwitterionic L-alanine [CH3CH(NH3+)COO-]. The affinity of L-alanine toward alumina decreases, as the strong NH3+...-OOC intermolecular hydrogen bonds prevail over the interactions with alumina. Thus, for a load of 0.8 mmol g-1, phase segregation is observed. On alpha-alumina, crystal deposition is even observed for a load of 0.4 mmol g-1. At pH 13, the carboxylate groups of anionic L-alanine [CH3CH(NH2)COO-] are not affected by alumina. Instead, hydrogen bond interactions occur between NH2 and the Al-OH surface groups of the substrate. Complementary N2 adsorption-desorption isotherms showed that adsorption of L-alanine occurs onto the alumina pore network for samples prepared at pH 1 and 13, whereas at pH 6 the amino acid/alumina interactions are not strong enough to promote adsorption. The mesoporous structure and the high specific surface area of gamma-alumina make it a more efficient substrate for adsorption of L-alanine. For each alumina, however, it is

  7. Properties of Transition Metal Doped Alumina

    Science.gov (United States)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  8. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.;

    2009-01-01

    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...... focus our attention to the measurements with the MCP array. The alumina capillaries were prepared by electro-chemical oxidation of aluminium foils. For the present experiments guiding of 3-6 keV Ne ions has been studied in two samples with capillary diameter of about 140 nm and 260 nm and with capillary...... length of about 15 μm. At these energies, the ions have been efficiently guided by the capillaries up to few degrees tilt angle. In this work, we compare the results obtained by the energy dispersive spectrometer to those studied by the MCP array. © 2008 Elsevier B.V. All rights reserved....

  9. Wettability of Aluminum on Alumina

    Science.gov (United States)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  10. Parsing abnormal grain growth in specialty aluminas

    Science.gov (United States)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  11. Porous Alumina Based Capacitive MEMS RH Sensor

    CERN Document Server

    Juhasz, L; Timar-Horvath, Veronika; Desmulliez, Marc; Dhariwal, Resh

    2008-01-01

    The aim of a joint research and development project at the BME and HWU is to produce a cheap, reliable, low-power and CMOS-MEMS process compatible capacitive type relative humidity (RH) sensor that can be incorporated into a state-of-the-art, wireless sensor network. In this paper we discuss the preparation of our new capacitive structure based on post-CMOS MEMS processes and the methods which were used to characterize the thin film porous alumina sensing layer. The average sensitivity is approx. 15 pF/RH% which is more than a magnitude higher than the values found in the literature. The sensor is equipped with integrated resistive heating, which can be used for maintenance to reduce drift, or for keeping the sensing layer at elevated temperature, as an alternative method for temperature-dependence cancellation.

  12. Infrared radiative properties of alumina up to the melting point: A first-principles study

    Science.gov (United States)

    Yang, J. Y.; Xu, M.; Liu, L. H.

    2016-11-01

    The high thermal emission of alumina dominates the radiative heat transfer of rocket exhaust plume. Yet numerous experimental measurements on radiative properties of alumina at high temperatures vary considerably from each other and cannot provide physical insight into the underlying mechanism. In this work, the ab initio molecular dynamics (AIMD) method and ab initio parameterized Drude model are combined to predict the radiative properties of alumina for temperatures up to 2327 K (the melting point) in the spectral range 1-12 μm. Contributed by different microscopic processes, the optical absorption of alumina in the spectral range 1-4 and 4-12 μm is described by two distinct methods. In the spectral range 4-12 μm, the multi-phonon process mainly contributes to optical absorption and can be simulated by the AIMD method based on the linear response theory. While in the spectral range 1-4 μm, the optical absorption is mainly caused by intrinsic carriers and can be effectively described by the ab initio parameterized Drude model. The first-principles calculations can successfully predict the infrared radiative properties of alumina at high temperatures and well reproduce the literature experiments. Moreover, the theoretical simulations verify that alumina can retain its semiconducting character even in the liquid phase and there emerges sharp increase in the near-infrared optical absorption of alumina upon melting.

  13. Microstructure-mechanical behaviour relationship in alumina-calcium exaluminate composites; Relaciones microestructura-comportamiento mecanico en materiales de alumina-hexaluminato calcico

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A. J.; Moreno, R.; Baudin, C.

    2001-07-01

    The grain growth behaviour of dense alumina materials has been modified by the addition of calcium hexaluminate particles. Maximum dispersion has been obtained by colloidal processing routes. The influence of sintering temperature (1500-1600 degree centigree) on the size and shape of the alumina grains has been established. The mechanical behaviour of three composite materials with the same composition ({approx}10 vol% CA{sub 6}) and large microstructural differences has been studied in comparison with that of monophasic alumina of the same grain size. The influence of grain size and shape on toughness has been established. R-curve behaviour has been detected during fracture of the material with the alumina grains presenting the largest shape factor. (Author) 18 refs.

  14. FABRICATION OF POROUS ALUMINA CERAMICS WITH CORN STARCH IN AN EASY AND LOW-COST WAY

    OpenAIRE

    2015-01-01

    Porous alumina ceramics with different porosity were fabricated by combining the starch consolidation process with the gel-casting process using corn starch as a pore-forming agent and a binder. The bulk density, porosity, and microstructure of the obtained alumina ceramics were studied. It was found that the total porosity range of sintered samples with contents varying from 0 to 50 vol. % is 14.8 - 55.3 % and the total porosity increased with the increase of starch content. Moreove...

  15. Structural Effects of Lanthanide Dopants on Alumina

    Science.gov (United States)

    Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond

    2017-01-01

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.

  16. Structural Effects of Lanthanide Dopants on Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond

    2017-01-06

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.

  17. Evaluation of Nutritional and Physical Properties of Watermelon Juice during the Thermal Processing by Using Alumina Nano-fluid in a Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Farinaz Saremnejad Namini

    2015-09-01

    Full Text Available Background and Objectives: Thermal processing is an effective method in preventing microbial spoilage but high heat transfer in a long time process that leads to quality loss and increased energy consumption. Also it is important to consider sensitive nature of food products during the thermal processing. Due to the nano-fluids' unique thermo–physical properties compared with the conventional fluids (steam and hot water, their use in various industries to enhance the efficiency of equipment and energy optimization has increased. Materials and Methods: The effects of alumina–water nano-fluids (0, 2, and 4% concentrations on some nutritional properties (lycopene and vitamin C content, and some physical properties (color, pH and TSS of watermelon juice treated by high temperature–short time (75, 80, and 85°C for 15, 30, and 45 seconds in a shell and tube heat exchanger were evaluated. Results: In compared with water, process time reduced by 24.88% and 51.63% for 2% and 4% nano-fluids, respectively. It had a significant effect on improving the properties of watermelon juice (P<0.05. Under the treatment conditions (75°C and 15s, with 0, 2, and 4% nano-fluids, 81.15, 84.81, and 91.28% of lycopene and 61.11, 63.70 and 67.04% of vitamin C were maintained, respectively. &DeltaE* values for the fruit juices processed with 0, 2 and 4% nano-fluids were 3.26, 2.21 and 1.14, respectively. Also pH and TSS changed in the range of 5.58–5.82 and 9.00–9.40%, respectively. Conclusions: The results showed that qualitative and nutritional properties of watermelon juices processed with nano-fluids in terms of lycopene and vitamin C retention, and color were, respectively, 9.89, 6.18 and 50.38% better than the samples processed with water.

  18. Effect of different sources of alumina on the microstructure and mechanical properties of the triaxial porcelain

    Directory of Open Access Journals (Sweden)

    G. Gralik

    2014-12-01

    Full Text Available Porcelains composed of kaolin-quartz-feldspar are called triaxial porcelains. The use of alumina as a substitute for quartz in porcelains has been developed for some time. The results show a significant improvement in their mechanical properties, but alumina has a high cost. The possibility of using alternative materials as a source of alumina with lower cost was investigated. In this work, alternative raw materials were used as a source of alumina: refractory bauxite, primary aluminum hydroxide, reprecipitated aluminum hydroxide. Compositions with commercial alumina and quartz were also formulated to better understand the effects of adding these alternative materials. The raw materials were milled, dried, and characterized by analysis of the particle size distribution, X-ray diffraction, and X-ray fluorescence. The compositions were formulated by replacing the different sources of alumina in the formulation of porcelain. The compositions studied were shaped by pressing and sintered at different temperatures (1150-1400 ºC. The results showed that the use of bauxite and aluminum hydroxide as an alternative source of Al2O3 is viable. The impurities contained in refractory bauxite contributed to the lower values of flexural strength found in compositions having refractory bauxite as a source of alumina. The compositions with reprecipitated aluminum hydroxide showed a high mechanical resistance at low sintering temperatures, while compositions with aluminum hydroxide obtained by the Bayer process achieved good results of mechanical strength in a wide temperature range.

  19. Preparation of Micro-Porous Alumina Sheet Support for Ceramic Membrane by Extrusion

    Science.gov (United States)

    Hemra, Khanthima; Atong, Duangduen; Aungkavattana, Pavadee

    Among several types of ceramic membrane developed for a half of century, alumina is the most extensive advantage. In this study, many types of alumina with different particle size distributions were used as a starting material for fabrication of support sheet ceramic membrane using extrusion process. The investigation focused on the alumina dough components composed of some organic binders and water. The organic binder of about 12 wt. % was required in order for dough to be easily extruded, while the amount of water added to the dough depended on the particle size of alumina powder. The particle size and size distribution of starting powder showed strong effects on pore size of sintered alumina support. The pore size decreased when smaller particle size of starting powder was used. In addition, the pore volume of the sintered alumina decreased with increasing the sintering temperature due to improvement in densification, while pore size remained the same. The mechanical strength of alumina supports was also influenced by the particle size of starting powder; the finer particle size resulted in the higher mechanical strength. However, in order to obtain a good flux for the membrane, a high mechanical strength of the support along with its effective porosity is critical concerns. In this work, the support sintered at 1450°C provided a proper porosity of approximately 40% with an acceptable mechanical strength of 30-45MPa.

  20. Influence of Alumina Addition on the Optical Property of Zirconia/Alumina Composite Dental Ceramics

    Institute of Scientific and Technical Information of China (English)

    JIANG Li; LIAO Yunmao; LI Wei; WAN Qianbing; ZHAO Yongqi

    2011-01-01

    The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated.The relative sintered densities,transmittances,color and the microstructure of the composite ceramics were studied.The experimental results showed that the relative sintered densities and transmittances decreased with alumina addition.The lightness increased obviously but the chroma change was small.Pure zirconia nanopowders sintered densely could obtain the relatively high transmittance,while the transmittance and the lightness of slight addition changed significantly.The zirconia/alumina composite ceramics with alumina addition less than 7.5wt% could achieve the relatively stable and reliable optical properties.

  1. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  2. High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode.

    Science.gov (United States)

    Huang, Genmao; Duan, Lian; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2014-12-10

    Solution-processed metal oxide thin-film transistors (TFTs) operating in enhancement mode are promising for the next-generation flat panel displays. In this work, we report high-mobility TFTs based on SnO2 active layer derived from a soluble tin(II) 2-ethylhexanoate precursor. Densely packed polycrystalline SnO2 thin films with moderate oxygen vacancies and only a few hydroxides are obtained via systemically optimizing precursor concentrations and processing conditions. The utilization of a solution-processed high-κ Al2O3 insulating layer could generate a coherent dielectric/semiconductor interface, hence further improving the device performance. TFT devices with an average field-effect mobility of 96.4 cm(2) V(-1) s(-1), a current on/off ratio of 2.2 × 10(6), a threshold voltage of 1.72 V, and a subthreshold swing of 0.26 V dec(-1) have been achieved, and the driving capability is demonstrated by implementing a single SnO2 TFT device to tune the brightness of an organic light-emitting diode. It is worth noting that these TFTs work in enhancement mode at low voltages less than 4 V, which sheds light on their potential application to the next-generation low-cost active matrix flat panel displays.

  3. Synthesis and structural evaluation of freeze-cast porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Douglas F., E-mail: souzadf@outlook.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Pimenta, Daiana S.; Vasconcelos, Daniela C.L. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nascimento, Jailton F.; Grava, Wilson [Petrobras/CENPES, Avenida Horácio Macedo 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ CEP:21941-915 (Brazil); Houmard, Manuel [Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 1, sala 3304 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil)

    2014-10-15

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observed that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.

  4. Influence of an alkalizing supplement on markers of endurance performance using a double-blind placebo-controlled design

    Directory of Open Access Journals (Sweden)

    Heil Daniel P

    2012-03-01

    Full Text Available Abstract Background Previous research has shown that ingestion of substances that enhance the body's hydrogen ion buffering capacity during high intensity exercise can improve exercise performance. The present study aimed to determine whether the chronic ingestion of an alkalizing supplement, which purports to enhance both intracellular and extracellular buffering capacity, could impact cardiorespiratory and performance markers in trained Nordic skiers. Methods Twenty-four skiers (12 men, 12 women, matched for upper body power (UBP, were split into treatment and placebo groups. The treatment group ingested Alka-Myte®-based alkalizing tablets (1 tablet/22.7 kg body mass/day over seven successive days while the placebo group consumed placebo tablets (i.e., no Alka-Myte® at the same dosage. Prior to tablet ingestion (i.e., pre-testing, both groups completed a constant power UBP test, three successive 10-sec UBP tests, and then a 60-sec UBP test. Next, skiers completed the 7-day ingestion of their assigned tablets followed immediately by a repeat of the same UBP tests (i.e., post-testing. Neither the skiers nor the researchers were aware of which tablets were being consumed by either group until after all testing was complete. Dependent measures for analysis included heart rate (HR, oxygen consumption (VO2, minute ventilation (VE, blood lactate (LA, as well as 10-sec (W10, W and 60-sec (W60, W UBP. All data were evaluated using a two-factor multivariate repeated measures ANOVA with planned contrasts for post-hoc testing (alpha = 0.05. Results Post-testing cardiorespiratory (HR, VO2, VE and LA measures for the treatment group tended to be significantly lower when measured for both constant power and UBP60 tests, while measures of both 10-sec (W10: 229 to 243 W and 60-sec UBP (W60: 190 to 198 W were significantly higher (P 0.05. Conclusions Following the 7-day loading phase of Alka-Myte®-based alkalizing tablets, trained Nordic skiers experienced

  5. Fabrication of aluminum-alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Hodder, K.J.; Izadi, H. [Department of Chemical and Materials Engineering, University of Alberta, 7th Floor, Electrical and Computer Engineering Research Facility, Edmonton, Alberta, Canada T6G 2V4 (Canada); McDonald, A.G. [Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta, Canada T6G 2G8 (Canada); Gerlich, A.P., E-mail: agerlich@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2012-10-30

    Cold gas dynamic spraying at low pressure (1 MPa gage or 150 psig) was used to fabricate Al-Al{sub 2}O{sub 3} metal matrix composite (MMC) coatings onto 6061 Al alloy. The powder contained Al powder admixed with -10 {mu}m Al{sub 2}O{sub 3} in fractions up to 90 wt.%. Scanning electron microscopy (SEM), Vickers microhardness testing, and image analysis were conducted to determine the microstructure, properties, and volume fraction of reinforcing particles in the coatings. The coatings were then friction-stir processed (FSP) at tool rotation speeds of 894 or 1723 RPM using a flat cylindrical tool. The Al{sub 2}O{sub 3} content and hardness of the final MMC coatings increased with increasing fractions of Al{sub 2}O{sub 3} particles in the feedstock powder, resulting in a maximum Al{sub 2}O{sub 3} content of 48 wt.% and a hardness of 85 HV of the as-sprayed coating when 90 wt.% Al{sub 2}O{sub 3} was used in the feed powder blend. After FSP, the hardness of the MMC increased to a maximum of 137 HV. The as-sprayed coatings contained Al{sub 2}O{sub 3} particles that were segregated between the Al particles, and FSP was effective in dispersing these Al{sub 2}O{sub 3} particles and decreasing their mean free path. It was suggested that this re-distribution and Al{sub 2}O{sub 3} particle size refinement during FSP improved the hardness of the MMC coatings.

  6. Preliminary analysis of thermal-infrared multispectral scanner data of the Iron Hill, Colorado carbonatite-alkalic rock complex

    Science.gov (United States)

    Rowan, Lawrence C.; Watson, Kenneth; Miller, Susanne H.

    1992-01-01

    The Iron Hill carbonatite-alkalic igneous rock complex is in the Powderhorn mining district, approximately 40 km south-southwest of Gunnison, Colorado. The complex, which occupies about 30 sq km, was emplaced in metasedimentay and metavolcanic rocks during the later Precambrian or early Cambrian. The main rock types in the complex, from oldest to youngest, are fenite, pyroxenite, uncompahgrite, ijolite, nepheline syenite, and dolomitic carbonatite. The carbonatite is limonitic and forms an elliptially shaped 4 sq km stock. Calcitic and dolomitic carbonatite dikes are also numerous throughout the complex and in the pre-existing rocks. Pyroxenite is the most widespread rock type within the complex, but pyroxene is extensively altered to biotite, phlogopite, and vermiculite. Fenite, which formed through Na, K-metasomatism of the country rocks, typically contains more feldspar and less quartz than the equivalent unaltered country rocks. The other alkalic rock types are less widespread and less well exposed. Parts of the complex are covered by Oligocene ash-flow tuff and alluvial, colluvial, and glacial deposits. Sagebrush and grass cover is moderately dense to very dense at low to intermediate elevations; coniferous tree cover is dense at high elevations and on some north-facing slopes at lower elevations. A new algorithm was used to compute spectral emissivity ratios, independent of any emissivity assumptions. This algorithm has the advantage that any of the possible emissivity ratios can be computed and, thus, a large variety of composite ratio images can be constructed, which permits examination of various geologic hypotheses based on the spectral properties of the surface materials.

  7. Thin alumina and silica films by chemical vapor deposition (CVD)

    OpenAIRE

    Hofman, R.; Morssinkhof, R.W.J.; Fransen, T.; Westheim, J.G.F.; Gellings, P.J.

    1993-01-01

    Alumina and silica coatings have been deposited by MOCVD (Metal Organic Chemical Vapor Deposition) on alloys to protect them against high temperature corrosion. Aluminium Tri-lsopropoxide (ATI) and DiAcetoxyDitertiaryButoxySilane (DAOBS) have been used as metal organic precursors to prepare these ceramic coatings. The influence of several process steps on the deposition rate and surface morphology is discussed. The deposition of SiO2 at atmospheric pressure is kinetically limited below 833 K ...

  8. Epitaxial growth of tungsten nanoparticles on alumina and spinel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Suarez, T; Lopez-Esteban, S; Pecharroman, C; Esteban-Cubillo, A; Moya, J S [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Cientificas (CSIC), C/ Sor Juana Ines de la Cruz 3, 28049, Cantoblanco, Madrid (Spain); Diaz, L A; Torrecillas, R [Nanomaterials and Nanotechnology Research Center (CINN), Consejo Superior de Investigaciones CientIficas (CSIC), C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias (Spain); Gremillard, L [Universite de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510, 20 avenue Albert Einstein, Villeurbanne F-69621 (France)], E-mail: jsmoya@icmm.csic.es

    2008-05-28

    Isolated tungsten nanoparticles ({alpha}-W and {beta}-W phase) were synthesized and epitaxially grown on alumina and spinel particle surfaces with an average tungsten size of {<=}20 nm for a low tungsten content (of {<=}1.5 vol%). Using tungsten (VI) ethoxide alcoholic solutions, tungsten trioxide hydrated precursors were attached to a ceramic grains surface as a nanoparticle coating. High-resolution transmission electron microscopy (HRTEM) micrographs showed epitaxial interfaces between alumina, spinel and metallic tungsten. This epitaxial growth is assumed to be due to the effect of water vapour on the sublimation of ortho-tungstic acid during the reduction process in a hydrogen atmosphere. The planes involved in the epitaxy were found to be (22-bar 0){sub Al2O3} parallel (121){sub W} and (311){sub MgAl2O4} parallel (110){sub W}.

  9. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges

    Directory of Open Access Journals (Sweden)

    M. Szutkowska

    2012-10-01

    Full Text Available Purpose: Specific characteristics in fracture toughness measurements of advanced alumina ceramics and alumina matrix composites with particular reference to α-Al2O3, Al2O3-ZrO2, Al2O3-ZrO2-TiC and Al2O3-Ti(C,N has been presented.Design/methodology/approach: The present study reports fracture toughness obtained by means of the conventional method and direct measurements of the Vickers crack length (DCM method of selected tool ceramics based on alumina: pure alumina, alumina-zirconia composite with unstabilized and stabilized zirconia, alumina–zirconia composite with addition of TiC and alumina–nitride-carbide titanium composite with 2wt% of zirconia. Specimens were prepared from submicro-scale trade powders. Vicker’s hardness (HV1, fracture toughness (KIC at room temperature, the indentation fracture toughness, Young’s modulus and apparent density were also evaluated. The microstructure was observed by means of scanning electron microscopy (SEM.Findings: The lowest value of KIC is revealed by pure alumina ceramics. The addition of (10 wt% unstabilized zirconia to alumina or a small amount (5 wt% of TiC to alumina–zirconia composite improve fracture toughness of these ceramics in comparison to alumina ceramics. Alumina ceramics and alumina-zirconia ceramics reveal the pronounced character of R-curve because of an increasing dependence on crack growth resistance with crack extension as opposed to the titanium carbide-nitride reinforced composite based on alumina. R-curve has not been observed for this composite.Practical implications: The results show the method of fracture toughness improvement of alumina tool ceramics.Originality/value: Taking into account the values of fracture toughness a rational use of existing ceramic tools should be expected.

  10. Zirconia-alumina-nanodiamond composites with gemological properties

    Science.gov (United States)

    Díaz, Luis A.; Montes-Morán, Miguel A.; Peretyagin, Pavel Y.; Vladimirov, Yuriy G.; Okunkova, Anna; Moya, José S.; Torrecillas, Ramón

    2014-02-01

    Nanodiamonds have excellent mechanical and optical properties with a wide range of potential applications as a filler material for nanocomposites. Here, we present a new family of zirconia-alumina-nanodiamond composites using two main processing routes: (1) a colloidal method, and (2) power mixing homogenization. Composites with detonation nanodiamonds quantities ranging within 0.3-5 vol.% followed by a pulsed electrical current sintering at a temperature range from 1,200 to 1,500 °C have been analyzed, and a significant enhancement in mechanical properties, i.e., indentation hardness (16.17 GPa), fracture toughness (15.5 MPa m1/2), and bending strength (1,600 MPa), could be observed. To support these excellent properties, TEM, color, reflectivity, and Raman spectroscopy measurements were also carried out. The microstructure of the composites is very homogeneous with average grain sizes between 200 and 500 nm depending on the processing temperature. Two morphologies are present: (a) intergranular dispersion of alumina grains and nanodiamonds distributed along the grain boundaries of the ZrO2 matrix, and (b) intragranular nano-dispersion of ZrO2 particles with sizes 20-80 nm located inside the alumina grains. In the present article, we show, for the first time in the scientific literature, a continuous palette of gray color gradation of new ceramic materials of metalized colors (white index L* 98-40) for gemological applications.

  11. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    Science.gov (United States)

    Ozawa, Masakuni; Nishio, Yoshitoyo

    2016-09-01

    Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO2. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al2O3 showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al2O3 samples. LaAlO3 nanoparticle formed among alumina particles by the solid phase reaction of Al2O3 and La2O3. The increase of the surface basicity of La modified alumina was demonstrated using CO2 temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  12. Comparative study on sintered alumina for ballistic shielding application; Estudo comparativo entre aluminas sinterizadas visando aplicacao em blindagem balistica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco

    1997-12-31

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull`s modulii and other mechanical properties are able to improve ballistic penetration resistance. (author) 3 refs.

  13. Alumina Carbon Refractory Products for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 1 Scope This standard specifies the classification.techni-cal requirements,test methods,inspection rules,packing,marking,transportation,storage and quality certificate of alumina carbon refractory products for continuous casting.

  14. Loss tangent measurements on unirradiated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Goulding, R.H. [Oak Ridge National Lab., TN (United States)

    1996-04-01

    Unirradiated room temperature loss tangent for sapphire and several commercial grades of polycrystalline alumina are complied for frequencies between 10{sup 5} and 4x10{sup 11} Hz. Sapphire exhibits significantly lower values for the loss tangent at frequencies up to 10{sup 11} Hz. The loss tangents of 3 different grades of Wesgo alumina (AL300, AL995, AL998) and 2 different grades of Coors alumina (AD94, AD995) have typical values near {approx}10{sup -4} at a frequency of 10{sup 8} Hz. On the other hand, the loss tangent of Vitox alumina exhibits a large loss peak tan d{approx} 5x10{sup -3} at this frequency.

  15. Burned Microporous Alumina-Graphite Brick

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 1 Scope This standard specifies the definition,classifica-tion,technical requirements,test methods,inspection rules,marking,packing,transportation and quality certificate of burned microporous alumina-graphite brick.

  16. Nanoparticle assisted coagulation of aqueous alumina suspensions

    Directory of Open Access Journals (Sweden)

    Abdullah Fatih Çetinel

    2012-02-01

    Full Text Available Colloidal processing of ceramics offers a high potential to achieve homogeneous microstructures with improved material properties. In this study, a novel forming method is investigated, which was already applied successfully for the fabrication of ceramic matrix composites (CMC, but is also considered to be a suitable direct casting technique for the fabrication of advanced ceramics with tailored microstructure and properties. The so-called nanoparticle assisted coagulation method (NPAC represents a modification of the hydrolysis-assisted solidification (HAS technique. It promises green components with high green strength, uniform density as well as homogeneous and tailored microstructure. Electrostatically stabilized colloidal suspensions with high solid loadings were produced by dispersing various fractions of submicron alumina powder and aluminium hydroxide nano-powder in water without use of any organic binder. Rheology and coagulation kinetics of suspensions and green part properties were studied regarding to modifications of pH value, setting temperature, amount of setting agent, amount of nano-powder, solids loading and process parameters like ultrasound treatment. It could be revealed that the homogeneous core-shell arrangement of submicron and nanoparticles in the colloidal state can be transmitted to the green state, which improves the microstructure and green density of the green parts. For this, the NPAC method is seen as a promising technique for the fabrication of advanced ceramics with tailored microstructure and properties.

  17. High strength alumina produced by direct coagulation casting

    Energy Technology Data Exchange (ETDEWEB)

    Baader, F.H.; Will, J.; Tieche, D. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    1995-09-01

    Direct Coagulation Casting is a new colloidal forming technique. Double layer stabilized, concentrated alumina suspensions are solidified by shifting the suspensions pH from 4 towards the isoelectric point at 9 using the in situ enzyme-catalyzed decomposition of urea. This reaction minimizes the repulsive forces between the suspended particles. The remaining, attractive Van der Waals forces form a stiff particle network. Suspensions with low viscosities (0.3 Pa*s, 59 vol%) were prepared at pH 4. Deagglomeration of the suspensions by ball milling reduced the agglomerate size below 5 pm. The coagulation kinetics could be influenced either by the urease concentration or by the suspension temperature. Process variables were established, providing long idle times, which allowed additional filtration and degassing steps. Coagulation was followed by drying and sintering, whereby densities of more than 3.97 g/cm{sup 3}, a 4-point bending strength of 685 MPa (HIPed) and a high reliablility (m = 40) for high purity alumina were achieved. DCC has the potential to improve the reliability of alumina components of complex shape, as well as to avoid expensive molding.

  18. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N.T.

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  19. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  20. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan, E-mail: liudandan_upc@126.com [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Dai, Fangna, E-mail: fndai@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Collage of Science, China University of Petroleum (East China), Qingdao 266580 (China); Tang, Zhe, E-mail: tangzhe1983@163.com [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yunqi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chenguang, E-mail: cgliu@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corp. (CNPC), China University of Petroleum (East China), Qingdao 266580 (China)

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.

  1. 海藻酸钠离子凝胶法制备直通孔氧化铝多孔陶瓷%Porous Alumina Ceramics with Unidirectional Oriented Pores Fabricated by Ionotropic Process of Sodium Alginate

    Institute of Scientific and Technical Information of China (English)

    孙阳; 薛伟江; 孙加林; 周国治; 黄勇

    2015-01-01

    利用海藻酸钠的离子凝胶过程,采用溶剂置换结合冷冻干燥的工艺,成功制备了具有高度有序六方排列的直通孔多孔氧化铝陶瓷,整个工艺过程及所使用的原料都是环境友好的。研究结果表明,1500℃烧结2 h样品的孔径尺寸在200μm左右,且与固相含量的关系不大,而孔壁上存在0.3μm~0.5μm的小孔。通过控制浆料中氧化铝的固相含量可以对材料的性能进行有效地调控,研究表明,随着固相含量从5wt%提高到15wt%,材料的密度从0.87 g/cm3提高到1.16 g/cm3,渗透率从2.57×10-11m2下降到2.16×10-11m2,而抗压强度从(18.9±3.2) MPa提高到(44.2±5.4) MPa,平行孔道方向的热导率从2.1 W/(m·K)提高到3.1 W/(m·K),而垂直孔道方向的热导率从1.3 W/(m•K)提高到1.7 W/(m·K),并且平行孔道方向热导率的增加幅度要明显大于垂直孔道方向。%Alumina ceramic bodies with high porosity characterized by highly ordered and unidirectional oriented pores were successfully fabricated using the ionotropic process of sodium alginate by solvent exchange subsequently with freeze-drying. It is important to point out that the whole process and raw materials are eco-friendly. The average unidirectional pore size of samples sintered at 1500℃ for 2 h is 200μm with minor porosity in the pore walls with average pore size of 0.3-0.5μm. The properties of samples can be adjusted by controlling the solid loading in slurry. As the solid loading increasing from 5wt% to 15wt%, the density and compressive strength increased from 0.87 g/cm3 to 1.16 g/cm3 and from (18.9±3.2) MPa to (44.2±5.4) MPa, respectively with permeability de-creasing from 2.57×10-11m2 to 2.16×10-11m2. In addition, with the solid loading increasing from 5wt% to 15wt%, the conductivity of the direction parallel and perpendicular to the unidirectional pores increased from 2.1 W/(m·K) to 3.1 W/(m·K) and from 1.3 W/(m·K) to 1.7 W/(m·K), respectively.

  2. Direct foaming porous alumina ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Salvini, V.R.; Sandurkov, B.A.; Klein-Gunnewiek, R.F.; Pandolfelli, V.C. [Federal Univ. of Sao Carlos, Materials Engineering Dept., FIRE Associate Lab., Sao Carlos, SP (Brazil)

    2007-07-01

    This paper presents the work carried out in order to improve the properties of these porous alumina ceramics, concerning their application as thermal insulating. Changes in solid content of ceramic suspension, variations of pore forming agents and other additives were carried out and their effects on the green and the sintered mechanical strength are also shown. According to the literature, several starch types seem to be attractive pore forming agents as well as binders for porous ceramics. Most of them consist of a mixture of two polysaccharide types, amylose (linear) and amylopectin (highly branched). Corn, potato and rice starches were used in the present study because of their difference in size and shape. In order to increase the mechanical strength of the sintered porous ceramics a part of the Al{sub 2}O{sub 3} in the composition was replaced by Al(OH){sub 3}. Due to the changes of the composition and additives, porosities up to 81% and a mechanical strength of 15 MPa were obtained. (orig.)

  3. Using lithium glass infiltration to enhance the properties of alumina bodies

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2008-12-01

    Full Text Available The use of an infiltration process to improve the properties of sintered materials has been widely investigated. This work describes the research carried out in the manufacturing of lithium glass-infiltrated alumina. The infiltration material consisted of a mixture of elements such as Li2O, ZrO2, SiO2 Al2O3, CaO and La2O3. Alumina specimens were sintered in air at 1400 °C for 2 hours. A number of samples were then submitted to the infiltration process at 1400 °C for 15 minutes. Sintered and infiltrated specimens were characterized by X ray diffraction, apparent density, open porosity, flexural strengths and scanning electron microscopy. The results showed that the infiltration process considerably improves the properties of alumina bodies.

  4. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; XIAO Wei; LIU Wei; LIU Gui-hua; PENG Zhi-hong; ZHOU Qiu-sheng; QI Tian-gui

    2009-01-01

    A great amount of red mud generated from alumina production by Bayer process not only threatens the environment but also causes waste of secondary resources. High-iron-content red mud from Bayer process was employed to recover alumina and ferric oxide by the process of reduction-sintering, leaching and then magnetic beneficiation. Results of thermodynamic analyses show that ferric oxide should be reduced to Fe if reduction of ferric oxide and formation of sodium aluminate and calcium silicate happen simultaneously. Experimental results indicate that alumina recovery of Bayer red mud can reach 89.71%, and Fe recovery rate and the grade of magnetite concentrate are 60.67% and 61.78%, respectively, under the optimized sintering conditions.

  5. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Okikiola Ganiu AGBABIAKA

    2014-11-01

    Full Text Available Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment on the mechanical and water absorption properties of selected natural fibers (coconut and sponge fibers reinforced polypropylene composites. In this study, coconut and sponge fiber were extracted from its husk by soaking them in water and was dried before it was cut into 10mm length. Those fibers were chemically treated with sodium hydroxide (NaOH in a shaking water bath before it was used as reinforcement in polypropylene composite. The reinforced polypropylene composite was produced by dispersing the coconut fibers randomly in the polypropylene before it was fabricated in a compression molding machine where the composite was produced. The fiber content used were; 2%wt, 4%wt, 6%wt, 8%wt and 10%wt. Tensile and flexural properties was observed from universal testing machine while water absorption test was carried out on the samples for seven (7 days. It was observed that the influence of NaOH treatment highly enhanced the Flexural and water absorption properties of sponge fiber reinforced polypropylene composites than coconut fiber reinforced composite samples.

  6. Monitoring Transport Across Modified Nanoporous Alumina Membranes

    Directory of Open Access Journals (Sweden)

    Erich D. Steinle

    2007-11-01

    Full Text Available This paper describes the use of several characterization methods to examinealumina nanotubule membranes that have been modified with specific silanes. The functionof these silanes is to alter the transport properties through the membrane by changing thelocal environment inside the alumina nanotube. The presence of alkyl groups, either long(C18 or short and branched (isopropyl hydrocarbon chains, on these silanes significantlydecreases the rate of transport of permeant molecules through membranes containingalumina nanotubes as monitored via absorbance spectroscopy. The presence of an ionicsurfactant can alter the polarity of these modified nanotubes, which correlates to anincreased transport of ions. Fluorescent spectroscopy is also utilized to enhance thesensitivity of detecting these permeant molecules. Confirmation of the alkylsilaneattachment to the alumina membrane is achieved with traditional infrared spectroscopy,which can also examine the lifetime of the modified membrane. The physical parameters ofthese silane-modified porous alumina membranes are studied via scanning electronmicroscopy. The alumina nanotubes are not physically closed off or capped by the silanesthat are attached to the alumina surfaces.

  7. Bioactive glass-ceramics coatings on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Brovarone, C.; Verne, E.; Lupo, F. [Politecnico di Torino (Italy). Materials Science and Chemical Eng. Dept.; Moisescu, C. [Jena Univ. (Germany). Otto-Schott-Inst. fuer Glaschemie; Zanardi, L.; Bosetti, M.; Cannas, M. [Eastern Piemont Univ., Novara (Italy). Medical Science Dept.

    2001-07-01

    In this work, aiming to combine the mechanical performances of alumina with the surface properties of a bioactive material, we coated full density alumina substrates by a bioactive glass-ceramic GC. This latter was specially tailored, in term of costituents and specific quantity to have a thermal expansion coefficient close to that of alumina (8.5-9{sup *}10{sup -6}/ C) which is lower than most of the bioactive glasses and glass-ceramics already in use. In this way, we sought to avoid, as much as possible, the crack formation and propagation due to residual stresses generated by the thermal expansion coefficients mismatch. Furthermore, the high reactivity of alumina toward the glass-ceramic was carefully controlled to avoid deep compositional modification of the GC that will negatively affect its bioactivity. At this purpose, an intermediate layer of an appropriate glass G was coated prior to coat the bioactive glass-ceramic. On the materials obtained, preliminary biological tests have been done to evaluate glass-ceramic biocompatibility respect to alumina. (orig.)

  8. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  9. Monazite coatings on short alumina fibers using layer-by-layer assembly technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Bo; Shen Liya; Liu Xiaozhen; Zhang Shuihe; Wu Chunfang; Liu Wenjing

    2004-01-15

    Rhabdophane cerous phosphate particles were deposited on short alumina fibers, using an aqueous precursor and layer-by-layer assembly technique. A polyelectrolyte, Na{sup +} salt of poly(acrylic acid), was employed for the surface modification of alumina fibers in the coating process. Subsequent heat treatment caused the transition of the coatings from rhabdophane to monazite. Dense, uniform monazite coatings on the alumina fibers were obtained by multiple coating steps. The precursor phase evolution was studied with differential thermal analysis/thermogravimetric analysis and X-ray diffractometry. The morphology and structure of the coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry. The variables controlling the coating process are discussed.

  10. Modelling the growth of porous alumina matrix for creating hyperbolic media

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2016-08-01

    Porous aluminum oxide is a regular self-assembled structure. During anodization it is possible to control nano-parameters of the structure using macroscopic parameters of anodization. Porous alumina films can be used as a template for the creation of hyperbolic media. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. As a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process. We also present the results obtained by numerical modelling of hyperbolic media based on porous alumina film.

  11. A hybrid approach to the surface biofunctionalization of nanostructured porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, Miguel Manso; Ruiz, Josefa Predestinacion Garcia [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Unidad Asociada GMNF (ICMM-CSIC), 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Bioingenieria Biomateriales y Nanomedicina (CIBERbbn) (Spain); Gonzalez, Ruy Sanz [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, 28049 Madrid (Spain); Velez, Manuel Hernandez [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Unidad Asociada GMNF (ICMM-CSIC), 28049 Madrid (Spain)

    2010-02-15

    The application of nanostructured porous alumina templates as a solid support in biomedical assays requires a surface biofunctionalization process that has been addressed in this work by an hybrid aminopropyl-triethoxysilane/tetraisopropyl-orthotitanate (APTS/ TIPT) self assembled film. The nanostructured porous alumina templates are activated in a peroxide solution before immersion in the biofunctionalizing APTS/TIPT solution. The biofunctionalization process was followed up by UV-vis spectroscopy, which confirmed the modification of the dielectric structure of the alumina surface. The influence of the biofunctionalization step in an immunological assay was carried out by fluorescence microscopy. Results confirm the gain in activity after the immobilization of an FITC labelled mouse Igg. Specific biological recognition in a bovine serum albumin (BSA)-antiBSA assay is proved afterwards by shifts observed in the reflectance interferograms thus providing a fast biosensing transducer platform. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Synthesis and characterization of alumina precursor and alumina to be used as nano composite; Sintese e caracterizacao de precursores de alumina e alumina para uso em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, M.L.P., E-mail: malu@sorocaba.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Santos, H. Souza [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Santos, P. Souza [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica

    2009-07-01

    With the evolution of nanomaterials technology, mainly in the 90s, it was possible to observe produced composites with alumina matrix and nanomaterial as reinforcing materials. It results in a significant improvement of mechanical proprieties of these composites. Thenceforth the study of synthesis and characterization of nanostructured materials has attracted great scientific interest. In this perspective, the aim of this work is to present an experimental procedure to obtain nordstrandite (aluminum hydroxide) with nanometric dimensions. Nordstrandite synthesis, obtained by the reaction of slightly amalgamated aluminum foil with aqueous ethylene glycol, which allows the control of the size of crystal produced. This control could be confirmed by X-Ray Diffraction and Electron Microscopy. Thermal transformation study is also presented. This study allowed the identification of transition aluminas that have potential to produce nanometric aluminas. (author)

  13. Dynamical Mechanical Properties for AD90 Alumina

    Institute of Scientific and Technical Information of China (English)

    REN Hui-lan; NING Jian-guo; LI Ping

    2007-01-01

    The dynamic response of polycrystalline alumina was investigated in the pressure range of 0 -13 GPa by planar impact experiments.Velocity interferometer system for any reflector(VISAR) was used to obtain free surface velocity profile and determine the Hugoniot elastic limit,and manganin gauges were employed to obtain the stress-time histories and determine Hugoniot curve.Both the free surface particle velocity profiles and Hugoniot curves indicate the dispersion of the "plastic" wave for alumina.With the measured stress histories,the complete histories of strain,particle velocity,specific volume and specific internal energy are gained by using path line principle of Lagrange analysis.The dynamic mechanical behaviors for alumina under impact loading are analyzed,such as nonlinear characteristic,strain rate dependence,dispersion and declination of shock wave in the material.

