WorldWideScience

Sample records for alkaliphilic bacillus species

  1. Draft Genome Sequences of Three Alkaliphilic Bacillus Strains, Bacillus wakoensis JCM 9140T, Bacillus akibai JCM 9157T, and Bacillus hemicellulosilyticus JCM 9152T

    OpenAIRE

    Yuki, Masahiro; Oshima, Kenshiro; Suda, Wataru; Oshida, Yumi; Kitamura, Keiko; Iida, Toshiya; Hattori, Masahira; Ohkuma, Moriya

    2014-01-01

    Here, we report the draft genome sequences of the type strains of three cellulolytic or hemicellulolytic alkaliphilic Bacillus species: Bacillus wakoensis, Bacillus akibai, and Bacillus hemicellulosilyticus. The genome information for these three strains will be useful for studies of alkaliphilic Bacillus species, their evolution, and biotechnological applications for their enzymes.

  2. Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation.

    Science.gov (United States)

    Sharma, T K; Alazhari, M; Heath, A; Paine, K; Cooper, R M

    2017-05-01

    Characterization of alkaliphilic Bacillus species for spore production and germination and calcite formation as a prelude to investigate their potential in microcrack remediation in concrete. Conditions, extent and timing of endospore production was determined by dark-field light microscopy; germination induction and kinetics were assessed by combining reduction in optical density with formation of refractile bodies by phase-contrast microscopy. Bacillus pseudofirmus was selected from several species as the most suitable isolate. Levels and timing of calcium carbonate precipitated in vitro by B. pseudofirmus were evaluated by atomic absorption spectroscopy and structural identity confirmed as calcite and aragonite by Raman spectroscopy and FTIR. The isolate produced copious spores that germinated rapidly in the presence of germinants l-alanine, inosine and NaCl. Bacterial cells produced CaCO 3 crystals in microcracks and the resulting occlusion markedly restricted water ingress. By virtue of rapid spore production and germination, calcium carbonate formation in vitro and in situ, leading to sealing of microcracks, B. pseudofirmus shows clear potential for remediation of concrete on a commercial scale. Microbial sealing of microcracks should become a practicable and sustainable means of increasing concrete durability. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  3. An alkaliphilic cyclodextrin glycosyltransferase from a new Bacillus ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... African Journal of Biotechnology Vol. 10(32), pp. 6107-6119, 4 ... Paselli starch than soluble starch. Key words: Alkaliphiles, soda lakes, cyclodextrin glycosyltransferase, Bacillus agaradhaeren, purification, 16S. rDNA. INTRODUCTION .... The enzyme samples were applied to 10% native PAGE. After gel.

  4. Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis.

    Science.gov (United States)

    Wernick, David G; Pontrelli, Sammy P; Pollock, Alexander W; Liao, James C

    2016-02-01

    Contamination susceptibility, water usage, and inability to utilize 5-carbon sugars and disaccharides are among the major obstacles in industrialization of sustainable biorefining. Extremophilic thermophiles and acidophiles are being researched to combat these problems, but organisms which answer all the above problems have yet to emerge. Here, we present engineering of the unexplored, extreme alkaliphile Bacillus marmarensis as a platform for new bioprocesses which meet all these challenges. With a newly developed transformation protocol and genetic tools, along with optimized RBSs and antisense RNA, we engineered B. marmarensis to produce ethanol at titers of 38 g/l and 65% yields from glucose in unsterilized media. Furthermore, ethanol titers and yields of 12 g/l and 50%, respectively, were produced from cellobiose and xylose in unsterilized seawater and algal-contaminated wastewater. As such, B. marmarensis presents a promising approach for the contamination-resistant biorefining of a wide range of carbohydrates in unsterilized, non-potable seawater.

  5. An alkaliphilic cyclodextrin glycosyltransferase from a new Bacillus ...

    African Journals Online (AJOL)

    Alkaliphilic bacteria were isolated from soil and water samples obtained from Egyptian soda lakes in the Wadi Natrun area. Screening for cyclodextrin glycosyltransferase- producing alkaliphilic bacteria resulted in the isolation of 15 positive strains. Strain WN-I was selected as the best producer of CGTase. 16S rDNA ...

  6. Bacillus tamaricis sp. nov., an alkaliphilic bacterium isolated from a Tamarix cone soil.

    Science.gov (United States)

    Zhang, Yong-Guang; Zhou, Xing-Kui; Guo, Jian-Wei; Xiao, Min; Wang, Hong-Fei; Wang, Yun; Bobodzhanova, Khursheda; Li, Wen-Jun

    2018-02-01

    A Gram-stain-positive, alkaliphilic bacterium, designated EGI 80668 T , was isolated from a Tamarix cone soil in Xinjiang, north-west China. Cells were facultatively anaerobic, terminal endospore-forming and motile by means of peritrichous flagella. Colonies were yellowish and the cells showed oxidase-negative and catalase-positive reactions. Strain EGI 80668 T grew at pH 8.0-10.0 and with 0-10 % (w/v) NaCl (optimally at pH 9.0 and with 1-2 % NaCl) on marine agar 2216. The predominant menaquinone was MK-7. The major fatty acids were anteiso-C17 : 0 and anteiso-C15 : 0. The cellular polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids and one unknown aminophospholipid. The G+C content of the genomic DNA was 38.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80668 T was affiliated to the genus Bacillus. The highest 16S rRNA gene sequence similarity between strain EGI 80668 T and a member of the genus Bacillus was 96.83 % with Bacillus cellulosilyticus JCM 9156 T . A polyphasic taxonomic study based on morphological, physiological, biochemical and phylogenetic data indicated that strain EGI 80668 T represents a novel species of the genus Bacillus, for which the name Bacillus tamaricis sp. nov. (type strain EGI 80668 T =KCTC 33703 T =CGMCC 1.15917 T ) is proposed.

  7. Bacillus kiskunsagensis sp. nov., a novel alkaliphilic and moderately halophilic bacterium isolated from soda soil.

    Science.gov (United States)

    Borsodi, Andrea K; Tóth, Erika; Aszalós, Júlia M; Bárány, Ágnes; Schumann, Peter; Spröer, Cathrin; Kovács, Attila L; Márialigeti, Károly; Szili-Kovács, Tibor

    2017-09-01

    An alkaliphilic and moderately halophilic strain characterized by optimal growth at pH 9.0-10.0 and 7 % (w/v) NaCl, and designated B16-24T, was isolated from the rhizosphere soil of the bayonet grass Bolboschoenus maritimus at a soda pond in the Kiskunság National Park, Hungary. Cells of the strain were Gram-staining-positive, non-motile, straight rods, and formed central, ellipsoidal endospores with slightly swollen sporangia. The isolate was facultative anaerobic, catalase positive, oxidase negative, and contained a peptidoglycan of type A1γ based on meso-diaminopimelic acid. Menaquinone-7 (MK-7) was the predominant isoprenoid quinone, and anteiso-C15 : 0 the major cellular fatty acid. The DNA G+C content of strain B16-24T was 36.6 mol%. The 16S rRNA gene-based phylogenetic analysis revealed that the novel isolate had the greatest similarities to the type strains of Bacillus okhensis Kh10-101T (97.8 %), B. akibai 1139T (97.4 %), B. alkalisediminis K1-25T (97.3 %) and B. wakoensis N-1T (97.1 %). The DNA-DNA relatedness of strain B16-24T and the closely related Bacillus species ranged between 24±6 % and 35±3 %. The distinctive phenotypic and genetic results of this study confirmed that strain B16-24T represents a novel species within the genus Bacillus, for which the name Bacillus kiskunsagensis sp. nov. is proposed. The type strain is B16-24T (=DSM 29791T=NCAIM B.02610T).

  8. Comparative proteome analysis of alkaliphilic Bacillus sp. N16-5 grown on different carbon sources.

    Science.gov (United States)

    Li, Gang; Song, YaJian; Xue, YanFen; Rao, Lang; Zhou, Chen; Wang, QuanHui; Ma, YanHe

    2011-01-01

    To determine the impact of carbohydrates on the metabolic pathway in alkaliphiles, proteomes were obtained from cultures containing different carbohydrates and were resolved on two-dimensional gel electrophoresis (2-DE). The proteomes were compared to determine differentially expressed proteins. A novel alkaliphilic bacterium (alkaliphilic Bacillus sp. N16-5 isolated from Wudunur Soda Lake, China) was isolated in media with five different carbon sources (glucose, mannose, galactose, arabinose, and xylose). Comparative proteome analysis identified 61 differentially expressed proteins, which were mainly involved in carbohydrate metabolism, amino acid transport, and metabolism, as well as energy production and conversion. The comparison was based on the draft genome sequence of strain N16-5. The abundance of enzymes involved in central metabolism was significantly changed when exposed to various carbohydrates. Notably, catabolite control protein A (CcpA) was up-regulated under all carbon sources compared with glucose. In addition, pentose exhibited a stronger effect than hexose in CcpA-mediated carbon catabolite repression. These results provided a fundamental understanding of carbohydrate metabolism in alkaliphiles.

  9. Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis).

    Science.gov (United States)

    Aizawa, Tomoko; Urai, Makoto; Iwabuchi, Noriyuki; Nakajima, Mutsuyasu; Sunairi, Michio

    2010-01-01

    Three xylanase-producing alkaliphilic strains, SU1(T), 36AC4 and 36AC6, were isolated from the guts of larvae of the Japanese horned beetle (Trypoxylus dichotomus septentrionalis). The isolates stained Gram-positive and were aerobic, spore-forming, non-motile and rod-shaped and grew optimally at 30 degrees C and pH 9. They contained MK-7 as the major isoprenoid quinone and iso-C(15 : 0), anteiso-C(15 : 0), anteiso-C(17 : 0) and iso-C(17 : 0) as the major fatty acids. The DNA G+C contents of the strains were 37.4-37.7 mol%. On the basis of 16S rRNA gene sequence similarity, these strains were shown to belong to the genus Bacillus. Although their 16S rRNA gene sequence similarity to the type strains of the alkaliphilic species Bacillus pseudalcaliphilus and B. alcalophilus was 97 %, the novel isolates formed a distinct group in the phylogenetic trees and DNA-DNA relatedness values to the type strains of these species were less than 30 %. Results of physiological and biochemical tests, including salt preference, enabled these strains to be differentiated phenotypically from described Bacillus species. Therefore, strains SU1(T), 36AC4 and 36AC6 represent a novel species for which the name Bacillus trypoxylicola sp. nov. is proposed; the type strain is SU1(T) (=NBRC 102646(T) =KCTC 13244(T)).

  10. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils.

    Science.gov (United States)

    Dou, Guiming; Liu, Hongcan; He, Wei; Ma, Yuchao

    2016-01-01

    Two alkaliphilic and halotolerant Gram-stain positive, rod-shaped and endospore-forming bacteria, designated strains 12-3(T) and 12-4, were isolated from saline and alkaline soils collected in Lindian county, Heilongjiang province, China. Both strains were observed to grow well at a wide range of temperature and pH values, 10-45 °C and pH 8-12, with optimal growth at 37 °C and pH 9.0, respectively. Growth of the two strains was found to occur at total salt concentrations of 0-12 % (w/v), with an optimum at 4 % (w/v). The G+C contents of the genomic DNA of strains 12-3(T) and 12-4 were determined to be 42.7 and 42.4 mol%, respectively, and the major cellular fatty acids were identified as anteiso-C15:0 and anteiso-C17:0. In isolate 12-3(T), meso-diaminopimelic acid was found to be the diagnostic diamino acid of the cell wall peptidoglycan; diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were identified as the major cellular polar lipids; and menaquinone-7 was identified as the predominant isoprenoid quinone. Strains 12-3(T) and 12-4 share very close 16S rRNA gene sequence similarity (99.74 %) and their DNA-DNA relatedness was 95.3 ± 0.63 %, meaning that the two strains can be considered to belong to the same species. 16S rRNA gene sequence-based phylogenetic analysis revealed strains 12-3(T) and 12-4 exhibit high similarities to Bacillus pseudofirmus DSM 8715(T) (98.7 %), Bacillus marmarensis DSM 21297(T) (97.2 %) and Bacillus nanhaiisediminis CGMCC 1.10116(T) (97.1 and 97.0 %, respectively). DNA-DNA hybridization values between isolate 12-3(T) and the type strains of closely related Bacillus species were below 30 %. On the basis of the polyphasic evidence presented, strains 12-3(T) and 12-4 are considered to represent a novel species of the genus Bacillus, for which the name Bacillus lindianensis sp. nov. is proposed. The type strain is 12-3(T) (DSM 26864(T) = CGMCC 1.12717(T)).

  11. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.

    Directory of Open Access Journals (Sweden)

    Yajian Song

    Full Text Available The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources.

  12. Draft genome sequence of a thermostable, alkaliphilic α-amylase and protease producingBacillus amyloliquefaciensstrain KCP2.

    Science.gov (United States)

    Prajapati, Vimalkumar S; Ray, Sanket; Narayan, Jitendra; Joshi, Chaitanya C; Patel, Kamlesh C; Trivedi, Ujjval B; Patel, R M

    2017-12-01

    Bacillus amyloliquefaciens strain KCP2 was isolated from municipal food waste samples collected in Vallabh Vidyanagar, Gujarat, India. Strain KCP2 is noteworthy due to its ability to produce a thermostable, alkaliphilic α-amylase and a protease. These enzymes have importance in several industrial processes including bread making, brewing, starch processing, pharmacy, and textile industries. Whole genome sequencing of strain KCP2 showed that the estimated genome size was 3.9 Mb, the G + C content was 46%, and it coded for 4113 genes.

  13. Pseudomonas yangmingensis sp. nov., an alkaliphilic denitrifying species isolated from a hot spring.

    Science.gov (United States)

    Wong, Biing-Teo; Lee, Duu-Jong

    2014-01-01

    This study isolated and identified a facultative, alkaliphilic, denitrifying Pseudomonas strain designed as CRS1 from a hot spring, Yang-Ming Mountain, Taiwan. The biochemical characterization, phenotypic characteristics and phylogenetic relationship of strain CRS1 were studied. On the basis of the 16S rRNA sequence similarity, phenotypic and genotypic characteristics and chemotaxonomic data, the strain CRS1 represents a novel species of the genus Pseudomonas, for which the name Pseudomonas yangmingensis sp. nov., is proposed. The strain CRS1 is a facultative autotrophic bacterium that has capability of mixotrophic and heterotrophic denitrification. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes

    Directory of Open Access Journals (Sweden)

    Abdelnasser S.S. Ibrahim

    2015-05-01

    Conclusions: A new halotolerant alkaliphilic alkaline protease producing Bacillus sp. NPST-AK15 was isolated from soda lakes. Optimization of various fermentation parameters resulted in an increase of enzyme yield by 22.8 fold, indicating the significance of optimization of the fermentation parameters to obtain commercial yield of the enzyme. NPST-AK15 and its extracellular alkaline protease with salt tolerance signify their potential applicability in the laundry industry and other applications.

  15. Enzymatic Properties of an Alkaline and Chelator Resistant alpha-amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L 711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 37 C, strain L711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5 - 10.0 and 7.0 - 7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55 C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co(2+) and EDTA (10 mM) enhanced enzymatic activity. The K(sub m), and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose.

  16. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3.

    Science.gov (United States)

    Kumar, Satyendra; Kikon, Khyodano; Upadhyay, Ashutosh; Kanwar, Shamsher S; Gupta, Reena

    2005-05-01

    A thermophilic isolate Bacillus coagulans BTS-3 produced an extracellular alkaline lipase, the production of which was substantially enhanced when the type of carbon source, nitrogen source, and the initial pH of culture medium were consecutively optimized. Lipase activity 1.16 U/ml of culture medium was obtained in 48 h at 55 degrees C and pH 8.5 with refined mustard oil as carbon source and a combination of peptone and yeast extract (1:1) as nitrogen sources. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The enzyme showed maximum activity at 55 degrees C and pH 8.5, and was stable between pH 8.0 and 10.5 and at temperatures up to 70 degrees C. The enzyme was found to be inhibited by Al3+, Co2+, Mn2+, and Zn2+ ions while K+, Fe3+, Hg2+, and Mg2+ ions enhanced the enzyme activity; Na+ ions have no effect on enzyme activity. The purified lipase showed a variable specificity/hydrolytic activity towards various 4-nitrophenyl esters.

  17. pKa of the essential Glu54 and backbone conformation for subunit c from the H+-coupled F1F0 ATP synthase from an alkaliphilic Bacillus.

    Science.gov (United States)

    Rivera-Torres, Iván O; Krueger-Koplin, Ray D; Hicks, David B; Cahill, Sean M; Krulwich, Terry A; Girvin, Mark E

    2004-09-24

    The conformation of the ATP synthase c-subunit and the pKa of its essential E54 residue were characterized in alkaliphilic Bacillus pseudofirmus OF4. The c-subunit folds as a helix-loop-helix, with inter-helical contacts demonstrated by paramagnetic relaxation effects. The E54 pKa of 7.7 is significantly higher than in non-alkaliphiles, which likely prevents proton loss from the c-rotor at high pH. The E54 pKa was unchanged in a mutant, cP51A, that has a severe ATP synthesis defect at high pH only. cP51 must have some structural role that accounts for the mutant defect, such as different subunit-subunit interactions at high pH.

  18. Enzymatic Properties of an Alkaline and Chelator Resistant Proportional to alpha-Amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    Science.gov (United States)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L1711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 370 C, strain L1711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5-10.0 and 7.0-7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55?C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co2+ and EDTA (10 mM) enhanced enzymatic activity. The K(sub m) and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose .

  19. The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4

    Science.gov (United States)

    Janto, Benjamin; Ahmed, Azad; Ito, Masahiro; Liu, Jun; Hicks, David B.; Pagni, Sarah; Fackelmayer, Oliver J.; Smith, Terry-Ann; Earl, Joshua; Elbourne, Liam D.H.; Hassan, Karl; Paulsen, Ian T.; Kolstø, Anne-Brit; Tourasse, Nicolas J.; Ehrlich, Garth D.; Boissy, Robert; Ivey, D. Mack; Li, Gang; Xue, Yanfen; Ma, Yanhe; Hu, Fen Z.; Krulwich, Terry A.

    2011-01-01

    Summary Bacillus pseudofirmus OF4 is an extreme but facultative alkaliphile that grows non-fermentatively in a pH range from 7.5 to above 11.4 and can withstand large sudden increases in external pH. It is a model organism for studies of bioenergetics at high pH, at which energy demands are higher than at neutral pH because both cytoplasmic pH homeostasis and ATP synthesis require more energy. The alkaliphile also tolerates a cytoplasmic pH > 9.0 at external pH values at which the pH homeostasis capacity is exceeded, and manages other stresses that are exacerbated at alkaline pH, e.g. sodium, oxidative and cell wall stresses. The genome of B. pseudofirmus OF4 includes two plasmids that are lost from some mutants without viability loss. The plasmids may provide a reservoir of mobile elements that promote adaptive chromosomal rearrangements under particular environmental conditions. The genome also reveals a more acidic pI profile for proteins exposed on the outer surface than found in neutralophiles. A large array of transporters and regulatory genes are predicted to protect the alkaliphile from its overlapping stresses. In addition, unanticipated metabolic versatility was observed, which could ensure requisite energy for alkaliphily under diverse conditions. PMID:21951522

  20. Noncontiguous finished genome sequences and description of Bacillus massiliglaciei, Bacillus mediterraneensis, Bacillus massilinigeriensis, Bacillus phocaeensis and Bacillus tuaregi, five new species identified by culturomics

    OpenAIRE

    Cadoret, F.; Alou, M.T.; Afouda, P.; Traore, I.S.; Br?chard, L.; Michelle, C.; Di Pinto, F.; Andrieu, C.; Delerce, J.; Levasseur, A.; Fournier, P.-E.; Raoult, D.

    2017-01-01

    Microbial culturomics, which investigates microbial diversity by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rDNA identification, allowed to identify five new species within the Bacillus genus. Bacillus massiliglaciei strain Marseille-P2600T, Bacillus mediterraneensis strain Marseille-P2384T, Bacillus massilinigeriensis strain Marseille-P2366T, Bacillus tuaregi strain Marseille-P2489T and Bacillus phocaeensis s...

  1. Screening of Bacillus Species with Potentials of Antibiotics Production

    Directory of Open Access Journals (Sweden)

    Faruk Adamu KUTA

    2009-07-01

    Full Text Available Sixteen soil samples were collected from different refuse dump sites in Minna, the capital Niger State, and analysed for the presence of Bacillus species. Physical-chemical analysis of the soil samples revealed the followings: PH value 6.89-8.47; moisture content 1.58 – 21.21% and temperature 27-28ºC. Using both pour plate and streak method of inoculation, total bacterial count in the soil samples ranged from 3.8×104 cfu/g 16.0×104 cfu/g. The identified Bacillus species included: Bacillus cereus (30.8%, Bacillus brevis (1.9% Bacillus polymyxa (3.8%, Bacillus lichenifomis (13.5%, Bacillus spherericus (7.7%, Bacillus mycoides (13.5%, Bacillus pumilus (7.7%, Bacillus subtilis (3.8%, Bacillus alvei (1.9%, Bacillus laterosporous (1.9%, Bacillus firmus (9.6% and Bacillus circulars (3.8%. Antibiotic production tests indicated that nine Bacillus species out of twelve isolated in this study could be used to produce antibiotics that had effect on the test organisms. However, Bacillus polymyxa, Bacillus sphaericus and Bacillus laterosporous had little or no effect on the tested organisms. This study suggests that some Bacillus species have potential to produce high quality antibiotics that can be use to control microbial growth in future.

  2. Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems.

    Science.gov (United States)

    Prasad, A S Arun; Rao, K V Bhaskara

    2013-08-01

    An obligate alkaliphilic bacterium Bacillus cohnii MTCC 3616 aerobically decolorized a textile azo dye Direct Red-22 (5,000 mg l⁻¹) with 95 % efficiency at 37 °C and pH 9 in 4 h under static conditions. The decolorization of Direct Red-22 (DR-22) was possible through a broad pH (7-11), temperature (10-45 °C), salinity (1-7 %), and dye concentration (5-10 g l⁻¹) range. Decolorization of dye was assessed by UV-vis spectrophotometer with reduction of peak intensity at 549 nm (λ(max)). Biodegradation of dye was analyzed by Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC). The FTIR spectrum revealed that B. cohnii specifically targeted azo bond (N=N) at 1,614.42 cm⁻¹ to break down Direct Red-22. Formation of metabolites with different retention times in HPLC analysis further confirmed the degradation of dye. The phytotoxicity test with 5,000 mg l⁻¹ of untreated dye showed 80 % germination inhibition in Vigna mungo, 70 % in Sorghum bicolor and 80 % in Vigna radiata. No germination inhibition was noticed in all three plants by DR-22 metabolites at 5,000 mg l⁻¹. Biotoxicity test with Artemia salina proved the lethality of the azo dye at LC₅₀ of 4 and 8 % for degraded metabolites by causing death of its nauplii compared to its less toxic-degraded metabolites. Bioaccumulation of dye was observed in the mid-gut of A. salina. The cytogenotoxicity assay on the meristematic root tip cells of Allium cepa further confirmed the cytotoxic nature of azo dye (DR-22) with decrease in mitotic index (0.5 % at 500 ppm) and increase in aberrant index (4.56 %) over 4-h exposure period. Genotoxic damages (lagging chromosome, metaphase cluster, chromosome bridges, and dye accumulation in cytoplasm) were noticed at different stages of cell cycle. The degraded metabolites had negligible cytotoxic and genotoxic effects.

  3. Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5.

    Science.gov (United States)

    Bai, Wenqin; Xue, Yanfen; Zhou, Cheng; Ma, Yanhe

    2015-01-01

    A xylanase gene (xyn11A) was cloned from the genomic library of alkalophilic Bacillus sp. SN5. It encoded a polypeptide of 366 amino acids, consisting of a family 11 glycoside hydrolase, a short linker region, and a family 36 carbohydrate-binding module (CBM). The intact xylanase Xyn11A and the CBM-linker-truncated Xyn11A-LC were expressed in Escherichia coli BL21 (DE3). Both purified recombinant proteins exhibited the highest activity at 55 °C. The optimal pH for Xyn11A activity was 7.5, whereas Xyn11A-LC showed a broad pH profile (>80% activity at pH 5.5-8.5) with optimal activity at pH 5.5 and 7.5-8.0. They had high alkali tolerance, retaining over 80% residual activity after preincubation at pH 8.5-11.0 at 37 °C for 1 H. Xyn11A-LC showed better thermal stability, lower affinity, and lower catalytic activity to insoluble xylan than Xyn11A, whereas its specific activity for soluble beechwood xylan (4,511.9 U/mg) was greater than that of Xyn11A (3,136.4 U/mg). These results implied that the CBM of Xyn11A could change the enzymatic properties and play a role in degrading insoluble xylan. Xyn11A-LC is a family 11 alkali-tolerant cellulase-free xylanase with high specific activity, which qualifies it as a potential candidate for industrial applications, especially in the paper industry. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  4. Production dynamics of extracellular protease from Bacillus species ...

    African Journals Online (AJOL)

    ... showed that Bacillus species under study are good producers of extracellular protease at high temperature. This might be an indication that proteases produced would be thermostable. Keywords Protease; proteolytic bacteria; Bacillus macerans; Bacillus licheniformis; Bacillus subtilis. African Journal of Biotechnology Vol.

  5. Probiotic Bacillus species and Saccharomyces boulardii improve ...

    African Journals Online (AJOL)

    Probiotic Bacillus species and Saccharomyces boulardii improve performance, gut histology and immunity in broiler chickens. ... Carcass yield, liver weights, breast muscle values, and abdominal fat weights were reduced in groups fed with 100 or 150 g/ton of Microguard. Caecal coliforms, Salmonella and Escherichia coli ...

  6. Antibacterial potential components of Bacillus species and ...

    African Journals Online (AJOL)

    Honey is a sweet viscous liquid produced by honey bee, Apis mellifera from the nectar of plants. Honey is a natural product that has been used from ancient times till now as food and for medicinal purpose. This study was carried out to determine the mode of action of Bacillus species and antibiotics residues in branded and ...

  7. Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68 α-amilase alcalina termoestável de Bacillus sp AB68 halotolerante-alcalifílico

    Directory of Open Access Journals (Sweden)

    Ashabil Aygan

    2008-09-01

    Full Text Available An alkaliphilic and highly thermostable α-amylase producing Bacillus sp. was isolated from Van soda lake. Enzyme synthesis occurred at temperatures between 25ºC and 40ºC. Analysis of the enzyme by SDS-PAGE revealed a single band which was estimated to be 66 kDa. The enzyme was active in a broad temperature range, between 20ºC and 90ºC, with an optimum at 50ºC; and maximum activity was at pH 10.5. The enzyme was almost completely stable up to 80ºC with a remaining activity over 90% after 30 min pre-incubation. Thermostability was not increased in the presence of Ca2+. An average of 75% and 60ºC of remaining activity was observed when the enzyme was incubated between pH 5 and 9 for 1 h and for 2 h, respectively. The activity of the enzyme was inhibited by SDS and EDTA by 38% and 34%, respectively.Bacillus sp AB68 alcalifílico produtor de α-amilase alcalina termoestável foi isolado do lago Van soda. A síntese da enzima ocorreu entre 25ºC e 40ºC. A análise da enzima por SDS-PAGE revelou uma única banda estimada em 66 kDa. A enzima foi ativa em uma ampla faixa de temperatura, entre 20ºC e 90ºC, com um ótimo a 50ºC. A atividade máxima foi em pH 10,5. A enzima foi estável até 80ºC, mantendo 90% de atividade após 30 min de pré-incubação. A termoestabilidade não aumentou na presença de Ca2+. Quando incubada em pH entre 5 e 9 por 1h e por 2h, a enzima manteve 75% e 60% de atividade, respectivamente. SDS e EDTA causaram redução de 38% e 34% na atividade da enzima, respectivamente.

  8. Heat activation and stability of amylases from Bacillus species | Ajayi ...

    African Journals Online (AJOL)

    Leitch and Collier sporulating Bacillus medium was used to isolate some strains of Bacillus species from soil, wastewater and food sources in Ibadan, Oyo State, Nigeria, by heat activation method. Heat treatment at 80oC allowed the growth of sporulating Bacillus species, in the culture sample source without other bacteria ...

  9. Noncontiguous finished genome sequences and description of Bacillus massiliglaciei, Bacillus mediterraneensis, Bacillus massilinigeriensis, Bacillus phocaeensis and Bacillus tuaregi, five new species identified by culturomics

    Directory of Open Access Journals (Sweden)

    F. Cadoret

    2017-09-01

    Full Text Available Microbial culturomics, which investigates microbial diversity by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rDNA identification, allowed to identify five new species within the Bacillus genus. Bacillus massiliglaciei strain Marseille-P2600T, Bacillus mediterraneensis strain Marseille-P2384T, Bacillus massilinigeriensis strain Marseille-P2366T, Bacillus tuaregi strain Marseille-P2489T and Bacillus phocaeensis strain SIT16T are each the type strain of the corresponding bacterial species. These strains, the genomes of which are described here, are facultative anaerobic Gram-positive bacilli. Here, we describe the main characteristics of each bacterium and present their complete genome sequence and annotation.

  10. Current development in genetic engineering strategies of Bacillus species

    Science.gov (United States)

    2014-01-01

    The complete sequencing and annotation of the genomes of industrially-important Bacillus species has enhanced our understanding of their properties, and allowed advances in genetic manipulations in other Bacillus species. Post-genomic studies require simple and highly efficient tools to enable genetic manipulation. Here, we summarize the recent progress in genetic engineering strategies for Bacillus species. We review the available genetic tools that have been developed in Bacillus species, as well as methods developed in other species that may also be applicable in Bacillus. Furthermore, we address the limitations and challenges of the existing methods, and discuss the future research prospects in developing novel and useful tools for genetic modification of Bacillus species. PMID:24885003

  11. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    Science.gov (United States)

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Measurement of Metabolic Activity in Dormant Spores of Bacillus Species...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 spores, Bacillus , spore dormancy, 3-phosphoglycerate REPORT DOCUMENTATION PAGE 11

  12. Diversity and enzymatic characterization of Bacillus species isolated ...

    African Journals Online (AJOL)

    , phosphatases, lipases and proteases. Seventeen enzymes from these different enzyme groups were synthesized by the identified Bacillus species. The dominant and enzyme-producing species could be used for the development of a starter ...

  13. Single site mutations in the hetero-oligomeric Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4 that affect Na+/H+ antiport activity, sodium exclusion, individual Mrp protein levels, or Mrp complex formation.

    Science.gov (United States)

    Morino, Masato; Natsui, Shinsuke; Ono, Tomohiro; Swartz, Talia H; Krulwich, Terry A; Ito, Masahiro

    2010-10-01

    Mrp systems are widely distributed and structurally complex cation/proton antiporters. Antiport activity requires hetero-oligomeric complexes of all six or seven hydrophobic Mrp proteins (MrpA-MrpG). Here, a panel of site-directed mutants in conserved or proposed motif residues was made in the Mrp Na(+)(Li(+))/H(+) antiporter from an alkaliphilic Bacillus. The mutant operons were expressed in antiporter-deficient Escherichia coli KNabc and assessed for antiport properties, support of sodium resistance, membrane levels of each Mrp protein, and presence of monomeric and dimeric Mrp complexes. Antiport did not depend on a VFF motif or a conserved tyrosine pair, but a role for a conserved histidine in a potential quinone binding site of MrpA was supported. The importance of several acidic residues for antiport was confirmed, and the importance of additional residues was demonstrated (e.g. three lysine residues conserved across MrpA, MrpD, and membrane-bound respiratory Complex I subunits (NuoL/M/N)). The results extended indications that MrpE is required for normal membrane levels of other Mrp proteins and for complex formation. Moreover, mutations in several other Mrp proteins lead to greatly reduced membrane levels of MrpE. Thus, changes in either of the two Mrp modules, MrpA-MrpD and MrpE-MrpG, influence the other. Two mutants, MrpB-P37G and MrpC-Q70A, showed a normal phenotype but lacked the MrpA-MrpG monomeric complex while retaining the dimeric hetero-oligomeric complex. Finally, MrpG-P81A and MrpG-P81G mutants exhibited no antiport activity but supported sodium resistance and a low [Na(+)](in). Such mutants could be used to screen hypothesized but uncharacterized sodium efflux functions of Mrp apart from Na(+) (Li(+))/H(+) antiport.

  14. Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms and bioenergetics of ATP synthesis

    Directory of Open Access Journals (Sweden)

    Laura ePreiss

    2015-06-01

    Full Text Available Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12-13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.

  15. Proposal of nine novel species of the Bacillus cereus group.

    Science.gov (United States)

    Liu, Yang; Du, Juan; Lai, Qiliang; Zeng, Runying; Ye, Dezan; Xu, Jun; Shao, Zongze

    2017-08-01

    Nine novel Gram-stain-positive bacteria were investigated by a polyphasic taxonomic approach. Based on the analysis of 16S rRNA gene sequences, these strains belonged to the Bacillus cereus group, sharing over 97 % similarity with the known species of this group, and less than 95 % similarity with other species of the genus Bacillus. Multilocus sequence typing analysis showed that they formed nine robust and well-separated branches from the known species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the nine strains were, respectively, below the 70 and 96 % threshold values for species definition, and between each strain and the known type strains of this group were also below the two threshold values. On the basis of the phenotypic and phylogenetic data, along with low dDDH and ANI values among these strains, these bacteria are assigned to the following nine novel species of the B. cereus group: Bacillus paranthracis sp. nov., type strain Mn5T (=MCCC 1A00395T=KCTC 33714T=LMG 28873T); Bacillus pacificus sp. nov., type strain EB422T (=MCCC 1A06182T=KCTC 33858T); Bacillus tropicus sp. nov., type strain N24T (=MCCC 1A01406T=KCTC 33711T=LMG 28874T); Bacillus albus sp. nov., type strain N35-10-2T (=MCCC 1A02146T=KCTC 33710T=LMG 28875T); Bacillus mobilis sp. nov., type strain 0711P9-1T (=MCCC 1A05942T=KCTC 33717T=LMG 28877T); Bacillus luti sp. nov., type strain TD41T (=MCCC 1A00359T=KCTC 33716T=LMG 28872T); Bacillus proteolyticus sp. nov., type strain TD42T (=MCCC 1A00365T=KCTC 33715T=LMG 28870T); Bacillus nitratireducens sp. nov., type strain 4049T (=MCCC 1A00732T=KCTC 33713T=LMG 28871T); and Bacillus paramycoides sp. nov., type strain NH24A2T (=MCCC 1A04098T=KCTC 33709T=LMG 28876T).

  16. Analysis of chemical signatures of alkaliphiles using fatty acid methyl ester analysis

    Directory of Open Access Journals (Sweden)

    Basha Sreenivasulu

    2017-01-01

    Full Text Available Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic.

  17. Antimicrobials of Bacillus species: mining and engineering

    NARCIS (Netherlands)

    Zhao, Xin

    2016-01-01

    Bacillus sp. have been successfully used to suppress various bacterial and fungal pathogens. Due to the wide availability of whole genome sequence data and the development of genome mining tools, novel antimicrobials are being discovered and updated,;not only bacteriocins, but also NRPs and PKs. A

  18. Genotypic and phenotypic diversity among Bacillus species isolated ...

    African Journals Online (AJOL)

    DIRECTOR

    2013-03-20

    Mar 20, 2013 ... representatives of eight species (licheniformis, polymyxa, laterosporus, cereus, circulans, subtilis, pumilus and brevis) were studied. Results of genotypic analyses were not concurrent with previous phenotypic identification. Bacillus from different species were able to cluster together to form phylogenetic ...

  19. Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes.

    Science.gov (United States)

    Morino, Masato; Natsui, Shinsuke; Swartz, Talia H; Krulwich, Terry A; Ito, Masahiro

    2008-06-01

    Mrp antiporters catalyze secondary Na(+)(Li(+))/H(+) antiport and/or K(+)/H(+) antiport that is physiologically important in diverse bacteria. An additional capacity for anion flux has been observed for a few systems. Mrp is unique among antiporters in that it requires all six or seven hydrophobic gene products (MrpA to MrpG) of the mrp operon for full antiporter activity, but MrpE has been reported to be dispensable. Here, the membrane complexes formed by Mrp proteins were examined using a cloned mrp operon from alkaliphilic Bacillus pseudofirmus OF4. The operon was engineered so that the seven Mrp proteins could be detected in single samples. Membrane extracts of an antiporter-deficient Escherichia coli strain expressing this construct were analyzed by blue native-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mrp complexes of two sizes were identified containing all seven Mrp proteins. Studies of the single nonpolar mrp gene deletions in the construct showed that a subcomplex of MrpA, MrpB, MrpC, and MrpD was formed in the absence of MrpE, MrpF, or MrpG. By contrast, MrpE, MrpF, and MrpG were not observed in membranes lacking MrpA, MrpB, MrpC, or MrpD. Although MrpA and MrpD have been hypothesized to be the antiporter proteins, the MrpA-to-D complex was inactive. Every Mrp protein was required for an activity level near that of the wild-type Na(+)/H(+) antiporter, but a very low activity level was observed in the absence of MrpE. The introduction of an MrpE(P114G) mutation into the full Mrp complex led to antiport activity with a greatly increased apparent K(m) value for Na(+). The results suggested that interactions among the proteins of heterooligomeric Mrp complexes strongly impact antiporter properties.

  20. Genotypic and phenotypic diversity among Bacillus species isolated ...

    African Journals Online (AJOL)

    Dichotomous keys based on morphological, cultural and biochemical tests have long been used to identify Bacillus species. The analysis of 16S rDNA is suggested to be used for identification that is more exact. The present study was carried out to compare a conventional phenotypic method with the analysis of the 16S ...

  1. Crude oil degradation by Bacillus and Micrococcus species isolated ...

    African Journals Online (AJOL)

    Microorganisms capable of degrading crude oil were isolated from soil compost in Kano, northwestern Nigeria. The work was carried out with the aim of determining crude-oil biodegradation potentials of Bacillus and Micrococcus species isolated from the soil compost as well as the assessment of the applicability of ...

  2. Assessment of larvicidal activities of bacillus species isolated from ...

    African Journals Online (AJOL)

    Assessment of larvicidal activities of bacillus species isolated from soil against the mosquito aedes aegyptia (diptera: culicidae) in Sokoto, northwestern Nigeria. S.B. Manga, A.H. Kawo, A.B. Rabah, A.A. Usman, A.I. Dabai, J.A. Bala ...

  3. Heat activation and stability of amylases from Bacillus species

    African Journals Online (AJOL)

    Administrator

    2007-05-16

    May 16, 2007 ... as Bacillus macerans, Bacillus coagulans Bacillus licheniformis, Bacillus circulans, Bacillus megaterium, Bacillus polymyxa and Bacillus subtilis. Heat treatment at 70oC denatured the β-amylase component of the amylase source while α-amylase retained its potency at this temperature. Calcium.

  4. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex.

    Science.gov (United States)

    Fan, Ben; Blom, Jochen; Klenk, Hans-Peter; Borriss, Rainer

    2017-01-01

    The plant growth promoting model bacterium FZB42 T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as " B. amyloliquefaciens ." Here, we reinvestigated the taxonomic status of FZB42 and related strains in its context to the free-living soil bacterium DSM7 T , the type strain of B. amyloliquefaciens . We identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7 T . Dendrograms based on complete rpoB nucleotide sequences and on core genome sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. amyloliquefaciens , (2) Bacillus siamensis , and (3) a conspecific group containing the type strains of B. velezensis, Bacillus methylotrophicus , and B. amyloliquefaciens subsp. plantarum . The three monophyletic clades shared a common mutation rate of 0.01 substitutions per nucleotide position, but were distantly related to Bacillus subtilis (0.1 substitutions per nucleotide position). The tight relatedness of the three clusters was corroborated by TETRA, dDDH, ANI, and AAI analysis of the core genomes, but dDDH and ANI values were found slightly below species level thresholds when B. amyloliquefaciens DSM7 T genome sequence was used as query sequence. Due to these results, we propose that the B. amyloliquefaciens clade should be considered as a taxonomic unit above of species level, designated here as "operational group B. amyloliquefaciens " consisting of the soil borne B. amyloliquefaciens , and plant associated B. siamensis and B. velezensis , whose members are closely related and allow identifying changes on the genomic level due to developing the plant-associated life-style.

  5. Genome Sequence of the Thermophile Bacillus coagulans Hammer, the Type Strain of the Species

    OpenAIRE

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-01-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  6. Genome sequence of the thermophile Bacillus coagulans Hammer, the type strain of the species.

    Science.gov (United States)

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-11-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  7. Growth measurement of some amylolytic bacillus species in three media

    International Nuclear Information System (INIS)

    Ajayi, A.O.

    2009-01-01

    Study of the growth pattern of some Bacillus species on starchy substrates showed that the metabolic activity affected the enzymatic activity. B. subtilis (WBS), B. licheniformis (WBL) and B. coagulans (MBC) generally had higher growth rate. B. circulans (SBC) and B. coagulans (WBC) had higher growth on cornstarch medium with corresponding higher beta-amylase production as compared to other strains such as B. polymyxa. Ten of the 13 Bacillus species studied had better performance on cornstarch than on soluble starch except B. macerans (MBM), B. macerans (SMB2) and B. subtilis (WBS). The enzyme production ranged from 0.022 unit/cfu x 102 to 0.912 unit/cfu x 102 on cornstarch and 0.01 unit/cfu x 102 to 0.693 unit/cfu x 102 on soluble starch. Relatively higher a-amylase activity was observed in B. subtilis, B. licheniformis, B. macerans and B. circulans (WBC1). (author)

  8. In vitro antimicrobial effect of Satureja wiedemanniana against Bacillus species isolated from raw meat samples.

    Science.gov (United States)

    Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan

    2009-08-01

    In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.

  9. Controlling gastrointestinal nematodes in cattle by Bacillus species.

    Science.gov (United States)

    Pinto, Natália Berne; de Castro, Leonardo Mortagua; de Almeida Capella, Gabriela; Motta, Tairan Ourique; de Souza Stori de Lara, Ana Paula; de Moura, Micaele Quintana; Berne, Maria Elisabeth Aires; Leite, Fábio Pereira Leivas

    2017-10-15

    In this study, we tested the in vitro and in vivo larvicidal activity of Bacillus species against gastrointestinal nematodes in cattle, and their viability in the presence of anthelmintics. For in vitro tests, cattle feces naturally infected with trichostrongylides were incubated with spore suspensions of Bacillus circulans (Bcir), B. thuringiensis var. osvaldocruzi (Bto), B. thuringiensis var. israelensis (Bti) or B. thuringiensis var. kurstaki (Btk). Subsequently, residual larvae were counted and identified. All of the Bacillus species showed 60% or more larvicidal effects. Bcir and Bti were selected to be incubated with anthelmintics (moxidectin, nitroxynil and levamisole), and after 24, 72, and 144h, their viability was evaluated. Bti showed highest drug resistance, maintaining a concentration of 1×10 7 CFU/mL. Based on this result, Bti was selected for in vivo tests on calves naturally infected with gastrointestinal nematodes. The calves were dived into four groups: Group 1, Bti suspension of ∼1×10 9 CFU orally administered; Group 2, Bti suspension of ∼1×10 9 CFU orally administered with levamisole (subcutaneously, 150mg); Group 3, only levamisole (subcutaneously, 150mg), and Group 4 untreated. Then 24 and 48h after treatment, larvae numbers were counted. We observed a reduction of 84%, 100%, and 100% after 48h of treatment, respectively, for Groups 1, 2 and 3 treatments in comparison with the untreated. The tested Bacillus species showed larvicidal activity against bovine trichostrongylides, and its association with anthelmintics. It may serve as a promising integrated alternative for control of gastrointestinal nematodes in cattle. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    TasA, the gene which play an important role in bacteria development, physiology and bacteria biofilm formation in Bacillus species was detected in the endophytic bacteria by polymerase chain reaction (PCR) amplification. In ten endophytic Bacillus strains tested, TasA gene was readily detected in Bacillus ...

  11. Paralkalibacillus indicireducens gen., nov., sp. nov., an indigo-reducing obligate alkaliphile isolated from indigo fermentation liquor used for dyeing.

    Science.gov (United States)

    Hirota, Kikue; Nishita, Masatoshi; Matsuyama, Hidetoshi; Yumoto, Isao

    2017-10-01

    Obligately alkaliphilic, indigo-reducing strains, designated Bps-1 T , Bps-2 and Bps-3, were isolated from an indigo fermentation liquor used for dyeing, which was produced from sukumo (composted Polygonum indigo leaves) obtained from a craft centre in Data City, Hokkaido, Japan, by using medium containing cellulase-treated sukumo. The 16S rRNA gene sequence phylogeny suggested that Bps-1 T has a distinctive position among the alkaliphilic species of the genus Bacillus, with its closest neighbours being Bacillus pseudofirmus DSM 8715 T , Bacillus lindianensis DSM 26864 T and Bacillus alcalophilus DSM 485 T (96.1, 95.8 and 95.5 % 16S rRNA gene sequence similarities, respectively). The 16S rRNA sequence of strain Bps-1 T was identical to those of strains Bps-2 and Bps-3. Cells of the novel isolate were Gram-stain-positive and were facultatively anaerobic straight rods that were motile by means of a pair of flagella (subpolar and centre sides). Spherical endospores were formed in the terminal position. Strain Bps-1 T grew between 18 and 40 °C with optimum growth at 33 °C. The isolate grew in the pH range 8‒11, with optimum growth at pH 9‒10. The isoprenoid quinone detected was menaquinone-7 (MK-7), and the DNA G+C content was 40.3 %. The whole-cell fatty acid profile (>10 %) mainly consisted of anteiso-C15 : 0, iso-C15 : 0 and C16 : 0. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, the isolates represent a novel species of a novel genus, for which the name Paralkalibacillus indicireducens gen. nov., sp. nov. is proposed. The type strain of this species is Bps-1 T (JCM 31808 T =NCIMB 15080 T ), with strains Bps-2 and Bps-3 representing additional strains of the species.

  12. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    Science.gov (United States)

    Rey, Michael W; Ramaiya, Preethi; Nelson, Beth A; Brody-Karpin, Shari D; Zaretsky, Elizabeth J; Tang, Maria; de Leon, Alfredo Lopez; Xiang, Henry; Gusti, Veronica; Clausen, Ib Groth; Olsen, Peter B; Rasmussen, Michael D; Andersen, Jens T; Jørgensen, Per L; Larsen, Thomas S; Sorokin, Alexei; Bolotin, Alexander; Lapidus, Alla; Galleron, Nathalie; Ehrlich, S Dusko; Berka, Randy M

    2004-01-01

    Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae. PMID:15461803

  13. Proteolytic activity of alkaliphilic, salt-tolerant actinomycetes from ...

    African Journals Online (AJOL)

    tolerant alkaliphilic. All the isolates need to be further studied for the ability of their potential protease enzyme production. Key words: Alkaliphilic actinomycetes, salt tolerant actinomycetes, desert soil, isolation, proteolytic activity.

  14. A Novel Surfactant Nanoemulsion with Broad Spectrum Sporicidal Activity against Bacillus Species

    Science.gov (United States)

    1999-12-01

    B . cereus ( ATCC 14579 ), B . circulans ( ATCC 4513), B . megaterium ( ATCC 14581), and B . subtilis ( ATCC 11774) were grown for 1 week at 377C...Other members of the Bacillus genus are also reported to be etiologic agents for many human diseases. B . cereus is a com- mon pathogen. It is involved in...BCTP 401 against 2 Bacillus species. BCTP showed significant sporicidal activity after 4 h of treatment against Bacillus cereus , B .

  15. Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad.

    Science.gov (United States)

    Jones, Brian E; Grant, William D; Duckworth, A W; Schumann, Peter; Weiss, Norbert; Stackebrandt, Erko

    2005-07-01

    An alkaliphilic, slightly halotolerant, chemo-organotrophic, Gram-positive, rod-shaped bacterium, strain 69B4(T), was isolated from the sediment of the littoral zone of Lake Bogoria, Kenya. Phylogenetically, it is a member of the genus Cellulomonas, showing less than 97.5 % sequence similarity to the type strains of other Cellulomonas species. The highest level of similarity, albeit moderate, was found with respect to Cellulomonas cellasea DSM 20118(T). Chemotaxonomic properties confirm the 16S rRNA gene-based generic affiliation, i.e. a DNA G+C content of 71.5 mol%, anteiso-C(15:0) and C(16:0) as the major fatty acids, MK-9(H(4)) as the major isoprenoid quinone, a peptidoglycan containing L-ornithine as the diamino acid and D-aspartic acid in the interpeptide bridge and phosphatidylglycerol as the only identified main polar lipid. The strain is aerobic to facultatively anaerobic, being capable of growth under strictly anaerobic conditions. Optimal growth occurs between pH values 9.0 and 10.0. On the basis of its distinct phylogenetic position and metabolic properties, strain 69B4(T) represents a novel species of the genus Cellulomonas, for which the name Cellulomonas bogoriensis sp. nov. is proposed. The type strain is 69B4(T) (=DSM 16987(T)=CIP 108683(T)).

  16. Isolation and Identification of Bacillus Species From Soil and Evaluation of Their Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Amin

    2015-02-01

    Full Text Available Background Bacillus species are the predominant soil bacteria because of their resistant-endospore formation and production of essential antibiotics such as bacitracin. Objectives The aim of this study was to isolate Bacillus spp. from riverside soil and investigate their antimicrobial characteristics against some pathogenic bacteria. Materials and Methods Fifty soil samples were collected from different sites of Bahmanshir riverside in Abadan city, Iran, and analyzed for the presence of Bacillus species. The media used in this research were nutrient broth and agar. Bacillus species were identified by their phenotypic and biochemical characteristics. The antimicrobial effects of Bacillus extract against the target bacteria including Escherichia coli, Staphylococcus aureus, Salmonella typhi, Shigella dysenteriae and Corynebacterium diphtheriae were examined. Results The identified Bacillus species included B. cereus (86.6%, B. subtilis (6.6%, B. thuringiensis (3.3%, and B. pumilus (3.3%. Evaluation of the antimicrobial activity of the extracted compounds was carried out against five different bacteria. Antibiotic production tests indicated that two Bacillus strains belong to B. cereus, which showed antimicrobial properties. The minimum inhibitory concentrations (MICs of these compounds ranged between 8.34-33.34 mg/mL for the target bacteria. Conclusions This study indicated that some Bacillus species have the potential to produce antimicrobial compounds which can be used to control microbial infections.

  17. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermentedfood condiments

    DEFF Research Database (Denmark)

    Ouoba, Labia Irene I.; Thorsen, Line; Varnam, Alan H.

    2008-01-01

    -hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producerswas also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar......The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean(Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth...... and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCETRPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding´cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non...

  18. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an ?Operational Group B. amyloliquefaciens? within the B. subtilis Species Complex

    OpenAIRE

    Fan, Ben; Blom, Jochen; Klenk, Hans-Peter; Borriss, Rainer

    2017-01-01

    The plant growth promoting model bacterium FZB42T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as “B. amyloliquefaciens.” Here, we reinvestigated the taxonomic status of FZB42 and related strains in its con...

  19. Identification of strains Bacillus aerophilus MTCC 7304T as Bacillus altitudinis and Bacillus stratosphericus MTCC 7305T as a Proteus sp. and the status of the species Bacillus aeriusShivaji et al. 2006. Request for an Opinion.

    Science.gov (United States)

    Liu, Yang; Ramesh Kumar, N; Lai, Qiliang; Du, Juan; Dobritsa, Anatoly P; Samadpour, Mansour; Shao, Zongze

    2015-09-01

    On the basis of 16S rRNA, rpoB, gyrB and pycA gene sequence analyses, characterization of biochemical features and other phenotypic traits and pulsed-field gel electrophoresis (PFGE) fingerprinting, it was ascertained that strains Bacillus aerius MTCC 7303T, Bacillus aerophilus MTCC 7304(T) and Bacillus stratosphericus MTCC 7305(T) do not conform to the descriptions of the type strains of the respective species. Strains MTCC 7303(T) and MTCC 7304(T) were indistinguishable from Bacillus altitudinis DSM 21631(T), while strain MTCC 7305(T) should be classified as a representative of a Proteus sp. Our attempts to find other deposits of the type strains of these species were unsuccessful. Therefore, the results support the Request for an Opinion on the status of the species Bacillus aerophilus and Bacillus stratosphericus by Branquinho et al. [Branquinho, R., Klein, G., Kämpfer, P. & Peixe, L. V. (2015). Int J Syst Evol Microbiol 65, 1101]. It is also proposed that the Judicial Commission should place the name Bacillus aerius on the list of rejected names if a suitable replacement type strain cannot be found or a neotype is not proposed within two years following the publication of this Request (Rule 18c).

  20. Alkaliphilic bacteria: applications in industrial biotechnology.

    Science.gov (United States)

    Sarethy, Indira P; Saxena, Yashi; Kapoor, Aditi; Sharma, Manisha; Sharma, Sanjeev K; Gupta, Vandana; Gupta, Sanjay

    2011-07-01

    Alkaliphiles are interesting groups of extremophilic organisms that thrive at pH of 9.0 and above. Many of their products, in particular enzymes, have found widespread applications in industry, primarily in the detergent and laundry industries. While the enzymes have been a runaway success from the industrial point of view, many more products have been reported from alkaliphiles such as antibiotics and carotenoids. Less known are their potential for degradation of xenobiotics. They also play a key role in biogeocycling of important inorganic compounds. This review provides an insight into the huge diversity of alkaliphilic bacteria, the varied products obtained from them, and the need for further investigations on these interesting bacteria.

  1. Effects of probiotic Bacillus species in aquaculture – An overview

    Directory of Open Access Journals (Sweden)

    Cristian-Teodor BURUIANĂ

    2014-12-01

    Full Text Available The ingestion of a large amount of certain types of beneficial bacteria can reduce the multiplication and development of pathogenic bacteria in the gut. A “probiotic” is a product that contains live microorganisms which positively influence the host intestinal microbiota by preventing the proliferation of pathogenic bacteria and promoting the growth and development of beneficial bacteria. Bacillus spp. are Gram-positive endospore-forming bacteria with beneficial effects in aquaculture industry. The dietary supplementation of Bacillus spp. in fish culture improved especially growth performance, immune response and the disease resistance of fish against pathogenic bacterial infections. The objective of the current paper is to review the recent published investigations reported in the scientific literature on the use of probiotic Bacillus spp. in aquaculture, focusing on their beneficial effects on the host. This review includes the main effects of Bacillus spp. administration in shrimp culture, carp culture, tilapia culture, and other fish culture.

  2. Maintenance metabolism and carbon fluxes in Bacillus species

    Directory of Open Access Journals (Sweden)

    Decasper Seraina

    2008-06-01

    Full Text Available Abstract Background Selection of an appropriate host organism is crucial for the economic success of biotechnological processes. A generally important selection criterion is a low maintenance energy metabolism to reduce non-productive consumption of substrate. We here investigated, whether various bacilli that are closely related to Bacillus subtilis are potential riboflavin production hosts with low maintenance metabolism. Results While B. subtilis exhibited indeed the highest maintenance energy coefficient, B. licheniformis and B. amyloliquefaciens exhibited only statistically insignificantly reduced maintenance metabolism. Both B. pumilus and B. subtilis (natto exhibited irregular growth patterns under glucose limitation such that the maintenance metabolism could not be determined. The sole exception with significantly reduced maintenance energy requirements was the B. licheniformis strain T380B. The frequently used spo0A mutation significantly increased the maintenance metabolism of B. subtilis. At the level of 13C-detected intracellular fluxes, all investigated bacilli exhibited a significant flux through the pentose phosphate pathway, a prerequisite for efficient riboflavin production. Different from all other species, B. subtilis featured high respiratory tricarboxylic acid cycle fluxes in batch and chemostat cultures. In particular under glucose-limited conditions, this led to significant excess formation of NADPH of B. subtilis, while anabolic consumption was rather balanced with catabolic NADPH formation in the other bacilli. Conclusion Despite its successful commercial production of riboflavin, B. subtilis does not seem to be the optimal cell factory from a bioenergetic point of view. The best choice of the investigated strains is the sporulation-deficient B. licheniformis T380B strain. Beside a low maintenance energy coefficient, this strain grows robustly under different conditions and exhibits only moderate acetate overflow, hence

  3. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex

    Science.gov (United States)

    Fan, Ben; Blom, Jochen; Klenk, Hans-Peter; Borriss, Rainer

    2017-01-01

    The plant growth promoting model bacterium FZB42T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as “B. amyloliquefaciens.” Here, we reinvestigated the taxonomic status of FZB42 and related strains in its context to the free-living soil bacterium DSM7T, the type strain of B. amyloliquefaciens. We identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7T. Dendrograms based on complete rpoB nucleotide sequences and on core genome sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. amyloliquefaciens, (2) Bacillus siamensis, and (3) a conspecific group containing the type strains of B. velezensis, Bacillus methylotrophicus, and B. amyloliquefaciens subsp. plantarum. The three monophyletic clades shared a common mutation rate of 0.01 substitutions per nucleotide position, but were distantly related to Bacillus subtilis (0.1 substitutions per nucleotide position). The tight relatedness of the three clusters was corroborated by TETRA, dDDH, ANI, and AAI analysis of the core genomes, but dDDH and ANI values were found slightly below species level thresholds when B. amyloliquefaciens DSM7T genome sequence was used as query sequence. Due to these results, we propose that the B. amyloliquefaciens clade should be considered as a taxonomic unit above of species level, designated here as “operational group B. amyloliquefaciens” consisting of the soil borne B. amyloliquefaciens, and plant associated B. siamensis and B. velezensis, whose members are closely related and allow identifying changes on the genomic level due to developing the plant-associated life-style. PMID:28163698

  4. Biosystematics of alkaliphilic streptomycetes isolated from seven locations across a beach and dune sand system.

    Science.gov (United States)

    Antony-Babu, Sanjay; Goodfellow, Michael

    2008-11-01

    Alkaliphilic streptomycetes were isolated from composite sand samples collected from six out of seven locations across a beach and dune sand system using starch-casein-nitrate agar supplemented with cycloheximide and buffered to pH 10.5. The isolates had colonial and chemotaxonomic properties consistent with their classification in the genus Streptomyces. They were assigned to 49 multimembered and 114 single-membered colour-groups given their ability to produce pigments on oatmeal and peptone-yeast-extract-iron agars and to corresponding taxa based on whole-genome rep-PCR banding patterns. Twenty-four isolates representing the colour and rep-PCR groups grew well from pH 5 to 11, and optimally at pH 9, as did phylogenetically close members of the Streptomyces griseus 16S rRNA gene clade. One hundred and twelve representative alkaliphilic streptomycetes formed a heterogeneous but distinct clade in the Streptomyces 16S rRNA gene tree. A 3-dimensional representation of 16S rRNA sequence data showed that the alkaliphilic streptomycetes formed a distinct group in multidimensional taxospace. It is evident that alkaliphilic streptomycetes are common in the beach and dune sand system and that representatives of this community form new centers of taxonomic variation within the genus Streptomyces that can be equated with species.

