WorldWideScience

Sample records for alkalinity

  1. ALP (Alkaline Phosphatase) Test

    Science.gov (United States)

    ... Also known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on ...

  2. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  3. Alkaline "Permanent" Paper.

    Science.gov (United States)

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  4. Alkaline battery operational methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  5. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  6. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  7. Alkaline quinone flow battery.

    Science.gov (United States)

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  8. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  9. Alkaline quinone flow battery

    OpenAIRE

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise Ann; Valle, Alvaro West; Hardee, D.; Gordon, Roy Gerald; Aziz, Michael J.; Marshak, M

    2015-01-01

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe f...

  10. Alkaline Phosphatase in Stem Cells

    Directory of Open Access Journals (Sweden)

    Kateřina Štefková

    2015-01-01

    Full Text Available Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells.

  11. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  12. Bifunctional alkaline oxygen electrodes

    Science.gov (United States)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  13. Silica in alkaline brines

    Science.gov (United States)

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  14. Modulators of intestinal alkaline phosphatase.

    Science.gov (United States)

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  15. Alkaline battery, separator therefore

    Science.gov (United States)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  16. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    Science.gov (United States)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  17. 2nd Generation Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Yde, Lars; Kjartansdóttir, Cecilia Kristin; Allebrod, Frank; Mogensen, Mogens Bjerg; Møller, Per; Hilbert, Lisbeth R.; Nielsen, Peter Tommy; Mathiesen, Troels; Jensen, Jørgen; Andersen, Lars; Dierking, Alexander

    This report provides the results of the 2nd Generation Alkaline Electrolysis project which was initiated in 2008. The project has been conducted from 2009-2012 by a consortium comprising Århus University Business and Social Science – Centre for Energy Technologies (CET (former HIRC)), Technical...

  18. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari [Colorado School of Mines, Golden, CO; Horan, James L. [Colorado School of Mines, Golden, CO; Caire, Benjamin R. [Colorado School of Mines, Golden, CO; Ziegler, Zachary C. [Colorado School of Mines, Golden, CO; Herring, Andrew M. [Colorado School of Mines, Golden, CO; Yang, Yuan [Colorado School of Mines, Golden, CO; Zuo, Xiaobing [Argonne National Laboratory, Argonne, IL; Robson, Michael H. [University of New Mexico, Albuquerque, NM; Artyushkova, Kateryna [University of New Mexico, Albuquerque, NM; Patterson, Wendy [University of New Mexico, Albuquerque, NM; Atanassov, Plamen Borissov [University of New Mexico, Albuquerque, NM

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  19. Alkaline fuel cell performance investigation

    Science.gov (United States)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  20. Grace DAKASEP alkaline battery separator

    Science.gov (United States)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  1. Alkaline and alkaline earth metal phosphate halides and phosphors

    Science.gov (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  2. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  3. Alkaline azide mutagenicity in cowpea

    International Nuclear Information System (INIS)

    Sodium azide is known as a potent mutagen in cereals and legumes. It is very effective in acidic medium in barley. Here an attempt is made to measure the effectiveness of sodium azide in alkaline medium (pH 7.4) on cowpea (Vigna unguiculata (L.) Walp., variety FS-68). Seeds pre-soaked in distilled water for 5 hours were treated with different concentrations (10-6, 10-5, 10-4 and 10-3M) of sodium azide (NaN3) for 4 hours at 28± 2 deg. C. Bottles were intermittently shaken, then the seeds were thoroughly washed in running tap water and subsequently planted in pots. The treatment caused significant biological damage such as reduction in seed germination, length of root and shoot, number of nodules and pods per plant and morphological leaf variations. Morphological, as well as chlorophyll mutants, were detected in M2

  4. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  5. Alkaline rocks and the occurrence of uranium

    International Nuclear Information System (INIS)

    Many alkaline complexes contain uranium and other minerals in low concentrations and are regarded as constituting valuable potential reserves. Certain complex metallurgical problems, however, remain to be solved. Alkaline rocks occur in a number of forms and environments and it is noted that they are generated during periods of geological quiescence emplaced mainly in stable aseismic areas. Many occur along the extensions of oceanic transform faults beneath the continental crust and the application of this concept to areas not currently known to host alkaline complexes may prove useful in identifying potential target areas for prospecting operations

  6. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  7. Technetium recovery from high alkaline solution

    Science.gov (United States)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  8. Alkaline tolerant dextranase from streptomyces anulatus

    Science.gov (United States)

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  9. Alkaline Water and Longevity: A Murine Study

    Science.gov (United States)

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  10. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  11. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    2012-01-01

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  12. Specific Examples of Hybrid Alkaline Cement

    OpenAIRE

    Fernández-Jiménez Ana; García-Lodeiro Inés; Donatello Shane; Maltseva Olga; Palomo Ángel

    2014-01-01

    Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days) different alkaline activators were used (liquid and solid). The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A...

  13. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  14. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  15. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    C L Aravinda; S M Mayanna; V R Muralidharan

    2000-10-01

    A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the deposition of copper involves the slow formation of a monovalent species. Adsorption of this species obeys Langmuir isotherm. In TEA solutions the deposition involves the formation of monovalent ions obeying the non-activated Temkin isotherm. Conversion of divalent to monovalent copper is also slow. In TEA and TSC alkaline copper solutions, the predominant species that undergo stepwise reduction contain only TEA ligands

  16. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  17. The Alkaline Diet: Is There Evidence That an Alkaline ph Diet Benefits Health?

    International Nuclear Information System (INIS)

    This review looks at the role of an alkaline diet in health. Pub med was searched looking for articles on ph, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine

  18. Potentiometric assay for acid and alkaline phosphatase

    International Nuclear Information System (INIS)

    Simple potentiometric kinetic assay for evaluation of acid and alkaline phosphatase activity has been developed. Enzymatically catalyzed hydrolysis of monofluorophosphate, the simplest inorganic compound containing P-F bond, has been investigated as the basis of the assays. Fluoride ions formed in the course of the hydrolysis of this specific substrate have been detected using conventional fluoride ion-selective electrode based on membrane made of lanthanum fluoride. The key analytical parameters necessary for sensitive and selective detection of both enzymes have been assessed. Maximal sensitivity of the assays was observed at monofluorophosphate concentration near 10-3 M. Maximal sensitivity of acid phosphatase assay was found at pH 6.0, but pH of 4.8 is recommended to eliminate effects from alkaline phosphatase. Optimal pH for alkaline phosphatase assay is 9.0. The utility of the developed substrate-sensor system for determination of acid and alkaline phosphatase activity in human serum has been demonstrated

  19. Persistently increased intestinal fraction of alkaline phosphatase

    DEFF Research Database (Denmark)

    Nathan, E; Baatrup, G; Berg, H;

    1984-01-01

    Persistent elevation of the intestinal fraction of the alkaline phosphatase (API) as an isolated finding has to our knowledge not been reported previously. It was found in a boy followed during a period of 5.5 years. The only symptom was transient periodic fatigue observed at home, but not apparent...

  20. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.;

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  1. Alkaline magmatism in the eastern of Paraguay.Generals characteristics

    International Nuclear Information System (INIS)

    This paper deals with the distribution of alkaline occurrences in Paraguayan territory and their assemblage into different provinces. Also draws the attention to the petrographic and geochemical characteristics showed by the alkaline rock-types. (author)

  2. Specific Examples of Hybrid Alkaline Cement

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez Ana

    2014-04-01

    Full Text Available Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days different alkaline activators were used (liquid and solid. The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A-S-H and (N,C-A-S-H, and that their relative proportions were strongly influenced by the calcium content in the initial binder

  3. Study of niobium corrosion in alkaline medium

    International Nuclear Information System (INIS)

    A comparative study of niobium electrochemical behaviour in NaOH and KOH solution, with concentrations between 0,5 and 6,1M is presented. The studies were done through electrochemicals assays, consisting in the corrosion potential and anodic and cathodic polarization curves, complemented by loss of mass experiments. The niobium anodic behaviour in alkaline medium is characterized by passivation occurrence, with a stable film formation. The Na oH solution in alkaline medium are more corrosible to niobium than the KOH solution. The loss of mass assays showed that the corrosion velocit is more dependente of hydroxide concentration in KOH medium than the NaOH medium. (C.G.C.)

  4. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    Alkaline electrolyzers have proven to operate reliable for decades on a large scale, but in order to become commercially attractive and compete against conventional technologies for hydrogen production, the production and investment costs have to be reduced. This may occur by increasing the...... operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... SrTiO3 was used for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen...

  5. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    radiation raises the necessity to store the produced energy. Hydrogen production by water electrolysis is one of the most promising ways to do so. Alkaline electrolyzers have proven to operate reliable for decades on a large scale (up to 160 MW), but in order to become commercially attractive and compete...... and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to...... 200 bar as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup...

  6. CARINA alkalinity data in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    A. Velo

    2009-08-01

    Full Text Available Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic.

    These data have gone through rigorous quality control (QC procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these, 75 cruises report alkalinity values.

    Here we present details of the secondary QC on alkalinity for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the alkalinity values for 16 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal accuracy of the CARINA-ATL alkalinity data to be 3.3 μmol kg−1. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.

  7. Alkaline leaching of iron and steelmaking dust

    OpenAIRE

    Stafanova, Anna; Aromaa, Jari

    2012-01-01

    Steel production generates significant quantities of dust and sludge in blast furnaces (BF),basic oxygen furnaces (BOF), and electric arc furnaces (EAF). These dusts contain toxicelements, such as heavy metals, and are thus classified as harmful waste making the disposalof them expensive. In addition, direct recycling of dust back to steel production is hindered dueto the presence of zinc. In this literature survey the alkaline leaching of zinc from iron and steelmaking dusts isreviewed. T...

  8. Alkaline earth cation extraction from acid solution

    Science.gov (United States)

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  9. Bifunctional Catalysts for Alkaline Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Klápště, Břetislav; Vondrák, Jiří; Velická, Jana

    Vol. 1. Brno : Akademické nakladatelství CERM, 2000 - (Vondrák, J.; Sedlaříková, M.), s. 24.1-24.4 ISBN 80-214-1614-9. [Advanced Batteries and Accumulators /1./. Brno (CZ), 28.08.2000-01.09.2000] R&D Projects: GA MŠk ME 216 Institutional research plan: CEZ:AV0Z4032918; CEZ:MSM 262200010 Keywords : alkaline * catalysts * electrochemistry Subject RIV: CG - Electrochemistry

  10. Heavy water production by alkaline water electrolysis

    International Nuclear Information System (INIS)

    Several heavy water isotope production processes are reported in literature. Water electrolysis in combination with catalytic exchange CECE process is considered as a futuristic process to increase the throughput and reduce the cryogenic distillation load but the application is limited due to the high cost of electricity. Any improvement in the efficiency of electrolyzers would make this process more attractive. The efficiency of alkaline water electrolysis is governed by various phenomena such as activation polarization, ohmic polarization and concentration polarization in the cell. A systematic study on the effect of these factors can lead to methods for improving the efficiency of the electrolyzer. A bipolar and compact type arrangement of the alkaline water electrolyzer leads to increased efficiency and reduced inventory in comparison to uni-polar tank type electrolyzers. The bipolar type arrangement is formed when a number of single cells are stacked together. Although a few experimental studies have been reported in the open literature, CFD simulation of a bipolar compact alkaline water electrolyzer with porous electrodes is not readily available.The principal aim of this study is to simulate the characteristics of a single cell compact electrolyzer unit. The simulation can be used to predict the Voltage-Current Density (V-I) characteristics, which is a measure of the efficiency of the process.The model equations were solved using COMSOL multi-physics software. The simulated V-I characteristic is compared with the experimental data

  11. The fate of added alkalinity in model scenarios of ocean alkalinization

    Science.gov (United States)

    Ferrer González, Miriam; Ilyina, Tatiana

    2014-05-01

    The deliberate large-scale manipulation of the Earth's climate (geo-engineering) has been proposed to mitigate climate change and ocean acidification. Whilst the mitigation potential of these technologies could sound promising, they may also pose many environmental risks. Our research aims at exploring the ocean-based carbon dioxide removal method of alkalinity enhancement. Its mitigation potential to reduce atmospheric CO2 and counteract the consequences of ocean acidification, risks and unintended consequences are studied. In order to tackle these questions, different scenarios are implemented in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology. The model configuration is based on the 5th phase of the coupled model intercomparison project following a high CO2 future climate change scenario RCP8.5 (in which radiative forcing rises to 8.5 W/m² in 2100). Two different scenarios are performed where the alkalinity is artificially added globally uniformly in the upper ocean. In the first scenario, alkalinity is increased as a pulse by doubling natural values of the first 12 meters. In the second scenario we add alkalinity into the same ocean layer such that the atmospheric CO2 concentration is reduced from RCP8.5 to RCP4.5 levels (with the radiative forcing of 4.5 W/m² in 2100). We investigate the fate of the added alkalinity in these two scenarios and compare the differences in alkalinity budgets. In order to increase oceanic CO2 uptake from the atmosphere, enhanced alkalinity has to stay in the upper ocean. Once the alkalinity is added, it will become part of the biogeochemical cycles and it will be distributed with the ocean currents. Therefore, we are particularly interested in the residence time of the added alkalinity at the surface. Variations in CO2 partial pressure, seawater pH and saturation state of carbonate minerals produced in the implemented scenarios will be presented. Collateral changes in ocean biogeochemistry and

  12. Hf-Nd isotopic and trace element constraints on the genesis of alkaline and calc-alkaline lamprophyres

    International Nuclear Information System (INIS)

    Major and trace element, Nd and for the first time Hf isotopic compositions of Central European Hercynian and Alpine alkaline (nephelinites) and calc-alkaline (minettes) lamprophyres are reported. The alkaline dikes have significantly higher initial εNd values (+3.9 to +5.2) than the calc-alkaline dikes (-1 to -7). Their initial εHf values range between +1.9 and +6.0. Both groups show the typical high level of incompatible-element enrichment. In addition the calc-alkaline lamprophyres are characterized by an overabundance of Cs relative to Rb, high Ba/La and Ba/Sr ratios as well as depletion in Nb, Ti and Ta. Covariations between initial εHf-εNd and trace elements suggest that crust-mantle mixing processes were involved in the formation of the calc-alkaline mafic magmas. These data give way to a general, refined model of lamprophyre genesis and provide information about enrichment processes in the subcontinental lithospheric mantle. It is suggested that alkaline and calc-alkaline lamprophyres originate from similar mantle segments. Alkaline lamprophyres can be generated by 10% partial melting of a metasomatically enriched garnet peridotite. Calc-alkaline lamprophyres, however, can be generated in subduction related environments by mixing of 5-15% sedimentary melts, strongly enriched in K, Rb, Zr, Hf, Y and REE, produced by partial melting of subducted oceanic sediments, with a metasomatically enriched mantle source similar to that suggested for the ultramafic alkaline dikes. (orig.)