  14. Iron films deposited on porous alumina substrates

    Science.gov (United States)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  15. Nanomechanical humidity detection through porous alumina cantilevers

    Directory of Open Access Journals (Sweden)

    Olga Boytsova

    2015-06-01

    Full Text Available We present here the behavior of the resonance frequency of porous anodic alumina cantilever arrays during water vapor adsorption and emphasize their possible use in the micromechanical sensing of humidity levels at least in the range of 10–22%. The sensitivity of porous anodic aluminium oxide cantilevers (Δf/Δm and the humidity sensitivity equal about 56 Hz/pg and about 100 Hz/%, respectively. The approach presented here for the design of anodic alumina cantilever arrays by the combination of anodic oxidation and photolithography enables easy control over porosity, surface area, geometric and mechanical characteristics of the cantilever arrays for micromechanical sensing.

  16. Pleistocene to recent alkalic volcanism in the region of Sanganguey volcano, Nayarit, Mexico

    Science.gov (United States)

    Nelson, S. A.; Carmichael, I. S. E.

    1984-12-01

    Forty five cinder cones and associated lava flows have erupted within the last 300,000 years along five parallel lines through the calc-alkaline volcano, Sanganguey, in the northwestern segment of the Mexican Volcanic Belt. Lavas erupted from these cinder cones include ne- and hynormative alkali basalts, hawaiites, mugearites, and benmoreites. It is unusual that this suite has erupted in a calc-aikaline volcanic belt where volcanoes in the vicinity have been erupting calc-alkaline andesites, dacites and rhyodacites. Incompatible trace elements such Ba, Rb, Sr, and LREEs show little change with decreasing Mg, Ni, and Cr in the series alkali basalt to hawaiite, suggesting that simple crystal fractionation of observed phenocrysts has not been the dominant process in the derivation of the hawaiites from the alkali basalts. Petrographic evidence of magma mixing along with observed variation of trace element abundances suggests that the alkali basalts might represent mixtures of primitive magma with more evolved compositions. Crystal fractionation is capable of explaining major and most trace element trends in the series hawaiite — mugearite — benmoreite. However, such a process could only occur at pressure because of the requirement that clinopyroxene be a major crystallizing phase. The anomolous association of alkaline magmatism contemporaneously with calc-alkaline magmatism is probably related to the complex tectonic history associated with the rearrangement of plate boundaries in the vicinity of western Mexico.

  17. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions.

  18. Effects of Starch on Properties of Alumina-based Ceramic Cores

    Directory of Open Access Journals (Sweden)

    LI Fengguang

    2016-12-01

    Full Text Available In order to improve the poor leachability of alumina-based ceramic cores, different amount of starch was added to the specimens as pore former. Alumina-based ceramic cores were prepared by hot injection technology using corundum powder as base material, paraffin wax and beeswax as plasticizer, silica powder and magnesium oxide powder as mineralizing agent, wherein the parameters of the hot injection process were as follows:temperature of the slurry was 90℃, hot injection pressure was 0.5 MPa and holding time was 25 s. The effects of starch content on the properties of alumina-based ceramic cores were studied and discussed. The results indicate that during sintering period, the loss of starch in the specimens makes porosity of the alumina-based ceramic cores increase. When starch content increases, the room-temperature flexural strength of the ceramic cores reduces and the apparent porosity increases; the volatile solvent increases and the bulk density decreases. After being sintered at 1560℃ for 2.5 h, room-temperature flexural strength of the alumina-based ceramic cores with starch content of 8%(mass fraction is 24.8 MPa, apparent porosity is 47.98% when the volatile solvent is 1.92 g/h and bulk density is 1.88 g/cm3, the complex properties are optimal.

  19. Identification of the odour and chemical composition of alumina refinery air emissions.

    Science.gov (United States)

    Coffey, P S; Ioppolo-Armanios, M

    2004-01-01

    Alcoa World Alumina Australia has undertaken comprehensive air emissions monitoring aimed at characterising and quantifying the complete range of emissions to the atmosphere from Bayer refining of alumina at its Western Australian refineries. To the best of our knowledge, this project represents the most complete air emissions inventory of a Bayer refinery conducted in the worldwide alumina industry. It adds considerably to knowledge of air emission factors available for use in emissions estimation required under national pollutant release and transfer registers (NPRTs), such as the Toxic Releases Inventory, USA, and the National Pollutant Inventory, Australia. It also allows the preliminary identification of the key chemical components responsible for characteristic alumina refinery odours and the contribution of these components to the quality, or hedonic tone, of the odours. The strength and acceptability of refinery odours to employees and neighbours appears to be dependent upon where and in what proportion the odorous gases have been emitted from the refineries. This paper presents the results of the programme and develops a basis for classifying the odour properties of the key emission sources in the alumina-refining process.

  20. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    Science.gov (United States)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  1. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica

    Science.gov (United States)

    Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.

    2011-01-01

    Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.

  2. Alumina supported carbon composite material with exceptionally high defluoridation property from eggshell waste.

    Science.gov (United States)

    Lunge, Sneha; Thakre, Dilip; Kamble, Sanjay; Labhsetwar, Nitin; Rayalu, Sadhana

    2012-10-30

    A new alumina supported carbon composite material called "Eggshell Composite" (EC) was synthesized from eggshell waste as calcium source for selective fluoride adsorption from water. The effect of various synthesis parameters like eggshell (ES): Eggshell membrane (ESM) ratio, aluminium loading, mixing time and calcinations temperature to optimize the synthesis conditions for selective fluoride removal has been studied. It was observed that the synthesis parameters have significant influence on development of EC and in turn on fluoride removal capacity. EC synthesized was characterized for elemental composition, morphology, functionality and textural properties. Results showed that EC obtained from eggshell modified with alumina precursor is more selective and efficient for fluoride removal. Langmuir and Freundlich isotherm were used to obtain ultimate fluoride removal capacity. The calcium and alumina species in EC shows synergistic effect in fluoride adsorption process. Fluoride sorption studies were carried out in synthetic, groundwater and wastewater. EC proved to be a potential, indigenous and economic adsorbent for fluoride removal.

  3. Micrometer size grains of hot isostatically pressed alumina and its characterization

    Indian Academy of Sciences (India)

    A K Mallik; S Gangadharan; S Dutta; D Basu

    2010-08-01

    Alumina samples were prepared from two different particle size powders. Finer particle compacts when heated along with coarser particle compacts at same processing temperatures produce bigger grain microstructures due to higher grain growth. An unconventional method of etching by molten V2O5 was adopted to look at the microstructure for accuracy in reported data. On an average starting with finer particles give microstructure with a grain size of 5.5 m and starting with coarser particles, give microstructure with 2.2 m average grain size. The flexural strength is around 400 MPa for alumina samples prepared from finer powder in comparison with about 550 MPa for alumina samples prepared from coarser powder. The Vickers hardness in 5.5 m grain microstructure is around 20 GPa in comparison to about 18 GPa in microstructure with smaller grains of 2.2 m size.

  4. Minimum and Full Fluidization Velocity for Alumina Used in the Aluminum Smelter

    Directory of Open Access Journals (Sweden)

    Paulo Douglas S. de Vasconcelos

    2011-11-01

    Full Text Available Fluidization is an engineering unit operation that occurs when a fluid (liquid or gas ascends through a bed of particles, and these particles get a velocity of minimum fluidization enough to stay in suspension, but without carrying them in the ascending flow. As from this moment the powder behaves as liquid at boiling point, hence the term “fluidization”. This operation is widely used in the aluminum smelter processes, for gas dry scrubbing (mass transfer and in a modern plant for continuous alumina pot feeding (particles’ momentum transfer. The understanding of the alumina fluoride rheology is of vital importance in the design of fluidized beds for gas treatment and fluidized pipelines for pot feeding. This paper shows the results of the experimental and theoretical values of the minimum and full fluidization velocities for the alumina fluoride used to project the state of the art round non‐metallic air‐fluidized conveyor of multiples outlets.

  5. In-situ preparation of polymer-coated alumina nanopowders by chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schallehn, M.; Winterer, M.; Weirich, T.E.; Hahn, H. [Inst. of Materials Science, Darmstadt Univ. of Technology, Darmstadt (Germany); Keiderling, U. [Hahn-Meitner-Inst., Berlin (Germany)

    2003-01-01

    Nanocrystalline alumina particles coated with polyethylene have been prepared by a two-step chemical vapor synthesis (CVS) process using a hot-wall reactor to synthesize the nanocrystalline alumina core, and a RF plasma reactor for the subsequent polymer coating. The particle radius is about 4 nm, with the radius of the ceramic core being about 2.5 nm and the coating thickness about 1.5 nm. The powders have been characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), small-angle neutron scattering (SANS), and high-resolution transmission electron microscopy (HRTEM). (orig.)

  6. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  7. LOW TEMPERATURE SINTERING OF ALUMINA BIOCERAMIC UNDER NORMAL PRESSURE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Superfine alumina powder with high purity (mean particle size is less than 0. 35μm) were used as main starting material for sintering alumina ceramic. A multiple additive MgO-ZrO2 (Y2O3) was homogeneously added into the batch by the chemical coprecipitation method. Sintering of alumina bioceramic at low tempera ture (<1600C) was achieved resulting in a dense and high strength alumina ceramic with the bending strength up to 382 MPa and an improved fracture toughness. Mechanism that the multiple additives promote the sintering of alumina ceramic is discussed on the base of XRD and SEM analysis.

  8. Selective metallization of alumina by laser

    NARCIS (Netherlands)

    Shrivastva, P.B.; Boose, C.A.; Kolster, B.H.; Harteveld, C.; Meinders, B.

    1991-01-01

    Nickel has been selectively deposited on an alumina substrate without any pretreatment from a flow of a nickel acetate solution using the focused beam of an excimer laser. Nickel spots as well as nickel lines were drawn and subsequently plated with an electroless Ni-B coating. Excellent adhesion of

  9. Stabilization of Self-Assembled Alumina Mesophases

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Perdriau, Sebastien; ten Brink, Gert; Kooi, Bart J.; Heeres, Hero Jan; Melian-Cabrera, Ignacio

    2013-01-01

    An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum tri-sec-butoxi

  10. Dielectric Performance of High Purity HTCC Alumina at High Temperatures - A Comparison Study with Other Polycrystalline Alumina

    Science.gov (United States)

    Chen, Liang-Yu

    2012-01-01

    A very high purity (99.99+) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this co-fired material. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96 polycrystalline alumina (96 Al2O3), where 96 alumina was used as the benchmark. A prototype packaging system based on regular 96 alumina with Au thick-film metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500C. In order to evaluate this new HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96 alumina and a LTCC alumina from room temperature to 550C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96 alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  11. MECHANICAL BEHAVIOUR OF ALUMINA-ZIRCONIA COMPOSITE BY SLURRY METHOD

    Directory of Open Access Journals (Sweden)

    JYOTI PRAKASH

    2011-02-01

    Full Text Available Alumina has got some excellent properties like chemical inertness, thermal and mechanical strength against hazardous environment. Alumina is a good ceramic material which is being used for structuralapplications. To enhance the toughness and strength of the body some Zirconia is also used with it. The use of Zirconia in alumina is known as toughening of alumina. One difficulty arises, when alumina and alumina toughened composite are sintered , because the low sinterability of Alumina-Zirconia forced the compact to give very low density body. To overcome this problem alumina and alumina composites are made from slurry method which gives nearly theoretical density. The combined effect of alumina and Zirconia on the phase transformation and microstructure development of heat-treated Alumina-Zirconia composites has been studied. Slurry is prepared by adding water, dispersant, binder and anti-foaming agent. In the present study, Sintering schedule is optimized and kept constant for all samples. After sintering, mechanical behaviour of the composite has been studied.

  12. Surface modification of alumina nanoparticles with silane coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Luis A.S.A.; Sriyai, Montira; Ghislandi, Marcos; Schulte, Karl [Technische Universitaet Hamburg-Harburg, Hamburg (Germany). Inst. fuer Kunststoffe und Verbundwerkstoffe (M-11); Barros-Timmons, Ana [University of Aveiro (Portugal). Dept. of Chemistry. Centro de Investigacao em Materiais Ceramicos e Compositos (CICECO)

    2010-07-01

    In the present paper we describe the surface modification of alumina nanoparticles using epoxy-containing alkoxysilanes (silane coupling agents, SCA). The materials were characterized using infrared spectroscopy and solid-state nuclear magnetic resonance. Whereas, neat alumina nanoparticles could be expectedly modified with the afore mentioned SCA, as evidenced by {sup 13}C CPMAS NMR, the presence of arylsulphonates at the surface of alumina caused the ringopening polymerization of the epoxide. This polymerization reaction facilitated the surface modification of alumina by the SCA. X-ray powder diffraction and {sup 27}Al MAS NMR clearly demonstrated that in spite of the SCA polymerization, there were neither structural changes nor phase transitions in the alumina after the surface modification. The surface modification decreased the thermal stability of alumina, in comparison to pristine alumina nanoparticles. (author)

  13. Degradation of alumina and zirconia toughened alumina (ZTA) hip prostheses tested under microseparation conditions in a shock device

    CERN Document Server

    Uribe, Juliana; Gremillard, Laurent; Reynard, Bruno

    2013-01-01

    This paper considers the degradation of alumina and zirconia toughened alumina vs. alumina for hip implants. The materials are as assumed to be load bearing surfaces subjected to shocks in wet conditions. The load is a peak of force; 9 kN was applied over 15 ms at 2 Hz for 800,000 cycles. The volumetric wear and roughness are lower for ZTA than for alumina. The long ZTA ageing did not seem to have a direct influence on the roughness. The ageing increased the wear volumes of ZTA and it was found to have a higher wear resistance compared to alumina.

  14. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  15. Electroless Fabrication of Cobalt Alloys Nanowires within Alumina Template

    Directory of Open Access Journals (Sweden)

    Nazila Dadvand

    2007-01-01

    Full Text Available A new method of nanowire fabrication based on electroless deposition process is described. The method is novel compared to the current electroless procedure used in making nanowires as it involves growing nanowires from the bottom up. The length of the nanowires was controlled at will simply by adjusting the deposition time. The nanowires were fabricated within the nanopores of an alumina template. It was accomplished by coating one side of the template by a thin layer of palladium in order to activate the electroless deposition within the nanopores from bottom up. However, prior to electroless deposition process, the template was pretreated with a suitable wetting agent in order to facilitate the penetration of the plating solution through the pores. As well, the electroless deposition process combined with oblique metal evaporation process within a prestructured silicon wafer was used in order to fabricate long nanowires along one side of the grooves within the wafer.

  16. Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Dao, Trung Dung [Department of Chemistry, Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr [Department of Chemistry, Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Anjanapura, Raghu V. [Center for Emerging Technologies, Jain Global Campus, Jain University, Jakkasandra, Ramanagara 562-112 (India); Aminabhavi, Tejraj M. [Soniya College of Pharmacy, S. R. Nagar, Dharwad 580-002 (India)

    2015-03-01

    Graphene was oxidized with H{sub 2}O{sub 2} to introduce additional anchoring sites for effective alumina coating on graphene by the sol–gel method. The X-ray photoelectron spectroscopy studies showed that the oxygen-containing groups such as hydroxyl group useful for coating were introduced by the oxidation. The transmission electron microscopy images and thermogravimetric analysis data demonstrated that the additional anchoring sites enhanced the efficiency of the alumina coating. A small amount of alumina-coated graphene synergistically improved the thermal conductivity of the alumina sphere/thermoplastic polyurethane (TPU) composite without any increase in the electrical conductivity, because the electrical conductivity of graphene effectively decreased by the alumina coating. Moreover, the synergistic effect of a small amount of graphene was enhanced by the alumina coating, and the stiffening of the alumina sphere/TPU composite due to the added graphene was alleviated by the alumina coating. - Highlights: • Oxidation of graphene with H{sub 2}O{sub 2} introduced anchoring sites for alumina coating. • The anchoring sites improved the efficiency of alumina coating on graphene. • The alumina-coated graphene synergistically enhanced the thermal conductivity.

  17. Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology.

    Science.gov (United States)

    Samarghandi, Mohammad Reza; Khiadani, Mehdi; Foroughi, Maryam; Zolghadr Nasab, Hasan

    2016-01-01

    Adsorption by activated alumina is considered to be one of the most practiced methods for defluoridation of freshwater. This study was conducted, therefore, to investigate the effect of natural organic matters (NOMs) on the removal of fluoride by activated alumina using response surface methodology. To the authors' knowledge, this has not been previously investigated. Physico-chemical characterization of the alumina was determined by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffractometer (XRD). Response surface methodology (RSM) was applied to evaluate the effect of single and combined parameters on the independent variables such as the initial concentration of fluoride, NOMs, and pH on the process. The results revealed that while presence of NOM and increase of pH enhance fluoride adsorption on the activated alumina, initial concentration of fluoride has an adverse effect on the efficiency. The experimental data were analyzed and found to be accurately and reliably fitted to a second-order polynomial model. Under optimum removal condition (fluoride concentration 20 mg/L, NOM concentration 20 mg/L, and pH 7) with a desirability value of 0.93 and fluoride removal efficiency of 80.6%, no significant difference was noticed with the previously reported sequence of the co-exiting ion affinity to activated alumina for fluoride removal. Moreover, aluminum residual was found to be below the recommended value by the guideline for drinking water. Also, the increase of fluoride adsorption on the activated alumina, as NOM concentrations increase, could be due to the complexation between fluoride and adsorbed NOM. Graphical abstract ᅟ.

  18. Effect of nano-alumina concentration on the mechanical, rheological, barrier and morphological properties of guar gum.

    Science.gov (United States)

    Savvashe, Prashant; Kadam, Pravin; Mhaske, Shashank

    2016-04-01

    In this work, nano-alumina was utilized as a reinforcing agent for guar gum, with an aim to improve its performance properties; especially, mechanical and barrier i.e. water vapor transmission rate (WVTR). Films were prepared by the process of solution casting. Concentration of nano-alumina was varied as 0, 1, 3, 5 and 7 parts per hundred parts of resin (phr) in guar gum. The prepared pristine and guar gum/alumina nano-composite films were characterized for mechanical, puncture, x-ray diffraction, barrier, rheological and morphological properties. Tensile strength, Young's modulus, puncture strength, viscosity and crystallinity increased; whereas, WVTR, elongation at break (%) and damping factor decreased with increased concentration of nano-alumina in guar gum. However, optimized improvement in the performance properties were determined for 5 phr nano-alumina loaded guar gum polymer matrix, attributed to its better dispersion and interaction into the guar gum polymer chains due to the hydrophilic nature of both the materials. Above 5 phr concentration nano-alumina started forming aggregates, as evident from scanning electron microscopy.

  19. Catalytic performances of kaoline and silica alumina in the thermal degradation of polypropylene

    Institute of Scientific and Technical Information of China (English)

    Achyut K Panda; R K Singh

    2011-01-01

    Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400 ℃ ~ 550 ℃ in order to obtain suitable liquid fuels. The dependencies between process temperatures, types of catalyst, feed compositions and product yields of the obtained fuel fractions were found. It was observed that up to 450 ℃ thermal cracking temperature, the major product of pyrolysis was liquid oil and the major product at other higher temperatures (475 ℃ ~550 ℃2 ) are viscous liquid or wax and the highest yield of pyrolysis product is 82.85% by weight at 500 ℃. Use of kaoline and silica alumina decreased the reaction time and increased the yield of liquid fraction. Again the major pyrolysis product in catalytic pyrolysis at all temperatures was low viscous liquid oil. Silica alumina was found better as compared to kaoline in liquid yield and in reducing the reaction temperature. The maximum oil yield using silica alumina and kaoline catalyst are 91% and 89.5% respectively. On the basis of the obtained results hypothetical continuous process of waste polypropylene plastics processing for engine fuel production can be presented.

  20. Corrosion performance of alumina scales in coal gasification environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Laboratory, Argonne, IL (United States)

    1997-12-31

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}s and C1 as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The valuable information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques, is also discussed.

  1. Corrosion performance of alumina scales in coal gasification environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1997-02-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques.

  2. Improvement in nanoscale contact resistance of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Manjima; Chakraborty, Riya; Mandal, Ashok Kumar [CSIR - Central Glass and Ceramic Research Institute, Kolkata (India); Dey, Arjun [CSIR - Central Glass and Ceramic Research Institute, Kolkata (India); ISRO Satellite Centre, Thermal Systems Group, Bangalore (India); Mukhopadhyay, Anoop Kumar [CSIR - Central Glass and Ceramic Research Institute, Kolkata (India); Central Glass and Ceramic Research Institute, Kolkata 32 (India)

    2012-06-15

    In all contact-related applications such as the wear-resistant inserts, biomedical implants, high strain rate impact-resistant plates, etc., nanohardness, i.e. the intrinsic contact resistance at the nano scale, plays a major role. In spite of the wealth of literature, the studies on nanohardness of dense, coarse-grain alumina ceramics which represent many commercial varieties; have reasonably good hardness at the macro scale and characteristically exhibit R-curve behaviour, are far from significant. Here, to the best of our knowledge, we report for the first time the experimental observations of the increase in intrinsic contact resistance at the nano scale with the loading rate applied to a high-density ({proportional_to}95 % of theoretical) coarse-grain ({proportional_to}20 {mu}m) alumina ceramics. These observations were explained in terms of the initiation of nanoscale plasticity and maximum shear stress generated just underneath the nanoindenter. (orig.)

  3. Nanoparticles in alumina: Microscopy and Theory

    Science.gov (United States)

    Idrobo, Juan C.; Halabica, Andrej; Rashkeev, Sergey; Glazoff, Michael V.; Boatner, Lynn A.; Haglund, Richard F.; Pennycook, Stephen. J.; Pantelides, Sokrates T.

    2007-03-01

    Transition-metal nanoparticles formed by ion implantation in alumina can be used to modify the optical properties of naturally oxidized and anodized aluminum. Here, we report atomic-resolution Z-contrast images using a scanning transmission electron microscope (STEM) of CoFe and other metal nanoparticles in alumina. We also report electron energy loss spectra (EELS) and relate them to visual appearance and optical properties. Finally, we report first-principles density- functional calculations of nucleation mechanisms for these nanoparticles. This research was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under contract DE-AC05- 00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, by NSF grant No. DMR-0513048, and by Alcoa Inc.

  4. Silica containing highly porous alumina ceramic

    Science.gov (United States)

    Svinka, R.; Svinka, V.; Zake, I.

    2011-04-01

    Porous alumina ceramic were produced by slip casting of aqueous alumina slurry with added small amount of metallic aluminium powder. Pores form in result of chemical reaction of aluminum with water by hydrogen gas evolution reaction and solidification of suspension. Porosity of such materials sintered at a temperature of 1600 - 1750°C varies from 60 to 90%. Pore size distribution and mechanical strength of these materials depend largely on the grain size of used raw materials. The major part of pores in the materials produced without additive of silica are larger than 10 ±m, but with 5 - 10 wt.% additive of silica in the raw mix pore size decreases considerably. The sintering shrinkage decreases to 2.5%. Coefficient of thermal expansion equally decreases from 8.9-10-6 K-1 to 7.1 10-6 K-1 and classification temperature increases to 1600°C, while deformation at high temperature decreases considerably.

  5. Impact of AD995 alumina rods

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L.C.; Furnish, M.D.; Reinhart, W.D. [Sandia National Labs., Albuquerque, NM (United States); Grady, D.E. [Applied Research Associates, Inc., Albuquerque, NM (United States)

    1997-10-01

    Gas guns and velocity interferometric techniques have been used to determine the loading behavior of an AD995 alumina rod 19 mm in diameter by 75 mm and 150 mm long, respectively. Graded-density materials were used to impact both bare and sleeved alumina rods while the velocity interferometer was used to monitor the axial-velocity of the free end of the rods. Results of these experiments demonstrate that (1) a time-dependent stress pulse generated during impact allows an efficient transition from the initial uniaxial strain loading to a uniaxial stress state as the stress pulse propagates through the rod, and (2) the intermediate loading rates obtained in this configuration lie between split Hopkinson bar and shock-loading techniques.

  6. Ultraviolet photoluminescence of porous anodic alumina films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Photoluminescence (PL) properties of porous anodic alumina (PAA) films prepared by using electrochemical anodization technique in a mixed solution of oxalic and sulfuric acid have been investigated. The PAA films have an intensive ultraviolet PL emission around 350 nm, of which a possible PL mechanism has been proposed. It was found that the incorporated oxalic ions, which could transform into PL centers and exist in the PAA films, are responsible for this ultraviolet PL emission.

  7. Alkalization of steam and condensate with 2-amino-1-butanol and hydrazine; Alkalisering av aanga och kondensat med butanolamin och hydrazin

    Energy Technology Data Exchange (ETDEWEB)

    Falk, I. [Studsvik Material AB, Nykoeping (Sweden)

    1996-04-01

    To maintain a low corrosion level in steam- and condensate systems at power and industrial plants, an alkalization of the steam is needed. A low corrosion level lowers the risk of operation disturbances and reduces the cost of the condensate clean up. A better knowledge in the behavior of the alkalis will improve the possibilities to avoid the corrosion attacks. In this work experimental measurements have been carried out during steam boiler conditions as temperature, continuous steam generation and condensation. It has been found that the volatility of 2-amino-1-butanol is very low during stationary dynamic conditions at 250 deg C and 120 deg C. To achieve a high ph-value in the final condensate a very high concentration of 2-amino-1-butanol is thus needed especially when the steam contains acidic compounds. The alkalization effect is obtained from ammonia which is created by thermal decomposition of hydrazine in the boiler water. It is necessary to carry out experimental investigations showing the thermal stability of organic compounds in boiler water before it is possible to recommend them as better volatile alkalis than ammonia and hydrazine. 6 refs, 13 figs

  8. Glass-coated Individual Dispersed MWNTs in Alumina & Its High Temperature Stability

    Institute of Scientific and Technical Information of China (English)

    FU Keqing; LIANG Jiayi; XU Hongyan; BAI Rong

    2009-01-01

    An ultrasonication assisted sol-gel processing route for MWNTs/Alumina was proposed.Using aluminum ethoxide as an alumina precursor and ethanol/water as a solvent,the dura-tion of the transformation from sol to gel under ultrasonication can be controlled by adjusting the water content.Purified MWNTs added under ultrasonication should be functionalized by alcohol at first and a well dispersion in alumina sol could be attained under the help of ultrasonic.With the evaporation of ethanol,sol transfers to gel and MWNTS dispersion can be kept in gel.Gel and calcine-powder show that individual MWNTs are enwrapped by amorphous alumina.As-received powders after a following heating-treatment under vacuum shows a good high stability for a glass coat formed on MWNTs.Raman results show the processing route has no obvious effect on the structure of MWNTs,even a high temperature(1273K)treatment is done under vacuum.

  9. Effect of Calcination Temperature on Morphological and Topography of Nickel-Alumina Thin Film

    Directory of Open Access Journals (Sweden)

    Sarwani Khairul Ilman

    2016-01-01

    Full Text Available Dip coating process promises good potential of nickel-alumina catalyst deposition on metal substrate for various applications especially in gas conversion reaction. This study was conducted to investigate the effect of different calcination temperature on nickel-alumina catalysts thin film formation. Four different calcination temperature were used, which are 300°C, 400°C, 500°C and 600°C. The calculation process was conducted for a duration of 90 minutes. The deposited thin films were characterized using Atomic Force Microscopy (AFM and X-ray diffraction (XRD equipment. The AFM result showed that the surface roughness of the nickel-alumina increase proportionally from 56 to 275 nm when the calcination temperature increased from 300 to 600°C. From an observation at high calcination temperature, the atom of grains assisted diffusion at the crystallite point causing grain with lower surface energy become larger. As the calcination temperature increase, the surface profile becomes rough and uneven representing high surface roughness. Thus, the effect of calcination temperature greatly influences the surface roughness of the nickel-alumina thin film.

  10. Fabrication of Nonsintered Alumina-Resin Hybrid Films by Inkjet-Printing Technology

    Science.gov (United States)

    Jang, Hun Woo; Kim, Jihoon; Kim, Hyo-tae; Yoon, Youngjoon; Lee, Sung-nam; Hwang, Haejin; Kim, Jonghee

    2010-07-01

    We used the inkjet printing to fabricate alumina-resin hybrid films without a high temperature sintering process. Single- and co-solvent ink systems showing different evaporation behaviors were formulated in order to understand their impacts on the inkjet-printing of the alumina dots, lines, and films. The packing densities of the inkjet-printed alumina films from both ink systems were around 60% which is higher than the value obtained by other conventional methods. Since the high temperature sintering process was avoided, the polymer-resin was infiltrated through the inkjet-printed alumina films by the same inkjet printing as a binder. The microstructures of these hybrid films were investigated in order to confirm if the microvoids in the films were filled with the resin. The dielectric properties of these hybrid films such as relative permittivity and Q-value were measured in order to assess if these hybrid materials is applicable to three-dimensional (3D) system integration as ceramic package substrates.

  11. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd:YAG pulsed laser

    Science.gov (United States)

    Hanon, M. M.; Akman, E.; Genc Oztoprak, B.; Gunes, M.; Taha, Z. A.; Hajim, K. I.; Kacar, E.; Gundogdu, O.; Demir, A.

    2012-06-01

    Alumina ceramics have found wide range of applications from semiconductors, communication technologies, medical devices, automotive to aerospace industries. Processing of alumina ceramics is rather difficult due to its high degree of brittleness, hardness, low thermal diffusivity and conductivity. Rapid improvements in laser technologies in recent years make the laser among the most convenient processing tools for difficult-to-machine materials such as hardened metals, ceramics and composites. This is particularly evident as lasers have become an inexpensive and controllable alternative to conventional hole drilling methods. This paper reports theoretical and experimental results of drilling the alumina ceramic with thicknesses of 5 mm and 10.5 mm using milisecond pulsed Nd:YAG laser. Effects of the laser peak power, pulse duration, repetition rate and focal plane position have been determined using optical and Scanning Electron Microscopy (SEM) images taken from cross-sections of the drilled alumina ceramic samples. In addition to dimensional analysis of the samples, microstructural investigations have also been examined. It has been observed that, the depth of the crater can be controlled as a function of the peak power and the pulse duration for a single laser pulse application without any defect. Crater depth can be increased by increasing the number of laser pulses with some defects. In addition to experimental work, conditions have been simulated using ANYS FLUENT package providing results, which are in good agreement with the experimental results.

  12. Isotopic and trace element geochemistry of alkalic-mafic-ultramafic-carbonatitic complexes and flood basalts in NE India: Origin in a heterogeneous Kerguelen plume

    Science.gov (United States)

    Ghatak, Arundhuti; Basu, Asish R.

    2013-08-01

    The Archean East Indian cratonic margin was affected by the Kerguelen plume (KP) ˜117 Ma, causing flood-basalt eruptions of the Rajmahal-Bengal-Sylhet Traps (RBST). The RBST cover ˜one million km2 in and around the Bengal Basin as alkalic-ultrabasic intrusives in the west and Sikkim in the north, and Sylhet basalts and alkalic-carbonatitic-ultramafic complexes in the Shillong plateau - Mikir hills farther east of the Rajmahal-Bengal Traps. We provide new Nd-Sr-Pb-isotopic and trace element data on 21 unreported discrete lava flows of the Rajmahal Traps, 56 alkalic-carbonatitic-mafic-ultramafic rocks from four alkalic complexes, and three dikes from the Gondwana Bokaro coalfields, all belonging to the RBST. The data allow geochemical correlation of the RBST with some contemporaneous Kerguelen Plateau basalts and KP-related volcanics in the southern Indian Ocean. Specifically, the new data show similarity with previous data of Rajmahal group I-II basalts, Sylhet Traps, Bunbury basalts, and lavas from the southern Kerguelen Plateau, indicating a relatively primitive KP source, estimated as: ɛNd(I) = +2, 87Sr/86Sr(I) = 0.7046, with a nearly flat time-integrated rare earth element (REE) pattern. We model the origin of the uncontaminated RBST basalts by ˜18% batch melting with a 2× chondritic KP source in the spinel-peridotite stability depths of 60-70 km in the mantle. The new geochemical data similar to the Rajmahal group II basalts indicate a light REE enriched average source at ɛNd(I) = -5, 87Sr/86Sr(I) = 0.7069. Our geochemical modeling indicates these lavas assimilated granulites of the Eastern Ghats, reducing the thickness of the continental Indian lithosphere. Lack of an asthenospheric MORB component in the RBST province is indicated by various trace element ratios as well as the Nd-Sr isotopic ratios. Three alkalic complexes, Sung, Samchampi, and Barpung in NE India, and one in Sikkim to the north are of two groups: carbonatites, pyroxenites, lamproites

  13. Synthesis and characterization of single-crystalline alumina nanowires

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing; XU Xiang-yu; ZHANG Hong-zhou; CHEN Yao-feng; XU Jun; YU Da-peng

    2005-01-01

    Alumina nanowires were synthesized on large-area silicon substrate via simple thermal evaporation method of heating a mixture of aluminum and alumina powders without using any catalyst or template. The phase structure and the surface morphology of the as-grown sample were analyzed by X-ray diffractometry(XRD) and scanning electron microscopy (SEM), respectively. The chemical composition and the microstructure of the as-grown alumina nanowires were characterized using transmission electron microscope(TEM). The nanowires are usually straight and the single crystalline has average diameter of 40 nm and length of 3 - 5 μm. The growth direction is along the [002] direction. Well aligned alumina nanowire arrays were observed on the surface of many large particles. The catalyst-free growth of the alumina nanowires was explained under the framework of a vapor-solid(VS)growth mechanism. This as-synthesized alumina nanowires could find potential applications in the fabrication of nanodevices.

  14. Influence of TAC on Dispersion of Aqueous Nano Alumina Suspension

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; YANG De-an; SONG Jian-jing; YANG Zi; LIANG Chong; XU Ming-xia; XU Ting-xian

    2004-01-01

    The stability of aqueous nano alumina powder suspensions with and without dispersant tri-ammonium citrate (TAC) was investigated by measuring zeta potential at different pH values. The isoelectric point (IEP) of alumina powder shifts towards more acidic pH range by adding TAC dispersant. The results illustrate that adsorption of TAC on alumina powder surface existed in the aqueous suspension, which leads to a high stability of the suspension.

  15. Aqueous combustion synthesis and characterization of zirconia-alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kishan, J.; Mangam, Venu; Reddy, B.S.B.; Das, Siddhartha [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Das, Karabi, E-mail: karabi@metal.iitkgp.ernet.i [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India)

    2010-02-04

    The zirconia-alumina nanocomposite powders with 3-48 mol% of alumina are prepared by aqueous combustion synthesis technique using stoichiometric amounts of aluminium nitrate, zirconyl nitrate and glycine. The nanopowders are compacted uniaxially and sintered at 1000 {sup o}C temperature in a muffle furnace. Thermodynamic modeling of the combustion reaction shows that, as the alumina content increases, the amount of gases produced increases with a decrease in the adiabatic flame temperature. The green and sintered densities of cold press composite powders decrease with an increase in the mol% of alumina.

  16. Rheology of Alumina-Based Graphite-Containing Castables

    Institute of Scientific and Technical Information of China (English)

    YE Fangbao; M. Rigaud; LIU Xinhong; ZHONG Xiangchong

    2005-01-01

    In this work, the rheological behavior of ultra-low cement alumina-based castables with addition of flake graphite and extruded graphite pellets has been investigated by using IBB rheometer. Emphasis has been laid on the influence of the type and amount of carbon addition on rheological properties of the alumina-based castables and the results are compared with corresponding alumina castable samples without any carbon addition. It is found that alumina-based castables with extruded graphite pellets have good rheological behavior and flowability with lower water demand ( < 6. 3% )and no segregation during the shearing of castable.

  17. Modelling the initial stage of porous alumina growth during anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2013-05-01

    Artificially on the surface of aluminum there may be build a thick layer of Al2O3, which has a porous structure. In this paper we present a model of growth of porous alumina in the initial stage of anodizing, identifying dependencies anodizing parameters on the rate of growth of the film and the distance between the pores and as a result of the created model equations were found for changes in the disturbance of alumina for the initial stage of anodizing aluminum oxide porous border aluminum-alumina and alumina-electrolyte, with the influence of surface diffusion of aluminum oxide.

  18. Improvements in nanoscale zero-valent iron production by milling through the addition of alumina

    Science.gov (United States)

    Ribas, D.; Cernik, M.; Martí, V.; Benito, J. A.

    2016-07-01

    A new milling procedure for a cost-effective production of nanoscale zero-valent iron for environmental remediation is presented. Conventional ball milling of iron in an organic solvent as Mono Ethylene Glycol produces flattened iron particles that are unlikely to break even after very long milling times. With the aim of breaking down these iron flakes, in this new procedure, further milling is carried out by adding an amount of fine alumina powder to the previously milled solution. As the amount of added alumina increases from 9 to 54 g l-1, a progressive decrease of the presence of flakes is observed. In the latter case, the appearance of the particles formed by fragments of former flakes is rather homogeneous, with most of the final nanoparticles having an equivalent diameter well below 1 µm and with an average particle size in solution of around 400 nm. An additional increase of alumina content results in a highly viscous solution showing worse particle size distribution. Milled particles, in the case of alumina concentrations of 54 g l-1, have a fairly large specific surface area and high Fe(0) content. These new particles show a very good Cr(VI) removal efficiency compared with other commercial products available. This good reactivity is related to the absence of an oxide layer, the large amount of superficial irregularities generated by the repetitive fracture process during milling and the presence of a fine nanostructure within the iron nanoparticles.

  19. Comparative study between yeasts immobilized on alumina beads and on membranes prepared by two routes

    Directory of Open Access Journals (Sweden)

    Kiyohara Pedro K.