  5. Detection of biosurfactants in Bacillus species: genes and products identification.

    Science.gov (United States)

    Płaza, G; Chojniak, J; Rudnicka, K; Paraszkiewicz, K; Bernat, P

    2015-10-01

    To screen environmental Bacillus strains for detection of genes encoding the enzymes involved in biosurfactant synthesis and to evaluate their products e.g. surfactin, iturin and fengycin. The taxonomic identification of isolated from the environment Bacillus strains was performed by Microgene ID Bacillus panel and GEN III Biolog system. The polymerase chain reaction (PCR) strategy for screening of genes in Bacillus strains was set up. Liquid chromatography-mass spectrometry (LC-MS/MS) method was used for the identification of lipopeptides (LPs). All studied strains exhibited the presence of srfAA gene and produced surfactin mostly as four homologues (C13 to C16). Moreover, in 2 strains (KP7, T'-1) simultaneous co-production of 3 biosurfactants: surfactin, iturin and fengycin was observed. Additionally, it was found out that isolate identified as Bacillus subtilis ssp. subtilis (KP7), beside LPs co-production, synthesizes surfactin with the efficiency much higher than other studied strains (40·2 mg l(-1) ) and with the yield ranging from 0·8 to 8·3 mg l(-1) . We showed that the combined methodology based on PCR and LC-MS/MS technique is an optimal tool for the detection of genes encoding enzymes involved in biosurfactant synthesis as well as their products, e.g. surfactin, iturin and fengycin. This approach improves the screening and the identification of environmental Bacillus co-producing biosurfactants-stimulating and facilitating the development of this area of science. The findings of this work will help to improve screening of biosurfactant producers. Discovery of novel biosurfactants and biosurfactants co-production ability has shed light on their new application fields and for the understanding of their interactions and properties. © 2015 The Society for Applied Microbiology.

  6. Larvicidal efficacy of stock Bacillus sphaericus on local species of ...

    African Journals Online (AJOL)

    Graded concentrations (15, 30, 60, 90, 100, 120 mg/l) of stock, water dispersed powder of Bacillus sphaericus (SPH88: lot number BSP247) and potency of 17001TU/mg obtained from Pasteur Institute in Paris, France was tested against fourth instar larvae of local breed of Anopheles gambiae for larvicidal efficacy.

  7. Production of bacterial amylase by Bacillus species isolated from ...

    African Journals Online (AJOL)

    Optimum pH activity was obtained at 4.0 with a concentration of 0.376 mg/ml. Bacillus licheniformis has the greatest potential for producing amylase than the other isolates and rice husk can be exploited for amylase production. The B. licheniformis strain produced thermostable alpha-amylase with characteristics suitable for ...

  8. Alkaliphiles: Some Applications of Their Products for Biotechnology

    Science.gov (United States)

    Horikoshi, Koki

    1999-01-01

    The term “alkaliphile” is used for microorganisms that grow optimally or very well at pH values above 9 but cannot grow or grow only slowly at the near-neutral pH value of 6.5. Alkaliphiles include prokaryotes, eukaryotes, and archaea. Many different taxa are represented among the alkaliphiles, and some of these have been proposed as new taxa. Alkaliphiles can be isolated from normal environments such as garden soil, although viable counts of alkaliphiles are higher in samples from alkaline environments. The cell surface may play a key role in keeping the intracellular pH value in the range between 7 and 8.5, allowing alkaliphiles to thrive in alkaline environments, although adaptation mechanisms have not yet been clarified. Alkaliphiles have made a great impact in industrial applications. Biological detergents contain alkaline enzymes, such as alkaline cellulases and/or alkaline proteases, that have been produced from alkaliphiles. The current proportion of total world enzyme production destined for the laundry detergent market exceeds 60%. Another important application is the industrial production of cyclodextrin by alkaline cyclomaltodextrin glucanotransferase. This enzyme has reduced the production cost and paved the way for cyclodextrin use in large quantities in foodstuffs, chemicals, and pharmaceuticals. It has also been reported that alkali-treated wood pulp could be biologically bleached by xylanases produced by alkaliphiles. Other applications of various aspects of alkaliphiles are also discussed. PMID:10585964

  9. Bacillus massiliglaciei’, a new bacterial species isolated from Siberian permafrost

    Directory of Open Access Journals (Sweden)

    P. Afouda

    2017-01-01

    Full Text Available We describe here the main characteristics of a new species isolated from Siberian permafrost dated around 10 million years. This species was named ‘Bacillus massiliglaciei’ strain Marseille-P2600T (= CSUR P2600=DSM 102861.

  10. Characteristics and Application of a Novel Species of Bacillus: Bacillus velezensis.

    Science.gov (United States)

    Ye, Miao; Tang, Xiangfang; Yang, Ru; Zhang, Hongfu; Li, Fangshu; Tao, Fangzheng; Li, Fei; Wang, Zaigui

    2018-03-16

    Bacillus velezensis has been investigated and applied more and more widely recently because it can inhibit fungi and bacteria and become a potential biocontrol agent. In order to provide more clear and comprehensive understanding of B. velezensis for researchers, we collected the recent relevant articles systematically and reviewed the discovery and taxonomy, secondary metabolites, characteristics and application, gene function, and molecular research of B. velezensis. This review will give some direction to the research and application of this strain for the future.

  11. Bioreduction of Cr (VI) by potent novel chromate resistant alkaliphilic ...

    African Journals Online (AJOL)

    Isolation of Cr (VI) resistant alkaliphilic bacteria from sediment and water samples collected from Wadi Natrun hypersaline Soda lakes (located in northern Egypt), resulted in isolation of several alkaliphilic bacterial strains that can tolerate up to 2.94 g/l of Cr (VI) in alkaline medium. However, with increasing Cr (VI) ...

  12. Genus-wide Bacillus species identification through proper artificial neural network experiments on fatty acid profiles.

    Science.gov (United States)

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2008-08-01

    Gas chromatographic fatty acid methyl ester analysis of bacteria is an easy, cheap and fast-automated identification tool routinely used in microbiological research. This paper reports on the application of artificial neural networks for genus-wide FAME-based identification of Bacillus species. Using 1,071 FAME profiles covering a genus-wide spectrum of 477 strains and 82 species, different balanced and imbalanced data sets have been created according to different validation methods and model parameters. Following training and validation, each classifier was evaluated on its ability to identify the profiles of a test set. Comparison of the classifiers showed a good identification rate favoring the imbalanced data sets. The presence of the Bacillus cereus and Bacillus subtilis groups made clear that it is of great importance to take into account the limitations of FAME analysis resolution for the construction of identification models. Indeed, as members of such a group cannot easily be distinguished from one another based upon FAME data alone, identification models built upon this data can neither be successful at keeping them apart. Comparison of the different experimental setups ultimately led to a few general recommendations. With respect to the routinely used commercial Sherlock Microbial Identification System (MIS, Microbial ID, Inc. (MIDI), Newark, Delaware, USA), the artificial neural network test results showed a significant improvement in Bacillus species identification. These results indicate that machine learning techniques such as artificial neural networks are most promising tools for FAME-based classification and identification of bacterial species.

  13. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    hope&shola

    2012-03-20

    Mar 20, 2012 ... PCR amplification of TasA gene and gene sequencing. The bacteria were cultured in nutrient broth (NB) at 28°C. Genomic. DNA was extracted by CTAB method and used for PCR templates. Detection of TasA gene in the species of Bacillus was performed with PCR amplification using primers TasA1 and ...

  14. Biocontrol and Plant Growth Promotion Characterization of Bacillus Species Isolated from Calendula officinalis Rhizosphere.

    Science.gov (United States)

    Ait Kaki, Asma; Kacem Chaouche, Noreddine; Dehimat, Laid; Milet, Asma; Youcef-Ali, Mounia; Ongena, Marc; Thonart, Philippe

    2013-12-01

    The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn't produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6-52 μg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P Bacillus strains isolated in this work may be further used as bioinoculants to improve the production of C. officinalis and other crop systems.

  15. Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns

    Science.gov (United States)

    Syed, Shameer; Chinthala, Paramageetham

    2015-01-01

    The biosorption mechanism is an alternative for chemical precipitation and ultrafiltration which have been employed to treat heavy metal contamination with a limited success. In the present study, three species of Bacillus which were isolated from solar salterns were screened for their detoxification potential of the heavy metals, lead, chromium, and copper, by biosorption. Biosorption potential of each isolate was determined by Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), and Energy Dispersive Spectroscopy (EDS) as the amount of metal present in the medium after the treatment with the isolates. Bacterial isolates, Bacillus licheniformis NSPA5, Bacillus cereus NSPA8, and Bacillus subtilis NSPA13, showed significant level of lead biosorption with maximum of 87–90% by Bacillus cereus NSPA8. The biosorption of copper and chromium was relatively low in comparison with lead. With the obtained results, we have concluded that the bacterial isolates are potential agents to treat metal contamination in more efficient and ecofriendly manner. PMID:26525498

  16. Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns

    Directory of Open Access Journals (Sweden)

    Shameer Syed

    2015-01-01

    Full Text Available The biosorption mechanism is an alternative for chemical precipitation and ultrafiltration which have been employed to treat heavy metal contamination with a limited success. In the present study, three species of Bacillus which were isolated from solar salterns were screened for their detoxification potential of the heavy metals, lead, chromium, and copper, by biosorption. Biosorption potential of each isolate was determined by Atomic Absorption Spectroscopy (AAS, Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES, and Energy Dispersive Spectroscopy (EDS as the amount of metal present in the medium after the treatment with the isolates. Bacterial isolates, Bacillus licheniformis NSPA5, Bacillus cereus NSPA8, and Bacillus subtilis NSPA13, showed significant level of lead biosorption with maximum of 87–90% by Bacillus cereus NSPA8. The biosorption of copper and chromium was relatively low in comparison with lead. With the obtained results, we have concluded that the bacterial isolates are potential agents to treat metal contamination in more efficient and ecofriendly manner.

  17. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    Science.gov (United States)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  18. Prediction of Transcriptional Terminators in Bacillus subtilis and Related Species.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available In prokaryotes, genes belonging to the same operon are transcribed in a single mRNA molecule. Transcription starts as the RNA polymerase binds to the promoter and continues until it reaches a transcriptional terminator. Some terminators rely on the presence of the Rho protein, whereas others function independently of Rho. Such Rho-independent terminators consist of an inverted repeat followed by a stretch of thymine residues, allowing us to predict their presence directly from the DNA sequence. Unlike in Escherichia coli, the Rho protein is dispensable in Bacillus subtilis, suggesting a limited role for Rho-dependent termination in this organism and possibly in other Firmicutes. We analyzed 463 experimentally known terminating sequences in B. subtilis and found a decision rule to distinguish Rho-independent transcriptional terminators from non-terminating sequences. The decision rule allowed us to find the boundaries of operons in B. subtilis with a sensitivity and specificity of about 94%. Using the same decision rule, we found an average sensitivity of 94% for 57 bacteria belonging to the Firmicutes phylum, and a considerably lower sensitivity for other bacteria. Our analysis shows that Rho-independent termination is dominant for Firmicutes in general, and that the properties of the transcriptional terminators are conserved. Terminator prediction can be used to reliably predict the operon structure in these organisms, even in the absence of experimentally known operons. Genome-wide predictions of Rho-independent terminators for the 57 Firmicutes are available in the Supporting Information section.

  19. Recognition of greater diversity of Bacillus species and related bacteria in human faeces.

    Science.gov (United States)

    Hoyles, Lesley; Honda, Harue; Logan, Niall A; Halket, Gillian; La Ragione, Roberto M; McCartney, Anne L

    2012-01-01

    In a study looking at culturable aerobic Actinobacteria associated with the human gastrointestinal tract, the vast majority of isolates obtained from dried human faeces belonged to the genus Bacillus and related bacteria. A total of 124 isolates were recovered from the faeces of 10 healthy adult donors. 16S rRNA gene sequence analyses showed the majority belonged to the families Bacillaceae (n=81) and Paenibacillaceae (n=3), with Bacillus species isolated from all donors. Isolates tentatively identified as Bacillus clausii (n=32) and Bacillus licheniformis (n=28) were recovered most frequently, with the genera Lysinibacillus, Ureibacillus, Oceanobacillus, Ornithinibacillus and Virgibacillus represented in some donors. Phenotypic data confirmed the identities of isolates belonging to well-characterized species. Representatives of the phylum Actinobacteria were recovered in much lower numbers (n=11). Many of the bacilli exhibited antimicrobial activity against one or more strains of Clostridium difficile, Clostridium perfringens, Listeria monocytogenes and Staphylococcus aureus, with some (n=12) found to have no detectable cytopathic effect on HEp-2 cells. This study has revealed greater diversity within gut-associated aerobic spore-formers than previous studies, and suggests that bacilli with potential as probiotics could be isolated from the human gut. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Identification of Bacillus species occurring in Kantong, an acid fermented seed condiment produced in Ghana.

    Science.gov (United States)

    Kpikpi, Elmer Nayra; Thorsen, Line; Glover, Richard; Dzogbefia, Victoria Pearl; Jespersen, Lene

    2014-06-16

    Kantong is a condiment produced in Ghana by the spontaneous fermentation of kapok tree (Ceiba pentandra) seeds with cassava flour as an additive. Fermentation is over a 48h period followed by a drying and a kneading process. Although lactic acid bacteria (LAB) have previously been identified other micro-organisms may also be involved in the fermentation process. In this study we examined the occurrence of aerobic endospore-forming bacteria (AEB) in raw materials, during fermentation and in the final product at 2 production sites in Northern Ghana. Total aerobic mesophilic bacterial counts increased from 5.4±0.1log10CFU/g in the raw materials to 8.9±0.1log10CFU/g in the final products, with the AEB accounting for between 23% and 80% of the total aerobic mesophilic (TAM) counts. A total of 196 AEB were identified at a species/subspecies level by the use of phenotypic tests and genotypic methods including M13-PCR typing, 16S rRNA and gyrA gene sequencing. Bacillus subtilis subsp. subtilis (63% of the AEB), Bacillus safensis (26% of the AEB) and Bacillus amyloliquefaciens subsp. plantarum/Bacillus methylotrophicus (9% of the AEB) were the predominant Bacillus species during fermentation and in the final products. B. amyloliquefaciens/B. methylotrophicus originated from cassava flour, B. safensis from seeds and cassava flour, while the origin of B. subtilis was less clear. Brevibacillus agri and Peanibacillus spp. occurred sporadically. Further investigations are required to elucidate the role of AEB occurring in high numbers, in the fermentation of Kantong. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Characterization of AmiBA2446, a novel bacteriolytic enzyme active against Bacillus species.

    Science.gov (United States)

    Mehta, Krunal K; Paskaleva, Elena E; Azizi-Ghannad, Saba; Ley, Daniel J; Page, Martin A; Dordick, Jonathan S; Kane, Ravi S

    2013-10-01

    There continues to be a need for developing efficient and environmentally friendly treatments for Bacillus anthracis, the causative agent of anthrax. One emerging approach for inactivation of vegetative B. anthracis is the use of bacteriophage endolysins or lytic enzymes encoded by bacterial genomes (autolysins) with highly evolved specificity toward bacterium-specific peptidoglycan cell walls. In this work, we performed in silico analysis of the genome of Bacillus anthracis strain Ames, using a consensus binding domain amino acid sequence as a probe, and identified a novel lytic enzyme that we termed AmiBA2446. This enzyme exists as a homodimer, as determined by size exclusion studies. It possesses N-acetylmuramoyl-l-alanine amidase activity, as determined from liquid chromatography-mass spectrometry (LC-MS) analysis of muropeptides released due to the enzymatic digestion of peptidoglycan. Phylogenetic analysis suggested that AmiBA2446 was an autolysin of bacterial origin. We characterized the effects of enzyme concentration and phase of bacterial growth on bactericidal activity and observed close to a 5-log reduction in the viability of cells of Bacillus cereus 4342, a surrogate for B. anthracis. We further tested the bactericidal activity of AmiBA2446 against various Bacillus species and demonstrated significant activity against B. anthracis and B. cereus strains. We also demonstrated activity against B. anthracis spores after pretreatment with germinants. AmiBA2446 enzyme was also stable in solution, retaining its activity after 4 months of storage at room temperature.

  2. Cyclodextrin glucanotransferase production by cell biocatalysts of alkaliphilic bacilli

    Czech Academy of Sciences Publication Activity Database

    Atanasova, N.; Kitayska, T.; Yankov, D.; Šafaříková, Miroslava; Tonkova, A.

    2009-01-01

    Roč. 46, - (2009), s. 278-285 ISSN 1369-703X Institutional research plan: CEZ:AV0Z60870520 Keywords : alkaliphilic bacilli * immobilization Subject RIV: CE - Biochemistry Impact factor: 2.193, year: 2009

  3. Evaluation of the VITEK2 BCL card for identification of Bacillus species and other aerobic endosporeformers.

    Science.gov (United States)

    Halket, G; Dinsdale, A E; Logan, N A

    2010-01-01

    To evaluate the performance of the VITEK2 Bacillus identification card (BCL) for the identification of aerobic endospore-forming bacteria, using fresh isolates and reference strains. One hundred and nine industrial, environmental and clinical isolates were tested using the BCL card. The card contained 46 substrates for measuring carbon source utilization, enzymatic activities, inhibition by 6.5% NaCl and resistance to the antibiotics kanamycin, oleandomycin and polymyxin B. Identifications were made after 14 h incubation, using a database allowing identification of 42 species of the genera Aneurinibacillus, Bacillus, Brevibacillus, Geobacillus, Paenibacillus and Virgibacillus. The reference identities of all isolates were authenticated by phenotypic methods, with 16S rRNA gene sequencing used to resolve discrepancies. One hundred and one strains (93%) were identified correctly to species level, seven strains (6%) were incorrectly identified, and one strain (1%) remained unidentified. The VITEK2 BCL card provides a major advance in the reliable identification of Bacillus species and members of related genera.

  4. Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression

    Directory of Open Access Journals (Sweden)

    Hilla eOknin

    2015-09-01

    Full Text Available The objective of this study was to investigate the effect of Mg2+ ions on biofilm formation by Bacillus species, which are considered as problematic microorganisms in the food industry. We found that magnesium ions are capable to inhibit significantly biofilm formation of Bacillus species at 50 mM concentration and higher. We further report that Mg2+ ions don't inhibit bacterial growth at elevated concentrations; hence, the mode of action of Mg2+ ions is apparently specific to inhibition of biofilm formation. Biofilm formation depends on the synthesis of extracellular matrix, whose production in Bacillus subtilis is specified by two major operons: the epsA-O and tapA operons. We analyzed the effect of Mg2+ ions on matrix gene expression using transcriptional fusions of the promoters for eps and tapA to the gene encoding β galactosidase. The expression of the two matrix operons was reduced drastically in response to Mg2+ ions suggesting about their inhibitory effect on expression of the matrix genes in B. subtilis. Since the matrix gene expression is tightly controlled by Spo0A dependent pathway, we conclude that Mg2+ ions could affect the signal transduction for biofilm formation through this pathway.

  5. Selection of Bacillus species for targeted in situ release of prebiotic galacto-rhamnogalacturonan from potato pulp in piglets.

    Science.gov (United States)

    Jers, Carsten; Strube, Mikael L; Cantor, Mette D; Nielsen, Bea K K; Sørensen, Ole B; Boye, Mette; Meyer, Anne S

    2017-05-01

    We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs. In this study, we evaluated the option for further functionalizing Bacillus feed supplements by selecting strains possessing the enzymes required for extraction of the potentially prebiotic fibers. We established that it would require production and secretion of pectin lyase and/or polygalacturonase but no or limited secretion of galactanase and β-galactosidase. By screening a library of 158 Bacillus species isolated from feces and soil, we demonstrated that especially strains of Bacillus amyloliquefaciens, Bacillus subtilis, and Bacillus mojavensis have the necessary enzyme profile and thus the capability to degrade polygalacturonan. Using an in vitro porcine gastrointestinal model system, we revealed that specifically strains of B. mojavensis were able to efficiently release galacto-rhamnogalacturonan from potato pulp under simulated gastrointestinal conditions. The work thus demonstrated the feasibility of producing prebiotic fibers via a feed containing Bacillus spores and potato pulp and identified candidates for future in vivo evaluation in piglets.

  6. Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species

    Science.gov (United States)

    Ghiuță, I.; Cristea, D.; Croitoru, C.; Kost, J.; Wenkert, R.; Vyrides, I.; Anayiotos, A.; Munteanu, D.

    2018-04-01

    In this work, the biosynthesis of silver nanoparticles, using AgNO3 as a precursor, by two Bacillus species, namely Bacillus amyloliquefaciens and Bacillus subtillis, is reported. After the synthesis stages, the absorbance of the brown nanoparticle colloidal solutions was assessed by UV-vis spectrophotometry, which showed the peak absorbance values at 418 nm and 414 nm, corresponding to surface plasmon resonance of silver nanoparticles. The EDX, SEM and DLS analyses confirmed the formation of spherical silver nanoparticles with an average diameter smaller than 140 nm. XRD confirmed the presence of face-centered cubic silver crystals, with the highest intensity peak at 2θ = 38.12°, which corresponds to the (111) diffraction planes. The antibacterial activity after 24 h of incubation was observed against gram negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Salmonella, as well as gram positive: Staphylococcus aureus, Streptococcus pyogenes. Furthermore, the antifungal activity was assessed against Candida albicans. The inhibition zone was clearly observed on the plates containing silver nanoparticles, either standalone or in combination with antibiotics, thus showing their potentiating antibacterial effect.

  7. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species.

    Directory of Open Access Journals (Sweden)

    Hirohito Ogawa

    Full Text Available Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis.

  8. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2010-11-01

    Pollution of the agricultural land by the toxic chromium is a global threat that has accelerated dramatically since the beginning of industrial revolution. Toxic chromium affects both the microbial diversity as well as reduces the growth of the plants. Understanding the effect of the chromium reducing and plant growth promoting rhizobacteria on chickpea crop will be useful. Chromium reducing and plant growth promoting Bacillus species PSB10 significantly improved growth, nodulation, chlorophyll, leghaemoglobin, seed yield and grain protein of chickpea crop grown in the presence of different concentrations of chromium compared to the plants grown in the absence of bio-inoculant. The strain also reduced the uptake of chromium in roots, shoots and grains of chickpea crop compared to plants grown in the absence of bio-inoculant. This study thus suggested that the Bacillus species PSB10 due to its intrinsic abilities of growth promotion and attenuation of the toxic effects of chromium could be exploited for remediation of chromium from chromium contaminated sites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Anaerobic halo- alkaliphilic bacterial community of athalassic, hypersaline Mono lake and Owens Lake in California

    Science.gov (United States)

    Pikuta, Elena V.; Detkova, Ekaterina N.; Bej, Asim K.; Marsic, Damien; Hoover, Richard B.

    2003-02-01

    The bacterial diversity of microbial extremophiles from the meromictic, hypersaline Mono Lake and a small evaporite pool in Owens Lake of California was studied. In spite of these regions had differing mineral background and different concentrations of NaCl in water they contain the same halo- alkaliphiles anaerobic bacterial community. Three new species of bacteria were detected in this community: primary anaerobe, dissipotrophic saccharolytic spirochete Spirochaeta americana strain AspG1T, primary anaerobe which is proteolytic Tindallia californiensis strain APOT, and secondary anaerobe, hydrogen using Desulfonatronum thiodismutans strain MLF1T, which is sulfate- reducer with chemo-litho-autotrophic metabolism. All of these bacteria are obligate alkaliphiles and dependent upon Na+ ions and CO32- ions in growth mediums. It is interesting that closest relationships for two of these species were isolates from samples of equatorial African soda Magadi lake: Spirochaeta americana AspG1T has 99.4% similarity on 16S rDNA- analyses with Spirochaeta alkalica Z- 7491T, and Tindallia californiensis APOT has 99.1% similarity with Tindallia magadiensis Z-7934T. But result of DNA-DNA- hybridization demonstrated less then 50% similarity between Spirochaeta americana AspG1T and Spirochaeta alkalica Z-7491T. Percent of homology between Tindallia californiensis APOT and Tindallia magadiensis Z-7934T is only 55%. The sulfate-reducer from the alkalic anaerobic community of Magadi lake Desulfonatronovibrio hydrogenovorans Z-7935T was phylogenetically distant from this sulfate-reducer in Mono lake, but genetically closer (99.7% similarity) to the sulfate-reducer, isolated from Central Asian alkalic lake Khadyn in Siberia Desulfonatronum lacustre Z-7951T. The study of key enzymes (hydrogenase and CO- hydrogenase) in Tindallia californiensis APOT and Desulfonatronum thiodismutans MLF1T showed the presence of high activity of both the enzymes in first and only hydrogenase in second

  10. The structure of the major cell wall polysaccharide of Bacillus anthracis is species-specific.

    Science.gov (United States)

    Choudhury, Biswa; Leoff, Christine; Saile, Elke; Wilkins, Patricia; Quinn, Conrad P; Kannenberg, Elmar L; Carlson, Russell W

    2006-09-22

    In this report we describe the structure of the polysaccharide released from Bacillus anthracis vegetative cell walls by aqueous hydrogen fluoride (HF). This HF-released polysaccharide (HF-PS) was isolated and structurally characterized from the Ames, Sterne, and Pasteur strains of B. anthracis. The HF-PSs were also isolated from the closely related Bacillus cereus ATCC 10987 strain, and from the B. cereus ATCC 14579 type strain and compared with those of B. anthracis. The structure of the B. anthracis HF-PS was determined by glycosyl composition and linkage analyses, matrix-assisted laser desorption-time of flight mass spectrometry, and one- and two-dimensional nuclear magnetic resonance spectroscopy. The HF-PSs from all of the B. anthracis isolates had an identical structure consisting of an amino sugar backbone of -->6)-alpha-GlcNAc-(1-->4)-beta-ManNAc-(1-->4)-beta-GlcNAc-(1-->, in which the alpha-GlcNAc residue is substituted with alpha-Gal and beta-Gal at O-3 and O-4, respectively, and the beta-GlcNAc substituted with alpha-Gal at O-3. There is some variability in the presence of two of these three Gal substitutions. Comparison with the HF-PSs from B. cereus ATCC 10987 and B. cereus ATCC 14579 showed that the B. anthracis structure was clearly different from each of these HF-PSs and, furthermore, that the B. cereus ATCC 10987 HF-PS structure was different from that of B. cereus ATCC 14579. The presence of a B. anthracis-specific polysaccharide structure in its vegetative cell wall is discussed with regard to its relationship to those of other Bacillus species.

  11. Development of a novel PCR assay based on the gyrase B gene for species identification of Bacillus licheniformis.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2012-10-01

    Bacillus licheniformis is closely related to the Bacillus subtilis group, and could not be clearly identified using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone. Some strains of this species are considered to be probiotic and are widely applied in the food and feed industry. The objective of this study was to develop species-specific PCR based on the gyrB gene sequence for direct species identification of the B. licheniformis within the B. subtilis group. A pair of species-specific primer was designed and used to specifically detect B. licheniformis, but none of the other B. subtilis group strains. Our data indicate that the novel species-specific primer could be used to rapidly and accurately identify the species of B. licheniformis from B. subtilis group by a PCR based assay. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid identification of Bacillus spores and classification of Bacillus species.

    Science.gov (United States)

    Correa, Elon; Goodacre, Royston

    2011-01-26

    The rapid identification of Bacillus spores and bacterial identification are paramount because of their implications in food poisoning, pathogenesis and their use as potential biowarfare agents. Many automated analytical techniques such as Curie-point pyrolysis mass spectrometry (Py-MS) have been used to identify bacterial spores giving use to large amounts of analytical data. This high number of features makes interpretation of the data extremely difficult We analysed Py-MS data from 36 different strains of aerobic endospore-forming bacteria encompassing seven different species. These bacteria were grown axenically on nutrient agar and vegetative biomass and spores were analyzed by Curie-point Py-MS. We develop a novel genetic algorithm-Bayesian network algorithm that accurately identifies sand selects a small subset of key relevant mass spectra (biomarkers) to be further analysed. Once identified, this subset of relevant biomarkers was then used to identify Bacillus spores successfully and to identify Bacillus species via a Bayesian network model specifically built for this reduced set of features. This final compact Bayesian network classification model is parsimonious, computationally fast to run and its graphical visualization allows easy interpretation of the probabilistic relationships among selected biomarkers. In addition, we compare the features selected by the genetic algorithm-Bayesian network approach with the features selected by partial least squares-discriminant analysis (PLS-DA). The classification accuracy results show that the set of features selected by the GA-BN is far superior to PLS-DA.

  13. Bacilysin from Bacillus amyloliquefaciens FZB42 Has Specific Bactericidal Activity against Harmful Algal Bloom Species

    Science.gov (United States)

    Wu, Liming; Wu, Huijun; Chen, Lina; Xie, Shanshan; Zang, Haoyu; Borriss, Rainer

    2014-01-01

    Harmful algal blooms, caused by massive and exceptional overgrowth of microalgae and cyanobacteria, are a serious environmental problem worldwide. In the present study, we looked for Bacillus strains with sufficiently strong anticyanobacterial activity to be used as biocontrol agents. Among 24 strains, Bacillus amyloliquefaciens FZB42 showed the strongest bactericidal activity against Microcystis aeruginosa, with a kill rate of 98.78%. The synthesis of the anticyanobacterial substance did not depend on Sfp, an enzyme that catalyzes a necessary processing step in the nonribosomal synthesis of lipopeptides and polyketides, but was associated with the aro gene cluster that is involved in the synthesis of the sfp-independent antibiotic bacilysin. Disruption of bacB, the gene in the cluster responsible for synthesizing bacilysin, or supplementation with the antagonist N-acetylglucosamine abolished the inhibitory effect, but this was restored when bacilysin synthesis was complemented. Bacilysin caused apparent changes in the algal cell wall and cell organelle membranes, and this resulted in cell lysis. Meanwhile, there was downregulated expression of glmS, psbA1, mcyB, and ftsZ—genes involved in peptidoglycan synthesis, photosynthesis, microcystin synthesis, and cell division, respectively. In addition, bacilysin suppressed the growth of other harmful algal species. In summary, bacilysin produced by B. amyloliquefaciens FZB42 has anticyanobacterial activity and thus could be developed as a biocontrol agent to mitigate the effects of harmful algal blooms. PMID:25261512

  14. Classification of Bacillus and Brevibacillus species using rapid analysis of lipids by mass spectrometry.

    Science.gov (United States)

    AlMasoud, Najla; Xu, Yun; Trivedi, Drupad K; Salivo, Simona; Abban, Tom; Rattray, Nicholas J W; Szula, Ewa; AlRabiah, Haitham; Sayqal, Ali; Goodacre, Royston

    2016-11-01

    Bacillus are aerobic spore-forming bacteria that are known to lead to specific diseases, such as anthrax and food poisoning. This study focuses on the characterization of these bacteria by the detection of lipids extracted from 33 well-characterized strains from the Bacillus and Brevibacillus genera, with the aim to discriminate between the different species. For the purpose of analysing the lipids extracted from these bacterial samples, two rapid physicochemical techniques were used: matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography in conjunction with mass spectrometry (LC-MS). The findings of this investigation confirmed that MALDI-TOF-MS could be used to identify different bacterial lipids and, in combination with appropriate chemometrics, allowed for the discrimination between these different bacterial species, which was supported by LC-MS. The average correct classification rates for the seven species of bacteria were 62.23 and 77.03 % based on MALDI-TOF-MS and LC-MS data, respectively. The Procrustes distance for the two datasets was 0.0699, indicating that the results from the two techniques were very similar. In addition, we also compared these bacterial lipid MALDI-TOF-MS profiles to protein profiles also collected by MALDI-TOF-MS on the same bacteria (Procrustes distance, 0.1006). The level of discrimination between lipids and proteins was equivalent, and this further indicated the potential of MALDI-TOF-MS analysis as a rapid, robust and reliable method for the classification of bacteria based on different bacterial chemical components. Graphical abstract MALDI-MS has been successfully developed for the characterization of bacteria at the subspecies level using lipids and benchmarked against HPLC.

  15. Sodiomyces alkalinus, a new holomorphic alkaliphilic ascomycete within the Plectosphaerellaceae

    NARCIS (Netherlands)

    Grum-Grzhimaylo, A.A.; Debets, A.J.M.; Diepeningen, van A.D.; Georgieva, M.L.; Bilanenko, E.N.

    2013-01-01

    In this study we reassess the taxonomic reference of the previously described holomorphic alkaliphilic fungus Heleococcum alkalinum isolated from soda soils in Russia, Mongolia and Tanzania. We show that it is not an actual member of the genus Heleococcum (order Hypocreales) as stated before and

  16. Sodiomyces alkalinus, a new holomorphic alkaliphilic ascomycete within the Plectoshaerellaceae

    NARCIS (Netherlands)

    Grum-Grzhimaylo, A.; Debets, A.J.M.; Diepeningen, van A.D.; Georgieva, M.L.; Bilanenko, E.N.

    2013-01-01

    In this study we reassess the taxonomic reference of the previously described holomorphic alkaliphilic fungus Heleococcum alkalinum isolated from soda soils in Russia, Mongolia and Tanzania. We show that it is not an actual member of the genus Heleococcum (order Hypocreales) as stated before and

  17. Selection of Bacillus species for targeted in situ release of prebiotic galacto-rhamnogalacturonan from potato pulp in piglets

    DEFF Research Database (Denmark)

    Jers, Carsten; Strube, Mikael Lenz; Cantor, Mette D

    2017-01-01

    We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs. In this s...

  18. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus.

    Science.gov (United States)

    Mothe, Thirumala; Sultanpuram, Vishnuvardhan Reddy

    2016-06-01

    Alkaline proteases are important enzymes in many industrial applications, especially as additives in laundry detergent industry. Though there are a number of Bacillus species which are reported to be producing proteases, the efficiency of a protease produced by a novel strain has to be studied in comparison to the others. Hence, in this study, an alkaline serine protease produced by a novel species Bacillus caseinilyticus was purified and characterized for its possible usage in detergent industry. Ammonium sulphate, dialysis and DEAE column chromatographic methods were used for purification of the isolated alkaline protease. The molecular weight of the protease was determined by SDS-PAGE and it was found to be 66 kDa. Peptide mass fingerprinting (PMF) was carried out using MALDI-TOF-TOF mass spectrometry and the peptides were found to be similar to that of subtilisin protease. Specific activity of purified protein was found to be 89.2 U/mg. Optimum pH and temperature for enzyme activity were at pH 8 and 60 °C, respectively, showing stability with 10 mM CaCl 2 . Phenyl methyl sulphonyl fluoride (PMSF) at both 5 and 10 mM concentrations completely inhibited the enzyme activity suggesting its serine nature. EDTA, metal ions Mg 2+ and Ca 2+ increased the enzyme activity. The one factor at a time optimisation of the protease production was carried to identify the important factors that affect its production. After optimisation, the protease was produced at lab scale, purified and characterised. This alkali, thermotolerant serine protease was found to be significantly stable in the presence of various surfactants and H 2 O 2. Also, it was successfully able to remove blood stain when used as an additive along with commercial detergent suggesting its potential application in the laundry detergent industry.

  19. Isolation, Purification, and Characterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation

    OpenAIRE

    Kamble, Rajashri D.; Jadhav, Anandrao R.

    2012-01-01

    A thermoalkalophilic new species of Bacillus, similar to Bacillus arseniciselenatis DSM 15340, produced extracellular xylanase under solid state fermentation when wheat bran is used as carbon source. The extracellular xylanase was isolated by ammonium sulfate (80%) precipitation and purified using ion exchange chromatography. The molecular weight of xylanase was ~29.8 ;kDa. The optimum temperature and pH for the enzyme activity were 50°C and pH 8.0. The enzyme was active on birchwood xylan an...

  20. The status of the species Bacillus aerius. Request for an Opinion

    Science.gov (United States)

    During a recent study assessing the diversity of the Bacillus lichenifomis group, it became apparent that the type strain of Bacillus aerius was not available from any established culture collection nor from the authors who originally described it. In addition, other authors have reported similar fi...

  1. Bacillus cucumis

    Science.gov (United States)

    Kämpfer, Peter; Busse, Hans-Jürgen; Glaeser, Stefanie P; Kloepper, Joseph W; Hu, Chia-Hui; McInroy, John A

    2016-02-01

    A facultative anaerobic, Gram-positive staining, endospore-forming bacterium, isolated from the rhizosphere of cucumber ( Cucumis sativus ), was taxonomically investigated. Based on 16S rRNA gene sequence similarity comparisons, strain AP-6 T clustered together with other species of the genus Bacillus and showed highest similarities with Bacillus drentensis LMG 21831 T (99.1 %), Bacillus vireti LMG 21834 T (98.7 %) and Bacillus soli LMG 21838 T (98.5 %). The 16S rRNA gene sequence similarity to the sequences of the type strains of other species of the genus Bacillus was 98.5 % or less. Chemotaxonomic features supported the grouping of the strain in the genus Bacillus ; for example, the major fatty acids were anteiso-C 15 : 0 , iso-C 15 : 0 and C 16 : 0 , the polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid, the major quinone was menaquinone MK-7 and the major compound in the polyamine pattern was spermidine. Additionally, DNA-DNA hybridization with B. drentensis LMG 21831 T , B. vireti LMG 21834 T and B. soli LMG 21838 T resulted in relatedness values that were clearly below 70 %. Physiological and biochemical test results were also different from those of the most closely related species. As a consequence, AP-6 T represents a novel species of the genus Bacillus , for which the name Bacillus cucumis sp. nov. is proposed, with AP-6 T ( = CIP 110974 T  = CCM 8651 T ) as the type strain.

  2. Mannose Phosphate Isomerase Isoenzymes in Plutella xylostella Support Common Genetic Bases of Resistance to Bacillus thuringiensis Toxins in Lepidopteran Species

    OpenAIRE

    Herrero, Salvador; Ferré, Juan; Escriche, Baltasar

    2001-01-01

    A strong correlation between two mannose phosphate isomerase (MPI) isoenzymes and resistance to Cry1A toxins from Bacillus thuringiensis has been found in a Plutella xylostella population. MPI linkage to Cry1A resistance had previously been reported for a Heliothis virescens population. The fact that the two populations share similar biochemical, genetic, and cross-resistance profiles of resistance suggests the occurrence of homologous resistance loci in both species.

  3. Species of Staphylococcus and Bacillus isolated from traditional sausages as producers of biogenic amines.

    Directory of Open Access Journals (Sweden)

    Roberto eBermúdez

    2012-04-01

    Full Text Available Histidine, lysine, ornithine and tyrosine decarboxylase activities were tested in 38 strains of Staphylococcus (15 of Staph. equorum, 11 of Staph. epidermidis, 7 of Staph. saprophyticus, and 5 of Staph. pasteuri and 19 strains of Bacillus (13 of B. subtilis and 6 of B. amyloliquefaciens isolated from two Spanish traditional sausage varieties.The four decarboxylase activities were present in most of the strains studied, but some variability was observed between strains within each microbial species.Accumulation of putrescine and cadaverine was assessed in the culture media of the strains that displayed ornithine and lysine decarboxylase activities. The aminogenic potential of the strains was low, with amounts accumulated lower than 25 mg/L for the putrescine and than 5 mg/L for the cadaverine, with the exception of a strain of Staph. equorum that produced 1415 mg/L of putrescine, and of a strain of Staph. epidermidis that accumulated 977 mg/L of putrescine and 36 mg/L of cadaverine.

  4. Production of a lipolytic enzyme originating from Bacillus halodurans LBB2 in the methylogrophic yeast Pichia pastoria

    CSIR Research Space (South Africa)

    Ramchuran, SO

    2006-07-01

    Full Text Available A gene encoding a lipolytic enzyme amplified from the alkaliphilic bacterium Bacillus halodurans LBB2 was cloned into the pPICZaB vector and integrated into the genome of the protease deficient yeast strain Pichia pastoris SMD1168H. This previously...

  5. A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species.

    Directory of Open Access Journals (Sweden)

    Omür Baysal

    Full Text Available Beneficial microorganisms (also known as biopesticides are considered to be one of the most promising methods for more rational and safe crop management practices. We used Bacillus strains EU07, QST713 and FZB24, and investigated their inhibitory effect on Fusarium. Bacterial cell cultures, cell-free supernatants and volatiles displayed varying degrees of suppressive effect. Proteomic analysis of secreted proteins from EU07 and FZB24 revealed the presence of lytic enzymes, cellulases, proteases, 1,4-β-glucanase and hydrolases, all of which contribute to degradation of the pathogen cell wall. Further proteomic investigations showed that proteins involved in metabolism, protein folding, protein degradation, translation, recognition and signal transduction cascade play an important role in the control of Fusarium oxysporum. Our findings provide new knowledge on the mechanism of action of Bacillus species and insight into biocontrol mechanisms.

  6. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    L. M. N. Pinto

    Full Text Available The control of Acromyrmex leaf-cutting ants is necessary due to the severe damage they cause to diverse crops. A possibility was to control them using the bacterium Bacillus thuringiensis (Bt that characteristically produces insecticidal crystal proteins (ICPs. The ICPs have been effective in controlling lepidopterans, dipterans, and coleopterans, but their action against hymenopterans is unknown. This paper describes an attempt to isolate Bt from ants of two Acromyrmex species, to evaluate its pathogenicity towards these ants, and to test isolates by PCR. Bacterial isolates of Bt obtained from A. crassispinus and A. lundi have been assayed against A. lundi in the laboratory. The bioassays were carried out in BOD at 25°C, with a 12-hour photoperiod, until the seventh day after treatment. The Bt isolates obtained were submitted to total DNA extraction and tested by PCR with primers specific to cry genes. The results showed Bt presence in 40% of the assessed samples. The data from the in vivo assays showed a mortality rate higher than 50% in the target population, with the Bt HA48 isolate causing 100% of corrected mortality. The PCR results of Bt isolates showed a magnification of DNA fragments relative to cry1 genes in 22% of the isolates, and cry9 in 67%. Cry2, cry3, cry7, and cry8 genes were not detected in the tested samples, and 22% had no magnified DNA fragments corresponding to the assessed cry genes. The results are promising not only regarding allele identification in new isolates, but also fort the assays aimed at determining the Bt HA48 LC50's, which can eventually be applied in controlling of Acromyrmex leaf-cutting ants.

  7. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    Science.gov (United States)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  8. Evaluation of Two Standard and Two Chromogenic Selective Media for Optimal Growth and Enumeration of Isolates of 16 Unique Bacillus Species.

    Science.gov (United States)

    Kabir, M Shahjahan; Hsieh, Ying-Hsin; Simpson, Steven; Kerdahi, Khalil; Sulaiman, Irshad M

    2017-06-01

    The genus Bacillus is a group of gram-positive endospore-forming bacteria that can cause food poisoning and diarrheal illness in humans. A wide range of food products have been linked to foodborne outbreaks associated with these opportunistic pathogens. The U.S. Food and Drug Administration recommends (in their Bacteriological Analytical Manual) the use of Bacara or mannitol egg yolk polymyxin (MYP) agar plates and the most-probable-number (MPN) method for enumeration and confirmation of Bacillus cereus and related species isolated from foods, sporadic cases, outbreaks, and routine environmental surveillance samples. We performed a comparative analysis of two chromogenic media (Bacara and Brilliance) and two traditional media (MYP and polymyxin egg yolk mannitol bromothymol blue agar [PEMBA]) for the isolation and enumeration of 16 Bacillus species under modified growth conditions that included pH, temperature, and dilution factor. A total of 50 environmental, food, and American Type Culture Collection reference isolates from 16 distinct Bacillus species were evaluated. A food adulteration experiment also was carried out by artificially adulterating two baby food matrices with two isolates each of B. cereus and Bacillus thuringiensis . Our results clearly indicated that chromogenic plating media (Bacara and Brilliance) are better than conventional standard media (MYP and PEMBA) for the detection and enumeration of B. cereus in foods and other official regulatory samples. The comparison of the two chromogenic media also indicated that Brilliance medium to be more efficient and selective for the isolation of Bacillus.

  9. BACILLUS SPECIES IN THE OCEANIC WATERS ADJACENT TO CUBA: ASSOCIATION BETWEEN THEIR DISTRIBUTION AND METABOLIC ACTIVITY

    Directory of Open Access Journals (Sweden)

    Gladys Margarita Lugioyo

    2011-07-01

    Full Text Available The aim of the present work was to identify spore-forming Gram-positive Bacillus strains isolated from oceanic waters adjacent to Cuba and to establish a possible relationship between their distribution and the metabolic activity of the isolates. Total protein patterns, derived from SDS-PAGE, were used to build a non-rooted dendrogram where the strains appeared clustered in three nodes. No direct relationship was observed between a node and particular species. In contrast, according to the physical and chemical characteristics of the zones, node I was different from node II and III, since it comprises strains from the farthest zones of the coast, poorer in nutrients. On the other hand, nodes II and III mainly collect strains isolated from nutrient and organic matter-enriched zones. Associating the node clustering with metabolic activities, it was found that in node I the ratio: number of positive activities/strain was 2.3, followed by node II with a ratio of 3.3, and finally node III exhibiting a ratio equal to 3.7. This could suggest that different total protein patterns in bacteria belonging to the same specie, but coming from environments with different degree of nutrient richness, could be an indicator of the capacities of these microorganisms to adapt and live in different environments.   El objetivo del presente trabajo fue la identificación de cepas de bacilos Gram-positivos esporulados aislados de las aguas oceánicas adyacentes a Cuba y el establecimiento de la posible relación entre la distribución y las actividades metabólicas de los aislados. A partir del patrón de proteínas obtenido mediante electroforesis SDS-PAGE, se construyó un dendrograma no enraizado, lo que permitió la agrupación de las cepas en tres nodos. No se observó una relación directa entre un nodo y especies particulares, sin embargo, se encontraron diferencias entre los nodos al considerar las características físicas y químicas de las zonas; el nodo I

  10. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba.

    Science.gov (United States)

    Ahaotu, I; Anyogu, A; Njoku, O H; Odu, N N; Sutherland, J P; Ouoba, L I I

    2013-03-01

    Molecular identification of Bacillus spp. involved in the fermentation of African oil bean seeds for production of Ugba, as well as ability of the Bacillus spp. isolated to produce toxins, were investigated. Forty-nine bacteria were isolated from Ugba produced in different areas of South Eastern Nigeria and identified by phenotyping and sequencing of 16S rRNA, gyrB and rpoB genes. Genotypic diversities at interspecies and intraspecies level of the isolates were screened by PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR) and repetitive sequence-based PCR (rep-PCR). The ability of the bacteria to produce toxins was also investigated by detection of genes encoding production of haemolysin BL (HblA, HblC, HblD), non-haemolytic enterotoxin (NheA, NheB, NheC), cytotoxin K (CytK) and emetic toxin (EM1) using PCR with specific primers. Moreover, a Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) was used to screen ability of the isolates to produce haemolysin in broth and during fermentation of African oil bean seeds. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. They were identified as Bacillus cereus sensu lato (42), Lysinibacillus xylanilyticus (3), Bacillus clausii (1), Bacillus licheniformis (1), Bacillus subtilis (1), and Bacillus safensis (1). B. cereus was the predominant Bacillus species and was present in all samples studied. Using ITS-PCR, interspecies diversity was observed among isolates, with six clusters representing each of the pre-cited species. Rep-PCR was more discriminatory (eight clusters) and allowed further differentiation at intraspecies level for the B. cereus and L. xylanilyticus isolates with two genotypes for each species. Genes encoding production of non-haemolytic enterotoxin (NheA, NheB, NheC) and cytotoxin K (CytK) genes were detected in all B. cereus isolates, while Hbl genes (HblA, HblC, HblD) were

  11. Identification and safety evaluation of Bacillus species occurring in high numbers during spontaneous fermentations to produce Gergoush, a traditional Sudanese bread snack.

    Science.gov (United States)

    Thorsen, Line; Abdelgadir, Warda S; Rønsbo, Mie H; Abban, Stephen; Hamad, Siddig H; Nielsen, Dennis S; Jakobsen, Mogens

    2011-04-29

    Gergoush is a naturally fermented Sudanese Bread snack produced in three fermentation steps (primary starter, adapted starter and final dough), followed by three baking steps for a half to one hour at above 200 °C. This study examines the microbiota of two sets of fermentations performed at a traditional production site in Khartoum, Sudan in 2006 and 2009, respectively. In 2006 four different milk/legume based primary starters (faba bean, chick pea, lentil and white bean) were sampled in order to enumerate and identify the Bacillus at species or group level. In 2009 specific focus was on the enumeration and safety evaluation of the dominant Bacillus cereus group species occurring during various Gergoush productions (including the three fermentations steps and after baking). In 2006, the primary starters contained Bacillus spp. in the order of between 7.7 and 8.1 log(10) CFU/g. Species identifications were performed by M13-PCR typing using the Escherichia coli phage M13 derived primer PM13 combined with internally transcribed 16-23S rRNA PCR, 16S rRNA gene and gyrA or gyrB gene sequencing, and selected phenotypic tests. Depending on the legume used, 40-68% of the isolates were identified as B. cereus sensu lato, 16-27% as Bacillus licheniformis, 8-32% as Bacillus subtilis and 4-20% as Bacillus sonorensis. During the second set of fermentation trials performed in 2009, the Bacillus spp. and B. cereus occurred in numbers of between 7.7-9.9 and 6.1-7.8 log(10) CFU/g, respectively, while no bacteria were detected after baking. A total of 180 B. cereus sensu lato isolates from four different primary starters, adapted starters and final doughs were further identified as B. cereus sensu stricto (118 isolates) and Bacillus thuringiensis (62 isolates). The safety of Gergoush was evaluated based on the counts and toxin gene profiles of the dominant B. cereus species. Considering that no bacteria survived the baking process, and that the cereulide synthetase gene ces

  12. Clinical effects of probiotics containing Bacillus species on gingivitis: a pilot randomized controlled trial.

    Science.gov (United States)

    Alkaya, B; Laleman, I; Keceli, S; Ozcelik, O; Cenk Haytac, M; Teughels, W

    2017-06-01

    Lactobacillus spp. and bifidobacteria are the most frequently used probiotics in oral health research. However, although probiotic effects have been suggested for other genera, such as bacilli, no trials are available to describe the effect of bacilli probiotics on gingivitis in humans. The aim of the present study was to evaluate the clinical effects of a bacilli-containing toothpaste, a mouthrinse and a toothbrush cleaner versus a placebo in patients with generalized gingivitis. In this double-blind placebo-controlled randomized clinical trial, nonsmoking, systemically healthy patients with generalized gingivitis were included. They used a placebo or an experimental probiotic Bacillus subtilis-, Bacillus megaterium- and Bacillus pumulus-containing toothpaste, mouthrinse and toothbrush cleaner for 8 wk. Primary outcome measures of interest were plaque and gingivitis index, and the secondary outcome measures were pocket probing depth and bleeding on probing. Twenty male and 20 female patients were randomized over the two groups. All participants could be included in the final analysis. Although plaque and gingivitis indices were significantly reduced after 8 wk, no intergroup differences could be found at any time point. Also, for the secondary outcome measure, intragroup but no intergroup differences could be detected. No harm or unintended effects were reported by the patients after using the study products. This study did not show any statistically significant differences between a placebo and a bacilli-containing toothpaste, mouthrinse and toothbrush cleaner on gingivitis parameters. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. pGIAK1, a heavy metal resistant plasmid from an obligate alkaliphilic and halotolerant bacterium isolated from the Antarctic Concordia station confined environment.

    Directory of Open Access Journals (Sweden)

    Suxia Guo

    Full Text Available pGIAK1 is a 38-kb plasmid originating from the obligate alkaliphilic and halotolerant Bacillaceae strain JMAK1. The strain was originally isolated from the confined environments of the Antarctic Concordia station. Analysis of the pGIAK1 38,362-bp sequence revealed that, in addition to its replication region, this plasmid contains the genetic determinants for cadmium and arsenic resistances, putative methyltransferase, tyrosine recombinase, spore coat protein and potassium transport protein, as well as several hypothetical proteins. Cloning the pGIAK1 cad operon in Bacillus cereus H3081.97 and its ars operon in Bacillus subtilis 1A280 conferred to these hosts cadmium and arsenic resistances, respectively, therefore confirming their bona fide activities. The pGIAK1 replicon region was also shown to be functional in Bacillus thuringiensis, Bacillus subtilis and Staphylococcus aureus, but was only stably maintained in B. subtilis. Finally, using an Escherichia coli - B. thuringiensis shuttle BAC vector, pGIAK1 was shown to display conjugative properties since it was able to transfer the BAC plasmid among B. thuringiensis strains.

  14. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution

    Directory of Open Access Journals (Sweden)

    Li Pin Lee

    2015-01-01

    Full Text Available Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.

  15. Isolation, Purification, and Characterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Rajashri D. Kamble

    2012-01-01

    Full Text Available A thermoalkalophilic new species of Bacillus, similar to Bacillus arseniciselenatis DSM 15340, produced extracellular xylanase under solid state fermentation when wheat bran is used as carbon source. The extracellular xylanase was isolated by ammonium sulfate (80% precipitation and purified using ion exchange chromatography. The molecular weight of xylanase was ~29.8 ;kDa. The optimum temperature and pH for the enzyme activity were 50°C and pH 8.0. The enzyme was active on birchwood xylan and little active on p-nitrophenyl xylopyranoside but not on Avicel, CMC, cellobiose, and starch, showing its absolute substrate specificity. For birchwood xylan, the enzyme gave a Km 5.26 ;mg/mL and Vmax 277.7 ;μmol/min/mg, respectively. In addition, the xylanase was also capable of producing high-quality xylo-oligosaccharides, which indicated its application potential not only in pulp biobleaching processes but also in the nutraceutical industry.

  16. Characterization ofBacillus amyloliquefaciensDA12 Showing Potent Antifungal Activity against MycotoxigenicFusariumSpecies.

    Science.gov (United States)

    Lee, Theresa; Park, Dami; Kim, Kihyun; Lim, Seong Mi; Yu, Nan Hee; Kim, Sosoo; Kim, Hwang-Yong; Jung, Kyu Seok; Jang, Ja Yeong; Park, Jong-Chul; Ham, Hyeonheui; Lee, Soohyung; Hong, Sung Kee; Kim, Jin-Cheol

    2017-10-01

    In an attempt to develop a biological control agent against mycotoxigenic Fusarium species, we isolated Bacillus amyloliquefaciens strain DA12 from soil and explored its antimicrobial activities. DA12 was active against the growth of mycotoxigenic F. asiaticum , F. graminearum , F. proliferatum , and F. verticillioides both in vitro and in planta (maize). Further screening using dual culture extended the activity range of strain DA12 against other fungal pathogens including Botrytis cinerea , Colletotrichum coccodes , Endothia parasitica , Fusarium oxysporum , Raffaelea quercus-mongolicae , and Rhizoctonia solani . The butanol extract of the culture filtrate of B. amyloliquefaciens DA12 highly inhibited the germination of F. graminearum macroconidia with inhibition rate 83% at a concentration of 31.3 μg/ml and 100% at a concentration of 250 μg/ml. The antifungal metabolite from the butanol extract was identified as iturin A by thin layer chromatography-bioautography. In addition, volatile organic compounds produced by DA12 were able to inhibit mycelial growth of various phytopathogenic fungi. The volatile compounds were identified as 2-heptanone, 5-methyl heptanone and 6-methyl heptanone by gas chromatography-mass spectrometry (GC-MS) analysis. These results indicate that the antagonistic activity of Bacillus amyloliquefaciens DA12 was attributable to iturin A and volatile heptanones, and the strain could be used as a biocontrol agent to reduce the development of Fusarium diseases and mycotoxin contamination of crops.

  17. Isolation, purification, and characterization of xylanase produced by a new species of bacillus in solid state fermentation.

    Science.gov (United States)

    Kamble, Rajashri D; Jadhav, Anandrao R

    2012-01-01

    A thermoalkalophilic new species of Bacillus, similar to Bacillus arseniciselenatis DSM 15340, produced extracellular xylanase under solid state fermentation when wheat bran is used as carbon source. The extracellular xylanase was isolated by ammonium sulfate (80%) precipitation and purified using ion exchange chromatography. The molecular weight of xylanase was ~29.8 kDa. The optimum temperature and pH for the enzyme activity were 50°C and pH 8.0. The enzyme was active on birchwood xylan and little active on p-nitrophenyl xylopyranoside but not on Avicel, CMC, cellobiose, and starch, showing its absolute substrate specificity. For birchwood xylan, the enzyme gave a Km 5.26 mg/mL and Vmax 277.7 μmol/min/mg, respectively. In addition, the xylanase was also capable of producing high-quality xylo-oligosaccharides, which indicated its application potential not only in pulp biobleaching processes but also in the nutraceutical industry.