  13. RES Hydrogen: efficient pressurised alkaline electrolysers

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Jørgensen, Peter Stanley;

    The RESelyser project addresses issues associated with coupling alkaline electrolysis to renewable energy sources such as electrode stability and gas purity by implementing improved electrodes and a new separator membrane concept. The project aims to improve performance, operation pressure and...... reduce system cost. The project supports DTU Energy's activities on electrodes within the larger FCH-JU project. The overall project demonstrated: improved electrode efficiency also during cyclic operation, safe gas purity at a system pressure of 30 bar, 10 kW stack operation and estimated system costs...

  14. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  15. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    International Nuclear Information System (INIS)

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes

  16. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K. [Russian Academy of Sciences (Russian Federation). Inst. of Physical Chemistry

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  17. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  18. Dissolution kinetics of smectite under alkaline conditions

    International Nuclear Information System (INIS)

    Extensive use of cement for encapsulation, backfilling, and grouting purposes is envisaged in radioactive waste disposal. Degradation of cement materials through contact with groundwater can produce a high pH pore fluid initially ranging from pH 13.0 to 13.5. The pore fluid pH eventually decreases to moderately alkaline ranges due to formation and evolution of subsequent materials. The high pH pore fluids can migrate outwards where it will chemically react with the host rock, and the bentonite utilized to enhance the repository's integrity. These chemical reactions degrade the host rocks' and bentonite ability to absorb radionuclides. Smectites comprising the bulk of bentonite can lose some of their desirable properties during the early stages of bentonite-cement-pore fluid interaction. This has been a key research issue in the performance assessment of radioactive waste disposal system. Elucidating the effects of high pH pore fluid on the physical and chemical properties of smectites (i.e. especially dissolution behavior and rates) is of utmost importance. Stirred-flow-through dissolution experiments were utilized to derive reliable dissolution rates for smectites under neutral to highly alkaline conditions. The effects of pH and temperature on smectite dissolution rates were also investigated. (author)

  19. Biological alkalinity generation in acid mine drainage

    International Nuclear Information System (INIS)

    Ecological Engineering and Biological Polishing technologies are a decommissioning approach to inactive coal, uranium and base metal mining operations. To improve acid mine drainage water, some fundamental aspects of wetland ecology and sediment microbiology are combined. The combination provides conditions which allow biomineralization of the contaminants. The authors report here the first records of microbial alkalinity generation in acid mine drainage, through the utilization of the ARUM (Acid Reduction Using Microbiology) process. Increases in pH are brought about by alkalinity-generating microbes such as sulfate reducers, iron reducers, methanogens, or denitrifiers. The ARUM process has been successful in increasing pH from 2.5 to 7.0 in laboratory-scale flow-through reactors operated continuously for more than 120 days. Ni was also reduced from 13 mg/l to < 0.01 mg/l. Batch ARUMators in the field have also performed well. Design parameters are being developed for low flow rates of 5 l/min in a pilot-scale system receiving seepage from mine tailings

  20. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    OpenAIRE

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V.; Hewson, John C.; Muylaert, Koenraad

    2015-01-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 1...

  1. The effect of alkaline agents on retention of EOR chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  2. Extraction of uranium from alkaline medium by certain amines

    International Nuclear Information System (INIS)

    A possible route for treatment of irradiated uranium from alkaline solution was recently addressed. This may have some advantages related to the isolation of many troublesome fission products upon alkaline dissolution of uranium oxides. In this work, the solubility of uranium oxides in alkaline medium of sodium carbonate and sodium hydroxide mixture was investigated. The different factors affecting the solubility were studied. From alkaline solutions, the extraction of uranium by different amines was carried out. The equilibrium encountered in this extraction systems was elaborated. Possible use of these systems for treatment of irradiated uranium was discussed

  3. Dolomite Dissolution in Alkaline Cementious Media

    Science.gov (United States)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  4. Alkaline pulping of some eucalypts from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper. PMID:15935655

  5. Corrosion of copper in alkaline chloride environments

    International Nuclear Information System (INIS)

    The available literature information on the corrosion and electrochemical behaviour of copper in alkaline environments has been reviewed. The purpose of the review was to assess the impact of an alkaline plume from cementitious material on the corrosion behaviour of a copper canister in an SKB-3 type repository. The effect of the evolution of the environmental conditions within the repository have been considered, including the effects of temperature, redox conditions, pore-water salinity and pH. If the pore-water pH increases prior to the establishment of anoxic conditions, the canister surface will passivate as the pore-water pH exceeds a value of ∼ pH 9. Passivation will result from the formation of a duplex Cu2O/Cu(OH)2 film. The corrosion potential will be determined by the equilibrium potential for the Cu2O/Cu(OH)2 couple under oxic conditions, or by the Cu/Cu2O redox couple under anoxic conditions (in the absence of sulphide). Pitting corrosion is only likely to occur early in the evolution of the repository environment, whilst the canister is still relatively cool (2 available to support localised corrosion, and prior to the increase in pore-water pH and salinity. The subsequent increase in canister surface temperature, pore-water pH and salinity, and decrease in O2 will make pit initiation less likely, although the canister will remain passive provided the pore-water pH is maintained above pH 9. The higher the pore-water pH, the more strongly the canister is passivated and the less likely the surface is to undergo localised attack. If the pore-water salinity increases prior to the increase in pH, there could be a period of active canister corrosion before passivation occurs.Under these circumstances, the corrosion potential will be a true mixed potential, determine by the relative kinetics of Cu dissolution as CuCl2 - and of the reduction of O2. The development of anoxic conditions and an increase in pore-water sulphide concentration will result in

  6. Hydrogen in aluminum during alkaline corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Saikat; Ai, Jiahe [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Hebert, Kurt R., E-mail: krhebert@iastate.ed [Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Ho, K.M.; Wang, C.Z. [US DOE, Ames Laboratory, Ames, IA 50011 (United States)] [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2010-07-30

    The thermodynamic state of hydrogen in aluminum during alkaline corrosion was investigated, using a two-compartment hydrogen permeation cell with an Al/Pd bilayer membrane. The open-circuit potential of the Pd layer in a pH 7.0 buffer solution was monitored to sense the hydrogen chemical potential, {mu}{sub H}. At pH 12.5-13.5, the measurements established a minimum {mu}{sub H} of 0.55 eV relative to the ideal gas reference, equivalent to a H{sub 2} gas pressure of 5.7 GPa. Statistical mechanics calculations show that vacancy-hydrogen defects are stable in Al at this condition. A dissolution mechanism was proposed in which H at very high {mu}{sub H} is produced by oxidation of interfacial aluminum hydride. The mechanism explains the observed rapid accumulation of H in the metal by extensive formation of vacancy-hydrogen defects.

  7. Alkaline lixiviation of uranium in granitic pegmatite

    International Nuclear Information System (INIS)

    The work described herein concerns the determination of the experimental optimum conditions for the alkaline lixiviation of uranium based on the following parameters: time, pH, temperature, density and grane size. The samples were obtained from the Supamo complex, near the Currupia river in the Piar District of the Bolivar State in Venezuela. They have a granitic composition and graphitic texture. The uranium was found in them as a secondary oxidized mineral of green-yellow colour localized in fractures fissures, intergranular spaces and also in the mica as. Secondary uranitite. The lixiviation process was carried out using Na2CO3/NaHCO3 buffer solution and for 100 gr. samples the best values for an efficient process were found by using 170 mesh grane size and 500 ml of pH buffer at 700C for a 24 hour time period. (author)

  8. Polyvinyl alcohol membranes as alkaline battery separators

    Science.gov (United States)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  9. Retention of alkaline earth elements in man

    International Nuclear Information System (INIS)

    The data on human metabolism and long-term retention of alkaline earth elements (133Ba injected into six healthy male volunteers at age 25-81 y and 45Ca and 85Sr received by one healthy male volunteer) are presented. Excreta were collected for 2-3 weeks after injection of the tracer into an antecubital vein. Activity in urine, ashed faeces and early samples of blood plasma was determined by gamma-ray scintillation spectrometry. Whole body retention has been assessed through serial measurements of body radioactivity. The injected 133Ba apparently became mainly skeletal within several days, much earlier than predicted by the ICRP model. The whole-body retention at 32 d ranged from 5 to 14%, the rate of loss correlating with the excretory plasma clearance rate. No age-related trends were identified in the metabolism of Ca and Sr. 2 refs, 2 figs

  10. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  11. Facilitated transport of alkaline and alkaline earth metals through liquid membranes with acidic extractants

    International Nuclear Information System (INIS)

    The removal of radioactive Cs and Sr from the liquid waste of nuclear plants is an important problem for both the defense arid the energy industries. Experiments with bulk liquid membranes and liquid membranes, immobilized on porous support, demonstrated the applicability of these systems for active transport of alkaline cations and Sr from alkaline to acidic solution against the concentration gradient of the metal. The mechanism of transport facilitated by fatty acids for alkali metals, or by di-2-ethylhexyl phosphoric acid for Sr in the presence of Ca and EDTA, corresponds to the open-quotes big carrouselclose quotes model, according to which the carrier is distributed between the membrane and aqueous solutions, where metal/H+- ion exchange takes place. The rate limiting step is the reextraction of Sr from the membrane into the acceptor (acidic) solution and is determined by the diffusion of the protonated carrier from the stripping acidic solution through the corresponding unstirred layer

  12. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase

    International Nuclear Information System (INIS)

    A cDNA clone for human adult intestinal alkaline phosphatase (ALP) [orthophosphoric-monoester phosphohydrolase (alkaline optimum); EC 3.1.3.1] was isolated from a λgt11 expression library. The cDNA insert of this clone is 2513 base pairs in length and contains an open reading frame that encodes a 528-amino acid polypeptide. This deduced polypeptide contains the first 40 amino acids of human intestinal ALP, as determined by direct protein sequencing. Intestinal ALP shows 86.5% amino acid identity to placental (type 1) ALP and 56.6% amino acid identity to liver/bone/kidney ALP. In the 3'-untranslated regions, intestinal and placental ALP cDNAs are 73.5% identical (excluding gaps). The evolution of this multigene enzyme family is discussed

  13. Human placental alkaline phosphatase in liver and intestine

    International Nuclear Information System (INIS)

    Three distinct forms of human alkaline phosphatase, presumably isozymes, are known, each apparently associated with a specific tissue. These are placental, intestinal, and liver (kidney and bone). The authors have used a specific immunoassay and HPLC to show that placental alkaline phosphatase is also present in extracts of liver and intestine in appreciable amounts

  14. Space-time variability of alkalinity in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    G. Cossarini

    2014-09-01

    Full Text Available The paper provides a basin assessment of the spatial distribution of ocean alkalinity in the Mediterranean Sea. The assessment is made using a 3-D transport-biogeochemical-carbonate model to integrate the available experimental findings, which also constrains model output. The results indicate that the Mediterranean Sea shows alkalinity values that are much higher than those observed in the Atlantic Ocean on a basin-wide scale. A marked west-to-east surface gradient of alkalinity is reproduced as a response to the terrestrial discharges, the mixing effect with the Atlantic water entering from the Gibraltar Strait and the Black Sea water from Dardanelles, and the surface flux of evaporation minus precipitation. Dense water production in marginal seas (Adriatic and Aegean Seas, where alkaline inputs are relevant, and the Mediterranean thermohaline circulation sustains the west-to-east gradient along the entire water column. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 μmol kg−1 that is driven both by physical and biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships. In regions of freshwater influence, the two measures are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open seas. Alkalinity always is much higher than in the Atlantic waters, which might indicate a higher than usual buffering capacity towards ocean acidification, even at high concentrations of dissolved inorganic carbon.

  15. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  16. Synergistic degradation of konjac glucomannan by alkaline and thermal method.

    Science.gov (United States)

    Jin, Weiping; Mei, Ting; Wang, Yuntao; Xu, Wei; Li, Jing; Zhou, Bin; Li, Bin

    2014-01-01

    The application of konjac glucomannan (KGM) in the food industry is always limited by its high viscosity. Hereby, low-viscosity KGM was prepared by alkaline-thermal degradation method. This process was demonstrated by the changes of average molecular weight and a kinetic model was developed. The results revealed that high alkalinity and high temperature had a synergetic effect on degradation. The structure of hydrolysates was evaluated by periodate oxidation and their fluidly properties were researched by rheology measurements. The degradation was divided into two regimes. The rate of the first regime (within 1h) is higher than that of the second one (last 1h). It is found that alkaline hydrolysis and deacetylation have a synergistic effect on the degradation under high alkalinity (pH 9.2) and low temperature condition (25 °C). Finally, rheology parameters showed alkaline-thermal degradation is a promising way that can be applied in practice to degrade KGM. PMID:24274506

  17. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    International Nuclear Information System (INIS)

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3H-fatty acids or [3H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [3H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3H-fatty acid and the [3H]ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the [3H]ethanolamine label from the purified alkaline phosphatase. The 3H radioactivity in alkaline phosphatase purified from [3H]ethanolamine-labeled cells comigrated with authentic [3H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3H-fatty acid and [3H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase

  18. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  19. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  20. 2nd Generation alkaline electrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L. [Aarhus Univ. Business and Social Science - Centre for Energy Technologies (CET), Aarhus (Denmark); Kjartansdottir, C.K. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Allebrod, F. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2013-03-15

    The overall purpose of this project has been to contribute to this load management by developing a 2{sup nd} generation of alkaline electrolysis system characterized by being compact, reliable, inexpensive and energy efficient. The specific targets for the project have been to: 1) Increase cell efficiency to more than 88% (according to the higher heating value (HHV)) at a current density of 200 mA /cm{sup 2}; 2) Increase operation temperature to more than 100 degree Celsius to make the cooling energy more valuable; 3) Obtain an operation pressure more than 30 bar hereby minimizing the need for further compression of hydrogen for storage; 4) Improve stack architecture decreasing the price of the stack with at least 50%; 5) Develop a modular design making it easy to customize plants in the size from 20 to 200 kW; 6) Demonstrating a 20 kW 2{sup nd} generation stack in H2College at the campus of Arhus University in Herning. The project has included research and development on three different technology tracks of electrodes; an electrochemical plating, an atmospheric plasma spray (APS) and finally a high temperature and pressure (HTP) track with operating temperature around 250 deg. C and pressure around 40 bar. The results show that all three electrode tracks have reached high energy efficiencies. In the electrochemical plating track a stack efficiency of 86.5% at a current density of 177mA/cm{sup 2} and a temperature of 74.4 deg. C has been shown. The APS track showed cell efficiencies of 97%, however, coatings for the anode side still need to be developed. The HTP cell has reached 100 % electric efficiency operating at 1.5 V (the thermoneutral voltage) with a current density of 1. 1 A/cm{sup 2}. This track only tested small cells in an externally heated laboratory set-up, and thus the thermal loss to surroundings cannot be given. The goal set for the 2{sup nd} generation electrolyser system, has been to generate 30 bar pressure in the cell stack. An obstacle to be

  1. Anodic stripping voltammetry of technetium alkaline media

    International Nuclear Information System (INIS)

    A method of direct determination of technetium in 0.1 M NaOH by anodic stripping voltametry at glassy carbon electrode has been elaborated. The peak height of anodic TcO2(OH)2 dissolution was found to be linearly dependent on preconcentration time, and the concentration of technetium in the range 5.0 * 10-8 -6 M. The detection limit for the Tc determination by ASV technique under study was found to be 5.0 * 10-8 M with standard deviation 5-7% (p2(OH)2 anodic dissolution peak current. Addition of 1.0* 10-6 M U(UI) to the sample solution was found to shift the peak of the TcO2(OH)2 100 mV towards negative direction and disturb the linearity of the calibration curve. Therefore; for a successful application of the developed ASV technique for Tc determination in the alkaline media, uranium should be removed from the analyte before determination

  2. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  3. Magic wavelengths in the alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2015-01-01

    We present magic wavelengths for the $nS$ - $nP_{1/2,3/2}$ and $nS$ - $mD_{3/2,5/2}$ transitions, with the respective ground and first excited $D$ states principal quantum numbers $n$ and $m$, in the Mg$^+$, Ca$^+$, Sr$^+$ and Ba$^+$ alkaline earth ions for linearly polarized lights by plotting dynamic polarizatbilities of the $nS$, $nP_{1/2,3/2}$ and $mD_{3/2,5/2}$ states of the ions. These dynamic polarizabilities are evaluated by employing a relativistic all-order perturbative method and their accuracies are ratified by comparing their static values with the available high precision experimental or other theoretical results. Moreover, some of the magic wavelengths identified by us in Ca$^+$ concurs with the recent measurements reported in [{\\bf Phys. Rev. Lett. 114, 223001 (2015)}]. Knowledge of these magic wavelengths are propitious to carry out many proposed high precision measurements trapping the above ions in the electric fields with the corresponding frequencies.