    2003-01-01

    Full Text Available Alumina channeled beads and rough surface membranes prepared from aqueous sols of fibrillar pseudoboehmite are able to immobilize yeasts for ethanol fermentation of sugar solutions. This paper describes comparative results of assays carried out with yeasts immobilized onto alpha-alumina beads and membranes prepared under two different conditions of processing and firing. The fermentation tests evaluated by the decrease of fermentable sugars, referred as Brix degrees per hour, indicated that the yeasts immobilized on beads had similar performance, probably because their surfaces, even being morphologically different, presented the same value of open porosity. One type of membrane (asymmetrical; precursor: pseudoboehmite; firing temperature 1,150ºC; crystal structure; alpha-alumina had better performance than the other type (asymmetrical; precursor: fibrillar pseudoboehmite plus aluminum hydroxiacetate mixture; 1,150ºC; alpha-alumina because the yeast cells entered into their porous interior through the surface slits, were immobilized and their growth was easier than on the external surface.

  20. Removal of phenol by activated alumina bed in pulsed high-voltage electric field

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-nan; MA Jun; YANG Shi-dong

    2007-01-01

    A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe2+. The removal rate of phenol could reach 72.1 % when air aeration flow rate was 1200 ml/min, and 88.2 % when 0.05 mmol/L Fe2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.

  1. Numerical and experimental investigation of the fracture behavior of shock loaded alumina

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Plate impact expeiments are conducted to investigate the dynamic behavior of alumina by using one stage light gas gun. A ve-locity interferometer system for reflectors (VISAR) is used to obtain Hugoniot elastic limit and the free surface velocity profile,which consists of an elastic wave followed immediately by a dispersive inelastic wave. The stress histories under different impact velocities are measured by in-material manganin gauges. Based on the experimental data a Hugoniot curve is fitted,which shows the compressive characteristics that alumina changes typically from elastic to "plastic" ,and under higher pressure it will be transferred to similar-fluid state. The turning point of the Hugoniot curve from a high pressure region to a low pressure region is about 11.4 GPa. The fracture process of alumina is simulated by way of finite element code. After the analysis of the fracture mechanism,the numerical results show an important role played by the nucleation and the growth of the cracks in the macro-scopic fracture of the alumina target. The numerical predictions of stress histories are compared with the experimental results,which indicates consistency between them.

  2. Chemical Stability of Titania and Alumina Thin Films Formed by Atomic Layer Deposition.

    Science.gov (United States)

    Correa, Gabriela C; Bao, Bo; Strandwitz, Nicholas C

    2015-07-15

    Thin films formed by atomic layer deposition (ALD) are being examined for a variety of chemical protection and diffusion barrier applications, yet their stability in various fluid environments is not well characterized. The chemical stability of titania and alumina thin films in air, 18 MΩ water, 1 M KCl, 1 M HNO3, 1 M H2SO4, 1 M HCl, 1 M KOH, and mercury was studied. Films were deposited at 150 °C using trimethylaluminum-H2O and tetrakis(dimethylamido)titanium-H2O chemistries for alumina and titania, respectively. A subset of samples were heated to 450 and 900 °C in inert atmosphere. Films were examined using spectroscopic ellipsometry, atomic force microscopy, optical microscopy, scanning electron microscopy, and X-ray diffraction. Notably, alumina samples were found to be unstable in pure water, acid, and basic environments in the as-synthesized state and after 450 °C thermal treatment. In pure water, a dissolution-precipitation mechanism is hypothesized to cause surface roughening. The stability of alumina films was greatly enhanced after annealing at 900 °C in acidic and basic solutions. Titania films were found to be stable in acid after annealing at or above 450 °C. All films showed a composition-independent increase in measured thickness when immersed in mercury. These results provide stability-processing relationships that are important for controlled etching and protective barrier layers.

  3. Removal of mercury from an alumina refinery aqueous stream.

    Science.gov (United States)

    Mullett, Mark; Tardio, James; Bhargava, Suresh; Dobbs, Charles

    2007-06-01

    Digestion condensate is formed as a by-product of the alumina refinery digestion process. The solution exhibits a high pH and is chemically reducing, containing many volatile species such as water, volatile organics, ammonia, and mercury. Because digestion condensate is chemically unique, an innovative approach was required to investigate mercury removal. The mercury capacity and adsorption kinetics were investigated using a number of materials including gold, silver and sulphur impregnated silica and a silver impregnated carbon. The results were compared to commercial sorbents, including extruded and powdered virgin activated carbons and a sulphur impregnated mineral. Nano-gold supported on silica (88% removal under batch conditions and 95% removal under flow conditions) and powdered activated carbon (91% under batch conditions and 98% removal under flow conditions) were the most effective materials investigated. The silver and sulphur impregnated materials were unstable in digestion condensate under the test conditions used.

  4. Synthesis of Cordierite from Rectorite-Talc-Alumina without Additives

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-hong; WU Jian-feng; HU Shu-guang

    2004-01-01

    Rectorite,Talc and alumina were used to obtain high-quality cordierite with stoichiometric composition (51.3 wt% SiO2,34.9 wt% Al2O3,13.8 wt% Al2O3).The water absorption,apparent porosity,bulk density,thermal expansion coefficient,crystalline phases and microstructure were tested by means of X-ray diffractometer(XRD),scanning electronic microscopy(SEM),Archimedes immersion technique,etc.This work systematically studied the synthesizing process of the cordierite.The result shows that the cordierite can be synthesized at a lower temperature and within a wider temperature range by using the rectorite as clay raw materials.

  5. NMR Revealed Activated Alumina-Water Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rui; ZHOU Yan; HU Kai; JI Zhen-ping; CHENG Gong-zhen

    2005-01-01

    Three different spin-lattice relaxation times (T1) of water were obtained in activated alumina-water slurry system, which indicate that there exist three states of water: bound water, pore water and bulk water. The chemical shift (δH) decreases as the amount of water added to the system increases due to the differences in contribution of these three states of water in the samples. The δH value for adsorbed water decreases nearly linearly and T1 increases with elevating temperature, which result from the decrease in the content of bound water by the increase in thermal motion.

  6. Simulation and experiment of substrate aluminum grain orientation dependent self-ordering in anodic porous alumina

    Science.gov (United States)

    Cheng, Chuan; Ng, K. Y.; Aluru, N. R.; Ngan, A. H. W.

    2013-05-01

    Recent experiments have indicated a strong influence of the substrate grain orientation on the self-ordering in anodic porous alumina. Anodic porous alumina with straight pore channels grown in a stable, self-ordered manner is formed on (001) oriented Al grain, while disordered porous pattern is formed on (101) oriented Al grain with tilted pore channels growing in an unstable manner. In this work, numerical simulation of the pore growth process is carried out to understand this phenomenon. The rate-determining step of the oxide growth is assumed to be the Cabrera-Mott barrier at the oxide/electrolyte (o/e) interface, while the substrate is assumed to determine the ratio β between the ionization and oxidation reactions at the metal/oxide (m/o) interface. By numerically solving the electric field inside a growing porous alumina during anodization, the migration rates of the ions and hence the evolution of the o/e and m/o interfaces are computed. The simulated results show that pore growth is more stable when β is higher. A higher β corresponds to more Al ionized and migrating away from the m/o interface rather than being oxidized, and hence a higher retained O:Al ratio in the oxide. Experimentally measured oxygen content in the self-ordered porous alumina on (001) Al is indeed found to be about 3% higher than that in the disordered alumina on (101) Al, in agreement with the theoretical prediction. The results, therefore, suggest that ionization on (001) Al substrate is relatively easier than on (101) Al, and this leads to the more stable growth of the pore channels on (001) Al.

  7. Chemical modification/grafting of mesoporous alumina with polydimethylsiloxane (PDMS)

    NARCIS (Netherlands)

    Pinheiro de Melo, A.F.; Nijmeijer, A.; Sripathi, V.G.P.; Winnubst, A.J.A.

    2015-01-01

    A method for polydimethylsiloxane grafting of alumina powders is described which involves chemical modification of the surface of mesoporous (5 nm) γ-alumina flakes with a linker (3-aminopropyltriethoxysilane: APTES), either by a solution phase (SPD) or a vapour phase (VPD) reaction, followed by PDM

  8. Development of Reproducing Alumina-Magnesia-Carbon Bricks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The reproducing alumina-magnesia-carbon bricks were prepared with the dumped bricks as starting materials. The bulk density, apparent porosity, crushing strength, modolus of rupture and slag resistance of the specimen were analyzed. The results show that the used refractories can be reused and recycled by the right method. The reproducing alumina-magnesia-carbon bricks with better abilities were prepared.

  9. Textural stability of titania–alumina composite membranes

    NARCIS (Netherlands)

    Kumar, Krishnankutty-Nair P.; Keizer, Klaas; Burggraaf, Anthonie J.

    1993-01-01

    Textural evolution (porosity reduction, pore and crystallite growth) in titania–alumina composite membranes has been studied using thermal analysis, X-ray diffraction, field emission scanning electron microscopy and N2 physisorption techniques. The presence of alumina in the membranes improved the t

  10. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010 Section 73.1010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried...

  11. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Science.gov (United States)

    2010-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this...

  12. Transformation of gray forest soils upon technogenic salinization and alkalization and subsequent rehabilitation in oil-producing regions of the southern Urals

    Science.gov (United States)

    Gabbasova, I. M.; Suleimanov, R. R.

    2007-09-01

    The technogenically induced salinization and alkalization (solonetzization) of gray forest soils results in their transformation into soils similar to natural solonchaks and solonetzes. Their density increases, the structure is disturbed, and the water stability of the aggregates becomes poorer. The humus content decreases, the nutrition regime is deteriorated, and the enzymatic activity is hindered. Under natural conditions, soil desalinization is seen within a ten-year-long period after its contamination with strongly saline oil-field waste water, while soil solonetzization remains very high. The soil properties are regenerated after application of an adequate rate of phosphogypsum and manure. Phosphogypsum applied alone causes a deterioration of the agrophysical properties as it produces an extremely high water stability of aggregates and strong soil compaction.

  13. Vacuum brazing of alumina ceramic to titanium for biomedical implants using pure gold as the filler metal

    Science.gov (United States)

    Siddiqui, Mohammad S.

    One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut (brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 x 10-8 atm-cc/ sec on a helium leak detector were measured. Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the

  14. Characterization of silane coated hollow sphere alumina-reinforced ultra high molecular weight polyethylene composite as a possible bone substitute material

    Indian Academy of Sciences (India)

    S Roy; S Pal

    2002-12-01

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites were characterized for mechanical properties using destructive and non-destructive ultrasonic testing methods. The physical properties of the composite were determined and compared with those of cortical bone.

  15. Thermal Shock Behaviour of Alumina-Iron Composites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thermal shock behaviour was investigated for two morphologically different composites comprising an alumina matrix and 20 vol. pct Fe particles for a wide range of quenching temperature differences (△T=100~800°C) and compared to a monolithic alumina. The retained strength and critical quenching temperature difference, △Tc, of the two composites were a significant improvement over the values for the respective monolithic alumina. Crack lengths and densities were shown to be greater for the alumina than for the two composites at all quenching temperature differences. The thermal shock resistance parameters for monolithic alumina and the two composites were calculated according to their mechanical and physical properties. The calculated results agree well with the experimental one and indicate possible explanations for the differences in thermal shock behaviour.

  16. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  17. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  18. Nanocrystalline particle coatings on alpha-alumina powders by a carbonate precipitation and thermal-assisted combustion route.

    Science.gov (United States)

    Kim, Sang Woo; Jung, Young Mi

    2007-11-01

    We have suggested ultrafine particle coating processes for preparing nanocrystalline particle coated alpha-alumina powders by a carbonate precipitation and thermal-assisted combustion route, which is environmentally friendly. The nanometric ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of alumina was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The synthetic crystalline size and morphology were greatly dependent on pH and temperature. By adding ammonium aluminum sulfate solution dispersed the alpha-alumina core particle in the ammonium hydrogen carbonate aqueous solution, nanometric AACH with a size of 5 nm was tightly bonded and uniformly coated on the core powder due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of aluminum oxide. The synthetic precursor rapidly converted to amorphous- and y-alumina phase without significant change in the morphological features through decomposition of surface complexes and thermal-assisted phase transformation. As a result, the nanocrystalline polymorphic particle coated alpha-alumina core powders with highly uniform distribution were prepared from the route of carbonate precipitation and thermal-assisted combustion.

  19. Combustion chemical vapor deposition (CCVD) of LaPO{sub 4} monazite and beta-alumina on alumina fibers for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, T.J.; Hendrick, M.R.; Shao, H.; Hornis, H.G.; Hunt, A.T. [MicroCoating Technol., Chamblee, GA (United States)

    1998-03-31

    This research used the low cost, open atmosphere combustion chemical vapor deposition (CCVD{sup SM}) method to efficiently deposit protective coatings onto alumina fibers (3M Nextel{sup TM}610) for use in ceramic matrix composites (CMCs). La-monazite (LaPO{sub 4}) and beta-alumina were the primary candidate debonding coating materials investigated. The coated fibers provide thermochemical stability, as well as desired debonding/sliding interface characteristics to the CMC. Dense and uniform La-phosphate coatings were obtained at deposition temperatures as low as 900-1000 C with minimal degradation of fibers. However, all of the {beta}-alumina phases required high deposition temperatures and, thus, could not be applied onto the Nextel{sup TM}610 alumina fibers. The fibers appeared to have complete and relatively uniform coatings around individual filaments when 420 and 1260 filament tows were coated via the CCVD process. Fibers up to 3 feet long were fed through the deposition flame in the laboratory of MicroCoating Technologies (MCT). TEM analyses performed at Wright-Patterson AFB on the CCVD coated fibers showed a 10-30 nm thick La-rich layer at the fiber/coating interface, and a layer of columnar monazite 0.1-1 {mu}m thick covered with sooty carbon of <50 nm thick on the outside. A single strength test on CCVD coated fibers performed by 3M showed that the strength value fell in the higher end of data from other CVD coated samples. (orig.) 7 refs.

  20. Generation of Porous Alumina Layers in a Polydimethylsiloxane/Hydrogen Peroxide Medium on Aluminum Substrate in Corona Discharges

    Directory of Open Access Journals (Sweden)

    A. Groza

    2014-01-01

    Full Text Available The porous alumina (Al2O3 layer obtained at the interface between polydimethylsiloxane/hydrogen peroxide medium and aluminum substrate under charged and neutral species injection produced in negative corona discharges in air at atmospheric pressure is analyzed by different methods in this paper. The scanning electron microscopy investigations showed the uniform distribution of the pores formed in the alumina layer and their columnar structures. Both energy dispersive X-ray spectroscopy (EDS and X-ray photoelectron spectroscopy (XPS measurements indicate that during the anodization process of the aluminum in the polydimethylsiloxane/hydrogen peroxide medium in corona discharge the incorporation of silicon in the structure of the alumina layer is possible.

  1. Oxidation and Thermal Shock Behavior of a Glass-Alumina Composite Coating on K38G Superalloy at 1000℃

    Institute of Scientific and Technical Information of China (English)

    Minghui Chen; Mingli Shen; Xin Wang; Shenglong Zhu; Fuhui Wang

    2012-01-01

    The glass-alumina composite coatings were successfully prepared on the K38G superalloy substrates.Their isothermal oxidation and thermal shock behavior at 1000 ℃ were characterized.With a post-annealing process at 850 ℃,the composite coatings possessed an improved protective effect for the alloy substrates from isothermal oxidation and a higher resistance to thermal shock.Crystallization from the glass matrix and interfacial reaction between the matrix and alumina inclusions,which caused the composites more refractory and tough,accounted for this improvement.The micromechanisms for the formation of oxidation results of spinel ZnCr_2O_4 were also discussed.

  2. Fabrication of Alumina Nanowires from Porous Alumina Membranes by Etching in Phosphoric Acid Solution

    Science.gov (United States)

    Wang, Xuehua; Li, Chengyong; Ma, Lianjiao; Cao, Hong; Zhang, Baohua

    Alumina nanowires (ANWs) with high aspect ratios were synthesized by the chemical etching of porous alumina membranes (PAMs) in phosphoric acid solution. The morphology and structure of ANWs were analyzed by SEM and XRD, respectively. The results showed that the typical features of ANWs are around 35 nm in diameter and around 20 μm in length, the crystalline structure of the ANWs was amorphous, which was in accordance with that of the PAMs. Furthermore, the morphology of the PAMs was characterized by AFM and SEM in detail. On the basis of AFM and SEM observations, a possible formation mechanism of ANWs was discussed, and the inhomogeneous of the dissolution between the triple points and the side walls was considered to be the essential factor deciding the formation of ANWs.

  3. Deformation Behaviour of Coarse Grain Alumina under Shock Loading

    Science.gov (United States)

    Gupta, Satish

    2013-06-01

    To develop better understanding of the shock wave induced deformation behavior of coarse grain alumina ceramics, and for measurement of its Hugoniot Elastic Limit (HEL), in-situ and recovery gas gun experiments have been carried out on coarse grain alumina (grain size ~ 10 μm), prepared in the form of discs (>99.9% TMD) by pressure-less sintering of alpha alumina powder at 1583 K. The HEL value of 1.9 GPa has been determined from the kink in the pressure history recorded using piezoresistance gauge and also from the free surface velocity history of the sample shocked to 9 GPa. The nano-indentation measurements on the alumina samples shocked to 6.5 GPa showed hardness value 15% lower than 21.3 GPa for unshocked alumina, and strong Indentation Size Effect (ISE); the hardness value was still lower and the ISE was stronger for the sample shocked to 12 GPa. The XRD measurements showed reduced particle size and increased microstrains in the shocked alumina fragments. SEM, FESEM and TEM measurements on shock treated samples showed presence of grain localized micro- and nano-scale deformations, micro-cleavages, grain-boundary microcracks, extensive shear induced deformations, and localized micro-fractures, etc. These observations led to the development of a qualitative model for the damage initiation and its subsequent growth mechanisms in shocked alumina. The work performed in collaboration with K.D. Joshi of BARC and A.K. Mukhopadhyay of CGCRI.

  4. Ballistic Performance of Alumina and Zirconia-toughened Alumina Against 7.62 Armour Piercing Projectile

    Directory of Open Access Journals (Sweden)

    S G. Savio

    2014-09-01

    Full Text Available A study was carried out to compare the ballistic performance of high purity alumina and zirconia-toughened alumina (ZTA using depth of penetration (DoP test configuration against 7.62 mm armour piercing (AP ammunition. The effect of tile thickness on the differential efficiency factor (DEF was studied for tile thickness in the range of 3 mm to 6 mm for alumina tiles and 3 mm to 5 mm for ZTA tiles. The DEF is found to increase as tile thickness increases. An analysis on the failed shots showed that the residual shot weight does not follow a single linear relationship with ceramic tile thickness unlike the residual DoP for all thicknesses of tiles. Post-ballistic analysis on ceramic powder for particle size distribution was carried out and the results are presented.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.477-483, DOI:http://dx.doi.org/10.14429/dsj.64.6745

  5. Anodisation with dynamic current control for tailored alumina coatings

    Science.gov (United States)

    Sieber, M.; Althöfer, I.; Höhlich, D.; Scharf, I.; Böttger, D.; Böttger, S.; Böttger, E.; Lampke, T.

    2016-03-01

    The anodic oxidation process is commonly used to refine the surface of aluminium and its alloys. Compared to the substrate, the alumina layers produced by anodising exhibit an increased hardness and chemical resistance. Thus, the corrosion and wear resistance are generally improved. The coatings are also electrically isolating and may serve decorative purposes. Applying a time-variant, dynamic electrical process control by pulse-current or current-steps is a promising approach to improve the coating properties, which is partially deployed in an industrial scale. In the present work, the influence of dynamic electrical process control on the coating properties is examined by means of a design of experiments (DOE). The effects of various electrolyte compositions and temperatures as well as processing time are considered with regard to coating thickness, hardness, wear resistance and the electrical energy consumption during the formation of the coatings. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  6. Alumina Paste Sublimation Suppression Barrier for Thermoelectric Device

    Science.gov (United States)

    Paik, Jong-Ah (Inventor); Caillat, Thierry (Inventor)

    2014-01-01

    Alumina as a sublimation suppression barrier for a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000K, is disclosed. The Zintl thermoelectric material may comprise Yb.sub.14MnSb.sub.11. The alumina may be applied as an adhesive paste dried and cured on a substantially oxide free surface of the Zintl thermoelectric material and polished to a final thickness. The sublimation suppression barrier may be finalized by baking out the alumina layer on the Zintl thermoelectric material until it becomes substantially clogged with ytterbia.

  7. Special requirements for alumina ceramic of ESG electrode bowl

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-an; XUE Kai; ZHANG Jia-tai; ZHANG Qiang

    2004-01-01

    At present ESG (Electrostatic Suspended Gyro) is the most precise inertia element in the world. The electrode bowl, which has direct effect on the precision of ESG, is a key part to ESG. Through the analysis of the function and characteristic of the electrode bowl in hollow rotor ESG and the present situation of new material development in the world, the alumina ceramic is regarded as the best material for the electrode bowl of hollow rotor ESG. By analyzing the present situation of alumina ceramic in the world, main technique requirements have been put forward for the alumina ceramic of ESG electrode bowl which is also fit for solid rotor ESG.

  8. Wenshan’s 800,000-ton Alumina Project Completed

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>On September 26,2012,the completion ceremony of the 800,000-ton alumina project was held at the alumina factory in Matang Industrial Park, Wenshan city,Yunnan.Wenshan’s 800,000-ton alumina project and its supporting mining construction projects have been listed as one of 20 major industrial construction projects of Yunnan. The project covers an area of approximately 5,500 mu,with an estimated total investment of RMB 4,987 million. It is invested and built

  9. The nature of the potassium compound acting as a promoter in iron-alumina catalysts for ammonia synthesis

    NARCIS (Netherlands)

    Ommen, van J.G.; Bolink, W.J.; Prasad, J.; Mars, P.

    1975-01-01

    The chemical form of the potassium promoter on an iron-alumina catalyst during ammonia synthesis has been studied by two methods, viz, (i) the measurement of the equilibrium constant of the process KNH2 + H2 KH + NH3, and (ii) chemical analysis of the used catalyst. The equilibrium constant measurem

  10. Fracture simulation for zirconia toughened alumina microstructure

    CERN Document Server

    Kim, Kyungmok; Forest, Bernard

    2013-01-01

    Purpose - The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures. Design/methodology/approach - A two-dimensional finite element model is developed with an actual $Al{_2}O{_3}$ - 10 vol% $ZrO{_2}$ microstructure. A bilinear, time-independent cohesive zone law is implemented for describing fracture behaviour of grain boundaries. Simulation conditions are similar to those found at contact between a head and a cup of hip prosthesis. Residual stresses arisen from the mismatch of thermal coefficient between grains are determined. Then, effects of a micro-void and contact stress magnitude are investigated with models containing residual stresses. For the purpose of simulating fatigue behaviour, cyclic loadings are applied to the models. Findings - Results show that crack density is gradually increased with increasing magnitude of contact stress or number of fatigue cycles. It is also identified that a micro-void brings about...

  11. Crystallography of Alumina-YAG-Eutectic

    Science.gov (United States)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  12. Extraction of Alumina from high-silica bauxite by hydrochloric acid leaching using preliminary roasting method

    Science.gov (United States)

    Valeev, D. V.; Mansurova, E. R.; Bychinskii, V. A.; Chudnenko, K. V.

    2016-02-01

    A process of dissolution Severoonezhsk deposit boehmite-kaolinite bauxite by hydrochloric acid, as well as the processes that occur during open-air calcination, were investigated. A dehydration process has been studied, and the basic phase transformation temperatures were identified. Temperature and time of calcination influence on bauxite dehydration speed were determined. It is shown that the preliminary calcination increases the extraction ratio of alumina into solution up to 89%. Thermodynamic modelling of physical and chemical processes of bauxite decomposition by hydrochloric acid and the basic forms of aluminium speciation in solution were obtained.

  13. Modeling High-Energy Ball Milling in the Alumina-Yttria System

    Science.gov (United States)

    Alkebro, J.; Bégin-Colin, S.; Mocellin, A.; Warren, R.

    2002-02-01

    Experimental results from high-energy ball milling of alumina-yttria powder mixtures have been analyzed with models collected from the literature. Depending on the milling conditions, either there is formation of an intermediate phase in the alumina-yttria system (yttrium aluminum perovskite, YAP), or the sample becomes mostly amorphous. Variations due to milling tool material can be accounted for by local models based on the Hertzian theory of elastic bodies, but the effects of changing mills are poorly accounted for by published models. Therefore, the concept of an impact frequency distribution over the energy spectrum is introduced as a tool for studying the characteristics of the mills. The pressure on the powder trapped between two colliding bodies has been found to be the factor deciding the outcome of the process. The threshold behavior of the system yields an amorphous structure for low pressures, and formation of YAP when impact pressures exceed the threshold value.

  14. Intense upconversion fluorescence in Tm 3+/Yb3+ codoped alumina lead borate glasses

    Science.gov (United States)

    Krishna Murthy Goud, K.; Shekhar Reddy, M. Chandra; Appa Rao, B.

    2016-09-01

    The Tm3+/Yb3+ codoped alumina lead borate glasses were prepared by the conventional melt quenching technique. Optical absorption and FTIR spectra were recorded. The upconversion fluorescence spectra exhibited weak blue (480 nm) and intense red (660 nm) emissions due to 1G4 → 3H6 and 1G4 → 3H4 transitions, respectively. The results concluded that both emissions are due to three photon absorption process. It has been observed that in the upconversion efficiency increases with the increase in the concentration of Yb3+ ions. The strong red upconversion fluorescence indicate that Tm3+/Yb3+ codoped alumina lead borate glasses can be used as potential host material for upconversion lasers.

  15. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  16. A Reliable Method for the Preparation of Multiporous Alumina Monoliths by Ice-Templating

    Directory of Open Access Journals (Sweden)

    Jérémy Dhainaut

    2016-03-01

    Full Text Available Alumina supports presenting a bimodal porosity are generally advantageous for the conversion of bulky molecules such as found in biomass, refining, and petrochemistry. However, shaping of such materials, while controlling pores size and orientation, proves to be hard. This problem can be tackled by using a simple method involving sol-gel chemistry, surfactant self-assembly, and ice-templating. Herein, a systematic study of the formulation and process parameters’ influence on the final material properties is presented. This protocol results in the repeatable preparation of centimeter-sized alumina monoliths presenting a uni-directional macroporosity and structured mesopores. These monoliths should be of particular interest in high flow rate catalytic applications.

  17. Effect of surface roughness on grain growth and sintering of alumina

    Indian Academy of Sciences (India)

    Padmaja Parameswaran Nampi; Shoichi Kume; Yuji Hotta; Koji Watari

    2011-07-01

    The production of ceramic bodies with less surface roughness is industrially important when one considers the aspect of final machining processes. Hence an attempt have been made to study the variation in surface roughness parameters (a, y, z) of alumina having three different kinds of roughness features at different sintering temperatures. Variation in surface roughness properties are also correlated with grain size. z shows significant difference between fine and intermediate surfaces, hence predicts small difference in their microstructural features. As a general trend, average grain size increases with increase in sintering temperature, but wide distribution of grains with enhanced non-uniform grain growth is observed when the surface is coarse. Hence, creation of fine surface in the green body is necessary for homogeneously distributed grains with controlled uniform grain growth. The final roughness and grain size of the sintered alumina depend on the initial surface roughness of the green body.

  18. Aqueous Tape Casting of Alumina using an Emulsion of Urethane Polymer

    Science.gov (United States)

    Takaishi, T.; Inada, H.; Sato, M.; Sano, S.; Kawakami, S.

    2011-05-01

    From the viewpoint of solving environmental problems, changeover from organic solvent-based system to water-based system in tape casting process has been required. The effects of organic additives on the rheological properties of water-based alumina slurries were investigated. The aqueous slurries were prepared from low-soda alumina powder, deionized water, ammonium salt of polycarboxylic acid type dispersant, emulsion type urethane polymer binder and defoamer. By means of the zeta potential measurement, the optimum content of added dispersant was estimated. Furthermore, precipitation test, viscosity measurement and so on were performed. From these measurements, it was decided that optimum amounts of dispersant and binder were 0.8 mass% and 12 mass%, respectively. Well-dispersed and high solid content slurry gave good quality green sheets, and high density sintered bodies were obtained.

  19. Infiltration techniques for suppressing grain growth during the densification of submicron and nanophase alumina composites

    Science.gov (United States)

    Vernon, Deborah Marshall

    Grain growth control during the final stages of densification is an issue with extreme technological significance. In the last decade, nanophase ceramic starting powders have become commercially available, and in order to take full advantage of the unique properties nanophase ceramics potentially offer, grain growth control during processing of these materials must be addressed. In this research study the author addresses the topic of suppression of grain growth in submicron and nanophase alumina using novel processing techniques. The approach used to decrease grain boundary motion during processing involves the addition of an intermediate step between initial powder pressing and sintering. During the intermediate step either solute amounts of an infiltrant are incorporated along grain boundary junctions through a vapor-phase technique or, second phase inclusions are formed within the pore structure of the ceramic porous compacts via a liquid-phase technique. Using the vapor-phase technique, silicon nitride was introduced into porous submicron and nanophase alumina compacts. It was determined that silicon nitride in amounts below the solubility limit is an effective grain growth inhibitor. In the submicron pellets studies, three regions of grain growth were observed: abnormal, suppressed, and normal. Using a mathematical model developed for simulating the vapor infiltration process, a range of silicon concentrations (70 to 50 ppm) was determined to correspond to the suppressed grain growth region. In the nanophase silicon nitride infiltrated pellets, suppression of grain growth was observed throughout the infiltrated specimen, however the suppression effects were not great enough to retain the nanosized nature of the alumina grains. Using the liquid-phase technique, zirconia particles were formed within the pore structure of submicron and nanophase alumina compacts. A comparison between suppression effects in compacts created by liquid-phase and by powder

  20. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  1. Switchable hydrophobic-hydrophilic layer obtained onto porous alumina by plasma-enhanced fluorination

    Institute of Scientific and Technical Information of China (English)

    A.; TRESSAUD; C.; LABRUGèRE; E.; DURAND; C.; BRIGOULEIX; H.; ANDRIESSEN

    2009-01-01

    Conventional lithographic printing processes using porous alumina for offset applications generally use "wet" routes. Recently "dry" processes have been developed which are based on a heat-induced hydrophilic/oleophilic conversion of one or more layers of the coating so that a stronger affinity to-wards ink or water fountain is created at the exposed areas with respect to the surface of the unex-posed coating. Treatments involving rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: room-temperature reactions, chemical modi-fications limited to surface only without changing the bulk properties, possible non-equilibrium reac-tions. The influence of PEF treatments on porous alumina layer used in printing plates has been tested with various fluorinated gases (CF4, C3F8 and C4F8) and characterized by XPS. The hydrophobic prop-erties of the fluorinated layer have been deduced from contact angle measurements. Using C4F8 rf-PEF treatment, the outmost surface of the hydrophilic alumina substrate used for lithographic printing is hydrophobized, or in other words, the hydrophilic substrate is converted into a support with hydro-phobic properties. Once being hydrophobized, the surface layer may be rendered hydrophilic using a heat pulse, thus giving rise to switchable hydrophobic-hydrophilic properties of the material.

  2. Characterization of the alumina film with cerium doped on the iron-aluminide diffusion coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Q., E-mail: zhanqin1983@163.com; Yang, H.G.; Zhao, W.W.; Yuan, X.M.; Hu, Y.

    2013-11-15

    An iron-aluminide layer with a thin alumina film on the top as a composite tritium permeation barrier (TPB) coating was characterized under different oxidation conditions. The TPB coating was prepared initially on a China Low Activation Ferritic-Martensitic (CLAM) steel by a pack cementation aluminizing process and then an alumina film was formed on the surface of this iron-aluminide diffusion layer by an oxidizing process. To modify the properties of the FeAl/Al{sub 2}O{sub 3} composite TPB coatings, the rare earth element (cerium) was introduced as a dopant while oxidizing. Characterization showed that a continuous oxide scale with a thickness of about 300–400 nm was formed on the FeAl diffusion layer. The film was mainly composed of Al{sub 2}O{sub 3} doped with a little CeO{sub 2}. In addition, the concentration of α-Al{sub 2}O{sub 3} increased with elevated temperature while oxidizing. The phase transformation behavior of alumina scale on the surface of an iron-aluminide layer was studied in this paper.

  3. Switchable hydrophobic-hydrophilic layer obtained onto porous alumina by plasma-enhanced fluorination

    Institute of Scientific and Technical Information of China (English)

    A.TRESSAUD; C.LABRUG(E)RE; E.DURAND; C.BRIGOULEIX; H.ANDRIESSEN

    2009-01-01

    Conventional lithographic printing processes using porous alumina for offset applications generally use "wet" routes. Recently "dry" processes have been developed which are based on a heat-induced hydrophilic/oleophilic conversion of one or more layers of the coating so that a stronger affinity to-wards ink or water fountain is created at the exposed areas with respect to the surface of the unex-posed coating. Treatments involving rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: room-temperature reactions, chemical modi-fications limited to surface only without changing the bulk properties, possible non-equilibrium reac-tions. The influence of PEF treatments on porous alumina layer used in printing plates has been tested with various fluorinated gases (CF4, C3F8and C4F8) and characterized by XPS. The hydrophobic prop-erties of the fluorinated layer have been deduced from contact angle measurements. Using C4Fs rf-PEF treatment, the outmost surface of the hydrophilic alumina substrate used for lithographic printing is hydrophobized, or in other words, the hydrophilic substrate is converted into a support with hydro-phobic properties. Once being hydrophobized, the surface layer may be rendered hydrophilic using a heat pulse, thus giving rise to switchable hydrophobic-hydrophilic properties of the material.

  4. Recovery of alkali and alumina from Bayer red mud by the calcification-carbonation method

    Science.gov (United States)

    Zhu, Xiao-feng; Zhang, Ting-an; Wang, Yan-xiu; Lü, Guo-zhi; Zhang, Wei-guang

    2016-03-01

    Red mud produced in the Bayer process is a hazardous solid waste because of its high alkalinity; however, it is rich in valuable components such as titanium, iron, and aluminum. In this study, a novel calcification-carbonation method was developed to recover alkali and alumina from Bayer red mud under mild reaction conditions. Batch experiments were performed to evaluate the potential effects of important parameters such as temperature, amount of CaO added, and CO2 partial pressure on the recovery of alkali and alumina. The results showed that 95.2% alkali and 75.0% alumina were recovered from red mud with decreases in the mass ratios of Na2O to Fe2O3 and of Al2O3 to Fe2O3 from 0.42 and 0.89 to 0.02 and 0.22, respectively. The processed red mud with less than 0.5wt% Na2O can potentially be used as a construction material.

  5. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.

    Science.gov (United States)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-19

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  6. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting

    Science.gov (United States)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-01

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  7. Infrared Spectroscopy Studies on sol-gel prepared alumina Powders

    Directory of Open Access Journals (Sweden)

    Majid JAFAR TAFRESHI

    2015-03-01

    Full Text Available Gamma-alumina fine particles were synthesized by sol-gel process. Aluminum tri-sec-butoxide (ATB, anhydrous ethyl alcohol (EtOH, water (H2O and hydrochloric acid (HCl were used as starting materials. Different samples were synthesized with EtOH/ATB=60/1, HCl/ATB=0.08/1 and H2O/ATB=1/1 ratios and calcined at different temperatures. Molar ratios of H2O/ATB (from 1 to 25 and HCl/ATB (from 0.08 to 0.4 were changed for some other samples, during synthesizing process. The products were characterized by both XRD and FTIR measurements. Studies were carried out on the effect of calcination temperature and change of H2O/ATB and HCl/ATB ratios on structure and processes involved in phase transformations.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.4872

  8. Alkalic marine tephra layers at ODP Site 1241 - Major explosive eruptions from an oceanic volcano in a pre-shield stage?

    Science.gov (United States)

    Schindlbeck, J. C.; Kutterolf, S.; Freundt, A.; Andrews, G. D. M.; Wang, K.-L.; Völker, D.; Werner, R.; Frische, M.; Hoernle, K.

    2016-12-01

    We report a series of fourteen marine tephra layers that are the products of large explosive eruptions of Subplinian to Plinian intensities and magnitudes (VEI > 4) from Cocos Island, Costa Rica. Cocos Island is a volcanic island in the eastern Central Pacific Ocean 500 km offshore Costa Rica, and is situated on the northwestern flank of the aseismic Cocos Ridge. Geochemical fingerprinting of Pleistocene ( 2.4-1.4 Ma) marine tephra layers from Ocean Drilling Project (ODP) Leg 202 Site 1241 using major and trace element compositions of volcanic glass shards demonstrates unequivocally their origin from Cocos Island rather than the Galápagos Archipelago or the Central American Volcanic Arc (CAVA). Cocos Island and the adjacent seamounts of the Cocos Island Province have alkalic compositions and formed on young (≤ 3 Ma) oceanic crust from an extinct spreading ridge bounded by a transform fault against the older and thicker crust of the aseismic Cocos Ridge. Cocos Island has six times the average volume of the adjacent seamounts although all appear to have formed during the 3-1.4 Ma time period. Cocos Island lies closest to the transform fault and we explain its excessive growth by melts rising from garnet-bearing mantle being deflected from the thick Cocos Ridge lithosphere toward the thinner lithosphere on the other side of the transform, thus enlarging the melt catchment area for Cocos Island compared to the seamounts farther away from the transform. This special setting favored growth above sea level and subaerial explosive eruptions even though the absence of appropriate compositions suggests that the entirely alkalic Cocos Island (and seamounts) never evolved through the productive tholeiitic shield stage typical of other Pacific Ocean islands, possibly because melt production rates remained too small. Conditions of magma generation and ascent resembled Hawaiian pre-shield volcanoes but persisted for much longer (< 1 m.y.) and formed evolved, trachytic magmas

  9. Fused Cast Alumina Refractory Products for Glass Tank Furnace

    Institute of Scientific and Technical Information of China (English)

    SHEN Keyin

    2006-01-01

    @@ 1 Subject and Scope The standard specifies the requirement, testing method, inspection rule and requirements for the labeling, packing, shipping and storing of the fused cast alumina refractory products for glass tanks.

  10. High Alumina Refractory Bricks for Electric Arc Furnace Roofs

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 1 Scope This standard specifies the sort, technical requirement, test method, inspection rules, marking, packing, transportation, storage and quality certification of high alumina refractory bricks for electric arc furnace roofs.

  11. Superhydrophobic alumina surface based on stearic acid modification

    Energy Technology Data Exchange (ETDEWEB)

    Feng Libang, E-mail: lepond@hotmail.com [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China); Zhang Hongxia; Mao Pengzhi; Wang Yanping; Ge Yang [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2011-02-15

    A novel superhydrophobic alumina surface is fabricated by grafting stearic acid layer onto the porous and roughened aluminum film. The chemical and phase structure, morphology, and the chemical state of the atoms at the superhydrophobic surface were investigated by techniques as FTIR, XRD, FE-SEM, and XPS, respectively. Results show that a super water-repellent surface with a contact angle of 154.2{sup o} is generated. The superhydrophobic alumina surface takes on an uneven flowerlike structure with many nanometer-scale hollows distribute in the nipple-shaped protrusions, and which is composed of boehmite crystal and {gamma}-Al{sub 2}O{sub 3}. Furthermore, the roughened and porous alumina surface is coated with a layer of hydrophobic alkyl chains which come from stearic acid molecules. Therefore, both the roughened structure and the hydrophobic layer endue the alumina surface with the superhydrophobic behavior.