  18. Bacillus niameyensis sp. nov., a new bacterial species isolated from human gut

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2015-11-01

    Full Text Available Bacillus niameyensis sp. nov. strain SIT3T (= CSUR P1266 = DSM 29725 is the type strain of B. niameyensis sp. nov. This Gram-positive strain was isolated from the digestive flora of a child with kwashiorkor and is a facultative anaerobic rod and a member of the Bacillaceae family. This organism is hereby described alongside its complete genome sequence and annotation. The 4  286  116 bp long genome (one chromosome but no plasmid contains 4130 protein-coding and 66 RNA genes including five rRNA genes.

  19. Laser induced fluorescence lifetime characterization of Bacillus endospore species using time correlated single photon counting analysis with the multi-exponential fit method

    Science.gov (United States)

    Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan

    2010-04-01

    Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).

  20. Most of the propeptide is dispensable for stability and autoprocessing of the zymogen of the germination protease of spores of Bacillus species

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Nessi, C; Setlow, P

    1997-01-01

    Loss of 3, 7, or 10 of the amino-terminal 15 residues removed upon autoactivation of the zymogen of the germination protease (GPR), which initiates protein degradation during germination of spores of Bacillus species, did not result in significant changes in (i) the lack of enzymatic activity of ...

  1. Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Gibson, A.H.

    1985-10-01

    Mixed cultures of Cellulomonas gelida plus Azospirillum lipoferum or Azospirillum brasilense and C. gelida plus Bacillus macerans were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of straw consumed. Cellulomonas species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O/sub 2/ (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of A. brasilense and C. gelida all reached a stable ratio of approximately 1 Azospirillum/3 Cellulomonas cells.

  2. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Bacillus_subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.jp/taxonom...y_icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=214 ...

  3. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi.

    Science.gov (United States)

    Liu, Kan; Atiyeh, Hasan K; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L

    2012-01-01

    Ethanol production from syngas using three moderately alkaliphilic strains of a novel genus and species Alkalibaculum bacchi CP11(T), CP13 and CP15 was investigated in 250 ml bottle fermentations containing 100ml of yeast extract medium at 37 °C and pH 8.0. Two commercial syngas mixtures (Syngas I: 20% CO, 15% CO(2), 5% H(2), 60% N(2)) and (Syngas II: 40% CO, 30% CO(2), 30% H(2)) were used. Syngas I and Syngas II represent gasified biomass and coal, respectively. The maximum ethanol concentration (1.7 g l(-1)) and yield from CO (76%) were obtained with strain CP15 and Syngas II after 360 h. CP15 produced over twofold more ethanol with Syngas I compared to strains CP11(T) and CP13. In addition, CP15 produced 18% and 71% more ethanol using Syngas II compared to strains CP11(T) and CP13, respectively. These results show that CP15 is the most promising for ethanol production because of its higher growth and ethanol production rates and yield compared to CP11(T) and CP13. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species

    International Nuclear Information System (INIS)

    Hauser, P.M.; Karamata, D.

    1992-01-01

    A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10 - 15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed

  5. Antifouling potential of some marine organisms from India against species of Bacillus and Pseudomonas

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Nagle, V.L.; Jagtap, T.G.

    Crude methanolic extracts of 37 marine organisms (16 species of flora, 21 species of fauna) were screened for antibacterial properties against 5 strains of bacteria isolated from marine environments. Of these, 10 plant and 9 animal extracts...

  6. Identification and distribution of Bacillus species in doenjang by whole-cell protein patterns and 16S rRNA gene sequence analysis.

    Science.gov (United States)

    Kim, Tae-Woon; Kim, Young-Hoon; Kim, Sung-Eon; Lee, Jun-Hwa; Park, Cheon-Seok; Kim, Hae-Yeong

    2010-08-01

    Many bacteria are involved in fermentation of doenjang and Bacillus species are known to perform significant roles. Although the SDS-PAGE technique has been frequently used for classification and identification of bacteria in various samples, there has been no investigation of the microbial diversity in doenjang. This study aims to investigate the identification and distribution of dominant Bacillus species in doenjang using SDS-PAGE profiles of whole cell proteins and 16S rDNA sequencing. SDS-PAGE of whole cell proteins of the reference Bacillus strains yielded differential banding patterns that could be considered to be highly specific fingerprints. Bacterial strains isolated from doenjang samples were grouped using whole cell protein patterns, which were confirmed by the analysis of 16S rDNA sequencing. B. subtilis was found to be the most dominant strain in most of the samples, and B. licheniformis and B. amyloliquefaciens were less frequently detected. The results obtained in this study showed that a combined identification method, SDS-PAGE patterns of whole cell proteins and subsequent 16S rDNA sequence analysis, could successfully identify Bacillus species isolated from doenjang.

  7. Levels of glycine betaine in growing cells and spores of Bacillus species and lack of effect of glycine betaine on dormant spore resistance.

    Science.gov (United States)

    Loshon, Charles A; Wahome, Paul G; Maciejewski, Mark W; Setlow, Peter

    2006-04-01

    Bacteria of various Bacillus species are able to grow in media with very high osmotic strength in part due to the accumulation of low-molecular-weight osmolytes such as glycine betaine (GB). Cells of Bacillus species grown in rich and minimal media contained low levels of GB, but GB levels were 4- to 60-fold higher in cells grown in media with high salt. GB levels in Bacillus subtilis cells grown in minimal medium were increased approximately 7-fold by GB in the medium and 60-fold by GB plus high salt. GB was present in spores of Bacillus species prepared in media with or without high salt but at lower levels than in comparable growing cells. With spores prepared in media with high salt, GB levels were highest in B. subtilis spores and > or =20-fold lower in B. cereus and B. megaterium spores. Although GB levels in B. subtilis spores were elevated 15- to 30-fold by GB plus high salt in sporulation media, GB levels did not affect spore resistance. GB levels were similar in wild-type B. subtilis spores and spores that lacked major small, acid-soluble spore proteins but were much lower in spores that lacked dipicolinic acid.

  8. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy

    Science.gov (United States)

    Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.

    2015-09-01

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  9. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy.

    Science.gov (United States)

    Ghosh, S B; Bhattacharya, K; Nayak, S; Mukherjee, P; Salaskar, D; Kale, S P

    2015-09-05

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread.

    Science.gov (United States)

    Valerio, F; De Bellis, P; Di Biase, M; Lonigro, S L; Giussani, B; Visconti, A; Lavermicocca, P; Sisto, A

    2012-06-01

    This study examines the diversity of spore-forming bacteria isolated from raw materials/bread using molecular methods along with a rapid and innovative technology, the FT-NIR spectroscopy. Microbiological analysis showed that 23% of semolina and 42% of other raw materials (including grain, brewer yeast, improvers) contained more than 100 spores/g and more than 50% of each kind of sample was contaminated at a level ranging from 1 to 100 spores/g. A high bacterial diversity characterized raw materials. In total 176 isolates were collected and characterized: 13 bacterial species belonging to Bacillus (10) and Paenibacillus (3) genera were identified by sequencing of 16S rRNA, gyrA or gyrB genes. The two closely related species Bacillus amyloliquefaciens (strain N45.1) and Bacillus subtilis (strain S63) were also analyzed by the spectroscopic technique FT-NIR. This analysis gave clear discrimination between the strains in the score plot obtained by the PCA and allowed to identify the spectral region 5600-4000 cm(-1) as the information-rich region for discrimination. B. amyloliquefaciens, possibly misidentified as B. subtilis in previous studies, was recognized as the most frequent species, found also in ropy bread. Moreover, the screening test for rope production indicated that mainly B. amyloliquefaciens, together with B. subtilis and Bacillus pumilus, could cause spoilage in bread, even if the last two species were represented by a low number of isolates. The Bacillus cereus group and Bacillus megaterium showed a lower percentage (30-70%) of isolates potentially able to cause the rope, but considering the high number of B. cereus group isolates detected in this study, this bacterial group should also be considered important in rope spoilage. In conclusion, results demonstrate that raw materials used to produce bread represent a rich source of spore-forming bacteria, therefore their microbiological quality should be monitored before use. Moreover, this study

  11. Bioprocess enhancement of feather degradation using alkaliphilic microbial mixture.

    Science.gov (United States)

    Osman, Y; Elsayed, A; Mowafy, A M; Abdelrazak, A; Fawzy, M

    2017-06-01

    1. The main aim of this work is to develop a robust method to generate a microbial mixture which can successfully degrade poultry feathers to overcome environmental problems. 2. Four different alkaliphilic microbes were isolated and shown to degrade poultry feathers. 3. Two of the isolates were phylogenetically identified as Lysinibacillus and the others were identified as Nocardiopsis and Micrococcus. 4. The best microbial co-culture for white and black feather degradation was optimised for pH, temperature and relative population of the isolates to achieve almost 96% of degradation compared with a maximum of 31% when applying each isolate individually. 5. The maximum activity of keratinase was estimated to be 1.5 U/ml after 3 d for white feathers and 0.6 U/ml after 4 d for black feathers in a basal medium containing feather as the main carbon source. Additionally, non-denaturing polyacrylamide gel electrophoresis showed 4 and 3 protease activity bands for white and black feather, respectively. 6. This study provides a robust method to develop potential new mixtures of microorganisms that are able to degrade both white and black feathers by applying a Central Composite Design.

  12. Poly-γ-Glutamic Acid (PGA)-Producing Bacillus Species Isolated from Kinema, Indian Fermented Soybean Food.

    Science.gov (United States)

    Chettri, Rajen; Bhutia, Meera O; Tamang, Jyoti P

    2016-01-01

    Kinema, an ethnic fermented, non-salted and sticky soybean food is consumed in the eastern part of India. The stickiness is one of the best qualities of good kinema preferred by consumers, which is due to the production of poly-γ-glutamic acid (PGA). Average load of Bacillus in kinema was 10(7) cfu/g and of lactic acid bacteria was 10(3) cfu/g. Bacillus spp. were screened for PGA-production and isolates of lactic acid bacteria were also tested for degradation of PGA. Only Bacillus produced PGA, none of lactic acid bacteria produced PGA. PGA-producing Bacillus spp. were identified by phenotypic characterization and also by 16S rRNA gene sequencing as Bacillus subtilis, B. licheniformis and B. sonorensis.

  13. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus.

    Science.gov (United States)

    Patil, Chandrashekhar D; Patil, Satish V; Salunke, Bipinchandra K; Salunkhe, Rahul B

    2012-05-01

    The tremendous worldwide efforts to isolate novel mosquito larvicidal bacteria with improved efficacy present significant promise to control vector-borne diseases of public health importance. In the present study, two native bacterial isolates, Bacillus thuringiensis (Bt SV2) and Serratia species (SV6) were evaluated for mosquito larvicidal potential against the early fourth instar larvae of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus with reference to B. thuringiensis subsp. israelensis (Bti) H 14. The native Gram-positive, spore-forming Bt SV2 isolate showed 100% mortality against early fourth instars of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, in parallel to Bti H14 strain. After 24 h, Bt SV2 showed 98%, 89%, and 80.67%, and Bti H14 showed 92%, 98.33%, and 60% mortality against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, respectively. Serratia SV6 showed highest activity against Culex quinquefasciatus (100%) followed by Anopheles stephensi (95%) and Aedes aegypti (91%) after 48 h of exposure. The Gram-negative Serratia SV6 showed delayed toxicity compared to Bti H14 and Bt SV2 against early fourth instars of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. The relative mortality of all treatments after 12-h exposures showed the varied toxicity with respect to exposure time, bacterial treatment, and mosquito species. Genetic relatedness of the strains was confirmed on the basis of phylogenetic reconstructions based on alignment of 16S rRNA gene sequences which indicated a strong clustering of the strain SV2 with B. thuringiensis and the strain SV6 with Serratia nematodiphila. In conclusion, the native isolate B. thuringiensis SV2 showed significant toxicity while Serratia SV6 showed less and delayed toxicity against several mosquito species compared with BtiH14. They may be used as novel bacterial insecticidal agents in mosquito vector-borne disease control. To our knowledge, this is the

  14. Oceanobacillus indicireducens sp. nov., a facultative alkaliphile that reduces an indigo dye.

    Science.gov (United States)

    Hirota, Kikue; Aino, Kenichi; Nodasaka, Yoshinobu; Yumoto, Isao

    2013-04-01

    An indigo-reducing facultatively alkaliphilic and halophilic strain, designated strain A21(T), was isolated from a fermented Polygonum indigo (Polygonum tinctorium Lour.) liquor sample aged for 4 days prepared in a laboratory. 16S rRNA gene sequence phylogeny suggested that strain A21(T) was a member of the genus Oceanobacillus with the closest relative being the type strain of Oceanobacillus chironomi (similarity: 96.0 %). The cells of the isolate stained Gram-positive and were facultatively anaerobic straight rods that were motile by peritrichous flagella. The strain grew between 18 and 48 °C with optimum growth at 39 °C. It grew in the pH range of 7-12. It hydrolysed casein, gelatin and Tween 20 but not Tweens 40, 60 and 80, starch or DNA. No isoprenoid quinone was detected and the DNA G+C content was 39.7 mol%. The whole-cell fatty acid profile mainly consisted of iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. DNA-DNA hybridization experiments with O. chironomi revealed 13 % relatedness. Owing to the differences in phenotypic and chemotaxonomic characteristics, and phylogenetic analyses based on 16S rRNA gene sequences and DNA-DNA relatedness data from reported Oceanobacillus species, the isolate merits classification as a representative of a novel species, for which the name Oceanobacillus indicireducens sp. nov. is proposed. The type strain is A21(T) ( = JCM 17251(T)  = NCIMB 14685(T)). The description of the genus Oceanobacillus is also emended.

  15. Cellulose Decomposition and Associated Nitrogen Fixation by Mixed Cultures of Cellulomonas gelida and Azospirillum Species or Bacillus macerans

    Science.gov (United States)

    Halsall, Dorothy M.; Gibson, Alan H.

    1985-01-01

    Mixed cultures of Cellulomonas gelida plus Azospirillum lipoferum or Azospirillum brasilense and C. gelida plus Bacillus macerans were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of g straw consumed. Cellulomonas species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O2 (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of A. brasilense and C. gelida all reached a stable ratio of approximately 1 Azospirillum/3 Cellulomonas cells. PMID:16346898

  16. Identification and characterization of alkaline protease producing Bacillus firmus species EMBS023 by 16S rRNA gene sequencing.

    Science.gov (United States)

    Wishard, Rohan; wishard, Rohan; Jaiswal, Mahak; Parveda, Maheshwari; Amareshwari, P; Bhadoriya, Sneha Singh; Rathore, Pragya; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S

    2014-12-01

    Probiotic microorganisms are those which exert a positive exect on the growth of the host, when administered as a dietary mixture in an adequate amount. They form the best alternative to the use of antibiotics for controlling enteric diseases in poultry farm animals, especially in the light of the gruesome problems of development of antibiotic resistance in enteric pathogens and the contamination of poultry products with antibiotics. 16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). It's most important advantage over the traditional biochemical characterization methods are that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel, alkaline protease producing bacteria, from poultry farm waste. The sample was collected from a local poultry farm in the Guntur district, Andhra Pradesh, India. Subsequently the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The results showed the isolate to be a novel, high alkaline protease producing bacteria, which was named Bacillus firmus isolate EMBS023, after characterization the sequence of isolate was deposited in GenBank with accession number JN990980.

  17. Bacillus thuringiensis

    Science.gov (United States)

    Hollensteiner, Jacqueline; Wemheuer, Franziska; Harting, Rebekka; Kolarzyk, Anna M; Diaz Valerio, Stefani M; Poehlein, Anja; Brzuszkiewicz, Elzbieta B; Nesemann, Kai; Braus-Stromeyer, Susanna A; Braus, Gerhard H; Daniel, Rolf; Liesegang, Heiko

    2016-01-01

    Verticillium wilt causes severe yield losses in a broad range of economically important crops worldwide. As many soil fumigants have a severe environmental impact, new biocontrol strategies are needed. Members of the genus Bacillus are known as plant growth-promoting bacteria (PGPB) as well as biocontrol agents of pests and diseases. In this study, we isolated 267 Bacillus strains from root-associated soil of field-grown tomato plants. We evaluated the antifungal potential of 20 phenotypically diverse strains according to their antagonistic activity against the two phytopathogenic fungi Verticillium dahliae and Verticillium longisporum . In addition, the 20 strains were sequenced and phylogenetically characterized by multi-locus sequence typing (MLST) resulting in 7 different Bacillus thuringiensis and 13 Bacillus weihenstephanensis strains. All B. thuringiensis isolates inhibited in vitro the tomato pathogen V. dahliae JR2, but had only low efficacy against the tomato-foreign pathogen V. longisporum 43. All B. weihenstephanensis isolates exhibited no fungicidal activity whereas three B. weihenstephanensis isolates showed antagonistic effects on both phytopathogens. These strains had a rhizoid colony morphology, which has not been described for B. weihenstephanensis strains previously. Genome analysis of all isolates revealed putative genes encoding fungicidal substances and resulted in identification of 304 secondary metabolite gene clusters including 101 non-ribosomal polypeptide synthetases and 203 ribosomal-synthesized and post-translationally modified peptides. All genomes encoded genes for the synthesis of the antifungal siderophore bacillibactin. In the genome of one B. thuringiensis strain, a gene cluster for zwittermicin A was detected. Isolates which either exhibited an inhibitory or an interfering effect on the growth of the phytopathogens carried one or two genes encoding putative mycolitic chitinases, which might contribute to antifungal activities

  18. Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR.

    Science.gov (United States)

    Cattani, Fernanda; Barth, Valdir C; Nasário, Jéssica S R; Ferreira, Carlos A S; Oliveira, Sílvia D

    2016-04-01

    The Bacillus cereus group includes important spore-forming bacteria that present spoilage capability and may cause foodborne diseases. These microorganisms are traditionally evaluated in food using culturing methods, which can be laborious and time-consuming, and may also fail to detect bacteria in a viable but nonculturable state. The purpose of this study was to develop a quantitative real-time PCR (qPCR) combined with a propidium monoazide (PMA) treatment to analyze the contamination of UHT milk by B. cereus group species viable cells. Thirty micrograms per milliliter of PMA was shown to be the most effective concentration for reducing the PCR amplification of extracellular DNA and DNA from dead cells. The quantification limit of the PMA-qPCR assay was 7.5 × 10(2) cfu/mL of milk. One hundred thirty-five UHT milk samples were analyzed to evaluate the association of PMA to qPCR to selectively detect viable cells. The PMA-qPCR was able to detect B. cereus group species in 44 samples (32.6%), whereas qPCR without PMA detected 78 positive samples (57.8%). Therefore, the PMA probably inhibited the amplification of DNA from cells that were killed during UHT processing, which avoided an overestimation of bacterial cells when using qPCR and, thus, did not overvalue potential health risks. A culture-based method was also used to detect and quantify B. cereus sensu stricto in the same samples and showed positive results in 15 (11.1%) samples. The culture method and PMA-qPCR allowed the detection of B. cereus sensu stricto in quantities compatible with the infective dose required to cause foodborne disease in 3 samples, indicating that, depending on the storage conditions, even after UHT treatment, infective doses may be reached in ready-to-consume products. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Biocontrol of Aspergillus species on peanut kernels by antifungal diketopiperazine producing Bacillus cereus associated with entomopathogenic nematode.

    Directory of Open Access Journals (Sweden)

    Sasidharan Nishanth Kumar

    Full Text Available The rhabditid entomopathogenic nematode associated Bacillus cereus and the antifungal compounds produced by this bacterium were evaluated for their activity in reducing postharvest decay of peanut kernels caused by Aspergillus species in in vitro and in vivo tests. The results showed that B. cereus had a significant effect on biocontrol effectiveness in in vitro and in vivo conditions. The antifungal compounds produced by the B. cereus were purified using silica gel column chromatography and their structure was elucidated using extensive spectral analyses. The compounds were identified as diketopiperazines (DKPs [cyclo-(L-Pro-Gly, cyclo(L-Tyr-L-Tyr, cyclo-(L-Phe-Gly and cyclo(4-hydroxy-L-Pro-L-Trp]. The antifungal activities of diketopiperazines were studied against five Aspergillus species and best MIC of 2 µg/ml was recorded against A. flavus by cyclo(4-hydroxy-L-Pro-L-Trp. To investigate the potential application of cyclo(4-hydroxy-L-Pro-L-Trp to eliminate fungal spoilage in food and feed, peanut kernels was used as a food model system. White mycelia and dark/pale green spores of Aspergillus species were observed in the control peanut kernels after 2 days incubation. However the fungal growth was not observed in peanut kernels treated with cyclo(4-hydroxy-L-Pro-L-Trp. The cyclo(4-hydroxy-L-Pro-L-Trp was nontoxic to two normal cell lines [fore skin (FS normal fibroblast and African green monkey kidney (VERO] up to 200 µg/ml in MTT assay. Thus the cyclo(4-hydroxy-L-Pro-L-Trp identified in this study may be a promising alternative to chemical preservatives as a potential biopreservative agent which prevent fungal growth in food and feed. To the best of our knowledge, this is the first report demonstrating that the entomopathogenic nematode associated B. cereus and cyclo(4-hydroxy-L-Pro-L-Trp could be used as a biocontrol agents against postharvest fungal disease caused by Aspergillus species.

  20. Biocontrol Potentials of Antimicrobial Peptide Producing Bacillus Species: Multifaceted Antagonists for the Management of Stem Rot of Carnation Caused by Sclerotinia sclerotiorum

    Science.gov (United States)

    Vinodkumar, S.; Nakkeeran, S.; Renukadevi, P.; Malathi, V. G.

    2017-01-01

    Bacillus species are widely exploited as biocontrol agents because of their efficiency in impeding various plant pathogens with multifaceted approach. In this study, Bacillus species were isolated from rhizosphere of various plants viz., carnations, cotton, turmeric, and bananas in Tamil Nadu state of India. Their potential to control the mycelial growth of Sclerotinia sclerotiorum was assessed in vitro by dual plate and partition plate techniques. B. amyloliquefaciens strain VB7 was much effective in inhibiting mycelial growth (45% inhibition of over control) and sclerotial production (100%). PCR detection of AMP genes revealed that B. amyloliquefaciens (VB7) had a maximum of 10 diverse antibiotic biosynthesis genes, namely, ituD, ipa14, bacA, bacD, bamC, sfP, spaC, spaS, alba, and albF, that resulted in production of the antibiotics iturin, bacilysin, bacillomycin, surfactin, subtilin, and subtilosin. Further, metabolites from B. amyloliquefaciens strains VB2 and VB7, associated with inhibition of S. sclerotiorum, were identified as phenols and fatty acids by gas chromatography mass spectrometry (GC-MS). Delivery of bacterial suspension of the effective strains of Bacillus spp. as root dip was found promising for the management of stem rot of cultivated carnations. Minimal percent disease incidence (4.6%) and maximum plant growth promotion was observed in the plants treated with B. amyloliquefaciens (VB7). PMID:28392780

  1. Secondary Structural Models (16S rRNA of Polyhydroxyalkanoates Producing Bacillus Species Isolated from Different Rhizospheric Soil: Phylogenetics and Chemical Analysis

    Directory of Open Access Journals (Sweden)

    Swati Mohapatra

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs producing bacterial isolates are gaining more importance over the world due to the synthesis of a biodegradable polymer which is extremely desirable to substitute synthetic plastics. PHAs are produced by various microorganisms under certain stress conditions. In this study, sixteen bacterial isolates characterized previously by partial 16S rRNA gene sequencing (NCBI Accession No. KF626466 to KF626481 were again stained by Nile red after three years of preservation in order to confirm their ability to accumulate PHAs. Also, phylogenetic analysis carried out in the present investigation evidenced that the bacterial species belonging to genus Bacillus are the dominant flora of the rhizospheric region, with a potentiality of biodegradable polymer (PHAs production. Again, RNA secondary structure prediction hypothesized that there is no direct correlation between RNA folding pattern stability with a rate of PHAs production among the selected isolates of genus Bacillus.

  2. The effect of an oral probiotic containing lactobacillus, bifidobacterium, and bacillus species on the vaginal microbiota of spayed female dogs.

    Science.gov (United States)

    Hutchins, R G; Bailey, C S; Jacob, M E; Harris, T L; Wood, M W; Saker, K E; Vaden, S L

    2013-01-01

    Recurrent urinary tract infections (UTIs) are often difficult to treat. Vaginal colonization with lactic acid-producing bacteria (LAB) is associated with reduced frequency of recurrent UTIs in women. Oral probiotics might help increase the prevalence of vaginal LAB and decrease the frequency of recurrent UTIs in dogs. Administration of an oral probiotic supplement containing Lactobacillus, Bifidobacterium, and Bacillus species will increase the prevalence of LAB in the vagina of dogs. Thirty-five healthy, spayed female dogs without history of recurrent UTIs. Prospective, controlled study. Enrolled dogs received an oral probiotic supplement for 14 or 28 days. A vaginal tract culture was obtained from each dog before and after oral probiotic administration. Twenty-three dogs received the oral probiotic supplement daily for a period of 14 days and 12 dogs received the oral probiotic supplement daily for a period of 28 days. Lactic acid-producing bacteria were isolated from 7 of 35 dogs prior to probiotic administration. After the treatment course, 6 of 35 dogs had LAB isolated. Only one of these dogs had LAB (Enterococcus canintestini) isolated for the first time. Enterococcus canintestini was the most common LAB isolated from all dogs in this study, although it was not included in the probiotic supplement. Lactic acid-producing bacteria are not a common isolate from the vaginal vault of dogs. Administration of this oral probiotic supplement for a 2- or 4-week period did not increase the prevalence of vaginal LAB in dogs. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  3. Natronospira proteinivora gen. nov., sp. nov, an extremely salt-tolerant, alkaliphilic gammaproteobacterium from hypersaline soda lakes.

    Science.gov (United States)

    Sorokin, Dimitry Y; Kublanov, Ilya V; Khijniak, Tatiana V

    2017-08-01

    Brine samples from Kulunda Steppe soda lakes (Altai, Russia) were inoculated into a hypersaline alkaline mineral medium with β-keratin (chicken feather) as a substrate. The micro-organisms dominating the enrichment culture were isolated by limiting serial dilution on the same medium with casein as a substrate. The cells of strain BSker1T were motile, curved rods. The strain was an obligately aerobic heterotroph utilizing proteins and peptides as growth substrates. The isolate was an obligate alkaliphile with a pH range for growth from pH 8.5 to 10.25 (optimum at pH 9.5), and it was extremely salt tolerant, growing with between 1 and 4.5 M total Na+ (optimally at 2-2.5 M). BSker1T had a unique composition of polar lipid fatty acids, dominated by two C17 species. The membrane polar lipids included multiple unidentified phospholipids and two aminolipids. According to phylogenetic analysis of the 16S rRNA gene sequence, the isolate forms a novel branch within the family Ectothiorhodospiraceae (class Gammaproteobacteria) with the highest sequence similarity to the members of this family being 91 %. On the basis of distinct phenotypic and genotypic properties, strain BSker1T (=JCM 31341T=UNIQEM U1008T) is proposed to be classified as a representative of a novel genus and species, Natronospira proteinivora gen. nov., sp. nov.

  4. The release of iron-bearing minerals and dissolution of feldspars by heterotrophic bacteria of Bacillus species

    Czech Academy of Sciences Publication Activity Database

    Štyriaková, I.; Štyriak, I.; Galko, I.; Hradil, David; Bezdička, Petr

    2003-01-01

    Roč. 47, č. 1 (2003), s. 20-26 ISSN 0862-5468 Grant - others:AV SR(SK) 2/2107/22; GA SR(SK) 73/2000 Institutional research plan: CEZ:AV0Z4032918 Keywords : bioleaching * feldspars * Bacillus Subject RIV: CA - Inorganic Chemistry Impact factor: 0.449, year: 2003

  5. Microbial genotyping and differentiating between Bacillus mojavensis and Bacillus subtilis

    Science.gov (United States)

    Bacillus mojavensis, a specie recently distinguished from its previous Bacillus subtilis classification, was discovered in corn kernels and later determined to possess endophytic character. The bacterium was also determined to have biocontrol potential due to its growth inhibition of the maize mycot...

  6. Extraction and separation of water soluble proteins from Bacillus thuringiensis-transgenic and non-transgenic maize species by CZE

    Czech Academy of Sciences Publication Activity Database

    Sázelová, Petra; Kašička, Václav; Ibanez, E.; Cifuentes, A.

    2009-01-01

    Roč. 32, č. 21 (2009), s. 3801-3808 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/08/1428 Grant - others:GA ČR(CZ) GA203/09/0675 Program:GA Institutional research plan: CEZ:AV0Z40550506 Keywords : Bacillus thuringiensis -transgenic maize * CZE-UV profiling * Maize proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.551, year: 2009

  7. Inactivation of Spores of Bacillus Species by Wet Heat: Studies on Single Spores Using Laser Tweezers Taman Spectroscopy

    Science.gov (United States)

    2013-02-01

    13/2011 22.00 Keren K. Griffiths, Jingqiao Zhang, Ann E. Cowan, Ji Yu, Peter Setlow. Germination proteins in the inner membrane of dormant Bacillus...that this technique can be used to rapidly identify single airborne particles or bacteria collected on a slide and to monitor germination dynamics of...the environment of dipicolinic acid in the core of superdormant spores is different from that in dormant spores [J. Bacteriol., 191, 5584 (2009

  8. Identification and safety evaluation of Bacillus species occurring in high numbers during spontaneous fermentations to produce Gergoush, a traditional Sudanese bread snack

    DEFF Research Database (Denmark)

    Thorsen, Line; Abdelgadir, Warda S.; Rønsbo, Mie Hvillum

    2011-01-01

    Gergoush is a naturally fermented Sudanese Bread snack produced in three fermentation steps (primary starter, adapted starter and final dough), followed by three baking steps for a half to one hour at above 200°C. This study examines the microbiota of two sets of fermentations performed at a trad......Gergoush is a naturally fermented Sudanese Bread snack produced in three fermentation steps (primary starter, adapted starter and final dough), followed by three baking steps for a half to one hour at above 200°C. This study examines the microbiota of two sets of fermentations performed......, the results indicate, that Gergoush produced at the traditional production site is safe for human consumption. This study is the first to identify the Bacillus of Gergoush to species level, and it is the first to perform a safety evaluation of the product, based on the dominant B. cereus species....

  9. Germination of Bacillus cereus spores : the role of germination receptors

    NARCIS (Netherlands)

    Hornstra, L.M.

    2007-01-01

    The Bacillus cereus sensu lato group forms a highly homogeneous subdivision of the genus Bacillus and comprises several species that are relevant for humans. Notorious is Bacillus anthracis, the cause of the often-lethal disease anthrax, while the insect pathogen Bacillus

  10. Bacillus amyloliquefaciens

    Science.gov (United States)

    Qin, Yuxuan; Shang, Qingmao; Zhang, Ying; Li, Pinglan; Chai, Yunrong

    2017-01-01

    Vegetable plug seedling has become the most important way to produce vegetable seedlings in China. This seedling method can significantly improve the quality and yield of vegetables compared to conventional methods. In the process of plug seedling, chemical fertilizers or pesticides are often used to improve the yield of the seedlings albeit with increasing concerns. Meanwhile, little is known about the impact of beneficial bacteria on the rhizosphere microbiota and the growth conditions of vegetables during plug seedling. In this study, we applied a culture-independent next-generation sequencing-based approach and investigated the impact of a plant beneficial bacterium, Bacillus amyloliquefaciens L-S60, on the composition and dynamics of rhizosphere microbiota and the growth conditions of cucumbers during plug seedling. Our results showed that application of L-S60 significantly altered the structure of the bacterial community associated with the cucumber seedling; presence of beneficial rhizosphere species such as Bacillus, Rhodanobacter, Paenibacillus, Pseudomonas, Nonomuraea , and Agrobacterium was higher upon L-S60 treatment than in the control group. We also measured the impact of L-S60 application on the physiological properties of the cucumber seedlings as well as the availability of main mineral elements in the seedling at different time points during the plug seedling. Results from those measurements indicated that L-S60 application promoted growth conditions of cucumber seedlings and that more available mineral elements were detected in the cucumber seedlings from the L-S60 treated group than from the control group. The findings in this study provided evidence for the beneficial effects of plant growth-promoting rhizosphere bacteria on the bacterial community composition and growth conditions of the vegetables during plug seedling.

  11. Bacillus odysseyi isolate

    Science.gov (United States)

    Venkateswaran, Kasthuri (Inventor); La Duc, Myron Thomas (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

  12. Multiplex PCR for species-level identification of Bacillus anthracis and detection of pXO1, pXO2, and related plasmids.

    Science.gov (United States)

    Riojas, Marco A; Kiss, Katalin; McKee, Marian L; Hazbón, Manzour Hernando

    2015-01-01

    The Bacillus anthracis virulence plasmids pXO1 and pXO2 have critical implications for biosafety and select agent status. The proper identification and characterization of B. anthracis and its plasmid profile is important to the biodefense research community. Multiplex PCR was used to simultaneously detect a B. anthracis-specific chromosomal mutation, 4 targets distributed across pXO1, 3 targets distributed across pXO2, and highly conserved regions of the 16S gene, allowing an internal positive control for each sample. The multiplex PCR can produce as many as 9 easily separable and distinguishable amplicons, ranging in size from 188 to 555 bp. The PCR results were used to characterize DNA samples extracted from B. anthracis, other Bacillus species, and other bacterial species from many different genera. With the exception of 2 novel putative plasmids discovered, testing against inclusion and extensive exclusion panels showed 100% correlation to previously published and expected results. Upon testing 29 previously unpublished B. anthracis strains, 10 (34.5%) were pXO1(+)/pXO2(+), 9 (31.0%) were pXO1(+)/pXO2(-), 7 (24.1%) were pXO1(-)/pXO2(+), and 3 (10.3%) were pXO1(-)/pXO2(-). The present work presents a novel 9-target multiplex PCR assay capable of species-level identification of B. anthracis via a unique chromosomal marker and the detection of pXO1 and pXO2 via multiply redundant targets on each.

  13. Characterisation and profiling of Bacillus subtilis, Bacillus cereus and Bacillus licheniformis by MALDI-TOF mass fingerprinting.

    Science.gov (United States)

    Fernández-No, I C; Böhme, K; Díaz-Bao, M; Cepeda, A; Barros-Velázquez, J; Calo-Mata, P

    2013-04-01

    The Bacillus genus includes species such as Bacillus cereus, Bacillus licheniformis and Bacillus subtilis, some of which may be pathogenic or causative agents in the spoilage of food products. The main goal of this work was to apply matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass fingerprinting to the classification of these Bacillus species. Genetic analyses were also compared to phyloproteomic analyses. A collection of 57 Bacillus strains isolated from fresh and processed food and from culture collections were studied and their mass spectra compiled. The resulting mass fingerprints were compared and characteristic peaks at the strain and species levels were assigned. The results showed that MALDI-TOF was a good complementary approach to 16S rRNA sequencing and even a more powerful tool in the accurate classification of Bacillus species, especially for differentiating B. subtilis and B. cereus from Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. MALDI-TOF was also found to provide valuable information at both intra- and interspecies levels in the Bacillus species studied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Tindallia Californiensis sp. nov.: A New Halo-Alkaliphilic Primary Anaerobe, Isolated from Meromictic soda Mono Lake in California and the Correction of Diagnosis for Genus Tindallia

    Science.gov (United States)

    Pikuta, Elena; Marsic, Damien; Hoover, Richard B.; Kevbrin, Vadim; Whitman, William B.; Krader, Paul; Cleland, Dave; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel extremely halo-alkaliphilic, bacterium strain APO (sup T) was isolated from sediments of the athalassic, meromictic, soda Mono Lake in California. Gram positive, spore-forming, slightly curved rods with sizes 0.6-0.7x 2.5-4.0 micrometers which occur singly, in pairs or short curved chains. Cells, are motile by singular subcentral flagellum. Strain APO (sup T) is mesophilic: growth was observed over the temperature range of +10 C to +48 C (optimum +37 C), NaCl concentration range 1-20 %, wt/vol (optimum 3-5%, wt/vol) and pH range 8.0-11.0 (optimum pH 9.5). The novel isolate is strictly halo-alkaliphilic, requires sodium chloride in medium, obligately anaerobic and catalase-negative. Strain APO (sup T) is organo-heterotroph with fermentative type of metabolism, and uses as substrates: peptone, badotryptone, casamino acids, yeast extract, L-serine, L-lysine, L-histidine, L-arginine, and pyruvate. The main end products of growth on peptone medium were: lactate, acetate, propionate, and ethanol. Strain APO (sup T) is resistant to kanamycin, but sensitive to chloramphenicol, tetracycline, and gentamycin. The sum of G+C in DNA is 44.4 mol% (by HPLC method). On the bait of physiological and molecular properties, the isolate was considered as novel species of genus Tindallia; and the name Tindallia californiensis sp. nov., is proposed for new isolate (type strain APO (sup T) - ATCC BAA_393(sup T) = DSMZ 14871 (sup T)).

  15. Production and Characterization of Keratinolytic Protease from New Wool-Degrading Bacillus Species Isolated from Egyptian Ecosystem

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hassan

    2013-01-01

    Full Text Available Novel keratin-degrading bacteria were isolated from sand soil samples collected from Minia Governorate, Egypt. In this study, the isolates were identified as Bacillus amyloliquefaciens MA20 and Bacillus subtilis MA21 based on morphological and biochemical characteristics as well as 16S rRNA gene sequencing. B. amyloliquefaciens MA20 and B. subtilis MA21 produced alkaline keratinolytic serine protease when cultivated in mineral medium containing 1% of wool straight off sheep as sole carbon and nitrogen source. The two strains were observed to degrade wool completely to powder at pH 7 and 37°C within 5 days. Under these conditions the maximum activity of proteases produced by B. amyloliquefaciens MA20 and B. subtilis MA21 was 922 and 814 U/ml, respectively. The proteases exhibited optimum temperature and pH at 60°C and 9, respectively. However, the keratinolytic proteases were stable in broad range of temperature and pH values towards casein Hammerstein. Furthermore the protease inhibitor studies indicated that the produced proteases belong to serine protease because of their sensitivity to PMSF while they were inhibited partially in presence of EDTA. The two proteases are stable in most of the used organic solvents and enhanced by metals suggesting their potential use in biotechnological applications such as wool industry.

  16. Conjugative plasmid transfer from Escherichia coli is a versatile approach for genetic transformation of thermophilic Bacillus and Geobacillus species.

    Science.gov (United States)

    Tominaga, Yurie; Ohshiro, Takashi; Suzuki, Hirokazu

    2016-05-01

    We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coli-Geobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10(-7) and 3.8 × 10(-2)/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.

  17. Utilization of corn starch as sustrate for ß-Amylase by Bacillus SPP

    African Journals Online (AJOL)

    Corn starch was used as substrate for ß -amylase production from ten(10) amylolytic species of the genus Bacillus isolated locally from soil, waste water and food sources. Ten bacillus strains was made up of two strains each of Bacillus macerans, Bacillus licheniformis and Bacillus circulans. Also included are B. coagulans, ...

  18. L-Glutamic acid production by Bacillus spp. isolated from vegetable ...

    African Journals Online (AJOL)

    Ogiri” (fermented vegetable proteins) in Nigeria. The isolates were identified as Bacillus subtilis (6), (27.3%), Bacillus pumilus (5), (22.7%), Bacillus licheniformis (5), (27.3%) and Bacillus polymyxa (6), (22.7%). Four species of the Bacillus isolates ...

  19. Alkaliphilic endoxylanase from lignocellulolytic microbial consortium metagenome for biobleaching of eucalyptus pulp.

    Science.gov (United States)

    Weerachavangkul, Chawannapak; Laothanachareon, Thanaporn; Boonyapakron, Katewadee; Wongwilaiwalin, Sarunyou; Nimchua, Thidarat; Eurwilaichitr, Lily; Pootanakit, Kusol; Igarashi, Yasuo; Champreda, Verawat

    2012-12-01

    Enzymatic pre-bleaching by modification of pulp fibers with xylanases is an attractive approach to reduce the consumption of toxic bleaching chemicals in the paper industry. In this study, an alkaliphilic endoxylanase gene was isolated from metagenomic DNA of a structurally stable thermophilic lignocellulose-degrading microbial consortium using amplification with conserved glycosyl hydrolase family 10 primers and subsequent genome walking. The full-length xylanase showed 78% sequence identity to an endo-beta-1,4-xylanase of Clostridium phytofermentans and was expressed in a mature form with an N-terminal His6 tag fusion in Escherichia coli. The recombinant xylanase Xyn3F was thermotolerant and alkaliphilic, working optimally at 65-70 degrees C with an optimal pH at 9- 10 and retaining >80% activity at pH 9, 60 degrees C for 1 h. Xyn3F showed a Vmax of 2,327 IU/mg and Km of 3.5 mg/ml on birchwood xylan. Pre-bleaching of industrial eucalyptus pulp with no prior pH adjustment (pH 9) using Xyn3F at 50 IU/g dried pulp led to 4.5-5.1% increase in final pulp brightness and 90.4-102.4% increase in whiteness after a single-step hypochlorite bleaching over the untreated pulp, which allowed at least 20% decrease in hypochlorite consumption to achieve the same final bleaching indices. The alkaliphilic xylanase is promising for application in an environmentally friendly bleaching step of kraft and soda pulps with no requirement for pH adjustment, leading to improved economic feasibility of the process.

  20. Characterization of microsatellite loci in the stick insects Bacillus rossius rossius, Bacillus rossius redtenbacheri and Bacillus whitei (Insecta : Phasmatodea)

    DEFF Research Database (Denmark)

    Andersen, DH; Pertoldi, C; Loeschcke, V

    2005-01-01

    Five microsatellite markers were obtained from a dinucleotide enriched genomic library of the stick insect Bacillus rossius rossius. The markers were tested in three species of Bacillus. All loci were polymorphic when tested across species. The number of alleles at each locus was low (maximum four...

  1. Antibiosis and dark-pigments secretion by the phytopathogenic and environmental fungal species after interaction in vitro with a Bacillus subtilis isolate

    Directory of Open Access Journals (Sweden)

    Alexandre Paulo Machado

    2010-10-01

    Full Text Available In this work, different reactions in vitro between an environmental bacterial isolate and fungal species were related. The Gram-positive bacteria had terminal and subterminal endospores, presented metabolic characteristics of mesophilic and acidophilic growth, halotolerance, positive to nitrate reduction and enzyme production, as caseinase and catalase. The analysis of partial sequences containing 400 to 700 bases of the 16S ribosomal RNA gene showed identity with the genus Bacillus. However, its identity as B. subtilis was confirmed after analyses of the rpoB, gyrA, and 16S rRNA near-full-length sequences. Strong inhibitory activity of environmental microorganisms, such as Penicillium sp, Aspergillus flavus, A. niger, and phytopathogens, such as Colletotrichum sp, Alternaria alternata, Fusarium solani and F. oxysporum f.sp vasinfectum, was shown on co-cultures with B. subtilis strain, particularly on Sabouraud dextrose agar (SDA and DNase media. Red and red-ochre color pigments, probably phaeomelanins, were secreted by A. alternata and A. niger respectively after seven days of co-culture.Na presente investigação, nosso objetivo principal foi relatar diferentes interações in vitro de um isolado bacteriano ambiental com espécies fúngicas. Através da identificação clássica, nós verificamos que o bacilo ambiental apresentava endósporos terminais e subterminais, características metabólicas de mesofilia, acidofilia, halotolerância, redução de nitrato e produção de enzimas, como caseinase e catalase. Análise de seqüências parciais do gene 16S RNAr contendo de 400 a 700 bases revelou identidade com gênero Bacillus. No entanto, a espécie Bacillus subtilis foi confirmada somente depois da análise de seqüências dos genes rpoB, gyrA, and 16S RNAr. Intensa atividade inibitória aos fungos ambientais, como Penicillium sp, Aspergillus flavus, A. niger, e fitopatogênicos, como Colletotrichum sp, Alternaria alternata, Fusarium solani

  2. Bacillus Coagulans

    Science.gov (United States)

    ... and, as a result, is often misclassified as lactic acid bacteria such as lactobacillus. In fact, some commercial products ... sporogenes or "spore-forming lactic acid bacterium." Unlike lactic acid bacteria such as lactobacillus or bifidobacteria, Bacillus coagulans forms ...

  3. Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia).

    Science.gov (United States)

    Bes, Méline; Merrouch, Mériem; Joseph, Manon; Quéméneur, Marianne; Payri, Claude; Pelletier, Bernard; Ollivier, Bernard; Fardeau, Marie-Laure; Erauso, Gaël; Postec, Anne

    2015-08-01

    A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 × 3.0-5.0 μm) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 °C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 g l- 1 NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Yeast extract, peptone, tryptone, Casamino acids, crotonate, pyruvate, galactose, maltose, sucrose, ribose, trehalose and glucose were used as carbon sources. Glucose fermentation led to acetate, H2 and CO2 formation. Arginine, serine, histidine, lysine, methionine and cysteine improved growth, but the Stickland reaction was negative for the combinations of amino acids tested. The major metabolic products from yeast extract fermentation were H2, CO2, acetate, butyrate, isobutyrate, isovalerate and propionate. The predominant cellular fatty acids were C16  :  0, C16  :  1cis9, C14  :  0 and C16  :  1cis7 (>5 % of total fatty acids). The G+C content of the genomic DNA was 32.9 mol%. Phylogenetic analysis revealed that strain ST07-YET was most closely related to Clostridium sticklandii DSM 519T and Acetoanaerobium noterae NOT-3T (96.7 % and 96.8 % 16S rRNA gene sequence similarity, respectively). On the basis of phylogenetic, chemotaxonomic and physiological properties, strain ST07-YET is proposed to represent a novel species of the genus Acetoanaerobium (order Clostridiales, phylum Firmicutes) with the name Acetoanaerobium pronyense sp. nov. The type strain is ST07-YET ( = DSM 27512T = JCM 19400T).

  4. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31 by moderately alkaliphilic bacterial consortium

    Directory of Open Access Journals (Sweden)

    Sylvine Lalnunhlimi

    2016-03-01

    Full Text Available Abstract Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151 and Direct Red 31 (DR 31. The decolorization of azo dyes was studied at various concentrations (100–300 mg/L. The bacterial consortium, when subjected to an application of 200 mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment.

  5. The basis for rootstock resilient to Capnodis species: screening for genes encoding δ-endotoxins from Bacillus thuringiensis.

    Science.gov (United States)

    Gindin, Galina; Mendel, Zvi; Levitin, Bella; Kumar, Pradeep; Levi, Tal; Shahi, Preeti; Khasdan, Vadim; Weinthal, Dan; Kuznetsova, Tatiana; Einav, Monica; Kushmaro, Ariel; Protasov, Alex; Zaritsky, Arieh; Ben-Dov, Eitan

    2014-08-01

    Conventional methods often fail to control the flatheaded borers Capnodis spp., major pests of stone fruit trees; the larvae are protected from insecticides and predation because they feed deep in the roots. A potential solution is transgenic trees producing in their roots toxic compounds such as Cry proteins of Bacillus thuringiensis (Bt). Toxicities against Capnodis larvae were demonstrated by exploiting a recently designed artificial larval diet and an available collection of field isolated Bt. An isolate of Bt tenebrionis (Btt) from commercial bioinsecticide (Novodor) displayed LC50 and LC95 values of 3.2 and 164 mg g(-1) , respectively, against neonates of Capnodis tenebrionis, whereas values of the most toxic field isolate K-7 were 1.9 and 25.6 mg g(-1) respectively. Weights of surviving larvae after 1 month on diets containing low concentrations of K-7 (0.1-1.0 mg g(-1) ) were lower than on Btt or untreated larvae. K-7 was also toxic against larvae of C. cariosa and C. miliaris and found to harbour genes encoding Cry9Ea-like and Cry23Aa/Cry37Aa binary toxins. Larvae of Capnodis spp. are susceptible to Bt Cry toxins. Expressing cry genes active against these pests thus seems a feasible solution towards production of transgenic rootstock trees resilient to the pest. © 2013 Society of Chemical Industry.

  6. Cell Wall Carbohydrate Compositions of Strains from the Bacillus cereus Group of Species Correlate with Phylogenetic Relatedness▿

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Sue, David; Wilkins, Patricia; Quinn, Conrad P.; Carlson, Russell W.; Kannenberg, Elmar L.

    2008-01-01

    Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2− strain resulted in cell walls with an even greater level of Glc. PMID:17981984

  7. Cell wall carbohydrate compositions of strains from the Bacillus cereus group of species correlate with phylogenetic relatedness.

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Sue, David; Wilkins, Patricia; Quinn, Conrad P; Carlson, Russell W; Kannenberg, Elmar L

    2008-01-01

    Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2- strain resulted in cell walls with an even greater level of Glc.

  8. Marine natural product, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- (C7H10N2O2) of antioxidant properties from Bacillus species at Lakshadweep archipelago

    OpenAIRE

    Mohan Gopi; Nagarajan Balachandran Dhayanithi; Karuppaiah Nanthini Devi; Thipramalai Thankappan Ajith Kumar

    2014-01-01

    Objective: To investigate the antioxidant property of purified bioactive compound from sponge associated bacteria Bacillus species. Methods: The potential active compound was subjected for assay of total antioxidant activity, α,α-diphenyl-α-picrylhydrazyl (DPPH) radical scavenging activity, nitric oxide radical scavenging activity, hydrogen peroxide (H2O2) scavenging activity and total reducing power. Further, the 16S rRNA gene sequence was carried out to identify the sponge sy...

  9. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR.

    Science.gov (United States)

    Chelliah, Ramachandran; Wei, Shuai; Park, Byung-Jae; Kim, Se-Hun; Park, Dong-Suk; Kim, Soon Han; Hwan, Kim Seok; Oh, Deog-Hwan

    2017-10-01

    Quantitative triplex real-time PCR (qPCR) offers an alternative method for detection of bacterial contamination. It provides quantitation of the number of gene copies. In our study, we established a qPCR assay to detect and quantify the specificity towards Bacillus cereus and B. thuringiensis. The assay was designed to detect a 280 bp fragment of motB gene encoding the flagellar motor protein, specific for detection of B. cereus and B. thuringiensis, excluding other group species B. pseudomycoides, B. mycoides and B. weihenstephanensis. Specificity of the assay was confirmed with 111 strains belonging to Bacillus cereus group and performed against 58 B. cereus, 50 B. thuringiensis, 3 other Bacillus bacteria and 9 non-Bacillus bacteria. Detection limit was determined for each assay. Direct analysis of samples revealed the specificity towards identification and characterization of B. cereus group cultured in nutrient media. Based on results, it was observed that motB showed 97% specificity towards B. cereus strains, 98% for B. thuringiensis but other B. cereus group showed less sensitivity (0%), thus, provides an efficient tool to identify B. cereus and B. thuringiensis. Further, environmental and food samples do not require band isolation, re-amplification or sequence identification. Thus, reducing the time and cost of analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    Science.gov (United States)

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Enhanced poly(γ-glutamic acid) production by H2O2-induced reactive oxygen species in the fermentation of Bacillus subtilis NX-2.

    Science.gov (United States)

    Tang, Bao; Zhang, Dan; Li, Sha; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2016-09-01

    Effects of reactive oxygen species (ROS) on cell growth and poly(γ-glutamic acid) (γ-PGA) synthesis were studied by adding hydrogen peroxide to a medium of Bacillus subtilis NX-2. After optimizing the addition concentration and time of H 2 O 2 , a maximum concentration of 33.9 g/L γ-PGA was obtained by adding 100 µM H 2 O 2 to the medium after 24 H. This concentration was 20.6% higher than that of the control. The addition of diphenyleneiodonium chloride (ROS inhibitor) can interdict the effect of H 2 O 2 -induced ROS. Transcriptional levels of the cofactors and relevant genes were also determined under ROS stress to illustrate the possible metabolic mechanism contributing to the improve γ-PGA production. The transcriptional levels of genes belonging to the tricarboxylic acid cycle and electron transfer chain system were significantly increased by ROS, which decreased the NADH/NAD + ratio and increased the ATP levels, thereby providing more reducing power and energy for γ-PGA biosynthesis. The enhanced γ-PGA synthetic genes also directly promoted the formation of γ-PGA. This study was the first to use the ROS control strategy for γ-PGA fermentation and provided valuable information on the possible mechanism by which ROS regulated γ-PGA biosynthesis in B. subtilis NX-2. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  12. Marine natural product, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- (C7H10N2O2 of antioxidant properties from Bacillus species at Lakshadweep archipelago

    Directory of Open Access Journals (Sweden)

    Mohan Gopi

    2014-08-01

    Full Text Available Objective: To investigate the antioxidant property of purified bioactive compound from sponge associated bacteria Bacillus species. Methods: The potential active compound was subjected for assay of total antioxidant activity, α,α-diphenyl-α-picrylhydrazyl (DPPH radical scavenging activity, nitric oxide radical scavenging activity, hydrogen peroxide (H2O2 scavenging activity and total reducing power. Further, the 16S rRNA gene sequence was carried out to identify the sponge symbiotic bacteria. Results: The results showed linear increase of total antioxidant activity, DPPH radical scavenging activity, nitric oxide radical scavenging activity, H2O2 scavenging activity and total reducing power. IC50 value of the active compound for DPPH activity, H2O2 scavenging activity, nitric oxide scavenging activity was recorded as 15.025 μg/mL, 23.73 μg/mL, and 41.70 μg/mL respectively. The potential strain was identified as Bacillus species from GenBank database (GenBank Accession number JX985748. Conclusions: The present study has reported the antioxidant property of purified bioactive compound from sponge associated Bacillus species. The report will be helpful to pharmaceutical and antioxidant researchers for further studies.

  13. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes.

    Science.gov (United States)

    Ketseoglou, Irene; Bouwer, Gustav

    2012-10-04

    Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus PCC 7120#11 against the important malaria vectors An. gambiae and An. arabiensis was 12.3 × 10⁵ cells/ml and 8.10 × 105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained at concentrations as high as 3.20 × 10⁷ cells/ml. PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent's spectrum of activity and potential as a vector control agent.

  14. Bacillus coagulans

    Science.gov (United States)

    Aulitto, Martina; Fusco, Salvatore; Bartolucci, Simonetta; Franzén, Carl Johan; Contursi, Patrizia

    2017-01-01

    The transition from a petroleum-based economy towards more sustainable bioprocesses for the production of fuels and chemicals (circular economy) is necessary to alleviate the impact of anthropic activities on the global ecosystem. Lignocellulosic biomass-derived sugars are suitable alternative feedstocks that can be fermented or biochemically converted to value-added products. An example is lactic acid, which is an essential chemical for the production of polylactic acid, a biodegradable bioplastic. However, lactic acid is still mainly produced by Lactobacillus species via fermentation of starch-containing materials, the use of which competes with the supply of food and feed. A thermophilic and cellulolytic lactic acid producer was isolated from bean processing waste and was identified as a new strain of Bacillus coagulans , named MA-13. This bacterium fermented lignocellulose-derived sugars to lactic acid at 55 °C and pH 5.5. Moreover, it was found to be a robust strain able to tolerate high concentrations of hydrolysate obtained from wheat straw pre-treated by acid-catalysed (pre-)hydrolysis and steam explosion, especially when cultivated in controlled bioreactor conditions. Indeed, unlike what was observed in microscale cultivations (complete growth inhibition at hydrolysate concentrations above 50%), B. coagulans MA-13 was able to grow and ferment in 95% hydrolysate-containing bioreactor fermentations. This bacterium was also found to secrete soluble thermophilic cellulases, which could be produced at low temperature (37 °C), still retaining an optimal operational activity at 50 °C. The above-mentioned features make B. coagulans MA-13 an appealing starting point for future development of a consolidated bioprocess for production of lactic acid from lignocellulosic biomass, after further strain development by genetic and evolutionary engineering. Its optimal temperature and pH of growth match with the operational conditions of fungal enzymes hitherto

  15. COMPARISON OF UV INACTIVATION OF SPORES OF THREE ENCEPHALITOZOON SPECIES WITH THAT OF SPORES OF TWO DNA REPAIR-DEFICIENT BACILLUS SUBTILIS BIODOSIMETRY STRAINS

    Science.gov (United States)

    The sensitivity of three Encephalitozoon spp. to ultraviolet (UV) inactivation was determined. Encephalitozoon intestinalis is a contaminant listed on the USEPA's 1998 Contaminant Candidate List (CCL). Also, use of DNA repair deficient strains of Bacillus subtilis were evaluat...

  16. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes

    Directory of Open Access Journals (Sweden)

    Ketseoglou Irene

    2012-10-01

    Full Text Available Abstract Background Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. Findings There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus An. arabiensis An. gambiae An. quadriannulatus, where 50. The LC50 of PCC 7120#11 against the important malaria vectors An. gambiae and An. arabiensis was 12.3 × 105 cells/ml and 8.10 × 105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained at concentrations as high as 3.20 × 107 cells/ml. Conclusions PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent’s spectrum of activity and potential as a vector control agent.

  17. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry

    Science.gov (United States)

    Latorre, Juan D.; Hernandez-Velasco, Xochitl; Wolfenden, Ross E.; Vicente, Jose L.; Wolfenden, Amanda D.; Menconi, Anita; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2016-01-01

    Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility

  18. Bacillus and biopolymer: Prospects and challenges

    Directory of Open Access Journals (Sweden)

    Swati Mohapatra

    2017-12-01

    Full Text Available The microbially derived polyhydroxyalkanoates biopolymers could impact the global climate scenario by replacing the conventional non-degradable, petrochemical-based polymer. The biogenesis, characterization and properties of PHAs by Bacillus species using renewable substrates have been elaborated by many for their wide applications. On the other hand Bacillus species are advantageous over other bacteria due to their abundance even in extreme ecological conditions, higher growth rates even on cheap substrates, higher PHAs production ability, and the ease of extracting the PHAs. Bacillus species possess hydrolytic enzymes that can be exploited for economical PHAs production. This review summarizes the recent trends in both non-growth and growth associated PHAs production by Bacillus species which may provide direction leading to future research towards this growing quest for biodegradable plastics, one more critical step ahead towards sustainable development.