  4. Solubility of pllutonium in alkaline salt solutions

    International Nuclear Information System (INIS)

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model

  5. Radioimmunoassay of human intestinal alkaline phosphatase

    International Nuclear Information System (INIS)

    A new method of radioimmunoassay using the double antibody method for human intestinal alkaline phosphatase (ALP) was first elaborated. The following results were obtained: 1) In this system, the optimal antibody concentration is 10,000 times the dilution of the original anti-serum, and the optimal assay range is 0.5 to 25 ng. Enzymatic activity of 1 ng intestinal ALP is 4.1 King-Armstrong units. 2) In this system, the sera including intestinal ALP are divided to two groups. One group shows a dose response curve similar to that of purified intestinal ALP, and the other shows a lesser one. This reason is not clear. Hepatic ALP, osseous ALP and placental ALP in the sera show no response in this system. 3) In this system, the B/T value of 50 μg of purified human placental ALP is almost equal to 1 ng of purified human intestinal ALP. Similarly, the B/T value of 50 μg of purified human intestinal ALP is equal to almost 5 ng of purified human placental ALP. This shows that cross-reaction exists between intestinal and placental ALPs at high concentrations. (J.P.N.)

  6. Revisiting zinc passivation in alkaline solutions

    International Nuclear Information System (INIS)

    Highlights: • Zinc passive films were characterised by electrochemical tests coupled with cross sectional FIB-SEM. • Passive layers at pH > 12 comprised of an outer precipitated layer and inner compact oxide. • The electrolyte pH influences the nature/stability of the outer precipitated layer and this impacts the passive state on zinc. • The precipitated layers on zinc at pH 12 support cathode reactions and catalyse oxide growth. -- Abstract: Passive films nominally consist of an inner compact oxide and the outer precipitated layer. In the case of zinc (Zn), the outer layer is mainly precipitated ZnO/Zn(OH)2. Electrolyte pH controls the stability of the outer precipitated layer. In a pH 13 solution, formation of soluble Zn(OH)3− and Zn(OH)42− phases render the precipitated layer unstable increasing zinc corrosion, whereas at pH 12, the precipitated layer (ZnO/Zn(OH)2) is more stable making it an effective anodic barrier upon zinc. These precipitated oxides formed at pH 12 support cathodic reactions on their surface which in turn catalyse further oxide growth by a cathodically driven process. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to support some of the electrochemical assertions, revealing the form and morphology of the passive layers that grow upon zinc exposed to alkaline solutions

  7. Alkaline lipase of glyoxysomes is a glycoprotein

    International Nuclear Information System (INIS)

    In castor bean endosperm, the glyoxysomal alkaline lipase is an intrinsic membrane protein. At four days post-germination, the enzyme is also present in the endoplasmic reticulum where it accounts for approximately 15% of total activity. The active enzyme was purified by Maeshima and Beevers from isolated glyoxysomes. Specific antibodies to the 62 kD subunit were raised in rabbits. The anti-lipase has been used in preliminary experiments to determine the relationship between the lipase of the glyoxysomal membrane and the ER. Results indicate the presence of 3 cross-reacting antigens in carbonate-washed ER and glyoxysomal membranes. The 62 kD subunit, found predominantly in glyoxysomes, was eluted form Con-A Sepharose by 0.5 M α-methylglucoside. An 86kD form present in 2-d ER (but not in 4-d ER) and glyoxysomes did not bind Con-A Sepharose. This form appears to be an unglycosylated precursor or the 62 kD subunit. A 67 kD form was the only species seen in 4-d ER. In a time course experiment, the 67 kD form appeared on the glyoxysomal membrane

  8. The aluminum chemistry and corrosion in alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinsuo [International Nuclear System Engineering, MS-K 575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: jszhang@lanl.gov; Klasky, Marc; Letellier, Bruce C. [International Nuclear System Engineering, MS-K 575, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-02-15

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted.

  9. Nordic Seas total alkalinity data in CARINA

    Directory of Open Access Journals (Sweden)

    A. Olsen

    2009-08-01

    Full Text Available Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic. The data have been subject to rigorous quality control (QC in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS, the Atlantic (ATL and the Southern Ocean (SO. With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004 and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas includes the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution presents an account of the quality control of the total alkalinity (ALK data from the Nordic Seas in CARINA. Out of the 35 cruises from the Nordic Seas included in CARINA, 21 had ALK data. The data from 6 of these were found to be of low quality and should not be used. Of the others, 3 were found to be biased low and were subject to adjustment. Thus the final CARINA data product contains ALK data from 15 cruises from the Nordic Seas, and these data appear consistent to ±3 μmol kg−1.

  10. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  11. The Martian ocean: First acid, then alkaline

    Science.gov (United States)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  12. Sulfate—Exchange Alkalinity of Ferralsol Colloid

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; ZHANGXIAONIAN

    1999-01-01

    The amount of OH- replaced by sulfate,i.e.,sulfate-exchange alkalinity,from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.The amount of OH- release increased with the amount of Na2SO4 added and decreased with raising pH in the suspension of ferralsol colloid.The exchange acidity was displayed as pH was higher than 5.6,If the negative effect of sodium ions was offset,the amount of OH- replaced by sulfate was larger than the original amount of OH- released in the pH range of lower than 5.8.The amount of OH- released decreased rapidly as pH was higher than 6.0 and dropped to zero when pH reached 6.5.In the solution of 2.0molL-1 NaClO4,the amount of OH- repleaced by sulfate from the surface of ferralsol colloid could be considered as the amount of OH- adsorbed by ligand exchange reaction.The amount of OH- released in the solution of NaClO4 concentration below 2.0mol L-1 from which the amount of OH- adsorbed by ligand exchange reaction was subtracted could be conidered as the OH- adsorbed by electrostatic force,The OH- adsorbed by electrostatic force decreased with increases in the concentration of NaClO4 and pH and increased almost linearly with the increasing amount of Na2SON4 added.The percentages of OH- adsorbed by electrostatic force in water and in the electrolyte solutions of 0.05 and 0.5mol L-1 NaClO4 in the total OH- released were calculated,respectively.

  13. Concentration and separation of vanadium from alkaline media by strong alkaline anion-exchange resin 717

    Institute of Scientific and Technical Information of China (English)

    HUANG Jinwen; SU Peng; WU Wenwei; LIAO Sen; QIN Huiquan; WU Xuehang; HE Xiaohu; TAO Liujia; FAN Yanjin

    2010-01-01

    With strong alkaline anion-exchange resin 717 as the sorbent and NaOH solution as the eluent, a study on the sorption from alkaline solution and elution of vanadium(Ⅴ), silicon(Ⅳ), and aluminium(Ⅲ) was carried out. Different parameters affecting the sorption and elution process,including temperature, pH values as well as the ratio of resin to solution, were investigated. The results show that sorption degree of vanadium(Ⅴ) increases with a decrease of pH values, and V(Ⅴ) ions are easier sorbed than Si(Ⅳ) and Al(Ⅲ) ions under the same conditions. The sorption degree of V(Ⅴ), Si(Ⅳ), and Al(Ⅲ) at pH 9.14 for 15 min are 90.6%, 33.5%, and 21.6%, respectively. Si(Ⅳ), Al(Ⅲ), and V(Ⅴ) ions sorbed on 717 resin were eluted by use of 2 mol.L-1 NaOH solution; the desorption degree of V(Ⅴ), Si(Ⅳ), and Al(Ⅲ) for 5 min are 81.7 %,99.1%, and 99.3%, respectively.

  14. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives

    OpenAIRE

    Nilesh P. Nirmal; R. Seeta Laxman

    2014-01-01

    A fungal strain (Conidiobolus brefeldianus MTCC 5184) isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP) revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found ...

  15. A study of extracting uranium by intensified alkaline heap leaching

    International Nuclear Information System (INIS)

    A new technique of extracting uranium by intensified alkaline heap leaching was presented to treat a uranium ore of high carbonate content. A lixiviant, high concentration of alkaline solution, reacts with the ore prior to heap making for some time at a certain temperature,reducing the leaching time remarkably. With this technique, the leaching rate of uranium increased from 50% to 90% or above and the leaching time decreased from 64 days to 12 days. (authors)

  16. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  17. A fungal pathogen secretes plant alkalinizing peptides to increase infection.

    Science.gov (United States)

    Masachis, Sara; Segorbe, David; Turrà, David; Leon-Ruiz, Mercedes; Fürst, Ursula; El Ghalid, Mennat; Leonard, Guy; López-Berges, Manuel S; Richards, Thomas A; Felix, Georg; Di Pietro, Antonio

    2016-01-01

    Plant infections caused by fungi are often associated with an increase in the pH of the surrounding host tissue(1). Extracellular alkalinization is thought to contribute to fungal pathogenesis, but the underlying mechanisms are poorly understood. Here, we show that the root-infecting fungus Fusarium oxysporum uses a functional homologue of the plant regulatory peptide RALF (rapid alkalinization factor)(2,3) to induce alkalinization and cause disease in plants. An upshift in extracellular pH promotes infectious growth of Fusarium by stimulating phosphorylation of a conserved mitogen-activated protein kinase essential for pathogenicity(4,5). Fungal mutants lacking a functional Fusarium (F)-RALF peptide failed to induce host alkalinization and showed markedly reduced virulence in tomato plants, while eliciting a strong host immune response. Arabidopsis plants lacking the receptor-like kinase FERONIA, which mediates the RALF-triggered alkalinization response(6), displayed enhanced resistance against Fusarium. RALF homologues are found across a number of phylogenetically distant groups of fungi, many of which infect plants. We propose that fungal pathogens use functional homologues of alkalinizing peptides found in their host plants to increase their infectious potential and suppress host immunity. PMID:27572834

  18. A Constructed Alkaline Consortium and Its Dynamics in Treating Alkaline Black Liquor with Very High Pollution Load

    OpenAIRE

    Yang, Chunyu; Cao, Guangchun; Li, Yang; Zhang, Xiaojun; Ren, Hongyan; Wang, Xia; Feng, Jinhui; Zhao, Liping; Xu, Ping

    2008-01-01

    Background Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD) pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial com...

  19. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its...

  20. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Science.gov (United States)

    2010-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those...

  1. Evaluation of some bean lines tolerance to alkaline soil

    Directory of Open Access Journals (Sweden)

    Abeer A. Radi

    2012-01-01

    Full Text Available Introduction: In less arid climates, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. The development and identification of salt-tolerant crop cultivars or lines would complement salt management programs to improve the productivity and yields of salt stressed plants.Materials and methods: This work was to study the evaluation of alkalinity tolerance of some bean lines grown under different levels of sodium carbonate (Na2CO3 to select the most alkalinity tolerant lines versus the most-sensitive ones out of 6 lines of the test plants.Results: The symptoms induced by alkalinity included reduction in root, shoot growth, and leaf area which were more severe in some bean lines. Potassium leakage was severely affected by alkalinity in some lines at all tested levels, while in some others a moderate damage was manifested only at the higher levels. The increase in Na2CO3 level was associated with a gradual fall in chlorophyll a and b biosynthesis of all the test bean lines. However, alkalinity at low and moderate levels had a favorable effect on the biosynthesis of carotenoids in all the test bean lines. The increase in Na2CO3 supply had a considerable stimulatory effect on sodium accumulation, while potassium accumulation fluctuated in organs of bean lines.Conclusion: Assiut 1104 out of all the different lines investigated was found to display the lowest sensitivity to alkalinity stress, while Assiut 12/104 was the most sensitive one.

  2. Serum alkaline phosphatase screening for vitamin D deficiency states

    International Nuclear Information System (INIS)

    Objective: To determine whether serum vitamin D levels are correlated with serum levels of alkaline phosphatase or not. Study Design: Cross-sectional, observational study. Place and Duration of Study: Multi-centre study, conducted at Liaquat National Hospital and Medical College, National Medical Centre and Medicare Hospital, Karachi, from January to October 2009. Methodology: Patients attending the Orthopaedic OPDs with complaints of pain in different body regions and serum vitamin D/sub 3/ levels of greater or equal to 30 ng/ml were included in the study. Patients with vitamin D deficiency were further categorized into mild deficiency or insufficiency (vit. D/sub 3/ = 20-29 ng/ml), moderate deficiency (vit. D/sub 3/ = 5 - 19 ng/ml) and severe deficiency forms (vit. D/sub 3/ < 5 ng/ml). Pearson correlation was applied to test the correlation of serum alkaline phosphatase levels with serum vitamin D/sub 3/ levels. P-value < 0.05 was considered to be significant. Results: Out of 110 samples, 26 had mild (23%), 61 had moderate (55%) and 21 had severe (19.1%) vitamin D deficiencies. All of the patients in the three groups had alkaline phosphatase with in normal limits and the total mean value of the enzyme was 135.97 +- 68.14I U/L. The inter group comparison showed highest values of alkaline phosphatase in the moderate vitamin D deficiency group. The correlation coefficient of alkaline phosphatase and serum vitamin D/sub 3/ levels was r =0.05 (p =0.593). Conclusion: Serum vitamin D/sub 3/ levels may not be correlated with increased serum alkaline phosphatase levels. Therefore, alkaline phosphatase may not be used as a screening test to rule out vitamin D deficiency. (author)

  3. CHARACTERIZATION OF BULK SOIL HUMIN AND ITS ALKALINE-SOLUBLE AND ALKALINE-INSOLUBLE FRACTIONS

    Directory of Open Access Journals (Sweden)

    Cuilan Li

    2015-02-01

    Full Text Available Humic substances are the major components of soil organic matter. Among the three humic substance components (humic acid, fulvic acid, and humin, humin is the most insoluble in aqueous solution at any pH value and, in turn, the least understood. Humin has poor solubility mainly because it is tightly bonded to inorganic soil colloids. By breaking the linkage between humin and inorganic soil colloids using inorganic or organic solvents, bulk humin can be partially soluble in alkali, enabling a better understanding of the structure and properties of humin. However, the structural relationship between bulk humin and its alkaline-soluble (AS and alkaline-insoluble (AIS fractions is still unknown. In this study, we isolated bulk humin from two soils of Northeast China by exhaustive extraction (25 to 28 times with 0.1 mol L-1 NaOH + 0.1 mol L-1 Na4P2O7, followed by the traditional treatment with 10 % HF-HCl. The isolated bulk humin was then fractionated into AS-humin and AIS-humin by exhaustive extraction (12 to 15 times with 0.1 mol L-1 NaOH. Elemental analysis and solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR spectroscopy were used to characterize and compare the chemical structures of bulk humin and its corresponding fractions. The results showed that, regardless of soil types, bulk humin was the most aliphatic and most hydrophobic, AS-humin was the least aliphatic, and AIS-humin was the least alkylated among the three humic components. The results showed that bulk humin and its corresponding AS-humin and AIS-humin fractions are structurally differed from one another, implying that the functions of these humic components in the soil environment differed.