  12. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices.

  13. High Alumina Refractory Mortars GB/T 2994-2008

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Chai Junlan

    2009-01-01

    @@ 1 Scope This standard specifies the classification, techni-cal requirements, test methods, quality appraisal pro-cedure, packing, marking, transportation, storage and quality certificate of high alumina refractory mortars.

  14. Electronic Structure of High-Pressure Alumina Polymorphs

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Lei; DUAN Wen-Hui; GU Bing-Lin

    2000-01-01

    Electronic properties are investigated for three alumina polymorphs (corundum, Rb2 O3 (Ⅱ) and Pbnm perovskite),which are predicted as the stable structures under different pressure range, by means of the first-principles molecular dynamics method within local density functional framework. The similarity in electronic properties of the polymorphs of alumina is observed. The effect of possible phase transitions on ruby (Cr+3-doped Al2 O3)fluorescences is discussed.

  15. CSL grain boundary distribution in alumina and zirconia ceramics

    OpenAIRE

    Vonlanthen, Pierre; Grobéty, Bernard

    2008-01-01

    The distributions of general and coincidence site lattice (CSL) grain boundaries (GBs) in texture-free alumina and zirconia ceramics sintered at two different temperatures were investigated based on electron backscatter diffraction (EBSD) measurements. Results were compared with the distributions obtained from random 2D spatial models and with calculated random distributions reported in the literature. All alumina samples independent on sintering temperature show the same characteristic devia...

  16. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  17. Porous alumina and zirconia ceramics with tailored thermal conductivity

    Science.gov (United States)

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, J.

    2012-11-01

    The thermal conductivity of porous ceramics can be tailored by slip casting and uniaxial dry pressing, using either fugitive pore formers (saccharides) or partial sintering. Porous alumina and zirconia ceramics have been prepared using appropriate powder types (ungranulated for casting, granulated for pressing) and identical firing regimes (but different maximum temperatures in the case of partial sintering). Thermal diffusivities have been measured by the laser- and xenon-flash method and transformed into relative thermal conductivities, which enable a temperature-independent comparison between different materials. While the porosity can be controlled in a similar way for both materials when using pore formers, partial sintering exhibits characteristic differences between alumina and zirconia (for alumina porosities below 45 %, full density above 1600 °C, for zirconia porosities below 60 %, full density above 1300 °C). The different compaction behavior of alumina and zirconia (porosity after pressing 0.465 and 0.597, respectively) is reflected in the fact that for alumina the relative conductivity data of partially sintered materials are below the exponential prediction, while for zirconia they coincide with the latter. Notwithstanding these characteristic differences, for both alumina and zirconia it is possible to tailor the thermal conductivity from 100 % down to approx. 15 % of the solid phase value.

  18. Procoagulant behavior and platelet microparticle generation on nanoporous alumina.

    Science.gov (United States)

    Ferraz, Natalia; Hong, Jaan; Karlsson Ott, Marjam

    2010-05-01

    In the present work, we have investigated platelet microparticle (PMP) generation in whole blood after contact with nanoporous alumina. Alumina membranes with pore sizes of 20 and 200 nm in diameter were incubated with whole blood and the number of PMP in the fluid phase was determined by flow cytometry. The role of the complement system in PMP generation was investigated using an analog of the potent complement inhibitor compstatin. Moreover, the procoagulant activity of the two pore size membranes were compared by measuring thrombin formation. Results indicated that PMP were not present in the fluid phase after whole blood contact with either of the alumina membranes. However, scanning electron microscope micrographs clearly showed the presence of PMP clusters on the 200 nm pore size alumina, while PMP were practically absent on the 20 nm membrane. We probed no influence of complement activation in PMP generation and adhesion and we hypothesize that other specific material-related protein-platelet interactions are taking place. A clear difference in procoagulant activity between the membranes could also be seen, 20 nm alumina showed 100% higher procoagulant activity than 200 nm membrane. By combining surface evaluation and flow cytometry analyses of the fluid phase, we are able to conclude that 200 nm pore size alumina promotes PMP generation and adhesion while the 20 nm membrane does not appreciably cause any release or adhesion of PMP, thus indicating a direct connection between PMP generation and nanoporosity.

  19. Preparation and characterization of alumina hollow fiber membranes

    Institute of Scientific and Technical Information of China (English)

    Tao WANG; Yuzhong ZHANG; Guangfen LI; Hong LI

    2009-01-01

    With the rapid development of membrane technology in water treatment, there is a growing demand for membrane products with high performance. The inorganic hollow fiber membranes are of great interest due to their high resistance to abrasion, chemical/thermal degradation, and higher surface area/volume ratio therefore they can be utilized in the fields of water treatment. In this study, the alumina (Al2O3) hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The organic binder solution (dope) containing suspended Al2O3 powders was spun to a hollow fiber precursor, which was then sintered at elevated tempera-tures in order to obtain the Al2O3 hollow fiber membrane. The dope solution consisted ofpolyethersulfone (PES), N-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP), which were used as polymer binder, solvent and additive, respectively. The prepared Al2O3 hollow fiber membranes were characterized by a scanning electron microscope (SEM) and thermal gravimetric analysis (TG). The effects of the sintering temperature and Al2O3/PES ratios on the morphological structure, pure water flux, pore size and porosity of the membranes were also investigated extensively. The results showed that the pure water flux, maximum pore size and porosity of the prepared membranes decreased with the increase in Al2O3/PES ratios and sintering temperature. When the Al2O3/PES ratio reached 9, the pure water flux and maximum pore size were at 2547L/m2·h and 1.4μm, respectively. Under 1600℃ of sintering temperature, the pure water flux and maximum pore size reached 2398 L/(m2·h) and 2.3 μm, respectively. The results showed that the alumina hollow fiber membranes we prepared were suitable for the microfiltration process. The morphology investigation also revealed that the prepared Al2O3 hollow fiber membrane retained its'asymmetric structure even after the sintering process.

  20. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions.

    Science.gov (United States)

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-03-01

    The oxidative dissolution of pyrite is an important process in the redox recycling of iron (Fe) and is well-known for its role in the formation of acid mine drainage (AMD), which is considered as the most serious and widespread problem after the closure of mines and mineral processing operations. Because this process requires the movement of electrons, common metal oxides in nature that have either semiconducting (e.g., hematite) or insulating (e.g., alumina) properties may have strong effects on it. In this study, changes in the electrochemical behavior of pyrite in the presence of hematite and alumina were investigated. Results showed that the formation of surface-bound species directly influenced the anodic and cathodic half-cell reactions as well as the transfer of electrons between these sites. Pyrite pretreated in the air became anodically more reactive than that pretreated in oxygenated water, but the type of oxidizing media had little effect on the cathodic half-cell reaction. The presence of hematite and alumina during pretreatment also had strong effects on the electrochemical properties of pyrite. Chronoamperometry measurements suggest that hematite and alumina enhanced the anodic half-cell reaction but suppressed the cathodic half-cell reaction of pyrite oxidation. Increased anodic half-cell reaction in the presence of hematite could be attributed to electron "bridging" and catalytic effects of this mineral. In contrast, the effects of alumina on the anodic half-cell reaction were indirect and could be explained by the formation of Fe(3+)-oxyhydroxide surface species during pretreatment. Suppression of the cathodic half-cell reaction by both minerals was attributed to their "protective" effect on cathodic sites. Our results also point to the cathodic half-cell reaction as the rate determining-step of the overall oxidative dissolution process.

  1. Influence of additives on the stability of the phases of alumina; Influencia de aditivos na estabilidade das fases da alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D.C.C.; Gouvea, D., E-mail: deisedorosario@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Processos Ceramicos

    2011-07-01

    Problems with the stability of gamma alumina in catalytic reactions have been solved with the inclusion of additives during the synthesis of alumina. These additives stabilize the temperature of phase transition allowing the use of metastable alumina at high temperatures, but the mechanisms of action of additives are not well defined. It is known that each family of additive or additives behaves in different ways for this stabilization. This work aimed to study the performance of MgO and ZrO{sub 2}, respectively at different concentrations in alumina synthesized via Pechini. The samples were analyzed by DSC, X-ray diffraction, measurement of specific surface area by BET analysis, and infrared analysis. The results showed an increase in transition temperature for both additives, and a different changes for specific surface area, showing that MgO and ZrO{sub 2} work on improving the stability but with distinct mechanisms. (author)

  2. Formation of a Network Structure in the Gaseous Reduction of Magnetite Doped with Alumina

    Science.gov (United States)

    Kapelyushin, Yury; Sasaki, Yasushi; Zhang, Jianqiang; Jeong, Sunkwang; Ostrovski, Oleg

    2017-04-01

    Reduction of un-doped magnetite is developed topochemically with the formation of a dense iron shell. However, the reduction of alumina-doped magnetite to wüstite proceeds with the formation of a network-like structure which consists of criss-crossed horizontal and vertical plates of wüstite. Reduction of magnetite includes the conversion of Fe3+ to Fe2+ and the movement of iron cations from the tetrahedral sites on the {400} and {220} planes of magnetite to the octahedral sites on the {200} planes of wüstite. Alumina has a negligibly small solubility in wüstite. In the reduction of magnetite doped with Al2O3, rejected Al3+ cations from wüstite diffuse to the magnetite-hercynite solid solution. Enrichment of the Fe3O4-FeAl2O4 solution with alumina in the vicinity of the reduction interface restricts the growth of {220} planes of wüstite and nucleation of {220} planes adjusted to the existing planes, preventing the merging of wüstite plates during the reduction process. Reduction of magnetite from the magnetite-hercynite solid solution practically stops when the Al3+ content at the interface approaches the solubility limit. Wüstite in the separated plates is reduced further to iron.

  3. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications.

    Science.gov (United States)

    Shirazi, F S; Mehrali, M; Oshkour, A A; Metselaar, H S C; Kadri, N A; Abu Osman, N A

    2014-02-01

    The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0-50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500-700nm after sintering process.

  4. Effect of Titania Additive on Structural and Mechanical Properties of Alumina-Fluorapatite Composites

    Institute of Scientific and Technical Information of China (English)

    Awatef Guidara; Kamel Chaari; Jamel Bouaziz

    2012-01-01

    Mechanical properties of alumina-fluorapatite composites with different titania additive amounts (0, 0.5, 1, 1.4, 2, 3, 4 and 5 wt%) have been investigated between 1200 and 1600℃. The optimum values of densification and mechanical properties of composites have been reached with 1.4 wt% of titania after the sintering process at 1500℃ for 1 h. Thus, the rupture strength of alumina-26.52 wt% Fap-1.4 wt% TiO2 reaches 75 MPa. At higher temperature and beyond 1.4 wt% TiO2 ,the densification and mechanical properties were hindered by the formation of both intergranular porosity and secondary phase. X-ray diffraction (XRD) analysis of alumina-Fap-TiO2 composites shows the formation of aluminium titanate (Al2O3-TiO2:Al2TiO5 ). The 27Al magic angle scanning nuclear magnetic resonance analysis of Al2O3-Fap-TiO2 composites reveals the presence of octahedral and pentahedral aluminium and novel environment relative to tetrahedral aluminium sites.

  5. Formation of a Network Structure in the Gaseous Reduction of Magnetite Doped with Alumina

    Science.gov (United States)

    Kapelyushin, Yury; Sasaki, Yasushi; Zhang, Jianqiang; Jeong, Sunkwang; Ostrovski, Oleg

    2017-01-01

    Reduction of un-doped magnetite is developed topochemically with the formation of a dense iron shell. However, the reduction of alumina-doped magnetite to wüstite proceeds with the formation of a network-like structure which consists of criss-crossed horizontal and vertical plates of wüstite. Reduction of magnetite includes the conversion of Fe3+ to Fe2+ and the movement of iron cations from the tetrahedral sites on the {400} and {220} planes of magnetite to the octahedral sites on the {200} planes of wüstite. Alumina has a negligibly small solubility in wüstite. In the reduction of magnetite doped with Al2O3, rejected Al3+ cations from wüstite diffuse to the magnetite-hercynite solid solution. Enrichment of the Fe3O4-FeAl2O4 solution with alumina in the vicinity of the reduction interface restricts the growth of {220} planes of wüstite and nucleation of {220} planes adjusted to the existing planes, preventing the merging of wüstite plates during the reduction process. Reduction of magnetite from the magnetite-hercynite solid solution practically stops when the Al3+ content at the interface approaches the solubility limit. Wüstite in the separated plates is reduced further to iron.

  6. Effect of alumina composition and surface integrity in alumina/epoxy composites on the ultrasonic attenuation properties.

    Science.gov (United States)

    Cho, Eikhyun; Park, Gwanwoo; Lee, Jae-Wan; Cho, Sung-Min; Kim, Taekyung; Kim, Joongeok; Choi, Wonjoon; Ohm, Won-Suk; Kang, Shinill

    2016-03-01

    We report a method of fabricating backing blocks for ultrasonic imaging transducers, using alumina/epoxy composites. Backing blocks contain scatterers such as alumina particles interspersed in the epoxy matrix for the effective scattering and attenuation of ultrasound. Here, the surface integrity can be an issue, where the composite material may be damaged during machining because of differences in strength, hardness and brittleness of the hard alumina particles and the soft epoxy matrix. Poor surface integrity results in the formation of air cavities between the backing block and the piezoelectric element upon assembly, hence the increased reflection off the backing block and the eventual degradation in image quality. Furthermore, with an issue of poor surface integrity due to machining, it is difficult to increase alumina as scatterers more than a specific mass fraction ratio. In this study, we increased the portion of alumina within epoxy matrix by obtaining an enhanced surface integrity using a net shape fabrication method, and verified that this method could allow us to achieve higher ultrasonic attenuation. Backing blocks were net-shaped with various mass fractions of alumina to characterize the formability and the mechanical properties, including hardness, surface roughness and the internal micro-structure, which were compared with those of machined backing blocks. The ultrasonic attenuation property of the backing blocks was also measured.

  7. Mechanical properties of alumina porcelain during heating

    Science.gov (United States)

    Šín, Peter; Podoba, Rudolf; ŠtubÅa, Igor; Trník, Anton

    2014-11-01

    The mechanical strength and Young's modulus of green alumina porcelain (50 wt. % of kaolin, 25 wt. % of Al2O3, and 25 wt. % of feldspar) were measured during heating up to 900 °C and 1100 °C, respectively. To this end, we used the three point-bending method and modulated force thermomechanical analysis (mf-TMA). The loss liberation - of the physically bound water (20 - 250 °C) strengthens the sample and Young's modulus increases its values significantly. The dehydroxylation that takes place in the range of 400 - 650 °C causes a slight decrease in Young's modulus. On the other hand, the mechanical strength slightly increases in this temperature range, although it has a sudden drop at 420 °C. Beyond the dehydroxylation range, above 650 °C, both Young's modulus and mechanical strength increase. Above 950 °C, a sharp increase of Young's modulus is caused by the solid-state sintering and the new structure created by the high-temperature reactions in metakaolinite.

  8. Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions

    CERN Document Server

    Witharana, Sanjeeva; Xu, Dan; Lai, Xiaojun; Ding, Yulong

    2012-01-01

    Nanoparticle suspensions (also called nanofluids) are often polydisperse and tend to settle with time. Settling kinetics in these systems are known to be complex and hence challenging to understand. In this work, polydisperse spherical alumina (Al2O3) nanoparticles in the size range of ~10-100nm were dispersed in water and examined for aggregation and settling behaviour near its isoelectric point (IEP). A series of settling experiments were conducted and the results were analysed by photography and by Small Angle X-ray Scattering (SAXS). The settling curve obtained from standard bed height measurement experiments indicated two different types of behaviour, both of which were also seen in the SAXS data. But the SAXS data were remarkably able to pick out the rapid settling regime as a result of the high temporal resolution (10s) used. By monitoring the SAXS intensity, it was further possible to record the particle aggregation process for the first time. Optical microscopy images were produced on drying and drie...

  9. Sinter-hipping of zirconia and alumina/zirconia composites

    Energy Technology Data Exchange (ETDEWEB)

    Solomah, A.G. (Kernforschungsanlage Juelich GmbH (Germany, F.R.). Inst. fuer Chemische Technologie)

    1989-01-01

    Pressureless sintered yttria-tetragonal zirconia polycrystals (Y-TZP) and yttria-partially stabilized zirconia (X-PSZ) containing different compositions of alumina (Y-PSZ/Al{sub 2}O{sub 3}) were hot-isostatically pressed, as a post-sintering processing technique, producing near theoretically dense materials (> 99.5% TD). Hipping has no measurable effect on hardness (H) and fracture toughness (K{sub IC}= of Y-TZP and Y-PSZ/Al{sub 2}O{sub 3} composites, as they were determined using Vicker's indentation technique. No changes in the crystalline phases due to hiping were observed. Low-temperature annealing has caused severe degradation to Y-TZP while for Y-PSZ/Al{sub 2}O{sub 3} composites no surface cracking was observed, but a loss in K{sub IC} was noticed, depending on Al{sub 2}O{sub 3} content. High-temperature annealing has insignificant effect on H and K{sub IC} of Y-TZP, while a loss in K{sub IC} was observed for Y-PSZ/Al{sub 2}O{sub 3} composites due to the increase in the mole fraction of cubic phase of zirconia with consistent decrease in the fraction of tetragonal phase as it has been confirmed by X-ray diffraction. (orig.).

  10. Alumina-on-alumina total hip replacement for femoral neck fracture in healthy patients

    Directory of Open Access Journals (Sweden)

    Moretti Lorenzo

    2011-02-01

    Full Text Available Abstract Background Total hip replacement is considered the best option for treatment of displaced intracapsular fractures of the femoral neck (FFN. The size of the femoral head is an important factor that influences the outcome of a total hip arthroplasty (THA: implants with a 28 mm femoral head are more prone to dislocate than implants with a 32 mm head. Obviously, a large head coupled to a polyethylene inlay can lead to more wear, osteolysis and failure of the implant. Ceramic induces less friction and minimal wear even with larger heads. Methods A total of 35 THAs were performed for displaced intracapsular FFN, using a 32 mm alumina-alumina coupling. Results At a mean follow-up of 80 months, 33 have been clinically and radiologically reviewed. None of the implants needed revision for any reason, none of the cups were considered to have failed, no dislocations nor breakage of the ceramic components were recorded. One anatomic cementless stem was radiologically loose. Conclusions On the basis of our experience, we suggest that ceramic-on-ceramic coupling offers minimal friction and wear even with large heads.

  11. Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing

    Science.gov (United States)

    Farjam, Aslan; Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2015-10-01

    In this work, aluminum and aluminum-alumina powder mixtures were used to produce pyramidal fin arrays on aluminum substrates using cold spray as an additive manufacturing process. Using aluminum-alumina mixtures instead of pure aluminum powder could be seen as a cost-effective measure, preventing nozzle clogging or the need to use expensive polymer nozzles that wear out rapidly during cold spray. The fin geometries that were produced were observed using a 3D digital microscope to determine the flow passages width and fins' geometric details. Heat transfer and pressure drop tests were carried out using different ranges of appropriate Reynolds numbers for the sought commercial application to compare each fin array and determine the effect of alumina content. It was found that the presence of alumina reduces the fins' performance when compared to pure aluminum fins but that they were still outperforming traditional fins. Numerical simulations were performed to model the fin arrays and were used to predict the pressure loss in the fin array and compare these results with experimental values. The numerical model opens up new avenues in predicting different applicable operating conditions and other possible fin shapes using the same fin composition, instead of performing costly and time-consuming experiments.

  12. Submarine silicic volcanism: Processes and products

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.

    and these are supported by several experimental studies (Annen et al., 2006). A silicic calc-alkalic magma can form by differentiation from a more mafic parent magma and by crustal anatexis. Several evidences show the origin of some rhyolitic and andesitic magma... to be related due to similar tectonic settings. Fractional crystallisation: This process produces a series of residual liquids of variable compositions as compared to their parental magmas and is best explained by the Bowen’s reaction principle (Bowen, 1922...

  13. Utilização de alumina para a remoção de fluoretos em águas e efluentes The use of alumina to remove fluorine from water and effluents

    Directory of Open Access Journals (Sweden)

    S. B. Alvarinho

    2000-06-01

    Full Text Available Foram produzidos 12 tipos de adsorventes de flúor a base de alumina granular seguindo duas rotas de processamento distintas. A primeira rota consistiu na precipitação de hidróxido de alumínio utilizando a técnica de sol-gel e a obtenção de microesferas por geleificação interna e externa. Utilizou-se como matéria prima nitrato de alumínio. A segunda rota consistiu na micropelotização mecânica utilizando-se hidróxido de alumínio produzido pelo processo Bayer e o uso de bauxita. Microesferas e micropelotas foram submetidas a diferentes tratamentos térmicos e avaliadas quanto ao seu desempenho no processo de adsorção de flúor em água. Os adsorventes produzidos no presente trabalho apresentaram parâmetros cinéticos e de carga de flúor superiores aos adsorventes de alumina reportados na literatura. Os adsorventes na forma de micropelotas apresentaram propriedades similares aos obtidos pela técnica de sol-gel. O maior valor relacionado à adsorção de flúor (100 h-1 foi obtido com microesferas de alumina produzidas pelo processo de geleificação interna, posteriormente calcinadas a 550 ºC. Microesferas de alumina contendo carvão ativo foram também preparadas e apresentaram capacidade de adsorção de flúor relativamente elevada (88 h-1. Micropelotas de alumina calcinadas a 400 ºC apresentaram a maior razão de flúor adsorvido por tonelada de adsorvente (27855.Twelve different types of fluorine adsorbents based on alumina granules were produced following two processing routes. The first route consisted on the precipitation of aluminum hydroxide by sol-gel technique followed by microsphere production by internal and external gelation. Aluminum nitrite was used as raw material. The second route consisted on the mechanical micro pelletization of aluminum hydroxide produced by the Bayer process, and bauxite. Microspheres and micropellets were heat treated at different conditions and their fluorine adsorption performance

  14. Influence of gadolinia content in sinterability of components of alumina-gadolinia system; Influencia do teor de gadolinia na sinterabilidade de componentes do sistema alumina-gadolinia

    Energy Technology Data Exchange (ETDEWEB)

    Gomide, Ricardo Goncalves [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Lab. de Materiais Nucleares. E-mail: 4143@ctmsp.mar.mil.br; Bressiani, Jose Carlos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Ceramica. E-mail: jbressia@net.ipen.br

    2000-07-01

    The alumina-gadolinia ((Al{sub 2}){sub 3}-Gd{sub 2} O{sub 3}) system is of interest to the nuclear industry due to the absorption properties of gadolinia and to the inertness of alumina, chemically and neutronicly, as a ceramic matrix. In the powder processing, the spray dry method was used, at drying temperatures of about 350 deg C, because this method produces high homogeneity in the components. The compacting of the samples was done in a simple action with a flowing tool unidirectional press with 200 MPa. The sintering temperature and the gadolinia content were varied to analyse their influences in the process. The density, phases, porosity, and grain size of the samples were characterised. The experimental results revealed that only the Al{sub 2} O{sub 3} and Al Gd O{sub 3} phases were present. The gadolinium is a sintering inhibitor in this kind of material when 6,6% mol of Gd{sub 2} O{sub 3} is added. (author)

  15. Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan [Chemistry Education Study Program, Universitas Halu Oleo, Jl. HEA Mokodompit, Kendari 93232 (Indonesia); Marsih, I. Nyoman, E-mail: nyoman@chem.itb.ac.id; Ismunandar [Inorganic and Physical Chemistry Division, Departement of Chemistry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Makertihartha, I. G. B. N. [Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Praserthdam, Piyasan; Panpranot, Joongjai [Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand)

    2015-09-30

    This research aimed to compare the physico-chemical properties of the same metal M (M = iron, cobalt, nickel) supported on aluminas with different morphology and pore size as Fischer-Tropsch catalyst. The aluminas applied as support were alumina synthesized through hydrothermal process, alumina formed by pretreatment of catapal and commercial alumina which named as Ahy, Aca, and Aco respectively. Ahy has uniform morphology of nanotubes while Aca and Aco showed non-uniform morphology of particle lumps. The particle lumps of Aca were larger than those of Aco. Ahy, Aca, and Aco respectively has average pore diameter of 2.75, 2.86 and 2.9 nm. Metals were deposited on the supports by incipient-wetness impregnation method. The catalysts were characterized by XRD, H{sub 2}-TPR, and H{sub 2} chemisorption. Catalyst acitivity test for Fischer-Tropsch reaction was carried out in a micro reactor at 200 °C and 1 atm, and molar ratio of H{sub 2}/CO = 2:1. The metal oxide particle size increased in the order M/Aco < M/Aca < M/Ahy. The catalysts reducibility also increased according to the order M/Aco < M/Aca < M/Ahy suggesting that the larger metal oxide particles are more reducible. The number of active site was not proportional to the reducibility because during the reduction, larger metal oxide particles were converted into larger metal particles. On the other hand, the number of active sites was inversely proportional to the particle sizes. The number of active site increased in the order M/Ahy < M/Aco < M/Aca. The catalytic activity also increased in the following order M/Ahy < M/Aco < M/Aca. The activity per active site increased according to the order M/Aca < M/Aco < M/Ahy meaning that for M/Ahy, a little increase in active site will lead to a significance increase in catalytic activity. It showed that Ahy has potential for the better support.

  16. Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst

    Science.gov (United States)

    Dahlan, Marsih, I. Nyoman; Makertihartha, I. G. B. N.; Praserthdam, Piyasan; Panpranot, Joongjai; Ismunandar

    2015-09-01

    This research aimed to compare the physico-chemical properties of the same metal M (M = iron, cobalt, nickel) supported on aluminas with different morphology and pore size as Fischer-Tropsch catalyst. The aluminas applied as support were alumina synthesized through hydrothermal process, alumina formed by pretreatment of catapal and commercial alumina which named as Ahy, Aca, and Aco respectively. Ahy has uniform morphology of nanotubes while Aca and Aco showed non-uniform morphology of particle lumps. The particle lumps of Aca were larger than those of Aco. Ahy, Aca, and Aco respectively has average pore diameter of 2.75, 2.86 and 2.9 nm. Metals were deposited on the supports by incipient-wetness impregnation method. The catalysts were characterized by XRD, H2-TPR, and H2 chemisorption. Catalyst acitivity test for Fischer-Tropsch reaction was carried out in a micro reactor at 200 °C and 1 atm, and molar ratio of H2/CO = 2:1. The metal oxide particle size increased in the order M/Aco < M/Aca < M/Ahy. The catalysts reducibility also increased according to the order M/Aco < M/Aca < M/Ahy suggesting that the larger metal oxide particles are more reducible. The number of active site was not proportional to the reducibility because during the reduction, larger metal oxide particles were converted into larger metal particles. On the other hand, the number of active sites was inversely proportional to the particle sizes. The number of active site increased in the order M/Ahy < M/Aco < M/Aca. The catalytic activity also increased in the following order M/Ahy < M/Aco < M/Aca. The activity per active site increased according to the order M/Aca < M/Aco < M/Ahy meaning that for M/Ahy, a little increase in active site will lead to a significance increase in catalytic activity. It showed that Ahy has potential for the better support.

  17. Hidratação do óxido de magnésio em presença de alumina hidratável Magnesium oxide hydration in presence of hydratable alumina

    Directory of Open Access Journals (Sweden)

    R. Salomão

    2010-07-01

    Full Text Available Aluminas hidratáveis são compostos obtidos a partir da calcinação incompleta da gibsita Al(OH3, que podem reagir com água e possuem ação ligante em suspensões cerâmicas. A substituição do cimento de aluminato de cálcio pelas aluminas hidratáveis em concretos refratários contendo óxido de magnésio (MgO pode gerar diversos benefícios em relação às propriedades termomecânicas e refratariedade. No entanto, os efeitos da combinação desses materiais e suas conseqüências para a hidratação do MgO ainda não foram investigados sistemicamente. Neste trabalho, quatro fontes de MgO e aluminas hidratáveis foram combinadas em diferentes proporções e hidratados simultaneamente. Após investigações utilizando difração de raios X, termogravimetria e expansão volumétrica aparente, verificou-se que a relação MgO/Al2O3 e as diferenças de reatividade de cada matéria prima podem afetar significativamente o processo de hidratação. Além disso, foi observado que essa combinação pode ser utilizada como uma interessante técnica anti-hidratação para o MgO.The substitution of calcium aluminate cement by hydratable aluminas in MgO-containing refractory castables can afford several benefits for these materials mechanical properties and refractoriness. Nevertheless, the way that hydratable aluminas affects MgO hydration and its consequences were not yet systemically explored. In the present work, four sources of magnesia and alumina were combined at different ratios and hydrated simultaneously. They were investigated by X-ray diffraction, thermogravimetry and apparent volumetric expansion measurements. It was found that the magnesia/alumina ratio and the differences of reactivity of each raw material can greatly affect both hydration processes, generating different hydrated compounds. It was also verified that this combination can be suitably used as powerful MgO anti-hydration technique.

  18. Peltier heats in cryolite melts with alumina

    Energy Technology Data Exchange (ETDEWEB)

    Flem, B.E.; Ratkje, S.K.; Sterten, A. [Univ. of Trondheim (Norway)

    1996-10-01

    The Seebeck coefficient was measured for cells with electrolytes of molten mixtures of sodium fluoride and aluminum fluoride saturated with alumina. The electrodes were either a pair of oxygen electrodes or a pair of aluminum electrodes. For the molar ratio NaF/AlF{sub 3} equal to 1.8, 1.2 and 1.0, the authors obtained the Seebeck coefficients {minus}1.80 mV K{sup {minus}1} at 971 C, {minus}1.63 mV K{sup {minus}1} at 813.6 C and {minus}0.583 mV K{sup {minus}1} at 758 C, respectively, for the oxygen electrodes. For the aluminum electrodes, the authors obtained the Seebeck coefficient {minus}1.23 mV K{sup {minus}1} at 962 C, for the molar ratio NaF/AlF{sub 3} equal to 1.8. The results suggest that there is a substantial reversible heat consumption at the anode during aluminum electrolysis and a large reversible heat production at the cathode. The highest temperature in the Hall-Heroult cell is then closer to the cathode than the anode. The transported entropies of Al{sup 3+} and O{sup 2{minus}} were calculated to be 77 J mol{sup {minus}1} K{sup {minus}1} and 10 J mol{sup {minus}1} K{sup {minus}1}, respectively, when the molar ratio NaF/AlF{sub 3} was equal to 1.0.

  19. Biomass assisted synthesis of alumina by Gardenia Jasminoides Ellis and their application for removal of Ni(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nan [Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Zhao, Yusheng [Petrochemical Research Institute of PetroChina Company Limited, Beijing 100195 (China); Song, Qianqian [Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Jia, Lishan, E-mail: Jials@xmu.edu.cn [Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Fang, Weiping, E-mail: wpfang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of the Solid Surfaces, Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2013-09-15

    Highlights: • A simple process has been proposed to synthesis alumina using biomass. • The absorbent with biomass is highly effective for the adsorption of Ni{sup 2+}. • Three adsorption–desorption cycles showed that the adsorbent was basically stable. -- Abstract: A simple and novel process has been proposed to synthesize alumina using gardenia extract and aluminum salts in an aqueous solution. The alumina sample notated as “bio-Al{sub 2}O{sub 3}” was characterized by X-ray diffraction (XRD) and nitrogen adsorption–desorption experiment. The results indicated that the existence of the gardenia biomass enlarged the surface area of alumina and reached 256 m{sup 2}/g. The thermo gravimetric (TG), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) results showed that gardenia biomass bound to the surface of the alumina has substantially improved the adsorption capacity of Ni(II) and the adsorption behavior of nickel ion was related to the biomass functional groups. The results of three adsorption–desorption cycles showed that the bio-Al{sub 2}O{sub 3} using as the adsorbent for Ni(II) was relatively stable. The kinetic of the Ni(II) adsorption by the bio-Al{sub 2}O{sub 3} followed pseudo-second-order equation. Langmuir and Freundlich isotherm models were applied to analyze the experimental data and the result demonstrated that the adsorption isotherms followed Langmuir isotherm model.

  20. MECHANICAL BEHAVIOUR OF THERMOPLASTIC STARCH/MONTMORILLONITE/ALUMINA TRIHYDRATE NANOCOMPOSITES

    Directory of Open Access Journals (Sweden)

    FIRNAAZ AHAMED

    2016-09-01

    Full Text Available Thermoplastic starch (TPS is a biodegradable biopolymer that has exhibited great prospects to replace conventional synthetic polymers in commercial applications. However, one of the most critical limitations of TPS is the lack of crucial mechanical properties. This study proposes the novel combination of cassava starch, montmorillonite nanoclay (MMT and alumina trihydrate (ATH in the form of a nanocomposite which is expected to demonstrate improved mechanical properties. The nanocomposites were processed through melt-extrusion in twin-screw extruder where loadings of MMT and ATH were varied between 1 to 6 wt% and 26 to 37 wt%, respectively. The mechanical properties were evaluated through tensile testing according to ASTM D882. The fractured surfaces of the specimens were evaluated using scanning electron microscopy (SEM to further validate the mechanical properties of the nanocomposites. The melt viscosity and processability of the nanocomposites were also evaluated through melt flow index (MFI testing according to ASTM D1238. Presence of MMT and ATH in TPS demonstrated increase in Young’s modulus, maximum tensile stress and decrease in elongation at break up to 57.6 MPa, 5.1 MPa and 39.2%, respectively. In the presence of ATH, increase in loading of MMT continued to improve Young’s modulus and maximum tensile stress while declining elongation at break. Without ATH, MMT was only capable of improving mechanical strength up to a loading of 3 wt% where adverse effects were observed when the loading was further increased to 6 wt%. Increase in loadings of both MMT and ATH, simultaneously were found to depreciate the MFI and thus, the processability of the nanocomposites.

  1. Alumina-Supported Manganese Catalysts for Soot Combustion Prepared by Thermal Decomposition of KMnO4

    Directory of Open Access Journals (Sweden)

    Agustin Bueno-López

    2012-09-01

    Full Text Available Alumina-supported manganese catalysts with cryptomelane and/or birnessite structure have been prepared using a simple method based on the thermal decomposition of potassium permanganate. The samples have been characterized by XRD, FTIR, TGA, DSC, N2 adsorption at −196 °C, SEM, H2-TPR and XPS, and their catalytic activity for soot combustion has been tested and compared to that of a reference Pt/alumina catalyst. The thermal decomposition of alumina-supported KMnO4 yields a mixture of supported birnessite and potassium manganate which is the most effective, among those prepared, to lower the soot combustion temperature. However, this material is not useful for soot combustion because the accelerating effect is not based on a catalytic process but on the oxidation of soot by potassium manganate. A suitable soot combustion catalyst is obtained after potassium manganate is removed by water washing, yielding only the birnessite phase on the γ-Al2O3 support. This birnessite phase can be transformed into cryptomelane by calcination at 600 °C. These two samples, γ-Al2O3-supported birnessite and cryptomelane are suitable catalysts for soot combustion in NOx/O2 mixtures, as their catalytic activity is based on the NO2-assited mechanism, that is, both catalysts accelerate the oxidation of NO to NO2 and NO2 promotes soot oxidation. The soot combustion temperatures obtained with these birnessite/cryptomelane alumina-supported catalysts are similar to that obtained with the reference Pt/alumina catalyst.

  2. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  3. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    Science.gov (United States)

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  4. Fabrication of alumina films with laminated structures by ac anodization

    Directory of Open Access Journals (Sweden)

    Hiroyo Segawa

    2014-01-01

    Full Text Available Anodization techniques by alternating current (ac are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50–200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  5. Alumina Template-Dependant Growth of Cobalt Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    L. Malferrari

    2009-01-01

    Full Text Available Different electrochemical regimes and porous alumina were applied for template synthesis of cobalt nanowire (nw arrays, revealing several peculiar cases. In contrast to quite uniform filling of sulfuric acid alumina templates by alternating current deposition, nonuniform growth of the Co nw tufts and mushrooms was obtained for the case of oxalic acid templates. We showed herein for the first time that such configurations arise from the spontaneous growth of cobalt nw groups evolving from the cobalt balls at the Al/alumina interface. Nevertheless, the uniform growth of densely packed cobalt nw arrays, up to tens of micrometers in length, was obtained via long-term direct current galvanostatic deposition at low current density using oxalic acid templates one-side coated by conducting layer. The unique point of this regime is the formation of hexagonal lattice Co nws with a preferred (100 growth direction.

  6. Porous Alumina as a Promising Biomaterial for Public Health.

    Science.gov (United States)

    Bragazzi, Nicola Luigi; Gasparini, Roberto; Amicizia, Daniela; Panatto, Donatella; Larosa, Claudio

    2015-01-01

    Porous aluminum is a nanostructured material characterized by unique properties, such as chemical stability, regular uniformity, dense hexagonal porous lattice with high aspect ratio nanopores, excellent mechanical strength, and biocompatibility. This overview examines how the structure and properties of porous alumina can be exploited in the field of public health. Porous alumina can be employed for fabricating membranes and filters for bioremediation, water ultrafiltration, and microfiltration/nanofiltration, being a promising technique for having clean and fresh water, which is essential for human health. Porous alumina-based nanobiosensor coated with specific antibodies or peptides seem to be a useful tool to detect and remove pathogens both in food and in water, as well as for environmental monitoring. Further, these applications, being low-energy demanding and cost-effective, are particularly valuable in resource-limited settings and contexts, and can be employed as point of use devices in developing countries, where there is an urgent need of hygiene and safety assurance.

  7. Effect of different sources of alumina on the microstructure and mechanical properties of the triaxial porcelain

    OpenAIRE

    Gralik,G.; Chinelattot,A. L.; A. S. A. Chinelatto

    2014-01-01

    Porcelains composed of kaolin-quartz-feldspar are called triaxial porcelains. The use of alumina as a substitute for quartz in porcelains has been developed for some time. The results show a significant improvement in their mechanical properties, but alumina has a high cost. The possibility of using alternative materials as a source of alumina with lower cost was investigated. In this work, alternative raw materials were used as a source of alumina: refractory bauxite, primary aluminum hydrox...

  8. CRACK PROPAGATION BEHAVIOR AND LIFETIME PREDICTION IN ALUMINA AND ZIRCONIA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The lifetime prediction of ceramics is discussed on the basis of the relationship between stress intensity factor KI and crack velocity v. The effects of water environment, the cyclic loading and microstructure of material on KI-v characteristics are studied by carrying out the crack growth tests by the double torsion (DT) method under the static and cyclic loading in both environments of air and water for alumina and zirconia. KI-v characteristics determined by the double torsion method are used to predict time-to-failure under the cyclic loading of alumina and zirconia ceramics. The predictions agree qualitatively with the experimental results.