  19. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity and biofilm synthesis as direct-fed microbials candidates for poultry

    Directory of Open Access Journals (Sweden)

    Juan D Latorre

    2016-10-01

    Full Text Available Social concern about misuse of antibiotics as growth promoters (AGP and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly-resistant endospores, production of antimicrobial compounds and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity and pathogen-inhibition activity. Thirty one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as B. subtilis (1/3, and B. amyloliquefaciens (2/3 based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31, Escherichia coli (28/31 and Clostridioides difficile (29/31. Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds may contribute to enhanced performance through improving nutrient digestibility

  20. Cell Physiology and Protein Secretion of Bacillus licheniformis Compared to Bacillus subtilis

    NARCIS (Netherlands)

    Voigt, Birgit; Antelmann, Haike; Albrecht, Dirk; Ehrenreich, Armin; Maurer, Karl-Heinz; Evers, Stefan; Gottschalk, Gerhard; van Dijl, Jan Maarten; Schweder, Thomas; Hecker, Michael

    2009-01-01

    The genome sequence of Bacillus subtilis was published in 1997 and since then many other bacterial genomes have been sequenced, among them Bacillus licheniformis in 2004. B. subtilis and B. licheniformis are closely related and feature similar saprophytic lifestyles in the soil. Both species can

  1. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.

    Directory of Open Access Journals (Sweden)

    Silvia Caccia

    Full Text Available BACKGROUND: Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F(2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. METHODOLOGY/PRINCIPAL FINDINGS: Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with (125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in (125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. CONCLUSION/SIGNIFICANCE: This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported

  2. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. Copyright © 2015, Watts et al.

  3. Complete Genome Sequence of Alkaliphilus metalliredigens Strain QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-Contaminated Leachate Ponds.

    Science.gov (United States)

    Hwang, C; Copeland, A; Lucas, S; Lapidus, A; Barry, K; Detter, J C; Glavina Del Rio, T; Hammon, N; Israni, S; Dalin, E; Tice, H; Pitluck, S; Chertkov, O; Brettin, T; Bruce, D; Han, C; Schmutz, J; Larimer, F; Land, M L; Hauser, L; Kyrpides, N; Mikhailova, N; Ye, Q; Zhou, J; Richardson, P; Fields, M W

    2016-11-03

    Alkaliphilus metalliredigens strain QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms. Copyright © 2016 Hwang et al.

  4. Data on optimized production and characterization of alkaline proteases from newly isolated alkaliphiles from Lonar soda lake, India

    Directory of Open Access Journals (Sweden)

    Mukundraj Govindrao Rathod

    2016-09-01

    Full Text Available Alkaline proteases are one of the industrially important enzymes and generally preferred from alkaliphilic sources. Here we have provided the data on optimized production and characterization of alkaline proteases from five newly isolated and identified alkaliphiles from Lonar soda lake, India. The data provided for optimization of physicochemical parameters for maximum alkaline proteases production is based on OVAT (one variable at a time approach. Alkaline protease production (U/mL recorded by using different agro industrial residues is included in the given data. Further readers can find more information in our previously published research article where we have already described about the methods used and comparative analysis of the data recorded regarding optimized production, characterization and application of alkaline proteases isolated from Lonar soda lake isolates (http://dx.doi.org/10.1016/j.bcab.2016.06.002 [1]. The data provided here by us is useful to other researchers for setting up various suitable statistical models to perform optimization studies other than OVAT approach.

  5. Role of fatty acids in Bacillus environmental adaptation

    Directory of Open Access Journals (Sweden)

    Sara Esther Diomande

    2015-08-01

    Full Text Available The large bacterial genus genus Bacillus is widely distributed in the environment and is able to colonize highly diverse niches. Some Bacillus species harbour pathogenic characteristics. The fatty acid (FA composition is among the essential criteria used to define Bacillus species. Some elements of the FA pattern composition are common to Bacillus species, whereas others are specific and can be categorized in relation to the ecological niches of the species. Bacillus species are able to modify their FA patterns to adapt to a wide range of environmental changes, including changes in the growth medium, temperature, food processing conditions, and pH. Like many other Gram-positive bacteria, Bacillus strains display a well-defined FA synthesis II system that is equilibrated with a FA degradation pathway and regulated to efficiently respond to the needs of the cell. Like endogenous FAs, exogenous FAs may positively or negatively affect the survival of Bacillus vegetative cells and the spore germination ability in a given environment. Some of these exogenous FAs may provide a powerful strategy for preserving food against contamination by the Bacillus pathogenic strains responsible for foodborne illness.

  6. Bacillus subtilis

    Science.gov (United States)

    Wang, Xiaoqing; Hu, Weiwei; Zhu, Liqi; Yang, Qian

    2017-04-28

    Intestinal epithelial cells are the targets for transmissible gastroenteritis (TGE) virus (TGEV) infection. It is urgent to develop a novel candidate against TGEV entry. Bacillus subtilis is a probiotic with excellent anti-microorganism properties and one of its secretions, surfactin, has been regarded as a versatile weapon for most plant pathogens, especially for the enveloped virus. We demonstrate for the first time that B. subtilis OKB105 and its surfactin can effectively inhibit one animal coronavirus, TGEV, entering the intestinal porcine epithelial cell line (IPEC-J2). Then, several different experiments were performed to seek the might mechanisms. The plaque assays showed that surfactant could reduce the plaque generation of TGEV in a dose-dependent manner. Meanwhile, after incubation with TGEV for 1.5 h, B. subtilis could attach TGEV particles to their surface so that the number of virus to bind to the host cells was declined. Furthermore, our data showed that the inhibition of B. subtilis was closely related to the competition with TGEV for the viral entry receptors, including epidermal growth factor receptor (EGFR) and aminopeptidase N (APN) protein. In addition, Western blotting and apoptosis analysis indicated that B. subtilis could enhance the resistance of IPEC-J2 cells by up-regulating the expression of toll-like receptor (TLR)-6 and reducing the percentage of apoptotic cells. Taken together, our results suggest that B. subtilis OKB105 and its surfactin can antagonize TGEV entry in vitro and may serve as promising new candidates for TGEV prevention. © 2017 The Author(s).

  7. Biodiversity of predominant Bacillus isolated from afitin, iru and ...

    African Journals Online (AJOL)

    Two hundred (200) presumptive isolates of Bacillus collected at different fermentation time from spontaneous fermented samples of afitin, iru and sonru produced in three different regions of Benin were identified at species and strains levels. ITS-PCR-RFLP revealed that 79% of the isolates were really identified as Bacillus, ...

  8. Hydrolytic and synthetic activities of esterases produced by Bacillus ...

    African Journals Online (AJOL)

    A novel esterase producer strain named Bacillus sp. A60 was isolated from a soil sample contaminated with hydrocarbons. It was found to belong to Bacillus subtilis species through morphological, biochemical and 16S rRNA gene sequence analyses. This strain which can tolerate 15% (w/v) NaCl and growth at 55°C, ...

  9. Bacillus cellulasensis sp. nov., isolated from marine sediment.

    Science.gov (United States)

    Mawlankar, Rahul; Thorat, Meghana N; Krishnamurthi, Srinivasan; Dastager, Syed G

    2016-01-01

    A novel bacterial strain NIO-1130(T) was isolated from sediment sample taken from Chorao Island, Goa Province, India, and subjected to a taxonomic investigation. The strain was Gram-positive, aerobic, and motile. Phylogenetic analysis based on 16S rRNA gene sequences placed the isolate within the genus Bacillus and strain NIO-1130(T) showed highest sequence similarity with Bacillus halosaccharovorans DSM 25387(T) (98.4%) and Bacillus niabensis CIP 109816(T) (98.1%), whereas other Bacillus species showed bacillus group. The major menaquinone was MK-7 and the predominant cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0, and anteiso-C17:0. The strain showed a DNA G+C content of 39.9 mol%. DNA-DNA hybridization studies revealed that strain NIO-1130(T) exhibits 70% similarity with Bacillus halosaccharovorans DSM 25387(T) and Bacillus niabensis CIP 109816(T). On the basis of physiological, biochemical, chemotaxonomic and phylogenetic analyses, we consider the isolate to represent a novel species of the genus Bacillus, for which the name Bacillus cellulasensis sp. nov., is proposed. The type strain is NIO-1130(T) (=NCIM 5461(T)=CCTCC AB 2011126(T)).

  10. Toxicity of Tolyltriazole to Bacillus Microorganisms.

    Science.gov (United States)

    2000-03-01

    Bacillus coagulans Microbacterium lacticum Jupiter Bacillus thuringiensis Bacillus thuringiensis Bacillus cereus Bacillus Bacillus thuringiensis...TOXICITY OF TOLYLTRIAZOLE TO BACILLUS MICROORGANISMS THESIS Christopher J. Leonard, First Lieutenant, USAF AFIT/GEE/ENV/OOM-12 Approved for...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE TOXICITY OF TOLYLTRIAZOLE TO BACILLUS MICROORGANISMS 6. AUTHOR(S) Christopher J

  11. Two-step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1.

    Science.gov (United States)

    Thumar, Jignasha; Singh, S P

    2007-07-01

    An alkaline protease from a salt-tolerant alkaliphilic Streptomyces clavuligerus was purified to homogeneity by 141-fold with a yield of 12% using two-step method of salt precipitation and ion exchange chromatography on DEAE cellulose. The apparent molecular mass was 49+/-2 kDa and the enzyme appeared as monomer based on SDS and Native-PAGE. The temperature optimum was 70 degrees C with significant stability at 60-80 degrees C for more than 60 min. The enzyme was active over the pH range of 8.5-11, with an optimum at 10-11. The serine nature of the protease was confirmed by PMSF inhibition. The enzyme was highly resistant against chemical denaturation and displayed varied effects towards metal ions. The results are significant as extremozymes are difficult to purify and therefore, a two-step purification of alkaline protease from relatively less explored group of actinomycetes is quite appealing.

  12. Temporal Eukarya, Bacteria, and Archaea biodiversity during cultivation of an alkaliphilic algae, Chlorella vulgaris, in an outdoor raceway pond

    Directory of Open Access Journals (Sweden)

    Tisza Ann Szeremy Bell

    2016-01-01

    Full Text Available Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal crop. In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (approximately 9.8. An outdoor raceway pond (200L was inoculated with C. vulgaris and monitored for ten days and then the culture was transferred to a 2,000L raceway pond and cultivated for an additional six days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences, but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic

  13. Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes.

    Science.gov (United States)

    Caamaño-Antelo, S; Fernández-No, I C; Böhme, K; Ezzat-Alnakip, M; Quintela-Baluja, M; Barros-Velázquez, J; Calo-Mata, P

    2015-04-01

    Bacillus genus includes foodborne pathogenic and spoilage-associated species, such as Bacillus cereus, Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus. Bacillus is also a heterogeneous genus that includes closely related species that are difficult to discriminate among, especially when well-conserved genes such as 16S rRNA and 23S rRNA are considered. The main goal of the present work was to study the usefulness of three housekeeping genes, the TU elongation factor (tuf), the DNA gyrase β subunit (gyrB) and the RNA polymerase β subunit (rpoB) genes, for use in differentiating among the most important foodborne Bacillus spp. sequences from 20 foodborne isolated Bacillus strains, and sequences belonging to different Bacillus spp. retrieved from the GenBank were analysed. In general terms, gyrB, rpoB and tuf gene regions for the strains considered in this study exhibited interspecific similarities of 57.8%, 67.23% and 77.66% respectively. Novel tufGPF and tufGPR universal primers targeted to the tuf gene were designed and proved to be useful for the amplification of all Bacillus spp considered. In conclusion, the tuf gene can be considered to be a good target for the differential characterisation of foodborne Bacillus species, especially for differentiating B. subtilis and B. cereus from other closely related species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Statistical modeling and optimization of alkaline protease production from a newly isolated alkalophilic Bacillus species BGS using response surface methodology and genetic algorithm.

    Science.gov (United States)

    Moorthy, Innasi Muthu Ganesh; Baskar, Rajoo

    2013-01-01

    A new hyperactive alkalophilic bacterial strain (Bacillus sp. BGS) was isolated from samples collected from soil that received the effluent of a milk processing industry located in Madurai, Tamilnadu, India, and this bacterial strain was used for the production of alkaline protease. Four out of eight variables, such as molasses, peptone, pH, and inoculum size, have been identified through Plackett-Burman (PB) design and used for the alkaline protease production. These significant variables were further optimized through a hybrid system of response surface methodology (RSM) followed by genetic algorithm (GA). The optimal combination of media components and culture conditions for maximal protease production was found to be 16.827 g/L of peptone, 1.128% (v/v) of molasses, pH value of 11, and 2% (v/v) of inoculum size. A 6.36-fold increase in protease production was achieved through the RSM-GA hybrid system. The protease activity increased significantly with an optimized medium (2,992.75 U/mL) as opposed to an unoptimized basal medium (470.35 U/mL).

  15. Growth and (137)Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan.

    Science.gov (United States)

    Aung, Han Phyo; Djedidi, Salem; Oo, Aung Zaw; Aye, Yi Swe; Yokoyama, Tadashi; Suzuki, Sohzoh; Sekimoto, Hitoshi; Bellingrath-Kimura, Sonoko Dorothea

    2015-07-15

    The effectiveness of the plant growth-promoting rhizobacterium Bacillus pumilus regarding growth promotion and radiocesium ((137)Cs) uptake was evaluated in four Brassica species grown on different (137)Cs contaminated farmlands at Fukushima prefecture in Japan from June to August 2012. B. pumilus inoculation did not enhance growth in any of the plants, although it resulted in a significant increase of (137)Cs concentration and higher (137)Cs transfer from the soil to plants. The Brassica species exhibited different (137)Cs uptake abilities in the order Komatsuna>turnip>mustard>radish. TF values of (137)Cs ranged from 0.018 to 0.069 for all vegetables. Komatsuna possessed the largest root surface area and root volume, and showed a higher (137)Cs concentration in plant tissue and higher (137)Cs TF values (0.060) than the other vegetables. Higher (137)Cs transfer to plants was prominent in soil with a high amount of organic matter and an Al-vermiculite clay mineral type. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Growth and {sup 137}Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Aung, Han Phyo [United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan); Djedidi, Salem; Oo, Aung Zaw [Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan); Aye, Yi Swe [Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan); Yokoyama, Tadashi; Suzuki, Sohzoh [Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan); Sekimoto, Hitoshi [Faculty of Agriculture, Utsunomiya University, 321-8505 (Japan); Bellingrath-Kimura, Sonoko Dorothea, E-mail: skimura@cc.tuat.ac.jp [Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509 (Japan)

    2015-07-15

    The effectiveness of the plant growth-promoting rhizobacterium Bacillus pumilus regarding growth promotion and radiocesium ({sup 137}Cs) uptake was evaluated in four Brassica species grown on different {sup 137}Cs contaminated farmlands at Fukushima prefecture in Japan from June to August 2012. B. pumilus inoculation did not enhance growth in any of the plants, although it resulted in a significant increase of {sup 137}Cs concentration and higher {sup 137}Cs transfer from the soil to plants. The Brassica species exhibited different {sup 137}Cs uptake abilities in the order Komatsuna > turnip > mustard > radish. TF values of {sup 137}Cs ranged from 0.018 to 0.069 for all vegetables. Komatsuna possessed the largest root surface area and root volume, and showed a higher {sup 137}Cs concentration in plant tissue and higher {sup 137}Cs TF values (0.060) than the other vegetables. Higher {sup 137}Cs transfer to plants was prominent in soil with a high amount of organic matter and an Al-vermiculite clay mineral type. - Highlights: • PGPR inoculation did not enhance plant biomass of tested plants. • PGPR inoculation resulted in higher {sup 137}Cs concentration in plants. • Komatsuna that had larger root volume showed higher {sup 137}Cs TF from soil to plants. • Soil with high SOM and Al-vermiculite caused larger {sup 137}Cs transfer to plants.

  17. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics.

    Science.gov (United States)

    Dunlap, Christopher A; Kim, Soo-Jin; Kwon, Soon-Wo; Rooney, Alejandro P

    2016-03-01

    Bacillus velezensis was previously reported to be a later heterotypic synonym of Bacillus amyloliquefaciens , based primarily on DNA-DNA relatedness values. We have sequenced a draft genome of B. velezensis NRRL B-41580 T . Comparative genomics and DNA-DNA relatedness calculations show that it is not a synonym of B. amyloliquefaciens. It was instead synonymous with Bacillus methylotrophicus. ' Bacillus oryzicola ' is a recently described species that was isolated as an endophyte of rice ( Oryza sativa ). The strain was demonstrated to have plant-pathogen antagonist activity in greenhouse assays, and the 16S rRNA gene was reported to have 99.7 % sequence similarity with Bacillus siamensis and B. methylotrophicus , which are both known for their plant pathogen antagonism. To better understand the phylogenetics of these closely related strains, we sequenced the genome of ' B . oryzicola ' KACC 18228. Comparative genomic analysis showed only minor differences between this strain and the genomes of B. velezensis NRRL B-41580 T , B. methylotrophicus KACC 13015 T and Bacillus amyloliquefaciens subsp. plantarum FZB42 T . The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the strains were all greater than 84 %, which is well above the standard species threshold of 70 %. The results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the strains share phenotype and genotype coherence. Therefore, we propose that B. methylotrophicus KACC 13015 T , B. amyloliquefaciens subsp. plantarum FZB42 T , and ' B. oryzicola' KACC 18228 should be reclassified as later heterotypic synonyms of B. velezensis NRRL B-41580 T , since the valid publication date of B. velezensis precedes the other three strains.

  18. Bacillus camelliae sp. nov., isolated from Pu'er tea.

    Science.gov (United States)

    Niu, Lili; Xiong, Mengjie; Zhang, Juan; Xiang, Yangquan; Song, Lei; Hua, Ziyi; Li, Wenying

    2018-02-01

    A novel aerobic, Gram-stain-positive, sporogenous, rod-shaped bacterial strain, 7578-1 T , was isolated from ripened Pu'er tea. Based on 16S rRNA gene sequence similarity comparisons, strain 7578-1 T was grouped into the genus Bacillus and appeared to be closely related to the type strains Bacillus shackletoniiLMG 18435 T (98.4 %), Bacillus acidicolaDSM 14745 T (97.6 %), Bacillus paralicheniformis KACC 18426 T (97.2 %) and Bacillus ginsengihumi KCTC 13944 T (96.7 %). The fatty acid profile containing the major fatty acids, iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0 supported the allocation of strain 7578-1 T to the genus Bacillus. The strain had a cell-wall type A1γ peptidoglycan with meso-diaminopimelic acid as the diagnostic diamino acid. The major menaquinone was MK-7 (95 %). The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, one unidentified phospholipid and one unidentified lipid. The average nucleotide identity values between strain 7578-1 T and its most closely related species were 67.8-82.4 % by OrthoANIu analysis. The DNA-DNA relatedness value between strain 7578-1 T and the type strains of closely related species were 17-39 %, again indicating that strain 7578-1 T represented a novel species in the genus Bacillus. The DNA G+C content of strain 7578-1 T was 36.0 mol%. On the basis of the presented polyphasic evidence, strain 7578-1 T is considered to represent a novel species of the genus Bacillus, for which we propose the name Bacillus camelliae sp. nov. The type strain is 7578-1 T (=CGMCC 1.15374 T =KCTC 33845 T ).

  19. Isolation and identification of Bacillus spp. and related genera from different starchy foods.

    Science.gov (United States)

    Fangio, Maria Florencia; Roura, Sara Ines; Fritz, Rosalía

    2010-05-01

    Samples of butternut squash, potatoes, rice, and wheat flour were analyzed. Bacillus spp. and related species belonging to Paenibacillus and Brevibacillus genera were found in 96% of the samples. In butternut squash, predominant species were Bacillus pumilus and Paenibacillus polymyxa together with other Bacillus spp. species (B. cereus, B. licheniformis, B. sphaericus, and B. subtilis). In all the potato samples, Bacillus species were detected (B. cereus, B. mycoides, and B. licheniformis). Also, Bacillus spp. were detected in 100% of the unhusked rice samples, while incidence in white rice samples was 83%. In total rice samples, B. pumilus, Brevibacillus brevis, and Paenibacillus macerans were the main species and B. cereus, P. polymyxa, B. subtilis, and Brevibacillus laterosporus had the lower percentage. The most important species found in wheat flour was P. polymyxa with colony forming units per gram of about 10(2). As the identified species were potentially causatives of foodborne diseases, attention should be given to sanitary and temperature conditions as critical factors that influence the safety and shelf life of these products. Foodborne illness produce by B. cereus have been associated with a wide variety of food. In addition, some other Bacillus species have been related to foodborne disease in humans. Information about the virulence mechanisms of other Bacillus spp. is scanty and their risk is underestimated. Identifying the group of food and the food processes in which Bacillus cereus or other Bacillus spp. would be hazardous for human health is vital for the prevention of foodborne outbreak. In this study, we determined the incidence of Bacillus spp. and related genera in some food items of agriculture origin from Argentina. This research is relevant to identify the presence of potentially pathogen Bacillus species and related genera in this type of food.

  20. Anti-Bacillus Activity Of Some Plants Used In Traditional Medicine Of ...

    African Journals Online (AJOL)

    Based on collected information about traditional use of plants, anti-bacillus activity of methanol extracts of 180 plant species belonging to 72 families were investigated by in vitro bioassays using agar diffusion-method against standard strains of Bacillus subtilis, B. cereus and B. pumilis at 20 mg/ml. Seventy eight species ...

  1. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    Science.gov (United States)

    Wilson, Melissa K; Abergel, Rebecca J; Raymond, Kenneth N; Arceneaux, Jean E L; Byers, B Rowe

    2006-09-15

    Three Bacillus anthracis Sterne strains (USAMRIID, 7702, and 34F2) and Bacillus cereus ATCC 14579 excrete two catecholate siderophores, petrobactin (which contains 3,4-dihydroxybenzoyl moieties) and bacillibactin (which contains 2,3-dihydroxybenzoyl moieties). However, the insecticidal organism Bacillus thuringiensis ATCC 33679 makes only bacillibactin. Analyses of siderophore production by previously isolated [Cendrowski et al., Mol. Microbiol. 52 (2004) 407-417] B. anthracis mutant strains revealed that the B. anthracis bacACEBF operon codes for bacillibactin production and the asbAB gene region is required for petrobactin assembly. The two catecholate moieties also were synthesized by separate routes. PCR amplification identified both asbA and asbB genes in the petrobactin producing strains whereas B. thuringiensis ATCC 33679 retained only asbA. Petrobactin synthesis is not limited to the cluster of B. anthracis strains within the B. cereus sensu lato group (in which B. cereus, B. anthracis, and B. thuringiensis are classified), although petrobactin might be prevalent in strains with pathogenic potential for vertebrates.

  2. Anditalea andensis ANESC-ST--An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions.

    Directory of Open Access Journals (Sweden)

    Wei Shi

    Full Text Available A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T, which is capable of generating bioelectricity in alkaline-saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0-11.0 and also under high salt condition (up to 4 wt% NaCl. Electrical output was further demonstrated in microbial fuel cells (MFCs with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline-saline conditions points towards a solution for bioelectricity recovery from alkaline-saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH.

  3. Novel bioflocculant produced by salt-tolerant, alkaliphilic strain Oceanobacillus polygoni HG6 and its application in tannery wastewater treatment.

    Science.gov (United States)

    Li, Jing; Yun, Yue-Qing; Xing, Li; Song, Lei

    2017-05-01

    The optimized production of MBF-HG6, which is a novel salt-tolerant alkaliphilic bioflocculant produced by Oceanobacillus polygoni with its application in tannery wastewater treatment was investigated in this study. It was found the optimal carbon source, nitrogen source, cation, and initial pH of the medium for bioflocculant production were starch, urea, Fe 2+ , and pH 9.0, respectively. The best stability in the temperature range was from 0 to 80°C and the purified MBF-HG6 contained polysaccharides of 81.53% and proteins of 9.98%. The carboxyl, hydroxyl, and amino groups were determined in bioflocculants, while the optimized bioflocculating activity was observed as 90.25% for the dosages of 6.96mL MBF-HG6, 4.77mL CaCl 2 (1%, m/v), and 19.24g/L NaCl using response surface methodology. In addition, SS and turbidity removal rates of the tannery wastewater (4g/L MBF-HG6) could, respectively, reach 46.49% and 91.08%, indicating that the great potential was emerged in enhancement of tannery wastewater treatment by MBF-HG6.

  4. Phosphorescence In Bacillus Spores

    National Research Council Canada - National Science Library

    Reinisch, Lou; Swartz, Barry A; Bronk, Burt V

    2003-01-01

    .... Our present work attempts to build on this approach for environmental applications. We have measured a change in the fluorescence spectra of suspensions of Bacillus bacteria between the vegetative bacteria and their spores at room temperature...

  5. A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+.

    Directory of Open Access Journals (Sweden)

    Naoya Terahara

    Full Text Available In bacteria, the sodium ion (Na(+ cycle plays a critical role in negotiating the challenges of an extremely alkaline and sodium-rich environment. Alkaliphilic bacteria that grow optimally at high pH values use Na(+ for solute uptake and flagellar rotation because the proton (H(+ motive force is insufficient for use at extremely alkaline pH. Only three types of electrically driven rotary motors exist in nature: the F-type ATPase, the V-type ATPase, and the bacterial flagellar motor. Until now, only H(+ and Na(+ have been reported as coupling ions for these motors. Here, we report that the alkaliphilic bacterium Bacillus alcalophilus Vedder 1934 can grow not only under a Na(+-rich and potassium ion (K(+-poor condition but also under the opposite condition in an extremely alkaline environment. In this organism, swimming performance depends on concentrations of Na(+, K(+ or Rb(+. In the absence of Na(+, swimming behavior is clearly K(+- dependent. This pattern was confirmed in swimming assays of stator-less Bacillus subtilis and Escherichia coli mutants expressing MotPS from B. alcalophilus (BA-MotPS. Furthermore, a single mutation in BA-MotS was identified that converted the naturally bi-functional BA-MotPS to stators that cannot use K(+ or Rb(+. This is the first report that describes a flagellar motor that can use K(+ and Rb(+ as coupling ions. The finding will affect the understanding of the operating principles of flagellar motors and the molecular mechanisms of ion selectivity, the field of the evolution of environmental changes and stresses, and areas of nanotechnology.

  6. A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+.

    Science.gov (United States)

    Terahara, Naoya; Sano, Motohiko; Ito, Masahiro

    2012-01-01

    In bacteria, the sodium ion (Na(+)) cycle plays a critical role in negotiating the challenges of an extremely alkaline and sodium-rich environment. Alkaliphilic bacteria that grow optimally at high pH values use Na(+) for solute uptake and flagellar rotation because the proton (H(+)) motive force is insufficient for use at extremely alkaline pH. Only three types of electrically driven rotary motors exist in nature: the F-type ATPase, the V-type ATPase, and the bacterial flagellar motor. Until now, only H(+) and Na(+) have been reported as coupling ions for these motors. Here, we report that the alkaliphilic bacterium Bacillus alcalophilus Vedder 1934 can grow not only under a Na(+)-rich and potassium ion (K(+))-poor condition but also under the opposite condition in an extremely alkaline environment. In this organism, swimming performance depends on concentrations of Na(+), K(+) or Rb(+). In the absence of Na(+), swimming behavior is clearly K(+)- dependent. This pattern was confirmed in swimming assays of stator-less Bacillus subtilis and Escherichia coli mutants expressing MotPS from B. alcalophilus (BA-MotPS). Furthermore, a single mutation in BA-MotS was identified that converted the naturally bi-functional BA-MotPS to stators that cannot use K(+) or Rb(+). This is the first report that describes a flagellar motor that can use K(+) and Rb(+) as coupling ions. The finding will affect the understanding of the operating principles of flagellar motors and the molecular mechanisms of ion selectivity, the field of the evolution of environmental changes and stresses, and areas of nanotechnology.

  7. Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides

    DEFF Research Database (Denmark)

    Oehlenschlæger, Christian Berg; Løvgreen, Monika Nøhr; Reinauer, Eva

    2015-01-01

    tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus......Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase......, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database....

  8. Multilocus sequence analysis of Bacillus thuringiensis serovars navarrensis, bolivia and vazensis and Bacillus weihenstephanensis reveals a common phylogeny.

    Science.gov (United States)

    Soufiane, Brahim; Baizet, Mathilde; Côté, Jean-Charles

    2013-01-01

    The Bacillus cereus group sensu lato includes six closely-related bacterial species: Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides and Bacillus weihenstephanensis. B. thuringiensis is distinguished from the other species mainly by the appearance of an inclusion body upon sporulation. B. weihenstephanensis is distinguished based on its psychrotolerance and the presence of specific signature sequences in the 16S rRNA gene and cspA genes. A total of seven housekeeping genes (glpF, gmK, ilvD, pta, purH, pycA and tpi) from different B. thuringiensis serovars and B. weihenstephanensis strains were amplified and their nucleotide sequences determined. A maximum likelihood phylogenetic tree was inferred from comparisons of the concatenated sequences. B. thuringiensis serovars navarrensis, bolivia and vazensis clustered not with the other B. thuringiensis serovars but rather with the B. weihenstephanensis strains, indicative of a common phylogeny. In addition, specific signature sequences and single nucleotide polymorphisms common to B. thuringiensis serovars navarrensis, bolivia and vazensis and the B. weihenstephanensis strains, and absent in the other B. thuringiensis serovars, were identified.

  9. PCR screening for the surfactin (sfp) gene in marine Bacillus strains and its molecular characterization from Bacillus tequilensis NIOS11

    Digital Repository Service at National Institute of Oceanography (India)

    Porob, S.; Nayak, S.; Fernandes, Areena; Padmanabhan, P.; Patil, B.A.; Meena, R.M.; Ramaiah, N.

    The large surface-to-volume ratio enables many bacterial species to produce several types of structurally diverse surface-active compounds, collectively known as biosurfactants. From the perspective of their applications, biosurfactants are definitely... uses (3). The amphipathic structure of surfactins enables them to be involved in a large number of complex interactions within biological systems. Most strains of Bacillus spp. produce surface-active compounds like surfactins, and Bacillus subtilis...

  10. Genome analysis-based reclassification of Bacillus weihenstephanensis as a later heterotypic synonym of Bacillus mycoides.

    Science.gov (United States)

    Liu, Yang; Lai, Qiliang; Shao, Zongze

    2018-01-01

    The aim of this study was to clarify the taxonomic status of the species Bacillus weihenstephanensis. A complete genome sequence for the type strain of B. weihenstephanensis was compared against that of the closely related type strain of Bacillus mycoides. The digital DNA-DNA hybridization and average nucleotide identity values between the two type strains was greater than two recognized thresholds for bacterial species delineation, indicating that they should belong to the same genomospecies. The psychrotolerant characteristic and signature sequences of 16S rRNA and cspA genes were incapable of distinguishing B. weihenstephanensis from some non-B. weihenstephanensis strains. Meanwhile, the metabolic, physiological and chemotaxonomic features for the type strain of B. weihenstephanensis were shown to be congruent with those of B. mycoides. On this basis, the taxonomic affiliations of related strains from the Genbank database were determined using multilocus sequence typing and genomic analyses. Therefore, we propose Bacillus weihenstephanensis as a later heterotypic synonym of Bacillus mycoides and correction of erroneous species identifications for several strains.

  11. Antifungal activity of indigenous Bacillus spp. isolated from soil

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2017-01-01

    Full Text Available Biocontrol using plant growth-promoting rhizobacteria (PGPR represents an alternative approach to disease management, since PGPR are known to promote growth and reduce diseases in various crops. Among the different PGPR, members of the genus Bacillus are prefered for most biotechnological uses due to their capability to form extremely resistant spores and produce a wide variety of metabolites with antimicrobial activity. The objective of this research was to identify antagonistic bacteria for management of the plant diseases. Eleven isolates of Bacillus spp. were obtained from the soil samples collected from different localities in the Province of Vojvodina. The antifungal activity of bacterial isolates against five fungal species was examined using a dual plate assay. Bacillus isolates exhibited the highest antifungal activity against Fusarium proliferatum, Fusarium oxysporum f. sp. cepae and Alternaria padwickii, while they had the least antagonistic effect on Fusarium verticillioides and Fusarium graminearum. Molecular identification showed that effective bacterial isolates were identified as Bacillus safensis (B2, Bacillus pumilus (B3, B11, Bacillus subtilis (B5, B7 and Bacillus megaterium (B8, B9. The highest antagonistic activity was exhibited by isolates B5 (from 39% to 62% reduction in fungal growth and B7 (from 40% to 71% reduction in fungal growth. These isolates of B. subtilis could be used as potential biocontrol agents of plant diseases. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31073

  12. Real-Time PCR Identification of Unique Bacillus anthracis Sequences.

    Science.gov (United States)

    Cieślik, P; Knap, J; Kolodziej, M; Mirski, T; Joniec, J; Graniak, G; Zakowska, D; Winnicka, I; Bielawska-Drózd, A

    2015-01-01

    Bacillus anthracis is a spore-forming, Gram-positive microorganism. It is a causative agent of anthrax, a highly infectious disease. It belongs to the "Bacillus cereus group", which contains other closely related species, including Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus pseudomycoides. B. anthracis naturally occurs in soil environments. The BA5345 genetic marker was used for highly specific detection of B. anthracis with TaqMan probes. The detection limit of a real-time PCR assay was estimated at the level of 16.9 copies (CI95% - 37.4 to 37.86, SD = 0.2; SE = 0.118). Oligonucleotides designed for the targeted sequences (within the tested locus) revealed 100 % homology to B. anthracis strain reference sequences deposited in the database (NCBI) and high specificity to all tested B. anthracis strains. Additional in silico analysis of plasmid markers pag and cap genes with B. anthracis strains included in the database was carried out. Our study clearly indicates that the BA5345 marker can be used with success as a chromosomal marker in routine identification of B. anthracis; moreover, detection of plasmid markers indicates virulence of the examined strains.

  13. Taxonomic description and genome sequence of Bacillus campisalis sp. nov., a member of the genus Bacillus isolated from a solar saltern.

    Science.gov (United States)

    Kumar, Rajendran Mathan; Kaur, Gurwinder; Kumar, Anand; Bala, Monu; Singh, Nitin Kumar; Kaur, Navjot; Kumar, Narender; Mayilraj, Shanmugam

    2015-10-01

    The taxonomic position of a Gram-stain positive bacterium isolated from a solar saltern sample collected from Kanyakumari, coastal region of the Bay of Bengal, India, was analysed by using a polyphasic approach. The isolated strain, designated SA2-6T, had phenotypic characteristics that matched those of the genus Bacillus. The 16S rRNA gene sequence (1493 bases) of the novel strain was compared with those of previously studied Bacillus type strains and confirmed that the strain belongs to the genus Bacillus and was moderately closely related to the type strain of Bacillus foraminis at 97.5 % 16S rRNA gene sequence similarity, followed by those of Bacillus thioparans (96.9 %), Bacillus subterraneus (96.8 %), Bacillus jeotgali (96.6 %), Bacillus selenatarsenatis (96.6 %) and Bacillus boroniphilus (96.6 %). 16S rRNA gene sequence analysis indicated that strain SA2-6T differs from all other species of the genus Bacillus by at least 2.5 %. It contained MK-7 as the predominant menaquinone, meso-diaminopimelic acid as the diagnostic cell-wall diamino acid, and iso-C15 : 0 and anteiso-C15 : 0 as major fatty acids. Major lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). Based on data from this polyphasic study, strain SA2-6T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus campisalis sp. nov. is proposed. The type strain is SA2-6T ( = MTCC 11848T = DSM 28801T). The draft genome of strain SA2-6T consisted of 5 183 363 bp with G+C content of 45.44 mol%, 5352 predicted coding sequences, 191 RNAs and 479 subsystems.

  14. A novel NhaD-type Na+/H+antiporter from the moderate halophile and alkaliphile Halomonas alkaliphila.

    Science.gov (United States)

    Wang, Yanhong; Song, Na; Yang, Lina; Abdel-Motaal, Heba; Zhang, Rui; Zhang, Zhenglai; Meng, Fankui; Jiang, Juquan

    2017-07-01

    In this study, a NhaD-type Na + /H + antiporter gene designated Ha-nhaD was obtained by selection of genomic DNA from the moderate halophile and alkaliphile Halomonas alkaliphila in Escherichia coli KNabc lacking 3 major Na + /H + antiporters. The presence of Ha-NhaD conferred tolerance of E. coli KNabc to NaCl up to 0.6 mol·L -1 and to LiCl up to 0.2 mol·L -1 and to an alkaline pH. pH-dependent Na + (Li + )/H + antiport activity was detected from everted membrane vesicles prepared from E. coli KNabc/pUC-nhaD but not those of KNabc/pUC18. Ha-NhaD exhibited Na + (Li + )/H + antiport activity over a wide pH range from 7.0 to 9.5, with the highest activity at pH 9.0. Protein sequence alignment and phylogenetic analysis revealed that Ha-NhaD is significantly different from the 7 known NhaD-type Na + /H + antiporters, including Dw-NhaD, Dl-NhaD, Vp-NhaD, Vc-NhaD, Aa-NhaD, He-NhaD, and Ha-NhaD1. Although Ha-NhaD showed a closer phylogenetic relationship with Ha-NhaD2, a significant difference in pH-dependent activity profile exists between Ha-NhaD and Ha-NhaD2. Taken together, Ha-nhaD encodes a novel pH-dependent NhaD-type Na + /H + antiporter.

  15. β-Cyclodextrin Production by Cyclodextrin Glucanotransferase from an Alkaliphile Microbacterium terrae KNR 9 Using Different Starch Substrates

    Directory of Open Access Journals (Sweden)

    Kiransinh N. Rajput

    2016-01-01

    Full Text Available Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19 is an important member of α-amylase family which can degrade the starch and produce cyclodextrins (CDs as a result of intramolecular transglycosylation (cyclization. β-Cyclodextrin production was carried out using the purified CGTase enzyme from an alkaliphile Microbacterium terrae KNR 9 with different starches in raw as well as gelatinized form. Cyclodextrin production was confirmed using thin layer chromatography. Six different starch substrates, namely, soluble starch, potato starch, sago starch, corn starch, corn flour, and rice flour, were tested for CD production. Raw potato starch granules were found to be the best substrate giving 13.46 gm/L of cyclodextrins after 1 h of incubation at 60°C. Raw sago starch gave 12.96 gm/L of cyclodextrins as the second best substrate. To achieve the maximum cyclodextrin production, statistical optimization using Central Composite Design (CCD was carried out with three parameters, namely, potato starch concentration, CGTase enzyme concentration, and incubation temperature. Cyclodextrin production of 28.22 (gm/L was achieved with the optimized parameters suggested by the model which are CGTase 4.8 U/L, starch 150 gm/L, and temperature 55.6°C. The suggested optimized conditions showed about 15% increase in β-cyclodextrin production (28.22 gm/L at 55.6°C as compared to 24.48 gm/L at 60°C. The degradation of raw potato starch granules by purified CGTase was also confirmed by microscopic observations.

  16. Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors.

    Science.gov (United States)

    Terahara, Naoya; Krulwich, Terry A; Ito, Masahiro

    2008-09-23

    Bacterial flagella contain membrane-embedded stators, Mot complexes, that harness the energy of either transmembrane proton or sodium ion gradients to power motility. Use of sodium ion gradients is associated with elevated pH and sodium concentrations. The Mot complexes studied to date contain channels that use either protons or sodium ions, with some bacteria having only one type and others having two distinct Mot types with different ion-coupling. Here, alkaliphilic Bacillus clausii KSM-K16 was shown to be motile in a pH range from 7 to 11 although its genome encodes only one Mot (BCl-MotAB). Assays of swimming as a function of pH, sodium concentration, and ion-selective motility inhibitors showed that BCl-MotAB couples motility to sodium at the high end of its pH range but uses protons at lower pH. This pattern was confirmed in swimming assays of a statorless Bacillus subtilis mutant expressing either BCl-MotAB or one of the two B. subtilis stators, sodium-coupled Bs-MotPS or proton-coupled Bs-MotAB. Pairs of mutations in BCl-MotB were identified that converted the naturally bifunctional BCl-MotAB to stators that preferentially use either protons or sodium ions across the full pH range. We then identified trios of mutations that added a capacity for dual-ion coupling on the distinct B. subtilis Bs-MotAB and Bs-MotPS motors. Determinants that alter the specificity of bifunctional and single-coupled flagellar stators add to insights from studies of other ion-translocating transporters that use both protons and sodium ions.

  17. Determining the source of Bacillus cereus and Bacillus licheniformis isolated from raw milk, pasteurized milk and yoghurt.

    Science.gov (United States)

    Banykó, J; Vyletelová, M

    2009-03-01

    Strain-specific detection of Bacillus cereus and Bacillus licheniformis in raw and pasteurized milk, and yoghurt during processing. Randomly selected isolates of Bacillus spp. were subjected to PCR analysis, where single primer targeting to the repetitive sequence Box elements was used to fingerprint the species. The isolates were separated into six different fingerprint patterns. The results show that isolates clustered together at about the 57% similarity level with two main groups at the 82% and 83% similarity levels, respectively. Contamination with identical strains both of B. cereus and B. licheniformis in raw and pasteurized milk was found as well as contaminated with different strains (in the case of raw milk and yoghurt/pasteurized milk and yoghurt). Several BOX types traced in processed milk samples were not discovered in the original raw milk. BOX-PCR fingerprinting is useful for characterizing Bacillus populations in a dairy environment. It can be used to confirm environmental contamination, eventually clonal transfer of Bacillus strains during the technological processing of milk. Despite the limited number of strains analysed, the two Bacillus species yielded adequately detectable banding profiles, permitting differentiation of bacteria at the strain level and showing their diversity throughout dairy processing.

  18. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Aysha Kamran

    2015-06-01

    Full Text Available Alkaline serine protease was purified to homogeneity from culture supernatant of a thermophilic, alkaliphilic Bacillus sp. by 80% ammonium sulphate precipitation followed by CM-cellulose and DEAE-cellulose ion exchange column chromatography. The enzyme was purified up to 16.5-fold with 6900 U/mg activity. The protease exhibited maximum activity towards casein at pH 8.0 and at 80 °C. The enzyme was stable at pH 8.0 and 80 °C temperature up to 2 h. The Ca2+ and Mn2+ enhanced the proteolytic activity up to 44% and 36% as compared to control, respectively. However, Zn2+, K+, Ba2+, Co2+, Hg2+ and Cu2+ significantly reduced the enzyme activity. PMSF (phenyl methyl sulphonyl fluoride completely inhibited the protease activity, whereas the activity of protease was stimulated up to two folds in the presence of 5 mM 2-mercaptoethanol. The enzyme was also stable in surfactant (Tween-80 and other commercial detergents (SDS, Triton X-100.

  19. Study of new feruloyl esterases to understand lipase evolution: the case of Bacillus flexus.

    Science.gov (United States)

    Sánchez-González, Mónica; Blanco-Gámez, Allan; Parra-Saldívar, Roberto; Mateos-Díaz, Juan Carlos; Estrada-Alvarado, María Isabel

    2012-01-01

    Recently, the crystal structure of the feruloyl esterase A from Aspergillus niger (AnFaeA) was elucidated. This enzyme displays an α/β hydrolase fold and a catalytic triad similar to that found in fungal lipases (30-37% identity). Surprisingly, AnFaeA showed an overall fold similarity with the Rhizomucor miehei and other related fungal lipases. All these data strongly suggest that the ancestral function (lipase) had shifted, with molecular adaptation leading to a novel enzyme (type-A feruloyl esterase). The discovery of new feruloyl esterases could lead to get insight into the evolutionary pathways of these enzymes and into new possibilities of directed evolution of lipases. In this chapter, the production of Bacillus flexus NJY2 feruloyl esterases is described. Unlike the previously described feruloyl esterases, which mostly belong to eukaryotes (mainly fungus), this unique feruloyl esterases from a prokaryotic alkaliphile microorganism could be the starting point for new discoveries on lipase and feruloyl esterase evolutionary relationships.

  20. Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514

    Directory of Open Access Journals (Sweden)

    Sreethar Swaathy

    2014-12-01

    Full Text Available The present study emphasizes the biosurfactant mediated anthracene degradation by a marine alkaliphile Bacillus licheniformis (MTCC 5514. The isolate, MTCC 5514 degraded >95% of 300 ppm anthracene in an aqueous medium within 22 days and the degradation percentage reduced significantly when the concentration of anthracene increased to above 500 ppm. Naphthalene, naphthalene 2-methyl, phthalic acid and benzene acetic acid are the products of degradation identified based on thin layer chromatography, high performance liquid chromatography, gas chromatography and mass analyses. It has been observed that the degradation is initiated by the biosurfactant of the isolate for solubilization through micellation and then the alkali pH and intra/extra cellular degradative enzymes accomplish the degradation process. Encoding of genes responsible for biosurfactant production (licA3 as well as catabolic reactions (C23O made with suitable primers designed. The study concludes in situ production of biosurfactant mediates the degradation of anthracene by B. licheniformis.

  1. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    Science.gov (United States)

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  2. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed

    DEFF Research Database (Denmark)

    Larsen, Nadja; Thorsen, Line; Kpikpi, Elmer Nayra

    2014-01-01

    Bacillus spp. are commonly used as probiotic species in the feed industry, however, their benefits need to be confirmed. This study describes a high throughput screening combined with the detailed characterization of endospore-forming bacteria with the aim to identify new Bacillus spp. strains fo...

  3. Subunit II of Bacillus subtilis cytochrome c oxidase is a lipoprotein

    NARCIS (Netherlands)

    Bengtsson, J; Tjalsma, H; Rivolta, C; Hederstedt, L

    The sequence of the N-terminal end of the deduced ctaC gene product of Bacillus species has the features of a bacterial lipoprotein. CtaC is the subunit II of cytochrome caa(3), which is a cytochrome c oxidase. Using Bacillus subtilis mutants blocked in lipoprotein synthesis, we show that CtaC is a

  4. Characterization of Emetic Bacillus weihenstephanensis, a New Cereulide-Producing Bacterium

    DEFF Research Database (Denmark)

    Thorsen, Line; Munk Hansen, Bjarne; Nielsen, Kristian Fog

    2006-01-01

    Cereulide production has until now been restricted to the species Bacillus cereus. Here we report on two psychrotolerant Bacillus weihenstephanensis strains, MC67 and MC118, that produce cereulide. The strains are atypical with regard to pheno- and genotypic characteristics normally used...

  5. Characterization of Bacillus cereus

    NARCIS (Netherlands)

    Wijnands LM; Dufrenne JB; Leusden FM; MGB

    2002-01-01

    Bacillus cereus is a ubiquitary microorganism that may cause food borne disease. Pathogenicity, however, depends on various characteristics such as the ability to form (entero)-toxin(s) that can not be detected by microbiological methods. Further characterization of pathogenic properties is not only

  6. Essential Bacillus subtilis genes

    NARCIS (Netherlands)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.; Amati, G.; Andersen, K.K.; Arnaud, M.; Asai, K.; Ashikaga, S.; Aymerich, S.; Bessieres, P.; Boland, F.; Brignell, S.C.; Bron, S; Bunai, K.; Chapuis, J; Christiansen, L.C.; Danchin, A.; Debarbouille, M.; Dervyn, E.; Deuerling, E.; Devine, K.; Devine, S.K.; Dreesen, O.; Errington, J.; Fillinger, S.; Foster, S.J.; Fujita, Y.; Galizzi, A.; Gardan, R.; Eschevins, C.; Fukushima, T.; Haga, K.; Harwood, C.R; Hecker, M.; Hosoya, D.; Hullo, M.F.; Kakeshita, H.; Karamata, D.; Kasahara, Y.; Kawamura, F.; Koga, K.; Koski, P.; Kuwana, R.; Imamura, D.; Ishimaru, M.; Ishikawa, S.; Ishio, I.; Le Coq, D.; Masson, A.; Mauel, C.; Meima, Roelf; Mellado, R.P.; Moir, A.; Moriya, S.; Nagakawa, E.; Nanamiya, H.; Nakai, S.; Nygaard, P.; Ogura, M.; Ohanan, T.; O'Reilly, M.; O'Rourke, M.; Pragai, Z.; Pooley, H.M.; Rapoport, G.; Rawlins, J.P.; Rivas, L.A.; Rivolta, C.; Sadaie, A.; Sadaie, Y.; Sarvas, M; Sato, T.; Saxild, H.H.; Scanlan, E.; Schumann, W; Seegers, J.F. M. L.; Sekiguchi, J.; Sekowska, A.; Seror, S.J.; Simon, M.; Stragier, P.; Studer, R.; Takamatsu, H.; Tanaka, T.; Takeuchi, M.; Thomaides, H.B.; Vagner, V.; van Dijl, J.M.; Watabe, K.; Wipat, A; Yamamoto, H.; Yamamoto, M.; Yamamoto, Y.; Yamane, K.; Yata, K.; Yoshida, K.; Yoshikawa, H.; Zuber, U.; Ogasawara, N.; Ishio, [No Value

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were

  7. Probiotic Bacillus species and Saccharomyces boulardii improve ...

    African Journals Online (AJOL)

    سارا ميرزائي

    2018-01-18

    Jan 18, 2018 ... Uso de probiótico e antibiótico sobre o desempenho, o rendimento e a qualidade de carcaça de frangos de corte. Rev. Bras. Zootec. 29(4),1124-1131. (in Portuguese, English abstract). Manafi, M., 2015. Comparison study of a natural non-antibiotic growth promoter and a commercial probiotic on growth.

  8. Antibacterial potential components of Bacillus species and ...

    African Journals Online (AJOL)

    Obaks-Agbagwa

    2017-01-11

    Jan 11, 2017 ... that can be applied against human infections due to resistant microorganisms. Enzyme assay. Results obtained from starch hydrolysis showed that 90% of the isolates could hydrolyze starch except SJ1, 2, 3 and PR1 & PR2. Hemolytic activity was seen in most of the isolates which suggests that they are ...

  9. Eucalyptus growth promotion by endophytic Bacillus spp.

    Science.gov (United States)

    Paz, I C P; Santin, R C M; Guimarães, A M; Rosa, O P P; Dias, A C F; Quecine, M C; Azevedo, J L; Matsumura, A T S

    2012-10-11

    Clonal eucalyptus plantings have increased in recent years; however, some clones with high production characteristics have vegetative propagation problems because of weak root and aerial development. Endophytic microorganisms live inside healthy plants without causing any damage to their hosts and can be beneficial, acting as plant growth promoters. We isolated endophytic bacteria from eucalyptus plants and evaluated their potential in plant growth promotion of clonal plantlets of Eucalyptus urophylla x E. grandis, known as the hybrid, E. urograndis. Eighteen isolates of E. urograndis, clone 4622, were tested for plant growth promotion using the same clone. These isolates were also evaluated for indole acetic acid production and their potential for nitrogen fixation and phosphate solubilization. The isolates were identified by partial sequencing of 16S rRNA. Bacillus subtilis was the most prevalent species. Several Bacillus species, including B. licheniformis and B. subtilis, were found for the first time as endophytes of eucalyptus. Bacillus sp strain EUCB 10 significantly increased the growth of the root and aerial parts of eucalyptus plantlets under greenhouse conditions, during the summer and winter seasons.

  10. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.

    Science.gov (United States)

    Ivanova, Natalia; Sorokin, Alexei; Anderson, Iain; Galleron, Nathalie; Candelon, Benjamin; Kapatral, Vinayak; Bhattacharyya, Anamitra; Reznik, Gary; Mikhailova, Natalia; Lapidus, Alla; Chu, Lien; Mazur, Michael; Goltsman, Eugene; Larsen, Niels; D'Souza, Mark; Walunas, Theresa; Grechkin, Yuri; Pusch, Gordon; Haselkorn, Robert; Fonstein, Michael; Ehrlich, S Dusko; Overbeek, Ross; Kyrpides, Nikos

    2003-05-01

    Bacillus cereus is an opportunistic pathogen causing food poisoning manifested by diarrhoeal or emetic syndromes. It is closely related to the animal and human pathogen Bacillus anthracis and the insect pathogen Bacillus thuringiensis, the former being used as a biological weapon and the latter as a pesticide. B. anthracis and B. thuringiensis are readily distinguished from B. cereus by the presence of plasmid-borne specific toxins (B. anthracis and B. thuringiensis) and capsule (B. anthracis). But phylogenetic studies based on the analysis of chromosomal genes bring controversial results, and it is unclear whether B. cereus, B. anthracis and B. thuringiensis are varieties of the same species or different species. Here we report the sequencing and analysis of the type strain B. cereus ATCC 14579. The complete genome sequence of B. cereus ATCC 14579 together with the gapped genome of B. anthracis A2012 enables us to perform comparative analysis, and hence to identify the genes that are conserved between B. cereus and B. anthracis, and the genes that are unique for each species. We use the former to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.

  11. Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism

    Directory of Open Access Journals (Sweden)

    Soontharapirakkul Kanteera

    2010-08-01

    Full Text Available Abstract Background When cells are exposed to high salinity conditions, they develop a mechanism to extrude excess Na+ from cells to maintain the cytoplasmic Na+ concentration. Until now, the ATPase involved in Na+ transport in cyanobacteria has not been characterized. Here, the characterization of ATPase and its role in Na+ transport of alkaliphilic halotolerant Aphanothece halophytica were investigated to understand the survival mechanism of A. halophytica under high salinity conditions. Results The purified enzyme catalyzed the hydrolysis of ATP in the presence of Na+ but not K+, Li+ and Ca2+. The apparent Km values for Na+ and ATP were 2.0 and 1.2 mM, respectively. The enzyme is likely the F1F0-ATPase based on the usual subunit pattern and the protection against N,N'-dicyclohexylcarbodiimide inhibition of ATPase activity by Na+ in a pH-dependent manner. Proteoliposomes reconstituted with the purified enzyme could take up Na+ upon the addition of ATP. The apparent Km values for this uptake were 3.3 and 0.5 mM for Na+ and ATP, respectively. The mechanism of Na+ transport mediated by Na+-stimulated ATPase in A. halophytica was revealed. Using acridine orange as a probe, alkalization of the lumen of proteoliposomes reconstituted with Na+-stimulated ATPase was observed upon the addition of ATP with Na+ but not with K+, Li+ and Ca2+. The Na+- and ATP-dependent alkalization of the proteoliposome lumen was stimulated by carbonyl cyanide m - chlorophenylhydrazone (CCCP but was inhibited by a permeant anion nitrate. The proteoliposomes showed both ATPase activity and ATP-dependent Na+ uptake activity. The uptake of Na+ was enhanced by CCCP and nitrate. On the other hand, both CCCP and nitrate were shown to dissipate the preformed electric potential generated by Na+-stimulated ATPase of the proteoliposomes. Conclusion The data demonstrate that Na+-stimulated ATPase from A. halophytica, a likely member of F-type ATPase, functions as an electrogenic Na

  12. Reclassification of Bacillus axarquiensis Ruiz-Garcia et al. 2005 and Bacillus malacitensis Ruiz-Garcia et al. 2005 as later heterotypic synonyms of Bacillus mojavensis Roberts et al. 1994.

    Science.gov (United States)

    Wang, Li-Ting; Lee, Fwu-Ling; Tai, Chun-Ju; Yokota, Akira; Kuo, Hsiao-Ping

    2007-07-01

    The Bacillus subtilis group encompasses the taxa Bacillus subtilis subsp. subtilis, B. licheniformis, B. amyloliquefaciens, B. atrophaeus, B. mojavensis, B. vallismortis, B. subtilis subsp. spizizenii, B. sonorensis, B. velezensis, B. axarquiensis and B. malacitensis. In this study, the taxonomic relatedness between the species B. axarquiensis, B. malacitensis and B. mojavensis was investigated. Sequence analysis of the 16S rRNA gene and the gene for DNA gyrase subunit B (gyrB) confirmed the very high similarities between these three type strains and a reference strain of B. mojavensis (>99 and >97 %, respectively). DNA-DNA hybridization experiments revealed high relatedness values between the type strains of B. axarquiensis, B. malacitensis and B. mojavensis and between these strains and a reference strain of B. mojavensis (83-98 %). Based on these molecular taxonomic data and the lack of phenotypic distinctive characteristics, Bacillus axarquiensis and Bacillus malacitensis should be reclassified as later heterotypic synonyms of Bacillus mojavensis.

  13. Identification of Fatty Acids in Bacillus cereus.

    Science.gov (United States)

    Ginies, Christian; Brillard, Julien; Nguyen-The, Christophe

    2016-12-05

    The Bacillus species contain branched chain and unsaturated fatty acids (FAs) with diverse positions of the methyl branch (iso or anteiso) and of the double bond. Changes in FA composition play a crucial role in the adaptation of bacteria to their environment. These modifications entail a change in the ratio of iso versus anteiso branched FAs, and in the proportion of unsaturated FAs relative to saturated FAs, with double bonds created at specific positions. Precise identification of the FA profile is necessary to understand the adaptation mechanisms of Bacillus species. Many of the FAs from Bacillus are not commercially available. The strategy proposed herein identifies FAs by combining information on the retention time (by calculation of the equivalent chain length (ECL)) with the mass spectra of three types of FA derivatives: fatty acid methyl esters (FAMEs), 4,4-dimethyl oxazoline derivatives (DMOX), and 3-pyridylcarbinyl ester (picolinyl). This method can identify the FAs without the need to purify the unknown FAs. Comparing chromatographic profiles of FAME prepared from Bacillus cereus with a commercial mixture of standards allows for the identification of straight-chain saturated FAs, the calculation of the ECL, and hypotheses on the identity of the other FAs. FAMEs of branched saturated FAs, iso or anteiso, display a constant negative shift in the ECL, compared to linear saturated FAs with the same number of carbons. FAMEs of unsaturated FAs can be detected by the mass of their molecular ions, and result in a positive shift in the ECL compared to the corresponding saturated FAs. The branching position of FAs and the double bond position of unsaturated FAs can be identified by the electron ionization mass spectra of picolinyl and DMOX derivatives, respectively. This approach identifies all the unknown saturated branched FAs, unsaturated straight-chain FAs and unsaturated branched FAs from the B. cereus extract.