  4. Studies on Fast Remediation of Soda Meadow Alkaline Soil

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lianren; SUN Yankun; LI Dawei

    2010-01-01

    Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lymc grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil.

  5. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  6. ADVANCES IN THE MODEL OF CYLINDRICAL ALKALINE CELLS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The advancement of a systematic investigation on the modeling of cylindrical alkaline cells is presented.Initial analysis utilizes thermodynamic and kinetic information to predict alkaline cell performance under low discharge rates.Subsequent modling has taken into consideration detailed information on the chemistry of electrode reactions,mass tranport of dissolved species,physical and chemical properties of the electrolyte and solid phases,and internal geonetry of cell systems.The model is capable of predicting alkaline cell performance under a variety of dicharge conditions.The model also provides information regarding internal cell changes during discharge.The model is the basis of a rational approach for the optimal design of cells.

  7. POLYETHER POLYURETHANE FROM MODIFIED WHEAT STRAW OXYGEN-ALKALINE LIGNIN

    Institute of Scientific and Technical Information of China (English)

    Quanxiao Liu; Huaiyu Zhan; Beihai He; Shuhui Yang; Jianhua Liu; Jianlu Liu; Zhenxing Pang

    2004-01-01

    Polyether polyurethane was synthesized from modified wheat straw oxygen-alkaline lignin,polyethylene glycol and two different diisocyanates (diphenylemethane-4, 4′-diisocyanate, tolulene diisocyanate) by solution casting method, its properties were investigated. The results show that modified wheat straw oxygen-alkaline lignin can substitute part of polyethylene glycol to react with diisocyanate to synthesize polyurethane. The molar ratio of NCO to OH and modified wheat straw oxygen-alkaline lignin content affect the properties of lignin-based polyether polyurethane respectively. The addition of plasticizer in the polyurethane synthesis process improves the properties of synthesized polyurethane, especially the elasticity of polyurethane. The synthesized polyurethane from modified wheat straw oxygen-alkali lignin can be used as both engineering plastic and hard foam plastic in future.

  8. POLYETHER POLYURETHANE FROM MODIFIED WHEAT STRAW OXYGEN-ALKALINE LIGNIN

    Institute of Scientific and Technical Information of China (English)

    QuanxiaoLiu; HuaiyuZhan; BeihaiHe; ShuhuiYang; JianhuaLiu; JianluLiu(1); ZhenxingPang

    2004-01-01

    Polyether polyurethane was synthesized from modified wheat straw oxygen-alkaline lignin, polyethylene glycol and two different diisocyanates (diphenylemethane-4, 4'-diisocyanate, tolulene diisocyanate) by solution casting method, its properties were investigated. The results show that modified wheat straw oxygen-alkaline lignin can substitute part of polyethylene glycol to react with diisocyanate to synthesize polyurethane. The molar ratio of NCO to OH and modified wheat straw oxygen-alkaline lignin content affect the properties of lignin-based polyether polyurethane respectively. The addition of plasticizer in the polyurethane synthesis process improves the properties of synthesized polyurethane, especially the elasticity of polyurethane. The synthesized polyurethane from modified wheat straw oxygen-alkali lignin can be used as both engineering plastic and hard foam plastic in future.

  9. Transient species produced in irradiated alkaline aqueous solutions containing oxygen

    International Nuclear Information System (INIS)

    The spectra and decay kinetics of the optical absorption in the UV region and at 430nm (maximum of the ozonide ion absorption), were investigated in oxygenated neutral, slightly and strongly alkaline aqueous solutions. It is assumed that the initial absorption after the pulse in oxygenated alkaline solutions is due to the ozonide ion O3-, superoxide radical ion O2- and ozone O3. The long-living absorption in these solutions cannot be excluded as to be probably caused by the ozone O3 or some product formed from O2- or an alkaline stabilized form of this radical-ion. The advantage of applying additional non-optical measurements of the system is shown on the example of H2O2 role played in the mechanism. (author)

  10. Alkaline direct alcohol fuel cells using an anion exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsuoka, Masao [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2005-10-04

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323K, which was about 100-200mV higher than that for a DMFC using Nafion{sup R}. The maximum power densities were in the order of ethylene glycol>glycerol>methanol>erythritol>xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode. (author)

  11. Geology and petrology of Lages Alkaline District, Santa Catarina State

    International Nuclear Information System (INIS)

    A 1:100.000 geological map shows the main outcrops, covering about 50 Km2, of the leucocratic alkaline rocks, ultra basic alkaline rocks, carbonatites and volcanic breccias which intruded the Gondwanic sedimentary rocks within a short time interval and characterize the Alkaline District of Lages. Chemical analyses of 33 whole-rock samples confirm the petrographic classification, but the agpaitic indexes, mostly below 1.0, do not reflect the mineralogical variations of the leucocratic alkaline rocks adequately. Partial REE analyses indicate that the light as well as the heavy rare earth contents decrease from the basic to the more evolved rocks, the La/Y ratio remaining approximately constant. Eleven new K/Ar ages from porphyritic nepheline syenites porphyritic phonolites, ultra basic alkaline rocks and pipe-breccias, together with six already available ages, show a major concentration in the range 65 to 75 Ma, with a mode at ca. 70 Ma. But one Rb/Sr whole-rock reference isochron diagram gives an age of 82+-6 Ma for the agpaitic phonolites of the Serra Chapada, which are considered younger than the miaskitic porphyriric nepheline syenites. The 87 Sr/86 Sr ratios of 0.705-0.706 are compatible with a sub continental mantelic origin, devoid of crustal contamination. A petrogenetic model based on subtraction diagrams and taking into consideration the geologic, petrographic, mineralogic and petrochemical characteristics of the alkaline rocks of Lages consists of limited partial melting with CO2, contribution of the previously metasomatized upper mantle, in a region submitted to decompression. (author)

  12. Direct Promotion of Collagen Calcification by Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alkaline phosphatase promotes hydrolysis of phosphate containing substrates, causes a rise in inorganic phosphate and, therefore, enhances calcification of biological tissues. In this work, the calcification of collagen in a model serum was used as a model of collagenous tissue biomaterials to study the possible calcification promotion mechanism of alkaline phosphatase. In the enzyme concentration range of 0.10.5mg/mL, the enzyme shows a direct calcification promoting effect which is independent of the hydrolysis of its phosphate containing substrates but proportional to the enzyme concentration. Potassium pyrophosphate somewhat inhibits the calcification promotion.

  13. Plasma acid and alkaline phosphatase in patients with breast cancer.

    Science.gov (United States)

    Nguyen, M; Bonneterre, J; Hecquet, B; Desoize, B; Demaille, A

    1991-01-01

    Acid and alkaline phosphatase were determined in 107 breast cancer patients to study their potential value in case of bone metastases. The patients were divided into 4 groups: A, patients without metastases (n = 34); B, metastatic patients without bone lesions (n = 37); C, patients with metastases in and outside of bones (n = 24), D, patients with bone-only metastases (n = 12). Tartrate resistant acid phosphatase (TR-ACP), and bone alkaline phosphatase (bone-ALP) were significantly higher in patients with metastases than in patients without. However, no difference in TR-ACP was observed between subgroups of metastatic patients. PMID:2064338

  14. Alkaline solution absorption of carbon dioxide method and apparatus

    Science.gov (United States)

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  15. Effect of alkaline treatment on the ultrastructure of starch granules

    International Nuclear Information System (INIS)

    Starch is a plant polysaccharide that occurs as discrete and partially crystalline microscopic granules. The development of different extraction methods to isolate granules with high purity and well-defined physical properties has increased due to the wide utilization of starch as an ingredient in the food industry. Alternatives to the pattern alkaline extraction protocol have been investigated in order to improve the extraction yield while maintaining the functional properties of the starch granules. In this work, we focused our efforts on the evaluation of the effect of alkaline treatments on the ultrastructure of Araucaria angustifolia (pinhao) starch granules during their extraction. (author)

  16. Suitability of Sudanese Cotton Stalks for Alkaline Pulping with Additives

    Directory of Open Access Journals (Sweden)

    Tarig Osman Khider

    2012-01-01

    Full Text Available The fibre characteristics and chemical composition of Gossypium Hirsutum, Sudanese cotton stalks were assessed for their suitability for papermaking. Soda-anthraquinone (soda-AQ, alkaline sulphite-anthraquinone (AS-AQ and ASAM (alkaline sulphite-anthraquinone- methanol cookings were carried out with different alkali charges and pulps with acceptable to good yields and mechanical properties were obtained. ASAM pulping gave the best results in yields, degree of delignification, mechanical pulp properties. AS-AQ pulping cooking with ratio (70: 30 as NaOH: Na2SO3 gave better results compared to (60: 40 ratio.

  17. Zeolites as structure formation products of alkalineous cements hydration

    OpenAIRE

    Kryvenko, Р. V.; Runova, R. F.; Rudenko, I. I.

    2014-01-01

    The paper concerns analysis of theoretical and experimental studies, according to which, in conditions of artificial stone making for buildings purposes (cement, concrete), synthesis of alkaline aluminosilicates similar to natural minerals of zeolitic group occurs. Presence of such new formations in hydration products of standartized type alkaline cements provides their high running abilities and durability. Наведено аналіз теоретичних і експериментальних досл...

  18. Research on Alkaline Filler Flame-Retarded Asphalt Pavement

    Institute of Scientific and Technical Information of China (English)

    HU Shuguang; ZHANG Houji; WANG Jiaolan

    2006-01-01

    Used as flame retardant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, and the flame-retarded asphalt mixtures were produced. Experimental results show that these asphalt mixtures are smoke restrained; the performances and construction technology of asphalt pavement are not influenced; also the alkaline filler is of low-price. So this kind of flame-retarded asphalt mixtures is suitable for tunnel pavement.

  19. Surface-treatment of Alkaline Earth Sulfides Based Phosphor

    Institute of Scientific and Technical Information of China (English)

    GUO Chong-feng; CHU Ben-li; XU Jian; SU Qiang

    2004-01-01

    A series of alkaline earth sulfides based phosphors Ca0.8Sr0.2S∶Eu2+, Tm3+ were covered with a layer of protective coating with alkaline earth fluorides by heating the mixture of phosphor and NH4HF2 at elevated temperatures. The coatings were characterized by means of XRD and SEM. The optical properties of the coated phosphors and the influences of the coating on their properties have been discussed extensively. The stabilities of the coated and uncoated phosphors have been compared.

  20. Soil alkalinization and irrigation in the sahelian zone of Niger : 2. Agronomic consequences of alkalinity and sodicity

    OpenAIRE

    Marlet, S.; Barbiéro, Laurent; Valles, V.

    1998-01-01

    Soils of the terraces of the Niger River have locally undergone, prior to irrigation, a process of alkalinization. The use of the resulting nonsaline sodic soils [pHs 8.5-9.8 (s is "on saturated paste"), ECs = 2.2-3.2 dS/m, SAR = 12-28 (mmol/L)(at the power 1/2), exchangeable sodium percentage (ESP) = 5-40] is greatly limited because of their alkalinity and sodicity. The mechanisms of degradation affecting the soil physicochemical properties, the water supply, and the mineral nutrition of cro...

  1. On the variation of alkalinity during phytoplankton photosynthesis

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The alkalinity of the organic constituents of marine phytoplankton and their participation in the total alkalinity (TA change of seawater during photosynthesis are carefully assessed. Quantification of the contribution of phytoplankton chlorophyll, proteins and phosphorus compounds to the hydrogen ion balance of seawater in terms of total inorganic nitrogen (∆[NT] = ∆[NH4 +] + ∆[N2] + ∆[NO2 –] + ∆[NO3 –] and total inorganic phosphorus (∆[PT] changes during photosynthesis yielded that the organic components of marine phytoplankton are alkaline by –0.06 × ∆[NT] – 0.49 × ∆[PT], and that the potential total alkalinity (TAP during photosynthesis is TAP = TA – [NH4 –] + 0.93 × [NO2 –] + [NO3 –] + 0.08 × [NT] + 0.23 × [PT] for unfiltered seawater samples and TAP = TA – [NH4 –] + 0.93 × [NO2 –] + [NO3 –] + 0.02 × [NT] + 0.26 × [PT] for filtered seawater samples. These equations correct the traditionally used expression TAP = TA + [NO3 –]. The TAP anomalies are produced, in order of increasing importance, by N2 fixation, DMSP production and CaCO3 fixation.

  2. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and an immobilized electrolyte allow for reversible operation as electrolysis cell or fuel...

  3. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.;

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...

  4. Process of treating cellulosic membrane and alkaline with membrane separator

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The improvement of water-soluble cellulose ether membranes for use as separators in concentrated alkaline battery cells is discussed. The process of contacting membranes with an aqueous alkali solution of concentration less than that of the alkali solution to be used in the battery but above that at which the membrane is soluble is described.

  5. Transcriptome Analysis of Enterococcus faecalis in Response to Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Ran eshujun

    2015-08-01

    Full Text Available E. faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing.We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections.

  6. Triethanolaminelaurylsulfate as a collector for alkaline earth metal ions

    International Nuclear Information System (INIS)

    Basic features of flotation isolation of magnesium, calcium, strontium and barium ions, collected with the help of triethanolaminelaurylsulphate (TEALS) are described. The efficiency of the process depends on the nature of alkaline earth ions, on their concentration, on pH and temperature

  7. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.The Great Konya Basin, some 300 k

  8. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...