  9. Controllable synthesis and characterization of alumina/MWNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Zoltan; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, 6720 Szeged (Hungary); Marko, Kata; Erdohelyi, Andras [Department of Physical Chemistry and Material Science, University of Szeged, Aradi ter 2, 6720 Szeged (Hungary); Forro, Laszlo [Laboratory of Physics of Complex Matter, IPMC, EPFL, 1026 Ecublens (Switzerland)

    2011-11-15

    The aim of this work is to develop a controllable synthesis pathway which produces a stable alumina layer on the surface of carbon nanotubes by impregnation method. Precursor compounds such as aluminium isopropoxide and aluminium-acetyl-acetonate were used to cover the surface of multiwalled carbon nanotubes (MWNTs) under different solvent conditions. As-prepared alumina coverages were characterized by TEM, SEM, SEM-EDX, TG and X-ray diffraction techniques. Results revealed that homogeneous coverage can be achieved in a controllable way. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  11. Effect of Filler Composition on the Brazing of Alumina to Copper Using Ultrasonic Wave

    Institute of Scientific and Technical Information of China (English)

    Khalid M. HAFEZ; Masaaki NAKA

    2003-01-01

    An ultrasonic wave was applied during brazing of alumina to Cu. First alumina was metallized by applying ultrasonicwave in braze bath. Then the metallized alumina was brazed with Cu using the same filler alloy. The filler used wereZn-Al alloys and Zn-Sn A

  12. Microstructure of alumina-matrix composites reinforced with nanometric titanium and titanium carbide dispersions

    OpenAIRE

    Elizabeth Refugio-García; David Hernández-Silva; Eduardo Terrés-Rojas; José Amparo Rodríguez-García; Enrique Rocha-Rangel

    2012-01-01

    The synthesis of alumina (Al2O3)-composites having different amount of very fine titanium and titanium carbide reinforcement-particles has been explored. Two experimental steps have been set for the synthesis; the first step consisted of the pressureless-sintering of Al2O3-titanium powders which were thoroughly mixed under high energy ball-milling and through the second step it was induced the formation of titanium carbide during different times at 500 ºC by the cementation packing process. S...

  13. Blue luminescence in porous anodic alumina films: the role of the oxalic impurities

    CERN Document Server

    Gao Tao; Zhang Li

    2003-01-01

    Porous anodic alumina (PAA) films with ordered nanopore arrays have been prepared by electrochemically anodizing aluminium in oxalic acid solutions, and the role of the oxalic impurities in the optical properties of PAA films has been discussed. Photoluminescence (PL) measurements show that the PAA films obtained have a blue PL band with a peak position at around 470 nm; the oxalic impurities, incorporated in the PAA films during the anodization processes and already existing in them, could be being transformed into PL centres and hence responsible for this PL emission.

  14. Alumina-entrapped Ag catalyzed nitro compounds coupled with alcohols using borrowing hydrogen methodology.

    Science.gov (United States)

    Liu, Huihui; Chuah, Gaik Khuan; Jaenicke, Stephan

    2015-06-14

    Supported silver catalysts were reported for the first time to be able to catalyze the coupling reaction between nitroarenes and alcohols via the borrowing hydrogen scheme. The recyclable, non-leaching catalyst is synthesized by the entrapment method, which allows entrapping of silver nanoparticles in an alumina matrix. Alcohols, acting as the reducing agents for nitro-groups, alkylated the resultant amines smoothly over these silver catalysts giving a yield of >98% towards the N-substituted amines. In this process, multiple steps were realized in one-pot over a single catalyst with very high efficiency. It offers another clean and economic way to achieve amination of alcohols.

  15. The Change of China’s Preferential Trade Policies on Alumina

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>In order to control the large export of aluminium, the State recently eliminated the preferential policies on the processing trade of alumina and gave the general trade status to 12 additional aluminium smelters. This policy changed the principle of controlling the development of the aluminium industry and gave more favorable conditions to those large aluminium smelters in line with the State industry development policies. It is expected that this change will have a strong impact on the industry, and it is also possible to influence the smelters economic returns in a negative way.

  16. Characterization and Photoluminescence Properties of Alumina Nanowires Elaborated by Arc-Plasma

    Institute of Scientific and Technical Information of China (English)

    C. Arnoult; X. Devaux; H. Rinnert; M. Vergnat

    2006-01-01

    Ultrafine powders containing alumina nanowires are synthesized by DC arc plasma from pure aluminium metal.Nanowires grow only when reactive gases are composed of nitrogen and less than ten percent of oxygen.Nanowires have the diameters ranging from 20 to 80 nm and lengths ranging from hundreds nanometers to tens of micrometers. A first assumption of the mechanism process is proposed, in which nanowires grow starting directly from the aluminium. Photoluminescence measurements show that the powders have three emission peaks around 435,530 and 750 nm resulting from different kinds of defects such as oxygen vacancies,aluminium interstitial ions and surface defects.

  17. Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Carolina Solis Maldonado

    2014-03-01

    Full Text Available The role of iron in two modes of integration into alumina catalysts was studied at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was synthesized using the sol-gel method with Fe added in situ during hydrolysis; another modification was performed using calcined alumina, prepared using the sol-gel method and impregnated with Fe. Several characterization techniques were used to study the level of Fe modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during trichloroethylene (TCE combustion. The introduction of Fe in situ during the sol-gel process influenced the crystallite size, and three iron species were generated, namely, magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron spectra (XPS, FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel method; both had better catalytic activity than pure alumina. This difference in activity was correlated with the accessibility of the reactants to the hematite iron species on the surface. The chlorine poisoning for all three catalysts was less than 1.8%.

  18. Magnesia tuned multi-walled carbon nanotubes–reinforced alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Iftikhar, E-mail: ifahmad@ksu.edu.sa [Center of Excellence for Research in Engineering Materials, Advanced Manufacturing Institute, King Saud University, P.O. Box. 800, Riyadh 11421 (Saudi Arabia); Islam, Mohammad; Dar, Mushtaq Ahmad [Center of Excellence for Research in Engineering Materials, Advanced Manufacturing Institute, King Saud University, P.O. Box. 800, Riyadh 11421 (Saudi Arabia); Xu, Fang [Division of Materials, Mechanics and Structure, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD (United Kingdom); Shah, Syed Ismat [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Zhu, Yanqiu [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2015-01-15

    Magnesia tuned alumina ceramic nanocomposites, reinforced with multi-walled carbon nanotubes, were condensed using pressureless and hot-press sintering processes. Densification, microstructure and mechanical properties of the produced nanocomposites were meticulously investigated. Electron microscopy studies revealed the homogenous carbon nanotube dispersion within the alumina matrix and confirmed the retention of carbon nanotubes' distinctive tubular morphology and nanoscale features during the extreme mixing/sintering processes. Pressureless sintered nanocomposites showed meagre mechanical responses due to the poorly-integrated microstructures with a slight improvement upon magnesia addition. Conversely, both the magnesia addition and application of hot-press sintering technique resulted in the nanocomposite formation with near-theoretical densities (~ 99%), well-integrated microstructures and superior mechanical properties. Hot-press sintered nanocomposites incorporating 300 and 600 ppm magnesia exhibited an increase in hardness (10 and 11%), flexural strength (5 and 10%) and fracture toughness (15 and 20%) with respect to similar magnesia-free samples. Compared to monolithic alumina, a decent rise in fracture toughness (37%), flexural strength (22%) and hardness (20%) was observed in the hot-press sintered nanocomposites tuned with merely 600 ppm magnesia. Mechanically superior hot-press sintered magnesia tailored nanocomposites are attractive for several load-bearing structural applications. - Highlights: • MgO tailored Al{sub 2}O{sub 3}–2 wt.% CNT nanocomposites are presented. • The role of MgO and sintering on nanocomposite structures and properties was studied. • Well-dispersed CNTs maintained their morphology/structure after harsh sintering. • Hot-pressing and MgO led nanocomposites to higher properties/unified structures. • MgO tuned composites showed higher toughness (37%) and strength (22%) than Al{sub 2}O{sub 3}.

  19. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system

    OpenAIRE

    Valan Arasu Amirtham; Sasmito Agus P.; Mujumdar Arun S.

    2013-01-01

    Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3). A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3) particles in comparison with simple paraffin wax in a concentric double pipe ...

  20. A metal-organic framework/α-alumina composite with a novel geometry for enhanced adsorptive separation.

    Science.gov (United States)

    Wang, Chenghong; Lee, Melanie; Liu, Xinlei; Wang, Bo; Paul Chen, J; Li, Kang

    2016-07-07

    The development of a metal-organic framework/α-alumina composite leads to a novel concept: efficient adsorption occurs within a plurality of radial micro-channels with no loss of the active adsorbents during the process. This composite can effectively remediate arsenic contaminated water producing potable water recovery, whereas the conventional fixed bed requires eight times the amount of active adsorbents to achieve a similar performance.

  1. Substrate-induced coagulation (SIC) of nano-disperse alumina in non-aqueous media: The dispersibility and stability of alumina in N-methyl-2-pyrrolidinone

    OpenAIRE

    Basch, Angelika; Strnad, Simona

    2011-01-01

    This work investigated colloidal properties such as the zeta-potential, the electrophoretic mobilities and the wetting behaviour of alumina dispersed in non-aqueous media. Non-aqueous dispersions of alumina were prepared in the solvent N-methyl-2-pyrrolidinone (NMP). The wetting behaviour of alumina in NMP was characterized by the powder contact angle method and the Wilhemy plate method. The behaviour of the dispersion should provide information for the development of a substrate-induced coag...

  2. A General Procedure for Surface Modification of Nano-alumina and Its Application to Dendrimers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A general procedure for surface modification of nano-alumina using N, N'-dicyclohexyl-carbodiimide (DCC) mediated amidation is reported. Aliphatic and aromatic carboxylic acids reacted smoothly with nano-alumina pretreated with 3-aminopropyltriethoxysilane in the presence of DCC, giving modified aluminas having organic surfaces. The grafted aluminas have been characterized qualitatively by FT-IR or 13C CPMAS NMR spectroscopy, and quantitatively by thermogravimetric analysis and elemental analysis. The procedure was applied to polyether dendrons bearing carboxyl groups at the focal points, giving successful grafting of dendrimers onto nano-alumina.

  3. Gas and surface diffusion in modified γ-alumina systems

    NARCIS (Netherlands)

    Uhlhorn, R.J.R.; Keizer, K.; Burggraaf, A.J.

    1989-01-01

    The transport of pure gases through a microporous membrane is described. The alumina-based membrane (pores 2.5-4 nm) is suitable for Knudsen diffusion separation. To improve the separation factor, interaction with and mobility on the pore wall of one of the gases of a mixture is necessary. To introd

  4. Experiments on individual alumina-supported adatoms and clusters

    Science.gov (United States)

    Nilius, N.; Cörper, A.; Bozdech, G.; Ernst, N.; Freund, H.-J.

    2001-08-01

    To contribute to an understanding of growth conditions and electronic properties of metal clusters on technologically relevant oxides we have examined the mobility of individual, alumina-supported Pt-adatoms and the optical properties of single supported Ag-clusters. Using field-ion microscopy (FIM) we have prepared and imaged an individual Pt-adatom at approximately 40 K, both on the apex plane of a [1 1 0]-oriented NiAl tip and on a thin alumina film, grown on the same NiAl specimen by oxidation. On the alumina film, the onset temperature for Pt surface diffusion approaches 100 K being distinctively lower than the value 165 K measured on NiAl(1 1 0). Employing the tip of a scanning tunneling microscope (STM) as a local electron source, photon emission from individual, alumina-supported Ag-clusters was spectroscopically analyzed. The occurrence of a distinct emission line is explained by the decay of a collective electron oscillation (Mie-plasmon resonance). For decreasing Ag-cluster diameter, the emission lines (i) shift to higher energies and (ii) their widths increase. To explain these observations, we discuss (i) the reduced screening of the plasmon oscillation due to the Ag 4d electrons and (ii) an enhanced electron surface scattering rate in small clusters.

  5. Osseointegration of alumina bioceramic granules: A comparative experimental study

    Science.gov (United States)

    Rerikh, V. V.; Avetisyan, A. R.; Zaydman, A. M.; Anikin, K. A.; Bataev, V. A.; Nikulina, A. A.; Sadovoy, M. A.; Aronov, A. M.; Semantsova, E. S.

    2016-08-01

    To perform a comparative analysis of osseointegration of bioceramic alumina-based granules, hydroxyapatite-based granules, and deproteinized bone granules. The experiment was conducted on 52 adult male Kyoto-Wistar rats weighing 350 to 520 g. The animals were divided into five matched groups that differed only in the type of an implanted material. The granules were implanted in the lumbar vertebral bodies and in the distal right femur of each laboratory animal. Two months after surgery, the animals were euthanized, followed by tissue sampling for morphological studies. An examination of specimens from the groups with implanted alumina granules revealed the newly formed trabecular bone with remodeling signs. The bone tissue filled the intragranular space, tightly adhering to the granule surface. There was no connective tissue capsule on the border between bone tissue and alumina granules. Cylindrical bioceramic alumina-based granules with an open internal channel have a higher strength surpassing than that of analogs and the osseointegration ability close to that of hydroxyapatite and deproteinized bone granules.

  6. Laser-induced prenucleation of alumina for electroless plating

    NARCIS (Netherlands)

    Shrivastva, P.B.; Harteveld, C.; Boose, C.A.; Kolster, B.H.

    1991-01-01

    This paper deals with the deposition of palladium from decomposition of a thin palladium acetate layer on rough and porous alumina ceramic surfaces by irradiating it with a UV excimer laser. The palladium acetate layer was formed from a combination of propyl glycol methyl ether acetate solvent and p

  7. Ionic Segregation on Grain Boundaries in Thermally Grown Alumina Scales

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL; Unocic, Kinga A [ORNL

    2012-01-01

    This study first examined segregation behaviour in the alumina scale formed after 100 h at 1100 C on bare and MCrAlYHfSi-coated single-crystal superalloys with {approx}10 ppma La and Y. For the bare superalloy, Hf and Ti were detected on the grain boundaries of the inner columnar alumina layer. Increasing the oxidation temperature to 1200 C for 2 h did not change the segregation behavior. With the bond coating, both Y and Hf were segregated to the grain boundaries as expected. However, there was evidence of Ti-rich oxide particles near the gas interface suggesting that Ti diffused from the superalloy through the coating. To further understand these segregation observations with multiple dopants, other alumina-forming systems were examined. Alumina scale grain boundary co-segregation of Ti with Y is common for FeCrAl alloys. Co-segregation of Hf and Ti was observed in the scale formed on co-doped NiAl. No La segregation was detected in the scale formed on NiCrAl with only a 19 ppma La addition, however, the scale was adherent.

  8. Structure and surface properties of praseodymium modified alumina

    Energy Technology Data Exchange (ETDEWEB)

    Tankov, I. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Pawelec, B. [Instituto de Catalisis y Petroleoquimica, CSIC, Cantoblanco, 28049 Madrid (Spain); Arishtirova, K. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Damyanova, S., E-mail: soniad@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2011-10-15

    Mixed PrO{sub 2}-Al{sub 2}O{sub 3} oxides with different PrO{sub 2} content (1-20 wt.%) were prepared by wetness impregnation of {gamma}-alumina with aqueous solution of praseodymium nitrate. The samples were characterized by different techniques, using surface adsorption-desorption of N{sub 2} (S{sub BET}), thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), temperature-programmed reduction (TPR) and temperature-programmed desorption of CO{sub 2} (TPD-CO{sub 2}). TGA and XRD showed the presence of small praseodymium oxide species on the alumina surface. XPS and DRS detected electron deficient interaction between deposited praseodymium oxide and alumina. It was observed a lower reduction temperature for supported Pr oxide species compared to that of the bulk Pr{sub 6}O{sub 11}. TPD-CO{sub 2} studies suggested that the deposition of Pr oxide on alumina leaded to increase of the basicity of mixed oxides.

  9. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara

    2014-02-27

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  10. Dynamical stability of the alpha and theta phases of alumina

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Parlinski, K.

    2003-01-01

    Using density functional calculations the phonon dispersion relations, phonon density of states, and free energy of theta and alpha phases of alumina are investigated. The temperature dependence of the free energy indicates that entropy contributes to the destabilization of the alpha phase at the...

  11. Development of Cast Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-09-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  12. Development of Cast Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-11-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  13. Joining between alumina and metal by use of plasma sprayed Ni-Al coating on alumina. Alumina ni plasma yoshashita Ni-Al kinzoku himaku wo kaishite no alumina kinzoku tono setsugo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, N.; Kishitake, K.; Hasebe, M.; Kobayashi, T.; Murashige, K. (Kyushu Institute of Technology, Kitakyushu (Japan). Faculty of Engineering)

    1993-06-30

    A ceramic material is joined and compounded with a metal by spraying another metal on the ceramic material, and then joined with the intended metal because of small adhesion strength in both materials. Adhesion strength of the spraying metal is important even in this case. The present experiment performed plasma spraying of Ni-Al mixed powder on alumina to investigate effects of the heating on the adhesion strength. Solder joining of Ni-Al sprayed alumina with soft steel rod and copper rod was also tested. As a result, the adhesion strength of as-sprayed Ni-Al film on the alumina was about 5 MPa and maximum of 10 MPa. Heating the materials to 1173 K for 10 hours or longer provided an average strength of 20 MPa and a maximum strength of 35 MPa. Improving the adhesion strength requires spinel to be produced through reactions on the interface. It was found that alumina can be joined with metal easily by going through this film. 12 refs., 6 figs.

  14. Thin alumina and silica films by chemical vapor deposition (CVD)

    NARCIS (Netherlands)

    Hofman, R.; Morssinkhof, R.W.J.; Fransen, T.; Westheim, J.G.F.; Gellings, P.J.

    1993-01-01

    Alumina and silica coatings have been deposited by MOCVD (Metal Organic Chemical Vapor Deposition) on alloys to protect them against high temperature corrosion. Aluminium Tri-lsopropoxide (ATI) and DiAcetoxyDitertiaryButoxySilane (DAOBS) have been used as metal organic precursors to prepare these ce

  15. N-doped mesoporous alumina for adsorption of carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Jayshri A.Thote; Ravikrishna V.Chatti; Kartik S.Iyer; Vivek Kumar; Arti N.Valechha; Nitin K.Labhsetwar; Rajesh B.Biniwale; M.K.N.Yenkie; Sadhana S.Rayalu

    2012-01-01

    N-doped mesoporous alumina has been synthesized using chitosan as the biopolymer template.The adsorbent has been thoroughly investigated for the adsorption of CO2 from a simulated flue gas stream (15% CO2 balanced with N2) and compared with commercially available mesoporous alumina procured from SASOL,Germany.CO2 adsorption was studied under different conditions of pretreatment and adsorption temperature,inlet CO2 concentration and in the presence of oxygen and moisture.The adsorption capacity was determined to be 29.4 mg CO2/g of adsorbent at 55℃.This value was observed to be 4 times higher in comparison to that of commercial mesoporous alumina at a temperature of 55℃.Basicity of alumina surface coupled with the presence of nitrogen in template in synthesized sample is responsible for this enhanced CO2 adsorption.Adsorption capacity for CO2 was retained in the presence of oxygen; however moisture had a deteriorating effect on the adsorption capacity reducing it to nearly half the value.

  16. SHRIMP U-Pb dating of recurrent Cryogenian and Late Cambrian-Early Ordovician alkalic magmatism in central Idaho: Implications for Rodinian rift tectonics

    Science.gov (United States)

    Lund, K.; Aleinikoff, J.N.; Evans, K.V.; duBray, E.A.; deWitt, E.H.; Unruh, D.M.

    2010-01-01

    Composite alkalic plutonic suites and tuffaceous diamictite, although discontinuously exposed across central Idaho in roof pendants and inliers within the Idaho batholith and Challis volcanic-plutonic complex, define the >200-km-long northwest-aligned Big Creek-Beaverhead belt. Sensitive highresolution ion microprobe (SHRIMP) U-Pb zircon dates on these igneous rocks provide direct evidence for the orientation and location of the Neoproterozoic-Paleozoic western Laurentian rift margin in the northern U.S. Cordillera. Dating delimits two discrete magmatic pulses at ca. 665-650 Ma and 500-485 Ma at the western and eastern ends, respectively, of this belt. Together with the nearby 685 Ma volcanic rocks of the Edwardsburg Formation, there is a 200 Ma history of recurrent extensional magmatic pulses along the belt. A similar history of recurrent uplift is reflected in the stratigraphic record of the associated miogeoclinal and cratonal platform basins, suggesting that the Big Creek-Beaverhead belt originated as a border fault during continental rift events. The magmatic belt is paired with the recurrently emergent Lemhi Arch and narrow miogeoclinal facies belts and it lies inboard of a northwest-striking narrow zone of thinned continental crust. These features define a northeast-extending upper-plate extensional system between southeast Washington and southeast Idaho that formed a segment of the Neoproterozoic-Paleozoic miogeocline. This segment was flanked on the north by the St. Mary-Moyie transform zone (south of a narrow southern Canadian upper-plate margin) and on the south by the Snake River transfer zone (north of a broad Great Basin lower-plate margin). These are the central segments of a zigzagshaped Cordilleran rift system of alternating northwest-striking extensional zones offset by northeast-striking transfers and transforms. The data substantiate polyphase rift and continental separation events that included (1) pre-and syn-Windermere rifting, (2) Windermere

  17. Study of the surface composition on alumina-NbC composites

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.R.B. da; Acchar, W.; Costa, J.A.P. da; Losch, W.H. [Dept. de Fisica Teorica e Experimental, Univ. Federal do Rio Grande do Norte (Brazil)

    2001-09-16

    The aim of this work is to analyse an alumina-NbC based composite ceramic made from a polymeric precursor (polysiloxane), alumina and metallic niobium. The materials have a fixed concentration of 60 wt% of polymer and 40% of a mixture of niobium and alumina. These materials are mixed and sintered at 1450 C for 6 h. Alumina based composites have been proposed as excellent materials for use as cutting tools, so knowledge of the superficial composition is extremely important because it is directly related to the hardness and abrasion resistance. Analysis of the surface composition was carried out by electron spectroscopy. It should be emphasized that there may be a meaningful difference between the surface and the interior composition due to a eventual processes such as element segregation to the surface and/or diffusion of elements from the surface to the sample bulk. The analysis was performed by XPS and Auger for three niobium concentrations 10, 20 and 40 wt%, and the results show the appearance of niobium on the surface only at the Nb composition of 10 wt%; this appears to be due to a process of niobium atom migration ot the interior of the sample or one involving niobium bonds. For the 10 wt% sample after sintering, the formation of NbC on the surface and the presence of niobium Auger peaks were observed. However, for concentrations larger than 10 wt%, oxides and sub-oxides (NbO, NbO{sub 2}, etc.) were formed which may result in the absence of niobium peaks in the spectra. The analysis of the ratio of niobium to carbon atoms at the surface shows a value of 0.1 which reveals that the quantity of niobium and carbon is not sufficient for ideal formation of niobium carbide (NbC). Under these conditions it is verified that there is only a slight formation of niobium carbide on the surface, which is harmful to the hardness of the material. The excess niobium tends to diffuse towards the interior of the sample and react with the oxygen forming sub-oxides. (orig.)

  18. A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)

    Energy Technology Data Exchange (ETDEWEB)

    Anil Virkar

    2008-03-31

    This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, Na

  19. Advanced morphological analysis of patterns of thin anodic porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Toccafondi, C. [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy); Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Stępniowski, W.J. [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Leoncini, M. [Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Salerno, M., E-mail: marco.salerno@iit.it [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy)

    2014-08-15

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for the thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.

  20. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  1. Effects of Alumina Cement on the Refractory Properties of Leached Ipetumodu Clay

    Directory of Open Access Journals (Sweden)

    Davies Oladayo FOLORUNSO

    2012-08-01

    Full Text Available The effect of alumina cement (Fe2O3 on the refractory properties of leached Ipetumodu clay has been studied. The raw clay was analysed using Scanning Electron Microscope (XL 30 ESEM/EDX, X-Ray Diffraction Machine (Philips PW 3710 with PW 1752 graphite monocromator and X-Ray Fluorescence Machine (ARL 8410 in order to determine the purity level. The tests revealed an average of 5.7% Fe2O3 in the clay. The clay was then purified hydrometallurgical using different concentrations of oxalic acid (0.4, 0.8, 1.2, 1.6 and 2.0 mol/dm3 and combination of different times (30, 60, 90, 120 and 150 min, temperatures (30, 50, 70 and 90ºC and agitation speeds (120, 160, 200 and 240 rev/min. The purification process as revealed by Atomic Absorption Spectrophotometry showed that Fe2O3 was reduced to 0.96%. Samples of leached clay containing different quantities of alumina cement, silica sand and sawdust were prepared, dried at 110ºC for 24 hours and fired at 900, 1100, 1300 and 1500ºC at rate of 4ºC /min, soaked for 2 hrs. These samples were presented for refractory tests (permanent linear change, refractoriness under load, thermal shock resistance, modulus of rupture, bulk density, cold crushing strength and apparent porosity. For all the properties tested, 3% sawdust, 20% silica sand and 10% alumina addition gave the optimum result with reliable phase integrity, as revealed by scanning electron microscopy.

  2. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  3. Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and in vitro biological response.

    Science.gov (United States)

    Hadjicharalambous, Chrystalleni; Buyakov, Ales; Buyakova, Svetlana; Kulkov, Sergey; Chatzinikolaidou, Maria

    2015-04-23

    Zirconia (ZrO2) and alumina (Al2O3) based ceramics are widely used for load-bearing applications in bone repair due to their excellent mechanical properties and biocompatibility. They are often regarded as bioinert since no direct bone-material interface is created unless a porous structure intercedes, leading to better bone bonding. In this regard, investigating interactions between cells and porous ceramics is of great interest. In the present study, we report on the successful fabrication of sintered alumina A-61, zirconia Z-50 and zirconia/alumina composite ZA-60 ceramics with medium porosities of 61, 50 and 60%, respectively, indicating a bimodal pore size distribution and good interconnectivity. They exhibit elastic moduli of 3-10 GPa and compressive strength values of 60-240 MPa, similar to those of human cortical bone.We performed in vitro cell-material investigations comparing the adhesion, proliferation and differentiation of mouse pre-osteoblasts MC3T3-E1 on the three porous materials. While all three ceramics demonstrate a strong cell attachment, better cell spreading is observed on zirconia-containing substrates. Significantly higher cell growth was quantified on the latter ceramics, revealing an increased alkaline phosphatase activity, higher collagen production and increased calcium biomineralization compared to A-61. Hence, these porous zirconia-containing ceramics elicit superior biological responses over porous alumina of similar porosity, promoting enhanced biological interaction, with potential use as non-degradable bone grafts or as implant coatings.

  4. Abrasion, Erosion and Cavitation Erosion Wear Properties of Thermally Sprayed Alumina Based Coatings

    Directory of Open Access Journals (Sweden)

    Ville Matikainen

    2014-01-01

    Full Text Available Thermally-sprayed alumina based materials, e.g., alumina-titania (Al2O3-TiO2, are commonly applied as wear resistant coatings in industrial applications. Properties of the coatings depend on the spray process, powder morphology, and chemical composition of the powder. In this study, wear resistant coatings from Al2O3 and Al2O3-13TiO2 powders were sprayed with plasma and high-velocity oxygen-fuel (HVOF spray processes. Both, fused and crushed, and agglomerated and sintered Al2O3-13TiO2 powders were studied and compared to pure Al2O3. The coatings were tested for abrasion, erosion, and cavitation resistances in order to study the effect of the coating structure on the wear behavior. Improved coating properties were achieved when agglomerated and sintered nanostructured Al2O3-13TiO2 powder was used in plasma spraying. Coatings with the highest wear resistance in all tests were produced by HVOF spraying from fused and crushed powders.

  5. Effects of a magnetic field on growth of porous alumina films on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Ispas, Adriana; Bund, Andreas [Technische Universitaet Dresden, Physikalische Chemie und Elektrochemie, 01062 Dresden (Germany); Vrublevsky, Igor, E-mail: vrublevsky@bsuir.edu.b [Belarusian State University of Informatics and Radioelectronics Minsk, Department of Micro and Nanoelectronics, 220013 Minsk (Belarus)

    2010-05-01

    The effects induced by a magnetic field on the oxide film growth on aluminum in sulfuric, oxalic, phosphoric and sulfamic acid, and on current transients during re-anodizing of porous alumina films in the barrier-type electrolyte, were studied. Aluminum films of 100 nm thickness were prepared by thermal evaporation on Si wafer substrates. We could show that the duration of the anodizing process increased by 33% during anodizing in sulfuric acid when a magnetic field was applied (0.7 T), compared to the process without a magnetic field. Interestingly, such a magnetic field effect was not found during anodizing in oxalic and sulfamic acid. The pore intervals were decreased by ca. 17% in oxalic acid. These findings were attributed to variations in electronic properties of the anodic oxide films formed in various electrolytes and interpreted on the basis of the influence of trapped electrons on the mobility of ions migrating during the film growth. The spin dependent tunneling of electrons into the surface layer of the oxide under the magnetic field could be responsible for the shifts of the current transients to lower potentials during re-anodizing of heat-treated oxalic and phosphoric acid alumina films.

  6. Production of materials with alumina and ashes from incineration of chromium tanned leather shavings: environmental and technical aspects.

    Science.gov (United States)

    Basegio, T; Haas, C; Pokorny, A; Bernardes, A M; Bergmann, C P

    2006-09-21

    The leather tannery industry produces a significant amount of solid and hazardous wastes. Chromium-containing wastes like tanned shavings used to be incinerated in order to recover energy. The incineration process generates ashes that must be disposed of. This paper is a report on the results of the evaluation of technological properties and environmental compatibility of products made of alumina and ashes from incinerated chrome tanned shavings. The raw materials, tannery ashes and alumina were mixed together in different proportions. The ceramic bodies were molded using a hydraulic press and fired with a heating rate of 100 K/h until 1400 degrees C for 4 h in a muffle furnace. The ceramic specimens were characterized regarding physical, mechanical and thermal properties. Leaching tests, according to Brazilian, German and Dutch regulations, were performed on ceramic bodies containing different additions of ash. Results show that the ceramic materials produced are acceptable for refractory applications.

  7. Aluminium AA6061 Matrix Composite Reinforced with Spherical Alumina Particles Produced by Infiltration: Perspective on Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Claudio Bacciarini

    2014-01-01

    Full Text Available Metal matrix composites, based on AA6061 reinforced with 60 vol% Al2O3 spherical particles, were produced by gas pressure infiltration and characterized for hardness, impulse excitation modulus, tensile properties (at room temperature and at 250°C, and machining. It was experimentally demonstrated that the novel alumina powder used in the present work does not react with the liquid Mg-containing matrix during the infiltration process. The AA6061 matrix therefore retains its ability to be strengthened by precipitation heat treatment. The latter behaviour combined with the spherical particle shape confers the studied material higher strength and better machinability in comparison with similar composites produced using standard angular alumina particles. The overall features are promising for applications in the aerospace industry, where light and strong materials are required.

  8. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system

    Directory of Open Access Journals (Sweden)

    Valan Arasu Amirtham

    2013-01-01

    Full Text Available Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3. A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3 particles in comparison with simple paraffin wax in a concentric double pipe heat exchanger. Numerical analysis indicates that the charge-discharge rates of thermal energy can be greatly enhanced using paraffin wax with alumina as compared with a simple paraffin wax as PCM.

  9. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  10. Fundamentals of several reactions for the carbothermic reduction of alumina

    Science.gov (United States)

    Walker, Matthew S.

    The current process used for primary aluminum production, the Hall-Heroult process, is reliable, but it also is expensive, consumes large amounts of energy, and generates significant quantities of greenhouse gas emissions. One possible alternative process is the carbothermic reduction of alumina, wherein aluminum is formed by reducing alumina with carbon at high temperatures. This process, if successful, has the potential for substantial reductions in energy consumption, capital costs, and greenhouse gas emissions. One critical component to making this process successful involves obtaining a better understanding of the thermodynamics. Specifically, the key thermodynamic data are the free energies of the reactions and the thermodynamic activities of the metal (Al-C) and slag systems (Al2O3-Al4C3). These are critical for evaluating and controlling the carbothermic process, but experimental data is extremely limited and much of it was measured many years ago when the experimental techniques available may not have been adequate. The overall objective for this research was to assess the validity of the thermodynamic data for this process, as well as its suitability for predicting the behavior of the process. This was done through experimental investigations into both the slag (carbide) making reaction and the binary Al2O 3-Al4C3 phase diagram. The comparison of these results, to those expected based on the current understanding for the process thermodynamics (using FactSage along with the ALCO database), assesses the validity of the thermodynamic data. In this document, the experimental results for investigating the reactions of Al2O3 with carbon are presented. This work involved measuring the operating line for the first step of the carbothermic aluminum process, slag making. This was done using two experimental methods. One involved measuring the evolution of CO from the reactions using a mass spectrometer. The other involved using a vacuum thermobalance (TGA) to

  11. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nosbi, Norlin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Akil, Hazizan Md, E-mail: hazizan@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Cluster for Polymer Composite (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-06-15

    Graphical abstract: - Highlights: • We report that, to manipulate carbon nanotubes geometry and number of walls are by controlling the precipitate catalyst size. • Number of walls and geometry effects depend on the milling time of the precipitate catalyst. • Increasing milling of time will decrease the carbon nanotubes number of walls. • Increasing milling of time will increase the carbon nanotubes thermal conductivity. - Abstract: This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5–15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  12. Fragmentation analysis of alumina-nickel cermets subjected to Hopkinson bar tests at high strain rates; Analisis de la fragmentacion de cermets de alumina-niquel ensayados en Barra Hopkinson a altas velocidades de deformacion

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, F.; Lecue, E.; Sanchez Herencia, A. J.; Gomez del Rio, T.

    2014-07-01

    A comparative study of the influence of the strain rate on the dynamic mechanical behaviour of an alumina matrix with 15 and 50 % of dispersed nickel is presented. The fragmentation under high speed impact compression loads have been studied using a compression split Hopkinson pressure bar (SHPB). Dense alumina and alumina-nickel composites were processed by slip casting of water based slurries on porous moulds. Samples with the metallic phase dispersed were pre-oxidized to achieve an effective joining interface and sintered under flowing inert atmosphere. The strain rate was determined from the impact experiments. The statistics of the SHPB recovered fragments have been determined and analysed according to the exponential models of Weibull and Rosin y Rammler and the effects of the strain rate on the average fragment size are described according to the existing energy models. Finally the rupture mechanisms of the samples and the sources of fracture have been explored and compared to the quasi static mechanical behaviour of these materials. (Author)

  13. Film properties of alumina passivation layer for silicon solar cells prepared by spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Ryosuke, E-mail: rwatanabe@st.seikei.ac.jp; Kawashima, Mizuho; Saito, Yoji

    2015-09-01

    We prepared alumina passivation films deposited by a sol-gel wet process for silicon substrates. Aluminum acetylacetonate was used as a precursor, and the solution was spin-coated onto silicon substrates. Calcination temperature dependence of the passivation quality of the films was evaluated mainly by measuring effective lifetime using a photo conductance decay technique and capacitance–voltage measurements. Also, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were carried out to evaluate film properties. A large amount of negative fixed charge density (Q{sub f} = − 3.1 × 10{sup 12} cm{sup −2}) exists in the films calcined at 300 °C. On the other hand, a long effective lifetime of 400 μs was obtained for the sample calcined at 600 °C, and the passivation films had a large amount of positive fixed charge density (Q{sub f} = 3.6 × 10{sup 12} cm{sup −2}) with a low interface state density. - Highlights: • Alumina passivation films for silicon solar cells were prepared by spin-coating. • Electronic properties and the quality of passivation films were investigated. • Carrier lifetime was enhanced for the samples that were calcined above 400 °C. • The films calcined at 300 °C have high amount of negative fixed charge.

  14. Recycling of Coal Fly Ash for the Fabrication of Porous Mullite/Alumina Composites

    Directory of Open Access Journals (Sweden)

    Kyu H. Kim

    2014-08-01

    Full Text Available Coal fly ash with the addition of Al2O3 was recycled to produce mullite/alumina composites and the camphene-based freeze casting technique was processed to develop a controlled porous structure with improved mechanical strength. Many rod-shaped mullite crystals, formed by the mullitization of coal fly ash in the presence of enough silicate, melt. After sintering at 1300–1500 °C with the initial solid loadings of 30–50 wt.%, interconnected macro-sized pore channels with nearly circular-shaped cross-sections developed along the macroscopic solidification direction of camphene solvent used in freeze casting and a few micron-sized pores formed in the walls of the pore channels. The macro-pore size of the mullite/alumina composites was in the range 20–25 μm, 18–20 μm and 15–17 μm with reverse dependence on the sintering temperature at 30, 40 and 50 wt.% solid loading, respectively. By increasing initial solid loading and the sintering temperature, the sintered porosity was reduced from 79.8% to 31.2%, resulting in an increase in the compressive strength from 8.2 to 80.4 MPa.

  15. Removal of Phosphate Using Red Mud: An Environmentally Hazardous Waste By-Product of Alumina Industry

    Directory of Open Access Journals (Sweden)

    Shivkumar S. Prajapati

    2016-01-01

    Full Text Available The industrial waste, bauxite residue generated in the Bayer chemical process of alumina production, commonly known as red mud (RM has been used as the adsorbent for selective removal of phosphate in aqueous solutions. RM collected from the storage area of alumina industry was characterized by chemical analysis and physical methods such as BET surface area, Scanning Electron Microscopy (SEM, particle size analysis, and X-ray diffraction (XRD methods. Among the various red mud samples (0.2–200 μ studied, the samples treated with 1 M HCl for 2 h were found better for the selective adsorption of phosphate in comparison with untreated and heat treated RM samples. The presence of phosphate in the aqueous samples collected after adsorption studies with red mud was determined by standard spectrophotometric procedure using ammonium molybdate and ascorbic acid in nitrate medium at λmax 880 nm. The studies reported significant adsorption of phosphate on acid treated red mud in comparison with adsorption of phosphate on untreated and heat treated red mud, respectively. The adsorption of phosphate on raw red mud and activated red mud was further investigated with respect to stirring time, pH of the solution, dose of adsorbent, and varying phosphate concentration. Acid treated RM is observed as an efficient and cost-effective adsorbent for selective removal of phosphate in aqueous solutions.

  16. Fabrication of TiO2 Nanotanks Embedded in a Nanoporous Alumina Template

    Directory of Open Access Journals (Sweden)

    C. Massard

    2015-01-01

    Full Text Available The feasibility of surface nanopatterning with TiO2 nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2 gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM. The TiO2 nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM with selected area electron diffraction (SAED were used to investigate the TiO2 structure. The optical properties were studied using UV-Vis spectroscopy.

  17. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)

    1996-10-01

    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  18. Facile SILAR approach to air-stable naked silver and gold nanoparticles supported by alumina.