  14. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil.

    Science.gov (United States)

    Dunlap, Christopher A; Schisler, David A; Perry, Elizabeth B; Connor, Nora; Cohan, Frederick M; Rooney, Alejandro P

    2017-08-01

    Two isolates of Gram-reaction-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacteria were identified during a survey of the diversity of strains belonging to the genus Bacillus deposited in the Agriculture Research Service Culture Collection. These strains were originally isolated from soil in Evolution Canyon III (Israel) in a survey of ecological diversification. Phylogenetic analysis of the 16S rRNA gene of strains NRRL B-41294T and NRRL B-41327T determined they were closely related to members of the Bacillus licheniformis clade. The genome of each strain was sequenced, and further analysis indicated that the strains represented unique species based on in silico DNA-DNA hybridization analyses. A phylogenomic analysis revealed that NRRL B-41294T and NRRL B-41327T were closely related to the group that includes B. licheniformis. In phenotypic characterization, both NRRL B-41294T and NRRL B-41327T were found to grow at temperatures of between 15 and 60 °C and tolerated up to 12 % NaCl (w/v). The predominant cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0, and peptidoglycan from cell walls contained meso-diaminopimelic acid. The DNA G+C content was 45.7 and 44.3 mol% for NRRL B-41327T and NRRL B-41294T, respectively. Furthermore, each strain had a unique carbon utilization pattern that distinguished it from its nearest phylogenetic neighbours. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that these strains represent two novel species within the genus Bacillus, for which the name Bacillus swezeyi sp. nov. is proposed, with type strain NRRL B-41294T (=CCUG 70177T), and the name Bacillus haynesii sp. nov. is proposed, with type strain NRRL B-41327T (=CCUG 70178T).

  15. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Fouad M. F. Elshaghabee

    2017-08-01

    Full Text Available Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration.

  16. Bacillus cereus food poisoning: international and Indian perspective.

    Science.gov (United States)

    Tewari, Anita; Abdullah, Swaid

    2015-05-01

    Food borne illnesses result from eating food or drinking beverages that are contaminated with chemical matter, heavy metals, parasites, fungi, viruses and Bacteria. Bacillus cereus is one of the food-borne disease causing Bacteria. Species of Bacillus and related genera have long been troublesome to food producers on account of their resistant endospores. Their spores may be present on various types of raw and cooked foods, and their ability to survive high cooking temperatures requires that cooked foods be served hot or cooled rapidly to prevent the growth of this bacteria. Bacillus cereus is well known as a cause of food poisoning, and much more is now known about the toxins produced by various strains of this species, so that its significance in such episodes are clearer. However, it is still unclear why such cases are so rarely reported worldwide.

  17. Identification and characterization of clinical Bacillus spp. isolates phenotypically similar to Bacillus anthracis.

    Science.gov (United States)

    Beesley, Cari A; Vanner, Cynthia L; Helsel, Leta O; Gee, Jay E; Hoffmaster, Alex R

    2010-12-01

    Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming rod, with colonies exhibiting a unique ground-glass appearance, and lacking hemolysis and motility. In addition to these phenotypes, several others traits are characteristic of B. anthracis such as susceptibility to gamma phage, the presence of two virulence plasmids (pX01 and pX02), and specific cell wall and capsular antigens that are commonly detected by direct fluorescent-antibody assays. We report on the identification and characterization of 14 Bacillus megaterium and four Bacillus sp. clinical isolates that are nonhemolytic, nonmotile, and produce a capsule antigenically similar to B. anthracis. This work furthers our understanding of Bacillus diversity and the limitations of the assays and phenotypes that are used to differentiate species in this genus. Further work is necessary to understand whether these strains are opportunistic pathogens or just contaminates. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  18. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates.

    Directory of Open Access Journals (Sweden)

    Francesco Celandroni

    Full Text Available The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.

  19. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates.

    Science.gov (United States)

    Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna Aissatou; Mazzantini, Diletta; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia

    2016-01-01

    The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.

  20. Characterization of the Surface Morphology of Bacillus Spores by Atomic Force Microscopy

    National Research Council Canada - National Science Library

    Zolock, Ruth

    2002-01-01

    The surface morphology of Bacillus spores was resolved by atomic force microscopy in order to determine if characteristic surface features could be used to distinguish between closely related species...

  1. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin

    DEFF Research Database (Denmark)

    Agbobatinkpo, Pélagie B.; Thorsen, Line; Nielsen, Dennis Sandris

    2013-01-01

    licheniformis (3-26%), Bacillus safensis (8-19%) and Bacillus altitudinis (0-19%). Bacillus aryabhattai, Bacillus flexus, and Bacillus circulans (0-2%), and species of the genera Lysinibacillus (0-14%), Paenibacillus (0-13%), Brevibacillus (0-4%), and Aneurinibacillus (0-3%) occurred sporadically. The diarrheal...... were identified using phenotypic and genotypic methods, including GTG5-PCR, M13-PCR, 16S rRNA, gyrA and gyrB gene sequencing. Generally, the same 5-6 species of the genus Bacillus predominated: Bacillus subtilis (17-41% of isolates), Bacillus cereus (8-39%), Bacillus amyloliquefaciens (9-22%), Bacillus...... a safety evaluation based on toxin gene detections. We further suggest, that the gyrA gene can be used for differentiating the closely related species Bacillus pumilus and B. safensis....

  2. Profile of cry from native Bacillus thuringiensis isolates and ...

    African Journals Online (AJOL)

    oyaide

    2013-05-29

    May 29, 2013 ... The characterization of 255 Bacillus thuringiensis isolates of Coorg, Sharavatti and BR hills, containing genes known to be active against coleopteran and lepidopteran insect species was done through PCR amplification using the specific and degenerate primers. The isolates were also tested for their.

  3. Characterization of Bacillus spp. from some spices and assessment ...

    African Journals Online (AJOL)

    One hundred twenty five samples from five different Ethiopian sauce spices were examined for the incidence and level of contamination of Bacillus species. The spices consisted of fenugreek (Trigenella foenum-graecum), black cumin (Nigella sativa), Ethiopian caraway (Trachyspermum ammi), ginger (Zingiber officinale) ...

  4. Identification of Bacitracin Produced by Local Isolate of Bacillus ...

    African Journals Online (AJOL)

    Bacillus licheniformis was isolated from soil of different house gardens. Diagnosis was performed according to Gram stain, motility, shape forming, aerobic condition and other tests. Bacitracin was primary identified after its activity was tested against some species of Gram positive and Gram negative bacteria. Identification ...

  5. Antagonistic Effect of Native Bacillus Isolates against Black Root Rot ...

    African Journals Online (AJOL)

    Faba bean (Vicia faba L.) is one of the most important pulse crops grown in eastern Africa. Black root rot (Fusarium solani) is known to cause great yield losses in faba bean, especially in the highlands of Ethiopia. The objective of this study was to evaluate the biological control ability of native Bacillus species on the basis of ...

  6. Profile of cry from native Bacillus thuringiensis isolates and ...

    African Journals Online (AJOL)

    The characterization of 255 Bacillus thuringiensis isolates of Coorg, Sharavatti and BR hills, containing genes known to be active against coleopteran and lepidopteran insect species was done through PCR amplification using the specific and degenerate primers. The isolates were also tested for their insecticidal activity ...

  7. Mutational analysis of a CBM family 5 chitin-binding domain of an alkaline chitinase from Bacillus sp. J813.

    Science.gov (United States)

    Uni, Fumiya; Lee, Sunmi; Yatsunami, Rie; Fukui, Toshiaki; Nakamura, Satoshi

    2012-01-01

    Chitinase J from alkaliphilic Bacillus sp. J813 comprises a glycoside hydrolase (GH) family 18 catalytic domain (CatD), a fibronectin type III like domain, and a carbohydrate-binding module (CBM) family 5 chitin-binding domain (ChBD). It has been suggested that the ChBD binds to insoluble chitin and enhances its degradation by the CatD. To investigate the roles of two aromatic residues (Trp541 and Trp542), which are exposed on the surface of the ChBD, mutational analysis was performed. Single and double mutations of the two aromatic residues decreased binding and hydrolyzing abilities toward insoluble chitin. This result suggests that the ChBD binds to chitin by hydrophobic interactions via two surface-exposed aromatic residues. However, the double mutant, which has no such aromatic residue, bound to chitin at pH 5.2, probably by electrostatic interactions. Moreover, the ChBD bound to insoluble chitosan by electrostatic interactions.

  8. Bacillus terrae sp. nov. isolated from Cistus ladanifer rhizosphere soil.

    Science.gov (United States)

    Díez-Méndez, Alexandra; Rivas, Raúl; Mateos, Pedro F; Martínez-Molina, Eustoquio; Santín, Primitivo Julio; Sánchez-Rodríguez, Juan Antonio; Velázquez, Encarna

    2017-05-01

    A bacterial strain designated RA9T was isolated from a root of Cistus ladanifer in Spain. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate into the genus Bacillus with its closest relatives being Bacillus fortis R-6514T and Bacillus fordii R-7190T with 98.2 % similarity in both cases. DNA-DNA hybridization studies showed mean relatedness values of 29 and 30 %, respectively, between strain RA9T and the type strains of B. fortis and B. fordii. Cells of the isolate were Gram-stain-positive, motile, sporulating rods. Catalase and oxidase were positive. Gelatin, starch and casein were not hydrolysed. Menaquinone MK-7 was the only menaquinone detected and iso-C15 : 0 and anteiso-C15 : 0 were the major fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, one unidentifed glycolipid and one unidentified lipid. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 43.1 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RA9T should be considered as representing a novel species of the genus Bacillus, for which the name Bacillus terrae sp. nov. is proposed. The type strain is RA9T (=LMG 29736T=CECT 9170T).

  9. Resistance to antimicrobials and acid and bile tolerance of Bacillus spp isolated from Bikalga, fermented seeds of Hibiscus sabdariffa

    DEFF Research Database (Denmark)

    Compaore, Clarisse S.; Jensen, Lars Bogø; Diawara, Brehima

    2013-01-01

    In the aim of selecting starter cultures, thirteen species of Bacillus spp. including six Bacillus subtilis ssp. subtilis, four Bacillus licheniformis and three Bacillus amyloliquefaciens ssp. plantarum isolated from traditional Bikalga were investigated. The study included, for all isolates, genes...... ssp. subtilis G2, H4, C6, I7 and B. amyloliquefaciens ssp. plantarum A4, I8, G3 were susceptible to most antimicrobials tested while all B. licheniformis isolates showed high resistance level. The resistance observed towards the antimicrobials (chloramphenicol, erythromycin, kanamycin, penicillin...

  10. Bacillus pumilus SAFR-032 isolate

    Science.gov (United States)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  11. PCR detection of cytK gene in Bacillus cereus group strains isolated from food samples.

    Science.gov (United States)

    Oltuszak-Walczak, Elzbieta; Walczak, Piotr

    2013-11-01

    A method for detection of the cytotoxin K cytK structural gene and its active promoter preceded by the PlcR-binding box, controlling the expression level of this enterotoxin, was developed. The method was applied for the purpose of the analysis of 47 bacterial strains belonging to the Bacillus cereus group isolated from different food products. It was found that the majority of the analyzed strains carried the fully functional cytK gene with its PlcR regulated promoter. The cytK gene was not detected in four emetic strains of Bacillus cereus carrying the cesB gene and potentially producing an emetic toxin - cereulide. The cytotoxin K gene was detected in 4 isolates classified as Bacillus mycoides and one reference strain B. mycoides PCM 2024. The promoter region and the N-terminal part of the cytK gene from two strains of B. mycoides (5D and 19E) showed similarities to the corresponding sequences of Bacillus cereus W23 and Bacillus thuringiensis HD-789, respectively. It was shown for the first time that the cytK gene promoter region from strains 5D and 19E of Bacillus mycoides had a similar arrangement to the corresponding sequence of Bacillus cereus ATCC 14579. The presence of the cytK gene in Bacillus mycoides shows that this species, widely recognized as nonpathogenic, may pose potential biohazard to human beings. © 2013.

  12. Identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp.

    Science.gov (United States)

    Fernández-No, I C; Böhme, K; Caamaño-Antelo, S; Barros-Velázquez, J; Calo-Mata, P

    2015-04-01

    The main goal of this work was the identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp. that may be useful for typing purposes. These species include, among others, Bacillus cereus, an important pathogenic species involved in food poisoning, and Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus, which are causative agents of food spoilage described as responsible for foodborne disease outbreaks. With this purpose in mind, 52 Bacillus strains isolated from culture collections and fresh and processed food were considered. SNP type "Y" at sites 212 and 476 appeared in the majority of B. licheniformis studied strains. SNP type "R" at site 278 was detected in many strains of the B. subtilis/Bacillus amyloliquefaciens group, while polymorphism "Y" at site 173 was characteristic of the majority of strains of B. cereus/Bacillus thuringiensis group. The analysis of SNPs provided more intra-specific information than phylogenetic analysis in the cases of B. cereus and B. subtilis. Moreover, this study describes novel SNPs that should be considered when designing 16S rRNA-based primers and probes for multiplex-PCR, Real-Time PCR and microarray systems for foodborne Bacillus spp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms

    Science.gov (United States)

    Rosenberg, Gili; Steinberg, Nitai; Oppenheimer-Shaanan, Yaara; Olender, Tsvia; Doron, Shany; Ben-Ari, Julius; Sirota-Madi, Alexandra; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2016-01-01

    Bacillus subtilis biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria B. subtilis and related Bacillus species. We found that proximity between the biofilms triggered recruitment of motile B. subtilis cells, which engulfed the competing Bacillus simplex colony. Upon interaction, B. subtilis secreted surfactin and cannibalism toxins, at concentrations that were inert to B. subtilis itself, which eliminated the B. simplex colony, as well as colonies of Bacillus toyonensis. Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in B. subtilis biofilm lost its native plasmid, leading to increased virulence against the competing Bacillus species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact. PMID:28721238

  14. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain.

    Science.gov (United States)

    Ruiz-García, Cristina; Béjar, Victoria; Martínez-Checa, Fernando; Llamas, Inmaculada; Quesada, Emilia

    2005-01-01

    Two Gram-positive, endospore-forming bacterial strains, CR-502T and CR-14b, which produce surfactant molecules are described. Phenotypic tests and phylogenetic analyses showed these strains to be members of the genus Bacillus and related to the species Bacillus atrophaeus, Bacillus mojavensis, Bacillus subtilis, Bacillus vallismortis and Bacillus amyloliquefaciens, although they differ from these species in a number of phenotypic characteristics. DNA-DNA hybridization confirmed that they show less than 20 % hybridization with the above-mentioned species and therefore represent a novel species of Bacillus. The DNA G+C content is 46.4 mol% in strain CR-502T and 46.1 mol% in strain CR-14b. The main fatty acids in strain CR-502T are 15 : 0 anteiso (32.70 %), 15 : 0 iso (29.86 %) and 16 : 0 (13.41 %). The main quinone in strain CR-502T is MK-7 (96.6 %). In the light of the polyphasic evidence gathered in this study, it is proposed that these strains be classified as a novel species of the genus Bacillus, with the name Bacillus velezensis sp. nov. The type strain (CR-502T=CECT 5686T=LMG 22478T) was isolated from a brackish water sample taken from the river Vélez at Torredelmar in Málaga, southern Spain.

  15. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related...... to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  16. Bacillus thuringiensis (Bt)

    Science.gov (United States)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  17. Description of Bacillus kexueae sp. nov. and Bacillus manusensis sp. nov., isolated from hydrothermal sediments.

    Science.gov (United States)

    Sun, Qing-Lei; Yu, Chao; Luan, Zhen-Dong; Lian, Chao; Hu, Yong-Hua; Sun, Li

    2018-03-01

    Two Gram-staining-positive, strictly aerobic bacilli, designated as strains Ma50-5 T and Ma50-6 T , were isolated from the hydrothermal sediments of Manus Basin in the western Pacific Ocean. Based on 16S rRNA gene sequence, strains Ma50-5 T and Ma50-6 T were most closely related to Bacillus alveayuensis (97.0 and 97.2 % identity, respectively). The 16S rRNA gene sequence identity between strains Ma50-5 T and Ma50-6 T was 97.4 %. The identities between strains Ma50-5 T and Ma50-6 T and other closely related organisms were below 97.0 %. The G+C contents of the genomic DNA of strains Ma50-5 T and Ma50-6 T were 43.4 and 47.6 mol%, respectively. The major fatty acids (>10 %) of both strains were iso-C15 : 0 and iso-C17 : 0. The predominant isoprenoid quinone detected in both strains was menaquinone-7. Phylogenetic, physiological, biochemical and morphological analyses suggested that strains Ma50-5 T and Ma50-6 T represent two novel species of the genus Bacillus, for which the names Bacillus kexueae sp. nov. (type strain Ma50-5 T =KCTC 33881 T =CCTCC AB 2017020 T ) and Bacillus manusensis sp. nov. (type strain Ma50-6 T =KCTC 33882 T =CCTCC AB 2017019 T ), respectively, are proposed.

  18. Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on pre-incubation conditions

    DEFF Research Database (Denmark)

    Thorsen, Line; Budde, Birgitte Bjørn; Henrichsen, Lars

    2009-01-01

    Emetic toxin (cereulide) formation was recently identified in a psychrotolerant species, Bacillus weihenstephanensis[Thorsen, L., Hansen, B.M., Nielsen, K.F.,Hendriksen, N.B., Phipps, R.K., Budde, B.B., 2006. Characterization ofemetic Bacillus weihenstephanensisis, a new cereulide-producing bacte......Emetic toxin (cereulide) formation was recently identified in a psychrotolerant species, Bacillus weihenstephanensis[Thorsen, L., Hansen, B.M., Nielsen, K.F.,Hendriksen, N.B., Phipps, R.K., Budde, B.B., 2006. Characterization ofemetic Bacillus weihenstephanensisis, a new cereulide......-producing bacterium. Applied and EnvironmentalMicrobiology, 72, 5118-5121.]. Although recent findings indicated B. weihenstephanensis as a cereulide producer only limited information is available regarding environmental conditions affecting cereulide production. In the present study a model agar system was used....... weihenstephanensis MC67 occurred in stationary growth phase, as previously observed for B. cereus, and biomass formation and cereulide formation showed a linear correlation. During incubation at 5 °C for 1, 2 and 3 weeks growth was inhibited and as a consequence no detectable cereulide production occurred for any...

  19. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides

    Science.gov (United States)

    Perez, Karla J.; Viana, Jaime dos Santos; Lopes, Fernanda C.; Pereira, Jamile Q.; dos Santos, Daniel M.; Oliveira, Jamil S.; Velho, Renata V.; Crispim, Silvia M.; Nicoli, Jacques R.; Brandelli, Adriano; Nardi, Regina M. D.

    2017-01-01

    Several products of industrial interest are produced by Bacillus, including enzymes, antibiotics, amino acids, insecticides, biosurfactants and bacteriocins. This study aimed to investigate the potential of two bacterial isolates (P5 and C3) from puba, a regional fermentation product from cassava, to produce multiple substances with antimicrobial and surface active properties. Phylogenetic analyses showed close relation of isolates P5 and C3 with Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. Notably, Bacillus sp. P5 showed antimicrobial activity against pathogens such as Listeria monocytogenes and Bacillus cereus, in addition to antifungal activity. The presence of genes encoding pre-subtilosin (sboA), malonyl CoA transacylase (ituD), and the putative transcriptional terminator of surfactin (sfp) were detected in Bacillus sp. P5, suggesting the production of the bacteriocin subtilosin A and the lipopeptides iturin A and surfactin by this strain. For Bacillus sp. C3 the presence of sboA and spas (subtilin) genes was observed by the first time in members of B. cereus cluster. Bacillus sp. P5 showed emulsifying capability on mineral oil, soybean biodiesel and toluene, while Bacillus sp. C3 showed emulsifying capability only on mineral oil. The reduction of the surface tension in culture medium was also observed for strain P5, confirming the production of surface-active compounds by this bacterium. Monoprotonated molecular species and adducts of sodium and potassium ions of surfactin, iturin, and fengycin were detected in the P5 culture medium. Comparative MS/MS spectra of the peak m/z 1030 (C14 surfactin A or C15 surfactin B [M+Na]+) and peak m/z 1079 (C15 iturin [M+Na]+) showed the same fragmentation profile of standards, confirming the molecular identification. In conclusion, Bacillus sp. P5 showed the best potential for the production of antifungal, antibacterial, and biosurfactant substances. PMID:28197131

  20. TRANSDUCTION OF BACILLUS LICHENIFORMIS AND BACILLUS SUBTILIS BY EACH OF TWO PHAGES1

    Science.gov (United States)

    Taylor, Martha J.; Thorne, Curtis B.

    1963-01-01

    Taylor, Martha J. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and Curtis B. Thorne. Transduction of Bacillus licheniformis and Bacillus subtilis by each of two phages. J. Bacteriol. 86:452–461. 1963.—A second transducing bacteriophage, designated SP-15, was isolated from the same soil-sample culture filtrate that supplied the Bacillus subtilis transducing phage, SP-10, reported earlier from this laboratory. SP-10 and SP-15 differ serologically and in several other respects, but share the ability to propagate on B. subtilis W-23-Sr (streptomycin-resistant) and B. licheniformis ATCC 9945a, and to mediate general transduction in either species when propagated homologously. Attempts to transduce between the species have failed. SP-10 forms plaques readily on both W-23-Sr and 9945a; SP-15 forms minute plaques on W-23-Sr and has shown no evidence of any lytic activity on 9945a. Maximal recoveries of prototrophic colonies from mixtures of SP-10 with auxotrophs of either W-23-Sr or 9945a were obtained only when excess phage was neutralized by post-transduction treatment with specific phage antiserum. Such treatment was not necessary for maximal recovery of transductants effected by SP-15. Unlike SP-10, SP-15 propagated on W-23-Sr did not transduce B. subtilis 168 (indole−). SP-15 transduced B. licheniformis more efficiently than did SP-10. Neither phage was able to transduce B. licheniformis as efficiently as it transduced B. subtilis. The differing influences of multiplicity of infection were compared for the two phages in both species. PMID:14066421

  1. Bacillus praedii sp. nov., isolated from purplish paddy soil.

    Science.gov (United States)

    Liu, Bo; Liu, Guo-Hong; Sengonca, Cetin; Schumann, Peter; Wang, Jie-Ping; Zhu, Yu-Jing; Liu, Qin-Ying; Wang, Ming-Kuang

    2017-08-01

    A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterium, designated strain FJAT-25547T, was isolated from the purplish paddy soil collected from Linshan Township, Yanting Prefecture of Sichuan Province in PR China (31° 16' N 105° 27' E). Growth was achieved aerobically at temperatures between 15 and 40 °C (optimum 30 °C), with between 0 and 10.0 % NaCl (w/v) (optimum 4 %) and in the range of pH 5.0-12.0 (optimum pH 9.0). The cell-wall peptidoglycan contained meso-diaminopimelic acid, and the main isoprenoid quinone was MK-7. The major fatty acids were iso-C15 : 0 (55.4 %), anteiso-C15 : 0 (22.2 %), iso-C16 : 0 (5.1 %) and iso-C14 : 0 (6.5 %). The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain FJAT-25547T was a member of the genus Bacillus and was most closely related to Bacillus horneckiae DSM 23495T (97.7 % similarity), Bacillus eiseniae A1-2T (97.5 %), Bacillus mesophilum IITR-54T (97.2 %) and Bacillus kochii WCC 4582T (97.0 %). The average nucleotide identity value between strain FJAT-25547T and the type strain of the most closely related species, B. horneckiae DSM 23495T, was 77.7 %, less than the proposed cut-off value of 96.0 % for differentiating species within the genus. The in silico DNA-DNA hybridization value of strain FJAT-25547T with the most closely related species was 22.7 %, Bacillus for which the name Bacillus praedii sp. nov. (type strain FJAT-25547T=CCTCC AB 2015208T=DSM 101002T) is proposed.

  2. Monitoring the ecology of Bacillus during Daqu incubation, a fermentation starter, using culture-dependent and culture-independent methods.

    Science.gov (United States)

    Yan, Zheng; Zheng, Xiao-Wei; Han, Bei-Zhong; Han, Jian-Shu; Nout, M J Robert; Chen, Jing-Yu

    2013-05-01

    Daqu, a traditional fermentation starter, has been used to produce attractively flavored foods such as vinegar and Chinese liquor for thousands of years. Although Bacillus spp. are one of the dominant microorganisms in Daqu, more precise information is needed to reveal why and how Bacillus became dominant in Daqu, and next, to assess the impact of Bacillus sp. on Daqu and its derived products. We combined culture-dependent and culture-independent methods to study the ecology of Bacillus during Daqu incubation. Throughout the incubation, 67 presumptive Bacillus spp. isolates were obtained, 52 of which were confirmed by 16S rDNA sequencing. The identified organisms belonged to 8 Bacillus species: B. licheniformis, B. subtilis, B. amyloliquefaciens, B. cereus, B. circulans, B. megaterium, B. pumilus, and B. anthracis. A primer set specific for Bacillus and related genera was used in a selective PCR study, followed by a nested DGGE PCR targeting the V9 region of the 16S rDNA. Species identified from the PCR-DGGE fingerprints were related to B. licheniformis, B. subtilis, B. amyloliquefaciens, B. pumilus, B. benzoevorans, and B. foraminis. The predominant species was found to be B. licheniformis. Certain B. licheniformis strains exhibited potent antimicrobial activities. The greatest species diversity occurred at the Liangmei stage of Daqu incubation. To date, we lack sufficient knowledge of Bacillus distribution in Daqu. Elucidating the ecology of Bacillus during Daqu incubation would enable the impact of Bacillus on Daqu to be accessed, and the quality and stabilization of Daqu-derived products to be optimized.

  3. SugE belongs to the small multidrug resistance (SMR) protein family involved in tributyltin (TBT) biodegradation and bioremediation by alkaliphilic Stenotrophomonas chelatiphaga HS2.

    Science.gov (United States)

    Hassan, Hamdy A

    2018-03-01

    Tributyltin (TBT) used in a variety of industrial processes, subsequent discharge into the environment, its fate, toxicity and human exposure are topics of current concern. TBT degradation by alkaliphilic bacteria may be a key factor in the remediation of TBT in high pH contaminated sites. In this study, Stenotrophomonas chelatiphaga HS2 were isolated and identified from TBT contaminated site in Mediterranean Sea. S. chelatiphaga HS2 has vigor capability to transform TBT into dibutyltin and monobutyltin (DBT and MBT) at pH 9 and 7% NaCl (w/v). A gene was amplified and characterized from strain HS2 as SugE protein belongs to SMR protein family, a reverse transcription polymerase chain reaction analysis confirmed that SugE protein involved in the TBT degradation by HS2 strain. TBT bioremediation was investigated in stimulated TBT contaminated sediment samples (pH 9) using S chelatiphaga HS2 in association with E. coli BL21 (DE3)-pET28a(+)-sugE instead of S chelatiphaga HS2 alone reduced significantly the TBT half-life from 12d to 5d, although no TBT degradation appeared using E. coli BL21 (DE3)-pET28a(+)-sugE alone. This finding indicated that SugE gene increased the rate and degraded amount of TBT and is necessary in enhancing TBT bioremediation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Screening and Selection of Medium Components for Cyclodextrin Glucanotransferase Production by New Alkaliphile Microbacterium terrae KNR 9 Using Plackett-Burman Design.

    Science.gov (United States)

    Rajput, Kiransinh N; Patel, Kamlesh C; Trivedi, Ujjval B

    2016-01-01

    Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) production using new alkaliphile Microbacterium terrae KNR 9 was investigated by submerged fermentation. Statistical screening for components belonging to different categories, namely, soluble and raw starches as carbon sources, complex organic and inorganic nitrogen sources, minerals, a buffering agent, and a surfactant, has been carried out for CGTase production using Plackett-Burman factorial design. To screen out k (19), number of variables, k + 1 (20), number of experiments, were performed. Among the fourteen components screened, four components, namely, soluble starch, corn flour, yeast extract, and K2HPO4, were identified as significant with reference to their concentration effect and corresponding p value. Although soluble starch showed highest significance, comparable significance was also observed with corn flour and hence it was selected as a sole carbon source along with yeast extract and K2HPO4 for further media optimization studies. Using screened components, CGTase production was increased to 45% and 87% at shake flask level and laboratory scale fermenter, respectively, as compared to basal media.

  5. Structure-based protein engineering for thermostable and alkaliphilic enhancement of endo-β-1,4-xylanase for applications in pulp bleaching.

    Science.gov (United States)

    Boonyapakron, Katewadee; Jaruwat, Aritsara; Liwnaree, Benjamas; Nimchua, Thidarat; Champreda, Verawat; Chitnumsub, Penchit

    2017-10-10

    In the pulp bleaching industry, enzymes with robust activity at high pH and temperatures are desirable for facilitating the pre-bleaching process with simplified processing and minimal use of chlorinated compounds. To engineer an enzyme for this purpose, we determined the crystal structure of the Xyn12.2 xylanase, a xylan-hydrolyzing enzyme derived from the termite gut symbiont metagenome, as the basis for structure-based protein engineering to improve Xyn12.2 stability in high heat and alkaline conditions. Engineered cysteine pairs that generated exterior disulfide bonds increased the k cat of Xyn12.2 variants and melting temperature at all tested conditions. These improvements led to up to 4.2-fold increases in catalytic efficiency at pH 9.0, 50°C for 1h and up to 3-fold increases at 60°C. The most effective variants, XynTT and XynTTTE, exhibited 2-3-fold increases in bagasse hydrolysis at pH 9.0 and 60°C compared to the wild-type enzyme. Overall, engineering arginines and phenylalanines for increased pK a and hydrogen bonding improved enzyme catalytic efficiency at high stringency conditions. These modifications were the keys to enhancing thermostability and alkaliphilicity in our enzyme variants, with XynTT and XynTTTE being especially promising for their application to the pulp and paper industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  7. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    Science.gov (United States)

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis. PMID:6172418

  8. Persistence of Bacillus thuringiensis subsp. kurstaki in Urban Environments following Spraying▿†‡

    Science.gov (United States)

    Van Cuyk, Sheila; Deshpande, Alina; Hollander, Attelia; Duval, Nathan; Ticknor, Lawrence; Layshock, Julie; Gallegos-Graves, LaVerne; Omberg, Kristin M.

    2011-01-01

    Bacillus thuringiensis subsp. kurstaki is applied extensively in North America to control the gypsy moth, Lymantria dispar. Since B. thuringiensis subsp. kurstaki shares many physical and biological properties with Bacillus anthracis, it is a reasonable surrogate for biodefense studies. A key question in biodefense is how long a biothreat agent will persist in the environment. There is some information in the literature on the persistence of Bacillus anthracis in laboratories and historical testing areas and for Bacillus thuringiensis in agricultural settings, but there is no information on the persistence of Bacillus spp. in the type of environment that would be encountered in a city or on a military installation. Since it is not feasible to release B. anthracis in a developed area, the controlled release of B. thuringiensis subsp. kurstaki for pest control was used to gain insight into the potential persistence of Bacillus spp. in outdoor urban environments. Persistence was evaluated in two locations: Fairfax County, VA, and Seattle, WA. Environmental samples were collected from multiple matrices and evaluated for the presence of viable B. thuringiensis subsp. kurstaki at times ranging from less than 1 day to 4 years after spraying. Real-time PCR and culture were used for analysis. B. thuringiensis subsp. kurstaki was found to persist in urban environments for at least 4 years. It was most frequently detected in soils and less frequently detected in wipes, grass, foliage, and water. The collective results indicate that certain species of Bacillus may persist for years following their dispersal in urban environments. PMID:21926205

  9. Protein and antigenic heterogeneity among isolates of Bacillus piliformis.

    OpenAIRE

    Riley, L K; Besch-Williford, C; Waggie, K S

    1990-01-01

    Protein and antigenic heterogeneity among isolates of Bacillus piliformis, the etiologic agent of Tyzzer's disease, were investigated. The seven isolates utilized in this study were originally isolated from naturally infected animals of different animal species and diverse geographical locations. Isolates were propagated in mammalian cell lines, and bacterial extracts were prepared. Protein and antigenic profiles were compared among isolates, using Coomassie blue-stained polyacrylamide gels a...

  10. Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus.

    Science.gov (United States)

    Zribi-Maaloul, Emna; Trabelsi, Imen; Elleuch, Lobna; Chouayekh, Hichem; Ben Salah, Riadh

    2013-10-01

    This work aimed to study the potential of 155 strains of Bacillus sp., isolated from a collection of Tunisian microorganisms, for polyhydroxyalcanoates production. The strains were submitted to a battery of standard tests commonly used for determining bioplastic properties. The findings revealed that two of the isolates, namely Bacillus US 163 and US 177, provided red excitations at a wavelength of approximately 543 nm. The polyhydroxyalcanoates produced by the two strains were purified. Gas chromatography-mass spectroscopy (GC-MS), Fourier transformed infrared spectroscopy (FTIR), and gel permeation chromatography (GPC) were used to characterize the two biopolymers. Bacillus US 163 was noted to produce a poly methyl-3-hydroxy tetradecanoic acid (P-3HTD) with an average molecular weight of 455 kDa, a completely amorphous homopolymer without crystallinity. The US 177 strain produced a homopolymer of methyl-3-hydroxy octadecanoic acid (P3-HOD) with an average molecular weight of 555 kDa. Exhibiting the highest performance, US 163 and US 177 were submitted to 16S rRNA gene sequencing, and the results revealed that they belonged to the Bacillus cereus species. Overall, the findings indicated that the Bacilli from petroleum soil have a number of promising properties that make them promising candidates for bioplastic production. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Fungicidal effect of bacteriocins harvested from Bacillus spp.

    Directory of Open Access Journals (Sweden)

    Adetunji, V. O.

    2013-01-01

    Full Text Available Aims: This study investigated the ability of bacteriocins isolated from Bacillus spp. (Bacillus species to inhibit fourdifferent yeast isolates obtained from common food products (nono, yoghurt, ogi and cheese commonly consumed byNigerians with minimal heat treatment.Methodology and results: Forty-five Bacillus spp. was isolated and identified from common food products usingcultural, morphological, physiological and biochemical characteristics. These isolates were tested for antimicrobialactivity against Salmonella enteritidis (3, Micrococcus luteus (1 and Staphylococcus aureus (2. Eight bacteriocinproducing strains were identified from an over- night broth culture centrifugated at 3500 revolutions for five minutes.Fungicidal effects of these bacteriocins were tested against four yeast strains using the Agar Well Diffusion method. Thebacteriocins produced wide zones of inhibition ranging from 5.9±0.000 to 24.00±0.000 mm against the 4 yeast strainstested. There was a significant difference (at p<0.05 between the yeast organisms and the bacteriocins from theBacillus spp.Conclusion, significance and impact of study: The study reveals the antifungal property of bacteriocins from Bacillusspp. and serves therefore as a base for further studies in its use in the control of diseases and extension of shelf-life ofproducts prone to fungi contamination.

  12. Laboratory Assessment of the Effects of Bacillus thuringiensis on Native Lepidoptera

    Science.gov (United States)

    John W. Peacock; Dale F. Schweitzer; Jane L. Carter; Normand R. Dubois

    1998-01-01

    The effect of 2 formulations of Bacillus thuringiensis subsp. kurstaki (Foray 48B and Dipel 8AF) was evaluated on 42 species of native Lepidoptera in laboratory bioassays using instars that are present in the field at the time of gypsy moth suppression applications. Mortality was significant for 27 of the 42 species evaluated...

  13. Combating Fusarium Infection Using Bacillus-Based Antimicrobials

    Directory of Open Access Journals (Sweden)

    Noor Khan

    2017-11-01

    Full Text Available Despite efforts to control toxigenic Fusarium species, wilt and head-blight infections are destructive and economically damaging diseases that have global effects. The utilization of biological control agents in disease management programs has provided an effective, safe, and sustainable means to control Fusarium-induced plant diseases. Among the most widely used microbes for biocontrol agents are members of the genus Bacillus. These species influence plant and fungal pathogen interactions by a number of mechanisms such as competing for essential nutrients, antagonizing pathogens by producing fungitoxic metabolites, or inducing systemic resistance in plants. The multivariate interactions among plant-biocontrol agent-pathogen are the subject of this study, in which we survey the advances made regarding the research on the Bacillus-Fusarium interaction and focus on the principles and mechanisms of action among plant-growth promoting Bacillus species. In particular, we highlight their use in limiting and controlling Fusarium spread and infestations of economically important crops. This knowledge will be useful to define strategies for exploiting this group of beneficial bacteria for use as inoculants by themselves or in combination with other microbes for enhanced crop protection.

  14. Bacillus thuringiensis HD-1 Cry- : development of a safe, non-insecticidal simulant for Bacillus anthracis.

    Science.gov (United States)

    Bishop, A H; Robinson, C V

    2014-09-01

    A representative simulant for spores of Bacillus anthracis is needed for field testing. Bacillus thuringiensis is gaining recognition as a suitable organism. A strain that does not form the insecticidal, parasporal crystals that are characteristic of this species is a more accurate physical representative of B. anthracis spores. We developed noninsecticidal derivatives of two isolates of B. thuringiensis HD-1. Two plasmid-cured derivatives of B. thuringiensis HD-1, unable to make crystal toxins ('Cry(-) '), were isolated. These isolates and the existing Cry(-) strain, B. thuringiensis Al Hakam, were probed with PCR assays against the known insecticidal genes cry, vip and cyt. Their genomic DNA was sequenced to demonstrate a lack of insecticidal genes. This was confirmed by bioassays against a number of invertebrate species. Real-time PCR assays were developed to identify the B. thuringiensis HD-1 Cry(-) derivatives and an effective differential and selective medium was assessed. All three Cry(-) isolates are devoid of known insecticidal determinants. The B. thuringiensis HD-1 Cry(-) derivatives can easily be recovered from soil and identified by PCR with some selectivity. The B. thuringiensis HD-1 Cry(-) derivatives represent accurate, nongenetically manipulated simulants for B. anthracis with excellent human and environmental safety records. © 2014 Crown Copyright. Journal of Applied Microbiology © 2014 Society for Applied Microbiology This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  15. Bacillus zeae sp. nov., isolated from the rhizosphere of Zea mays.

    Science.gov (United States)

    Kämpfer, Peter; Busse, Hans-Jürgen; McInroy, John A; Hu, Chia-Hui; Kloepper, Joseph W; Glaeser, Stefanie P

    2017-05-01

    A Gram-positive-staining, aerobic organism, isolated from the rhizosphere of Zea mays, was investigated in detail. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-247T was grouped into the genus Bacillus, most closely related to Bacillus foraminis (98.4 %). The 16S rRNA gene sequence similarity to the sequences of the type strains of other species of the genus Bacillus was Bacillus. The polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminophospholipid. The major quinone was menaquinone MK-7, and the major polyamine was spermidine. The genomic DNA G+C content of strain JJ-247T was 44.5 mol%. DNA-DNA hybridizations with the type strain B. foraminis LMG 23147T resulted in values below 70 %. In addition, physiological and biochemical test results allowed a clear phenotypic differentiation of strain JJ-247T from B. foraminis. As a consequence, JJ-247T represents a novel species of the genus Bacillus, for which we propose the name Bacillus zeae sp. nov., with JJ-247T (=CCM 8726T=LMG 29876T) as the type strain.

  16. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens.

    Science.gov (United States)

    Wang, Li-Ting; Lee, Fwu-Ling; Tai, Chun-Ju; Kuo, Hsiao-Ping

    2008-03-01

    Strain BCRC 14193, isolated from soil, shared more than 99 % 16S rRNA gene sequence similarity with Bacillus amyloliquefaciens BCRC 11601(T) and Bacillus velezensis BCRC 17467(T). This strain was previously identified as B. amyloliquefaciens, based on DNA-DNA hybridization, but its DNA relatedness value with B. velezensis BCRC 17467(T) was 89 %. To investigate the relatedness of strain BCRC 14193, B. amyloliquefaciens and B. velezensis, the partial sequence of the gene encoding the subunit B protein of DNA gyrase (gyrB) was determined. B. velezensis BCRC 17467(T) shared high gyrB gene sequence similarity with B. amyloliquefaciens BCRC 14193 (98.4 %) and all of the B. amyloliquefaciens strains available (95.5-95.6 %). DNA-DNA hybridization experiments revealed high relatedness values between B. velezensis BCRC 17467(T) and B. amyloliquefaciens BCRC 11601(T) (74 %) and the B. amyloliquefaciens reference strains (74-89 %). Based on these data and the lack of phenotypic distinctive characteristics, we propose Bacillus velezensis as a later heterotypic synonym of Bacillus amyloliquefaciens.

  17. Impacts of Bacillus thuringiensis var. israelensis and Bacillus ...

    African Journals Online (AJOL)

    The study assessed the impact of bio-larvicides- Bacillus thuringiensis var. israelensis (Bti) and B. sphaericus (Bs) on anopheline mosquito larval densities in four selected areas of Lusaka urban district. Larval densities were determined using a standard WHO protocol at each study area prior to and after larviciding.

  18. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Science.gov (United States)

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  19. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Annika Gillis

    2014-07-01

    Full Text Available Many bacteriophages (phages have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  20. Characterization of Bacillus strains and hoax agents by protein profiling using automated microfluidic capillary electrophoresis.

    Science.gov (United States)

    McLaughlin, Jessica; Nelson, Michelle; McNevin, Dennis; Roffey, Paul; Gahan, Michelle E

    2014-09-01

    In recent times, but especially since 2001, bioterrorism has been of increasing concern. In addition to the use of biological agents, including Bacillus anthracis (anthrax), there have been numerous hoax white powder "scares." It is imperative to rapidly and accurately identify any suspicious powder as hazardous or hoax. Classical methods for identification typically rely on time-consuming cultivation or highly specific molecular tests which are limited if the agent is unknown. Faster and field portable methods for analysis of suspicious powders are urgently required. Potential hoax agents, including Bacillus species and household powders, were analyzed using automated microfluidic capillary electrophoresis to determine if protein profiling can distinguish between, and identify, samples. Distinctive protein profiles were produced for Bacillus species, with the presence and/or absence of certain bands, aiding identification. In particular B. anthracis Sterne strain contained a distinctive doublet band above 100 kDa which was not present in any other Bacillus species or hoax agents examined. The majority of powders produced distinctive banding that could enable the identification of the sample while simultaneously ruling out B. anthracis with a high degree of confidence. Results show automated microfluidic capillary electrophoresis can rapidly and reproducibly characterize Bacillus species and hoax agents based on protein profiles without the need for culture. Results were reproducible and there was enhanced resolution and rapidity compared to traditional protein profiling methods. Results show this technique is amenable to field use at a bioterrorism incident, thereby providing essential information to investigators regarding containment and treatment strategies.

  1. Bacillus 'next generation' diagnostics: Moving from detection towards sub-typing and risk related strain profiling

    Directory of Open Access Journals (Sweden)

    Monika eEhling-Schulz

    2013-02-01

    Full Text Available The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture based methods, which are still widely used. However, due to the extreme intraspecies diversity found in the genus Bacillus, DNA based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain dependent than species specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential, trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains.

  2. Bacillus solisilvae sp. nov., isolated from forest soil.

    Science.gov (United States)

    Pan, Tong; He, Hairong; Wang, Xiaochong; Shen, Yibo; Zhao, Junwei; Yan, Kai; Wang, Xiangjing; Liu, Chongxi; Zhang, Ji; Xiang, Wensheng

    2017-11-01

    A novel Gram-stain-positive, motile, endospore-forming, rod-shaped bacterial strain, NEAU-cbsb5 T , was isolated from forest soil from Changbai Mountain, Heilongjiang Province, China. The isolate grew at 15-40 °C (optimum 30 °C), at pH 6.0-8.0 (optimum pH 7.0) and in the presence of up to 4 % (w/v) NaCl, although NaCl was not required for growth. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NEAU-cbsb5 T formed a distinct lineage within the genus Bacillus and was most closely related to Bacillus acidiceler DSM 18954 T (99.1 % similarity) and Bacillus luciferensis JCM 12212 T (99.0 %). 16S rRNA gene sequence similarity to sequences of the type strains of other Bacillus species was less than 96.0 %. Average nucleotide identity (ANI) values between NEAU-cbsb5 T and its most closely related species were 78.72-84.75 % by ANIm, ANIb and OrthoANIu analysis. The in silico DNA-DNA hybridization values between strain NEAU-cbsb5 T and its close relatives B. acidiceler DSM 18954 T and B. luciferensis JCM 12212 T were both 23.80 %, again indicating they belong to different taxa. The major cellular fatty acids of NEAU-cbsb5 T were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unknown aminophospholipid. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the predominant menaquinones were MK-7 and MK-6. The genomic DNA G+C content was 33.0 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic data, strain NEAU-cbsb5 T was classified as a representative of a novel species in the genus Bacillus, for which the name Bacillus solisilvae sp. nov. is proposed. The type strain is NEAU-cbsb5 T (=CGMCC 1.14993 T =DSM 100485 T ).

  3. The Characterisation of an Alkali-Stable Maltogenic Amylase from Bacillus lehensis G1 and Improved Malto-Oligosaccharide Production by Hydrolysis Suppression

    Science.gov (United States)

    Abdul Manas, Nor Hasmaliana; Pachelles, Samson; Mahadi, Nor Muhammad; Illias, Rosli Md.

    2014-01-01

    A maltogenic amylase (MAG1) from alkaliphilic Bacillus lehensis G1 was cloned, expressed in Escherichia coli, purified and characterised for its hydrolysis and transglycosylation properties. The enzyme exhibited high stability at pH values from 7.0 to 10.0. The hydrolysis of β-cyclodextrin (β-CD) produced malto-oligosaccharides of various lengths. In addition to hydrolysis, MAG1 also demonstrated transglycosylation activity for the synthesis of longer malto-oligosaccharides. The thermodynamic equilibrium of the multiple reactions was shifted towards synthesis when the reaction conditions were optimised and the water activity was suppressed, which resulted in a yield of 38% transglycosylation products consisting of malto-oligosaccharides of various lengths. Thin layer chromatography and high-performance liquid chromatography analyses revealed the presence of malto-oligosaccharides with a higher degree of polymerisation than maltoheptaose, which has never been reported for other maltogenic amylases. The addition of organic solvents into the reaction further suppressed the water activity. The increase in the transglycosylation-to-hydrolysis ratio from 1.29 to 2.15 and the increased specificity toward maltopentaose production demonstrated the enhanced synthetic property of the enzyme. The high transglycosylation activity of maltogenic amylase offers a great advantage for synthesising malto-oligosaccharides and rare carbohydrates. PMID:25221964

  4. Identification and characterization of a novel alkaline α‑amylase Amy703 belonging to a new clade from Bacillus pseudofirmus.

    Science.gov (United States)

    Lu, Zhenghui; Tian, Chaoguang; Li, Aiying; Zhang, Guimin; Ma, Yanhe

    2014-05-01

    Alkaline α-amylases are of great interest in desizing processes and detergent industries. Here, an alkaline α-amylase gene amy703 from an alkaliphilic Bacillus pseudofirmus strain was cloned and sequenced. Its encoding product, Amy703, might represent a new clade of α-amylase family, because it shared only 35 % highest identity with all amylases characterized up to date and was not clustered into any subfamilies with amylase activity in glycoside hydrolase family 13. Heterologous expression and characterization of Amy703 showed that it is a metalloenzyme with maximal activity at 40 °C and pH 9.0. Its activity was significantly enhanced by 2- and 2.48-fold at the presence of 10 mM Ca2+ and Mg2+, respectively, while Hg2+ was a strong inhibitor of Amy703. Amy703 has a higher affinity (Km = 3.92 mg/ml) for soluble starch compared to many other alkaline amylases. The computer modeling of its structure indicated that Amy703 contains typical amylase domains and a loop region appearing to bind the substrates. Site-directed mutagenesis suggested that a conserved residue Glu550 was essential for the activity of Amy703, and proposed it working together with other two residues to constitute a catalytic triad (Asp521, Glu550, and Asp615).

  5. Molecular identification and pectate lyase production by Bacillus strains involved in cocoa fermentation.

    Science.gov (United States)

    Ouattara, Honoré G; Reverchon, Sylvie; Niamke, Sébastien L; Nasser, William

    2011-02-01

    We have previously reported the implication of Bacillus in the production of pectinolytic enzymes during cocoa fermentation. The objective of this work was to identify the Bacillus strains isolated from cocoa fermentation and study their ability to produce pectate lyase (PL) in various growth conditions. Ninety-eight strains were analyzed by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Four different banding patterns were obtained leading to the clustering of the bacterial isolates into 4 distinct ARDRA groups. A subset of representative isolates for each group was identified by 16S rRNA gene partial sequencing. Six species were identified: Bacillus subtilis, Bacillus pumilus, Bacillus sphaericus, Bacillus cereus, Bacillus thuringiensis, together with Bacillus fusiformis which was isolated for the first time from cocoa fermentation. The best PL producers, yielding at least 9 U/mg of bacterial dry weight, belonged to B. fusiformis, B. subtilis, and B. pumilus species while those belonging to B. sphaericus, B. cereus and B. thuringiensis generally showed a low level of activity. Two kinds of PL were produced, as revealed by isoelectrofocusing: one with a pI of 9.8 produced by B. subtilis and B. fusiformis, the other with a pI of 10.5 was produced by B. pumilus. Strains yielded about 2 fold more PL in a pectic compound medium than in glucose medium and maximum enzyme production occurred in the late stationary bacterial growth phase. Together all these results indicate that PL production in the bacilli studied is modulated by the growth phase and by the carbon source present in the medium. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment.

    Science.gov (United States)

    Bhattacharya, Amrik; Goyal, Nidhi; Gupta, Anshu

    2017-05-01

    Effluents from textile industries are highly colored due to vast use of various azo dyes and color is the first visual indicator of pollution. Biological treatment of textile effluent is often hampered due to the alkaline pH and high salinity; a common characteristic of many textile industrial wastewaters. Considering this, the present study explores the potential of a newly isolated halotolerant and alkaliphilic bacterium Nesterenkonia lacusekhoensis EMLA3 for degradation of methyl red (MR) dye under alkaline condition. Strain EMLA3 showed 97% degradation of 50 mg L -1 MR after 16 h at initial pH of 11.5 in nutrient medium. Dye degradation by the isolate is supported by the formation of low-molecular weight metabolites as divulge through GC-MS & FTIR studies Optimum dye degradation was observed in the pH range of 8.0-11.5 and temperature range of 30-35 °C. Significant MR degrading activity of the strain could be achieved in the presence of very high salt level (100-120 g L -1 NaCl) and in co-presence of different heavy metals. Application of strain to alkaline pH, salt, and heavy metals laden-textile effluent resulted in overall 83% dye removal from the effluent after 120 h of treatment under static condition. Furthermore, the property of microbe to drop-down the pH of wastewater from 11.5 to 8.60 after treatment also lowers the need of additional neutralization treatment. The entire study thus comes out with novel application of N. lacusekhoensis-a less explored extremophilic bacterium-for treatment of alkaline and salt-rich azo dye-containing wastewaters.

  7. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5

    Science.gov (United States)

    Wu, Chun-yuan; Zhuang, Li; Zhou, Shun-gui; Yuan, Yong; Yuan, Tian; Li, Fang-bai

    2013-01-01

    With the use of an alkaliphilic bacterium, Corynebacterium humireducens MFC-5, this study investigated the reduction of goethite (α-FeOOH) and degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) mediated by different humic substances (humics) and quinones in alkaline conditions (pH of 9.0). The results indicated that (i) using sucrose as the electron donor, the strain MFC-5 was capable of reducing anthraquinone-2,6-disulfonic acid (AQDS), anthraquinone-2-disulfonic acid (AQS), anthraquinone-2-carboxylic acid (AQC), humic acid (HA) and fulvic acid (FA), and its reducing capability ranked as AQC > AQS > AQDS > FA > HA; (ii) the anaerobic reduction of α-FeOOH and 2,4-D by the strain was insignificant, while the reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators; (iii) the Fe(III) reduction rate was positively related to the content of quinone functional groups and the electron-accepting capacities (EAC) of quinones/humics based on fourier-transform infrared spectroscopy (FT-IR) and electrochemical analyses; however, such a relationship was not found in 2,4-D degradation probably because quinone reduction was not the rate-limiting step of quinone-mediated reduction of 2,4-D. Using the example of α-FeOOH and 2,4-D, this study well demonstrated the important role of humics reduction on the Fe(III)/Fe(II) biogeochemical cycle and chlorinated organic compounds degradation in alkaline reducing environments. Funding Information This study was supported by the National Natural Science Foundation of China (Nos 41101211, 31070460, 41101477), and The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. PMID:23217085

  8. 76 FR 14289 - Bacillus thuringiensis

    Science.gov (United States)

    2011-03-16

    ... a plant- incorporated protectant in accordance with the terms of Experimental Use Permit (EUP) No... chemistry data for eCry3.1Ab were required for a human health effects assessment. Even so, preliminary... EPA granting registrations or experimental use permits of Bacillus thuringiensis-based pesticides or...

  9. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments

    Directory of Open Access Journals (Sweden)

    Ramalingam Radhakrishnan

    2017-09-01

    Full Text Available Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport

  10. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd Allah, Elsayed F

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas . Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus -induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus -induced physiological changes, including the regulation of water transport, nutrient up-take and

  11. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and

  12. Comparison of sampling methods to recover germinated Bacillus anthracis and Bacillus thuringiensis endospores from surface coupons.

    Science.gov (United States)

    Mott, T M; Shoe, J L; Hunter, M; Woodson, A M; Fritts, K A; Klimko, C P; Quirk, A V; Welkos, S L; Cote, C K

    2017-05-01

    In an attempt to devise decontamination methods that are both effective and minimally detrimental to the environment, we evaluated germination induction as an enhancement to strategies for Bacillus anthracis spore decontamination. To determine an optimal method for the recovery of germinating spores from different matrices, it was critical to ensure that the sampling procedures did not negatively impact the viability of the germinating spores possibly confounding the results and downstream analyses of field trial data. Therefore, the two main objectives of this study were the following: (i) development of an effective processing protocol capable of recovering the maximum number of viable germinating or germinated spores from different surface materials; and (ii) using a model system of spore contamination, employ this protocol to evaluate the potential applicability of germination induction to wide-area decontamination of B. anthracis spores. We examined parameters affecting the sampling efficiencies of B. anthracis and the surrogate species Bacillus thuringiensis on nonporous and porous materials. The most efficient extraction from all matrices was observed using PBS with 0·01% Tween 80 extraction buffer. The addition of a sonication and/or extended vortex treatment did not yield significant increases in spore or germinated spore recovery. Our data demonstrate that previous germination-induction experiments performed in suspension can be reproduced when Bacillus spores are deposited onto reference surfaces materials. Our proof of concept experiment illustrated that a germination pretreatment step significantly improves conventional secondary decontamination strategies and remediation plans. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  13. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    Science.gov (United States)

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  14. Conjugation by Mosquito Pathogenic Strains of Bacillus sphaericus

    Directory of Open Access Journals (Sweden)

    Margarita Correa

    1997-05-01

    Full Text Available A mosquito pathogenic strain of Bacillus sphaericus carried out the conjugal transfer of plasmid pAMß1 to other strains of its own and two other serotypes. However, it was unable to conjugate with mosquito pathogens from three other serotypes, with B. sphaericus of other DNA homology groups or with three other species of Bacillus. Conjugation frequency was highest with a strain having an altered surface layer (S layer. Conjugal transfer of pAMß1 was not detected in mosquito larval cadavers. B. sphaericus 2362 was unable to mobilize pUB110 for transfer to strains that had served as recipients of pAMß1. These observations suggest that it is unlikely that genetically engineered B. sphaericus carrying a recombinant plasmid could pass that plasmid to other bacteria

  15. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  16. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol.

    Science.gov (United States)

    Gomaa, Eman Zakaria

    2012-02-01

    Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na(+), Mg(2+), Cu(2+), and Ca(2+) caused enhancement of enzyme activities whereas they were markedly inhibited by Zn(2+), Hg(2+), and Ag(+). In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.

  17. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Viviane Zahner

    2013-02-01

    Full Text Available Multiple locus sequence typing (MLST was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR. Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap, encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.

  18. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus.

    Science.gov (United States)

    Dunlap, Christopher A; Kim, Soo-Jin; Kwon, Soon-Wo; Rooney, Alejandro P

    2015-07-01

    The rhizosphere-isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of commercial interest. Here, we present the draft genome sequence of B. methylotrophicus KACC 13105(T) ( = CBMB205(T)). Comparative genomic analysis showed only minor differences between this strain and the genome of the B. amyloliquefaciens subsp. plantarum type strain, with the genomes sharing approximately 95% of the same genes. The results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the type strains of these two taxa are highly similar. In fact, our results show that the type strain of B. amyloliquefaciens subsp. plantarum FZB42(T) ( = DSM 23117(T) = BGSC 10A6(T)) does not cluster with other members of the B. amyloliquefaciens taxon. Instead, it clusters well within a clade of strains that are assigned to B. methylotrophicus, including the type strain of that species. Therefore, we propose that the subspecies B. amyloliquefaciens subsp. plantarum should be reclassified as a later heterotypic synonym of B. methylotrophicus.