  9. Novel alkaline polymer electrolyte for water electrolysis with enhanced conductivity

    Czech Academy of Sciences Publication Activity Database

    Hnát, J.; Bouzek, B.; Paidar, M.; Schauer, Jan

    Praha : Process Engineering, 2010. s. 110-111. ISBN 978-80-02-02246-6. [International Congress of Chemical and Process Engineering CHISA 2010 /19./ and European Congress of Chemical Engineering ECCE-7 /7./. 28.08.2010-01.09.2010, Praha] Institutional research plan: CEZ:AV0Z40500505 Keywords : novel alkaline polymer * polyelectrolytes Subject RIV: CD - Macromolecular Chemistry

  10. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  11. Solvent Extraction of Alkaline Earth Metals with Alkylphosphorus Acids

    Institute of Scientific and Technical Information of China (English)

    XUXin; ZHUTun

    2002-01-01

    Solvent extraction equiliria of four main alkaline earth metals (magnesium, calcium, strontium and barium) with di(2-ethylhexyl) phosphoric acid (DEHPA), 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester, di(2,4,4-tri-methylpentyl) phosphinic acid and IR spectra of the extracts have been studied. The selectivity order is dependent of the e/r value and hydration energy of the metal ions. The minor shift of the P→O in IR absorption of the alkaline earth metal extracts indicates that the interaction between the metal ions and P→O is much weaker for alkaline earth metals than for transitional metals. The distribution of the four alkaline earth elements between aqueous solutions and solutions of DEHPA and neutral organophosphorus compunds, tri-n-butyl phosphate (TBP) or tri-octyl phosphine oxide (TOPO) in kerosene have been determined at varying ratio of TBP or TOPO to DEHPA and the positive synergism is observed. The synergic effects is explained by using IR spectra of the loaded organic phase.

  12. A physiologic function for alkaline phosphatase : Endotoxin detoxification

    NARCIS (Netherlands)

    Poelstra, Klaas; Bakker, W.W; Klok, P.A; Hardonk, M.J; Meijer, D.K F

    1997-01-01

    Alkaline phosphatase (AP), a common enzyme present in many species including humans, has been studied extensively. Although the enzyme is routinely applied as a marker for liver function, its biologic relevance is poorly understood. The reason for this is obvious: the pH optimum of AP in vitro, as m

  13. Chemical aspects of coal liquefaction by oxygen in alkaline slurries

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, R.; Caprio, V.; Insola, A.

    1988-03-01

    Coal liquefaction by oxygen in alkaline slurries is reviewed from the chemical point of view. Available information is considered in the light of questions relating to coal liquefaction. A lack of chemical knowledge in this area is noted, especially on model compounds. 72 refs.

  14. Qualitative aspects of the degradation of mitomycins in alkaline solution.

    Science.gov (United States)

    Beijnen, J H; den Hartigh, J; Underberg, W J

    1985-01-01

    The major degradation product in alkaline solution of mitomycin A, mitomycin C and porfiromycin is the corresponding 7-hydroxymitosane. The isolation and the physico-chemical and analytical properties of these compounds and their derivatized analogues are discussed. Data are presented on the degradation of mitomycin C at extremely high pH values. PMID:16867711

  15. Field screening of cowpea cultivars for alkaline soil tolerance

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  16. Yield performance of cowpea genotypes grown in alkaline soils

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  17. A green method of graphene preparation in an alkaline environment

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Henych, Jiří; Bludská, Jana; Ecorchard, Petra; Kormunda, M.

    2015-01-01

    Roč. 24, MAY (2015), s. 65-71. ISSN 1350-4177 R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 Keywords : Alkaline environment * Exfoliation * Graphene * Ultrasound Subject RIV: CA - Inorganic Chemistry Impact factor: 4.321, year: 2014

  18. Fibre optic humidity sensor designed for highly alkaline environments

    OpenAIRE

    Bremer, K; Wollweber, M; Guenther, S.; Werner, G.; Sun, T.; Grattan, K. T.; Roth, B.

    2014-01-01

    This paper presents the design of a sensor packaging for a Fibre Bragg Grating (FBG) based fibre optic humidity sensor. The evaluation of the developed fibre optic sensor was performed under experimental conditions and verified its capability to withstand highly alkaline environments. Therefore, the sensor can be applied to monitor the concrete humidity level and thus to indicate the maintenance of concrete structures.

  19. The catalytic properties of alkaline phosphatases under various conditions

    Science.gov (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Poltorak, O. M.

    2008-11-01

    A comparative study was performed to examine the catalytic properties of alkaline phosphatases from bacteria Escherichia coli and bovine and chicken intestines. The activity of enzyme dimers and tetramers was determined. The activity of the dimer was three or four times higher than that of the tetramer. The maximum activity and affinity for 4-nitrophenylphosphate was observed for the bacterial alkaline phosphatase ( K M = 1.7 × 10-5 M, V max = 1800 μmol/(min mg of protein) for dimers and V max = 420 μmol/(min mg of protein) for tetramers). The Michaelis constants were equal for two animal phosphatases in various buffer media (pH 8.5) ((3.5 ± 0.2) × 10-4 M). Five buffer systems were investigated: tris, carbonate, hepes, borate, and glycine buffers, and the lowest catalytic activity of alkaline phosphatases at equal pH was observed in the borate buffer (for enzyme from bovine intestine, V max = 80 μmol/(min mg of protein)). Cu2+ cations formed a complex with tris-(oxymethyl)-aminomethane ( tris-HCl buffer) and inhibited the intestine alkaline phosphatases by a noncompetitive mechanism.

  20. Potentiodynamic characteristics of cadmium and silver in alkaline solutions

    International Nuclear Information System (INIS)

    The potentiodynamic and ellipsometric characteristics of cadmium and silver in alkaline solutions are studied. The phenomenology of both electrodes shows some common features which are interpreted in termo of a complex hydrated oxide anodic film structure resulting from simultaneous electrochemical and chemical reactions. The kinetics of film growth fits the predictions of nucleation and growth models. (C.L.B.)

  1. Determination of the density of zinc powders for alkaline battery

    Institute of Scientific and Technical Information of China (English)

    Beatriz Ares Tejero; David Guede Carnero

    2007-01-01

    The density of zinc powder for alkaline battery was determined using a pyknometer.The results showed that powders made before the end of 2003 could reach relative densities above 99% of the theoretical density.Investigating the relative volume swelling of electrolysed gels of zinc powders,no evident relation between swelling and pyknometer density was found.

  2. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-04-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe2O3 to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. However, mineral dust particles also have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model, which is incorporated with a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution in aerosol solution during the long-range transport. Over the North Pacific Ocean, only a small fraction (<0.2% of iron dissolves from hematite in the coarse-mode dust aerosols, when assuming internally mixed with carbonate minerals. However, if the iron-containing minerals are externally mixed with carbonate minerals, a significant amount (1–2% of iron would dissolve from the acid mobilization. It implies that the alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size.

  3. On the apparent CO2 absorption by alkaline soils

    Directory of Open Access Journals (Sweden)

    X. Chen

    2014-02-01

    Full Text Available Alkaline soils in the Gubantonggut Desert were recently demonstrated socking away large quantities of CO2 in an abiotic form. This demands a better understanding of abiotic CO2 exchange in alkaline sites. Reaction of CO2 with the moisture or dew in the soil was conjectured as a potential mechanism. The main goal of this study is to determine the extent to which the dew deposition modulates Land–Atmosphere CO2 exchange at highly alkaline sites (pH ~ 10. Experiments were conducted at the most barren sites (canopy coverage 2 fluxes were measured using a micro-lysimeters and an automated flux system (LI-COR, Lincoln, Nebraska, USA, respectively. There is an evident increase of dew deposition in nocturnal colder temperatures and decrease in diurnal warmer temperatures. Variations of soil CO2 flux are almost contrary, but the increase in diurnal warmer temperatures is obscure. It was shown that the accumulation and evaporation of dew in the soil motivates the apparent absorption and release of CO2. It was demonstrated that dew amounts in the soil has an exponential relation with the part in Fc beyond explanations of the worldwide utilized Q10 model. Therefore dew deposition in highly alkaline soils exerted a potential CO2 sink and can partly explain the apparent CO2 absorption. This implied a crucial component in the net ecosystem carbon balance (NECB at alkaline sites which occupies approximately 5% of the Earth's land surface (7 million km. Further explorations for its mechanisms and representativeness over other arid climate systems have comprehensive perspectives in the quaternary research.

  4. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    Science.gov (United States)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  5. Electromigration in molten salts and application to isotopic separation of alkaline and alkaline-earth elements

    International Nuclear Information System (INIS)

    The separation of the isotopes of the alkaline-earth elements has been studied using counter-current electromigration in molten bromides. The conditions under which the cathode operates as a bromine electrode for the highest possible currents have been examined. For the separation of calcium, it has been necessary to use a stable CaBr2 - (CaBr2 + KBr) 'chain'. In the case of barium and strontium, it was possible to employ the pure bromides. Enrichment factors of the order of 10 for 48Ca and of the order of 1.5 for the rare isotopes of barium and strontium have been obtained. In the case of magnesium the method is slightly more difficult to apply because of material loss due to the relatively high vapour pressure of the salt requiring the use of electrolyte chains, MgBr2 - CeBr3. A study has been made that has led to a larger-scale application of the method. These are essentially the inhibition of reversible operation of the cathode by traces of water, limiting the intensity which can be tolerated; evacuation of the heat produced by the Joule effect, in the absence of which the separation efficiency is reduced by thermal gradients; corrosion of the materials by molten salts at high temperature. Several cells capable of treating a few kilograms of substance have been put into operation; none of these has lasted long enough to produce a satisfactory enrichment. The method is thus limited actually to yields of the order of a few grams. (author)

  6. Major discrepancies between results obtained with two different methods for evaluating DNA damage: alkaline elution and alkaline unwinding. Possible explanations.

    Science.gov (United States)

    Taningher, M; Bordone, R; Russo, P; Grilli, S; Santi, L; Parodi, S

    1987-01-01

    The fluorometric assay of DNA alkaline unwinding, developed by Birnboim and Jevcak (Cancer Res 41: 1889-1892, 1981) was applied to rat liver DNA, after treatment in vivo. N-nitrosodimethylamine, for which DNA damage in rat liver has been extensively investigated, was tested as a standard compound. The results were in complete agreement (both in terms of damage and repair) with data from the literature and with our own results obtained with other methods of detecting DNA alkaline fragmentation. Sensitivity was also of the same order of that of usual methods, with the effect of 0.3 mg/Kg of N-nitrosodimethylamine being detectable. Other DNA damaging carcinogens such as 1,2-dimethylhydrazine, 2-naphthylamine and dacarbazine were also correctly detected. Compounds like nitrofurantoin, benzoin and caprolactam, which appeared clearly positive with the alkaline elution technique, but for which genotoxicity and carcinogenicity are doubtful (nitrofurantoin) or most likely negative (benzoin and caprolactam), gave negative results with this method. This is also in agreement with previous results, observed using a different approach to measuring DNA unwinding. On the basis of these and other observations, we suggest that, under certain conditions, the alkaline elution technique is perhaps not only sensitive to DNA breaks but also to changes in chromatin conformation. Unwinding methods could be more specific in the detection of DNA fragmentations. PMID:3674758

  7. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  8. Mass spectra of alkaline earth salts with a FAB source. Complexation with crown ethers

    International Nuclear Information System (INIS)

    With a liquid desorption FAB source it is possible to obtain alkaline earth metal ions complexed by a crown ether. Conditions for formation of these complexes ions are examined for selection of the complexing agent in function of cation size. Behaviour of alkaline and alkaline earth compounds are compared allowing the differentiation of ion extraction phenomena by liquid desorption ion source and solvent extraction

  9. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Science.gov (United States)

    2010-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are applicable...

  10. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the...

  11. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  12. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    International Nuclear Information System (INIS)

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N2 adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation

  13. Alkaline Protease Production by a Strain of Marine Yeasts

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; CHI Zhenming; MA Chunling

    2006-01-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China.The protease had the highest activity at pH 9.0 and 45 ℃.The optimal medium for the maximum alkaline protease production of strain 10 was 2.5 g soluble starch and 2.0 g NaNO3 in 100 mL seawater with initial pH6.0.The optimal cultivation conditions for the maximum protease production were temperature 24.5 ℃, aeration rate 8.0 L min -1 and agitation speed 150 r min-1.Under the optimal conditions, 623.1 Umg-1 protein of alkaline protease was reached in the culture within 30 h of fermentation.

  14. Radiolysis of actinides and technetium in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H., Westinghouse Hanford

    1996-07-10

    The {gamma}-radiolysis of aerated alkaline aqueous solutions of Np(V), Np(VI), Pu(VI), Tc(IV), Tc(V), and TC(VII) was studied in the absence of additives and in the presence of CO{sub 3}{sup 2-}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, EDTA, formate, and other organic compounds. The radiolytic reduction of Np(V), Np(VI), Pu(VI), and TC(VII) under different experimental conditions was examined in detail. The addition of EDTA, formate, and alcohols was found to considerably increase the radiation-chemical reduction yields. The formation of the Np(V) peroxo complex was observed in the {gamma}-radiolysis of alkaline aqueous solutions of Np (VI) in the presence of nitrate.

  15. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    Energy Technology Data Exchange (ETDEWEB)

    Costarrosa, L. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Calvino-Casilda, V. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Ferrera-Escudero, S. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Duran-Valle, C.J. [Dpto. de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz (Spain); Martin-Aranda, R.M. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain)]. E-mail: rmartin@ccia.uned.es

    2006-06-30

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N{sub 2} adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  16. Lithuanian Quarry Aggregates Concrete Effects of Alkaline Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Aurimas Rutkauskas

    2016-02-01

    Full Text Available Aggregate alkaline corrosion of cement in concrete is going to respond in sodium and potassium hydroxide (lye with active SiO2 found in some aggregates. During this reaction, the concrete has resulted in significant internal stresses which cause deformation of the concrete, cracking and disintegration. The reaction is slow and concrete signs of decomposition appear only after a few months or years. The study used two different aggregates quarries. Studies show that Lithuania gravel contaminated with reactive particles having amorphous silicon dioxide reacting with cement in sodium and potassium hydroxide and the resulting alkaline concrete corrosion. It was found that, according to AAR 2 large aggregates include Group II – potentially reactive because of their expansion after 14 days, higher than 0.1%.

  17. Development of Hydrogen Electrodes for Alkaline Water Electrolysis

    DEFF Research Database (Denmark)

    Kjartansdóttir, Cecilía Kristín

    gas based infrastructure. Alkaline water electrolysis (AWE) is the current standard (stat of the art) for industrial large-scale water electrolysis systems. One of the main criteria for industrial AWE is efficient and durable electrodes. The aim of the present PhD study was to develop electrode...... nickel hydrides in electrode metal lattice. The material degradation was considerably more severe at the anode compared to the cathode. The durability single-cell measurements indicate no deactivation of electrodes after shut-downs. Microstructure investigations on the PVD Al-Ni diffusion couples at 610......Ni3 phase. The diffusion mechanism can be the key to good properties of the developed PVD Al/Ni electrodes. Electrodes produced with shorter time of diffusion, 10-30 minutes, are found to be more prone to alkaline aluminium leaching and only 4-5 wt.% of aluminium residue is found in the leached...