    Science.gov (United States)

    Stamplecoskie, Kevin G; Manser, Joseph S

    2014-10-22

    A synthetically convenient and scalable SILAR (successive ion layer adsorption and reaction) method is used to make air-stable films of silver and gold nanoparticles supported on alumina scaffolds. This solution-based deposition technique yields particles devoid of insulating capping agents or ligands. The optical properties of the nanoparticle films were investigated using femtosecond transient absorption spectroscopy. A linear absorption arising from intraband excitation (775 nm laser pulse) is seen only for Au nanoparticles at low intensity. However, both Au and Ag particles exhibit plasmon resonance responses at high excitation intensity via two photon absorption of the 775 nm pump pulse. The difference in optical response to near-IR laser excitation is rationalized based on the known density of states for each metal. To demonstrate the potential applications of these films, alumina-supported Ag nanoparticles were utilized as substrates for surface enhanced Raman spectroscopy, resulting in a 65-fold enhancement in the Raman signal of the probe molecule rhodamine 6G. The exceptional stability and scalability of these SILAR films opens the door for further optical and photocatalytic studies and applications, particularly with ligand-free Ag nanoparticles that typically oxidize under ambient conditions. Additionally, isolating plasmonic and interband electronic excitations in stable AgNP under visible light irradiation could enable elucidation of the mechanisms that drive noble metal-assisted photocatalytic processes.

  19. Mathematic simulation of heat transfer and operating optimization in alumina rotary kiln

    Institute of Scientific and Technical Information of China (English)

    易正明; 肖慧; 宋佳霖; 马光柏; 周孑民

    2013-01-01

    Based on the analysis of material motion in the axial direction, heat transfer and mass transport processes in a rotary kiln, and combining with pulverized coal combustion, material pyrogenation, cooling of furnace wall finally, and heat transfer and mass transport equations, the combined heat transfer mathematical model for alumina rotary kiln was built up. According to the in-site real operation parameters, the heat transfer mathematical model was solved numerically for an alumina rotary kiln to predict the temperature profiles of gas and material in the axial direction. The results show that as the excess air coefficient reduces from 1.38 to 1.20, the temperature of the sintering zone increases and the length decreases. However, as the excess air coefficient reduces from 1.20 to 1.10, the temperature of the sintering zone decreases and the length increases. When the mixed coal amount at the end of kiln is reduced from 68.6 kg/t to 62.0 kg/t and the burned coal amount at the head of kiln correspondingly increases from 155.3 kg/t to 161.9 kg/t, the sintering zone temperature increases and the length reduces. The suitable excess air coefficient and mixed coal amount at the end of kiln are recommended for the rotary kiln operation optimization.

  20. Spectral characteristics of Takyr Solonetzs and prediction of alkalization information%典型龟裂碱土光谱特征分析及碱化程度预测

    Institute of Scientific and Technical Information of China (English)

    贾科利; 张俊华; 秦君琴

    2013-01-01

    By using the typical Takyr Solonetzs in northern Yinchuan as research object ,seven methods were select-ed to process the reflectance data of surface soil ,and total regression ,stepwise regression and partial least squares regres-sion were adopted to analyze the spectral characteristics of Takyr Solonetzs ,with the purpose of determining the sensitive wavelengths to pH and ESP of surface soil and establishing the prediction model of alkalization information .The results show that :the reflectance curve of Takyr Solonetzs belonged to slow-oblique type ;there were significant positive correla-tions between the reflectance and pH as well as ESP of surface soil ;the methods of reciprocal ,first-order differential of reciprocal logarithmic and first-order differential of reflectance were relatively good in the characteristic wavelength range ;and the relativity between reflectance to pH was higher than that to ESP .Considering both the fitting degree and the quantity of sensitive wavelengths ,partial least squares regression was the best method to estimate pH and ESP of surface soil ,whose fitting degree were 0 .93 and 0 .8367 respectively .%  以宁夏银北地区典型龟裂碱土为研究对象,表层土壤光谱反射率选择平滑、倒数等7种数据处理方式,采用全回归、逐步回归和偏最小二乘三种回归方法,分析龟裂碱土光谱特征,筛选对土壤pH值和ESP的敏感波段,建立龟裂碱土碱化信息的预测模型。结果表明:龟裂碱土的光谱反射曲线属于缓斜型;土壤表层反射率与土壤pH值和ESP在研究波段内均呈极显著正相关关系;反射率倒数对数的一阶微分和反射率的一阶微分在特征波段范围表现较好;反射率与土壤pH值的相关性优于与土壤ESP的相关性。从拟合度和选用敏感波段的多少整体考虑,采用偏最小二乘回归来拟合土壤pH值和ESP的方程最佳,拟合度分别达到0.93和0.8367。

  1. Preparation of zirconia-alumina powder by co-precipitation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A zirconia-alumina powder with a near spherical shape and an average size of 0.1 ~ 0.2μm was prepared byco-precipitation. XRD analysis shows that α-Al2O3 phase may be directly transformed from amorphous in calcining the hydroxide composite. The ZrO2-Al2O3 composite ceramics manufactured from this powder has the maximum fracture toughness of 9 M Pa·m- 1/2 at 15 % ZrO2 and 740 MPa fracture strength at 5 % ZrO2. Zirconia grains about 1 μm in diameter aredispersed uniformly in the alumina ceramic matrix

  2. Measurements of prompt radiation induced conductivity of alumina and sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, E. Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zarick, Thomas Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sheridan, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preston, Eric F. [ITT Coporation, Colorado Springs, CO (United States)

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  3. Alumina lightweight ceramics modified with plasma synthesized nanopowders

    Science.gov (United States)

    Zake, I.; Svinka, R.; Svinka, V.; Palcevskis, E.

    2011-12-01

    The aim of this study is to clarify possibilities of using plasma synthesized Al2O3 and SiC nanopowders as additives in alumina lightweight ceramics prepared by slip casting. Each plasma synthesized nanopowder (PSNP) was incorporated in the material by a different method, because of their diverse influence on the properties of slip. Al2O3 PSNP was introduced in the matrix in form of aqueous suspension. SiC nanopowder was added directly to raw materials. Bending strength, bulk density, apparent porosity and thermal shock resistance were determined to evaluate the influence of these additives. The effect of Al2O3 PSNP addition on the properties of material depends on the initial sintering temperature. SiC particles during sintering oxidize into SiO2 and then in the reaction with alumina form mullite. Addition of SiC considerably improves bending strength and thermal shock resistance.

  4. Synthesis of catalysts supported in {gamma}-alumina; Sintese de catalisadores suportados na {gamma}-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiza Gabriel; Silva, A.J.N.; Santos, I.M.G.; Souza, A.G. [Paraiba Univ, Joao Pessoa, PB (Brazil). Dept. de Quimica. Lab. de Termoquimica e Materiais]. E-mail: luizagaby@yahoo.com.br; Fernandes Junior, V.J.; Araujo, A.S. [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Quimica. Lab. de Combustiveis

    2003-07-01

    Fuels contain a great amount of undesirable pollutants as asphaltenes, metals, sulfides and nitrogen compounds. The content of sulfur in petroleum is around 1%,. When burned, fuels liberate SO{sub x}, the greatest air pollutant . The maximum sulfur quantity in diesel is {approx}350 wppm, but in agreement to European specifications, this content will fall to 50 wppm up to 2005. To remove this sulfur a deep hydrodesulfurization is necessary, requiring high performance catalysts. This way, in this work, the following catalysts were synthesized, using Pechini method: MoO{sub 3} containing Ni and/or Co supported on {gamma}-alumina, with the formulas Co{sub x}Mo{sub 1-x}O{sub 3}/Al{sub 2}O{sub 3}, Ni{sub x}Mo{sub 1-x}O{sub 3}/Al{sub 2}O{sub 3} and Ni{sub x/2}Co{sub x/2}Mo{sub 1-x}O{sub 3}/Al{sub 2}O{sub 3} where x 0,01, 0,02 and 0,03 in mol percentage. This method was proposed, due to its high stoichiometry control, purity, reproducibility and homogeneity. All catalysts were submitted to thermal treatment at 500 deg C to 700 deg C and characterized by thermogravimetry, infrared spectroscopy, X-ray diffraction. Results indicate the stabilization of the requested composition at around 622 deg C. The X-ray diffraction results indicate that secondary phase increases with dopant amount. (author)

  5. The study of electrical conductivity and diffusion behavior of water-based and ferro/ferricyanide-electrolyte-based alumina nanofluids.

    Science.gov (United States)

    Liu, Chang; Lee, Hyeonseok; Chang, Ya-Huei; Feng, Shien-Ping

    2016-05-01

    Nanofluids are liquids containing suspensions of solid nanoparticles and have attracted considerable attention because they undergo substantial mass transfer and have many potential applications in energy technologies. Most studies on nanofluids have used low-ionic-strength solutions, such as water and ethanol. However, very few studies have used high-ionic-strength solutions because the aggregation and sedimentation of nanoparticles cause a stability problem. In this study, a stable water-based alumina nanofluid was prepared using stirred bead milling and exhibits a high electrical conductivity of 2420 μS/cm at 23 °C and excellent stability after five severe freezing-melting cycles. We then developed a process for mixing the water-based nanofluid with a high-ionic-strength potassium ferro/ferricyanide electrolyte and sodium dodecyl sulfate by using stirred bead milling and ultrasonication, thus forming a stable electrolyte-based nanofluid. According to the rotating disk electrode study, the electrolyte-based alumina nanofluid exhibits an unusual increase in the limiting current at high angular velocities, resulting from a combination of local percolation behavior and shear-induced diffusion. The electrolyte-based alumina nanofluid was demonstrated in a possible thermogalvanic application, since it is considered to be an alternative electrolyte for thermal energy harvesters because of the increased electrical conductivity and confined value of thermal conductivity.

  6. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-12-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 wt% NaCl solution. Empirical relationship was established to predict the corrosion rate of plasma sprayed alumina coatings by incorporating process parameters. The experiments were conducted based on a three factor, five-level, central composite rotatable design matrix. The developed relationship can be effectively used to predict the corrosion rate of alumina coatings at 95% confidence level. The results indicate that the input power has the greatest influence on corrosion rate, followed by stand-off distance and powder feed rate.

  7. Applying Taguchi method for optimization of the synthesis condition of nano-porous alumina membrane by slip casting method

    Energy Technology Data Exchange (ETDEWEB)

    Barmala, Molood [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Moheb, Ahmad, E-mail: ahmad@cc.iut.ac.i [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Emadi, Rahmatollah [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-10-19

    In this work thin disc type pure alumina membranes have been prepared by slip casting technique. The colloidal stabilization of micro-sized alumina suspensions with different amount of 1,2-dihydroxy-3,5-benzenedisulfonic acid disodium salt (Tiron) at various suspension concentration were examined and the suspension stability was characterized by measuring sedimentation height. Also the necessary ball milling time (used as a deflocculating process) to prepare defect free membranes was investigated. A statistical experimental design method (Taguchi method with L9 orthogonal array design) was implemented to optimize experimental conditions for the preparation of Al{sub 2}O{sub 3} nano-porous membrane. Sintering temperature, solid content and polyvinyl alcohol (PVA) content were recognized and selected as important effecting parameters. Also structural studies by means of isopropanol adsorption and scanning electron microscopy were carried out on membranes. As the result of Taguchi analysis in this study, sintering temperature was the most influencing parameter on the membrane porosity. Reasonable membrane characteristics were obtained at an optimum temperature of 1400 deg. C, 20% solid content and 20 cc PVA solution per 100 g of alumina powder.

  8. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Razavi Hesabi, Z. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran 14588 (Iran, Islamic Republic of); Hafizpour, H.R. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran 14588 (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran 14588 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran 14588 (Iran, Islamic Republic of)], E-mail: simchi@sharif.edu

    2007-04-25

    The densification response of aluminum powder reinforced with 5 vol.% nanometric alumina particles (35 nm) during uniaxial compaction in a rigid die was studied. The composite powder was prepared by blending and mechanical milling procedures. To determine the effect of the reinforcement nanoparticles on the compressibility of aluminum powder, monolithic Al powder, i.e. without the addition of alumina, was also examined. It was shown that at the early stage of compaction when the rearrangement of particles is the dominant mechanism of the densification, disintegration of the nanoparticle clusters and agglomerates under the applied load contributes in the densification of the composite powder prepared by blending method. As the compaction pressure increases, however, the load partitioning effect of the nanoparticles decreases the densification rate of the powder mixture, resulting in a lower density compared to the monolithic aluminum. It was also shown that mechanical milling significantly impacts the compressibility of the unreinforced and reinforced aluminum powders. Morphological changes of the particles upon milling increase the contribution of particle rearrangement in densification whilst the plastic deformation mechanism is significantly retarded due to the work-hardening effect of the milling process. Meanwhile, the distribution of alumina nanoparticles is improved by mechanical milling, which in fact, affects the compressibility of the composite powder. This paper addresses the effect of mechanical milling and reinforcement nanoparticles on the compressibility of aluminum powder.

  9. Aqueous-Phase Preparation of Model HDS Catalysts on Planar Alumina Substrates: Support Effect on Mo Adsorption and Sulfidation.

    Science.gov (United States)

    Bara, Cédric; Plais, Lucie; Larmier, Kim; Devers, Elodie; Digne, Mathieu; Lamic-Humblot, Anne-Félicie; Pirngruber, Gerhard D; Carrier, Xavier

    2015-12-23

    The role of the oxide support on the structure of the MoS2 active phase (size, morphology, orientation, sulfidation ratio, etc.) remains an open question in hydrotreating catalysis and biomass processing with important industrial implications for the design of improved catalytic formulations. The present work builds on an aqueous-phase surface-science approach using four well-defined α-alumina single crystal surfaces (C (0001), A (112̅0), M (101̅0), and R (11̅02) planes) as surrogates for γ-alumina (the industrial support) in order to discriminate the specific role of individual support facets. The reactivity of the various surface orientations toward molybdenum adsorption is controlled by the speciation of surface hydroxyls that determines the surface charge at the oxide/water interface. The C (0001) plane is inert, and the R (11̅02) plane has a limited Mo adsorption capacity while the A (112̅0) and M (101̅0) surfaces are highly reactive. Sulfidation of model catalysts reveals the highest sulfidation degree for the A (112̅0) and M (101̅0) planes suggesting weak metal/support interactions. Conversely, a low sulfidation rate and shorter MoS2 slabs are found for the R (11̅02) plane implying stronger Mo-O-Al bonds. These limiting cases are reminiscent of type I/type II MoS2 nanostructures. Structural analogies between α- and γ- alumina surfaces allow us to bridge the material gap with real Al2O3-supported catalysts. Hence, it can be proposed that Mo distribution and sulfidation rate are heterogeneous and surface-dependent on industrial γ-Al2O3-supported high-surface-area catalysts. These results demonstrate that a proper control of the γ-alumina morphology is a strategic lever for a molecular-scale design of hydrotreating catalysts.

  10. Friction and Wear of Sintered Alumina at High Temperature

    OpenAIRE

    Senda, Tetsuya; TAKAHASHl, Chiori; UEMATSU, Susumu; Amada, Shigeyasu

    1991-01-01

    The frictional behavior of alumina ceramics was investigated at various temperatures up to 1200℃. The coefficient of friction decreased with increasing temperature and this temperature dependency became more pronounced as higher contact pressures were applied. Wear loss at room temperature could be interpreted as being caused by one of either two different behavior modes. These have a rate difference of a factor of ten. At temperatures higher than 800℃, the wear loss was far less than that at...

  11. MICROWAVE JOINING OF ALUMINA CERAMIC AND HYDROXYLAPATITE BIOCERAMIC

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Microwave joining is a rapid developmental new techniqu e in recent years.This paper introduces a new microwave joining equipment which was made by our lab,succeeds in alumina ceramic-hydroxylapatite bioceramic j o in in the equipment, and analyzes the join situation of join boundary by using s canni ng electron microscope(SEM),this paper analyzes the mechanism of microwave joini ng also.

  12. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  13. Alumina Based 500 C Electronic Packaging Systems and Future Development

    Science.gov (United States)

    Chen, Liang-Yu

    2012-01-01

    NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.

  14. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    Directory of Open Access Journals (Sweden)

    Morteza Aramesh

    2015-08-01

    Full Text Available A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

  15. Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Feng Du; Xianli Liu; Zhonghao Jiang; Luquan Ren

    2011-01-01

    Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique.The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa.The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3 μL water drop at room temperature.The measurement of the wetting property showed that the water contact angle of the unmodified as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time.The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure.The structure is composed of the micro-scaled alumina columns and pores.The height of columns and the depth of pores depend on the anodizing time.The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT),showing a change in the wettability from hydrophobicity to super-hydrophobicity.This improvement in the wetting property is attributed to the decrease in the surface energy caused by the chemical modification.

  16. Intensifying digestion of diaspore and separation of alumina and silica

    Institute of Scientific and Technical Information of China (English)

    李小斌; 彭志宏; 刘桂华; 周秋生

    2003-01-01

    It was found that there lies a linear relationship among the thermodynamic data of complicate inorganic compounds with similar components. A method for estimating the thermodynamic data of complicate compound and a thermodynamic database involving alumina production were developed. It was found that the alumina digestion rate of activated diasporic bauxite by means of heat field increased much due to the structure aberration, i.e, from perfect structure to unstable corundum. The results from thermodynamic calculation and experiments showed that it was feasible for desilication at atmospheric pressure, and the effects on equilibrium concentration of SiO2 included temperature, mole ratio of Na2O/Al2O3 (αk), caustic and Na+ concentration. The technology of desilication of green liquor at atmosphere and separation of alumina and silica in aluminate solution with high concentration were established. The reaction activity of compounds containing silica and the converting law among compounds were studied, and the prototype technology of desilication products by hydrotreatment was also developed.

  17. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bin [Dartmouth College, Hanover, NH (United States); Baker, Ian [Dartmouth College, Hanover, NH (United States)

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  18. Understanding improved osteoblast behavior on select nanoporous anodic alumina

    Directory of Open Access Journals (Sweden)

    Ni S

    2014-07-01

    Full Text Available Siyu Ni,1 Changyan Li,1 Shirong Ni,2 Ting Chen,1 Thomas J Webster3,4 1College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; 2Department of Pathophysiology, Wenzhou Medical University, Wenzhou, People’s Republic of China; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The aim of this study was to prepare different sized porous anodic alumina (PAA and examine preosteoblast (MC3T3-E1 attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (P<0.05. Thus, this study showed that one can alter surface energy of aluminum by modifying surface nano-roughness alone (and not changing chemistry through an anodization process to improve osteoblast density, and, thus, should be

  19. A Study on the Effect of Nano Alumina Particles on Fracture Behavior of PMMA

    Directory of Open Access Journals (Sweden)

    Arezou Sezavar

    2015-04-01

    Full Text Available In the current research, the role of nano-sized alumina on deformation and fracture mechanism of Poly Methyl Methacrylate (PMMA was investigated. For this purpose, PMMA matrix nanocomposite reinforced with different wt% of alumina (i.e., 5, 10 and 15 were fabricated using the compression molding technique. Tensile properties of produced nanocomposites were studied using Zwick Z250 apparatus at cross head speed of about 5 mm/min. In order to specify the role of alumina nanoparticles on deformation and fracture mechanism of PMMA, microscopic evaluation was performed using scanning electron microscope (SEM. The achieved results prove that tensile properties of PMMA depend on alumina wt%. For example, addition of 15 wt% alumina to PMMA causes an increase of about 25% modulus of elasticity. Micrographs taken from the fracture surface of PMMA and its nanocomposites show deformation and fracture mechanism of PMMA changes as alumina is added to it.

  20. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Halder, A.; Chattopadhyay, R.; Majumder, S.; Paul, M. C.; Das, S.; Bhadra, S. K., E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India); Bysakh, S.; Unnikrishnan, M. [Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India)

    2015-01-05

    An efficient visible fluorescent optical fiber embedded with silver nanoclusters (Ag-NCs) having size ∼1 nm, uniformly distributed in alumina-silica composite core glass, is reported. Fibers are fabricated in a repetitive controlled way through modified chemical vapour deposition process associated with solution doping technique. Fibers are drawn from the transparent preforms by conventional fiber drawing process. Structural characteristics of the doped fibers are studied using transmission electron microscopy and electron probe micro analysis. The oxidation state of Ag within Ag-NCs is investigated by X-ray photo electron spectroscopy. The observed significant fluorescence of the metal clusters in fabricated fibers is correlated with electronic model. The experimentally observed size dependent absorption of the metal clusters in fabricated fibers is explained with the help of reported results calculated by ab-initio density functional theory. These optical fibers may open up an opportunity of realizing tunable wavelength fiber laser without the help of rare earth elements.

  1. Effect of adsorbed water on the ultrasonic velocity in alumina powder compacts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.P.; Poret, J.C.; Rosen, M. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Mater. Sci. and Eng.; Danon, A. [Nuclear Research Centre-Negev, Chemistry Division, P.O. Box 9001, Beer-Sheva (Israel)

    1998-08-31

    The presence of surface adsorbed water has been found to significantly increase the apparent elastic properties of unsintered alumina powder compacts. It is proposed that the increase in the elastic moduli results from the formation of `interparticle bridges` between adjacent particles and, thus, increased effective interparticle contact area. The effects upon the elastic moduli in the unsintered powder compacts were monitored by measurement of the changes in the ultrasonic velocity. The ultrasonic data are consistent with thermogravimetric analysis and mass spectrometry results which indicate the presence of multiple adsorbed water species. Understanding the effect of adsorbed water on the processing characteristics of ceramic powders may lead to better process control during green state consolidation and ultimately to higher quality sintered products. (orig.) 29 refs.

  2. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee

    2014-04-11

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  3. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    Science.gov (United States)

    Tan, Kwan Wee; Moore, David T; Saliba, Michael; Sai, Hiroaki; Estroff, Lara A; Hanrath, Tobias; Snaith, Henry J; Wiesner, Ulrich

    2014-05-27

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  4. In situ fabrication of ultrathin porous alumina and its application for nanopatterning Au nanocrystals on the surface of ion-sensitive field-effect transistors.

    Science.gov (United States)

    Kisner, A; Heggen, M; Fischer, W; Tillmann, K; Offenhäusser, A; Kubota, L T; Mourzina, Y

    2012-12-07

    In situ fabrication in a single step of thin films of alumina exhibiting a thickness of less than 100 nm and nanopores with a highly regular diameter distribution in order to pattern nanostructures over field-effect devices is a critical issue and has not previously been demonstrated. Here we report the fabrication in situ of 50 nm thick ultrathin nanoporous alumina membranes with a regular pore size directly over metal-free gate ion-sensitive field-effect transistors. Depositing thin films of aluminum by an electron beam at a relatively low rate of deposition on top of chips containing the transistors and using a conventional single-step anodization process permits the production of a well-adhering nanoporous ultrathin layer of alumina on the surface of the devices. The anodization process does not substantially affect the electrical properties of the transistors. The small thickness and pore size of ultrathin alumina membranes allow them to be sequentially employed as masks for patterning Au nanocrystals grown by an electroless approach directly on the top of the transistors. The patterning process using a wet chemical approach enables the size of the patterned crystals to be controlled not only by the dimensions of the pores of alumina, but also by the concentration of the reactants employed. Surface modification of these nanocrystals with alkanethiol molecules demonstrates that the electrostatic charge of the functional groups of the molecules can modulate the electrical characteristics of the transistors. These results represent substantial progress towards the development of novel nanostructured arrays on top of field-effect devices that can be applied for chemical sensing or non-volatile memories.

  5. Effect of Heat Treatment of the Alumina Powder on the Microstructure and Properties of Coatings

    Directory of Open Access Journals (Sweden)

    Prozorova Mayya

    2015-01-01

    Full Text Available The alumina powder was treated at a high temperature (1000°C. Dense (porosity of less than 2%, solid (1280 ± 30 HV0.3 and wear-resistant coatings based on heat-treated alumina powder were obtained by a multi-chamber detonation sprayer on the steel substrate. The microstructure, microhardness and the wear resistance of the alumina coatings were investigated.

  6. The Effect of Alumina Dispersant Powder on the Workability of Chromia Based Refractory for IGCC Application

    Science.gov (United States)

    Ming, Zhao Jing; Xun, Yang Zheng; Hong, Hwang Kyu; Hwan, Park Sang

    2011-10-01

    The quality of refractory applied on IGCC is a key factor that affects the cost of production. The workability and microstructure of chromia based castable are varied by introducing different type of alumina dispersant powder, such as active alumina powder. In this study, three types of active alumina powder are added to improve the workability. It's proved that the specific surface area and particle size distribution of fine powders in matrix part greatly affect the flow values and microstructures.

  7. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Science.gov (United States)

    Sudiana, I. Nyoman; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Ngkoimani, La Ode; Usman, Ida; Aripin, H.

    2016-03-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a `non-thermal effect` which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  8. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  9. Electromotive force measurements on cells involving beta-alumina solid electrolyte

    Science.gov (United States)

    Choudhury, N. S.

    1973-01-01

    Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.

  10. The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite

    Directory of Open Access Journals (Sweden)

    Ben Hasan Somaya Ahmed

    2014-01-01

    Full Text Available Composites with the addition of alumina nanofillers show improvement in mechanical properties. The PMMA polymer was used as a matrix and two different types of nanofillers, having extremely different shapes were added in the matrix to form the composite. Reinforcements were based on alumina nanoparticles having either spherical shape or whiskers having the length to diameter ratio of 100. The influence of alumina fillers size, shape and fillers loading on mechanical properties of prepared composite were studied using the nanoindentation measurements and dynamic mechanical analysis. It was observed that both alumina whiskers and alumina spherical nanoparticles added in the PMMA matrix improved the mechanical properties of the composite but the improvement was significantly higher with alumina whisker reinforcement. The concentration of the reinforcing alumina spherical nanoparticles and alumina whiskers in PMMA matrix varied up to 5 wt. %. The best performance was obtained by the addition of 3 wt. % of alumina whiskers in the PMMA matrix with regard to mechanical properties of the obtained composite.

  11. High field matching effects in superconducting Nb porous arrays catalyzed from anodic alumina templates

    DEFF Research Database (Denmark)

    Vinckx, W.; Vanacken, J.; Moshchalkov, V.V.;

    2007-01-01

    Vortex pinning in a superconducting Nb thin film deposited on an anodically grown alumina template is investigated. Anodic oxidation of aluminium layers permits under specific conditions the formation of highly ordered porous alumina, a membrane-like structure consisting of triangular arrays...... of parallel pores. Its pore diameter and interpore distance are set by careful tuning of the anodization parameters. A superconducting Nb thin film is deposited directly onto the alumina film. The porous alumina acts as a template and it allows Nb to form a periodic pinning array during its growth. Pinning...

  12. Imobilização da pancreatina em carvão ativado e em alumina para o preparo de hidrolisados de soro de leite = Immobilization of pancreatin in activated carbon and in alumina for preparing whey hydrolysates

    Directory of Open Access Journals (Sweden)

    Viviane Dias Medeiros Silva

    2005-07-01

    Full Text Available Tendo como objetivo a redução de custos do processo de fabricação dehidrolisados protéicos, estudou-se neste trabalho a imobilização da pancreatina, por adsorção, em carvão ativado e em alumina. Para isso, foram testadas diferentes condições de imobilização (30, 60 e 90min a 25°C, e 12h a 5°C. Para verificar a taxa de imobilização, determinou-se indiretamente a enzima não adsorvida nos suportes. Ao se utilizar o carvão ativado, não foi observada diferença significativa entre as condições testadas, tendo-se obtido 100% de imobilização enzimática. Para a alumina, a melhor condição foi a de 90min, na qual se obteve 37% de imobilização. A medida do grau de exposição da fenilalanina, pela espectrofotometria derivada segunda, foi empregada para a determinação da estabilidade operacional da enzima, tendo sido mostrado que a imobilização em carvão ativado e emalumina permitiu a reutilização da pancreatina por até 5 vezes e 2 vezes, respectivamente.Immobilization of pancreatin in activated carbon and in alumina was studied for producing protein hydrolysates, in order to reduce the process costs. Different immobilization conditions were tested (30, 60 and 90min at 25°C, and 12h at 5°C. For estimating the immobilization rate the amount of the non-adsorbed enzyme on the supports was indirectly determined. When activated carbon was used, no significant difference was observed among the tested conditions, obtaining 100% of enzymatic immobilization. In case of alumina, the best condition showed to be the 90min treatment which produced 37% of immobilization. The evaluation of the degree of exposition ofphenylalanine, by second derivative spectrophotometry, was used for the determination of the enzyme operational stability, and showed that the immobilization in activated carbon and in alumina allowed the reusability of the pancreatin for 5 times and 2 times,respectively.

  13. Effect of support on catalytic cracking of bio-oil over Ni/silica-alumina

    Science.gov (United States)

    Sunarno, Herman, Syamsu; Rochmadi, Mulyono, Panut; Budiman, Arief

    2017-03-01

    Depletion of petroleum and environmental problem have led to look for an alternative fuel sources In many ways, biomass is a potential renewable source. Among the many forms of biomass, oil palm empty fruit bunch (EFB) is a very attractive feedstock due to its abudance, low price and non-competitiveness with the food chain. EFB can be converted bio-oil by pyrolysis process. but this product can not be used directly as a transportation fuel, so it needs upgrading bio-oil through a catalytic cracking process. The catalyst plays an important role in the catalytic cracking process. The objective of this research is to study the effect of Ni concentrations (1,3,5 and 7 wt.%) on the characteristics of the catalyst Ni / Silica-Alumina and the performance test for the catalytic cracking of bio-oil. Preparation of the catalyst Ni / Silica-Alumina was done by impregnation at 80°C for 3 hours, then done to calcination and reduction at 500°C for 2 hours. The performance test was conducted on catalytic cracking temperature of 500°C. Results show that increasing concentration of Ni from 1 to 7 %, the pore diameter of the catalyst decreased from 35.71 to 32.70 A and surface area decreased from 209.78 to 188.53 m2/gram. With the increase of Ni concentration, the yield of oil reduced from 22.5 to 11.25 %, while the heating value of oil increased from 34.4 to 36.41MJ/kg.

  14. PENGARUH PERBEDAAN SIFAT PENYANGGA ALUMINA TERHADAP SIFAT KATALIS HYDROTREATING BERBASIS NIKEL-MOLIBDENUM

    Directory of Open Access Journals (Sweden)

    Maria Ulfah

    2012-11-01

    Full Text Available EFFECT OF ALUMINA SUPPORT PROPERTIES ON THE NICKEL-MOLIBDENUM BASE HYDROTREATING CATALYST. Effect of surface characteristics of three species of synthesized γ-alumina (alumina-1, alumina-2 and alumina-3 on characteristics NiMo catalysts has been studied. Those aluminas are derived from boehmite Catapal B by varying rasio mol nitric acid to boehmite. A sol-gel method is used to synthesize γ-Al2O3 support. The Nitrogen adsorption, X-ray diffraction (XRD, Temperature Programmed Reduction (TPR of H2, Temperature Programmed Desorption (TPD of NH3, and mechanical strength are used to characterize the supports and catalysts. The results showed that the surface area alumina affects the formation of crystalline MoO3 in the NiMo catalyst, while γ-Al2O3-3 support which has the highest surface area (about 195 m2/g compared to the other two types of alumina (>195 m2/g does not have a crystalline MoO3. The formation of crystalline MoO3 is not influenced by the acidity alumina. Based on the results of XRD, it is  indicated that the supported alumina-3 NiMo catalyst (having the highest acid strength shows that there is no presence of crystalline MoO3. Pore size distribution of support did not change significantly after the deposition of Ni and Mo oxides. Mechanical strength of support also affects the strength NiMo catalyst. Support alumina-3 which has the highest mechanical strength gives the mechanical strength of the highest NiMo catalyst. Pengaruh sifat penyangga γ-alumina hasil pengembangan (alumina-1, alumina-2 dan alumina-3 pada karakter katalis hydrotreating nikel-molibdenum (NiMo telah dipelajari. Ketiga jenis γ-alumina diturunkan dari boehmite “Catapal B” dengan menvariasikan nisbah mol asam nitrat terhadap boehmite. Pembuatan γ-alumina menggunakan metoda sol-gel. Adsorpsi Nitrogen, X-ray difraksi (XRD, Temperature Programmed Reduction (TPR H2, Temperature Programmed Desorption (TPD NH3, dan kekuatan mekanik digunakan untuk

  15. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  16. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  17. Self-organized magnetic nanowire arrays based on alumina and titania templates.

    Science.gov (United States)

    Prida, V M; Pirota, K R; Navas, D; Asenjo, A; Hernández-Vélez, M; Vázquez, M

    2007-01-01

    Densely packed arrays of magnetic nanowires have been synthesized by electrodeposition filling of nanopores in alumina and titania membranes formed by self-assembling during anodization process. Emphasis is made on the control of the production parameters leading to ordering degree and lattice parameter of the array as well as nanowires diameter and length. Structural, morphological and magnetic properties exhibited by nanowire arrays have been studied for several nanowire compositions, different ordering degree and for different nanowire aspect ratios. The magnetic behaviour of nanowires array is governed by the balance between different energy contributions: shape anisotropy of individual nanowires, the magnetostatic interaction of dipolar origin among nanowires, and magnetocrystalline and magnetoelastic anisotropies induced by the pattern templates. These novel nanocomposites, based on ferromagnetic nanowires embedded in anodic nanoporous templates, are becoming promising candidates for technological applications such as functionalised arrays for magnetic sensing, ultrahigh density magnetic storage media or spin-based electronic devices.

  18. In situ sol-gel preparation of porous alumina monoliths for chromatographic separations of adenosine phosphates.

    Science.gov (United States)

    Zajickova, Zuzana; Rubi, Emir; Svec, Frantisek

    2011-06-03

    A method enabling the in situ preparation of porous alumina monoliths within 100 μm i.d. fused silica capillaries has been developed. These monoliths were prepared using the sol-gel process from a mixture consisting of an inorganic aluminum salt, a porogen, an epoxide, and a solvent. We investigated the effects of varying the preparation conditions on the physical characteristics of the monoliths with respect to their potential application in chromatographic separations. The best columns were obtained from a mixture of aluminum chloride hexahydrate, N,N-dimethylformamide, water, ethanol and propylene oxide. Adenosine phosphates were then separated in the optimized column with retention increasing according to number of phosphate functionalities.

  19. Polarization properties of porous anodic alumina with Y-branched Cu nanowires

    Institute of Scientific and Technical Information of China (English)

    Xuejun Su; Lichun Zhang; Qingshan Li; Dechun Liang

    2008-01-01

    @@ Porous anodic alumina (PAA) templates with branch structure are fabricated by the two-step anodic oxidation processes, and then the Y-branched Cu nanowires are synthesized in the templates using an alternating current (AC) deposition method. We observe the morphology image of the samples by scanning electron microscopy (SEM), and measure the transmission spectrum and the polarization spectrum of the samples by the spectrophotometer. The results show that PAA films with Y-branched Cu nanowires have better transmittance in the near infrared region. An extinction ratio of 15-18 dB and an insertion loss of 0.1-0.4 dB are obtained in this region. Therefore PAA with Y-branched Cu nanowires can be used as a near-infrared micropolarizer, and this kind of micropolarizer would have a promising future in the field of photoelectricity integration.

  20. In situ luminescence qualification of radiation damage in aluminas: F-aggregation and Al colloids

    Energy Technology Data Exchange (ETDEWEB)

    Malo, M., E-mail: marta.malo@ciemat.es; Moroño, A.; Hodgson, E.R.

    2014-10-15

    Highlights: •Correlation between IBIL and surface electrical degradation. •Potential to remotely monitor degradation of insulating materials. •Possibility for in situ recovery of the insulating properties by thermal annealing. -- Abstract: Recent work for in situ sequential measurement of ion beam induced luminescence and surface electrical conductivity has identified a correlation between surface electrical degradation and the luminescence for aluminas and sapphire during 45 keV He ion bombardment. Detailed measurements for the initial stages of degradation where rapid changes in the luminescence emission bands occur, have now identified processes related to oxygen vacancy (F centre) aggregation and aluminium colloid production as precursors to measurable surface electrical degradation in the irradiated region. This understanding enhances the possibility of using ion beam induced luminescence as a potential monitoring tool for material evolution and insulator surface degradation during irradiation, not only in ITER and future fusion devices, but also in present experimental reactor materials test programmes.

  1. PROPERTIES OF CaO SINTERED WITH ADDITION OF ACTIVE ALUMINA

    Directory of Open Access Journals (Sweden)

    A. Miskufova

    2015-06-01

    Full Text Available This work provides research and evaluation of the influence of active gama alumina addition on green and sintered CaO material properties, microstructures and mineralogical phase formation. Experimental results have shown the possibility to prepare more stable CaO with excellent properties by energy saving one-stage burning process of natural ground limestone with small addition of γ-Al2O3 (1 wt. % at up to 1550oC for two hours. The additive caused increasing of the sintered density but especially significant decreasing of apparent porosity of CaO. X-ray diffraction and energy dispersive X-ray fluorescence analysis confirmed mainly the presence of 3CaO∙ Al2O3 on the grain boundaries. Formation of other phases during sintering, more specifically 12CaO∙7 Al2O3 and CaO∙6 Al2O3 with lower tendency to hydration was also proved.

  2. Alumina ceramic based high-temperature performance of wireless passive pressure sensor

    Science.gov (United States)

    Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin

    2016-12-01

    A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.

  3. Alumina ceramic based high-temperature performance of wireless passive pressure sensor

    Science.gov (United States)

    Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin

    2016-07-01

    A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.

  4. Operando study of iridium acetylacetonate decomposition on amorphous silica-alumina for bifunctional catalyst preparation.

    Science.gov (United States)

    Nassreddine, Salim; Bergeret, Gérard; Jouguet, Bernadette; Geantet, Christophe; Piccolo, Laurent

    2010-07-28

    The decomposition of iridium acetylacetonate Ir(acac)(3) impregnated on amorphous silica-alumina (ASA) has been investigated by combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS) and by in situ X-ray diffraction (XRD). The resulting Ir/ASA hydrotreating catalysts have also been characterized by transmission electron microscopy (TEM). The effects of heating treatments under oxidative, reductive or inert gas flows are compared with each other and with similar experiments on ASA-supported acetylacetone (acacH). It is shown that Ir(acac)(3) undergoes exothermic combustion during calcination in air, leading to agglomerated IrO(2) particles. Conversely, direct reduction involves hydrogenolysis of the acac followed by hydrogenation of the ligand residues to alkanes and water. These two processes are catalyzed by Ir clusters, the gradual growth of which is followed in situ by XRD. The resulting nanoparticles are highly and homogeneously dispersed.

  5. Estudio de la formacion de los complejos intermedios durante la sintesis de alumina

    Directory of Open Access Journals (Sweden)

    Rodríguez-Páez J.E.

    2001-01-01

    Full Text Available One of the most important compounds that are used in structural ceramics is alumina. During the last years, a variety of synthesis methods have been developed to obtain raw materials with suitable characteristics in terms of particle composition, size and shape. Controlled precipitation method (CP allows to reach these demands and with this method is possible to control the synthesis to guarantee characteristics of the ceramic powder. One stage of the CPM is the formation of intermediate complexes of cations whose oxide derives to obtain. In this work the results of study of the formation of aluminum intermediate complexes are presented. We used potentiometric and conductimetric titration to follow the advance of the process. We utilized UV-visible and IR spectroscopies to characterize the liquid phase present in the system.

  6. Synthesis and characterization of metal oxide promoted alumina catalyst for biofuel production

    Science.gov (United States)

    Anisuzzaman, S. M.; Krishnaiah, D.; Bono, A.; Abang, S.; Sundang, M.; Suali, E.; Lahin, F. A.; Shaik Alawodeen, A.