  19. Biodegradation of Pollutants from Winery wastewater by Using Fungi Aspergillus fumigatus and Bacterium Bacillus subtilis

    OpenAIRE

    , C.S. Mahajan; , D.V. Patil; , D.B. Sarode; , R.N. Jadhav; , S.B. Attarde

    2012-01-01

    Aspergillus fumigatus was used as fungal strain and Bacillus subtilis was used as bacterial species for the biodegradation of winery wastewater pollutants. The fungal strain and bacterial species was allowed to grow on PDA and NA slant. Loop full of both fungal and bacterial culture was inoculated and incubated at room temperature for 7 days. After the incubation the sample was filtered and analyzed for the chemical characteristics to verify the degradation capacity of both species,after trea...

  20. Aroma characteristics of Moutai-flavour liquor produced with Bacillus licheniformis by solid-state fermentation.

    Science.gov (United States)

    Zhang, R; Wu, Q; Xu, Y

    2013-07-01

    The potential of Bacillus licheniformis as a starter culture for aroma concentration improvement in the fermentation of Chinese Moutai-flavour liquor was elucidated. The volatile compounds produced by B. licheniformis were identified by GC-MS, in which C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds were the main ingredients. The strains B. licheniformis (MT-6 and MT-15) produced more volatile compound concentrations, mainly C4 compounds, than the type strain of B. licheniformis (ATCC 14580) at the fermentation temperature of 55°C. Meanwhile, more volatile compound concentrations were produced by B. licheniformis in solid-state fermentation than in submerged state fermentation. Thus, the strains MT-6 and MT-15 were used as the Bacillus starter culture for investigating Moutai-flavour liquor production. The distilled liquor inoculated with Bacillus starter culture was significantly different from the liquor without inoculum. This was particularly evident in the fore-run part of the distilled sample which was inoculated with Bacillus starter culture, where volatile compounds greatly increased compared to the control. Furthermore, the distilled liquor with Bacillus starter culture showed improved results in sensory appraisals. These results indicated that B. licheniformis was one of the main species influencing the aroma characteristics of Moutai-flavour liquor. This is the first report of an investigation into the effect of Bacillus starter cultures on the flavour features of Moutai-flavour liquor, which verified that Bacillus licheniformis can enhance aroma concentration in Moutai-flavour liquor. Bacillus starter culture brought C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds to the liquor, which gave a better result in sensory appraisals. © 2013 The Society for Applied Microbiology.

  1. Identification and Characterization of a Novel Thermophilic, Organic Solvent Stable Lipase of Bacillus from a Hot Spring.

    Science.gov (United States)

    Li, Jiang; Liu, Xiumeng

    2017-07-01

    A novel lipase gene lip256 was cloned and identified from the genomic library of hot spring strain Bacillus sp. HT19. The deduced amino acid sequence of lip256 has less than 32% identity to a predicted esterase (Cog1752) from Photobacterium leiognathi lrivu.4.1 and contains a novel motif (GTSAG) that differs from other clusters in the lipase superfamily. Following purification, a single band was obtained with a molecular mass of 33 kDa by SDS-PAGE, and the optimal temperature and pH for lipolytic activity of Lip25 were 70 °C and 9.0, respectively. Lip256 exhibited high activity at high temperatures, with 40% maximum activity at 80 °C and good stability at temperatures ranges between 50 and 80 °C. Additionally, the enzyme was highly stable in the presence of butyl-alcohol, glycerol, acetonitrile, pyridine, and urea. However, the presence of acetone, methanol, trichloromethane, petroleum ether, hexane, tert-butanol, isopropanol, dithiothreitol, ethylenediaminetetraacetic acid, polyhexamethylene biguanide, dimethyl sulfoxide, benzene, Triton X-100, Tween-20, Tween-80, and sodium dodecyl sulfate suppressed or absolutely inhibited enzyme activity. Furthermore, Ca 2+ , Mg 2+ , and Cu 2+ suppressed enzyme activity, whereas Na + , Fe 3+ , K + , Fe 2+ , and Sr 2+ enhanced enzyme activity. The unique characteristics of novel lipase Lip256, including its thermo-alkaliphilic performance, high tolerance toward metal ions, inhibitors, and detergents, and high stability in organic solvents, implied that this enzyme might be an interesting candidate for industrial processes.

  2. Levantamento de espécies de Odonata associadas à tanques de piscicultura e efeito de Bacillus thuringiensis var. israelensis sobre ninfas de Pantala flavescens (Fabricius, 1798 - DOI: 10.4025/actascibiolsci.v26i1.1655 Odonata species survey associated with psiculture tanks and Bacillus thuringiensis var. israelensis effect on Pantala flavescens (Fabricius, 1798 nymphs (Odonata: Libellulidae - DOI: 10.4025/actascibiolsci.v26i1.1655

    Directory of Open Access Journals (Sweden)

    Douglas Moisés Quintilhiano

    2004-04-01

    foram alimentadas com larvas de mosquito da Família Culicidae e peixes recém-nascidos da espécie Poecilia cf. vivípara (Schneider, 1801. Foram identificadas as seguintes espécies: Ischnura fluvialis Selys, 1876; Aphylla theodorina (Navas, 1933; Brachymesia furcata (Hagen, 1861; Erythrodiplax fusca (Rambur, 1842; Miathyria marcella (Selys, 1857; Micrathyria almeidai Santos, 1945; Micrathyria hesperis Ris, 1911; Orthemis discolor (Burmeister, 1839; Perithemis mooma Kirby, 1889 e P. flavescens. Não houve efeito significativo do produto microbiano sobre a espécie estudadaSeveral psiculture stations that deal with fingerlings or ornamental fishes rearing have presented some problems with larvae preying, post-larvae and fingerlings by Odonata Order insect nymphs. Thus, the aim of this work was to survey the Odonata species present in fish-raising tanks in two towns of the Midwest region of Minas Gerais, and also to evaluate the effect of Bacillus thuringiensis var. Barjac israelensis on Pantala flavescens nymphs (Fabricius, 1798 (Odonata: Libellulidae. Fortnightly collections were performed over a three month period. The adult insects were captured with entomological nets and the nymphs with fine mesh sieves, coupled to wooden handles. The captured nymphs were taken to the laboratory where they were individualized in 2L plastic foam boxes and sealed in its upper extremity with tulle. Soon after the adults emergence, they were killed, packed into envelopes and sent to be identified. The laboratory experiments were conducted in an acclimatized room at 25 ± 2°C, RH of 70 ± 10% and 12-hour photophase. Second instar P. flavescens nymphs were packed individually into plastic foam boxes containing 500mL of chlorine free water each one. When they were in the third, fifth and seventh instars, they were treated with B. thuringiensis var. israelensis through the microbial product Vectobac® in granulate formulation. The product was directly applied to the rearing container

  3. Identification of "Bacillus cellulasensis" strain NIO-1130(T) as a member of Bacillus altitudinis and emendation of the latter.

    Science.gov (United States)

    Liu, Yang; Lai, Qiliang; Shao, Zongze

    2016-10-01

    In the study by Mawlankar et al. in Arch Microbiol 198:83-89 (2016), the phylogenetic position of strain "Bacillus cellulasensis" NIO-1130(T) based on 16S rRNA and gyrB genes was inconsistent. Therefore, the aim of this study is to re-determine its taxonomic status using diverse genotypic approaches including single gene analysis, multilocus sequence analysis, and genomic analyses. The reconstructed phylogenetic trees based on 16S rRNA gene and six concatenated genes showed that "B. cellulasensis" NIO-1130(T) (=NCIM 5461(T) = CCTCC AB 2011126(T)) revealed the closest genetic relationship with type strain Bacillus altitudinis 41KF2b(T), with 98.6-100 % similarities of 16S rRNA gene, gyrB, pycA, pyrE, mutL, aroE, trpB, and six concatenated housekeeping genes. The high similarities for gene(s) sequences between "B. cellulasensis" NIO-1130(T) and B. altitudinis 41KF2b(T) indicated that they should be conspecific. The DNA G+C content for strain NIO-1130(T) was determined to be 41.3 mol% and identical to that of B. altitudinis 41KF2b(T). Moreover, 88.4 % of digital DNA-DNA hybridization and 98.7 % of average nucleotide identity values between two strains were much higher than the standard criteria for delineation of bacterial species, suggesting that they belonged to the same species. Therefore, the data from the combined genotypic analyses suggest that "Bacillus cellulasensis" should be classified as a member of Bacillus altitudinis.

  4. A mixed-species microarray for identification of food spoilage bacilli.

    Science.gov (United States)

    Caspers, Martien P M; Schuren, Frank H J; van Zuijlen, Andre C M; Brul, Stanley; Montijn, Roy C; Abee, Tjakko; Kort, Remco

    2011-04-01

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus sporothermodurans, Bacillus cereus and Bacillus coagulans, and 4 Geobacillus species, including Geobacillus stearothermophilus, Geobacillus thermocatenulatus, Geobacillus toebii and Geobacillus sp., in order to track food spoilage isolates from ingredient to product. The discriminating power of the array was evaluated with sets of 42 reference and 20 test strains. Bacterial isolates contain a within-species-conserved core genome comprising 68-88% of the entire genome and a non-conserved accessory genome comprising 7-22%. The majority of the core genome markers do not hybridise between species, thus they allow for efficient discrimination at the species level. The accessory genome array markers provide high-resolution discrimination at the level of individual isolates from a single species. In conclusion, the reported mixed-species microarray contains discriminating markers that allow rapid and cost-effective typing of Bacillus food spoilage bacteria in a wide variety of food products. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. A mixed-species microarray for identification of food spoilage bacilli

    NARCIS (Netherlands)

    Caspers, M.P.M.; Schuren, F.H.J.; van Zuijlen, A.C.M.; Brul, S.; Montijn, R.C.; Abee, T.; Kort, R.

    2011-01-01

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus

  6. A mixed-species microarray for identification of food spoilage bacilli

    NARCIS (Netherlands)

    Caspers, Martien P M; Schuren, Frank H J; van Zuijlen, Andre C M; Brul, Stanley; Montijn, Roy C; Abee, Tjakko; Kort, Remco

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus

  7. Pirated Siderophores Promote Sporulation in Bacillus subtilis.

    Science.gov (United States)

    Grandchamp, Gabrielle M; Caro, Lews; Shank, Elizabeth A

    2017-05-15

    In microbial communities, bacteria chemically and physically interact with one another. Some of these interactions are mediated by secreted specialized metabolites that act as either intraspecies or interspecies signals to alter gene expression and to change cell physiology. Bacillus subtilis is a well-characterized soil microbe that can differentiate into multiple cell types, including metabolically dormant endospores. We were interested in identifying microbial interactions that affected sporulation in B. subtilis Using a fluorescent transcriptional reporter, we observed that coculturing B. subtilis with Escherichia coli promoted sporulation gene expression via a secreted metabolite. To identify the active compound, we screened the E. coli Keio Collection and identified the sporulation-accelerating cue as the siderophore enterobactin. B. subtilis has multiple iron acquisition systems that are used to take up the B. subtilis- produced siderophore bacillibactin, as well as to pirate exogenous siderophores such as enterobactin. While B. subtilis uses a single substrate binding protein (FeuA) to take up both bacillibactin and enterobactin, we discovered that it requires two distinct genes to sporulate in response to these siderophores (the esterase gene besA for bacillibactin and a putative esterase gene, ybbA , for enterobactin). In addition, we found that siderophores from a variety of other microbial species also promote sporulation in B. subtilis Our results thus demonstrate that siderophores can act not only as bacterial iron acquisition systems but also as interspecies cues that alter cellular development and accelerate sporulation in B. subtilis IMPORTANCE While much is known about the genetic regulation of Bacillus subtilis sporulation, little is understood about how other bacteria influence this process. This work describes an interaction between Escherichia coli and B. subtilis that accelerates sporulation in B. subtilis The interaction is mediated by the E

  8. Seasonal Outbreak of Bacillus Bacteremia Associated With Contaminated Linen in Hong Kong.

    Science.gov (United States)

    Cheng, Vincent C C; Chen, Jonathan H K; Leung, Sally S M; So, Simon Y C; Wong, Shuk-Ching; Wong, Sally C Y; Tse, Herman; Yuen, Kwok-Yung

    2017-05-15

    A high seasonal incidence of Bacillus bacteremia was associated with the use of contaminated hospital linens. An outbreak investigation was conducted to study the incidence and source of Bacillus bacteremia during the baseline, outbreak, and postoutbreak period from 1 January 2012 through 31 July 2016 at a university-affiliated teaching hospital in Hong Kong. Replicate organism detection and counting plates were used for microbial screening of linen samples. The Bacillus species isolated from patient and linen samples were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and were phylogenetically analyzed. During the study period, a total of 113 207 blood cultures were collected from 43 271 patients, of which 978 (0.86%) specimens from 744 (1.72%) patients were identified as Bacillus species. The incidence of Bacillus bacteremia per 10 000 patient admissions and per 10 000 patient-days was significantly higher during the summer outbreak as compared with baseline and 1 year postoutbreak after cessation of the linen supply from the designated laundry and change of laundry protocol (39.97 vs 18.21 vs 2.27; 13.36 vs 5.61 vs 0.73; P Bacillus cereus group in 14 of 87 (16.1%) patients were phylogenetically associated with 9 linen sample isolates. Suboptimal conditions of hospital laundry contributed to the seasonal outbreak of Bacillus bacteremia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Inactivation of Bacillus atrophaeus by OH radicals

    Science.gov (United States)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He-H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  10. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    International Nuclear Information System (INIS)

    Hernández-Arias, A N; López-Callejas, R; De la Piedad Beneitez, A; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Barocio, S R; Muñoz-Castro, A E

    2012-01-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 10 3 -10 7 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ∼90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  11. Bacillus radicibacter sp. nov., a new bacterium isolated from root nodule of Oxytropis ochrocephala Bunge.

    Science.gov (United States)

    Wei, Xiu Li; Lin, Yan Bing; Xu, Lin; Han, Meng Sha; Dong, Dan Hong; Chen, Wei Min; Wang, Li; Wei, Ge Hong

    2015-10-01

    A Gram-positive, facultative anaerobic, rod-shaped, and endospore-forming strain, designated 53-2(T) was isolated from the root nodule of Oxytropis ochrocephala Bunge growing on Qilian mountain, China. The strain can grow at pH 7.0-8.0, 10-50 °C and tolerate up to 11% NaCl. Optimal growth occurred at pH 7.2 and 37 °C. The result of BLASTn search based on 16S rRNA gene sequence revealed that strain 53-2(T) , being closest related to Bacillus acidicola 105-2(T) , possessed remote similarity (less than 95.64%) to the species within genus Bacillus. The DNA G + C content was 37.8%. Chemotaxonomic data (major quinone is MK-7; major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipid, and aminoglycophospholipid; fatty acids are anteiso-C15: 0 , iso-C15:0 and anteiso-C17: 0 ) supported the affiliation of the isolate to the genus Bacillus. On the basis of physiological, phylogenetic, and biochemical properties, strain 53-2(T) represents a novel species within genus Bacillus, for which the name Bacillus radicibacter is proposed. The type strain is 53-2(T) (=DSM27302(T) =ACCC06115(T) =CCNWQLS5(T) ). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis.

    Science.gov (United States)

    Han, Cliff S; Xie, Gary; Challacombe, Jean F; Altherr, Michael R; Bhotika, Smriti S; Brown, Nancy; Bruce, David; Campbell, Connie S; Campbell, Mary L; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic, Mira; Doggett, Norman A; Fawcett, John J; Glavina, Tijana; Goodwin, Lynne A; Green, Lance D; Hill, Karen K; Hitchcock, Penny; Jackson, Paul J; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti, Stephanie; McMurry, Kim; Meincke, Linda J; Misra, Monica; Moseman, Bernice L; Mundt, Mark; Munk, A Christine; Okinaka, Richard T; Parson-Quintana, B; Reilly, Lee Philip; Richardson, Paul; Robinson, Donna L; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G; Thayer, Nina; Thompson, Linda S; Tice, Hope; Ticknor, Lawrence O; Wills, Patti L; Brettin, Thomas S; Gilna, Paul

    2006-05-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.

  13. Expression of the Lantibiotic Mersacidin in Bacillus amyloliquefaciens FZB42

    Science.gov (United States)

    Herzner, Anna Maria; Dischinger, Jasmin; Szekat, Christiane; Josten, Michaele; Schmitz, Stephanie; Yakéléba, Anja; Reinartz, Ricarda; Jansen, Andrea; Sahl, Hans-Georg; Piel, Jörn; Bierbaum, Gabriele

    2011-01-01

    Lantibiotics are small peptide antibiotics that contain the characteristic thioether amino acids lanthionine and methyllanthionine. As ribosomally synthesized peptides, lantibiotics possess biosynthetic gene clusters which contain the structural gene (lanA) as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP), regulation (lanR, lanK), export (lanT(P)) and immunity (lanEFG). The lantibiotic mersacidin is produced by Bacillus sp. HIL Y-85,54728, which is not naturally competent. Methodology/Principal Findings The aim of these studies was to test if the production of mersacidin could be transferred to a naturally competent Bacillus strain employing genomic DNA of the producer strain. Bacillus amyloliquefaciens FZB42 was chosen for these experiments because it already harbors the mersacidin immunity genes. After transfer of the biosynthetic part of the gene cluster by competence transformation, production of active mersacidin was obtained from a plasmid in trans. Furthermore, comparison of several DNA sequences and biochemical testing of B. amyloliquefaciens FZB42 and B. sp. HIL Y-85,54728 showed that the producer strain of mersacidin is a member of the species B. amyloliquefaciens. Conclusions/Significance The lantibiotic mersacidin can be produced in B. amyloliquefaciens FZB42, which is closely related to the wild type producer strain of mersacidin. The new mersacidin producer strain enables us to use the full potential of the biosynthetic gene cluster for genetic manipulation and downstream modification approaches. PMID:21811596

  14. Influence of reactive oxygen species on the sterilization of microbes

    Science.gov (United States)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  15. Growth energetics of an alkaline serine protease-producing strain of Bacillus clausii during continuous cultivation

    DEFF Research Database (Denmark)

    Christiansen, Torben; Nielsen, Jens

    2002-01-01

    .93 mmol ATP/gDW/h. From these values it is concluded that the high oxygen consumption compared with other Bacillus species is due to a low efficiency in respiration resulting in a low P/O ratio. Finally, the energetic parameters were estimated for different architectures of the respiratory chain....

  16. A method for in Vivo radiolabeling Bacillus thuringiensis native δ-endotoxin crystals

    Science.gov (United States)

    C. Noah Koller; Leah S. Bauer; Robert M. Hollingworth

    1995-01-01

    The entomocidal CryIIIA δ-endotoxin protein of Bacillus thuringiensis var. tenebrionis is distinctive in chemistry and host range. In contrast to other δ-endotoxins, the CryIIIA parasporal crystals are toxic within the acidic midgut environment of several coleopteran species, particularly those in the family...

  17. Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

    NARCIS (Netherlands)

    Hernandez-Martinez, P.; Navarro-Cerrillo, G.; Caccia, S.; Maagd, de R.A.; Moar, W.J.; Ferre, J.; Escriche, B.; Herrero, S.

    2010-01-01

    Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes

  18. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction

    NARCIS (Netherlands)

    Abhyankar, W.; ter Beek, A.; Dekker, H.; Kort, R.; Brul, S.; de Koster, C.G.

    2011-01-01

    Species from the genus Bacillus have the ability to form endospores, dormant cellular forms that are able to survive heat and acid preservation techniques commonly used in the food industry. Resistance characteristics of spores towards various environmental stresses are in part attributed to their

  19. Bacillus subtilis at near-zero specific growth rates : Adaptations to extreme caloric restriction

    NARCIS (Netherlands)

    Overkamp, Wout

    2015-01-01

    Bacillus subtilis is an important soil-dwelling bacteria species that is used for the production of e.g. vitamins, enzymes and medicines. In both the natural and industrial environment the availability of energy sources can be limited. In contrary to a situation of complete ‘nutrient depletion’,

  20. IMPACT OF BT ( BACILLUS THURINGIENSIS ) CROPS ON BAT ACTIVITY IN SOUTH TEXAS AGROECOSYSTEMS

    Science.gov (United States)

    The widespread adoption of transgenic insecticidal crops raises concerns that nontarget species may be harmed and food webs disrupted. The goal of this research is to determine how transgenic Bt (Bacillus thuringiensis) crops impact the activity of Brazilian freetailed bats (Tada...

  1. Isolation and characterization of cellulolytic Bacillus licheniformis ...

    African Journals Online (AJOL)

    Eight cellulose degrading bacteria were isolated from compost and were identified as Bacillus licheniformis by 16S rRNA sequencing. Among the eight isolates, Bacillus licheniformis B4, B7 and B8 showed the highest cellulase activity. B. licheniformis B4 and B8 showed the maximum cellulase activity during the stationary ...

  2. Isolat Bacillus Pelarut Fosfat dari Kalimas Surabaya

    OpenAIRE

    Zulaika, Enny; Ulfiyati, Nadia

    2015-01-01

    Ketersediaan fosfat terlarut di dalam tanah sangat terbatas karena kecenderungannya terikat dengan mineral tanah membentuk fosfat kompleks. Bakteri pelarut fosfat, salah satunya adalah Bacillus, dapat digunakan untuk membantu ketersediaan fosfat terlarut di dalam tanah sehingga dapat menggantikan pupuk fosfat. Tujuan penelitian adalah untuk mengetahui potensi isolat Bacillus spp. koleksi laboratorium Mikrobiologi dan Bioteknologi Biologi ITS Surabaya dalam melarutkan fosfat. Potensi pelarutan...

  3. Disinfection of Vegetative Cells of Bacillus anthracis

    Science.gov (United States)

    2016-03-01

    Society for Microbiology ; New Orleans, LA, 2004. American Public Health Association. Standard Methods for the Examination of Water and Wastewater...Disinfection kinetics of vegetative cells of Bacillus anthracis in water with free available chlorine ([FAC] 2 mg/L) and monochloramine ([MC] 2 mg/L) were...anthracis. Bacillus anthracis cells Drinking water Chlorine demand-free (CDF

  4. Bacillus wudalianchiensis sp. nov., isolated from grass soils of the Wudalianchi scenic area.

    Science.gov (United States)

    Liu, Bo; Liu, Guo-Hong; Sengonca, Cetin; Schumann, Peter; Wang, Jie-Ping; Zhu, Yu-Jing; Zhang, Hai-Feng

    2017-08-01

    A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterium, designated FJAT-27215T, was isolated from grass soil collected from Wudalianchi in the Heilongjiang Province of China. Growth was observed at 10-60 °C (optimum 30 °C), in 0 and 3.0 % NaCl (optimum 0 %) and at pH 5.0-10.0 (optimum 7.0), respectively. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the isoprenoid quinone was MK7. The main fatty acids were iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0, and iso-C16 : 0. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidyl ethanolamine. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain FJAT-27215T to the genus Bacillus. Strain FJAT-27215T showed high sequence similarities to Bacillus encimensis SGD-V-25T (98.6 %), Bacillus badius NBRC 15713T (98.6 %), Domibacillus indicus SD111T (96.9 %) and Bacillus thermotolerans SgZ-8T (96.5 %). The average nucleotide identity values between strain FJAT-27215T and the type strains of closely related species were much lower than the 96 % threshold value for delineation of genomic prokaryotic species. The in silico DNA-DNA hybridization values between strain FJAT-27215T and the most closely related strain B. encimensis SGD-V-25T showed a similarity of 22.4 % and lower than 70 %, indicating that they belong to different taxa. The phenotypic characters and taxono-genomics study revealed that strain FJAT-27215T represents a novel Bacillus species, for which the name Bacillus wudalianchiensis sp. nov. is proposed. The type strain is FJAT-27215T (=CCTCC AB 2015266T=DSM 100757T).

  5. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    Science.gov (United States)

    2004-12-01

    13061 Neisseria lactamica .............................................................. 23970 Bacillus coagulans ...NEG Bacillus coagulane 7050 NEG NEG Bacillus cereus 13472 NEG NEG Bacillus licheniforms 12759 NEG NEG Bacillus cereus 13824 NEG NEG Bacillus ...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical

  6. Distinct clpP Genes Control Specific Adaptive Responses in Bacillus thuringiensis

    OpenAIRE

    Fedhila, Sinda; Msadek, Tarek; Nel, Patricia; Lereclus, Didier

    2002-01-01

    ClpP and ClpC are subunits of the Clp ATP-dependent protease, which is ubiquitous among prokaryotic and eukaryotic organisms. The role of these proteins in stress tolerance, stationary-phase adaptive responses, and virulence in many bacterial species has been demonstrated. Based on the amino acid sequences of the Bacillus subtilis clpC and clpP genes, we identified one clpC gene and two clpP genes (designated clpP1 and clpP2) in Bacillus thuringiensis. Predicted proteins ClpP1 and ClpP2 have ...

  7. Bacillus depressus sp. nov., isolated from soil of a sunflower field.

    Science.gov (United States)

    Wei, Xuexin; Xin, Di; Xin, Yuhua; Zhang, Hao; Wang, Tianying; Zhang, Jianli

    2016-01-01

    A Gram-stain positive, rod-shaped, endospore-forming and aerobic bacterium, designated BZ1(T), was isolated from a soil sample collected from a sunflower field in Wuyuan county, Inner Mongolia, China. On the basis of 16S rRNA gene sequence analysis, the isolate was found to be a member of the genus Bacillus and the close phylogenetic relatives to be Bacillus gottheilii WCC 4585(T), Bacillus oceanisediminis H2(T), Bacillus mesonae FJAT-13985(T) and Bacillus horneckiae DSM 23495(T) with 98.3, 98.1, 98.0 and 97.6 % sequence similarity, respectively. Strain BZ1(T) was found to grow at 6-40 °C (optimum 30-33 °C), pH 6.0-9.0 (optimum pH 7.0) and 0-5.5 % (w/v) NaCl (optimum 0.5 %). The cell wall diamino acid of the peptidoglycan of strain BZ1(T) was identified as meso-diaminopimelic acid and the predominant respiratory quinone as MK-7. The major cellular fatty acids were found to be iso-C15:0, anteiso-C15:0 and iso-C14:0, and the polar lipids to consist of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The novel strain was found to have a DNA G + C content 44.5 mol%. DNA-DNA hybridization with closely related strains was low. Based on phenotypic, phylogenetic and chemotaxonomic results, it is concluded that strain BZ1(T) represents a novel species within the genus Bacillus, for which we propose the name Bacillus depressus sp. nov. The type strain is BZ1(T) (= CGMCC 1.15124(T) = KCTC 33643(T)).

  8. Bacillus cereus infection outbreak in captive psittacines.

    Science.gov (United States)

    Godoy, S N; Matushima, E R; Chaves, J Q; Cavados, C F G; Rabinovitch, L; Teixeira, R H F; Nunes, A L V; Melville, P; Gattamorta, M A; Vivoni, A M

    2012-12-28

    This study reports an uncommon epizootic outbreak of Bacillus cereus that caused the sudden death of 12 psittacines belonging to the species Anodorhynchus hyacinthinus (1 individual), Diopsittaca nobilis (1 individual), Ara severa (1 individual) and Ara ararauna (9 individuals) in a Brazilian zoo. Post-mortem examination of the animals reveled extensive areas of lung hemorrhage, hepatic congestion, hemorrhagic enteritis and cardiac congestion. Histopathological examination of the organs showed the presence of multiple foci of vegetative cells of Gram-positive bacilli associated with discrete and moderate mononuclear inflammatory cell infiltrate. Seventeen B. cereus strains isolated from blood and sterile organs of nine A. ararauna were analyzed in order to investigate the genetic diversity (assessed by Rep-PCR) and toxigenic profiles (presence of hblA, hblC and hblD; nheA, nheB and nheC as well as cytK, ces and entFM genes) of such strains. Amplification of genomic DNA by Rep-PCR of B. cereus strains generated two closely related profiles (Rep-PCR types A and B) with three bands of difference. All strains were classified as belonging to the toxigenic profile I which contained HBL and NHE gene complexes, entFM and cytK genes. Altogether, microbiological and histopathological findings and the evidence provided by the success of the antibiotic prophylaxis, corroborate that B. cereus was the causative agent of the infection that killed the birds. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed.

    Science.gov (United States)

    Larsen, Nadja; Thorsen, Line; Kpikpi, Elmer Nayra; Stuer-Lauridsen, Birgitte; Cantor, Mette Dines; Nielsen, Bea; Brockmann, Elke; Derkx, Patrick M F; Jespersen, Lene

    2014-02-01

    Bacillus spp. are commonly used as probiotic species in the feed industry, however, their benefits need to be confirmed. This study describes a high throughput screening combined with the detailed characterization of endospore-forming bacteria with the aim to identify new Bacillus spp. strains for use as probiotic additives in pig feed. A total of 245 bacterial isolates derived from African fermented food, feces and soil were identified by 16S rRNA gene sequencing and screened for antimicrobial activity and growth in the presence of antibiotics, bile salts and at pH 4.0. Thirty-three Bacillus spp. isolates with the best characteristics were identified by gyrB and rpoB gene sequencing as B. amyloliquefaciens subsp. plantarum, B. amyloliquefaciens subsp. amyloliquefaciens, B. subtilis subsp. subtilis, B. licheniformis, B. mojavensis, B. pumilus and B. megaterium. These isolates were further investigated for their activity against the pathogenic bacteria, antibiotic susceptibility, sporulation rates, biofilm formation and production of glycosyl hydrolytic enzymes. Additionally, ten selected isolates were assessed for heat resistance of spores and the effect on porcine epithelial cells IPEC-J2. Isolates of B. amyloliquefaciens, B. subtilis and B. mojavensis, showed the best overall characteristics and, therefore, potential for usage as probiotic additives in feed. A large number of taxonomically diverse strains made it possible to reveal species and subspecies-specific trends, contributing to our understanding of the probiotic potential of Bacillus species.

  10. Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of Panax notoginseng.

    Science.gov (United States)

    Zhang, Meng-Yue; Cheng, Juan; Cai, Ying; Zhang, Tian-Yuan; Wu, Ying-Ying; Manikprabhu, Deene; Li, Wen-Jun; Zhang, Yi-Xuan

    2017-08-01

    A Gram-stain-positive, rod-shaped, motile bacterium designated as SYP-B691T was isolated from rhizospheric soil of Panax notoginseng. Phylogenetic analysis indicated that SYP-B691T clearly represented a member of the genus Bacillus and showed 16S rRNA gene similarity lower than 97.0 % with the type strains of species of the genus Bacillus, which indicates that it should be considered as a candidate novel species within this genus. The optimum growth of the strain was found to occur at 37 °C and pH 7.0-9.0. The genomic DNA G+C content was determined to be 45.2 mol%. It contained meso-2,6-diaminopimelic acid in the cell-wall peptidoglycan. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. MK-7 was the only menaquinone identified. The major cellular fatty acids of SYP-B691T were identified as iso-C15 : 0 and anteiso-C15 : 0. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, SYP-B691T merits recognition as a representative of a novel species of the genus Bacillus, for which the name Bacillus notoginsengisoli sp. nov. is proposed, with SYP-B691T(=DSM 29196T=JCM 30743T) as the type strain.

  11. Developmental instability, hybridization and heterozygosity in stick insects of the genus Bacillus (Insecta; Phasmatodea) with different modes of reproduction

    DEFF Research Database (Denmark)

    Andersen, DH; Pertoldi, C; Loeschcke, V

    2006-01-01

    (B. atticus, B. whitei, B. lynceorum). We investigated the phenotypic variance (sigma(2)p) and the impact of hybridization and level of heterozygosity on DI in females from these populations and species of Bacillus. DI was estimated as fluctuating asymmetry (FA) for three bilateral traits: the labial......Several genetic factors are assumed to influence developmental instability (DI). One is the level of heterozygosity, with higher levels often being associated with decreased DI; another is genetic incompatibility in hybrids, which in several cases has been shown to increase DI. The genus Bacillus...... includes species which have both amphigonic heterozygous reproducing populations and homozygous parthenogenetic reproducing populations (B. rossius rossius and B. r. redtenbacheri). Furthermore, Bacillus includes hybrid parthenogenetic species, which have very high levels of almost fixed heterozygosities...

  12. Bacillus vanillea sp. nov., Isolated from the Cured Vanilla Bean.

    Science.gov (United States)

    Chen, Yong-gan; Gu, Feng-lin; Li, Ji-hua; Xu, Fei; He, Shu-zhen; Fang, Yi-ming

    2015-02-01

    A Gram-positive bacterium, designated strain XY18(T), was isolated from a cured vanilla bean in Hainan province, China. Cells were rod-shaped, endospore producing, and peritrichous flagella. Strain XY18(T) grew at salinities of 0-8 % (w/v) NaCl (optimally 1-4 %), pH 4.0-8.0 (optimally 5.0-7.0 %) and temperature range 20-45 °C (optimally 28-35 °C). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, and iso-C17:0. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XY18(T) was a member of the genus Bacillus, and closely related to B. amyloliquefaciens NBRC 15535(T) and B. siamensis PD-A10(T), with 99.1 and 99.2 % sequence similarity, respectively. However, the DNA-DNA hybridization value between strain XY18(T) and B. amyloliquefaciens NBRC 15535(T) was 35.7 %. The genomic DNA G+C content of strain XY18(T) was 46.4 mol%, significantly differed from B. siamensis PD-A10(T) (41.4 %), which was higher than the range of 4 % indicative of species. On the basis of polyphasic taxonomic study, including phenotypic features, chemotaxonomy, and phylogenetic analyses, strain XY18(T) represents a novel species within the genus Bacillus, for which the name Bacillus vanillea sp. nov. is proposed. The type strain is XY18(T) (=CGMCC 8629 = NCCB 100507).

  13. Effect of Ultrasonic Waves on the Heat Resistance of Bacillus cereus and Bacillus licheniformis Spores

    Science.gov (United States)

    Burgos, J.; Ordóñez, J. A.; Sala, F.

    1972-01-01

    Heat resistance of Bacillus cereus and Bacillus licheniformis spores in quarter-strength Ringer solution decreases markedly after ultrasonic treatments which are unable to kill a significant proportion of the spore population. This effect does not seem to be caused by a loss of Ca2+ or dipicolinic acid. The use of ultrasonics to eliminate vegetative cells or to break aggregates in Bacillus spore suspensions to be used subsequently in heat resistance experiments appears to be unadvisable. PMID:4627969

  14. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio.

    Science.gov (United States)

    Siahmoshteh, Fatemeh; Siciliano, Ilenia; Banani, Houda; Hamidi-Esfahani, Zohreh; Razzaghi-Abyaneh, Mehdi; Gullino, Maria Lodovica; Spadaro, Davide

    2017-08-02

    Pistachio (Pistacia vera) is an important nut for its economic, nutritional and health aspects but it can be contaminated by aflatoxigenic fungi in the field and during storage. Biological control could be considered as an alternative to chemical treatment. In this study, we evaluated the antifungal and anti-mycotoxigenic capability of two Bacillus spp. both in vitro and on pistachio kernels. In in vitro conditions, both strains were able to reduce the mycelial growth and they were able to degrade the four aflatoxins during the first three days after inoculation. AFG 1 and AFG 2 were rapidly degraded within two days of incubation with the bacterial strains. No aflatoxin was found in the bacterial cell walls, permitting exclusion of mycotoxin adsorption and hypothesis of an in vitro biodegradation as a mode of action. The cultivar of pistachio most susceptible to fungal colonization was 'Ahmad-Aghaei', selected among four main Iranian cultivars. A. parasiticus was able to grow and produce aflatoxins on pistachios, but at longer inoculation periods, a natural decrease of aflatoxins was registered. Both strains were able to reduce the fungal incidence and number of spores on pistachio with a stronger effect during the first 5dpi. The effect on aflatoxin content in vivo was less pronounced than in vitro, with a maximum effect at 8dpi. At longer times, there was a contrasting effect due to the lower activity of Bacillus spp. in stationary phase and higher growth of Aspergillus species. This consideration could explain the lack of aflatoxin reduction at 12dpi. Both bacterial strains showed good antifungal activity and aflatoxin reduction in in vitro conditions and on pistachio kernels. Altogether, these results indicate that Bacillus species could be considered as potential biocontrol agents to combat toxigenic fungal growth and subsequent aflatoxin contamination of nuts and agricultural crops in practice. Copyright © 2017. Published by Elsevier B.V.

  15. Characterization of 21 Strains of Bacillus Anthracis

    National Research Council Canada - National Science Library

    Kournikakis, B

    2000-01-01

    Twenty-one strains of Bacillus anthracis currently held in the culture collection at DRES were characterized by colonial morphology, antibiotic sensitivity and BiologTM metabolic identification profiles...

  16. Antimicrobial effect of lactobacillus and bacillus derived ...

    African Journals Online (AJOL)

    This study focused on the screening, production, extraction of biosurfactants from Lactobacillus and Bacillus bacteria and their antimicrobial properties against causal microorganisms of food borne infections (food borne pathogens). The biosurfactants were investigated for potential antimicrobial activity using disk diffusion.

  17. Multi-effect of the water-soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: antibacterial, antibiofilm and anti-adhesive properties.

    Science.gov (United States)

    Moura, M C; Trentin, D S; Napoleão, T H; Primon-Barros, M; Xavier, A S; Carneiro, N P; Paiva, P M G; Macedo, A J; Coelho, L C B B

    2017-10-01

    To evaluate the antibiofilm potential of water-soluble Moringa oleifera seed lectin (WSMoL) on Serratia marcescens and Bacillus sp. WSMoL inhibited biofilm formation by S. marcescens at concentrations lower than 2·6 μg ml -1 and impaired bacterial growth at higher concentrations, avoiding biofilm formation. For Bacillus sp., the lectin inhibited bacterial growth at all concentrations. The antibiofilm action of WSMoL is associated with damage to bacterial cells. WSMoL did not disrupt preformed S. marcescens biofilms but was able to damage cells inside them. On the other hand, the lectin reduced the number of cells in Bacillus sp. biofilm treated with it. WSMoL was able to control biofilm formation when immobilized on glass surface (116 μg cm -2 ), damaging S. marcescens cells and avoiding adherence of Bacillus sp. cells on glass. The Bacillus sp. isolate is member of Bacillus subtilis species complex and closely related to species of the conspecific 'amyloliquefaciens' group. WSMoL prevented biofilm development by S. marcescens and Bacillus sp. and the antibiofilm effect is also observed when the lectin is immobilized on glass. Taking together, our results provide support to the potential use of WSMoL for controlling biofilm formation by bacteria. © 2017 The Society for Applied Microbiology.

  18. LARVICIDAL ACTIVITY OF Bacillus sphaericus 2362 AGAINST Anopheles nuneztovari, Anopheles darlingi AND Anopheles braziliensis (DIPTERA, CULICIDAE

    Directory of Open Access Journals (Sweden)

    RODRIGUES Iléa Brandão

    1999-01-01

    Full Text Available In this present study, preliminary data was obtained regarding the mortality rate of the Amazonian anophelines, Anopheles nuneztovari, Anopheles darlingi and Anopheles braziliensis when subjected to treatment with Bacillus sphaericus strain 2362, the WHO standard strain. Initially, experiments were conducted to test the mortality rate of the three species of anopheline larvae. The third larval instar of An. nuneztovari and the second and third larval instars of An. darlingi proved to be the least susceptible. In other experiments, the same three mosquito species were tested with the standard strain 2362, An. nuneztovari was the least susceptible to this insect pathogen, while An. braziliensis was the most susceptible. This latter species showed a difference in the level of LC50 concentration, when compared to the former, of 2.4, 2.5 and 1.8 in readings taken 24, 48 and 72 hours after exposure to the bacillus.

  19. [Geno- and phenotypic characteristic of Bacillus strains--components of endosporin].

    Science.gov (United States)

    Safronova, L A; Zelenaia, L B; Klochko, V V; Avdeeva, L V; Reva, O N; Podgorskiĭ, V S

    2012-01-01

    Endosporin is used in veterinary for the prophylaxis and treatment of disbacteriosis, intestinal infections, festering wounds and postpartum pyoinflammatory complications in agricultural animals. The probiotic is based on two Bacillus strains which inhibit growth of a broad spectrum of pathogenic microorganisms and synthesise proteolytic enzymes and other biologically active secondary metabolites, particularly - polysaccharides. The activity of these two strains was supplementary. For the species identification of these strains, sequences of 16S rRNA genes and fatty acid content of cell walls were analysed. It was found that the both strains belong to B. velezensis. Limitations of application of 16S rRNA sequences for identification of closely related species are discussed in the paper. A method of 16S rRNA sequence profiling by polymorphic nucleotides was proposed. It was also shown that usefulness of Bacillus strains in probiotics is mostly based on their unique strain specific properties rather than on general species characteristics.

  20. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032.

    Directory of Open Access Journals (Sweden)

    Jason Gioia

    Full Text Available BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.

  1. Data on genome sequencing, analysis and annotation of a pathogenic Bacillus cereus 062011msu

    Directory of Open Access Journals (Sweden)

    Rashmi Rathy

    2018-04-01

    Full Text Available Bacillus species 062011 msu is a harmful pathogenic strain responsible for causing abscessation in sheep and goat population studied by Mariappan et al. (2012 [1]. The organism specifically targets the female sheep and goat population and results in the reduction of milk and meat production. In the present study, we have performed the whole genome sequencing of the pathogenic isolate using the Ion Torrent sequencing platform and generated 458,944 raw reads with an average length of 198.2 bp. The genome sequence was assembled, annotated and analysed for the genetic islands, metabolic pathways, orthologous groups, virulence factors and antibiotic resistance genes associated with the pathogen. Simultaneously the 16S rRNA sequencing study and genome sequence comparison data confirmed that the strain belongs to the species Bacillus cereus and exhibits 99% sequence homo;logy with the genomes of B. cereus ATCC 10987 and B. cereus FRI-35. Hence, we have renamed the organism as Bacillus cereus 062011msu. The Whole Genome Shotgun (WGS project has been deposited at DDBJ/ENA/GenBank under the accession NTMF00000000 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA404036(SAMN07629099. Keywords: Bacillus cereus, Genome sequencing, Abscessation, Virulence factors

  2. Screening for Pseudomonas and Bacillus antagonistic rhizobacteria strains for the biocontrol of Fusarium wilt of chickpea

    Directory of Open Access Journals (Sweden)

    Hannane Abed

    2016-07-01

    Full Text Available The aim of this work is to study the ability of several isolates belonging to Rhizobacteria (Pseudomonas and Bacillus collected from several chickpea growing areas in Algeria, to control the mycelium growth of Fusarium oxysporum f. sp. ciceris. Interesting isolates were characterized for their morphological characteristics, physiological and biochemical activities as potential bio-control agent. Fungal inhibition tests were performed using plate assay and each isolate were tested for the production of protease, cyanide hydrogen, indole acetic acid, antifungal volatile and extracellular compound. According to API 50 CH, we are able to identify six Bacillus species (B. subtilis, B. circulans, B. lentus, B. aneurinilyticus, B. firmus, B. licheniformis; and with API 20NE test we have identified three Pseudomonas species (P. aeruginosa, P. luteola, P. fluorescens. The ability of bacterial isolates was varied in production of Protease, Gelatinase, Amylase, Cellulase, Acid Indole acetic, Lipase, Catalase and Cyanid Hydrogen. This is traduced in different rate of inhibition growth due to various extracellular compounds, where B61 (Bacillus aneurinilyticus and P39 (Pseudomonas luteola and P70 (Pseudomonas fluorescens were the most efficient with 77 and 55.5% respectively, while B39 (Bacillus firmus and P41 (Pseudomonas luteola were the most efficient by volatile compounds with 70.5 and 77.5% respectively. Our results indicate that these bacteria isolates can be used in the biocontrol of Fusarium oxysporum f. sp. ciceris.

  3. Bacillus beringensis sp. nov., a psychrotolerant bacterium isolated from the Bering Sea.

    Science.gov (United States)

    Yu, Yong; Li, Hui-Rong; Zeng, Yin-Xin; Chen, Bo

    2011-03-01

    Psychrotolerant Bacillus-like strains BR035(T) and BR011 were isolated from seawater of the Bering Sea and were characterized by means of a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that these strains were related to the members of the genus Bacillus and had the highest 16S rRNA gene sequence similarity with Bacillus korlensis ZLC-26(T). DNA-DNA hybridization experiments confirmed that strains BR035(T) and BR011 belonged to the same species and were distinct from their closest relatives. The cells were Gram-positive, rods, motile, spore-forming and psychrotolerant. The temperature range for growth was 4-42°C. The main respiratory quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminolipid and two unknown phospholipids. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C14:0 and C16:1ω7c alcohol. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The genomic DNA G + C content was 37.6-37.8 mol%. On the basis of the phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, a novel species Bacillus beringensis is proposed and the type strain is BR035(T) (=CGMCC 1.9126(T)=DSM 22571(T)).

  4. The inactivation and removal of airborne Bacillus atrophaeus endospores from air circulation systems using UVC and HEPA filters.

    Science.gov (United States)

    Luna, V A; Cannons, A C; Amuso, P T; Cattani, J

    2008-02-01

    To (i) evaluate the UV radiation in the 'C' band/high efficient particulate air (UVC/HEPA) instrument's potential to inactivate spores of Bacillus atrophaeus and selected Bacillus species and (ii) test whether a titanium dioxide coating inside the cylindrical HEPA filter improves the system's efficacy. Known amounts of dried spore preparations of B. atrophaeus, Bacillus cereus, Bacillus megaterium, Bacillus stearothermophilus and Bacillus thuringiensis were exposed to the UVC lamp within a cylindrical HEPA filter for different time lengths (30 min to 48 h) and with different air flow speeds (0-235 l s(-1)). The log(10) reduction (range 5-16 logs) of colony forming units for spores exposed to the UVC compared with the unexposed spores was significant (P HEPA filter significantly increased the inactivation of spores (P HEPA unit could inactivate spores of B. atrophaeus, B. cereus, B. megaterium, B. stearothermophilus and B. thuringiensis. The UVC/HEPA unit represents an effective method of decontaminating circulating air within an air-duct system as found in a building.

  5. Genotypic and phenotypic diversity among Bacillus species isolated ...

    African Journals Online (AJOL)

    DIRECTOR

    2013-03-20

    Mar 20, 2013 ... (GQ911556), B. weihenstephanensis DSM 11821T (AJ841876), B. mycoides ATCC 6462T (AB021192) and Brevibacillus brevis 1393. (AB271756). The evolutionary history was inferred using the. Neighbor-Joining method (Saitou and Nei, 1987). The percentage of replicate trees in which the associated ...

  6. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons.

    Science.gov (United States)

    Borriss, Rainer; Chen, Xiao-Hua; Rueckert, Christian; Blom, Jochen; Becker, Anke; Baumgarth, Birgit; Fan, Ben; Pukall, Rüdiger; Schumann, Peter; Spröer, Cathrin; Junge, Helmut; Vater, Joachim; Pühler, Alfred; Klenk, Hans-Peter

    2011-08-01

    The whole-genome-sequenced rhizobacterium Bacillus amyloliquefaciens FZB42(T) (Chen et al., 2007) and other plant-associated strains of the genus Bacillus described as belonging to the species Bacillus amyloliquefaciens or Bacillus subtilis are used commercially to promote the growth and improve the health of crop plants. Previous investigations revealed that a group of strains represented a distinct ecotype related to B. amyloliquefaciens; however, the exact taxonomic position of this group remains elusive (Reva et al., 2004). In the present study, we demonstrated the ability of a group of Bacillus strains closely related to strain FZB42(T) to colonize Arabidopsis roots. On the basis of their phenotypic traits, the strains were similar to Bacillus amyloliquefaciens DSM 7(T) but differed considerably from this type strain in the DNA sequences of genes encoding 16S rRNA, gyrase subunit A (gyrA) and histidine kinase (cheA). Phylogenetic analysis performed with partial 16S rRNA, gyrA and cheA gene sequences revealed that the plant-associated strains of the genus Bacillus, including strain FZB42(T), formed a lineage, which could be distinguished from the cluster of strains closely related to B. amyloliquefaciens DSM 7(T). DNA-DNA hybridizations (DDH) performed with genomic DNA from strains DSM 7(T) and FZB42(T) yielded relatedness values of 63.7-71.2 %. Several methods of genomic analysis, such as direct whole-genome comparison, digital DDH and microarray-based comparative genomichybridization (M-CGH) were used as complementary tests. The group of plant-associated strains could be distinguished from strain DSM 7(T) and the type strain of B. subtilis by differences in the potential to synthesize non-ribosomal lipopeptides and polyketides. Based on the differences found in the marker gene sequences and the whole genomes of these strains, we propose two novel subspecies, designated B. amyloliquefaciens subsp. plantarum subsp. nov., with the type strain FZB42(T) ( = DSM

  7. Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease.

    Science.gov (United States)

    Pretorius, D; van Rooyen, J; Clarke, K G

    2015-03-25

    Food security to sustain increasing populations is a global concern. A major factor threatening food security is crop spoilage during postharvest storage. Reduction of postharvest spoilage has mainly been addressed by the application of synthetic chemicals. Bacillus lipopeptides, specifically lipopeptide homologues exhibiting antifungal efficacy, offer an alternative environmentally benign protocol for reduction of postharvest phytopathogens. This work is directed towards Bacillus lipopeptide production for biocontrol of postharvest phytopathogens in general and fungal phytopathogens in particular. Bacillus amyloliquefaciens DSM 23117 was identified as an organism with superior potential for lipopeptide production, via screening of 4 Bacillus candidates, in terms of antifungal lipopeptide concentration, yield, productivity and preferred homologue ratio. Efficacy of B. amyloliquefaciens lipopeptides against Botrytis cinerea substantiated appropriateness of this Bacillus species. Subsequent process modification of B. amyloliquefaciens cultures demonstrated that the concentration and ratio of the lipopeptides were significantly influenced by process conditions and further, distinguished nitrate and oxygen availability as key parameters defining optimal lipopeptide production. Discrete B. amyloliquefaciens cultures supplied with 4, 8, 10 and 12 g/L NH4NO3 demonstrated optimal lipopeptide concentration, yield and productivity, with respect to both total and antifungal lipopeptides, in the culture containing 8 g/L NH4NO3. Enhancement of total and antifungal lipopeptide kinetics similar to those quantified on increasing the nitrate from 4 to 8 g/L NH4NO3 were exhibited in B. amyloliquefaciens cultures when the oxygen in the sparge gas was increased from 21 to 30 mol%. The enhancement of lipopeptide production under conditions of increased nitrate and increased oxygen supply is explained in terms of increased availability of nitrogen for synthesis. This work has

  8. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yibing; Fu, Aikun; Gong, Li; Li, Weifen; Li, Yali

    2017-04-01

    Oxidative stress (OS) plays a major role in the gastrointestinal disorders. Although probiotics were reported to repress OS, few researches compared the antioxidant ability of different Bacillus strains and deciphered the mechanisms. To select a Bacillus strain with higher antioxidant capacity, we used H 2 O 2 to induce intestinal porcine epithelial cell 1 (IPEC-1) OS model. The most suitable H 2 O 2 concentration and incubation time were determined by the half lethal dose and methyl thiazolyl tetrazolium. Correlation analysis was performed to choose a sensitive indicator for OS. As for the comparison of Bacillus, cells were divided into control, Bacillus treatment, H 2 O 2 treatment, and Bacillus pre-protection + H 2 O 2 treatment. Bacillus were co-cultured with IPEC-1 for 3 h in Bacillus and Bacillus pre-protection + H 2 O 2 treatments. Then, based on OS model, 300 μmol/L H 2 O 2 was added into medium of H 2 O 2 and Bacillus pre-protection + H 2 O 2 treatments for another 12 h. Antioxidant and apoptosis gene expressions were detected to screen the target strain. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein1 (Keap1) pathway, reactive oxygen species (ROS) production, mitochondrial membrane potential (Δψm), apoptosis, and necrosis were analyzed. Results revealed that heme oxygenase-1 (HO-1) gene expression had a positive correlation with H 2 O 2 induction. Moreover, Bacillus amyloliquefaciens SC06 (SC06)-meditated IPEC-1 showed the best antioxidant capacity though modulating Nrf2 phosphorylation. Δψm was elevated, while ROS generation was reduced with SC06 pre-protection, resulting in decreased apoptosis and necrosis. Altogether, HO-1 expression could be regarded as an OS indicator. The regulation of Nrf2/Keap1 pathway and ROS production by SC06 are involved in alleviating OS of IPEC-1.

  9. Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds.

    Science.gov (United States)

    Liu, Yang; Li, Nannan; Eom, Mi Kyung; Schumann, Peter; Zhang, Xin; Cao, Yanhua; Ge, Yuanyuan; Xiao, Ming; Zhao, Jiuran; Cheng, Chi; Kim, Song-Gun

    2017-11-01

    Two Gram-stain-positive bacterial strains, designated as 5L6 T and 6L6, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. The cells were aerobic, motile, endospore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were recognized as a species of the genus Bacillus, to which the five closest neighbours are Bacillus solani FJAT-18043 T (99.8 % similarity), Bacillus horneckiae DSM 23495 T (97.7 %), Bacillus eiseniae A1-2 T (97.4 %), Bacillus kochii WCC 4582 T (97.1 %) and Bacillus purgationiresistens DS22 T (97.0 %). The DNA G+C content of strain 5L6 T was 37.4 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0, anteiso-C17 : 0 and C16 : 1 ω7c alcohol. The cell-wall peptidoglycan contained ornithine, serine, aspartic acid, glutamic acid and alanine while diaminopimelic acid could not be detected. Strains 5L6 T and 6L6 were clearly distinguished from the type strains of related validly named species using phylogenetic analysis, DNA-DNA hybridization, fatty acid analysis, peptidoglycan analysis and comparison of a range of physiological and biochemical characteristics. The genotypic and phenotypic data show that strains 5L6 T and 6L6 represent a novel species of the genus Bacillus, for which the name Bacillusciccensis sp. nov. is proposed. The type strain is 5L6 T (=KCTC 33663 T =CICC 23855 T =DSM 104513 T ).

  10. Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment.

    Science.gov (United States)

    Müller, Nicolai; Scherag, Frank D; Pester, Michael; Schink, Bernhard

    2015-09-01

    A novel type of anaerobic bacteria was previously isolated from profundal lake sediment by direct dilution of the sediment in mineral agar medium containing glucose and a background lawn of Methanospirillum hungatei as a syntrophic partner. The isolated bacteria grouped with aerobic Bacillus spp. according to their 16S rRNA gene sequence, and the most closely related species is Bacillus thioparans. Fermentative growth of the novel strain with glucose was possible only in the presence of syntrophic partners, and cocultures produced acetate and methane, in some cases also lactate and traces of succinate as fermentation products. In contrast, the closely related strains Bacillus jeotgali and Bacillus sp. strain PeC11 are able to grow with glucose axenically by mixed acid fermentation yielding lactate, acetate, formate, succinate, and ethanol as fermentation products. Alternatively, the isolated strain grew anaerobically in pure culture if pyruvate was added to glucose-containing media, and lactate, acetate and formate were the major fermentation products, but the strain never produced ethanol. Aerobic growth was found with a variety of organic substrates in the presence of partly reduced sulfur compounds. In the absence of sulfide and oxygen, nitrate served as an electron acceptor. Strain BoGlc83 was characterized as the type strain of a new species for which the name Bacillus stamsii sp. nov. (DSM 19598=JCM 30025) is proposed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Production of amylolytic enzymes by bacillus spp

    International Nuclear Information System (INIS)

    Dawood, Elham Shareif

    1997-12-01

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K 3 , and Bacillus circulans SUD-D and SUD-K 7 ). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 . The inclusion of strach and Mg ++ ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K 3 which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K 1 , SUD-K 4 and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K 2 , Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 ) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K 1 and Bacillus subtilis SUD-K 3 gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity ranged from 60-70 deg C and 1% strach concentration was optimum for all isolates

  12. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins

    Science.gov (United States)

    Ben-Dov, Eitan

    2014-01-01

    Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III) and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come. PMID:24686769

  13. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins

    Directory of Open Access Journals (Sweden)

    Eitan Ben-Dov

    2014-03-01

    Full Text Available Bacillus thuringiensis subsp. israelensis (Bti is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa and at least two minor (of 78 and 29 kDa polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.

  14. Characterization of a broad range antimicrobial substance from Bacillus cereus.

    Science.gov (United States)

    Risøen, P A; Rønning, P; Hegna, I K; Kolstø, A-B

    2004-01-01

    The aim of this research was to isolate and characterize an antimicrobial substance from the Bacillus cereus type strain ATCC 14579. A substance with antimicrobial activity was isolated from B. cereus ATCC 14579. The substance was produced during late exponential growth and well into the stationary phase with a maximum 9 h after inoculation. The inhibitory substance was purified by reverse-phase HPLC and shown to be highly active against closely related Bacillus spp. Clinically relevant species such as Staphylococcus aureus and Micrococcus luteus were also inhibited. The substance was characterized as a bacteriocin-like inhibitory substance (BLIS) with a molecular mass of ca 3.4 kDa. The BLIS was very heat stable, and sensitive only to pronase E and proteinase K. Antimicrobial activity was stable and high in the pH range of 2.0-9.0, and relatively unaffected by organic chemicals. An antimicrobial substance produced by the B. cereus type strain ATCC 14579 was characterized, with a wide spectrum of activity and the potential to be applied as a control agent against pathogenic bacteria. The present study is the first report of a substance with antimicrobial activity from the B. cereus type strain.

  15. Post-traumatic endophthalmitis involving Clostridium tetani and Bacillus spp.

    Science.gov (United States)

    Iyer, M N; Kranias, G; Daun, M E

    2001-07-01

    To report a case of post-traumatic infectious endophthalmitis caused by Clostridium tetani and Bacillus spp. Case report. A 25-year-old man developed endophthalmitis after a traumatic corneoscleral laceration of his right eye by a concrete reinforcement bar. He underwent pars plana lensectomy and vitrectomy with aspiration of vitreous fluid and a conjunctival swab for cultures. Cultures from the conjunctival swab were negative for organisms. Cultures of the vitreous aspirate were positive for Bacillus species and C. tetani. He had received a tetanus toxoid booster at the emergency department. By the time the culture results became available, he had developed severe eye pain associated with marked orbital congestion, increased swelling and erythema of the lids, marked injection and chemosis of the conjunctiva, and subsequently underwent evisceration. The inflammation resolved after evisceration of the right eye, and he was discharged to home on doxycycline 100 mg orally two times daily for 10 days. We are unaware of previous reports of endophthalmitis involving C tetani and could find none in a computerized MEDLINE search. Patients with penetrating eye injury should be assessed for tetanus immunization status, and early intervention with tetanus toxoid booster and/or tetanus immune globulin should be considered if cultures are positive.