  18. A new electrochemical oscillatory system of bromate in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new electrochemical oscillatory system of bromate in alkaline solution is reported. In PtBromate-Alkaline solution system, two different types of electrochemical oscillations (Type Ⅰ and Type Ⅱ) can be observed. Type Ⅰ appears before hydrogen evolution and Type Ⅱ involves periodic hydrogen evolution. Type Ⅰ relates to the adsorption/desorption of the hydrogen on platinum electrode, and Type Ⅱ with periodic oscillation stems from the coupling of electrochemical reactions (the reduction of bromate and evolution hydrogen reaction) with mass transfer (diffusion and convection). More over, under the right conditions, the two types appear in different oscillatory modes, for example,simple periodical mode and mixed one, etc,, Crossed cycle in the cyclic voltammograms, which is the basiccharacteristics for electrochemical oscillatory systems, has also been observed as expected.

  19. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    International Nuclear Information System (INIS)

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions

  20. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  1. Methanol oxidation on Pd/Pt(poly) in alkaline solution

    Science.gov (United States)

    Maksic, A.; Rakocevic, Z.; Smiljanic, M.; Nenadovic, M.; Strbac, S.

    2015-01-01

    Bimetallic electrodes prepared by Pd nanoislands spontaneously deposited on polycrystalline platinum, Pt(poly), at submonolayer coverage were explored for methanol oxidation in alkaline media. Characterization of obtained Pd/Pt(poly) nanostructures was performed ex situ by AFM imaging, spectroscopic ellipsometry and by X-ray photoelectron spectroscopy. In situ characterization of the obtained electrodes and subsequent methanol oxidation measurements were performed by cyclic voltammetry in 0.1 M KOH. Platinum surface with 35% Pd coverage exhibited the highest catalytic activity for methanol oxidation in alkaline media, exceeding those of bare Pt and Pd. Both synergistic and electronic effects are responsible for such enhanced catalysis. The origin of the synergistic effect and possible reaction pathways for methanol oxidation were discussed taking into account the activity of obtained bimetallic electrodes for the oxidation of CO and formaldehyde, as the most probable reaction intermediates.

  2. Alkaline-earth metal compounds. Oddities and applications

    International Nuclear Information System (INIS)

    This book contains the following six topics: heavy alkaline-earth metal organometallic and metal organic chemistry: synthetic methods and properties (Ana Torvisco, Karin Ruhlandt-Senge); Heavier group 2 Grignard reagents of the type aryl-ae(l)n-x post-Grignard reagents (Matthias Westerhausen, Jens Langer, Sven Krieck, Reinald Fischer, Helmar Goerls, Mathias Koehler); stable molecular magnesium(I) dimers: A fundamentally appealing yet synthetically versatile compound class (Cameron Jones, Andreas Stasch); Modern developments in magnesium reagent chemistry for synthesis (Robert E. Mulvey, Stuart D. Robertson); Alkaline-earth metal complexes in homogeneous polymerization catalysis (Jean-Francois Carpentier, Yann Sarazin); homogeneous catalysis with organometallic complexes of group 2 (Mark R. Crimmin, Michael S. Hill); Chiral Ca, Sr and Ba-catalyzed asymmetric direct-type aldol, Michael, and Mannich and related reactions (Tetsu Tsubogo, Yasuhiro Yamashita, Shu- Kobayashi).

  3. Alkaline magmatism age of Pariquera Acu Massif, SP, Brazil

    International Nuclear Information System (INIS)

    This paper presents Rb-Sr isotopic data concerning the understanding of the origin, age and emplacement of the Pariquera Acu massif, a small occurrence (3,5 x 2,5 km) of mafic ultramafic alkaline rocks discovered by aeromagnetic interpretation in 1979. The massif is situated in Sao Paulo - southeastern Brazil - near the Jacupiranga and Juquia alkaline complexes in the low Ribeira de Iguape river valley. Rb-Sr data and the K/Ar available ages in the literature of nearby complexes are discussed the characteristic aeromagnetic pattern of Pariquera Acu body and related intrusives, as well as its geology, rock types distribution and age and its relationships to the nearby complexes. (author)

  4. Bose-Einstein condensation of alkaline earth atoms: ;{40}Ca.

    Science.gov (United States)

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-09-25

    We have achieved Bose-Einstein condensation of ;{40}Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground-state s-wave scattering length of ;{40}Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about 2 x 10;{4} atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less than 3 s. The condensation of an alkaline earth element opens novel opportunities for precision measurements on the narrow intercombination lines as well as investigations of molecular states at the ;{1}S-;{3}P asymptotes. PMID:19905493

  5. Uranium distribution in dikes of alkaline and ultrabasic rocks

    International Nuclear Information System (INIS)

    Peculiarities of uraium distribution in dikes of alkaline and ultrabasic rocks of the Ukranian crystalline shield have been considered. Its behaviour in the processes of crystallization and postmagmatic change is shown on the basis of studying the substance composition and uranium distribution peculiarities in dikes. To study the uranium distribution in dikes the fragment radiography method was used. Evolution of rock structure and forms of uranium presence in the course of crystallization of subvolcanic dikes of alkaline and ultrabasic compositions has been established. At the early crystallization stage uranium concentrated in main glassy mass. With the crystallization the uranium redistribution and increase of amount of fixed uranium take place. A main part of uranium is fixed in accessories at the end crystallization stage in holocrystalline structures. Subvolcanic dikes bear traces of superimposed albitization. Uranium enrichment of albitized dikes and the character of superimposed uranium distribution testify to an earlier dike formation as compared with the sodium metasomatism process

  6. WHEAT STRAW ALKALINE LIGNIN AND ITS DERIVATIVES AS RETENTION AID

    Institute of Scientific and Technical Information of China (English)

    QuanxiaoLiu; BeihaiHe; HuaiyuZhan; ShuhuiYang; JianluLiu; ZhenxingPan; JianhuaLiu

    2004-01-01

    In this paper, a new type of retention system of PEO/cofactor retention system is introduced, the cofactors used are phenol-formaldehyde resin, wheat straw alkaline lignin and its derivatives such as hydroxymethylated lignin, sulfited lignin and lignin-based phenol-formaldehyde resin. The first pass retention of newsprint slurry and the properties of handsheet are improved by using the system. The results indicate that a new application field for lignin has been exploited.

  7. Alkaline Anion-Exchange Membranes Containing Mobile Ion Shuttles.

    Science.gov (United States)

    Ge, Xiaolin; He, Yubin; Guiver, Michael D; Wu, Liang; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2016-05-01

    A new class of alkaline anion-exchange membranes containing mobile ion shuttles is developed. It is achieved by threading ionic linear guests into poly(crown ether) hosts via host-guest molecular interaction. The thermal- and pH-triggered shuttling of ionic linear guests remarkably increases the solvation-shell fluctuations in inactive hydrated hydroxide ion complexes (OH(-) (H2 O)4 ) and accelerates the OH(-) transport. PMID:26972938

  8. The Origin of Life in Alkaline Hydrothermal Vents.

    Science.gov (United States)

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea. PMID:26841066

  9. Radiation damage and photochromism in the alkaline earth fluorides

    International Nuclear Information System (INIS)

    Detailed mechanisms are proposed for the defect reactions occurring in irradiated alkaline earth fluorides. Both pure and doped crystals are considered. For the former, the models rationalise much of the experimental data, particularly the studies of Hayes and Lambourn. The discussion of doped crystals explains the origin of the pronounced effects of trivalent impurities. The mechanism of formation of photochromic centres is discussed and the observed temperature dependence of the stability of these defects is explained successfully. (author)

  10. Alkaline phosphatase for immunocytochemical labelling: problems with endogenous enzyme activity.

    OpenAIRE

    Bulman, A. S.; Heyderman, E

    1981-01-01

    Alkaline phosphatase may be used as a label for immunocytochemistry and can be demonstrated in tissue sections using the single step naphthol phosphate method. Endogenous enzyme activity may not be destroyed by fixation in formalin, formol alcohol, Carnoy's or Baker's solutions and should be inhibited before results are assessed. Either Bouin's solution or periodic acid followed by potassium borohydride are satisfactory inhibitor and do not adversely affect immunocytochemical results.

  11. In vitro fermentation response to alkaline treated sorghum grain

    Directory of Open Access Journals (Sweden)

    FARHAD PARNIAN

    2014-04-01

    Full Text Available Effects of three alkaline treatments: NaOH, NaHCO3 and wood ash on the crude protein (CP, condensed tannin (CT, neutral detergent fiber (NDF, in vitro gas production kinetics and dry matter (DM digestibility of sorghum grain were determined. The NaOH (2% w/v, NaHCO3 (2% w/v and wood ash (5% w/v treatments were completed by soaking of sorghum grain with treatment solutions in the proportion of 1 L of solution to 1 kg of grain for 12 h. Gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36, 48, 72 and 96 h post incubation. Alkaline treatment decreased significantly the CT (P<0.001 and NDF content (P<0.05 of sorghum grain, where it had no effect on the CP content. Treated grain with wood ash extract showed the highest (P<0.05 maximum gas production (A, and NaOH treatment trended (P<0.06 to the fastest fractional fermentation rate. Fractional rate of gas production and cumulative gas production overall incubation times except of 48 h (P<0.05 were not changed by NaHCO3 and wood ash treatment. Maximum (P<0.01 in vitro DM digestibility of alkaline treatment of sorghum grain was observed by NaOH. Cumulative volatile fatty acids concentration was increased (P<0.01 at 4h for NaOH treated compared to untreated sorghum and then decreased (P<0.001 at 48 h post incubation. Alkaline treatment of sorghum grain may become attractive due to raise in nutritive values of sorghum and hide the negative effects of its tannin in the future if the costs of other processing continue to rise.

  12. Interaction of alkali and alkaline earth ions with Ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Poor, Miklos [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary); Kunsagi-Mate, Sandor; Matisz, Gergely; Li, Yin; Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Janos Szentagothai Research Center, Pecs H-7624 (Hungary); Peles-Lemli, Beata [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Koszegi, Tamas, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary)

    2013-03-15

    The effect of alkali and alkaline earth ions on the chemical equilibrium of mono- and dianionic forms of the mycotoxin Ochratoxin A (OTA) and their bonding onto the surface of Bovine Serum Albumin (BSA) have been investigated by fluorescence spectroscopy and fluorescence polarization techniques. Our results show that alkali metal ions shift the chemical equilibrium towards formation of dianionic form of OTA. Furthermore, the alkaline earth ions can compete with BSA for binding to OTA when these ions are present in millimolar concentrations. Our data also highlight the possibility that the 'free' fraction of OTA (not bound onto the surface of albumin) or at least a part of it is present in cation-bound form in body fluids. These observations are supported by stability constants and quantum-chemical calculations. Among the studied alkaline metal ions magnesium showed the highest affinity towards OTA under physiological conditions. Further research is required to analyze the potential significance of Mg{sup 2+}-OTA complex in cellular uptake and/or elimination of the toxin in the human body. - Highlights: Black-Right-Pointing-Pointer Fluorescence spectroscopy reveals cation-Ochratoxin A (OTA) interactions. Black-Right-Pointing-Pointer Alkali ions shift the equilibrium of OTA to formation of a dianionic structure. Black-Right-Pointing-Pointer Alkaline earth ions directly bind to OTA in the order: Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+}. Black-Right-Pointing-Pointer Quantum chemical calculations and logK values support our experimental data.

  13. Modeling diffusion of an alkaline plume in a clay barrier

    OpenAIRE

    Gaucher, Eric C.; Blanc, Philippe; Matray, Jean-Michel; Michau, Nicolas

    2004-01-01

    The design of clay plugs used for sealing access galleries to a radioactive waste repository built with concrete structures in a deep clayey formation must take into consideration their chemical evolution over time. Diffusion of an alkaline plume from concrete into bentonite was therefore modeled over a 100 ka period with the PHREEQC geochemical code in order to determine, as a function of time, modifications to mineral surfaces, dissolution of existing minerals and precipitation of new miner...

  14. Heavy metals quantification on alkaline batteries incineration emissions

    OpenAIRE

    Xará, Susana; Almeida, Manuel Fonseca; Costa, Carlos; Silva, Margarida

    2000-01-01

    Heavy metals emissions associated with municipal solid waste (MSW) incineration is a point of discussion and care due to the known harmful effects of these metals on humans and environment. Batteries are appointed as one of the main contributors for those emissions, particularly for mercury, cadmium, zinc and lead. In this paper, results for heavy metals emissions from alkaline batteries obtained in a laboratorial incinerator are presented. The incineration process took place in a tubular ove...

  15. Long range interactions between alkali and alkaline-earth atoms

    CERN Document Server

    Jiang, Jun; Mitroy, J

    2013-01-01

    Dispersion coefficients between the alkali metal atoms (Li-Rb) and alkaline-earth metal atoms (Be-Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low lying excited state.

  16. Laboratory study on the leaching potential of spent alkaline batteries

    OpenAIRE

    Xará, Susana M.; Delgado, Julanda N.; Almeida, Manuel F.; Costa, Carlos A.

    2009-01-01

    Four different leaching tests were carried out with spent alkaline batteries as an attempt to quantify the environmental potential burdens associated with landfilling. The tests were performed in columns filled up with batteries either entire or cross-cut, using either deionized water or nitric acid solution as leachant. In a first set of tests, the NEN 7343 standard procedure was followed, with leachant circulating in open circuit from bottom to top through columns. These tests w...

  17. Radioimmunoassay for human placental alkaline phosphatase and clinical significance

    International Nuclear Information System (INIS)

    A radioimmunoassay specific for placental alkaline phosphatase (PALP) has been performed. Sera from blood donnors contain less than 15 μg of PALP per liter. The amounts of PALP found in sera of pregnant women are higher, as soon as the first trimester of the pregnancy, increasing untill delivery (50-600 μg of PALP/l). Only 3,5% of the patients with various cancer diseases have amounts higher than 25 μg PALP/l

  18. Purification and characterization of alkaline protease from Lysinibacillus fusiformis

    OpenAIRE

    Suppiah S*; Sendeshkannan K; Prabakaran P; Rajkumar G; Yasothkumar N

    2012-01-01

    A novel alkaline protease producing bacterium was isolated from the gut of an estuarine fish Etroplus suratensis. The strain was identified by sequencing the fragment of their bacterial 16s rRNA and its homology was 97% closest to the Lysinibacillus fusiformis. An extracellular protease from this organism was purified by acetone precipitation, ion exchange chromatography and gel filtration chromatography methods and the specific activity of the purified enzyme was found to be 20.39 U/mg, 169....

  19. Co-mineralization of alkaline-earth carbonates and silica

    OpenAIRE

    Kellermeier, Matthias

    2011-01-01

    This thesis is concerned with the manifold interactions that occur when alkaline-earth metal carbonates are crystallized in the presence of dissolved silica as an additive. The described work subdivides into two main lines of research. On the one hand, an understanding of the potential roles of silica during crystallization was sought on a fundamental level. That is, the mineral - in this case calcium carbonate - was directly precipitated from silica-containing solutions and the effect on gro...

  20. Associations between Renal Hyperfiltration and Serum Alkaline Phosphatase

    OpenAIRE

    Oh, Se Won; Han, Kum Hyun; Han, Sang Youb

    2015-01-01

    Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP) level is also elevated in patients with diabetes (DM) or metabolic syndrome (MS), and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in t...

  1. Cyanobacterial diversity in alkaline marshes of northern Belize (Central America)

    Czech Academy of Sciences Publication Activity Database

    Komárek, Jiří; Ventura, S.; Turicchia, S.; Komárková, Jaroslava; Mascalchi, C.; Soldati, E.