    2016-06-01

    Alumina has been widely used as a support in catalysis process which owing to its extremely thermal and mechanical stability, high surface area, large pore size and pore volume. The aim of this study was to synthesize calcium oxide-supported basic alumina catalysts (CaO/Al2O3) by impregnation method and to characterize the properties of the catalyst based on its surface area and porosity, functional group, surface morphology and particle size. Impregnation method was chosen for the synthesization of catalyst which involved contacting the support with the impregnating solution for a particular period of time, drying the support to remove the imbibed liquid and calcination process. In the preparation of catalyst, catalytic performance of CaO/Al2O3 catalyst was measured at different calcined temperatures (650°C, 750°C and 800°C). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Mercury intrusion porosimetry (MIP), and particle size analyzer (Zetasizer) was used to characterize the catalyst. The highest total specific area and the total porosity of the catalyst was obtained at 750oC. FTIR analysis basically studied on the functional groups present in each catalyst synthesized, while SEM analysis was observed to have pores on its surface. Moreover, CaO/Al2O3 catalysts at 650°C produced the smallest particle size (396.1 mn), while at 750°C produced the largest particle size (712.4 mn). Thus it can be concluded that CaO/Al2O3 catalysts has great potential coimnercialization since CaO has attracted many attentions compared to other alkali earth metal oxides especially on the transesterification reaction.

  7. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Gautam Gundiah

    2001-04-01

    Macroporous silica–alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of mesopores has been verified by X-ray diffraction. The surface areas of the samples vary between 676 and 1038 m2g–1, with the highest value in the sample with Si/Al = 48.

  8. Optical properties of porous anodic alumina embedded Cu nanocomposite films

    Science.gov (United States)

    Liu, Huiyuan; Sun, Huiyuan; Liu, Lihu; Hou, Xue; Jia, Xiaoxuan

    2015-06-01

    Porous anodic alumina embedded Cu with iridescent colors were fabricated in copper sulfate electrolyte. The films display highly saturated colors after being synthesized by an ac electrodeposition method. Tunable color in the films is obtained by adjusting anodization time, and can be adjusted across the entire visible range. Theoretical results of the changes in the structural color according to the Bragg-Snell formula are consistent with the experimental results. The films could be used in many areas including decoration, display and multifunctional anti-counterfeiting applications.

  9. Toughening and strengthening mechanism of zirconia-alumina multiphase ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, M.Q.; Fan, S.G. [Research Inst. of Synthetic Crystals, Beijing, BJ (China); Shen, Q.; Zhang, L.M. [Wuhan Univ. of Technology (China)

    2003-07-01

    In the present study, the effect of compositions on the mechanical properties of zirconia-alumina multiphase ceramics was studied. The results showed that with the variety of ZrO{sub 2} content, the change of bending strength and fracture toughness of the multiphase ceramics exhibited a saddle shape which could be divided into three zones: ZTA, ADZ, and Transition zone. The mechanism of toughening and strengthening in each zone was mainly analyzed, and it was found that stress-induced transformation toughening of ZrO{sub 2} and dispersion strengthening of Al{sub 2}O{sub 3} were the two main factors. (orig.)

  10. Development of technology and applications based on porous alumina nanostructures

    OpenAIRE

    Vojkuvka, Lukas

    2009-01-01

    La disertación ha sido organizada de la siguiente manera. En el primer capítulo se presenta el estado del arte, donde se exponen algunos conceptos básicos de las propiedades electroquimicaselectroquímicas del alumino, las fases del crecimiento de los poros y el proceso de auto-ordenación de los mismos. El segundo capítulo de la tesis esta relacionado con la preparación y caracterización morfológica de las muestras de alumina porosa. >En el capítulo 4 se desglosan los resultados obtenidos de l...

  11. Alcohol dehydration: Mechanism of ether formation using an alumina catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shi, B.; Davis, B.H. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-01

    Ether formation during the dehydration of secondary alcohols, namely, 2-butanol, 3-pentanol, and 1-cyclopentylethanol, was investigated. Using the proper reaction conditions, the yield of di-2-butyl ether during the dehydration of 2-butanol on alumina can be as high as 40%. That ether is formed by adding an alcohol to the alkene is ruled out by the results from deuterium tracer studies. Results from experiments using S(+)- 2-butanol suggest that the formation of di-2-butyl ether occurs by a S{sub N}2-type mechanism. 33 refs., 5 figs., 3 tabs.

  12. Development of a PDMS-grafted alumina membrane and its evaluation as solvent resistant nanofiltration membrane

    NARCIS (Netherlands)

    Pinheiro de Melo, A.F.; Hoogendoorn, D.; Nijmeijer, A.; Winnubst, A.J.A.

    2014-01-01

    A new solvent resistant nanofiltration (SRNF) membrane is developed by grafting a PDMS polymer into the pores of a 5 nm γ-alumina ceramic membrane. These PDMS-grafted γ-alumina membranes were attained through a two-step synthesis. The linking agent, 3-aminopropyltriethoxysilane (APTES), was first ap

  13. Polyethyleneglycol grafting of γ-alumina membranes for solvent resistant nanofiltration

    NARCIS (Netherlands)

    Tanardi, C.R.; Catana, Romina; Barboiu, Mihai; Ayral, André; Vankelecom, I.F.J.; Nijmeijer, A.; Winnubst, A.J.A.

    2016-01-01

    A method is presented for grafting mesoporous g-alumina (pore size 5 nm), supported on an a-alumina ceramic membrane, with polyethylene glycols (PEG). The grafting performance of g-Al2O3 powders with various PEG grafting agents, having different molecular weights, alkoxy groups, and ureido functiona

  14. Effect of Calcination on the Sintering of Gel-Derived, Zirconia-Toughened Alumina

    NARCIS (Netherlands)

    Exter, den Peter; Winnubst, Louis; Leuwerink, Theo H.P.; Burggraaf, Anthonie J.

    1994-01-01

    The densification behavior of ZrO2 (+ 3 mol% Y2O3)/85 wt% Al2O3 powder compacts, prepared by the hydrolysis of metal chlorides, can be characterized by a transition- and an α-alumina densification stage. The sintering behavior is strongly determined by the densification of the transition alumina agg

  15. Effect of Microstructure of Composite Powders on Microstructure and Properties of Microwave Sintered Alumina Matrix Ceramics

    Institute of Scientific and Technical Information of China (English)

    Hanmin Bian; Yong Yang; You Wang; Wei Tian; Haifu Jiang; Zhijuan Hu; Weimin Yu

    2013-01-01

    Two kinds of different structured alumina-titania composite powders were used to prepare alumina matrix ceramics by microwave sintering.One was powder mixture of alumina and titania at a micron-submicron level,in which fused-and-crushed alumina particles (micrometers) was clad with submicron-sized titania.The other was powder mixture of alumina and titania at nanometer-nanometer level,in which nano-sized alumina and nano-sized titania particles were homogeneously mixed by ball-milling and spray dried to prepare spherical alumina-titania composite powders.The effect of the microstructure of composite powders on microstructure and properties of microwave sintered alumina matrix ceramics were investigated.Nano-sized composite (NC) powder showed enhanced sintering behavior compared with micro-sized composite (MC) powders.The asprepared NC ceramic had much denser,finer and more homogenous microstructure than MC ceramic.The mechanical properties of NC ceramic were significantly higher than that of MC ceramic,e.g.the flexural strength,Vickers hardness and fracture toughness of NC ceramic were 85.3%,130.3% and 25.7% higher than that of MC ceramic,respectively.The improved mechanical properties of NC ceramic compared with that of MC ceramic were attributed to the enhanced densification and the finer and more homogeneous microstruc.ture through the use of the nanostructured composite powders.

  16. Ge Honglin: Expand and Consolidate Chemical Alumina to Create World Top-class Brand

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    On June 9,Chinalco convened discussion meeting on integrated utilization of chemical alumina and red mud.Ge Honglin,Chairman and Secretary of the Party Leadership Group of Chinalco,emphasized:"It is imperative to unswervingly expand and consolidate chemical alumina,create world top-class brand,continually propel red mud integrated utilization,and improve integrated utilization rate of resources."

  17. Crystallography-Induced Correlations in Pore Ordering of Anodic Alumina Films

    NARCIS (Netherlands)

    Roslyakov, Ilya V.; Koshkodaev, Dmitry S.; Eliseev, Andrei A.; Hermida-Merino, Daniel; Petukhov, Andrei V.; Napolskii, Kirill S.

    2016-01-01

    A crystallographic approach to tailoring the morphology and ordering degree of the porous structure of alumina films obtained by anodization of single-crystalline aluminum is discussed. The examination of porous structure of anodic alumina films formed on low-index and vicinal planes of Al single cr

  18. Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing

    Directory of Open Access Journals (Sweden)

    Valinčius Gintaras

    2007-01-01

    Full Text Available AbstractSimple nanoporous alumina matrix modification procedure, in which the electrically highly insulating alumina barrier layer at the bottom of the pores is replaced with the conductive layer of the gold beds, was described. This modification makes possible the direct electron exchange between the underlying aluminum support and the redox species encapsulated in the alumina pores, thus, providing the generic platform for the nanoporous alumina sensors (biosensors with the direct amperometric signal readout fabrication.

  19. Peltier Heats in Cryolite Melts With Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Flem, B.E.

    1996-12-31

    In the production of aluminium, improving the heat balance at the electrolytic cell may contribute to improve the energy conversion efficiency and the current efficiency of the process. The main purpose of this doctoral thesis was to measure Seebeck coefficients, or thermoelectric powers, to settle the question of reversible cooling or heating of the aluminium electrode and to decide the magnitude of the reversible Peltier effect of both the aluminium and the carbon electrode. The irreversible thermodynamics of thermocells is outlined. A thermocell using the binary system AlF{sub 3}-NaF and aluminium electrodes is described and the temperature dependence of the thermoelectric power is given. The system is extended by adding Al{sub 2}O{sub 3} to the molten electrolyte. Both thermocells with aluminium electrodes and oxygen electrodes are treated. The relevance of the thermocell measurements to the Hall-Heroult cell is discussed and an overview of trends in other thermocell systems is given. Measuring thermocell potentials of fluoride melts is complicated and so the experiments are covered in great detail. It is found that there is a reversible heat production at the cathode and a reversible cooling at the anode, which indicates that maximum temperature in the cell occurs at the cathode surface, not in the electrolyte as previously believed. When the electrolyte is saturated with both Al oxide and Al fluoride, the reversible heat effect at the cathode is approximately zero. This means that the cooling of the anode corresponds to the change of entropy in the reduction of Al oxide to Al and carbon dioxide. 186 refs., 23 figs., 25 tabs.

  20. Investigation of Mechanical Behavior of Alfa and Gamma Nano- Alumina/ Epoxy Composite Made By Vartm

    Directory of Open Access Journals (Sweden)

    P. Ghabezi

    2016-06-01

    Full Text Available In this paper, the mechanical properties (flexural and tensional modulus and strength are investigated by manufacturing Epoxy/Glass Nano-composite samples with different Nano-particle wt% (Nano-Alumina to find optimum conditions. The alpha and Gamma grade of Nano alumina were added to the epoxy system with the weight percentage of 1, 2, 3, 4, 5 and 6. The experimental results show that the maximum flexural stiffness in Alfa and Gamma Nano-alumina composite is related to 6 wt% and 4 wt% samples, respectively. And the highest tensional stiffness in Alfa and Gamma Nano-alumina composite is related to 4 wt% and 5 wt% samples, respectively. Also the highest toughness for Alfa and Gamma Nano-composites is observed for 4 wt% and 3 wt% samples and in the same way Nano-alumina in grade Alfa with 1 wt% and Gamma with 3 wt% have highest failure strain.

  1. Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition

    Science.gov (United States)

    Lee, Jong-Gun; Cha, You-Hong; Kim, Do-Yeon; Lee, Jong-Hyuk; Lee, Tae-Kyu; Kim, Woo-Young; Park, Jieun; Lee, Dongyun; James, Scott C.; Al-Deyab, Salem S.; Yoon, Sam S.

    2015-08-01

    Electrically insulating alumina films were fabricated on steel substrates using supersonic aerosol deposition and their hardness and scratchability were measured. Alumina particles (0.4-μm diameter) were supersonically sprayed inside a low-pressure chamber using between 1 and 20 nozzle passes. These alumina particles were annealed between 300 and 800 K to determine the temperature's effect on film crystal size (37-41 nm). Smoother surface morphology and increased electrical resistance of the thin films were observed as their thicknesses grew by increasing the number of passes. Resistances of up to 10,000 MΩ demonstrate robust electrical insulation. Significant hardness was measured (1232 hv or 13.33 GPa), but the alumina films could be peeled off with normal loads of 36 and 47 N for films deposited on stainless steel and SKD11 substrates, respectively. High insulation and hardness confirm that these alumina films would make excellent electrical insulators.

  2. Cellulose extraction from Zoysia japonica pretreated by alumina-doped MgO in AMIMCl.

    Science.gov (United States)

    Liu, Le; Ju, Meiting; Li, Weizun; Jiang, Yang

    2014-11-26

    In this study, alumina-doped MgO was produced as a solid alkali for lignocellulose pretreatment. Pretreatment with alumina-doped MgO disrupted the lignocellulose structure and significantly reduced the lignin content of the Z. japonica. After pretreatment, Z. japonica showed significant solubility in 1-allyl-3-methylimidazolium chloride (AMIMCl). The similar high solubility of pretreated Z. japonica samples by original alumina-doped MgO and used alumina-doped MgO also proved that alumina-doped MgO had strong stability, which can be recycled and used repeatedly. The regenerated cellulose was similar to microcrystalline cellulose according to FTIR and NMR analyses. Compared to microcrystalline cellulose, only the crystallinity of the regenerated cellulose decreased.

  3. Micromechanics of deformation in porous liquid phase sintered alumina under hertzian contact

    Energy Technology Data Exchange (ETDEWEB)

    DIGIOVANNI,ANTHONY A.; CHAN,HELEN M.; HARMER,MARTIN P.; NIED,HERMAN F.

    2000-05-15

    A series of fine-grained porous alumina samples, with and without a liquid phase, were fabricated in compositions matched closely to commercially available alumina used as a microelectronic substrates. Hertzian indentation on monolithic specimens of the glass-containing samples produced a greater quasi-ductile stress-strain response compared to that observed in the pure alumina. Maximum residual indentation depths, determined from surface profilometry, correlated with the stress-strain results. Moreover, microstructural observations from bonded interface specimens revealed significantly more damage in the form of microcracking and under extreme loading, pore collapse, in the glass-containing specimens. The absence of the typical twin faulting mechanism observed for larger-grained alumina suggests that the damage mechanism for quasi-ductility in these fine-grained porous alumina derived from the pores acting as a stress concentrator and the grain boundary glass phase providing a weak path for short crack propagation.

  4. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics : The effect of surface conditioning

    NARCIS (Netherlands)

    Felipe Valandro, Luiz; Ozcan, Mutlu; Bottino, Marco Cicero; Bottino, Marco Antonio; Scotti, Roberto; Della Bona, Alvaro

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia) ce

  5. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia) ce

  6. Preparation of Al-Si-Ti Master Alloys by Electrolysis of Silica and Titania in Cryolite-Alumina Melts

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aluminum-silicon-titanium master alloys were prepared in the laboratory by electrolysis of silica and titania dissolved in cryolite-alumina melts. Alloys containing up to 12 mass% Si and 2.6 mass% Ti were formed after about 90 min of electrolysis at 950℃. The current efficiency for the preparation of the Al-Si-Ti alloys varied with time, temperature and cathodic current density. It is concluded that this electrolytic method may be an interesting alternative to the direct metal mixing process for formation of Al-Si-Ti master alloys.

  7. Interfaces fracas em compósitos de matriz cerâmica de alumina/alumina

    OpenAIRE

    Hablitzel,M.P.; Garcia,D.E.; Hotza,D.

    2011-01-01

    O uso de cerâmicas estruturais é limitado por sua fratura frágil. Compósitos de matriz cerâmica (CMCs) são materiais que possuem reforços estruturais que atuam aumentando a energia necessária para que o material se frature. O presente artigo apresenta uma alternativa para a produção de CMCs em que matriz e fibras são constituídas de alumina. Os mecanismos responsáveis pelo aumento da tenacidade ocorrem devido a uma interfase porosa entre matriz e fibras.

  8. Morphology-controlled electrochemical sensing amaranth at nanomolar levels using alumina

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Gan, Tian [College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000 (China); Wan, Chidan [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Kangbing, E-mail: kbwu@hust.edu.cn [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-02-18

    Highlights: ► A facile way to tune morphology and sensing properties of alumina was developed. ► Oxidation activities of amaranth on alumina surface were morphology-dependent. ► Alumina microfibers were more active and greatly increased the signal of amaranth. ► Sensitive, rapid, selective and accurate method was developed for amaranth detection. -- Abstract: Different-shaped aluminas were readily prepared via hydrothermal reaction. It was found that the morphology and the electrochemical sensing properties of alumina were heavily dependent on the reaction time. When extending the reaction time from 6 h to 24 h, the obtained alumina samples changed from amorphous bumps to regular microfibers in diameter of 200 nm, as confirmed by scanning electron microscopy. Transmission electron microscopy observation revealed that longer reaction time was beneficial for the formation of porous and uniform fiber-like structures. Electrochemical tests proved that alumina microfibers were more active for the oxidation of amaranth and exhibited much higher enhancement effect, compared with alumina bumps. On the surface of alumina microfibers, the oxidation peak currents of amaranth increased remarkably. The influences of pH value, amount of alumina microfibers, and accumulation time on the signal enhancement of amaranth were discussed. As a result, a novel electrochemical method was developed for the detection of amaranth. The linear range was from 1 to 150 nM, and the detection limit was 0.75 nM after 1-min accumulation. The analytical application in drink samples was investigated, and the results consisted with the values that obtained by high-performance liquid chromatography.

  9. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina); Barbosa, Lucía [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo Parque General San Martín, Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina)

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  10. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  11. Thermochemical Analysis of Molybdenum Thin Films on Porous Alumina.

    Science.gov (United States)

    Lee, Kyoungjin; de Lannoy, Charles-François; Liguori, Simona; Wilcox, Jennifer

    2017-01-12

    Molybdenum (Mo) thin films (thickness thin-film composites were stable below 300 °C but had no reactivity toward gases. Mo thin films showed nitrogen incorporation on the surface as well as in the subsurface at 450 °C, as confirmed by X-ray photoelectron spectroscopy. The reactivity toward nitrogen was diminished in the presence of CO2, although no carbon species were detected either on the surface or in the subsurface. The Mo thin films have a very stable native oxide layer, which may further oxidize to higher oxidation states above 500 °C due to the reaction with the porous anodized alumina substrate. The oxidation of Mo thin films was accelerated in the presence of oxidizing gases. At 600 °C in N2, the Mo thin film on anodized alumina was completely oxidized and may also have been volatilized. The results imply that choosing thermally stable and inactive porous supports and operating in nonoxidizing conditions below 500 °C will likely maintain the stability of the Mo composite. This study provides key information about the chemical and structural stability of a Mo thin film on a porous substrate for future membrane applications and offers further insights into the integrity of thin-film composites when exposed to harsh conditions.

  12. Chemical Mechanical Polishing of Glass Substrate with α-Alumina-g-Polystyrene Sulfonic Acid Composite Abrasive

    Institute of Scientific and Technical Information of China (English)

    LEI Hong; BU Naijing; ZHANG Zefang; CHEN Ruling

    2010-01-01

    Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their high hardness and poor dispersion stability often lead to more surface defects. After being polished with composite particles, the surface defects of work pieces decrease obviously. So the composite particles as abrasives in slurry have been paid more attention. In order to reduce defect caused by pure α-Al2O3 abrasive, α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization. The composition, structure and morphology of the product were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-of-flight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively. The results show that polystyrene sulfonic acid grafts onto α-Al2O3, and has well dispersibility. Then, the chemical mechanical polishing performances of the composite abrasive on glass substrate were investigated with a SPEEDFAM-16B-4M CMP machine. Atomic force microscopy(AFM) images indicate that the average roughness of the polished glass substrate surface can be decreased from 0.835 nm for pure α-Al2O3 abrasive to 0.583 nm for prepared α-Al2O3-g-PSS core-shell abrasive. The research provides a new and effect way to improve the surface qualities during CMP.

  13. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina.

    Science.gov (United States)

    Naiya, Tarun Kumar; Bhattacharya, Ashim Kumar; Das, Sudip Kumar

    2009-05-01

    The ability of activated alumina as synthetic adsorbent was investigated for adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied. The optimum solution pH for adsorption of Cd(II) and Pb(II) from aqueous solutions was found to be 5. Kinetics data were best described by pseudo-second order model. The effective particle diffusion coefficient of Cd(II) and Pb(II) are of the order of 10(-10) m(2)/s. Values of mass transfer coefficient were estimated as 4.868x10(-6) cm/s and 6.85x10(-6) cm/s for Cd(II) and Pb(II) adsorption respectively. The equilibrium adsorption data for Cd(II) and Pb(II) were better fitted to Langmuir adsorption isotherm model. The thermodynamic studies indicated that the adsorption was spontaneous and exothermic for Cd(II) adsorption and endothermic for Pb(II). The sorption energy calculated from Dubinin-Radushkevich isotherm were 11.85 kJ/mol and 11.8 kJ/mol for the adsorption of Cd(II) and Pb(II) respectively which indicated that both the adsorption processes were chemical in nature. Desorption studies were carried out using dilute mineral acids. Application studies carried out using industrial waste water samples containing Cd(II) and Pb(II) showed the suitability of activated alumina in waste water treatment plant operation.

  14. A novel silica alumina-based backfill material composed of coal refuse and fly ash.

    Science.gov (United States)

    Yao, Yuan; Sun, Henghu

    2012-04-30

    In this paper, a systematic study was conducted to investigate a novel silica alumina-based backfill material composed of coal refuse and fly ash. The coal refuse and fly ash had different properties under various thermal activation temperatures (20 °C, 150 °C, 350 °C, 550 °C, 750 °C and 950 °C). It is known that a thermal activation temperature ranging from 20 °C to 950 °C significantly increases the flowability and pozzolanic properties of the coal refuse; however, the flowability of fly ash decreases when the activation temperature is higher than 550 °C because of a severe agglomeration phenomenon on its surface. An optimal design for this backfill material was determined to include an activated portion composed of 5% coal refuse at 750 °C and 15% fly ash at 20 °C. This combination yields the best performance with excellent flowability, a high compressive strength and a low bleeding rate. The microanalysis results corresponded well with the performance tests at different activation conditions. In the coal refuse, kaolinite peaks began to decrease because of their transformation into metakaolin at 550 °C. Chlorite peaks disappeared at 750 °C. Muscovite peaks decreased at 750 °C and disappeared at 950 °C. During this process, muscovite 2M(1) gradually dehydroxylated to muscovite HT. Furthermore, this paper examined the environmental acceptance and economic feasibility of this technology and found that this silica alumina-based backfill material composed of coal refuse and fly ash not only meets EPA requirements but also has several advantages in industry feasibility when compared with hydraulic backfill, rock backfill and paste backfill.

  15. Sinterização de cerâmicas em microondas. Parte III: Sinterização de zircônia, mulita e alumina Microwave sintering of ceramics. Part III: Sintering of zirconia, mullite and alumina

    Directory of Open Access Journals (Sweden)

    R. R. Menezes

    2007-09-01

    Full Text Available O aquecimento utilizando microondas possui muitas vantagens com relação aos métodos convencionais de aquecimento, como redução no tempo de processamento, economia de energia e melhora na uniformidade microestrutural dos corpos cerâmicos. Assim esse trabalho tem por objetivo a utilização da sinterização híbrida com microondas na queima rápida de materiais cerâmicos. Foram utilizados materiais que requerem altas temperaturas para densificação. Foram sinterizados materiais que apresentam bruscas e acentuadas mudanças nas suas propriedades dielétricas com a elevação da temperatura, zircônia, e materiais com baixas perdas dielétricas na temperatura ambiente, que apresentam dificuldades de aquecimento com microondas em baixas temperaturas, alumina e mulita. Foi utilizando material susceptor como agente auxiliar de aquecimento. Com base nos resultados obtidos pode-se concluir que o sistema de sinterização híbrida desenvolvido pode ser utilizado com sucesso na sinterização rápida e uniforme dos materiais estudados, sendo possível a sinterização de zircônia em ciclos de 20 min, mulita em ciclos de 16 min e alumina em ciclos de 40 min.Thermal processing by microwaves offers several advantages over conventional heating methods, such as shorter processing times, energy savings and improved microstructural homogeneity of ceramic bodies. Thus, this work focused on the fast hybrid microwave sintering of ceramic materials that require high sintering temperatures for densification. The materials studied here were zirconia, which displays abrupt and severe increases in dielectric loss with rising temperature, and alumina and mullite, which show low dielectric losses at ambient temperature and are difficult to microwave at low temperatures. A susceptor was used as an auxiliary heating agent. The results indicate that the sintering system developed here can be used efficiently for the rapid, homogeneous sintering of all the ceramics

  16. X-ray residual stress measurement of alumina detonation coating. Bakuhatsu yosha alumina himaku no X sen zanryu oryoku sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.; Mine, N. (Kyoto University, Kyoto (Japan). Faculty of Engineering); Suzuki, K. (Niigata University, Niigata (Japan). Faculty of Engineering); Kawase, R. (Ariake Institute of Technology, Fukuoka (Japan))

    1991-01-15

    Alumina ceramics were coated on mild steel by a detonation gun with different amounts of detonation gas, and residual stresses in coated films were measured by X-ray diffraction from the (844) plane of {gamma}-alumina by Cu-K {alpha} radiation. Cracks and pores were observed on the film surface and cross section. The pore increased and the film bulk density decreased with a decrease in amount of detonation gas, and the mechanical Young {prime} s modulus decreased with an increase in pore. Since strains measured mechanically were those in the film bulk with pores while strains measured by X-ray were average values in only crystalline phases, the X-ray Young {prime} s modulus was larger than the mechanical one. The residual stress in films was a large tensile stress and distributed uniformly in films. The residual tensile stress decreased with an increase in amount of detonation gas, however, it was rather insensitive to the film thickness and surface grinding after coating. 10 refs., 8 figs., 2 tabs.

  17. Estudo da conformação de substratos cerâmicos por laminação a partir de suspensões concentradas de alumina Rolling study of ceramic substrates from concentrate alumina suspensions

    Directory of Open Access Journals (Sweden)

    L. F. G. Setz

    2011-12-01

    Full Text Available A produção de substratos cerâmicos por laminação, ou conformação viscoplástica, é interessante, pois minimiza problemas inerentes ao processamento como a aglomeração dos pós. Quando a preparação das massas a serem conformadas por esta técnica é realizada a partir de suspensões estáveis, estes problemas quase inexistem, possibilitando a obtenção de produtos íntegros com microestrutura homogênea. Neste trabalho é apresentado o comportamento reológico das suspensões concentradas e das massas de alumina contendo diferentes teores do espessante/plastificante hidroxipropil metilcelulose (HPMC e também o estudo das variáveis de processo envolvidas na conformação por calandragem. Como resultado deste estudo foi possível obter substratos de alumina calandrados densos, utilizando-se uma suspensão concentrada (60% vol., estabilizada com 0,02% de Viscocrete 20HE e com adição de 1,5%m. de HPMC.The ceramic substrates production by calendering, or viscous plastic processing, is interesting because inherent problems as a powder agglomeration is minimized. When the ceramic pastes shaping for this technique are produced from stabilized suspensions these problems almost inexist. This work presents the concentrate suspensions and pastes with different hydroxypropyl methyl cellulose (HPMC thickener content rheological behaviors. The variables involved in calendering shaping were studied, too. The production of dense alumina substrates shaped by calendaring from concentrate suspensions (60 vol.%, stabilized with 0.02 wt.% Viscocrete 20HE and 1.5 wt.% HPMC is possible.

  18. Fabrication and Enhanced Thermoelectric Properties of Alumina Nanoparticle-Dispersed Bi0.5Sb1.5Te3 Matrix Composites

    Directory of Open Access Journals (Sweden)

    Kyung Tae Kim

    2013-01-01

    Full Text Available Alumina nanoparticle-dispersed bismuth-antimony-tellurium matrix (Al2O3/BST composite powders were fabricated by using ball milling process of alumina nanoparticle about 10 nm and p-type bismuth telluride nanopowders prepared from the mechanochemical process (MCP. The fabricated Al2O3/BST composite powders were a few hundreds of nanometer in size, with a clear Bi0.5Sb1.5Te3 phase. The composite powders were consolidated into p-type bulk composite by spark plasma sintering process. High-resolution TEM images reveal that alumina nanoparticles were dispersed among the grain boundary or in the matrix grain. The sintered 0.3 vol.% Al2O3/BST composite exhibited significantly improved power factor and reduced thermal conductivity in the temperature ranging from 293 to 473 K compared to those of pure BST. From these results, the highly increased ZT value of 1.5 was obtained from 0.3 vol.% Al2O3/BST composite at 323 K.

  19. Morphology-controlled electrochemical sensing amaranth at nanomolar levels using alumina.

    Science.gov (United States)

    Zhang, Yuanyuan; Gan, Tian; Wan, Chidan; Wu, Kangbing

    2013-02-18

    Different-shaped aluminas were readily prepared via hydrothermal reaction. It was found that the morphology and the electrochemical sensing properties of alumina were heavily dependent on the reaction time. When extending the reaction time from 6 h to 24 h, the obtained alumina samples changed from amorphous bumps to regular microfibers in diameter of 200 nm, as confirmed by scanning electron microscopy. Transmission electron microscopy observation revealed that longer reaction time was beneficial for the formation of porous and uniform fiber-like structures. Electrochemical tests proved that alumina microfibers were more active for the oxidation of amaranth and exhibited much higher enhancement effect, compared with alumina bumps. On the surface of alumina microfibers, the oxidation peak currents of amaranth increased remarkably. The influences of pH value, amount of alumina microfibers, and accumulation time on the signal enhancement of amaranth were discussed. As a result, a novel electrochemical method was developed for the detection of amaranth. The linear range was from 1 to 150 nM, and the detection limit was 0.75 nM after 1-min accumulation. The analytical application in drink samples was investigated, and the results consisted with the values that obtained by high-performance liquid chromatography.

  20. Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite–alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Radha, G. [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai - 600025 (India); Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai - 600025 (India); Venkatesan, Balaji; Vellaichamy, Elangovan [Department of Biochemistry, University of Madras, Guindy campus, Chennai - 600025 (India)

    2015-05-01

    This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)–alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. - Highlights: • The microwave-assisted hydroxyapatite (nHAp)–alumina nanocomposites were prepared. • Structural and interaction between nHAp and alumina have been explored. • Increased alumina concentration enhanced mechanical strength of the nHAp. • Trace elements from SBF, incorporated on nHAp–alumina nanocomposite surface, were characterized by FESEM and EDX techniques. • Hemocompatibility of the samples were evaluated and the results are in accordance with ASTM standards.

  1. Properties of micro-nano particle size admixtures of alumina at different sintering condition

    Science.gov (United States)

    Sifat, Rahin; Akter, Manira; Rashid, A. K. M. Bazlur

    2016-07-01

    Among various ceramic materials, alumina is mostly used material for its hardness and strength. There is a difference between the properties of alumina due to their different particle size. Also different holding time in the sintering temperature has effect on the sintering of alumina of different particle size. In this study, micro alumina and nano alumina were mixed in different ratios and sintered at different sintering condition to compare their mechanical properties that varied due to their different particle size distribution. In this work, conventional solid state sintering route was followed to prepare final samples. Six different particle size ratio of alumina (micro:nano= 100:0, 95:5, 90:10, 10:90, 5:95, 0:100) with a doping of 0.1% MgO were used. The sintering temperature was 1500° C but sintering condition was different. After comparing the mechanical properties, it has been observed that relatively improved properties can be obtained by increasing nano particle percentages in the micro alumina than the reverse mixture.

  2. Contact fatigue response of porcelain-veneered alumina model systems.

    Science.gov (United States)

    Stappert, Christian F J; Baldassarri, Marta; Zhang, Yu; Stappert, Dina; Thompson, Van P

    2012-02-01

    Fatigue damage modes and reliability of hand-veneered (HV) and over-pressed (OP) aluminum-oxide layer structures were compared. Influence of luting cement thickness on mechanical performance was investigated. Sixty-four aluminum-oxide plates (10 × 10 × 0.5 mm) were veneered with hand built-up or pressed porcelain (0.7 mm) and adhesively luted (50- or 150-μm cement thickness) to water-aged composite resin blocks (12 × 12 × 4 mm). Single-load-to-failure and fatigue tests were performed with a spherical tungsten carbide indenter (d = 6.25 mm) applied in the center of the veneer layer. Specimens were inspected with polarized-reflected-light and scanning electron microscopy. Use-level probability Weibull curves were plotted with two-sided 90% confidence bounds, and reliability at 75,000 cycles and 250 N load was calculated. For all specimens but two OP with 50-μm cement thickness, failure was characterized by flexural radial cracks initiating at the bottom surface of the alumina core and propagating into the veneering porcelain before cone cracks could extend to the porcelain/alumina interface. HV specimens showed higher reliability compared to OP. Those with 50-μm cement thickness were more reliable relative to their 150-μm counterparts (HV_50 μm: 95% (0.99/0.67); HV_150 μm: 55% (0.92/0.01); OP_50 μm: 69% (0.84/0.48); OP_150 μm: 15% (0.53/0.004)). Similar failure modes were observed in HV and OP specimens. Radial cracks developing in the core and spreading into the veneer are suggested to cause bulk fracture, which is the characteristic failure mode for alumina core crowns. However, the highest resistance to fatigue loading was found for the HV specimens with thin cement thickness, while the lowest occurred for the OP with thick cement layer.

  3. Study of the Porosity in Plasma-Sprayed Alumina through an Innovative Three-Dimensional Simulation of the Coating Buildup

    Science.gov (United States)

    Beauvais, S.; Guipont, V.; Jeandin, M.; Jeulin, D.; Robisson, A.; Saenger, R.

    2008-11-01

    Porosity is a key feature of a thermally sprayed coating microstructure. Within ceramic coatings, porosity is made of pores and cracks of various shapes, dimensions, and orientations. Cracks can be intralamellar or interlamellar due to the buildup of the coating, which leads to piled-up lamellae from impinging and the additional rapid solidification of liquid droplets. Pores are interconnected with cracks, which results in a three-dimensional (3-D) porosity network. Direct observation of this network is an intricate task and current attempts remain somewhat limited. A 3-D simulation of this network was, therefore, developed in this work, based on a stochastic approach to the building up of simulated lamellae in the sprayed microstructure. A library of mathematical objects was achieved from morphological measurements, using confocal microscopy of actual isolated flattened lamellae, i.e., “splats” and scanning electron microscopy (SEM). This stochastic approach to the simulation of hundreds of lamellae also involves the random distribution of cracks and pores. Simulation fit parameters were selected according to the overall characteristics of porosity ( i.e., content, orientation, size, etc.) that were determined from the thorough quantitative image analysis (QIA) of cross-sectioned plasma-sprayed alumina coatings. Two plasma modes that varied the atmosphere in a controlled-atmosphere plasma spraying (CAPS) chamber were applied, to produce the microstructures of two different alumina coatings. The 3-D random modeling tool allowed the processing of a volume of digital material through a 3-D simulated binary image of a two-phased composite material. Using one 3-D image result of the simulation, finite element (FE) calculations were performed, in order to study the overall dielectric properties of a plasma-sprayed alumina as a function of porosity. The influence of anisotropy is discussed, in particular, and both analytical and numerical predicted values were

  4. Evaluation of interfacial bonding in dissimilar materials of YSZ-alumina composites to 6061 aluminium alloy using friction welding

    Energy Technology Data Exchange (ETDEWEB)

    Uday, M.B., E-mail: ummb2008@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Ahmad Fauzi, M.N., E-mail: afauzi@eng.usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Zuhailawati, H.; Ismail, A.B. [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2011-01-25

    Research highlights: {yields} Friction-welding process. {yields} Joining between ceramic composite and metal alloy. {yields} Slip casting of the yttria stabilized zirconia/alumina composite samples. - Abstract: The interfacial microstructures characteristics of alumina ceramic body reinforced with yttria stabilized zirconia (YSZ) was evaluated after friction welding to 6061 aluminum alloy using optical and electron microscopy. Alumina rods containing 25 and 50 wt% yttria stabilized zirconia were fabricated by slip casting in plaster of Paris (POP) molds and subsequently sintered at 1600 deg. C. On the other hand, aluminum rods were machine down to the required dimension using a lathe machine. The diameter of the ceramic and the metal rods was 16 mm. Rotational speeds for the friction welding were varied between 900 and 1800 rpm. The friction pressure was maintained at 7 MPa for a friction time of 30 s. Optical and scanning electron microscopy was used to analyze the microstructure of the resultant joints, particularly at the interface. The joints were also examined with EDX line (energy dispersive X-ray) in order to determine the phases formed during the welding. The mechanical properties of the friction welded YSZ-Al{sub 2}O{sub 3} composite to 6061 alloy were determined with a four-point bend test and Vickers microhardness. The experimental results showed the degree of deformation varied significantly for the 6061 Al alloy than the ceramic composite part. The mechanical strength of friction-welded ceramic composite/6061 Al alloy components were obviously affected by joining rotational speed selected which decreases in strength with increasing rotational speed.

  5. Regularity control of porous anodic alumina and photodegradation activity of highly ordered titania nanostructures

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-zhi; XU Ming-xia; TIAN Yu-ming; SHANG Meng; ZHANG Ping

    2006-01-01

    A two-step anodizing process was used to prepare wide-range highly ordered porous anodic alumina membrane (PAA) in the electrolyte of oxalic acid. The effects of anodic voltage,anodizing time,size of aluminium foil and additives on the regularity of PAA membrane were also studied in the process of two-step anodization. The template method was combined with the sol-electrophoresis deposition and sol-gel method respectively to prepare highly ordered titania nanostructures. The diameter and length of the obtained nanostructures were determined by the pore size and depth of the PAA template. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the morphology and phase structure of the PAA template and the titania nanostructures. The results show that the anodizing time and the additive of ethanol have a great effect on the regularity of PAA template. This can be explained from the self-organized process and the current density theory. A theoretical model based on the self-organized process was established to discuss the formation mechanism of PAA template from the chemical perspective. The titania nanostructures prepared with this method has a high specific surface area. Furthermore,the photocatalytic activity of titania nanostructures on methyl orange were studied. Compared with ordinary titania membranes,the titania nanostructures synthesized with this method have higher photodegradation activity.

  6. EFFECT OF NANOPOWDER ADDITION ON THE FLEXURAL STRENGTH OF ALUMINA CERAMIC - A WEIBULL MODEL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Daidong Guo

    2016-05-01

    Full Text Available Alumina ceramics were prepared either with micrometer-sized alumina powder (MAP or with the addition of nanometer-sized alumina powder (NAP. The density, crystalline phase, flexural strength and the fracture surface of the two ceramics were measured and compared. Emphasis has been put on the influence of nanopowder addition on the flexural strength of Al₂O₃ ceramic. The analysis based on the Weibull distribution model suggests the distribution of the flexural strength of the NAP ceramic is more concentrated than that of the MAP ceramic. Therefore, the NAP ceramics will be more stable and reliable in real applications.