  16. Isolation and Characterization of Phages Infecting Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Anna Krasowska

    2015-01-01

    Full Text Available Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages or noncontractile (ARπ phage tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0 and alkaline (9.0 and 10.0 pH.

  17. ToF-SIMS studies of Bacillus using multivariate analysis with possible identification and taxonomic applications

    International Nuclear Information System (INIS)

    Thompson, C.E.; Ellis, J.; Fletcher, J.S.; Goodacre, R.; Henderson, A.; Lockyer, N.P.; Vickerman, J.C.

    2006-01-01

    In this paper we discuss the application of ToF-SIMS with an Au 3 + primary ion beam, combined with principal components analysis (PCA) and discriminant function analysis (DFA) for the identification of individual strains of two Bacillus species. The ToF-SIMS PC-DFA methodology is capable of distinguishing bacteria at the strain level based on analysis of surface chemical species. By classifying the data using hierarchical cluster analysis (HCA) we are able to show quantitative separation of species and of these strains. This has taxonomic implications in the areas of rapid identification of pathogenic microbes isolated from the clinic, food and environment

  18. Bacillus mangrovi sp. nov., isolated from a sediment sample from a mangrove forest.

    Science.gov (United States)

    Gupta, Vasundhera; Singh, Pradip Kumar; Korpole, Suresh; Tanuku, Naga Radha Srinivas; Pinnaka, Anil Kumar

    2017-07-01

    A facultatively anaerobic, endospore forming, alkali-tolerant, Gram-stain-positive, motile, rod-shaped bacterium, designated strain AK61T, was isolated from a sediment sample collected from Coringa mangrove forest, India. Colonies were circular, 1.5 mm in diameter, shiny, smooth, yellowish and convex with entire margins after 48 h growth at 30 °C. Growth occurred at 15-42 °C, with 0-3 % (w/v) NaCl and at pH 6-9. AK61T was positive for amylase activity and negative for oxidase, catalase, aesculinase, caseinase, cellulase, DNase, gelatinase, lipase and urease activities. The fatty acids were dominated by branched types with iso- and anteiso- saturated fatty acids with a high abundance of iso-C14 : 0, iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0; the cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid; and MK-7 was the major menaquinone. DNA-DNA hybridization between AK61T and Bacillus indicus MTCC 4374T and between AK61T and Bacillus indicus KCTC 3880 showed relatedness of 37.99 and 33.32 % respectively. The DNA G+C content of AK61T was 44 mol%. The results of a blast sequence similarity search based on 16S rRNA gene sequences indicated that Bacillus cibi and Bacillus indicus were the nearest phylogenetic neighbours, with a pair-wise sequence similarity of 97.69 and 97.55 % respectively. The results of phylogenetic analysis indicated that AK61T was clustered with Bacillus idriensis and Bacillus indicus. On the basis of its phenotypic characteristics and phylogenetic inference, AK61T represents a novel species of the genus Bacillus, for which the name Bacillus mangrovi sp. nov. is proposed. The type strain is AK61T (=JCM 31087T=MTCC 12015T=KCTC 33872T).

  19. Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond.

    Science.gov (United States)

    Albuquerque, Luciana; Tiago, Igor; Taborda, Marco; Nobre, M Fernanda; Veríssimo, António; da Costa, Milton S

    2008-01-01

    A low-G+C, Gram-positive isolate, designated strain CVS-8(T), was isolated from a sea salt evaporation pond on the Island of Sal in the Cape Verde Archipelago. This organism was found to be a catalase- and oxidase-positive, non-motile, spore-forming, aerobic, curved rod-shaped organism with an optimum growth temperature of about 35-37 degrees C and an optimum pH between 7.5 and 8.0. Optimal growth occurred in media containing 4-6% (w/v) NaCl and no growth occurred in medium without NaCl. The cell-wall peptidoglycan was of the A1gamma type with meso-diaminopimelic acid, the major respiratory quinone was MK-7, the major fatty acids were iso-15:0, 16:0, anteiso-15:0 and iso-16:0 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminoglycophospholipid. The G+C content of the DNA was 37.9 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain CVS-8(T) represented a novel species of the genus Bacillus, the highest levels of sequence similarity (mean pairwise similarity values of approximately 97.5 %) being found with respect to the type strains of Bacillus shackletonii and Bacillus acidicola. On the basis of the phylogenetic, physiological and biochemical data, strain CVS-8(T) represents a novel species of the genus Bacillus, for which the name Bacillus isabeliae sp. nov. is proposed. The type strain is CVS-8(T) (=LMG 22838(T)=CIP 108578(T)).

  20. Enhancement of virulence of bacillus thuringiensis and serratia marcescens by chemicals

    International Nuclear Information System (INIS)

    Khan, K. A.

    2006-01-01

    Studies were conducted on the enhancement of pathogenicity of Bacillus thuringiensis by 1% boric acid against various species of termites. The increase in virulence of Serratia marcescens by 1% potassium chloride or 1% Sodium citrate against the workers of M. championi has also been established. The increase in virulence is confirmed by the enhancement ratio, which are ranging from about 1.5 to 1.8 for Bacillus thuringiensis and 1.3 to 1.6 for Serratia marcescens. It was also noted that 1% boric acid alone was found toxic to various species of termites. However, Potassium chloride and Sodium citrate in a concentration of 1% were non-toxic to the workers of M. championi. (author)

  1. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  2. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes

    NARCIS (Netherlands)

    Herrero, S.; Gechev, T.; Bakker, P.L.; Moar, W.; Maagd, de R.A.

    2005-01-01

    BACKGROUND: Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs) from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of

  3. The introduction of integrated pest management in the Ethiopian horticultural sector : Bacillus thuringiensis strains and its toxicity

    NARCIS (Netherlands)

    Belder, den E.; Elderson, J.

    2012-01-01

    1 Introduction As hazards of conventional broad acting pesticides are documented, researchers, poli cymakers and growers look for pesticides that are toxic only to the target pest, have no impact on other such as beneficial species, and have fewer environmental effects. Bacillus thuringiensis (Bt)

  4. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species.

  5. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    Science.gov (United States)

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  6. Antimicrobial Susceptibility of Bacillus Strains Isolated from Primary Starters for African Traditional Bread Production and Characterization of the Bacitracin Operon and Bacitracin Biosynthesis

    Science.gov (United States)

    Sørensen, Kim I.; Thorsen, Line; Stuer-Lauridsen, Birgitte; Abdelgadir, Warda S.; Nielsen, Dennis S.; Derkx, Patrick M. F.; Jespersen, Lene

    2012-01-01

    Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis. PMID:22941078

  7. Some environmental and biological factors influencing the activity of entomopathogenic Bacillus on mosquito larvae in Brazil

    Directory of Open Access Journals (Sweden)

    R. A. G. B Consoli

    1995-02-01

    Full Text Available The influence of environmental and biological factors on the efficacy of Bacillus thuringiensis serovar israelensis and B. sphaericus as mosquito larvicides are reviewed. The importance of strain dependence, cultivating media/methods, mosquito species/specificity, formulations and their relation to mosquito feeding habits, as well as temperature, solar exposure, larval density and concomitant presence of other aquatic organisms are addressed with reference to the present status of knowledge in Brazil.

  8. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential

    OpenAIRE

    Lee, An; Cheng, Kuan-Chen; Liu, Je-Ruei

    2017-01-01

    Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium species, which has been shown to be associated with reproductive disorders in livestock, and to a lesser extent with hyperoestrogenic syndromes in humans. The aim of this study was to characterize a Bacillus amyloliquefaciens strain with ZEN removal ability. A pure culture of a strain designated LN isolated from moldy corn samples showed a high ZEN removal capability. Based on microscopic observations, biochemical ...

  9. Biochemical and molecular characterizaion of Bacillus pumilus isolated from coastal environment in Cochin, India

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Krishna, K.; Jose, J.; Joseph, N.; Nair, S.

    , since the organism is not considered infectious to humans and animals. However, some recent studies have revealed that several Bacillus species including B. pumilus can cause infections, ranging from skin infection to life threatening bacteremia... in immunocompromised individuals (23,33). Thus, more studies need to be performed to understand the human health significance of B. pumilus, genetic basis of infections and resistance to antimicrobials. The whole genome comparison of B. pumilus strains by AP...

  10. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    Science.gov (United States)

    2016-09-01

    Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis And Other Bacteria Thomas Brown, Salwa Shan, Teresa...infection can be detected as early as one hour after exposing as few as 105 CFU bacteria to the stressor. We predicted that similar responses could be used... bacteria to form confluent growth and for phage-induced plaques to appear. Techniques that permit faster detection of species-specific bacteria /phage

  11. Environmental and Biofilm-dependent Changes in a Bacillus cereus Secondary Cell Wall Polysaccharide*

    Science.gov (United States)

    Candela, Thomas; Maes, Emmanuel; Garénaux, Estelle; Rombouts, Yoann; Krzewinski, Frédéric; Gohar, Michel; Guérardel, Yann

    2011-01-01

    Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1–3)]GlcNAc(β1–6)[Glc(β1-3)][ManNAc(α1–4)]GalNAc(α1–4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1–2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm. PMID:21784857

  12. Safety assessment of the use of Bacillus-based cleaning products.

    Science.gov (United States)

    Berg, Ninna W; Evans, Matthew R; Sedivy, John; Testman, Robert; Acedo, Kimon; Paone, Domenic; Long, David; Osimitz, Thomas G

    2017-11-21

    Non-pathogenic Bacillus species used in cleaning products produce the appropriate enzymes to degrade stains and soils. However, there is little scientific data regarding the human exposure by inhalation of Bacillus spores during or after use of microbial-based cleaning products. Herein, air samples were collected at various locations in a ventilated, carpeted, residential room to determine the air concentration of viable bacteria and spores during and after the application of microbial-based carpet cleaning products containing Bacillus spores. The influence of human activities and vacuuming was investigated. Bioaerosol levels associated with use and post-application activities of whole room carpet treatments were elevated during post-application activity, but quickly returned to the indoor background range. Use of trigger spray spot applications generated aerosolized spores in the immediate vicinity, however, their use pattern and the generation of mostly non-respirable particles suggest minimal risks for pulmonary exposure from their use. The aerosol counts associated with use of these microbial-based cleaners were below the recommendation for safe exposure levels to non-pathogenic and non-toxigenic microorganisms except during application of the spot cleaner. The data presented suggest that carpet cleaning products, containing non-pathogenic Bacillus spores present a low potential for inhalation exposure and consequently minimal risk of adverse effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Environmental and biofilm-dependent changes in a Bacillus cereus secondary cell wall polysaccharide.

    Science.gov (United States)

    Candela, Thomas; Maes, Emmanuel; Garénaux, Estelle; Rombouts, Yoann; Krzewinski, Frédéric; Gohar, Michel; Guérardel, Yann

    2011-09-09

    Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1-3)]GlcNAc(β1-6)[Glc(β1-3)][ManNAc(α1-4)]GalNAc(α1-4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1-2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm.

  14. Biolarvicidal activity of Peanibacillus macerans and Bacillus subtilis isolated from the dead larvae against Aedes aegypti - Vector for Chikungunya

    OpenAIRE

    A. Ramathilaga; A.G. Murugesan; C. Sathesh. Prabu

    2012-01-01

    Two bacterial species were isolated from dead mosquito larvae. They were identified as Peanibacillus macerans and Bacillus Subtilis. They were examined for their mosquito larvicidal activity against chikunguya vector Aedes aegypti (Diptera: Culucidae). The LC50 values of P. macerans and B. subtilis were recorded 70.99, 50*10^6 cells /ml and 58.97, 49*10^6 cells /ml for 24h and 48h, respectively. The LC50 value of the procured culture Bacillus thuringiensis subsp israelensis also detected. It ...

  15. Determination and optimization of a strong promoter element from Bacillus amyloliquefaciens by using a promoter probe vector.

    Science.gov (United States)

    Liao, Yuling; Wang, Bin; Ye, Yanrui; Pan, Li

    2018-01-01

    To construct a promoter probe vector, pBE-bgaB, to screen strong promoters from Bacillus amyloliquefaciens. 266 colonies containing active promoter elements from the genomic DNA of B. amyloliquefaciens were identified. Among these, promoter P41 exhibited the strongest β-Gal activity in Escherichia coli and B. amyloliquefaciens. Sequence analysis showed that promoter P41 contained P ykuN , a ykuN gene encoding flavodoxin. Optimization of the ribosome-binding site from P41 to P 382 improved β-Gal activity by ~ 200%. A new strong promoter for protein expression and genetic engineering of Bacillus species.

  16. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms

    DEFF Research Database (Denmark)

    Dragoš, Anna; Lakshmanan, Nivedha; Martin, Marivic

    2018-01-01

    -similarly to other species-B. subtilis diversifies into distinct colony variants. These variants dramatically differ in biofilm formation abilities and expression of biofilm-related genes. In addition, using a quantitative approach, we reveal striking differences in surface complexity and hydrophobicity......Microbial biofilms are tightly packed, heterogeneous structures that serve as arenas for social interactions. Studies on Gram negative models reveal that during evolution in structured environments like biofilms, isogenic populations commonly diversify into phenotypically and genetically distinct...... variants. These variants can settle in alternative biofilm niches and develop new types of interactions that greatly influence population productivity. Here, we explore the evolutionary diversification of pellicle biofilms of the Gram positive, spore-forming bacterium Bacillus subtilis. We discover that...

  17. Accumulation of some metal ions on Bacillus licheniformis

    International Nuclear Information System (INIS)

    Hafez, M.B.; El-Desouky, W.; Fouad, A.

    2001-01-01

    Pure species of Bacillus licheniformis was used to remove ions from aqueous and simulated waste solutions. Metal ion accumulation on B. licheniformis was fast. Maximum uptake occurred at pH 4± 0.5 and at 25 ± 3 deg C. One gram of dry B. licheniformis was found to accumulate 115 mg cerium, 34 mg copper and 11 mg cobalt from aqueous solutions. The presence of certain foreign ions such as calcium, sodium and potassium decreased the uptake of ions by B. licheniformis, while citrate and EDTA prevent the uptake. Electron microscopic investigations showed that cerium (III), copper (II) and cobalt (II) accumulated extracellulary around the surface wall of B. licheniformis cells. A bio-adsorption mechanism between the metal ions and B. licheniformis cell wall was proposed. (author)

  18. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment

    DEFF Research Database (Denmark)

    Compaore, C. S.; Nielsen, Dennis S.; Ouoba, L. I. I.

    2013-01-01

    Bikalga is a Hibiscus sabdariffa seed fermented condiment widely consumed in Burkina Faso and neighboring countries. The fermentation is dominated by Bacillus subtilis group species. Ten B. subtilis subsp. subtilis (six isolates) and Bacillus licheniformis (four isolates) isolated from traditional...... and Bacillus cereus, while CFS of 2 B. licheniformis (E3 and F9) strains only inhibited M. luteus. The antimicrobial substance(s) produced by B. subtilis subsp. subtilis H4 was further characterized. The antimicrobial substance(s) produced by H4 was detected from mid-exponential growth phase. The activity...... bikalga were examined for their antimicrobial activity against a panel of 36 indicator organisms including Gram-positive and Gram-negative bacteria and yeasts. The Bacillus spp. isolates showed variable inhibitory abilities depending on the method used. Both Gram-positive and Gram-negative bacteria were...

  19. Digital data for quick response (QR) codes of alkalophilic Bacillus pumilus to identify and to compare bacilli isolated from Lonar Crator Lake, India.

    Science.gov (United States)

    Rekadwad, Bhagwan N; Khobragade, Chandrahasya N

    2016-06-01

    Microbiologists are routinely engaged isolation, identification and comparison of isolated bacteria for their novelty. 16S rRNA sequences of Bacillus pumilus were retrieved from NCBI repository and generated QR codes for sequences (FASTA format and full Gene Bank information). 16SrRNA were used to generate quick response (QR) codes of Bacillus pumilus isolated from Lonar Crator Lake (19° 58' N; 76° 31' E), India. Bacillus pumilus 16S rRNA gene sequences were used to generate CGR, FCGR and PCA. These can be used for visual comparison and evaluation respectively. The hyperlinked QR codes, CGR, FCGR and PCA of all the isolates are made available to the users on a portal https://sites.google.com/site/bhagwanrekadwad/. This generated digital data helps to evaluate and compare any Bacillus pumilus strain, minimizes laboratory efforts and avoid misinterpretation of the species.

  20. Effects of Probiotic Bacteria Bacillus on Growth Performance, Digestive Enzyme Activity, and Hematological Parameters of Asian Sea Bass, Lates calcarifer (Bloch).

    Science.gov (United States)

    Adorian, Taida Juliana; Jamali, Hadi; Farsani, Hamed Ghafari; Darvishi, Paria; Hasanpour, Soleiman; Bagheri, Tahereh; Roozbehfar, Reza

    2018-02-09

    This study was conducted to evaluate different doses of two species of Bacillus (Bacillus licheniformis and Bacillus subtilis), on growth parameters, chemical composition of fish, activity of liver, and digestive enzymes of Asian sea bass. During 8 weeks, juvenile Asian sea bass received diets supplemented with 1 × 10 3 , 1 × 10 6 , and 1 × 10 9  CFU g -1 probiotic in addition to a control diet without added microorganisms. At the end of the trial, growth indices (total weight, total length, specific growth rate, total weight gain, food conversion ratio, and condition factor), body composition (crude protein, crude lipid, ash, and dry matter), digestive enzymes (protease, lipase, and amylase), liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP)], immunologic indicators (lysozyme), and hematological parameters [hematocrit (Hct), hemoglobin (Hb), red blood cells (RBCs), white blood cells (WBCs)] were assessed. Asian sea bass receiving diets supplemented with probiotic Bacillus (Bacillus licheniformis and Bacillus subtilis) showed significantly better growth than those fed the basal diet (control). Regarding body composition, total protein levels and dry matter were higher and lipid levels were lower in fish fed the diet containing 1 × 10 6  CFU g -1 probiotic compared with the control group (P Digestive enzymes (protease, lipase, and amylase) and hematological parameters (RBC, WBC, and Hb) were all highest in fish fed diet supplemented with 1 × 10 6  CFU g -1 probiotic Bacillus. Also, liver enzymes (AST, ALT, ALP) were lower in fish fed diet supplemented with 1 × 10 6  CFU g -1 probiotic Bacillus. Being that supplementation of 1 × 10 6  CFU g -1 of Bacillus in the diet is the dose which delivers the best results.

  1. BOOK REVIEW – BACILLUS THURINGIENSIS: A CORNERSTONE OF MODERN AGRICULTURE BACILLUS THURINGIENSIS

    Science.gov (United States)

    Are you interested in the technical issues surrounding the use of Bacillus thuringiensis pesticidal traits as sprays and as plant incorporated protectants (transgenic crops)? Should the dimensions of human health, ecology, entomology, risk assessment, resistance management, and d...

  2. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    Science.gov (United States)

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  3. Characterization and Extracellular Enzyme Activity of Predominant Marine Bacillus spp. Isolated From Sea Water of Orissa Coast, India

    Directory of Open Access Journals (Sweden)

    Bal, S.

    2009-01-01

    Full Text Available Bacillus species are ubiquitous and diverse both in the terrestrial and marine ecosystems. In this investigation, predominant Bacillus species from sea water of three different sites of Orissa Coast were isolated and identified. In total, 16 Bacillus species were identified using morpho-physiological and biochemical characterisation. These identified bacterial strains include B. fastidiosus (CMB1, B. alvei (CMB2, B. coagulans (CMB3, B. marinus (CMB5, B. mycoides (CMB8, B. coagulans (PMB1, B. circulans (PMB2, B. cereus (PMB3, B. subtilis (PMB4, B. alcalophilus (GMB1, B. licheniformics (GMB2, B. polymyxa (GMB3 and B. pumilus (GMB4. The isolates CMB4, CMB6 and CMB7 were identified only up to genus level. These isolates were further screened for their salt tolerance and growth under varied temperature and pH conditions. Ability of these strains to produce extracellular enzymes such as protease, amylase, lipase, gelatinase, casein hydrolase, lecithinase, chitinase and pectinase were also screened and found that most of the Bacillus spp. possess extracellular enzymes.

  4. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  5. Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Nimrat, Subuntith; Suksawat, Sunisa; Boonthai, Traimat; Vuthiphandchai, Verapong

    2012-10-12

    Epidemics of epizootics and occurrence of multiresistant antibiotics of pathogenic bacteria in aquaculture have put forward a development of effective probiotics for the sustainable culture. This study examined the effectiveness of forms of mixed Bacillus probiotics (probiotic A and probiotic B) and mode of probiotic administration on growth, bacterial numbers and water quality during rearing of white shrimp (Litopenaeus vannamei) in two separated experiments: (1) larval stages and (2) postlarval (PL) stages. Forms of Bacillus probiotics and modes of probiotic administration did not affect growth and survival of larval to PL shrimp. The compositions of Bacillus species in probiotic A and probiotic B did not affect growth and survival of larvae. However, postlarvae treated with probiotic B exhibited higher (Pgrowth than probiotic A and controls, indicating Bacillus probiotic composition affects the growth of PL shrimp. Total heterotrophic bacteria and Bacillus numbers in larval and PL shrimp or culture water of the treated groups were higher (Pgrowth and survival of PL shrimp, increased beneficial bacteria in shrimp and culture water and enhanced water quality for the levels of pH, ammonia and nitrite of culture water. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Genome-wide identification and characterization of macrolide glycosyltransferases from a marine-derived Bacillus strain and their phylogenetic distribution.

    Science.gov (United States)

    Liu, Yang; Qin, Wen; Liu, Quanquan; Zhang, Jun; Li, Huayue; Xu, Shanshan; Ren, Pengfei; Tian, Li; Li, Wenli

    2016-12-01

    Clarifying glycosyltrasferases (GTs) function is of significance for the development of GT inhibitors as drugs, and the use of GTs to glycodiversify small molecules in the search of drug leads. While many Actinomyces natural-product GTs had been functionally characterized, our understanding towards Bacillus natural-product GTs is so far very limited. Herein, genome-wide identification of macrolide GT genes from marine-derived Bacillus methylotrophicus B-9987 revealed the presence of three macrolide GT genes bmmGT1-3. While bmmGT1 was previously revealed to be involved in the biosynthesis of trans-acyltransferase (AT) polyketides compounds macrolactins (MLNs) and bacillaenes (BAEs), the functions of bmmGT2 and bmmGT3 were probed, demonstrating that they are capable to biochemically catalyze glycosylation of MLNs and BAEs as well but interestingly with different regioselectivity, affording four new MLNs analogs. Notably, further genome mining revealed that the orthologs of these three macrolide GT genes showed a regular distribution in the subtilis- and the cereus-clade Bacillus strains; interestingly, bmmGT1 orthologs only occurred in the subtilis-clade Bacillus, and they were also found in the genomes of Streptomyces strains, suggesting their close phylogenetic relationship. These results provide the first significant insight into the important roles of Bacillus macrolide GTs in the biology of the species. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Rands, Anthony D.; Losee, Scott C. [Torion Technologies, American Fork, UT 84003 (United States); Holt, Brian C. [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Williams, John R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Lammert, Stephen A. [Torion Technologies, American Fork, UT 84003 (United States); Robison, Richard A. [Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 (United States); Tolley, H. Dennis [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Lee, Milton L., E-mail: milton_lee@byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2013-05-02

    out of 25 (96%) endospore-forming Bacillus species were correctly identified in a statistically designed test.

  8. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Li, Dan; Rands, Anthony D.; Losee, Scott C.; Holt, Brian C.; Williams, John R.; Lammert, Stephen A.; Robison, Richard A.; Tolley, H. Dennis; Lee, Milton L.

    2013-01-01

    out of 25 (96%) endospore-forming Bacillus species were correctly identified in a statistically designed test

  9. Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis.

    Science.gov (United States)

    Yuan, Yihui; Peng, Qin; Gao, Meiying

    2012-12-19

    Endolysins produced by bacteriophages lyse bacteria, and are thus considered a novel type of antimicrobial agent. Several endolysins from Bacillus phages or prophages have previously been characterized and used to target Bacillus strains that cause disease in animals and humans. B. thuringiensis phage BtCS33 is a Siphoviridae family phage and its genome has been sequenced and analyzed. In the BtCS33 genome, orf18 was found to encode an endolysin protein (PlyBt33). Bioinformatic analyses showed that endolysin PlyBt33 was composed of two functional domains, the N-terminal catalytic domain and the C-terminal cell wall binding domain. In this study, the entire endolysin PlyBt33, and both the N- and C-termini,were expressed in Escherichia coli and then purified. The lytic activities of PlyBt33 and its N-terminus were tested on bacteria. Both regions exhibited lytic activity, although PlyBt33 showed a higher lytic activity than the N-terminus. PlyBt33 exhibited activity against all Bacillus strains tested from five different species, but was not active against Gram-negative bacteria. Optimal conditions for PlyBt33 reactivity were pH 9.0 and 50 °C. PlyBt33 showed high thermostability, with 40% of initial activity remaining following 1 h of treatment at 60 °C. The C-terminus of PlyBt33 bound to B. thuringiensis strain HD-73 and Bacillus subtilis strain 168. This cell wall binding domain might be novel, as its amino acid sequence showed little similarity to previously reported endolysins. PlyBt33 showed potential as a novel antimicrobial agent at a relatively high temperature and had a broad lytic spectrum within the Bacillus genus. The C-terminus of PlyBt33 might be a novel kind of cell wall binding domain.

  10. Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Yuan Yihui

    2012-12-01

    Full Text Available Abstract Background Endolysins produced by bacteriophages lyse bacteria, and are thus considered a novel type of antimicrobial agent. Several endolysins from Bacillus phages or prophages have previously been characterized and used to target Bacillus strains that cause disease in animals and humans. B. thuringiensis phage BtCS33 is a Siphoviridae family phage and its genome has been sequenced and analyzed. In the BtCS33 genome, orf18 was found to encode an endolysin protein (PlyBt33. Results Bioinformatic analyses showed that endolysin PlyBt33 was composed of two functional domains, the N-terminal catalytic domain and the C-terminal cell wall binding domain. In this study, the entire endolysin PlyBt33, and both the N- and C-termini,were expressed in Escherichia coli and then purified. The lytic activities of PlyBt33 and its N-terminus were tested on bacteria. Both regions exhibited lytic activity, although PlyBt33 showed a higher lytic activity than the N-terminus. PlyBt33 exhibited activity against all Bacillus strains tested from five different species, but was not active against Gram-negative bacteria. Optimal conditions for PlyBt33 reactivity were pH 9.0 and 50°C. PlyBt33 showed high thermostability, with 40% of initial activity remaining following 1 h of treatment at 60°C. The C-terminus of PlyBt33 bound to B. thuringiensis strain HD-73 and Bacillus subtilis strain 168. This cell wall binding domain might be novel, as its amino acid sequence showed little similarity to previously reported endolysins. Conclusions PlyBt33 showed potential as a novel antimicrobial agent at a relatively high temperature and had a broad lytic spectrum within the Bacillus genus. The C-terminus of PlyBt33 might be a novel kind of cell wall binding domain.

  11. Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides.

    Science.gov (United States)

    Asari, Shashidar; Ongena, Marc; Debois, Delphine; De Pauw, Edwin; Chen, Kunling; Bejai, Sarosh; Meijer, Johan

    2017-10-17

    Certain micro-organisms can improve plant protection against pathogens. The protective effect may be direct, e.g. due to antibiotic compounds, or indirect, by priming of plant defence as induced systemic resistance (ISR). The plant growth-promoting rhizobacterium Bacillus amyloliquefaciens UCMB5113 shows potential for disease management of oilseed rape. To investigate the mode of action of this protection, especially in relation to jasmonic acid-dependent ISR, Bacillus UCMB5113 was tested with Arabidopsis thaliana mutants and several important fungal pathogens of Brassica species. Secreted lipopeptide fractions from Bacillus UCMB5113, together with synthetic peptide mimics, were evaluated for their effects on fungal phytopathogens and A. thaliana . The structures of secreted lipopeptides were analysed using mass spectrometry. Plant mutants and reporter lines were used to identify signalling steps involved in disease suppression by lipopeptides. In plate tests Bacillus UCMB5113 and lipopeptide extracts suppressed growth of several fungal pathogens infecting Brassica plants. Separation of secreted lipopeptides using reversed-phase high-performance liquid chromatography revealed several fractions that inhibited fungal growth. Analysis by mass spectrometry identified the most potent compounds as novel linear forms of antifungal fengycins, with synthetic peptide mimics confirming the biological activity. Application of the lipopeptide extracts on Arabidopsis roots provided systemic protection against Alternaria brassicicola on leaves. Arabidopsis signalling mutants and PDF1.2 and VSP2 promoter-driven GUS lines indicated that the lipopeptide fraction involved jasmonic-acid-dependent host responses for suppression of fungal growth indicative of ISR. The ability of Bacillus UCMB5113 to counteract pathogens using both antagonistic lipopeptides and through ISR provides a promising tool for sustainable crop production. © The Author 2017. Published by Oxford University Press

  12. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil.

    Directory of Open Access Journals (Sweden)

    Sandeep Kaur Saggu

    Full Text Available Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production.

  13. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil

    Science.gov (United States)

    Saggu, Sandeep Kaur

    2017-01-01

    Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India) with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production. PMID:29190780

  14. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... optimum activity at 60°C and pH 8.0 with casein as substrate. The enzyme was .... appropriate buffers. 50 mM of buffer solutions (sodium citrate, pH .... Table 2. Hydrolysis of protein substrates by protease from Bacillus coagulans PSB-07. Substrate. Relative activity (%). Casein. 100. Gelatin. 18. BSA. 72.

  15. Complete Genome of Bacillus megaterium Podophage Pascal.

    Science.gov (United States)

    Snowden, Jeffery D; Vega Gonzalez, Alexander E; Maroun, Justin W; Hernandez, Adriana C; Kuty Everett, Gabriel F

    2015-01-29

    Podophage Pascal infects Bacillus megaterium, a commonly used model organism in biochemical research and an important industrial-scale protein production system. Here, we report the sequenced and annotated genome of Pascal and describe its prominent features. Bacteriophages such as Pascal may be valuable tools for research and industry. Copyright © 2015 Snowden et al.

  16. Bacillus subtilis Spore Inner Membrane Proteome

    NARCIS (Netherlands)

    Zheng, L.; Abhyankar, W.; Ouwerling, N.; Dekker, H.L.; van Veen, H.; van der Wel, N.N.; Roseboom, W.; de Koning, L.J.; Brul, S.; de Koster, C.G.

    2016-01-01

    The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to

  17. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...

  18. strains of pseudomonas aeruginosa and bacillus cereus

    African Journals Online (AJOL)

    DR. AMINU

    DETERMINATION OF THE GENETIC MARKER OF THE MUTAGENIZED. STRAINS OF PSEUDOMONAS AERUGINOSA AND BACILLUS CEREUS. ISOLATED FROM EFFLUENT OF PETROLEUM REFINERY. Idise, O. E.1, Ameh, J.B.2 Yakubu, S.E. 2, Okuofu, C.A. 3 and Ado, S.A.2. 1 Department of Microbiology, Delta ...

  19. Preliminary investigations reveal that Bacillus thuringiensis δ ...

    African Journals Online (AJOL)

    The imminent introduction of transgenic crops into Kenya requires a rigorous assessment of the potential risks involved. This study focused on the possible effect of Bacillus thuringiensisδ-endotoxin [CryIA(c)] on arbuscular mycorrhizal fungi (AMF) associated with sorghum. In green house experiments, sorghum seedlings ...

  20. Isolation and characterization of native Bacillus thuringiensis ...

    African Journals Online (AJOL)

    ... (<30% mortality) or non insecticidal activity. However, results of motility, hemolytic activity, antibiotic-susceptibility patterns, and crystal shape, seem to suggest that many of our Bt isolates may exhibit parasporins activity. Key words: Bacillus thuringiensis, parasporal crystal, isolation, biochemical type, insecticidal, cry gene, ...

  1. Purification And Characterization Of Marine Bacillus Thuringiensis ...

    African Journals Online (AJOL)

    Urease was purified to homogeneity from Bacillus thuringiensis N2 using different purification steps namely, 55% acetone precipitation, DEAE-Sephadex A50 anion exchange column and Sephadex G120-200 gel filtration chromatography. The enzyme was purified 95.27 fold and showed a final specific activity of 10.48 ...

  2. Molecular characterization of Lepidopteran specific Bacillus ...

    African Journals Online (AJOL)

    Bacillus thuringiensis (Bt) strains pathogenic to Lepidopteran insects and native to hilly zone soils of Karnataka (India) were explored. 19 strains were isolated from the soils and identified by morphological and microscopic characters. Toxicity level of the Bt isolates was tested by treating third Instar larvae of silkworm ...

  3. Molecular characterization of Lepidopteran specific Bacillus ...

    African Journals Online (AJOL)

    Guest

    2013-05-15

    May 15, 2013 ... Department of Plant Biotechnology, University of Agricultural Sciences, GKVK Campus, Bangalore, India. Accepted 24 April, 2013. Bacillus thuringiensis (Bt) strains pathogenic to Lepidopteran insects and native to hilly zone soils of. Karnataka ... In one of the isolates (Bt9), the cry gene was not detected.

  4. CASE REPORT Uncommon Pathogen Bacillus Cereus Causing ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... Uncommon Pathogen Bacillus Cereus Causing Subdural Empyema in a Child. Prastiya Indra Gunawan1*, Leny Kartina1, Dwiyanti Puspitasari1, Erny Erny2. OPEN ACCESS ... secondary to middle ear infection, meningitis, brain surgery, ... classic clinical syndrome is an acute febrile illness punctuated by.

  5. Exopolysaccharide production by Bacillus subtilis NCIM 2063 ...

    African Journals Online (AJOL)

    Three bacterial strains, Bacillus subtilis NCIM 2063, Pseudomonas aeruginosa NCIM 2862 and Streptococcus mutans MTCC 1943 were examined for their exopolysaccharide (EPS) producing ability at the laboratory level. Basal salts solution (BSS), minimal salts medium (MSM), nitrogen free medium (NFM), chemically ...

  6. CASE REPORT Uncommon Pathogen Bacillus Cereus Causing ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... A complete blood count showed white blood cell count of 13.800/mm3 and the CRP level was 8.3 mg/L. Craniotomy following burr hole drainage procedure was performed to decrease intracranial pressure. The liquor culture indicated Bacillus cereus. A meropenem injection and metronidazole infusion ...

  7. Genetic evidence for a novel competence inhibitor in the industrially important Bacillus licheniformis.

    Science.gov (United States)

    Muth, Christine; Buchholz, Meike; Schmidt, Christina; Volland, Sonja; Meinhardt, Friedhelm

    2017-12-01

    Natural genetic competence renders bacteria able to take up and, in case there is sufficient homology to the recipient's chromosome, integrate exogenously supplied DNA. Well studied in Bacillus subtilis, genetic competence is-in several aspects-known to be differently regulated in Bacillus licheniformis. We now report on the identification of a novel, chromosomally encoded homolog of a competence inhibitor in B. licheniformis (ComI) that has hitherto only been described as a plasmid borne trait in the ancestral B. subtilis NCIB3610. Bioinformatical analysis that included 80 Bacillus strains covering 20 different species revealed a ComI encoding gene in all of the examined B. licheniformis representatives, and was identified in few among the other species investigated. The predicted ComI of B. licheniformis is a highly conserved peptide consisting of 28 amino acids. Since deletion of comI in B. licheniformis DSM13 resulted in twofold increased transformation efficiency by genetic competence and overexpression resulted in threefold decreased transformability, the function as a competence inhibitor became evident.

  8. A heavy metal tolerant novel bacterium, Bacillus malikii sp. nov., isolated from tannery effluent wastewater.

    Science.gov (United States)

    Abbas, Saira; Ahmed, Iftikhar; Kudo, Takuji; Iqbal, Muhammad; Lee, Yong-Jae; Fujiwara, Toru; Ohkuma, Moriya

    2015-12-01

    The taxonomic position of a Gram-stain positive and heavy metal tolerant bacterium, designated strain NCCP-662(T), was investigated by polyphasic characterisation. Cells of strain NCCP-662(T) were observed to be rod to filamentous shaped, motile and strictly aerobic, and to grow at 10-50 °C (optimum 30-37 °C) and at pH range of 6-10 (optimum pH 7-8). The strain was found to be able to tolerate 0-12 % NaCl (w/v) and heavy metals (Cr 1200 ppm, Pb 1800 ppm and Cu 1200 ppm) in tryptic soya agar medium. The phylogenetic analysis based on the 16S rRNA gene sequence of strain NCCP-662(T) showed that it belongs to the genus Bacillus and showed high sequence similarity (98.2 and 98.0 %, respectively) with the type strains of Bacillus niabensis 4T19(T) and Bacillus halosaccharovorans E33(T). The chemotaxonomic data showed that the major quinone is MK-7; the predominant cellular fatty acids are anteiso-C15 :0, iso-C14:0, iso-C16:0 and C16:0 and iso-C15:0; the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol along with several unidentified glycolipids, phospholipids and polar lipids. The DNA G+C content was determined to be 36.9 mol%. These data also support the affiliation of strain NCCP-662(T) with the genus Bacillus. The level of DNA-DNA relatedness between strain NCCP-662(T) and B. niabensis JCM 16399(T) was 20.5 ± 0.5 %. On the basis of physiological and biochemical characteristics, phylogenetic analyses and DNA-DNA hybridization data, strain NCCP-662(T) can be clearly differentiated from the validly named Bacillus species and thus represents a new species, for which the name Bacillus malikii sp. nov. is proposed with the type strain NCCP-662(T) (= LMG 28369(T) = DSM 29005(T) = JCM 30192(T)).

  9. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    Directory of Open Access Journals (Sweden)

    shila khajavi shojaei

    2016-06-01

    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  10. High-quality genome sequence and description of Bacillus ndiopicus strain FF3T sp. nov.

    Directory of Open Access Journals (Sweden)

    C.I. Lo

    2015-11-01

    Full Text Available Strain FF3T was isolated from the skin-flora of a 39-year-old healthy Senegalese man. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry did not allow any identification. This strain exhibited a 16S rRNA sequence similarity of 96.8% with Bacillus massiliensis, the phylogenetically closest species with standing nomenclature. Using a polyphasic study made of phenotypic and genomic analyses, strain FF3T was Gram-positive, aeroanaerobic and rod shaped and exhibited a genome of 4 068 720 bp with a G+C content of 37.03% that coded 3982 protein-coding and 67 RNA genes (including four rRNA operons. On the basis of these data, we propose the creation of Bacillus ndiopicus sp. nov.

  11. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future.

    Science.gov (United States)

    Wang, He; Wang, Yunxiang; Yang, Ruijin

    2017-02-01

    With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.

  12. Bacillus solimangrovi sp. nov., isolated from mangrove soil.

    Science.gov (United States)

    Lee, Geun-Hye; Rhee, Moon-Soo; Chang, Dong-Ho; Kwon, Kae Kyoung; Bae, Kyung Sook; Yang, Seong-Hyun; Kim, Byoung-Chan

    2014-05-01

    Two novel bacterial strains, GH2-4T and GH2-5, were isolated from mangrove soil near the seashore of Weno island in Chuuk state, Micronesia, and were characterized by a polyphasic approach. The two strains were strictly aerobic, Gram-staining-positive, motile, endospore-forming rods that were catalase- and oxidase-positive. Colonies were circular, convex, stringy and transparent yellowish (GH2-4T) or opaque whitish (GH2-5). The 16S rRNA gene sequences of the two isolates were identical. The most closely related strains in terms of 16S rRNA gene sequence similarity were Bacillus kochii WCC 4582T, B. horneckiae DSM 23495T, B. azotoformans LMG 9581T, B. cohnii DSM 6307T and B. halmapalus DSM 8723T (95.6, 95.4, 95.4, 95.2 and 95.2% similarity, respectively). The partial groEL sequence of strain GH2-4T was identical to that of strain GH2-5 and showed <85% similarity to those of the most closely related strains. The isolates grew at pH 5-12 (optimal growth at pH 9), at 10-40 °C (optimum 30-35 °C) and at 0-9% (w/v) NaCl (optimum 1-3% NaCl). The cell-wall peptidoglycan of strains GH2-4T and GH2-5 contained meso-diaminopimelic acid and cell-wall hydrolysates contained ribose as a major sugar. The DNA G+C content was 36 mol%, and DNA-DNA relatedness between the isolates and five related reference strains was 20-24%. Strain GH2-4T exhibited 81% DNA-DNA relatedness with strain GH2-5. The major cellular fatty acids of both strains were iso-C15:0, iso-C16:0, iso-C14:0 and anteiso-C15:0 and the predominant menaquinone was MK-7. On the basis of the evidence from this polyphasic study, strains GH2-4T and GH2-5 (=KCTC 33143=JCM 18995=DSM 27084) represent a novel species of the genus Bacillus, for which the name Bacillus solimangrovi sp. nov. is proposed; the type strain is GH2-4T (=KCTC 33142T=JCM 18994T=DSM 27083T).

  13. Selective inhibition of toxic cyanobacteria by β-carboline-containing bacterium Bacillus flexus isolated from Saudi freshwaters.

    Science.gov (United States)

    Alamri, Saad A; Mohamed, Zakaria A

    2013-10-01

    A bacterial strain SSZ01 isolated from a eutrophic lake in Saudi Arabia dominated by cyanobacterial blooms, showed an antialgal activity against cyanobacteria species. Based on the analysis of the 16S rDNA gene sequence, the isolated strain (SSZ01) most likely belonged to the genus Bacillus with a 99% similarity to Bacillus flexus strain EMGA5. The thin layer chromatography (TLC) analysis of the ethyl acetate extract of this bacterium revealed that this strain can produce harmine and norharmane compared to different β-carboline analog standards. Harmine and norharmane were also detected in considerable amounts in bacterial growth medium, indicating a potential excretion of these compounds into the aquatic environment. The crude extract of Bacillus flexus as well as pure materials of harmine and norharmane inhibited the growth of tested species of cyanobacteria. However, the bacterial crude extract has a higher toxicity against tested species of cyanobacteria than harmine and norharmane. In addition, harmine was more toxic to cyanobacteria than norharmane. On the other hand, neither pure compounds of harmine and norharmane nor crude bacterial extract showed any antialgal activity against tested species of green algae. The results of the present study suggest that B. flexus SSZ01 or its crude extract containing harmine and norharmane could be a candidate for the selective control of cyanobacterial blooms without affecting other algal species.

  14. Metagenomic and PCR-based diversity surveys of [FeFe]-hydrogenases combined with isolation of alkaliphilic hydrogen-producing bacteria from the serpentinite-hosted Prony hydrothermal field, New Caledonia

    Directory of Open Access Journals (Sweden)

    Nan Mei

    2016-08-01

    Full Text Available High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia, where high-pH (~11, low-temperature (<40°C and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e. high-pH, low-salt, mesothermic fluids. In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ.

  15. Bacillus endozanthoxylicus sp. nov., an endophytic bacterium isolated from Zanthoxylum bungeanum Maxim leaves.

    Science.gov (United States)

    Ma, Li; Xi, Jia-Qin; Cao, Yong-Hong; Wang, Xiao-Yan; Zheng, Shuai-Chao; Yang, Cheng-Gang; Yang, Ling-Ling; Mi, Qi-Li; Li, Xue-Mei; Zhu, Ming-Liang; Mo, Ming-He

    2017-10-01

    A Gram-stain-positive, rod-shaped, motile bacterium, designated as 1404 T , was isolated from leaves of Chinese red pepper (Huajiao) (Zanthoxylum bungeanum Maxim) collected from Gansu, north-west China. Spores were not observed under a range of conditions. Strain 1404 T was observed to grow at 15-45 °C and pH 6.0-10.0 and in presence of 0-5 % (w/v) NaCl concentration. The cell wall of strain 1404 T was found to contain meso-diaminopimelic acid, and the predominant respiratory quinone was identified as MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as well as three unidentified polar lipids. The major fatty acids profile of strain 1404 T consisted of iso-C15 : 0 (25.6 %), anteiso-C15 : 0 (18.4 %) and iso-C14 : 0 (12.1 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1404 T was affiliated to the genus Bacillus and was closely related to Bacillusoryzisoli 1DS3-10 T , Bacillusbenzoevorans DSM 5391 T and Bacilluscirculans DSM 11 T with sequence similarity of 98.3, 98.2 and 96.9 %, respectively. The G+C content of the genomic DNA was determined to be 39.4 mol%. DNA-DNA hybridization values indicated that relatedness between strain 1404 T and the type strains of closely related species of the genus Bacillus was below 41 %. Therefore, on the basis of the data from the polyphasic taxonomic study presented, strain 1404 T represents a novel species of the genus Bacillus, for which the name proposed is Bacillus endozanthoxylicus sp. nov. The type strain is 1404 T (=CCTCC AB 2017021 T =KCTC 33827 T ).

  16. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials

    International Nuclear Information System (INIS)

    Cervantes, Eric Reyes; Torres, Maykel González; Muñoz, Susana Vargas; Rosas, Efraín Rubio

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5 ×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). - Highlights: • HAp crystals are grown on the cellular wall of a GP bacteria Bacillus thuringiensis. • The growing was carried out by using a bio-mimetic method. • Hybrid materials were characterized with morphological and spectroscopic techniques. • The reported method allows understanding the mechanisms to produce osseous tissue. • The membrane of Bacillus thuringiensis can grow more HAp than Bacillus halodurans.

  17. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant

    Science.gov (United States)

    Venkateswaran, Kasthuri; Kempf, Michael; Chen, Fei; Satomi, Masataka; Nicholson, Wayne; Kern, Roger

    2003-01-01

    One of the spore-formers isolated from a spacecraft-assembly facility, belonging to the genus Bacillus, is described on the basis of phenotypic characterization, 16S rDNA sequence analysis and DNA-DNA hybridization studies. It is a Gram-positive, facultatively anaerobic, rod-shaped eubacterium that produces endospores. The spores of this novel bacterial species exhibited resistance to UV, gamma-radiation, H2O2 and desiccation. The 18S rDNA sequence analysis revealed a clear affiliation between this strain and members of the low G+C Firmicutes. High 16S rDNA sequence similarity values were found with members of the genus Bacillus and this was supported by fatty acid profiles. The 16S rDNA sequence similarity between strain FO-92T and Bacillus benzoevorans DSM 5391T was very high. However, molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in this genus, but DNA-DNA hybridization data support the proposal of FO-92T as Bacillus nealsonii sp. nov. (type strain is FO-92T =ATCC BAAM-519T =DSM 15077T).

  18. Bacillus marinisedimentorum sp. nov., isolated from marine sediment.

    Science.gov (United States)

    Guo, Ling-Yun; Ling, Si-Kai; Li, Chang-Ming; Chen, Guan-Jun; Du, Zong-Jun

    2018-01-01

    A novel Gram-stain-positive, motile and facultatively anaerobic strain, designated NC2-31 T , was isolated from sediment from the coast of Weihai, PR China. Optimal growth occurred at 37 °C, pH 7.5 and with 2.0-3.0 % (w/v) NaCl. MK-7 was the major respiratory quinone. Meso-diaminopimelic acid was a diagnostic diamino acid in the peptidoglycan. The major polar lipids of NC2-31 T were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). The genomic DNA G+C content of the strain was 46.3 mol%. The predominant cellular fatty acids (>10.0 %) of NC2-31 T were iso-C15 : 0 (18.9 %), anteiso-C15 : 0 (15.8 %), summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) (15.3 %) and iso-C16 : 0 (10.3 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that NC2-31 T should be classified as representing a member of the genus Bacillus. Based on data from the current polyphasic study, NC2-31 T represents a novel species within the genus Bacillus, for which the name Bacillusmarinisedimentorum sp. nov. is proposed with type strain NC2-31 T (=KCTC 33721 T =MCCC 1K01239 T ).

  19. Operational Evaluation Of Vectomax® WSP (Bacillus thuringiensis Subsp. israelensis+Bacillus sphaericus) Against Larval Culex pipiens in Septic Tanks (1).

    Science.gov (United States)

    Cetin, Huseyin; Oz, Emre; Yanikoglu, Atila; Cilek, James E

    2015-06-01

    The residual effectiveness of VectoMax® WSP (a water-soluble pouch formulation containing a combination of Bacillus thuringiensis subsp. israelensis strain AM65-52 and B. sphaericus strain ABTS 1743) when applied to septic tanks against 3rd- and 4th-stage larvae of Culex pipiens L. was evaluated in this study. This formulation was evaluated at operational application rates of 1 pouch (10 g) and 2 pouches (20 g) per septic tank. Both application rates resulted in >96% control of larvae for 24 days. Operationally, VectoMax WSP has proven to be a useful tool for the nonchemical control of Culex species in septic tank environments.

  20. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES DISSERTATION Emily A. Knight, Major, USAF AFIT-ENC-DS-15-S-001 DEPARTMENT OF THE...not subject to copyright protection in the United States. AFIT-ENC-DS-15-S-001 MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES...EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES Emily A. Knight, B.A., M.S. Major, USAF Committee Membership: Dr. William P. Baker Chair Dr. Larry W

  1. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  2. Bioakumulasi logam berat Cu oleh Bacillus sp

    Directory of Open Access Journals (Sweden)

    Riesta Primaharinastiti

    2012-02-01

    Full Text Available The research was conducted to investigate the ability of Bacillus sp in accumulating Cu and how much it can be acumulated. Themedium used to growth the bacterium was Nutrient Broth and Atomic Absorption Spectrophotometry methods was used to assay theCu, both in the cells and medium. The result of this study showed that Bacillus sp incubated in the Nutrient Broth medium containing10 ppm of Cu, with continuous stirring in the room temperature was able to reduce Cu in the medium 8.912–12.623% and accumulateCu in the cell 0.1149–0.1400 %/mg cells. Based on this result, it is necessary to develop more studies to find out what factors thatinfluence the accumulation process and to optimize the bioprocess.

  3. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    OpenAIRE

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subjec...

  4. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    Science.gov (United States)

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression. PMID:6118356

  5. Bio sorption of strontium from aqueous solution by the new strain of bacillus sp. strain GT-83

    International Nuclear Information System (INIS)

    Tajer Mohammad Ghazvini, P.; Ghorbanzadeh Mashkani, S.; Mazaheri, M.

    2009-01-01

    An attempt was made to isolate bacterial strains capable of removing strontium biologically. In this study ten different water samples collected from Neydasht spring in the north of Iran and then the bacterial species were isolated from the water samples. The initial screening of a total of 50 bacterial isolates resulted in selection of one strain.The isolated strain showed a maximum adsorption capacity with 55 milligrams strontium/g dry wt. It was tentatively identified as Bacillus sp. According to the morphological and biochemical properties, and called strain GT-83. Our studies indicated that Bacillus sp. GT-83 is able to grow aerobically in the presence of 50 mM SrCl 2 , but its growth was inhibited at high levels of strontium concentrations. The bio sorption capacity of Bacillus sp. GT-83 depends strongly on the p H solution. Hence the maximum strontium sorption capacity of Bacillus sp. GT-83 was obtained at pah 10, independent of absence or presence of MgCl 2 of different concentrations. Strontium-salt bio sorption studies were also performed at this p H values. The equilibrium bio sorption of strontium was elevated by increasing the strontium concentration, up to 250 milligrams/l for Bacillus sp. GT-83. The maximum bio sorption of strontium was obtained at temperatures in the range of 30-35 d eg C . The Bacillus sp. GT-83 bio sorbed 97 milligrams strontium/g dry wt at 100 milligrams/l initial strontium concentration without MgCl 2 . When MgCl 2 concentration increased to 15%(w/v), these values dropped to 23.6 milligrams strontium/g dry wt at the same conditions. Uptake of strontium within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter

  6. Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil.

    Science.gov (United States)

    Vilain, Sébastien; Luo, Yun; Hildreth, Michael B; Brözel, Volker S

    2006-07-01

    Bacillus is commonly isolated from soils, with organisms of Bacillus cereus sensu lato being prevalent. Knowledge of the ecology of B. cereus and other Bacillus species in soil is far from complete. While the older literature favors a model of growth on soil-associated organic matter, the current paradigm is that B. cereus sensu lato germinates and grows in association with animals or plants, resulting in either symbiotic or pathogenic interactions. An in terra approach to study soil-associated bacteria is described, using filter-sterilized soil-extracted soluble organic matter (SESOM) and artificial soil microcosms (ASM) saturated with SESOM. B. cereus ATCC 14579 displayed a life cycle, with the ability to germinate, grow, and subsequently sporulate in both the liquid SESOM extract and in ASM inserted into wells in agar medium. Cells grew in liquid SESOM without separating, forming multicellular structures that coalesced to form clumps and encasing the ensuing spores in an extracellular matrix. Bacillus was able to translocate from the point of inoculation through soil microcosms as shown by the emergence of outgrowths on the surrounding agar surface. Microscopic inspection revealed bundles of parallel chains inside the soil. The motility inhibitor L-ethionine failed to suppress outgrowth, ruling out translocation by a flagellar-mediated mechanism such as swimming or swarming. Bacillus subtilis subsp. subtilis Marburg and four Bacillus isolates taken at random from soils also displayed a life cycle in SESOM and ASM and were all able to translocate through ASM, even in presence of L-ethionine. These data indicate that B. cereus is a saprophytic bacterium that is able to grow in soil and furthermore that it is adapted to translocate by employing a multicellular mode of growth.

  7. Isolation of bacillus thuringiensis from different samples from Mansehra District

    International Nuclear Information System (INIS)

    Younis, F.; Lodhi, A.F.; Raza, G.

    2009-01-01

    The insecticidal activity of Bacillus thuringiensis has made it very interesting for the control of a variety of agricultural pests and human disease vectors. The present study is an attempt to explore the potential and diversity. of Bacillus thuringiensis. from the local environment for the control of cotton spotted bollworm (Earias sp.), a major pest of cotton. Two hundred and ninety eight samples of soil, grain dust, wild animal dung, birds dropping, decaying leaves and dead insects were collected from different ecological environments of Mansehra District yielding 438 Bacillus thuringiensis isolates that produce parasporal crystalline inclusions. In this study the soil samples were found to be the richest source for Bacillus thuringiensis. (author)

  8. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    Science.gov (United States)

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  9. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Directory of Open Access Journals (Sweden)

    Indu Khatri

    Full Text Available Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  10. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Science.gov (United States)

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  11. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  12. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    International Nuclear Information System (INIS)

    Biketov, S.; Dunaytsev, I.; Baranova, E.; Marinin, L.; Dyatlov, I.

    2009-01-01

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  13. Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1.

    Science.gov (United States)

    Chang, Xiaojiao; Wu, Zidan; Wu, Songling; Dai, Yanshi; Sun, Changpo

    2015-01-01

    Ochratoxin A (OTA) is widely found in food and feed products as a mycotoxin contaminant. It is produced by Penicillium species and several Aspergillus species. The identification OTA detoxification microorganisms is believed to be the best approach for decontamination. In this study, we isolated ASAG1, a bacterium with the ability to degrade OTA effectively, from grain depot-stored maize. A 16S rDNA sequencing approach was used to identify this strain as Bacillus amyloliquefaciens ASAG1. The degradation of OTA was detected in both medium and cell-free extracts after incubation with a culture of B. amyloliquefaciens ASAG1 cells. Subsequently, a hydrolysed enzyme (carboxypeptidase) related to the enzymatic conversion of OTA was cloned from the B. amyloliquefaciens ASAG1 genome. Using the Escherichia coli Expression System, we successfully expressed and purified this carboxypeptidase. When this enzyme was incubated with the engineered recombinant E. coli cells, the concentration of OTA was dramatically degraded. Our data therefore indicate that the carboxypeptidase produced by B. amyloliquefaciens ASAG1 is likely responsible for the biodegradation of OTA.

  14. Fermentation of tender coconut water by probiotic bacteria Bacillus coagulans

    Directory of Open Access Journals (Sweden)

    Aishwarya Singh Gangwar

    2018-04-01

    Full Text Available Coconut water is currently being considered as an elixir for patients suffering from diseases like dengue and malaria as well as chikungunia to provide hydration properties to the body. It has become a popular beverage for many people owing to its palatability and high mineral content. In this study, the growth, survival and fermentation performance of the probiotic bacterium Bacillus coagulans in coconut water was assessed in order to produce a novel non-dairy, probiotic beverage. The species was characterized on the basis of morphology, physiology and biochemical parameters and its probiotic attributes were assessed. Batch fermentations were carried out for 2 days at a constant 37°C, thereafter the samples were subjected to microbiological and chemical analysis. The results suggested that the specie produced lactic acid and was acid and bile tolerant. The pH and titratable acidity of probiotic fermented coconut water were found to be 4.4 and 0.53 % lactic acid, respectively. The viscosity of fermented coconut water increased significantly from an initial 5.13 mPa.s to 5.35 mPa.s because of the increase in soluble solids content due to exopolysaccharide production by B. coagulans during fermentation. Also, the overall acceptability score of probiotic coconut water was higher than tender coconut water, suggesting its feasibility for use as a probiotic beverage.

  15. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin.