    2005-01-01

    Roč. 158, č. 117 (2005), s. 265-278. ISSN 0342-1120. [Symposium of the International Association for Cyanophyte Research /16./. Luxembourg, 30.08.2004-03.09.2004] R&D Projects: GA AV ČR(CZ) IAA6005309; GA AV ČR KSK6005114; GA MŠk(CZ) ME 653 Institutional research plan: CEZ:AV0Z6005908 Keywords : Cyanobacteria * alkaline marshes * Central Amerika Subject RIV: EF - Botanics

  2. Solvent extraction of dibutylphosphate bearing alkaline wastes from purex process

    International Nuclear Information System (INIS)

    In the Purex process tributylphosphate undergoes chemical and radiolytic attack leading to the formation of acidic degradation products, mainly dibutylphosphate (DBP) and to a lesser extent monobutylphosphate (MBP). These alkylphosphoric compounds are extractants and may also give insoluble complexes with several cations of fission products. Thus their elimination from the organic phase by alkaline scrubbing of the solvent is necessary. The alkaline solution is generally made of carbonate, in order to keep uranium and plutonium, which can be present in small quantities, under a soluble form. The destination of this aqueous solution is usually the high or the medium activity wastes. Recycling actinide values from these effluent solutions in the process is to be considered to lower alpha-activity in the wastes. In this paper is studied the tri-iso-octylamine for extracting the disturbing organophosphorous compounds from neutral or alkaline solutions where they are under an anionic form. The actinides will stay in these aqueous solutions which can be concentrated and recycled without any risk of precipitation

  3. Activation of Calf Intestinal Alkaline Phosphatase by Trifluoroethanol

    Institute of Scientific and Technical Information of China (English)

    曹志方; 徐真; 朴龙斗; 周海梦

    2001-01-01

    Alkaline phosphatase is a stable enzyme which is strongly resistant to urea, guanidine hydrochloride, acid pH, and heat. But there have been few studies on the effect of organic cosolvents on the activity and structure of alkaline phosphatase. The activity of calf intestinal alkaline phosphatase (CIAP) is markedly increased when incubated in solutions with elevated trifluoroethanol (TFE) concentrations. The activation is a time dependent course. There is a very fast phase in the activation kinetics in the mixing dead time (30 s) using convential methods. Further activation after the very fast phase follows biphasic kinetics. The structural basis of the activation has been monitored by intrinsic fluorescence and far ultraviolet circular dichroism. TFE (0 - 60%) did not lead to any significant change in the intrinsic fluorescence emission maximum, indicating no significant change in the tertiary structure of CIAP. But TFE did significantly change the secondary structure of CIAP, especially increasing α-helix content. We conclude that the activation of ClAP is due to its secondary structural change. The time for the secondary structure change induced by TFE preceds that of the activity increase. These results suggest that a rapid conformational change of ClAP induced by TFE results in the enhancement of ClAP activity, followed by further increase of this activity because of the further slightly slower rearrangements of the activated conformation. It is concluded that the higher catalytic activity of ClAP can be attained with various secondary structures.

  4. Mechanism of zinc electroplating in alkaline zincate solution

    Institute of Scientific and Technical Information of China (English)

    PENG Wen-jie; WANG Yun-yan

    2007-01-01

    The cathodic deposition properties and mechanism of Zn in alkaline zincate solution were studied by electrochemical techniques. The results show that Zn2+ exists in the alkaline solution in the form of Zn(OH)42-. The apparent activation energy of the electrode reaction is 38.93 kJ/mol, which indicates that the discharge of Zn(OH)42- on cathode is controlled by electrochemical polarization, and accompanied by a preceding chemical reaction. The diflusion coefficient of Zn(OH)42- is 2.452×10~cm2/s. Zn(OH)2 is the species directly discharged on the cathode surface. Based on the above results the mechanism of zinc electroplating in alkaline zincate solution was put forward.The discharged species is Zn(OH)2 formed from the preceding chemical reaction, which becomes Zn(OH)ad when gaining one electron, and then gaining the second electron to become Zn.The first electron gaining step is rate determining one.

  5. Mechanism of gold dissolving in alkaline thiourea solution

    Institute of Scientific and Technical Information of China (English)

    CHAI Li-yuan; WANG Yun-yan

    2007-01-01

    Reaction mechanism of gold dissolving in alkaline thiourea solution was studied by electrochemical methods, such as cyclic voltammetry, chronopotentiometry, AC impedance, linear sweep voltammetry. Apparent activation energy of anodic process of gold electrode dissolving in alkaline thiourea solution is 14.91 kJ/mol. Rate determining step is the process of gold thiourea complex diffusing away from electrode surface to solution. The results of AC impedance and chronopotentiometry indicate that thiourea adsorbs on gold electrode surface before dissolving in solution. There does not exist proceeding chemical reactions. Formamidine disulfide, the decomposed product of thiourea, does not participate the process of gold dissolution and thiourea complex. Species with electro-activity produced in the process of electrode reaction adsorbs on the electrode surface. In alkaline thiourea solution, gold dissolving mechanism undergoes the following courses: adsorption of thiourea on electrode surface; charge transfer from gold atom to thiourea molecule; Au[SC(NH2)2]ads+ receiving a thiourea molecule and forming stable Au[SC(NH2)2]2+; and then Au[SC(NH2)2]2+diffusing away from the electrode surface to solution, the last step is the rate-determining one.

  6. Alkaline static feed electrolyzer based oxygen generation system

    Science.gov (United States)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  7. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite.

    Science.gov (United States)

    Vandamme, Dries; Pohl, Philip I; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V; Hewson, John C; Muylaert, Koenraad

    2015-11-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5mM, flocculation was also observed at a pH of 10. Zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism. PMID:26310384

  8. Alkaline autoclave leaching of refractory uranium-thorium minerals

    International Nuclear Information System (INIS)

    This paper deals with the study of an innovative method for processing the Oman placer ores by alkaline leaching in ball mill autoclaves, where grinding and leaching of the refractory minerals take place simultaneously. This was followed by the selective separation of thorium and uranium from lanthanides by autoclave leaching of the hydroxide cake with ammonium carbonate-bicarbonate solutions. The introduced method is based on the fact that thorium and uranium form soluble carbonate complexes with ammonium carbonate, while lanthanides form sparingly soluble double carbonates. It was found that a complete alkaline leaching of Oman placer ores (98.0Percent) was attained at 150 and 175degreeC within 2.5 and 2h, respectively. Oman placer ores leaching was intensified and accelerated in a ball mill autoclaves as a result of the grinding action of steel balls, removal of the hydroxide layer covering ores grains and the continuous contact of fresh ore grains with alkaline solution. The study of selective carbonate processing of hydroxide cake with ammonium carbonate-bicarbonate solutions on autoclave under pressure revealed that the complete thorium recovery (97.5Percent) with uranium recovery (90.8Percent) and their separation from the lanthanides were attained at 70-80degreeC during l-2h. The extraction of lanthanides in carbonate solution was low and did not exceed 4.6Percent.

  9. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    Science.gov (United States)

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films. PMID:24122212

  10. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions

    International Nuclear Information System (INIS)

    The chemical conditions of TRU waste repository were estimated as alkaline conditions effected by cementitious materials. And, some TRU wastes include soluble nitrate salt, we have to consider the repository conditions might be high ionic strength condition leaching of nitrate salt. In this study, experimental studies were carried out to evaluate hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. The followings results were obtained for bentonite. 1) In the immersion experiments of bentonite in hyper alkaline fluids with and without nitrate, the disappearance of montmorillonite of bentonite was observed and CSH formation was found after 30 days. In hyper alkaline fluid with nitrate, minerals at θ=37 nm by XRD was identified. 2) Significant effects of hyper alkaline on hydraulic conductivity of compacted bentonite were not observed. However, hydraulic conductivities of hyper alkaline fluid with nitrate and ion exchanged bentonite increased. In hyper alkaline with nitrate, more higher hydraulic conductivities of exchanged bentonite were measured. The followings results were obtained for rock. 1) In the immersion experiments of crushed tuff in hyper alkaline fluids with and without nitrate, CSH and CASH phases were observed. 2) The hydraulic conductivity of tuff in hyper alkaline fluids decreased gradually. Finally, hyper alkaline flow in tuff stopped after 2 months and hyper alkaline flow with nitrate stopped shorter than without nitrate. In the results of analysis of tuff after experiment, we could identified secondary minerals, but we couldn't find the clogging evidence of pores in tuff by secondary minerals. (author)

  11. Production and partial characterization of alkaline protease from bacillus subtilis mutant induced by gamma radiation

    International Nuclear Information System (INIS)

    Fourteen bacterial isolates belonging to B.subtilis were locally isolated from soil and screened for alkaline protease production. Only one strain, the highly potent one, was selected as alkaline protease producer and subjected to further studies to optimize its production. Alkaline protease production was maximum at 35 degree C after 72 h of incubation and at ph 10.0. molasses as a carbon source and combination of peptone and yeast extract as a nitrogen source enhanced greatly alkaline protease production. The mutant strain induced by gamma radiation showed higher alkaline protease production by 1.97 fold as compared with the parent strain. The alkaline protease enzyme was active at 40 degree C and ph 10. It was compatible with many commercial detergents and showed high stability (84 %) of its original activity with Ariel detergent. Moreover, alkaline protease enhanced the washing performance, and retained 95 % of its activity in the formulated dry powder.

  12. Discrimination of alkalinity in granitoid Rocks: A potential TIMS application

    Science.gov (United States)

    Ruff, Steven W.

    1995-01-01

    In mineral exploration, the ability to distinguish and map petrochemical variations of magmatic rocks can be a useful reconnaissance tool. Alkalinity is one such petrochemical parameter and is used in the characterization of granitoid rocks. In quartz normative plutonic rocks, alkalinity is related to the composition and abundance of feldspars. Together with quartz abundance, knowledge of feldspar modes allows the classification of these igneous rocks according to the Streckeisen diagram. Alternative classification schemes rely on whole rock geochemistry instead of mineral identifications. The relative ease of obtaining whole rock analyses means that geochemical classifications tend to be favored in exploration geology. But the technique of thermal infrared spectroscopy of rocks yields information on mineralogy and is one that can be applied remotely. The goal of the current work then is to establish whether data from TIMS can be used to distinguish the mineralogical variations that relate to alkalinity. An ideal opportunity to test this thesis arises from the work presented in a paper by Dewitt (1989). This paper contains the results of mapping and analysis of Proterozoic plutonic rocks in north-central Arizona. The map resulting from this work delineates plutons according to alkalinity in an effort to establish a trend or polarity in the regional magmatism. Also contained within this paper are brief descriptions of the mineralogy of half of the region's plutons. This combination of mineralogical and geochemical information was the rationale behind choosing this area as a site for TIMS over flights. A portion of the region centered on the northern Bradshaw Mountains was selected because it contains plutons of all three alkalinity classifications (alkali-calcic, calc-alkalic, and calic) present on DeWitt's map within a relatively small area. The site was flown in August of 1994 and the data received a few days before the writing of this manuscript. Most of this

  13. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  14. Purification and characterization of alkaline proteases from aspergillus terreus

    International Nuclear Information System (INIS)

    Proteases belong to an important class of enzymes known as hydrolases and catalyze hydrolysis of proteins. They act primarily to degrade proteins that are used for energy production and as biosynthetic precursors. In the following study, protease produced from Aspergillus terreus was found to be thermo stable and included in the category of alkaline serine and metallo protease. During partial purification, presence of enzyme in 60% (NH/sub 4/)/sub 2/SO/sub 4/ indicated small molecular weight polypeptide; later purification with Sephadex G-75 fractionation yielded a single proteolytic active molecule. At final purification step, the increase in specific activity of the enzyme was 7.5 fold with 23% yield. SDS-PAGE analysis revealed that alkaline protease of Aspergillus terreus is a monomer with approximate molecular weight of 35 kDa. Optimum pH for protease activity was found in the range of 7.5-11.0 (maximum at pH 8.5), thus apparently classified as an alkaline protease. The enzyme was thermo stable towards high temperature (60 deg. C), however it denatured irreversibly at 70 deg. C showing 80% loss of activity. The maximum proteolytic activity was found at 40 deg. C. The enzyme was effectively inhibited by PMSF, EDTA and urea whereas iodoacetamide and thiourea did not result in any loss in activity while cysteine was found to be activator molecule. The study with metal ions Mg/sup +2/, Mn/sup +2/ and Fe/sup +3/ (1 mM each) showed minute stimulatory effects on enzyme activity. Co/sup +2/ and Ca/sup +2/ (1 mM) had neither excitatory nor inhibitory effect while Hg/sup +2/ and Cu/sup +2/ (1 mM) slightly reduced the enzyme activity. (author)

  15. Growth of microbial mixed cultures under anaerobic, alkaline conditions

    International Nuclear Information System (INIS)

    Cement and concrete are the most important engineered barrier materials in a repository for low- and intermediate-level waste and thus represent the most significant component of the total disposal inventory. Based on the chemical composition of the concrete used in the repository and the groundwater fluxes in the modelled host rock, it is to be expected that the pH in the near vicinity of the repository could exceed a value of 10.5 for more than a million years. The groundwater in the repository environment also has a limited carbon concentration. Since microorganisms will be present in a repository and can even find suitable living conditions within the waste itself, investigations were carried out in order to establish the extent to which microbial activity is possible under the extreme conditions of the repository near-field. For the investigations, alkalophilic cultures were enriched from samples from alkaline habitats and from Valanginian Marl. Anaerobic bacteria with fermentative, sulfate-reducing and methanogenic metabolism were selected. The growth and activity of the mixed cultures were studied under alkaline conditions and the dependence on pH and carbon concentration determined. All the mixed cultures investigated are alkalophilic. The optimum growth range for the cultures is between pH 9.0 and pH 10.0. The activity limit for the fermentative mixed culture is at pH 12, for the sulfate-reducers at pH 11 and for the methanogens at pH 10.5. Given the limited supply of carbon, the mixed cultures can only grow under slightly alkaline conditions. Only the fermentative cultures are capable of surviving with limited carbon supply at pH 13. (author) 24 figs., 18 tabs., 101 refs

  16. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye

    2013-01-01

    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  17. Rapid, Effective DNA Isolation from Osmanthus via Modified Alkaline Lysis.