  7. Decomposition of the Precursor [Pt(NH3)4](OH)2, Genesis and Structure of the Metal-Support Interface of Alumina Supported Platinum Particles: A Structural Study Using TPR, MS and XAFS Spectroscopy.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Muñoz-Paez, A.

    1995-01-01

    During the preparation of alumina supported platinum catalysts, the precursor [Pt(NH3)4](OH)2 decomposes to a neutral Pt(NH3)zO species during the drying process at 120 'C. Treatment in flowing hydrogen at 180 'C leads to partial reduction of the platinum ammine complex and formation of platinum met

  8. Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics

    Indian Academy of Sciences (India)

    A K Mukhopadhyay

    2001-04-01

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker’s microhardness tester at various loads in the range 1–20 N. Subsequently, the gradual evolution of the damage was characterized using an optical microscope in conjunction with the image analysing technique. The materials were classified in the order of the decreasing resistance against repeated indentation fatigue at the highest applied load of 20 N. It was further shown that there was a strong influence of grain size on the development of resistance against repeated indentation fatigue on the same spot. Finally, the poor performance of the sintered silicon carbide was found out to be linked to its previous thermal history.

  9. Studies on Alumina Incorporated Polyesteramide Derived from Meliaazedarach Seed Oil

    Directory of Open Access Journals (Sweden)

    A. Hasnat

    2016-10-01

    Full Text Available Polyesteramide resin (MAPEAM was prepared from N,N-bis(2-hydroxy ethyl Meliaazedarach oil fatty amide (HEMAFA a precursor of natural renewable resource using polycondensation reaction with maleic acid. With the view to improve the physico-mechenical properties aluminium was incorporated in backbone of the polymer to obtain the alumina incorporated polyesteramide resin of Meliaazedarach seed oil (Al-MAPEAM. The physico-chemical analyses and spectroscopic techniques were used for the characterization of Al-MAPEAM polymeric resin. The film properties of the Al-MAPEAM were also investigated in different corrosive environments as per standard reported methods. Studies shows that syntheses ofaluminium incorporated polyesteramide using Meliaazedarach seed oil as a starting material provides a more practicable utilization to it.

  10. Impact loading of an aluminum/alumina composite

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.N.; Hixson, R.S.; Gray, G.T. III

    1994-02-01

    The combined demands of increased strength and reduced weight in modern dynamic structural applications require improved understanding of composite materials subject to impact conditions. In order to isolate and identify individual contributions to composite material behavior under these conditions, an experimental and theoretical program was undertaken to examine dynamic behavior of an aluminum/alumina composite consisting of a 6061-T6 aluminum matrix containing elastic, spherical Al{sub 2}O{sub 3} inclusions (10 percent by volume, average diameter {approximately}25 microns). Parallel impact experiments are conducted on these composites and on pure 6061-T6 aluminum samples. This combination provides a direct and immediate qualitative picture of the effect of Al{sub 2}O{sub 3} inclusions the dynamic response of the composite in compression, release, and spallation. Additional experimental information is provided by post-shock reload tests of shock-recovered samples at quasi-static and intermediate strain rates.

  11. Ordered Nanomaterials Thin Films via Supported Anodized Alumina Templates

    Directory of Open Access Journals (Sweden)

    Mohammed eES-SOUNI

    2014-10-01

    Full Text Available Supported anodized alumina template films with highly ordered porosity are best suited for fabricating large area ordered nanostructures with tunable dimensions and aspect ratios. In this paper we first discuss important issues for the generation of such templates, including required properties of the Al/Ti/Au/Ti thin film heterostructure on a substrate for high quality templates. We then show examples of anisotropic nanostructure films consisting of noble metals using these templates, discuss briefly their optical properties and their applications to molecular detection using surface enhanced Raman spectroscopy. Finally we briefly address the possibility to make nanocomposite films, exemplary shown on a plasmonic-thermochromic nanocomposite of VO2-capped Au-nanorods.

  12. Transport properties of anodic porous alumina for ReRAM

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S; Nigo, S; Lee, J W; Mihalik, M; Kitazawa, H; Kido, G [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan)], E-mail: KATO.Seiichi@nims.go.jp

    2008-03-15

    A voltage-induced bistable switching effect has been studied for M/AlO{sub x}/Al devices made of the anodic porous alumina with a top electrode of aluminium (or silver) to develop a next generation memory (AlO{sub x}-ReRAM). The resistance state of memory is switched between OFF-state (high resistance) and ON-state (low resistance), where the resistance ratio is higher than 10{sup 4}. In the thermally stimulated current (TSC) measurement, a narrow band was observed around 290 K, indicating the conduction mechanism comes from a kind of impurity band in the energy gap. An anomaly was also observed around 290 K in the temperature dependence of resistance at the ON-state.

  13. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    Alexander Zahariev; Assen Girginov

    2003-04-01

    The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte solution not dissolving the film. Data about the kinetics of re-anodization depending on the porosity of the matrices were obtained. On the other hand, the slopes of the kinetic curves during reanodization were calculated by two equations expressing the dependence of these slopes on the ionic current density. A discrepancy was ascertained between the values of the calculated slopes and those experimentally found. For this discrepancy a possible explanation is proposed, related to the temperature increase in the film, because of that the real current density significantly increases during re-anodization.

  14. Mechanical Properties and Fracture Behaviour of Multilayer Alumina Composites

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xinguo; ZHAO Fei; ZHANG Jinyong

    2015-01-01

    Adopting a ceramic/polymer multilayer structure design to simulate the structure of nacre is usually believed to be an effective way to increase the toughness of ceramic composites at the expense of the material's bending strength. However, in this study, we found that both the bending strength and the toughness could be improved simultaneously when using a certain Al2O3/Kevlar multilayer composite design compared to pure alumina samples with the same dimensions. The fracture behaviour of the Al2O3/Kevlar multilayer composite was studied to ifnd a reason for this improvement. The results showed that the complex and asymmetrical stresses occurring in the Kevlar-reinforced layers were the main reason for the differences in fracture behaviour. We expect our results to open up new ways for the design of future high performance ceramic composites.

  15. Fatigue strength testing of LTCC and alumina ceramics bonds

    Science.gov (United States)

    Dąbrowski, A.; Matkowski, P.; Golonka, L.

    2012-12-01

    In this paper the results of fatigue strength tests of ceramic joints are presented. These tests have been performed on the samples subjected to thermal and vibration fatigue as well as on the reference samples without any additional loads. The main goal of the investigation was to determine the strength of hybrid ceramics joints using tensile testing machine. The experiment enabled evaluation of fatigue effects in the mentioned joints. Geometry of test samples has been designed according to FEM simulations, performed in ANSYS FEM environment. Thermal stress as well as the stress induced by vibrations have been analyzed in the designed model. In the experiments two types of ceramics have been used — LTCC green tape DP951 (DuPont) and alumina ceramic tape. The samples have been prepared by joining two sintered ceramic beams made of different types of material. The bonds have been realized utilizing low temperature glass or a layer of LTCC green tape.

  16. Sodium-Beta Alumina Batteries: Status and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaochuan; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2010-09-05

    Sodium-beta alumina batteries, have been extensively developed for a few decades and encouraging progress has been achieved so far. The anode is typically molten sodium while the cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). The electrolyte typically used is a β"-Al2O3 solid membrane. The issues prohibiting broad commercialization of this type of technology are dependent on the materials used, but can be broadly described as relatively high cost, safety (particularly for the Na-S couple), and low power. This paper offers a review on materials and designs for the batteries and discusses the challenges ahead for further technology improvement.

  17. Stress determination in thermally grown alumina scales using ruby luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Renusch, D.; Veal, B.W.; Koshelev, I.; Natesan, K.; Grimsditch [Argonne National Lab., IL (United States); Hou, P.Y. [Lawrence Berkeley Lab., CA (United States)

    1996-06-01

    By exploiting the strain dependence of the ruby luminescence line, we have measured the strain in alumina scales thermally grown on Fe-Cr- Al alloys. Results are compared and found to be reasonably consistent with strains determined using x rays. Oxidation studies were carried out on alloys Fe - 5Cr - 28Al and Fe - 18Cr - 10Al (at.%). Significantly different levels of strain buildup were observed in scales on these alloys. Results on similar alloys containing a ``reactive element`` (Zr or Hf) in dilute quantity are also presented. Scales on alloys containing a reactive element (RE) can support significantly higher strains than scales on RE-free alloys. With the luminescence technique, strain relief associated with spallation thresholds is readily observed.

  18. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors

    Directory of Open Access Journals (Sweden)

    Abel Santos

    2014-05-01

    Full Text Available Nanoporous anodic alumina (NAA has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field.

  19. Reactive Spreading of a Lead-Free Solder on Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Gremillard, L.; Saiz, E.; Radmilovic, V.R.; Tomsia, A.P.

    2005-12-01

    The wetting of Sn3Ag-based alloys on Al{sub 2}O{sub 3} has been studied using the sessile-drop configuration. Small additions of Ti decrease the contact angle of Sn3Ag alloys on alumina from 115 to 23 degrees. Adsorption of Ti-species at the solid-liquid interface prior to reaction is the driving force for the observed decrease in contact angle, and the spreading kinetics is controlled by the kinetics of Ti dissolution into the molten alloy. The addition of Ti increases the transport rates at the solid-liquid interface, resulting in the formation of triple-line ridges that pin the liquid front and promote a wide variability in the final contact angles.

  20. AFM, SEM and TEM Studies on Porous Anodic Alumina

    Science.gov (United States)

    Zhu, Yuan Yuan; Ding, Gu Qiao; Ding, Jian Ning; Yuan, Ning Yi

    2010-04-01

    Porous anodic alumina (PAA) has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure.

  1. AFM, SEM and TEM Studies on Porous Anodic Alumina

    Directory of Open Access Journals (Sweden)

    Zhu YuanYuan

    2010-01-01

    Full Text Available Abstract Porous anodic alumina (PAA has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure.

  2. O on the Crystallization Behavior of Lime-Alumina-Based Mold Flux for Casting High-Al Steels

    Science.gov (United States)

    Lu, Boxun; Chen, Kun; Wang, Wanlin; Jiang, Binbin

    2014-08-01

    With the development of advanced high strength steel (AHSS), a large amount of aluminum was added into steels. The reaction between aluminum in the molten steel and silica based mold flux in the continuous-casting process would tend to cause a series of problems and influence the quality of slabs. To solve the above problems caused by the slag-steel reaction, nonreactive lime-alumina-based mold flux system has been proposed. In this article, the effect of Li2O and Na2O on the crystallization behavior of the lime-alumina-silica-based mold flux has been studied by using the single hot thermocouple technology (SHTT) and double hot thermocouple technology (DHTT). The results indicated that Li2O and Na2O in the above mold flux system play different roles as they behaved in traditional lime-silica based mold flux, which would tend to inhibit general mold flux crystallization by lowering the initial crystallization temperature and increasing incubation time, especially in the high-temperature region. However, when their content exceeds a critical value, the crystallization process of mold fluxes in low temperature zone would be greatly accelerated by the new phase formation of LiAlO2 and Na x Al y Si z O4 crystals, respectively. The crystalline phases precipitated in all samples during the experiments are discussed in the article.

  3. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Camille Desrousseaux

    Full Text Available Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1 to nanostructure acrylonitrile-butadiene-styrene (ABS, a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2 to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3 to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.

  4. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors.

    Science.gov (United States)

    Pal, Bhola N; Dhar, Bal Mukund; See, Kevin C; Katz, Howard E

    2009-11-01

    Sodium beta-alumina (SBA) has high two-dimensional conductivity, owing to mobile sodium ions in lattice planes, between which are insulating AlO(x) layers. SBA can provide high capacitance perpendicular to the planes, while causing negligible leakage current owing to the lack of electron carriers and limited mobility of sodium ions through the aluminium oxide layers. Here, we describe sol-gel-beta-alumina films as transistor gate dielectrics with solution-deposited zinc-oxide-based semiconductors and indium tin oxide (ITO) gate electrodes. The transistors operate in air with a few volts input. The highest electron mobility, 28.0 cm2 V(-1) s(-1), was from zinc tin oxide (ZTO), with an on/off ratio of 2 x 10(4). ZTO over a lower-temperature, amorphous dielectric, had a mobility of 10 cm2 V(-1) s(-1). We also used silicon wafer and flexible polyimide-aluminium foil substrates for solution-processed n-type oxide and organic transistors. Using poly(3,4-ethylenedioxythiophene) poly(styrenesulphonate) conducting polymer electrodes, we prepared an all-solution-processed, low-voltage transparent oxide transistor on an ITO glass substrate.

  5. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  6. Damping Behavior of Alumina Epoxy Nano-Composites

    Science.gov (United States)

    Katiyar, Priyanka; Kumar, Anand

    2016-05-01

    Polymer nano composites, consisting of a polymer matrix with nanoparticle filler, have been predicted to be one of the most beneficial applications of nanotechnology. Addition of nano particulates to a polymer matrix enhances its performance by capitalizing on the nature and properties of the nano-scale fillers. The damping behavior of composites with nano structured phases is significantly different from that of micro structured materials. Viscoelastic homopolymer exhibit a high material damping response over a relatively narrow range of temperature and frequencies. In many practical situations, a polymeric structure is required to possess better strength and stiffness properties together with a reasonable damping behavior. Viscoelastic polymers show higher loss factor beyond the glassy region which comes with a significant drop in the specific modulus. Addition of nano alumina particles to epoxy leads to improved strength and stiffness properties with an increase in glass transition temperature while retaining its damping capability. Experimental investigations are carried out on composite beam specimen fabricated with different compositions of alumina nano particles in epoxy to evaluate loss factor, tan δ. Impact damping method is used for time response analysis. A single point Laser is used to record the transverse displacement of a point on the composite beam specimen. The experimental results are compared with theoretical estimation of loss factor using Voigt estimation. The effect of inter phase is included in theoretical estimation of loss factor. The result reveals that the study of interface properties is very important in deriving the overall loss factor of the composite since interface occupies a significant volume fraction in the composite.

  7. Damping Behavior of Alumina Epoxy Nano-Composites

    Science.gov (United States)

    Katiyar, Priyanka; Kumar, Anand

    2016-10-01

    Polymer nano composites, consisting of a polymer matrix with nanoparticle filler, have been predicted to be one of the most beneficial applications of nanotechnology. Addition of nano particulates to a polymer matrix enhances its performance by capitalizing on the nature and properties of the nano-scale fillers. The damping behavior of composites with nano structured phases is significantly different from that of micro structured materials. Viscoelastic homopolymer exhibit a high material damping response over a relatively narrow range of temperature and frequencies. In many practical situations, a polymeric structure is required to possess better strength and stiffness properties together with a reasonable damping behavior. Viscoelastic polymers show higher loss factor beyond the glassy region which comes with a significant drop in the specific modulus. Addition of nano alumina particles to epoxy leads to improved strength and stiffness properties with an increase in glass transition temperature while retaining its damping capability. Experimental investigations are carried out on composite beam specimen fabricated with different compositions of alumina nano particles in epoxy to evaluate loss factor, tan δ. Impact damping method is used for time response analysis. A single point Laser is used to record the transverse displacement of a point on the composite beam specimen. The experimental results are compared with theoretical estimation of loss factor using Voigt estimation. The effect of inter phase is included in theoretical estimation of loss factor. The result reveals that the study of interface properties is very important in deriving the overall loss factor of the composite since interface occupies a significant volume fraction in the composite.

  8. Ge nanocrystals with highly uniform size distribution deposited on alumina at room temperature by pulsed laser deposition: structural, morphological, and charge trapping properties

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Sanchez, J., E-mail: javier.martin.nano@gmail.com; Marques, L.; Vieira, E. M. F. [University of Minho, Department of Physics and Centre of Physics (Portugal); Doan, Q. T.; Marchand, A.; El Hdiy, A. [LMEN, Universite de Reims Champagne-Ardenne (France); Rolo, A. G.; Pinto, S. R. C.; Ramos, M. M. D.; Chahboun, A.; Gomes, M. J. M. [University of Minho, Department of Physics and Centre of Physics (Portugal)

    2012-05-15

    In this work, we report on the synthesis of Ge nanocrystals (NCs) by pulsed laser deposition (PLD) at room temperature (RT) in an argon atmosphere without any further annealing process. Our results show that functional thin films of crystalline Ge nanoparticles with spherical shapes can be obtained by PLD directly on alumina layers deposited on n-doped Si (100) substrates. In addition, we also demonstrate that a uniform size distribution of NCs with an average diameter of about 3 nm and a density of 2.3 Multiplication-Sign 10{sup 11} cm{sup -2} can be obtained by optimizing a shadow mask set-up, where a solid disk is introduced between the target and the substrate. Charge/discharge effects in Ge NCs deposited on a high-k amorphous alumina layer are also evidenced by conductive atomic force microscopy, which makes them suitable for memory applications.

  9. Rational engineering of nanoporous anodic alumina optical bandpass filters

    Science.gov (United States)

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  10. A facile approach to the synthesis of non-porous and microporous sub-micron spherical zirconia and alumina-zirconia solid solution.

    Science.gov (United States)

    Ghotbi, Mohammad Yeganeh; Nasiri, Vida; Rafiee, Mehdi

    2013-01-01

    Amorphous monodisperse sub-micron spherical zirconia and alumina/zirconia solid solution particles were prepared by hydrolysis of zirconium and aluminum salts in ethanol. The heat-treatment process of the amorphous materials in air atmosphere at 500°C for 2h leaded to the production of non-porous zirconia and alumina/zirconia solid solution in tetragonal phase. The alkaline etching process of the as-prepared alumina/zirconia solid solution resulted in the formation of mono-modal microporous material with specific surface area of 125.0 m(2) g(-1) in comparison with 2. 9m(2) g(-1) for the parent material. Thermal analysis of the solid solution revealed that the incorporation of aluminum ions in the zirconia structure has decreased the phase transformation temperature from amorphous to crystalline structure. Moreover, optical study confirmed the presence of oxygen vacancy defect by substitution of tetravalent cations, Zr(4+) by trivalent cations, Al(3+) in zirconia lattice.

  11. Simultaneous Modification of Alumina and MgO·Al2O3 Inclusions by Calcium Treatment During Electroslag Remelting of Stainless Tool Steel

    Science.gov (United States)

    Shi, Cheng-Bin; Yu, Wen-Tao; Wang, Hao; Li, Jing; Jiang, Min

    2017-02-01

    Calcium modification of both alumina and MgO·Al2O3 inclusions during protective gas electroslag remelting (P-ESR) of 8Cr17MoV stainless steel and its effect on nitrides and primary carbides were studied by analyzing the transient evolution of oxide and sulfide inclusions in the P-ESR process. The oxide inclusions that were not removed during P-ESR without calcium treatment were found to retain their original state until in as-cast ingot. Calcium treatment modified all MgO·Al2O3 and alumina inclusions that had not been removed in the P-ESR process to liquid/partially liquid CaO-Al2O3-(MgO) with uniformly distributed elements, in addition to a small proportion of partially modified inclusions of a CaO-MgO-Al2O3 core surrounded by a liquid CaO-Al2O3. The modification of low-MgO-containing MgO·Al2O3 inclusions involves the preferential reduction of MgO from the MgO·Al2O3 inclusion by calcium and the reaction of calcium with Al2O3 in the inclusion. It is the incomplete/complete reduction of MgO from the spinel by calcium that contributes to the modification of spinels. Alumina inclusions were liquefied by direct reaction with calcium. Calcium treatment during P-ESR refining also provided an effective approach to prevent the formation of nitrides and primary carbides in stainless steel through modifying their preferred nucleation sites (alumina and MgO·Al2O3 inclusions) to calcium aluminates, which made no contribution to improving the steel cleanliness.

  12. Simultaneous Modification of Alumina and MgO·Al2O3 Inclusions by Calcium Treatment During Electroslag Remelting of Stainless Tool Steel

    Science.gov (United States)

    Shi, Cheng-Bin; Yu, Wen-Tao; Wang, Hao; Li, Jing; Jiang, Min

    2016-08-01

    Calcium modification of both alumina and MgO·Al2O3 inclusions during protective gas electroslag remelting (P-ESR) of 8Cr17MoV stainless steel and its effect on nitrides and primary carbides were studied by analyzing the transient evolution of oxide and sulfide inclusions in the P-ESR process. The oxide inclusions that were not removed during P-ESR without calcium treatment were found to retain their original state until in as-cast ingot. Calcium treatment modified all MgO·Al2O3 and alumina inclusions that had not been removed in the P-ESR process to liquid/partially liquid CaO-Al2O3-(MgO) with uniformly distributed elements, in addition to a small proportion of partially modified inclusions of a CaO-MgO-Al2O3 core surrounded by a liquid CaO-Al2O3. The modification of low-MgO-containing MgO·Al2O3 inclusions involves the preferential reduction of MgO from the MgO·Al2O3 inclusion by calcium and the reaction of calcium with Al2O3 in the inclusion. It is the incomplete/complete reduction of MgO from the spinel by calcium that contributes to the modification of spinels. Alumina inclusions were liquefied by direct reaction with calcium. Calcium treatment during P-ESR refining also provided an effective approach to prevent the formation of nitrides and primary carbides in stainless steel through modifying their preferred nucleation sites (alumina and MgO·Al2O3 inclusions) to calcium aluminates, which made no contribution to improving the steel cleanliness.

  13. Characterization of AMC commercial bricks with different alumina qualities; Caracterizacion de ladrillos comerciales AMC con diferentes calidades de alumina

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, V.; Camerucci, Maria A.; Martinez, A.G. Tomba [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales (INTEMA), CONICET - Fac. de Ingenieria (UNMdP), Mar del Plata (Argentina)

    2011-07-01

    The study of commercial bricks Al{sub 2}O{sub 3}-MgO-C (AMC) has some advantages over the analysis of materials prepared in the laboratory, but requires a complete characterization. This paper presents the results of the characterization of commercial bricks AMC with different types of alumina aggregates used in ladles floor. The same is done by several complementary techniques: XRD, DTA / TGA, EPR, volume density and apparent porosity, dilatometric analysis, microstructural analysis by low magnification and scanning electron microscopy (SEM) coupled with analysis Energy dispersive X-ray (EDX) and determination of mechanical properties at room temperature (Young's modulus, stress and strain at fracture). The main characteristics and differences in the composition and microstructure, essential data for further analysis of the mechanical behavior and resistance to slag attack of these refractories, are determined. (author)

  14. Vertically aligned nanowires on flexible silicone using a supported alumina template prepared by pulsed anodization

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.

    2009-01-01

    Carpets of vertically aligned nanowires on flexible substrates are successfully realized by a template method. Applying special pulsed anodization conditions, defect-free nanoporous alumina structures supported on polydimethylsiloxane (PDMS), a flexible silicone elastomer, are created. By using...

  15. Optical properties of amorphous alumina dust in the envelopes around O-rich AGB stars

    CERN Document Server

    Suh, Kyung-Won

    2016-01-01

    We investigate optical properties of amorphous alumina (Al_2O_3) dust grains in the envelopes around O-rich asymptotic giant branch (AGB) stars considering the laboratory measured optical data. We derive the optical constants of amorphous alumina in a wide wavelength range that satisfy the Kramers-Kronig relation and reproduce the laboratory measured data. Using the amorphous alumina and silicate dust, we compare the radiative transfer model results with the observed spectral energy distributions. Comparing the theoretical models with the observations on various IR two-color diagrams for a large sample O-rich AGB stars, we find that the amorphous alumina dust (about 10-40 %) mixed with amorphous silicate can reproduce much more observed points for the O-rich AGB stars with thin dust envelopes.

  16. Characterisation of dynamic behaviour of alumina ceramics: evaluation of stress uniformity

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2015-10-01

    Full Text Available Accurate characterisation of dynamic behaviour of ceramics requires the reliable split-Hopkinson pressure bar (SHPB technique and the condition of uniaxial homogeneous specimen deformation. In this study, an experimentally validated 3D finite element model of the full scale SHPB experiment was developed to quantitatively evaluate the wave propagation in the bars and the stress distribution/evolution in the alumina specimen. Wave signals in both the SHPB experiments and the finite element model were analysed to characterise the dynamic behaviour of alumina. It was found that the equilibrium of both stresses within the specimen and forces at the specimen ends can be established in the intermediate stage of deformation. The validity of stress uniformity in the alumina specimen supports the assumption of uniaxial homogeneous specimen deformation in the SHPB and validates the characterisation of dynamic behaviour of alumina ceramics.

  17. Magnesia Bricks and Magnesia Alumina Bricks GB/T 2275-2007

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Peng Xigao

    2010-01-01

    @@ 1 Scope This standard specifies the classification,techni-cal requirements,test methods,quality appraisal pro-cedures,marking,packing,transportation,storage and quality certificate of magnesia bricks and magnesia alumina bricks.

  18. Microwave-assisted brazing of alumina ceramics for electron tube applications

    Indian Academy of Sciences (India)

    2016-04-01

    Alumina was joined with alumina using microwave-assisted and conventional brazing methods at 960$^{\\circ}$C for 15 min using TiCuSil (68.8Ag–26.7Cu–4.5Ti in wt.%) as the brazing alloy. The brazed joints were characterizedby X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Vickers microhardness evaluation, brazing strength measurement and helium leak test. X-ray diffraction analysis confirmed the formationof Ti-based compounds at the substrate-filler alloy interfaces of the microwave and conventionally brazed joints. The elemental compositions at the joint cross-section were determined by energy dispersive X-ray analysis. Vickers microhardness measurement indicated reliable joint performance for the microwave-assisted brazed joints during actual application in an electron tube. Brazing strength measurement and helium leak test provided the evidence forgood alumina-alumina joint formation.

  19. Effect of 20kHz ultrasound on alumina hydrate precipitation from seeded sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    赵继华; 陈启元

    2002-01-01

    The effect of 20kHz ultrasound on alumina hydrate precipitation from seeded sodium aluminate solution was studied. Compared with alumina hydrate precipitation without treatment of ultrasound, the precipitation time is reduced from 30h to 15h when the precipitation ratio is 45% under 20kHz ultrasound. Furthermore, agglomeration is increased and the growth rate of alumina hydrate is increased under 20kHz ultrasound by comparing the crystal size distribution and the SEM photographs. As a result, the average size of alumina hydrate is increased by 3.7μm. The structure of product is not changed according to the results of X-ray powder deflection.

  20. A method for the control of alumina concentration in aluminum reduction cells

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1992-01-01

    Full Text Available The paper presents a new method for the control of the concentration of the alumina in electrolysis cells for the production of aluminium. The method is based upon the well known fact that apparent resistivity of the cell is a function of the alumina concentration so that the resistivity has the lowest value around the concentration of three per cent and increases in both directions. The method uses the cross correlation between a perturbation of the feed flow of alumina into the cell and the resulting response in measured voltage across the cell. The cross-correlation is proportional to the slope of the resistivity against concentration curve, making it possible to control the alumina flow, to achieve a desired slope. The method has much in common with other methods presently in use which require a much more complicated computation scheme.

  1. Mechanical behaviors of alumina ceramics doped with rare-earth oxides

    Institute of Scientific and Technical Information of China (English)

    YAO Yijun; LI Chuncheng; WANG Ling; JIANG Xiaolong; QIU Tai

    2010-01-01

    The effects of three types of additives Y2O3, La2O3, and Sm2O3 on the sintering and mechanical behaviors of alumina ceramics were investigated. The bending strengths of alumina ceramics with Sm2O3 and Y2O3 additions were 455 and 439 MPa, respectively, higher than that with La2O3 addition. The fracture toughness of the ceramics with Sm2O3 and Y2O3 were also higher than that with La2O3 addition. The fracture mode of rare earth oxides doped alumina ceramics exhibited obvious transgranular fractures as well as intergranular fracture. The results of research show that the improvement of bending strength and fracture toughness of alumina ceramics with rare earth oxides was achieved by refining the grain size and strengthening the grain boundary.

  2. SURFACE TENSION OF MOLTEN IF STEEL CONTAINING Ti AND ITS INTERFACIAL PROPERTIES WITH SOLID ALUMINA

    Institute of Scientific and Technical Information of China (English)

    L.C. Zhong; M. Zeze; K. Mukai

    2004-01-01

    Surface tension of molten IF steel containing Ti and contact angle between the liquid steel and solid alumina were measured with sessile droplet method under Ar gas atmosphere at 1500, 1575 and 1600℃. The results show that titanium decreases the surface tension of the molten IF steel and the contact angle. The interfacial tension between the molten IF steel containing Ti and solid alumina decreases with increase in titanium content. The work of adhesion between molten IF steel containing Ti and solid alumina decreases slightly at 1550℃, but increases at 1600℃ with increasing titanium content. It can be deduced that fine bubbles and fine alumina inclusions are easily entrapped in solidifying interface for IF steel containing Ti.

  3. Research on toughening mechanisms of alumina matrix ceramic composite materials improved by rare earth additive

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihua; LIU Changxia; LI Musen; ZHANG Jianhua

    2008-01-01

    Mixed rare earth elements were incorporated into alumina ceramic materials. Hot-pressing was used to fabricate alumina matrix composites in nitrogen atmosphere protection. Microstructures and mechanical properties of the composites were tested. It was indicated that the bending strength and fracture toughness of alumina matrix ceramic composites sintered at 1550℃ and 28 Mpa for 30 min were improved evidently. Besides mixed rare earth elements acting as a toughening phase, AlTiC master alloys were also added in as sintering assistants, which could prompt the formation of transient liquid phase, and thus nitrides of rare earth elements were produced. All of the above were beneficial for improving the mechanical properties of alumina matrix ceramic composites.

  4. Optical Properties of Amorphous Alumina Dust in the Envelopes around O-Rich AGB Stars

    Science.gov (United States)

    Suh, Kyung-Won

    2016-08-01

    We investigate optical properties of amorphous alumina (Al_2O_3) dust grains in the envelopes around O-rich asymptotic giant branch (AGB) stars using laboratory measured optical data. We derive the optical constants of amorphous alumina over a wide wavelength range that satisfy the Kramers-Kronig relation and reproduce the laboratory data. Using the amorphous alumina and silicate dust, we compare the radiative transfer model results with the observed spectral energy distributions. Comparing the theoretical models with observations on various IR two-color diagrams for a large sample of O-rich AGB stars, we find that the amorphous alumina dust (about 10-40%) mixed with amorphous silicate better models the observed points for the O-rich AGB stars with thin dust envelopes.

  5. Stability of trapped charges in sapphires and alumina ceramics: Evaluation by secondary electron emission

    Science.gov (United States)

    Zarbout, K.; Si Ahmed, A.; Moya, G.; Bernardini, J.; Goeuriot, D.; Kallel, A.

    2008-03-01

    The stability of trapped charges in sapphires and alumina ceramics is characterized via an experimental parameter expressing the variation of the secondary electron emission yield between two electron injections performed in a scanning electron microscope. Two types of sapphires and polycrystalline alumina, which differ mainly by their impurity content, are investigated in the temperature range 300-663K. The stable trapping behavior in sapphires is attributed to trapping in different defects, whose nature depends on the purity level. In alumina ceramics, the ability to trap charges in a stable way is stronger in samples of high impurity content. In the low impurity samples, stable trapping is promoted when the grain diameter decreases, whereas the reverse is observed in high impurity materials. These behaviors can stem from a gettering effect occurring during sintering. The strong dependence of the variation of the secondary electron emission yield on the grain diameter and impurities enables a scaling of the stable trapping ability of alumina materials.

  6. Investigations of mechanical and wear properties of alumina/titania/fire-clay reinforced epoxy composites

    Science.gov (United States)

    Patel, Vinay Kumar; Chauhan, Shivani; Sharma, Aarushi

    2016-05-01

    In this work, the effect of various particulates (alumina, titania, fire clay) reinforcements on mechanical and wear properties of epoxy composites have been studied with a prime motive of replacing the costly alumina and titania by much economical fire clay for high mechanical strength and/or wear resistant materials. Fire clay based epoxy composites delivered better mechanical (both tensile and impact) properties than the alumina filled or neat epoxy composites and slightly lower than titania reinforced composites, which qualified the fire clay a very suitable cost effective alternatives of both alumina and titania for high mechanical strength based applications. However, the poor wear behavior of fire clay reinforced composites revealed its poor candidacy for wear and tear applications.

  7. Effect of low-dimensional alumina structures on viability of L 929 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, Alla N., E-mail: alserova@ispms.tsc.ru; Korovin, Matvey S., E-mail: msk@ispms.tsc.ru; Bakina, Olga V., E-mail: ovbakina@ispms.tsc.ru; Kazantsev, Sergey O., E-mail: kzso@ispms.tsc.ru; Glazkova, Elena A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, Natalia V., E-mail: nvsv@ispms.tsc.ru; Lozhkomoev, Aleksandr S., E-mail: asl@ispms.tsc.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    In the study, we estimated the cytotoxicity of alumina nanoparticles differing in shape (nanofibers, nanoplates, nanosheets, agglomerates of nanosheets) and close in physicochemical properties (particle size, specific surface area, phase composition, and zeta potential). The alumina structures were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) data, low-temperature nitrogen adsorption, and dynamic light scattering (DLS). The cytotoxicity was estimated on fibroblast cells of the L929 line. It was found that a more adverse effect on the cells was exerted by alumina nanofibers and nanosheets. The action of nanosheets on the cells was inhibitory and was of about the same level, irrespective of the observation period. The effect of alumina nanosheet agglomerates and nanoplates on the cell proliferation was weak even at an exposure time of 72 h.

  8. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  9. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  10. Effect of mixing sequence on the curing of amine-hardened epoxy/ alumina nanocomposites as assessed by optical refractometry

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available High performance refractometry has been proven to be a useful tool to elucidate the isothermal curing process of nanocomposites. As a model system an amine-hardening epoxy filled with non-surface-treated alumina nanoparticles was selected. The tremendous resolution of this experimental technique is used to study morphological changes within nanocomposites via the refractive index. It is shown that these morphological changes are not simply due to the curing process but also depend on the sequence of mixing the nanoparticles either first into the resin or first into the hardener. Independent of the resin/hardener composition, the type of the mixing sequence discriminates systematically between two distinct refractive index curves produced by the curing process. The difference between the two refractive index curves increases monotonically with curing time, which underlines the importance of the initial molecular environment of the nanoparticles.

  11. Microstructures of nanosized alumina powders synthesized by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    王晶; 张波

    2002-01-01

    The microstructures of nanosized alumina powders prepared by sol-gel routine were systematically studied with transmission electron microscopy and X-ray diffractometer. It was found that the morphologies of alumina gel powders change in the orders of caterpillar- thorn- granular-dumbbell shaped structures during calcining at temperatures from 20℃ to 800℃, 1200℃ and 1300℃. The caterpillar shaped structure composed of strings with a diameter of 5nm.

  12. High Temperature Pt/Alumina Co-Fired System for 500 C Electronic Packaging Applications

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2015-01-01

    Gold thick-film metallization and 96 alumina substrate based prototype packaging system developed for 500C SiC electronics and sensors is briefly reviewed, the needs of improvement are discussed. A high temperature co-fired alumina material system based packaging system composed of 32-pin chip-level package and printed circuit board is discussed for packaging 500C SiC electronics and sensors.

  13. Mechanical properties and microstructural evolution of alumina-zirconia nanocomposites by microwave sintering

    OpenAIRE

    Benavente Martínez, Rut; Salvador Moya, Mª Dolores; Penaranda-Foix, Felipe L.; Pallone, Eliria; Borrell Tomás, María Amparo

    2014-01-01

    Microwave sintering has emerged in recent years as a novel method for sintering a variety of materials that have shown significant advantages against conventional sintering procedures. This work involved an investigation of microwave hybrid fast firing of alumina–zirconia nanocomposites using commercial alumina powder and monoclinic nanometric zirconia. The suspensions were prepared separately in order to obtain 5, 10 and 15 vol% of ZrO2 in the alumina matrix. The samples were sinter...

  14. Effect of cooling rate on the microstructure and porosity of alumina produced by freeze casting

    OpenAIRE

    Nieto Isabel María; Rodríguez-Parra Jesús M.; Moreno Rodrigo

    2012-01-01

    Freeze casting is a well-known shaping technique to produce materials with directional porosity. One of the major problems is the difficulty to control the cooling rate thus leading to gradients in pore size and homogeneity. This work deals with the manufacture of alumina ceramics with directional porosity by freeze casting of aqueous suspensions. An experimental set-up was prepared in order to apply different cooling rates. Freeze casting tests were done with an aqueous alumina suspens...

  15. Residual strain scanning of alumina-based ceramic composites by neutron diffraction

    Science.gov (United States)

    Ruiz-Hervias, J.; Bruno, G.; Bueno, S.; Gurauskis, J.; Baudín, C.; Fan, K. Y.

    2014-11-01

    Residual strain profiles were measured by neutron diffraction in alumina-aluminum titanate ceramic composites sintered at two different temperatures, namely 1450 and 1550°C. The results show that irrespective of the direction and the sintering temperature, the obtained profiles are almost flat, with very similar results for both temperatures. In addition, the results demonstrate that the alumina is in compression whereas the aluminium titanate is subjected to tensile residual stresses.

  16. Effect of alumina particle additions of the aging kinetics of 6061 aluminum matrix composites

    OpenAIRE

    Allen, Susan Marie.

    1990-01-01

    Approved for public release, distribution is unlimited Differential scanning calorimetry (DSC) was conducted using a monolithic 6061 aluminum material and two 6061 aluminum matrix composite materials. The composite materials were reinforced with 10 volume percent and 15 volume percent alumina particles. Electrical resistivity and hardness measurements during isothermal aging treatments were also conducted. The effects of prior aging and alumina particle additions on the growth kinetics and...

  17. Preparation of Porous Alumina Film on Aluminum Substrate by Anodization in Oxalic Acid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20°C. The honeycomb structure made by one step anodization method and two step anodization method is different.Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.

  18. Chinese Standards on Refractories Shaped Insulating Refractory Product-High Alumina Bricks

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan

    2009-01-01

    @@ 1 Scope This standard specifies the classification,shape and dimension,technical requirements,test methods,quality appraisal procedure,packing,marking,transportation,storage,and quality certificate of high alumina insulating bricks. High alumina insulating bricks are used as working layer which contacts with fire directly,insulating layer,or inner lining of the kilns which does not react with the high temperature molten materials and corrosion gases.

  19. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  20. Effects of Several Factors on Viscosity of Alumina-spinel Slurries

    Institute of Scientific and Technical Information of China (English)

    SHA Jianmin; LIU Kaiqi; LIU Zuocai

    2004-01-01

    The effects of several commercial dispersants, including AN- 2000, ammonium polyacrylate , sodium tripolyphosphate, sodium hexametaphosphate, and of solids loading and of electro-fused magnesia on rheological propertiesof aqueous alumina-spinel slurries were studied.The results reveal that AN- 2000 is the most effective one among the selected dispersants for alumina-spinel slurries.With 0.5% weight of AN-2000, the 57vol% solids loadobtained at shear rate of 50s-1 .