    Science.gov (United States)

    Agbobatinkpo, Pélagie B; Thorsen, Line; Nielsen, Dennis S; Azokpota, Paulin; Akissoe, Noèl; Hounhouigan, Joseph D; Jakobsen, Mogens

    2013-05-15

    Yanyanku and Ikpiru made by the fermentation of Malcavene bean (Hibiscus sabdariffa) are used as functional additives for Parkia biglobosa seed fermentations in Benin. A total of 355 aerobic endospore-forming bacteria (AEFB) isolated from Yanyanku and Ikpiru produced in northern and southern Benin were identified using phenotypic and genotypic methods, including GTG5-PCR, M13-PCR, 16S rRNA, gyrA and gyrB gene sequencing. Generally, the same 5-6 species of the genus Bacillus predominated: Bacillus subtilis (17-41% of isolates), Bacillus cereus (8-39%), Bacillus amyloliquefaciens (9-22%), Bacillus licheniformis (3-26%), Bacillus safensis (8-19%) and Bacillus altitudinis (0-19%). Bacillus aryabhattai, Bacillus flexus, and Bacillus circulans (0-2%), and species of the genera Lysinibacillus (0-14%), Paenibacillus (0-13%), Brevibacillus (0-4%), and Aneurinibacillus (0-3%) occurred sporadically. The diarrheal toxin encoding genes cytK-1, cytK-2, hblA, hblC, and hblD were present in 0%, 91% 15%, 34% and 35% of B. cereus isolates, respectively. 9% of them harbored the emetic toxin genetic determinant, cesB. This study is the first to identify the AEFB of Yanyanku and Ikpiru to species level and perform a safety evaluation based on toxin gene detections. We further suggest, that the gyrA gene can be used for differentiating the closely related species Bacillus pumilus and B. safensis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food

    DEFF Research Database (Denmark)

    Rosenquist, Hanne; Ørum-Smidt, Lasse; Andersen, Sigrid R

    2005-01-01

    Among 48,901 samples of ready-to-eat food products at the Danish retail market, 0.5% had counts of Bacillus cereus-like bacteria above 10(4) cfu g(-1). The high counts were most frequently found in starchy, cooked products, but also in fresh cucumbers and tomatoes. Forty randomly selected strains...... had at least one gene or component involved in human diarrhoeal disease, while emetic toxin was related to only one B. cereus strain. A new observation was that 31 out of the 40 randomly selected B. cereus-like strains could be classified as Bacillus thuringiensis due to crystal production and...

  17. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    Directory of Open Access Journals (Sweden)

    Wolfgang Beyer

    Full Text Available The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA and, in part, by twelve single nucleotide polymorphism (SNP markers and four single nucleotide repeat (SNR markers. A total of 37 genotypes (GT were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate

  18. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    Science.gov (United States)

    Beyer, Wolfgang; Bellan, Steve; Eberle, Gisela; Ganz, Holly H; Getz, Wayne M; Haumacher, Renate; Hilss, Karen A; Kilian, Werner; Lazak, Judith; Turner, Wendy C; Turnbull, Peter C B

    2012-01-01

    The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological

  19. Probiotics Based on Bacteria from the Genus Bacillus in Poultry Breeding

    Directory of Open Access Journals (Sweden)

    N.V. Feoktistova

    2017-03-01

    Full Text Available The paper is devoted to the usage of probiotics in the modern animal feed industry for solving pressing problems of animal nutrition. The general characteristics of probiotics and probiotic microorganisms have been given. The development of probiotics based on bifidobacteria, lactobacilli, Escherichia coli, and other microorganisms has been presented. Questions related to the expediency of probiotics in poultry farming have been considered. It has been noted that probiotics are characterized as a mandatory component of the pharmacological support of industrial poultry farming. Particular attention has been paid to the action and safety issues of applying spore probiotics. Veterinary spore probiotics developed in Russia have been described and characterized. Data on the positive effect of these biopreparations in poultry farming have been presented. The crucial role of domestic probiotics on the basis of Bacillus species for solving the urgent problems of Russian industrial poultry farming has been assessed. The characteristics of phytates as compounds with anti-nutritional properties have been provided. The need of phytases in poultry farming as feed additives for increasing the nutritional value of grain feeds has been shown. The general producers of acid phytases, which are part of commercial fodder preparations have been listed. The prospects and necessity of using probiotics based on bacteria of the genus Bacillus with phytase activity have been analyzed. The results of our own studies on the isolation and characterization of the β-propeller phytase of Bacillus ginsengihumi have been discussed.

  20. Biocontrol of gray mold on Rosa Hybrida cv. Baccara with Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    E. S. Mousavi

    2017-06-01

    Full Text Available The bacteria Bacillus subtilis was investigated for control of gray mold, postharvest quality and antioxidant enzymes of Rosa hybrida cv. Baccara. The results indicated that the treatment of Bacillus subtilis suspension of 1 × 108cfu mL−1 with resulted in a remarkably improved control of Botrytis cinerea infections. CAT activity in treated flower by antagonism were significantly more than those control (P ≤ 0.05 at 25◦C, RH 60-70%. POD activity cut flowers increased during the flower bud development with the lowest activity present at water-sprayed control. Enhanced by antagonism could be due to either induced resistance or direct effects of these chemicals on Botrytis. The proper concentration of Bacillus subtilis can thus provide an effective strategy to increase postharvest vase life of Rosa. Postharvest antagonism application prolonged vase-life in cut rose flowers by improving the reactive oxygen species (ROS scavenging capacity related to CAT and POD activity

  1. Exploring the Metabolomic Responses of Bacillus licheniformis to Temperature Stress by Gas Chromatography/Mass Spectrometry.

    Science.gov (United States)

    Dong, Zixing; Chen, Xiaoling; Cai, Ke; Chen, Zhixin; Wang, Hongbin; Jin, Peng; Liu, Xiaoguang; Permaul, Kugenthiren; Singh, Suren; Wang, Zhengxiang

    2018-03-28

    Owing to its high protein secretion capacity, simple nutritional requirements, and GRAS (generally regarded as safe) status, Bacillus licheniformis is widely used as a host for the industrial production of enzymes, antibiotics, and peptides. However, as compared with its close relative Bacillus subtilis , little is known about the physiology and stress responses of B. licheniformis . To explore its temperature-stress metabolome, B. licheniformis strains ATCC 14580 and B186, with respective optimal growth temperatures of 42°C and 50°C, were cultured at 42°C, 50°C, and 60°C and their corresponding metabolic profiles were determined by gas chromatography/mass spectrometry and multivariate statistical analyses. It was found that with increased growth temperatures, the two B. licheniformis strains displayed elevated cellular levels of proline, glutamate, lysine, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, and octadecanoic acid, and decreased levels of glutamine and octadecenoic acid. Regulation of amino acid and fatty acid metabolism is likely to be associated with the evolution of protective biochemical mechanisms of B. licheniformis . Our results will help to optimize the industrial use of B. licheniformis and other important Bacillus species.

  2. Identification of Bacillus strains by MALDI TOF MS using geometric approach

    Science.gov (United States)

    Starostin, Konstantin V.; Demidov, Evgeny A.; Bryanskaya, Alla V.; Efimov, Vadim M.; Rozanov, Alexey S.; Peltek, Sergey E.

    2015-11-01

    Microorganism identification by MALDI TOF mass-spectrometry is based on the comparison of the mass spectrum of the studied organism with those of reference strains. It is a rapid and reliable method. However, commercial databases and programs are mostly designed for identification of clinically important strains and can be used only for particular mass spectrometer models. The need for open platforms and reference databases is obvious. In this study we describe a geometric approach for microorganism identification by mass spectra and demonstrate its capabilities by analyzing 24 strains belonging to the Bacillus pumilus group. This method is based on representing mass spectra as points on a multidimensional space, which allows us to use geometric distances to compare the spectra. Delimitation of microorganisms performed by geometric approach correlates well with the results of molecular phylogenetic analysis and clustering using Biotyper 3.1. All three methods used allowed us to reliably divide the strains into two groups corresponding to closely related species, Bacillus pumilus and Bacillus altitudinis. The method developed by us will be implemented in a Web interface designed for using open reference databases for microorganism identification. The data is available at http://www.bionet.nsc.ru/mbl/database/database.html.

  3. Characterization of lpaH2 gene corresponding to lipopeptide synthesis in Bacillus amyloliquefaciens HAB-2.

    Science.gov (United States)

    Jin, Pengfei; Wang, Haonan; Liu, Wenbo; Miao, Weiguo

    2017-12-04

    Bacillus spp. have prominent ability to suppress plant pathogens and corresponding diseases. Previous analyses of Bacillus spp. revealed numerous gene clusters involved in nonribosomal synthesis of cyclic lipopeptides with distinct antimicrobial action. The 4'-phosphopantetheinyl transferase (PPTase) encoded by sfp gene is a key factor in lipopeptide synthesis in Bacillus spp. In previous study, B. amyloliquefaciens strain HAB-2 was found to inhibit a broad range of plant pathogens, which was attributed to its secondary metabolite lipopeptide. A sfp homologue lpaH2 which encoded phosphopantetheinyl transferase but shared 71% sequence similarity was detected in strain HAB-2. Disruption of lpaH2 gene resulted in losing the ability of strain HAB-2 to produce lipopeptide, as well as antifungal and hemolytic activities. When lpaH2 replaced sfp gene of B. subtilis strain 168, a non-lipopeptide producer, the genetically engineered strain 168 could produced lipopeptides and recovered antifungal activity. Quantitative PCR assays indicated that, the expression level of lpaH2 in B. subtilis 168 strain decrease to 0.27-fold compared that of the wild type B. amyloliquefaciens strain HAB-2. Few studies have reported about lpa gene which can replace sfp gene in the different species. Taken together, our study showed for the first time that lpaH2 from B. amyloliquefaciens could replace sfp gene.

  4. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    Directory of Open Access Journals (Sweden)

    Eu Jin Chung

    2015-06-01

    Full Text Available Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208 and Burkholderia glumae (KACC 44022, respectively, were also suppressed effectively by drenching a bacterial suspension (10⁷ cfu/ml of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%, Bacillus methylotrophicus KACC 13105T (99.65%, Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%, and Bacillus tequilensis KACC 15944T (99.45%. The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the

  5. The pore-forming protein Cry5B elicits the pathogenicity of Bacillus sp. against Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Melanie F Kho

    Full Text Available The soil bacterium Bacillus thuringiensis is a pathogen of insects and nematodes and is very closely related to, if not the same species as, Bacillus cereus and Bacillus anthracis. The defining characteristic of B. thuringiensis that sets it apart from B. cereus and B. anthracis is the production of crystal (Cry proteins, which are pore-forming toxins or pore-forming proteins (PFPs. Although it is known that PFPs are important virulence factors since their elimination results in reduced virulence of many pathogenic bacteria, the functions by which PFPs promote virulence are incompletely understood. Here we study the effect of Cry proteins in B. thuringiensis pathogenesis of the nematode Caenorhabditis elegans. We find that whereas B. thuringiensis on its own is not able to infect C. elegans, the addition of the PFP Cry protein, Cry5B, results in a robust lethal infection that consumes the nematode host in 1-2 days, leading to a "Bob" or bag-of-bacteria phenotype. Unlike other infections of C. elegans characterized to date, the infection by B. thuringiensis shows dose-dependency based on bacterial inoculum size and based on PFP concentration. Although the infection process takes 1-2 days, the PFP-instigated infection process is irreversibly established within 15 minutes of initial exposure. Remarkably, treatment of C. elegans with Cry5B PFP is able to instigate many other Bacillus species, including B. anthracis and even "non-pathogenic" Bacillus subtilis, to become lethal and infectious agents to C. elegans. Co-culturing of Cry5B-expressing B. thuringiensis with B. anthracis can result in lethal infection of C. elegans by B. anthracis. Our data demonstrate that one potential property of PFPs is to sensitize the host to bacterial infection and further that C. elegans and probably other roundworms can be common hosts for B. cereus-group bacteria, findings with important ecological and research implications.

  6. On the origin of heterogeneity in (preservation) resistance of Bacillus spores: Input for a ‘systems’ analysis approach of bacterial spore outgrowth

    NARCIS (Netherlands)

    Hornstra, L.M.; ter Beek, A.; Smelt, J.P.; Kallemeijn, W.W.; Brul, S.

    2009-01-01

    Bacterial spores are the ultimate (stress) ‘survival capsules’. They allow strains from the Bacillus and Clostridium species to survive harsh environmental conditions. In addition to the decision to enter sporulation the decision to do the reverse (germinate) is also a decisive event after which

  7. Bacillus thuringiensis toxin resistance mechanisms among Lepidoptera: progress on genomic approaches to uncover causal mutations in the European corn borer, Ostrinia nubilalis

    Science.gov (United States)

    Transgenic plants that expressed Bacillus thuringiensis (Bt) crystalline (Cry) protein toxins can suffer feeding damage from a small number of lepidopteran insect species under field conditions, which has heightened concerns about the durability of pest control tactics. Genomics research has provid...

  8. A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco

    NARCIS (Netherlands)

    Strizhov, N.; Keller, M.; Mathur, J.; Koncz-Kaiman, Z.; Bosch, D.; Prudovksy, E.; Schell, J.; Sneh, B.; Koncz, C.; Zilberstein, A.

    1996-01-01

    Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ-endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation–PCR method. This simple and

  9. Bacillus iocasae sp. nov., isolated from Pacmanus hydrothermal field, Manus Basin.

    Science.gov (United States)

    Wang, Hai-Liang; Zhang, Jian; Sun, Li

    2017-09-01

    A novel bacterial strain S36T was isolated from the deep-sea sediment collected from Pacmanus hydrothermal field, Manus Basin. The strain was Gram-stain-positive, aerobic, rod-shaped, endospore-forming, and motile. It was able to grow at 16-50 °C, pH 6.0-10.0, and in the presence of 0-11 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain S36T was a member of genus Bacillus and shares the highest sequence identity with Bacillus herbersteinensis D-1,5aT (97.0 %). The value of DNA-DNA hybridization between strain S36T and B. herbersteinensis D-1,5aT was 22.8 %. The cell wall diagnostic diamino acid of strain S36T was meso-diaminopimelic acid and the polar lipid profile of strain S36T contained diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The predominant respiratory quinine was MK-7. The major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The genomic DNA G+C content of strain S36T was 43.0 mol%. On the basis of phylogenetic analysis, DNA-DNA hybridization, and phenotypic characteristics, it was concluded that strain S36T represents a novel species of the genus Bacillus, for which the name Bacillus iocasae sp. nov. was proposed. The type strain is S36T (=KCTC 33864T=DSM 104297T=CGMCC 1.16030T).

  10. Identification of diacetonamine from soybean curd residue as a sporulation-inducing factor toward Bacillus spp.

    Science.gov (United States)

    Ikeda, Aki; Kim, Dongyeop; Hashidoko, Yasuyuki

    2017-12-01

    Under bioassay-guided investigation, a sporulation-inducing factor (SIF) toward Bacillus spp. was searched for in methanol (MeOH) extracts of soybean curd residues, and diacetonamine (1) was identified as the active compound. SIF was first isolated as a monoacetylated derivative (2, 4.1 mg from 655 g soybean curd residues), and its chemical structure was elucidated by field desorption mass spectrometry, electron ionization mass spectrometry, and nuclear magnetic resonance (NMR) analyses. After 48-h incubation, 40 µM diacetonamine hydrochloride (1b) exhibited sporulation-inducing activity with 35% sporulation frequency toward a Bacillus amyloliquefaciens wild-type strain (AHU 2170), whereas 40 µM diacetone acrylamide (3) showed 99% sporulation induction, which was much higher than that of 1b. Although Bacillus megaterium NBRC 15308 was sporulated by the treatment with 400 µM 1b with 36 and 70% sporulation frequency after 72- and 96-h incubation respectively, 3 at the same concentration showed only 2% sporulation after 72-h incubation. Hence, diacetonamine (1) was characterized as a genuine SIF from soybean curd residues, but it was uncertain whether 1 is a natural product or an artifact. Spores of B. amyloliquefaciens induced by 1b survived after treatment with heating at 95 °C for 10 min, also suggesting that 1 is genuine SIF in soybean curd residue. As sporulation induction is likely linked to activation of antibiotic production in some spore-forming Firmicutes bacteria, compound 1 would be a possible chemical tool to develop an effective fermentation technology in Bacillus species.

  11. Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1.

    Science.gov (United States)

    Arguelles Arias, Anthony; Ongena, Marc; Devreese, Bart; Terrak, Mohammed; Joris, Bernard; Fickers, Patrick

    2013-01-01

    Lantibiotics are heat-stable peptides characterized by the presence of thioether amino acid lanthionine and methyllanthionine. They are capable to inhibit the growth of Gram-positive bacteria, including Listeria monocytogenes, Staphylococcus aureus or Bacillus cereus, the causative agents of food-borne diseases or nosocomial infections. Lantibiotic biosynthetic machinery is encoded by gene cluster composed by a structural gene that codes for a pre-lantibiotic peptide and other genes involved in pre-lantibiotic modifications, regulation, export and immunity. Bacillus amyloliquefaciens GA1 was found to produce an antimicrobial peptide, named amylolysin, active on an array of Gram-positive bacteria, including methicillin resistant S. aureus. Genome characterization led to the identification of a putative lantibiotic gene cluster that comprises a structural gene (amlA) and genes involved in modification (amlM), transport (amlT), regulation (amlKR) and immunity (amlFE). Disruption of amlA led to loss of biological activity, confirming thus that the identified gene cluster is related to amylolysin synthesis. MALDI-TOF and LC-MS analysis on purified amylolysin demonstrated that this latter corresponds to a novel lantibiotic not described to date. The ability of amylolysin to interact in vitro with the lipid II, the carrier of peptidoglycan monomers across the cytoplasmic membrane and the presence of a unique modification gene suggest that the identified peptide belongs to the group B lantibiotic. Amylolysin immunity seems to be driven by only two AmlF and AmlE proteins, which is uncommon within the Bacillus genus. Apart from mersacidin produced by Bacillus amyloliquefaciens strains Y2 and HIL Y-85,544728, reports on the synthesis of type B-lantibiotic in this species are scarce. This study reports on a genetic and structural characterization of another representative of the type B lantibiotic in B. amyloliquefaciens.

  12. The use of two biological formulations of Bacillus Thuringiensis and ...

    African Journals Online (AJOL)

    Two biological formulations of the microbial agents Bacillus thuringiensis and Bacillus sphaericus, known by their trade names Vectobac 12 AS and VectoLex CG (Corn Cob) granules, respectively, were obtained from Valent Biosciences Company (formerly Abbott Laboratories) of North Chicago, USA, and applied to control ...

  13. Production of cellulase by a novel cellulolytic Bacillus sp

    African Journals Online (AJOL)

    squ

    2016-10-26

    Oct 26, 2016 ... Eight cellulose degrading bacteria were isolated from compost and were identified as Bacillus licheniformis by 16S rRNA sequencing. Among the eight isolates, Bacillus licheniformis B4, B7 and B8 showed the highest cellulase activity. B. licheniformis B4 and B8 showed the maximum cellulase.

  14. Isolation and characterization of a novel Bacillus subtilis WD23 ...

    African Journals Online (AJOL)

    The strain Bacillus sp. WD23 exhibiting laccase activity was screened from forest soil. The M9 medium containing Cu2+ was used for enriching and isolating bacterial strains capable of oxidizing syringaldazine. One isolated strain was identified as Bacillus subtilis WD23 based on the results of physiological and biochemical ...

  15. Monitoring of marine Bacillus diversity among the bacteria ...

    African Journals Online (AJOL)

    germination an indication of manganese reduction by Bacillus. Two strains identified as Bacillus pumilus using 16S rRNA gene sequence were isolated from Buzzers Bay seawater at 45 feet dept. The strains spores were centrally located and they were able to tolerate 1.0 M NaCl concentration indicating their marine origin.

  16. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    Science.gov (United States)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  17. Isolation and characterization of Bacillus thuringiensis from soils in ...

    African Journals Online (AJOL)

    Of 110 Bacillus thuringiensis isolates analyzed for the presence of crystal protein genes, 7 tested positive for cry 4, cry 11, and cyt toxin genes. Sequencing of these genes in positive strains demonstrated 99–100 % homology to known mosquitocidal cry and cyt genes in Bacillus thuringiensis subsp. israelensis. The present ...

  18. by lipase from Bacillus thuringiensis and Lysinibacillus sphaericus

    African Journals Online (AJOL)

    This study reported production of lipase by Bacillus thuringiensis and Lysinibacillus sphaericus. Bacteria isolates were screened on Bushnell-Hass Mineral Salt medium containing 1% PMS for oil degradation. Two potent isolates were identified using 16S rRNA as Bacillus thuringiensis and Lysinibacillus sphaericus.

  19. Evaluation of the Larvicidal Activities of Bacillus Sphaericus on ...

    African Journals Online (AJOL)

    Evaluation of the Larvicidal Activities of Bacillus Sphaericus on Culex Mosquito Found in Sokoto. SB Manga, M Galadima. Abstract. Studies on the larvicidal activities of Bacillus sphaericus, against Culex quinquefasciatus mosquitoes found in this area (Sokoto), was carried out. The B. sphaericus (SPH 88) was obtained ...

  20. Evaluation of antifungal activity from Bacillus strains against ...

    African Journals Online (AJOL)

    In this study, 30 bacterial strains isolated from marine biofilms were screened for their antifungal activity against Rhizoctonia solani by dual culture assay. Two bacterial strains, Bacillus subtilis and Bacillus cereus, showed a clear antagonism against R. solani on potato dextrose agar (PDA) medium. The antagonistic activity ...

  1. Antagonistic activity of selected strains of Bacillus thuringiensis ...

    African Journals Online (AJOL)

    The aim of this work was to determine, in vitro, the antagonistic effectiveness of 60 strains of Bacillus thuringiensis against damping-off and root and stem rot caused by Rhizoctonia solani. The strains were obtained from the International Collection of Entomopathogenic Bacillus at the FCB-UANL. During the in vitro dual ...

  2. Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes

    Science.gov (United States)

    2014-10-30

    effect of SWNTs in combination with antimicrobial chemicals on inactivation of B. anthracis spores; 4) the effect of CNTs coated surfaces on the...2010 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: (Life Science Division/ Biochemistry ) Inactivation of Bacillus... Biochemistry ) Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes Report Title The Specific Aims of the project were to investigate: 1) the

  3. Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic ...

    African Journals Online (AJOL)

    Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic hydrolysis of corn stover with low cellulase loadings. ... These results provided a feasible way for the potential application of BsEXLX1 in the efficient saccharification of cellulose materials for bioethanol production. Key word: Bacillus subtilis, BsEXLX1, ...

  4. Endangered Species

    Science.gov (United States)

    EPA's Endangered Species Protection Program helps promote recovery of listed species. The ESPP determines if pesticide use in a geographic area may affect any listed species. Find needed limits on pesticide use in Endangered Species Protection Bulletins.

  5. Determining the Role of Multicopper Oxidases in Manganese(II) Oxidation by Marine Bacillus Spores

    Science.gov (United States)

    Dick, G. J.; Tebo, B. M.

    2005-12-01

    Bacteria play an important role in the environmental cycling of Mn by oxidizing soluble Mn(II) and forming insoluble Mn(III/IV) oxides. These biogenic Mn oxides are renowned for their strong sorptive and oxidative properties, which control the speciation and availability of many metals and organic compounds. A wide variety of bacteria are known to catalyze the oxidation of Mn(II); one of the most frequently isolated types are Bacillus species that oxidize Mn(II) only as metabolically dormant spores. We are using genetic and biochemical methods to study the molecular mechanisms of this process in these organisms. mnxG, a gene related to the multicopper oxidase (MCO) family of enzymes, is required for Mn(II) oxidation in the model organism, Bacillus sp. strain SG-1. Mn(II)-oxidizing activity can be detected in crude protein extracts of the exosporium and as a discrete band in SDS-PAGE gels, however previous attempts to purify or identify this Mn(II)-oxidizing enzyme have failed. A direct link between the Mn(II)-oxidizing enzyme and the MCO gene suspected to encode it has never been made. We used genetic and biochemical methods to investigate the role of the MCO in the mechanism of Mn(II) oxidation. Comparative analysis of the mnx operon from several diverse Mn(II)-oxidizing Bacillus spores revealed that mnxG is the most highly conserved gene in the operon, and that copper binding sites are highly conserved. As with Mn(II) oxidases from other organisms, heterologous expression of the Bacillus mnxG in E. coli did not yield an active Mn(II) oxidase. Purifying sufficient quantities of the native Mn(II) oxidase from Bacillus species for biochemical characterization has proven difficult because the enzyme does not appear to be abundant, and it is highly insoluble. We were able to partially purify the Mn(II) oxidase, and to analyze the active band by in-gel trypsin digestion followed by tandem mass spectrometry (MS/MS). MS/MS spectra provided a conclusive match to mnx

  6. Integrated Use of Planaria (Dugesia dorotocephala) and Bacillus thuringiensis var. Israelensis against Aedes Taeniorhynchus: A Laboratory Bioassay

    Science.gov (United States)

    1990-12-01

    predatory planarian , Dugesia dorotoce- against Ae. taeniorhynchus under phala (Woodworth), and the microbial larvicide, andplanaria ins. u Bacillus...association between B.t.i. and planaria, The opinions or assertions contained herein are and planarian consumption of B.t.i.-dosed mos- the private views of...specifically, 3 Kenk, R. 1972. Freshwater planarians [Turbellarial of species of minnows, due to 2 factors: (1) imme- North America. Biota of

  7. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    Science.gov (United States)

    2012-11-01

    Spores of Bacillus species are metabolically dormant and ex-tremely resistant to a wide variety of agents (38). As a conse- quence, these spores can...permeability barrier in dormant spores, the coat is a permeability barrier to large mole- cules (18, 20). Thus, it is possible that there are special...type and gerP spore germina- tion. Almost all bacteria have an alanine racemase activity essen- tial for the generation of the D-alanine needed for

  8. Bacillus populi sp. nov. isolated from Populus euphratica rhizosphere soil of the Taklamakan desert.

    Science.gov (United States)

    Liu, Bo; Liu, Guo-Hong; Wang, Xiao-Ying; Wang, Jie-Ping; Zhu, Yu-Jing; Zhang, Hai-Feng; Sengonca, Cetin

    2018-01-01

    A rod-shaped, endospore-forming, aerobic bacterium, designated FJAT-45347 T , was isolated from rhizosphere soil collected from the Taklamakan desert in Xinjiang (PR China). Growth was observed at 15-35 °C (optimum 25 °C), in 0 % and 20.0 % NaCl (optimum 8.0 %) and at pH 7.5-12.0 (optimum 8.0), respectively. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the isoprenoid quinone was MK-7. The main fatty acids were iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic analysis based on 16S rRNA gene sequences affiliated FJAT-45347 T to the genus Bacillus, and it showed the highest sequence similarities to Bacillus clarkii DSM 8720 T (96.1 %). The average nucleotide identity and in silico DNA-DNA hybridization values between FJAT-45347 T and the most closely related species were 68.5 and 26.2 %, respectively, which were lower than the thresholds commonly used to define species (96 and 70 %, respectively), indicating that it represented a member of a different taxon. The DNA G+C content was 40.6 mol%. The phenotypic characters and taxono-genomics study revealed that FJAT-45347 T represents a novel species of the genus Bacillus, for which the name Bacilluspopuli sp. nov. is proposed. The type strain is FJAT-45347 T (=DSM 104632 T =CCTCC AB 2016257 T ).

  9. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils.

    Science.gov (United States)

    Khan, Waheed Ullah; Yasin, Nasim Ahmad; Ahmad, Sajid Rashid; Ali, Aamir; Ahmed, Shakil; Ahmad, Aqeel

    2017-05-04

    In our current study, four nickel-tolerant (Ni-tolerant) bacterial species viz, Bacillus thuringiensis 002, Bacillus fortis 162, Bacillus subtilis 174, and Bacillus farraginis 354, were screened using Ni-contaminated media. The screened microbes exhibited positive results for synthesis of indole acetic acid (IAA), siderophore production, and phosphate solubilization. The effects of these screened microbes on Ni mobility in the soil, root elongation, plant biomass, and Ni uptake in Althea rosea plants grown in Ni-contaminated soil (200 mg Ni kg -1 ) were evaluated. Significantly higher value for water-extractable Ni (38 mg kg -1 ) was observed in case of Ni-amended soils inoculated with B. subtilis 174. Similarly, B. thuringiensis 002, B. fortis 162, and B. subtilis 174 significantly enhanced growth and Ni uptake in A. rosea. The Ni uptake in the shoots and roots of B. subtilis 174-inoculated plants enhanced up to 1.7 and 1.6-fold, respectively, as compared to that in the un-inoculated control. Bacterial inoculation also significantly improved the root and shoot biomass of treated plants. The current study presents a novel approach for bacteria-assisted phytoremediation of Ni-contaminated areas.

  10. Genetic Competence Drives Genome Diversity in Bacillus subtilis

    Science.gov (United States)

    Chevreux, Bastien; Serra, Cláudia R; Schyns, Ghislain; Henriques, Adriano O

    2018-01-01

    Abstract Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them. PMID:29272410

  11. Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits

    Directory of Open Access Journals (Sweden)

    Sayaka Tsuji

    2017-07-01

    Full Text Available Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species.

  12. Effects of High Pressure on Bacillus licheniformis Spore Germination and Inactivation.

    Science.gov (United States)

    Borch-Pedersen, Kristina; Mellegård, Hilde; Reineke, Kai; Boysen, Preben; Sevenich, Robert; Lindbäck, Toril; Aspholm, Marina

    2017-07-15

    Bacillus and Clostridium species form spores, which pose a challenge to the food industry due to their ubiquitous nature and extreme resistance. Pressurization at 300 MPa likely triggers germination by opening dipicolinic acid (DPA) channels present in the inner membrane of the spores. In this work, we expose spores of Bacillus licheniformis , a species associated with food spoilage and occasionally with food poisoning, to high pressure (HP) for holding times of up to 2 h. By using mutant spores lacking one or several GRs, we dissect the roles of the GerA, Ynd, and GerK GRs in moderately HP (mHP; 150 MPa)-induced spore germination. We show that Ynd alone is sufficient for efficient mHP-induced spore germination. GerK also triggers germination with mHP, although at a reduced germination rate compared to that of Ynd. GerA stimulates mHP-induced germination but only in the presence of either the intact GerK or Ynd GR. These results suggests that the effectiveness of the individual GRs in mHP-induced germination differs from their effectiveness in nutrient-induced germination, where GerA plays an essential role. In contrast to Bacillus subtilis spores, treatment with very HP (vHP) of 550 MPa at 37°C did not promote effective germination of B. licheniformis spores. However, treatment with vHP in combination with elevated temperatures (60°C) gave a synergistic effect on spore germination and inactivation. Together, these results provide novel insights into how HP affects B. licheniformis spore germination and inactivation and the role of individual GRs in this process. IMPORTANCE Bacterial spores are inherently resistant to food-processing regimes, such as high-temperature short-time pasteurization, and may therefore compromise food durability and safety. The induction of spore germination facilitates subsequent inactivation by gentler processing conditions that maintain the sensory and nutritional qualities of the food. High-pressure (HP) processing is a nonthermal

  13. Emetic food poisoning caused by Bacillus cereus.

    Science.gov (United States)

    Holmes, J R; Plunkett, T; Pate, P; Roper, W L; Alexander, W J

    1981-05-01

    Symptoms of acute food poisoning developed in eight members of a group who ate lunch at a cafeteria. After brief incubation periods, all affected individuals complained of nausea and abdominal cramps. Four persons promptly experienced vomiting. None of those affected was found to have fever and all recovered with 48 hours. Epidemiologic investigation incriminated macaroni and cheese as a cause of the illness and samples of this food contained large numbers of Bacillus cereus. Previous outbreaks of B cereus emetic food poisoning have been associated with consumption of contaminated fried rice and may occur after ingestion of other foods.

  14. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition.

    Science.gov (United States)

    Muslim, Sahira Nsayef; Al-Kadmy, Israa M S; Hussein, Nadheema Hammood; Mohammed Ali, Alaa Naseer; Taha, Buthainah Mohammed; Aziz, Sarah Naji; Kheraif, Abdulaziz Abdullah Al; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2016-11-01

    A number of bacterial species produces chitosanases which has variety of applications because of its high biodegradability, non-toxicity and antimicrobial assets. In the present study chitosanase is purified from new bacterial species Bacillus licheniformis from spoiled vegetable. This novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples has the ability to produce the chitosanase enzyme when grown on chitosan substrate. Study also examined its antibiofilm properties against diverse bacterial species with biofilm forming ability. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria [biofilm producers] tested in this study in congo red agar and microtiter plate's methods. Highly antibiofilm activity of chitosanase was recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation upto 22 and 29%, respectively compared with [100] % of control. Biofilm formation has multiple role including ability to enhance resistance and self-protection from external stress. This chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug resistant pathogen-associated infections, especially in situation where biofilms are involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants

    Science.gov (United States)

    Kesaulya, H.; Hasinu, J. V.; Tuhumury, G. NC

    2018-01-01

    In nature, different types of siderophore such as hydroxymate, catecholets and carboxylate, are produced by different bacteria. Bacillus spp were isolated from potato rhizospheric soil can produce siderophore of both catecholets and salicylate type with different concentrations. Various strains of Bacillus spp were tested for pathogen inhibition capability in a dual culture manner. The test results showed the ability of inhibition of pathogen isolated from banana wilt disease. From the result tested were found Bacillus niabensis Strain PT-32-1, Bacillus subtilis Strain SWI16b, Bacillus subtilis Strain HPC21, Bacillus mojavensis Strain JCEN3, and Bacillus subtilis Strain HPC24 showed different capabilities in suppressing pathogen.

  16. Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats

    Science.gov (United States)

    Zhang, Nan; Yang, Dongqing; Kendall, Joshua R. A.; Borriss, Rainer; Druzhinina, Irina S.; Kubicek, Christian P.; Shen, Qirong; Zhang, Ruifu

    2016-01-01

    Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens—B. amyloliquefaciens subsp. plantarum, has recently been recognized, here we used 31 whole genomes [including two newly sequenced PGPR strains: B. amyloliquefaciens NJN-6 isolated from Musa sp. (banana) and B. subtilis HJ5 from Gossypium sp. (cotton)] to perform comparative analysis and investigate the genomic characteristics and evolution traits of both species in different niches. Phylogenomic analysis indicated that strains isolated from plant-associated (PA) habitats could be distinguished from those from non-plant-associated (nPA) niches in both species. The core genomes of PA strains are more abundant in genes relevant to intermediary metabolism and secondary metabolites biosynthesis as compared with those of nPA strains, and they also possess additional specific genes involved in utilization of plant-derived substrates and synthesis of antibiotics. A further gene gain/loss analysis indicated that only a few of these specific genes (18/192 for B. amyloliquefaciens and 53/688 for B. subtilis) were acquired by PA strains at the initial divergence event, but most were obtained successively by different subgroups of PA stains during the evolutional process. This study demonstrated the genomic differences between PA and nPA B. amyloliquefaciens and B. subtilis from different niches and the involved evolutional traits, and has implications for screening of PGPR strains in agricultural production. PMID:28066362

  17. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    Science.gov (United States)

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  18. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  19. High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA Operon in a Tn1546 Transposon

    Science.gov (United States)

    Berendsen, Erwin M.; Koning, Rosella A.; Boekhorst, Jos; de Jong, Anne; Kuipers, Oscar P.; Wells-Bennik, Marjon H. J.

    2016-01-01

    Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a spoVA operon, designated spoVA2mob, present on a Tn1546 transposon in Bacillus subtilis, leads to profoundly increased wet heat resistance of B. subtilis spores. Such Tn1546 transposon elements including the spoVA2mob operon were also found in several strains of Bacillus amyloliquefaciens and Bacillus licheniformis, and these strains were shown to produce spores with significantly higher resistances to wet heat than their counterparts lacking this transposon. In this study, the locations and compositions of Tn1546 transposons encompassing the spoVA2mob operons in B. amyloliquefaciens and B. licheniformis were analyzed. Introduction of these spoVA2mob operons into B. subtilis 168 (producing spores that are not highly heat resistant) rendered mutant 168 strains that produced high-level heat resistant spores, demonstrating that these elements in B. amyloliquefaciens and B. licheniformis are responsible for high level heat resistance of spores. Assessment of growth of the nine strains of each species between 5.2°C and 57.7°C showed some differences between strains, especially at lower temperatures, but all strains were able to grow at 57.7°C. Strains of B. amyloliquefaciens and B. licheniformis that contain the Tn1546 elements (and produce high-level heat resistant spores) grew at temperatures similar to those of their Tn1546-negative counterparts that produce low-level heat resistant spores. The findings presented in this study allow for detection of B. amyloliquefaciens and B. licheniformis strains that produce highly heat resistant spores in the food chain. PMID:27994575

  20. High-level heat resistance of spores of Bacillus amyloliquefaciens and Bacillus licheniformis results from the presence of a spoVA operon in a Tn1546 transposon.

    Directory of Open Access Journals (Sweden)

    Erwin M. Berendsen

    2016-12-01

    Full Text Available Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a spoVA operon, designated spoVA2mob, present on a Tn1546 transposon in Bacillus subtilis, leads to profoundly increased wet heat resistance of B. subtilis spores. Such Tn1546 transposon elements including the spoVA2mob operon were also found in several strains of Bacillus amyloliquefaciens and Bacillus licheniformis, and these strains were shown to produce spores with significantly higher resistances to wet heat than their counterparts lacking this transposon. In this study, the locations and compositions of Tn1546 transposons encompassing the spoVA2mob operons in B. amyloliquefaciens and B. licheniformis were analyzed. Introduction of these spoVA2mob operons into B. subtilis 168 (producing spores that are not highly heat resistant rendered mutant 168 strains that produced high-level heat resistant spores, demonstrating that these elements in B. amyloliquefaciens and B. licheniformis are responsible for high level heat resistance of spores. Assessment of growth of the nine strains of each species between 5.2°C and 57.7°C showed some differences between strains, especially at lower temperatures, but all strains were able to grow at 57.7°C. Strains of B. amyloliquefaciens and B. licheniformis that contain the Tn1546 elements (and produce high-level heat resistant spores grew at temperatures similar to those of their Tn1546-negative counterparts that produce low-level heat resistant spores. The findings presented in this study allow for detection of B. amyloliquefaciens and B. licheniformis strains that produce highly heat resistant spores in the food chain.

  1. Synergistic activity of Bacillus thuringiensis toxins against Simulium spp. larvae.

    Science.gov (United States)

    Monnerat, Rose; Pereira, Eleny; Teles, Beatriz; Martins, Erica; Praça, Lilian; Queiroz, Paulo; Soberon, Mario; Bravo, Alejandra; Ramos, Felipe; Soares, Carlos Marcelo

    2014-09-01

    Species of Simulium spread diseases in humans and animals such as onchocerciasis and mansonelosis, causing health problems and economic loses. One alternative for controlling these insects is the use of Bacillus thuringiensis serovar israelensis (Bti). This bacterium produces different dipteran-active Cry and Cyt toxins and has been widely used in blackfly biological control programs worldwide. Studies on other insect targets have revealed the role of individual Cry and Cyt proteins in toxicity and demonstrated a synergistic effect among them. However, the insecticidal activity and interactions of these proteins against Simulium larvae have not been reported. In this study we demonstrate that Cry4Ba is the most effective toxin followed by Cry4Aa and Cry11Aa. Cry10Aa and Cyt1Aa were not toxic when administered alone but both were able to synergise the activity of Cry4B and Cry11Aa toxins. Cyt1Aa is also able to synergise with Cry4Aa. The mixture of all toxin-producing strains showed the greatest level of synergism, but still lower than the Bti parental strain. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  3. Analysis of Spo0M function in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Luz Adriana Vega-Cabrera

    Full Text Available Spo0M has been previously reported as a regulator of sporulation in Bacillus subtilis; however, little is known about the mechanisms through which it participates in sporulation, and there is no information to date that relates this protein to other processes in the bacterium. In this work we present evidence from proteomic, protein-protein interaction, morphological, subcellular localization microscopy and bioinformatics studies which indicate that Spo0M function is not necessarily restricted to sporulation, and point towards its involvement in other stages of the vegetative life cycle. In the current study, we provide evidence that Spo0M interacts with cytoskeletal proteins involved in cell division, which suggest a function additional to that previously described in sporulation. Spo0M expression is not restricted to the transition phase or sporulation; rather, its expression begins during the early stages of growth and Spo0M localization in B. subtilis depends on the bacterial life cycle and could be related to an additional proposed function. This is supported by our discovery of homologs in a broad distribution of bacterial genera, even in non-sporulating species. Our work paves the way for re-evaluation of the role of Spo0M in bacterial cell.

  4. Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis.

    Science.gov (United States)

    Bolotin, Alexandre; Gillis, Annika; Sanchis, Vincent; Nielsen-LeRoux, Christina; Mahillon, Jacques; Lereclus, Didier; Sorokin, Alexei

    2017-05-01

    Bacillus thuringiensis subsp. israelensis is one of the most important microorganisms used against mosquitoes. It was intensively studied following its discovery and became a model bacterium of the B. thuringiensis species. Those studies focused on toxin genes, aggregation-associated conjugation, linear genome phages, etc. Recent announcements of genomic sequences of different strains have not been explicitly related to the biological properties studied. We report data on plasmid content analysis of four strains using ultra-high-throughput sequencing. The strains were commercial product isolates, with their putative ancestor and type B. thuringiensis subsp. israelensis strain sequenced earlier. The assembled contigs corresponding to published and novel data were assigned to plasmids described earlier in B. thuringiensis subsp. israelensis and other B. thuringiensis strains. A new 360 kb plasmid was identified, encoding multiple transporters, also found in most of the earlier sequenced strains. Our genomic data show the presence of two toxin-coding plasmids of 128 and 100 kb instead of the reported 225 kb plasmid, a co-integrate of the former two. In two of the sequenced strains, only a 100 kb plasmid was present. Some heterogeneity exists in the small plasmid content and structure between strains. These data support the perception of active plasmid exchange among B. thuringiensis subsp. israelensis strains in nature. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells.

    Science.gov (United States)

    Celandroni, Francesco; Salvetti, Sara; Senesi, Sonia; Ghelardi, Emilia

    2014-12-01

    Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. SinR controls enterotoxin expression in Bacillus thuringiensis biofilms.

    Directory of Open Access Journals (Sweden)

    Annette Fagerlund

    Full Text Available The entomopathogen Bacillus thuringiensis produces dense biofilms under various conditions. Here, we report that the transition phase regulators Spo0A, AbrB and SinR control biofilm formation and swimming motility in B. thuringiensis, just as they control biofilm formation and swarming motility in the closely related saprophyte species B. subtilis. However, microarray analysis indicated that in B. thuringiensis, in contrast to B. subtilis, SinR does not control an eps operon involved in exopolysaccharides production, but regulates genes involved in the biosynthesis of the lipopeptide kurstakin. This lipopeptide is required for biofilm formation and was previously shown to be important for survival in the host cadaver (necrotrophism. Microarray analysis also revealed that the SinR regulon contains genes coding for the Hbl enterotoxin. Transcriptional fusion assays, Western blots and hemolysis assays confirmed that SinR controls Hbl expression, together with PlcR, the main virulence regulator in B. thuringiensis. We show that Hbl is expressed in a sustained way in a small subpopulation of the biofilm, whereas almost all the planktonic population transiently expresses Hbl. The gene coding for SinI, an antagonist of SinR, is expressed in the same biofilm subpopulation as hbl, suggesting that hbl transcription heterogeneity is SinI-dependent. B. thuringiensis and B. cereus are enteric bacteria which possibly form biofilms lining the host intestinal epithelium. Toxins produced in biofilms could therefore be delivered directly to the target tissue.

  7. Marine Bacillus spp. associated with the egg capsule of Concholepas concholepas (common name "loco") have an inhibitory activity toward the pathogen Vibrio parahaemolyticus.

    Science.gov (United States)

    Leyton, Yanett; Riquelme, Carlos

    2010-10-01

    The pandemic bacterium Vibrio parahaemolyticus, isolated from seawater, sediment, and marine organisms, is responsible for gastroenteric illnesses in humans and also cause diseases in aquaculture industry in Chile and other countries around the world. In this study, bacterial flora with inhibitory activity against pathogenic V. parahaemolyticus were collected from egg capsules of Concholepas concholepas and evaluated. The 16S rRNA fragment was sequenced from each isolated strain to determine its identity using the GenBank database. A phylogenetic analysis was made, and tests for the productions of antibacterial substance were performed using the double-layer method. Forty-five morphotypes of bacterial colonies were isolated, 8 of which presented an inhibitory effect on the growth of V. parahaemolyticus. 16S rRNA sequence and phylogenetic analysis show that these strains constitute taxa that are phylogenetically related to the Bacillus genus and are probably sister species or strains of the species Bacillus pumilus, Bacillus licheniform, or Bacillus sp. It is important to determine the nature of the antibacterial substance to evaluate their potential for use against the pathogen species V. parahaemolyticus.

  8. Karakterisasi protease Bacillus sp. UGM5

    Directory of Open Access Journals (Sweden)

    Titik Purwati Widowati

    1999-07-01

    Full Text Available The objective of this experiment is to indentify the characters of proetease produced by Bacillus sp.UGM5.the protease secreted by Bacillus sp.UGM5 was first isolated,purified and then charactirezed.The crude enzyme has spesific actifity of 1.14 U/mg,however,the spesific activity of purified enzyme was increased by 23.8 times fold and recovery was 33.69%.The Page of nondenatured crude enzymes showes two type of proreases,however ,the SDS-Page of denatured purified enzyme showed four protein-bends with molecular weights of 55.5 kDa,18kDa respecetively.The optimum pH and temperature for the enzyme acrivity are 8.5 and 420C and belongs to serin protease type,with Km 3 X 10-3mM and Vmax 0.0890mM/30 minutes.The activity is not inhibited by Ca+2,Fe+2 and EDTA.

  9. Identification of Bacillus anthracis by Using Monoclonal Antibody to Cell Wall Galactose-N-Acetylglucosamine Polysaccharide

    Science.gov (United States)

    1990-02-01

    Bacillus circulans ATCC 4513 b - - NR NT NT NT NT Bacillus coagulans ATCC 7050 b - - NR NT NT NT NT Bacillus eugilitis B-61 f - - NR NT NT NT NT...American Society for Microbiology W Identification of Bacillus anthracis by-U-sing Monoclonal Antibody CC to Cell Wall Galactose-N-Acetylglucosamine...Received 22 June 1989/Accepted 31 October 1989 ’ Guanidine extracts of crude Bacillus anthracis cell wall were used to vaccinate BALB/c mice and to

  10. Heavy metals and their radionuclides uptake by Bacillus Licheniformis

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Ahmed, M.M.; Abo-state, M.A.M.; Sarhan, M.; Faroqe, M.

    2007-01-01

    Bacillus licheniformis is a gram positive spore forming bacterium. Different concentrations of cobalt affected the ability of Co uptake and growth of Bacillus licheniformis. As the concentration increased, both the uptake and growth were decreased. Maximum Co uptake was found at ph 7.0, while for growth was ph 8.0. The optimum temperature for uptake and growth was 40 degree C and 20% inoculum size represents the maximum cobalt uptake by Bacillus licheniformis. Also, maximum uptake was recorded after 72 hours, incubation period. As the concentration of cesium was increased till 400 mg/l, the uptake was also increased. The optimum cesium uptake and growth was at ph 8.0. The optimum growth was at 45 degree C while Cs uptake was found at 35 degree C and 15% inoculum size represented the maximum Cs uptake. After 72 hour incubation period, maximum Cs uptake was recorded. Generally, Bacillus licheniformis removed more than 80% of Co and 50% of Cs from the broth medium. Addition of clay to Bacillus licheniformis increased both Co or Cs uptake. Bacillus licheniformis was gamma resistant and 10 KGy reduced the viability by 5.3 log cycles. The irradiated and non-irradiated cultures can grow on 500 or 700 mg Co or Cs. Bacillus licheniformis removed 99.32% of the Co radionuclides and 99.28% of Cs radionuclides

  11. Identification of Bacillus Strains for Biological Control of Catfish Pathogens

    Science.gov (United States)

    Ran, Chao; Carrias, Abel; Williams, Malachi A.; Capps, Nancy; Dan, Bui C. T.; Newton, Joseph C.; Kloepper, Joseph W.; Ooi, Ei L.; Browdy, Craig L.; Terhune, Jeffery S.; Liles, Mark R.

    2012-01-01

    Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC) and motile aeromonad septicaemia (MAS), respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×107 CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (PBacillus strains also showed protective effects against E. ictaluri in striped catfish. Safety of the four strains exhibiting the strongest biological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture. PMID:23029244

  12. Identification of Bacillus strains for biological control of catfish pathogens.

    Science.gov (United States)

    Ran, Chao; Carrias, Abel; Williams, Malachi A; Capps, Nancy; Dan, Bui C T; Newton, Joseph C; Kloepper, Joseph W; Ooi, Ei L; Browdy, Craig L; Terhune, Jeffery S; Liles, Mark R

    2012-01-01

    Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC) and motile aeromonad septicaemia (MAS), respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×10(7) CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (PBacillus strains also showed protective effects against E. ictaluri in striped catfish. Safety of the four strains exhibiting the strongest biological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture.

  13. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres.

    Directory of Open Access Journals (Sweden)

    Karla D Passalacqua

    Full Text Available Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains.Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group--a pneumonia-causing B. cereus strain (G9241, an attenuated strain of B. anthracis (Sterne 34F(2, and an avirulent B. cereus strain (10987--during exponential growth in two distinct atmospheric environments: 14% CO(2/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO(2 environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment.We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and

  14. Stability of chloroquine phosphate tablets inoculated with bacterial species

    International Nuclear Information System (INIS)

    Obuekwe, I.F.; Orhe, C.A.; Iwaagu, M.U.

    2003-01-01

    Five popular brands of chloroquine tablets available to the average Nigerian consumers were examined for the effects of Staphylococcus aureus and Bacillus cereus, on the dissolution, disintegration and hardness after six weeks of incubation. The maximum percent dissolution was 98.34% with bacillus subtilis while the minimum was 19.12% with staphylococcus aureus. The disintegration results showed a maximum of 69 min. 19 sec with Staphylococcus aureus while the least was 56 sec with Bacillus subtilis. The maximum hardness obtained was 12.75 kg and the least was 1.25 kg also with Staphylococcus aureus. The dissolution, disintegration and hardness also varied with the control. The metabolic activities of the bacterial species were believed to have caused the variations in the physical properties of the chloroquine phosphate tablets. The results from this investigation strongly advises adequate storage of chloroquine phosphate tablets, especially when it is the drug of choice for the of sub-Saharan Africa. (author)

  15. Reduction of Bacillus subtilis, Bacillus stearothermophilus and Streptococcus faecalis in meat batters by temperature-high hydrostatic pressure pasteurization.

    Science.gov (United States)

    Moerman, F; Mertens, B; Demey, L; Huyghebaert, A

    2001-10-01

    People have a growing preference for fresh, healthy, palatable and nutritious meals and drinks. However, as food deterioration is a constant threat along the entire food chain, food preservation remains as necessary now as in the past. High pressure processing is one of the emerging technologies being studied as an alternative to the classical pasteurization and sterilization treatments of food. Samples of fried minced pork meat were inoculated with strains of Streptococcus faecalis and with sporulating microorganisms like Bacillus subtilis and stearothermophilus. The samples were subjected to several combined temperature-high pressure treatments predicted by the mathematical model applied in Response Surface Methodology. Using the "Box-Behnken" concept, the number of tests for a whole area of pressure-temperature-time-combinations (pressure variation: 50-400 MPa, temperature variation 20-80°C, time variation 1-60 min) could be limited to 15. In the center point of the model, the experimental combination was performed in triple to estimate the experimental variance. All the tests were executed in a randomized order to exclude the disturbing effect of environmental factors. Microbial analysis revealed for each microorganism an important reduction in total plate count, demonstrating a superior pressure resistance of the sporulating microorganisms in comparison with the most pressure resistant vegetative species Streptococcus faecalis. The effect of the medium composition could be neglected, showing little protective effect of, e.g. the fat fraction as seen in heat preservation techniques.

  16. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    Science.gov (United States)

    Bazinet, Adam L

    2017-08-02

    Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes and novel bioinformatic workflows to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis), and quantify the degree to which taxa sharing common attributes are phylogenetically clustered. A rapid k-mer based approach (Mash) was used to create reduced representations of selected Bacillus genomes, and a fast distance-based phylogenetic analysis of this data (FastME) was performed to determine which species should be included in B. cereus s. l. The complete genomes of eight B. cereus s. l. species were annotated de novo with Prokka, and these annotations were used by Roary to produce the B. cereus s. l. pan-genome. Scoary was used to associate gene presence and absence patterns with various phenotypes. The orthologous protein sequence clusters produced by Roary were filtered and used to build HaMStR databases of gene models that were used in turn to construct phylogenetic data matrices. Phylogenetic analyses used RAxML, DendroPy, ClonalFrameML, PAUP*, and SplitsTree. Bayesian model-based population genetic analysis assigned taxa to clusters using hierBAPS. The genealogical sorting index was used to quantify the phylogenetic clustering of taxa sharing common attributes. The B. cereus s. l. pan-genome currently consists of ≈60,000 genes, ≈600 of which are "core" (common to at least 99% of taxa sampled). Pan-GWAS analysis revealed genes associated with phenotypes such as isolation source, oxygen requirement, and ability to cause diseases such as anthrax or food poisoning. Extensive phylogenetic analyses using an unprecedented amount of data

  17. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    2014-09-26

    483 489. 15. Abhyankar W, Ter Beek A, Dekker H, Kort R, Brul S, et al. (2011) Gel-free proteomic identification of the Bacillus subtilis insoluble coat... identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 327: 945 972. AFM of Spore Coat Architecture PLOS ONE | www.plosone.org 16 September 2014 | Volume 9 | Issue 9 | e108560 ...1ITLE AND SUBTITLE 5a CONTRACTNUMBER Architecture and assembly of the Bacillus subtilis spore coat W911NF-09-l-0286 5b. GRANT NUMBER 5c. PROGRAM

  18. Interspecific plasmid transfer between Streptococcus pneumoniae and Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, M. (Inst. de Immunologia y Biologia Microbiana, Velazquez, Madrid, Spain); Lopez, P.; Perez-Urena, M.T.; Lacks, S.A.

    1982-01-01

    The streptococcal plasmids pMV158 and pLS1, grown in Streptococcus pneumoniae, were transformed to Bacillus subtilis by DNA-mediated transformation.The plasmids were unchanged in the new host; no deletions were observed in 80 instances of transfer. Hybrid plasmids were produced by recombining the EcoRI fragment of pBD6 that confers Km/sup r/ with EcoRI-cut pLS1, which confers Tc/sup r/. The simple hybrid, pMP2, was transferable to both species and expressed Tc/sup r/ and Km/sup r/ in both. A derivative, pMP5, which contained an insertion in the pBD6 component, expressed a higher level of kanomycin resistance and was more easily selected in S. pneumoniae. Another derivative, pMP3, which contained an additional EcoRI fragment, presumably of pneumococcal chromosomal DNA, could not be transferred to B. subtilis. Previous findings that monomeric plasmid forms could transform S. pneumoniae but not B. subtilis were confirmed using single plasmid preparations. Although plasmids extracted from either species were readily transferred to S. pneumoniae, successive passage in B. subtilis increased the ability of plasmid extracts to transfer the plasmid to a B. subtilis recipient. This adaptation was tentatively ascribed to an enrichment of multimeric forms in extracts of B. subtilis as compared to S. pneumoniae. A review of host ranges exhibited by plasmids of Gram-positive bacteria suggested differences in their ability to use particular host replication functions. (JMT)

  19. The putative drug efflux systems of the Bacillus cereus group.

    Science.gov (United States)

    Hassan, Karl A; Fagerlund, Annette; Elbourne, Liam D H; Vörös, Aniko; Kroeger, Jasmin K; Simm, Roger; Tourasse, Nicolas J; Finke, Sarah; Henderson, Peter J F; Økstad, Ole Andreas; Paulsen, Ian T; Kolstø, Anne-Brit

    2017-01-01

    The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70-80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current

  20. Bacillus cereus in Brazilian Ultra High Temperature milk Bacillus cereus em leite UHT brasileiro

    Directory of Open Access Journals (Sweden)

    Cristiana de Paula Pacheco-Sanchez

    2007-01-01

    Full Text Available Brazilian Ultra High Temperature (UHT milk consumption has increased during the last decade from 187 to 4,200 million liters. In the continuous UHT process, milk is submitted for 2-4 s to 130-150ºC, in a continuous flow system with immediate refrigeration and aseptical packing in hermetic packages. This research had the purpose to verify the incidence of B. cereus species from the B. cereus group, in UHT milk. In 1998 high indexes of these organisms were reported, reaching 34.14% of the analyzed samples. Beyond this fact, there was the need to establish methods and processes adjusted for correct identification of B. cereus. Thus, commercial sterility tests of 6,500 UHT milk packages were investigated in two assays, after ten days incubation at 37ºC and 7ºC to germinate all possible spores and/or to recuperate injured vegetative cells followed by pH measurement. Samples (1,300 packages each from five Brazilian UHT plants of whole UHT milk processed by direct steam injection, packaged in carton were investigated for the presence of Bacillus cereus through phenotypic and genetic (PCR tests. Values of pH were different for the samples, ranging between 6.57 and 6.73. After storage of the samples, only four packages with pH measurement below the lower limit of 6.5 were found and analyzed for the presence of B. cereus. This organism was not detected in any of the samples indicating that the five Brazilian UHT milk processors control pathogenic microorganisms and it can be said that the consumption of UHT milk does not present safety problems to consumers. Fourier Transform Infrared Spectroscopy (FTIR and PCR tests were efficient and must be adopted to confirm the biochemical series for B. cereus.O consumo de leite ultra-alta temperatura (UHT brasileiro aumentou, durante a última década, de 187 milhões de litros para 4,200 milhões de litros. No processo contínuo de leite UHT o leite é submetido por 2-4 seg a 130-150ºC, em sistemas de