    Science.gov (United States)

    Alexander, Lisa

    2016-07-01

    Variability of leaf structure and presence of secondary metabolites in mature leaf tissue present a challenge for reliable DNA extraction from Osmanthus species and cultivars. The objective of this study was to develop a universal rapid, effective, and cost-efficient method of DNA isolation for Osmanthus mature leaf tissue. Four different methods were used to isolate DNA from 8 cultivars of Osmanthus. Absorbance spectra, DNA concentration, appearance on agarose gel, and performance in PCR were used to analyze quality, quantity, and integrity of isolated DNA. Methods were ranked in order, based on total quantity, quality, and performance points as the following: 1) solid-phase extraction (SPE), 2) modified alkaline lysis (SDS), 3) cetyltrimethylammonium bromide (CTAB) with chloroform (CHL), and 4) CTAB with phenol/chloroform (PHE). Total DNA, isolated via SPE, showed the least contamination but the lowest mean quantity (9.6 ± 3.4 μg) and highest cost. The highest quantity of DNA was isolated via SDS (117 ± 54.1 μg). SPE and SDS resolved the most individuals on agarose gel, whereas the 2 CTAB methods had poorly resolved gels. All methods except PHE performed well in PCR. Additions to the modified alkaline lysis method increased A260:A230 by up to 59% without affecting yield. With the use of SDS, an average of 1000 μg/g DNA was isolated from fresh leaf tissue of 18 samples in ∼1.5 h at a cost of 0.74 U.S. dollars (USD)/sample. We recommend improved alkaline lysis as a rapid, effective, and cost-efficient method of isolating DNA from Osmanthus species. PMID:26816495

  18. Pyroxenes of the Khibiny alkaline pluton, Kola Peninsula

    Science.gov (United States)

    Yakovenchuk, V. N.; Ivanyuk, G. Yu.; Pakhomovsky, Ya. A.; Men'shikov, Yu. P.; Konopleva, N. G.; Korchak, Yu. A.

    2008-12-01

    Seven pyroxene varieties were identified in nepheline syenites and foidolites of the Khibiny pluton: enstatite, ferrosilite, diopside, hedenbergite, augite, aegirine-augite, and aegirine. Enstatite and augite are typical of alkaline and ultramafic rocks of dike series. Ferrosilite was found in country quartzitic hornfels. Diopside is a rock-forming mineral in alkaline and ultramafic rocks, alkali gabbroids, hornfels in xenoliths of volcanic and sedimentary rocks and foyaite, melteigite-urtite that assimilate them, and certain hydrothermal pegmatite veins. Hedenbergite was noted in hornfels from xenoliths of volcanic and sedimentary rocks and in a hydrothermal pegmatite vein at Mount Eveslogchorr. Aegirine-augite is the predominant pyroxene in all types of nepheline syenites, phonolites and tinguaites, foidolites, alkaline and ultramafic rocks of dike series, fenitized wall rocks surrounding the pluton, and xenoliths of Devonian volcanic and sedimentary rocks. Aegirine is an abundant primary or, more often, secondary mineral in nepheline syenites, foidolites, and hydrothermal pegmatite veins. It occurs as separate crystals, outer zones of diopside and aegirine-augite crystals, and homoaxial pseudomorphs after Na-Ca amphiboles. Microprobe analyses of 265 pyroxenes samples allowed us to distinguish ten principal trends of isomorphic replacement and corresponding typomorphic features of pyroxenes. Compositional variations in clinopyroxenes along the sampled 35-km profile from the margin of the Khibiny pluton to its center confirm the symmetric zoning of the foyaite pluton relative to semicircular faults of the Minor Arc and the Main (Central) Ring marked by Devonian volcanic and sedimentary rocks, foidolites, and related metasomatic rocks (rischorrite, albitite, and aegirinite). Changes in the composition of pyroxenes are explained mainly by the redistribution of elements between coexisting minerals of foyaites in the process of their intense differentiation under the

  19. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    HUI SUN CHOO

    2013-12-01

    Full Text Available Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of alkaline (NaOH, KOH and K2CO3 with various ratios. The effects of various types of alkaline and their impregnation ratio towards adsorption capacity were analysed. In addition, H2S influent concentration and the reaction temperature on H2S adsorption were also investigated. The result indicated that adsorption capacity increases with the amount of activated carbon and decreases with flow rate of gas stream. Alkaline impregnated activated carbons had better performance than unimpregnated activated carbon. Among all impregnated activated carbons, activated carbon impregnated by K2CO3 with ratio 2.0 gave the highest adsorption capacity. Its adsorption capacity was 25 times higher than unimpregnated activated carbon. The result also indicated that the adsorption capacity of impregnated activated carbon decreased with the increment of H2S influent concentration. Optimum temperature for H2S adsorption was found to be 50˚C. In this study, the adsorption of H2S on K2CO3 impregnated activated carbon was fitted to the Langmuir isotherm. The fresh and spent K2CO3 impregnated activated carbon were characterized to study the adsorption process.

  20. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    Science.gov (United States)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform

  1. In vitro alkaline pH resistance of Enterococcus faecalis.

    Science.gov (United States)

    Weckwerth, Paulo Henrique; Zapata, Ronald Ordinola; Vivan, Rodrigo Ricci; Tanomaru Filho, Mário; Maliza, Amanda Garcia Alves; Duarte, Marco Antonio Hungaro

    2013-01-01

    Enterococcus faecalis is a bacterial species often found in root canals with failed endodontic treatment. Alkaline pastes are widely used in Endodontics because of their biocompatibility and antimicrobial activity, but this microorganism can resist alkalinity. The purpose of this study was to evaluate in vitro the alkaline pH resistance of E. faecalis for different periods up to 14 days. Samples were obtained from the oral cavity of 150 patients from the Endodontic clinic. The pH of the experimental tubes (n=84) was first adjusted with 6M NaOH to pH values of 9.5, 10.5, 11.5 and 12.5 (21 tubes per pH). Twenty clinical isolates and the ATCC 29212 strain were tested. The 5 positive controls and experimental tubes of each pH were inoculated with 10 µL of bacterial suspension and incubated at 36 °C for 24, 48 and 72 h, 7 and 14 days. For each period, the turbidity of the medium was visually compared with a 0.5 McFarland standard. The presence of the microorganism was confirmed by seeding on M-Enterococcus agar. Four tubes containing BHI broth adjusted to the tested pHs were incubated for 14 days to verify if pH changes occurred. The pH of inoculated BHI broth was also measured on day 14 to determine if the microorganism acidified the medium. The growth of all E. faecalis strains occurred at pH 9.5 to 11.5 in all periods. Although turbidity was not observed at pH 12.5, there was growth of 13 and 2 strains at 24 and 48 h, respectively, on M-Enterococcus agar. No tube showed growth at pH 12.5 after 72 h. It was concluded that E. faecalis can survive in highly alkaline pH, and some clinical isolates require 72 h at pH 12.5 to be killed. PMID:24474287

  2. A description of alkaline phosphatases from marine organisms

    Science.gov (United States)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2015-12-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO

  4. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2002-04-29

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented

  5. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4.......4. Three enzyme peaks were eluted using low pressure chromatography with a Bio-gel column. With a HPLC gel filtration column the separation of the enamel extract resulted in only one peak with AP activity. The fractions of this peak were used to produce an antibody against bovine AP....

  6. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and an immobilized electrolyte allow for reversible operation as electrolysis cell or fuel...... cell. In the present work we demonstrate the application of hydrophobic, porous, and electro-catalytically active gas diffusion electrodes. PTFE particles and silver nanowires as electro-catalysts were used in the gas diffusion electrodes. Impedance spectroscopy and cyclic voltammetry were performed to...

  7. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into chemical energy in the form of hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and a liquid immobilized electrolyte allow the operation of...... the newly designed electrolysis cell as a fuel cell, but condensation of steam may lead to blocked pores, thereby inhibiting gas diffusion and decreasing the performance of the cell. In the here presented work we present the application of a hydrophobic, porous, and electro-catalytically active layer...

  8. Chromatographic transport of alkaline buffers through reservoir rock

    International Nuclear Information System (INIS)

    Use of relatively low-pH alkaline buffers, such as sodium carbonate or sodium silicate, is explored as a means for overcoming sodium/hydrogen ion-exchange delay in alkaline waterflooding. A local-equilibrium chromatographic model is outlined to describe the concentration velocities for injection of alkaline buffers into a linear porous medium that exhibits reversible sodium/hydrogen exchange. The theory predicts a buffer ion-exchange wave that is substantially faster than that for equivalent-pH sodium hydroxide solutions. New experimental displacement data are presented for NaOH over a pH range from 11 to 13 and for 0.1, 0.5, and 1.0 wt% Na/sub 2/CO/sub 3/ flowing through a 1 wt% NaCl brine saturated Berea sandstone core at 500C [1220F]. To permit a complete description of the system, column effluent concentrations are measured for sodium ions, hydroxide ions, H/sup 3/-tagged water, and /sup 14/C-tagged carbonate. The experiments confirm that Na/sub 2/CO/sub 3/ propagates through the Berea sand at a higher rate than NaOH. For example, at pH=11.4, Na/sub 2/CO/sub 3/ migrates with a velocity that is 3.5 times faster than NaOH. Comparison of experiment with the ion-exchange chromatography theory shows good agreement. The authors successfully model the concentration histories of tritium-labeled water, total carbon, sodium, and hydroxide, all with no adjustable parameters. This work establishes with both theory and experiment that buffered alkali significantly increases the propagation speed of hydroxide in reservoir sands in comparison with unbuffered alkali at equivalent sodium and hydroxide concentrations. Because lower-pH buffered alkali can also protect against rock dissolution loss, the validated reduction of buffer ion-exchange lag considerably improves the promise of the alkaline flooding process for field application

  9. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    KOSINIAK-KAMYSZ K.

    2007-01-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  10. Structural variations in layered alkaline earth metal cyclohexyl phosphonates

    Indian Academy of Sciences (India)

    Ramaswamy Murugavel; Nayanmoni Gogoi

    2009-06-01

    Two series of alkaline earth metal cyclohexyl phosphonates, M(C6H11PO3H)2(H2O) (M = Ca, Sr and Ba) (1–3) and M(C6H11PO3)(H2O) (M = Mg, Ca, Sr, and Ba) (4–7) have been synthesized under mild reaction conditions. All new compounds have been characterized using elemental analysis, IR, TGA and powder X-ray diffraction techniques. The molecular structure of compound 2 determined using single crystal X-ray diffraction technique reveals a layered polymeric structure.

  11. Lyoluminescence of luminol in aqueous alkaline metal hydroxides

    International Nuclear Information System (INIS)

    The lyoluminescence emission spectra of luminol, induced by γ-irradiated NaCl in aqueous alkaline earth metal hydroxides, are recorded. Continuous emission bands are observed in the visible region from 390 to 535 nm. These emission bands on resolution showed two peaks at 430 and 460 nm, respectively in all hydroxides. An additional band of 490 appears in the case of calcium hydroxide. The colour centres released during disintegration of irradiated NaCl crystals in aqueous solution react with luminol to produce various excited molecular species, which are responsible for observed lyoluminescence of luminol. (author) 26 refs.; 7 figs.; 1 tab

  12. Chemical degradation of fluoroelastomer in an alkaline environment

    DEFF Research Database (Denmark)

    Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.;

    2004-01-01

    We have investigated the time-dependent chemical degradation of a fluoroelastomer, FKM (Viton((R)) A), in an alkaline environment (10% NaOH, 80 degreesC). Optical microscopy and SEM analysis reveal that degradation starts with surface roughness right from the earliest stage of exposure (e.g., 1...... week) and finally results in cracks on the surface after prolonged exposure. Initially the extent of degradation is mainly confined to the surface regions (a few nanometers) but with longer exposure (e.g., 12 weeks) it extends to below the subsurface region of the fluoroelastomer. The extent of this...

  13. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products are...

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO(sub X) selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO(sub 3) formed across the SCR system installed on the unit for NO(sub X) control than at removing SO(sub 3) formed in the furnace. The SO(sub 3) removal results were presented in the

  15. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO(sub x) selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO(sub 3) formed across the SCR system installed on the unit for NO(sub x

  16. Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Andreasen, Jens Wenzel;

    2015-01-01

    Poly(perfluorosulfonic acid) (PFSA) is one of a few polymer types that combine excellent alkali resistance with extreme hydrophilicity. It is therefore of interest as a base material in separators for alkaline water electrolyzers. In the pristine form it, however, shows high cation selectivity. To...... increase its ion conductivity in aqueous KOH, a method for the preparation of porous PFSA membranes was developed. It was based on an approach where PFSA was co-cast with poly(vinylpyrrolidone) (PVP) at different ratios to give transparent and colorless blend membranes. The PVP was subsequently dissolved...

  17. A description of alkaline phosphatases from marine organisms

    Science.gov (United States)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2016-07-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  18. In vitro fermentation response to alkaline treated sorghum grain

    OpenAIRE

    FARHAD PARNIAN; AKBAR TAGHIZADEH; HAMID PAY; BABAK BAGHBANZADEH NOBARI

    2014-01-01

    Effects of three alkaline treatments: NaOH, NaHCO3 and wood ash on the crude protein (CP), condensed tannin (CT), neutral detergent fiber (NDF), in vitro gas production kinetics and dry matter (DM) digestibility of sorghum grain were determined. The NaOH (2% w/v), NaHCO3 (2% w/v) and wood ash (5% w/v) treatments were completed by soaking of sorghum grain with treatment solutions in the proportion of 1 L of solution to 1 kg of grain for 12 h. Gas production was measured at 2, 4, 6, 8, 12, 16, ...

  19. Development of a pressurized bipolar alkaline water electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da; Rapelli, Rubia; Pinto, Cristiano da Silva [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada], Email: nevesjr@unicamp.br; Marin Neto, Antonio Jose; Lopes, Daniel Gabriel; Camargo, Joao Carlos; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil); Furlan, Andre Luis [Universidade Estadual de Campinas (DE/FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This paper reports the actual development status of a bipolar alkaline water electrolyzer with maximum production capacity of 1 m3/h of hydrogen and controlled by a PLC (Programmable Logic Controller), which also interfaces the electrolytic system with operators and other equipment, such as gas storage tanks, fuel cells and photovoltaic panels. The project also includes the construction of an electrolysis test bench to record electrical parameters (cathode, anode, separator and electrolyte potentials), the amount of produced gases and gas quality determined by gas chromatography. (author)

  20. Processing of Malaysian xenotime using the alkaline leaching method

    International Nuclear Information System (INIS)

    Apart from being used as a red phosphor in colour television tubes, yttrium is also used as an oxygen detector, optical lenses, advance ceramic materials as well as in the manufacturing of superconductor. Xenotime is a main source of yttrium and is obtained as an industrial by product from tin mining. The present work shows how xenotime is processed by the alkaline leaching method. The results points that the method is comparatively superior than the conventional, namely sulfuric acid leaching. Some of the advantages of the process are purer product, more economics, an environmental friendly by-products and process

  1. A double antibody radioimmunoassay specific for placental alkaline phosphatase

    International Nuclear Information System (INIS)

    Placental alkaline phosphatase (PLAP) is normally found in enzymically measurable amounts in second and third trimester pregnancy serum. Its occurrence in sera and tumours from patients with malignant disease has led to the development of methods to specifically identify and quantitate the enzyme. Recently immunological techniques have been used, employing antibodies raised to purified PLAP; these include solid phase radioimmunoassays and enzyme-immunoassay. The development of a sensitive, specific, automated double-antibody radioimmunoassay for the measurement of PLAP in serum is reported. (Auth.)

  2. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    K. KOSINIAK-KAMYSZ

    2013-12-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  3. Kinetics studies of oxidation of niacinamide by alkaline potassium permanganate

    OpenAIRE

    Sandipsingh Gour; Sayyed Hussain; Mazahar Farooqui

    2012-01-01

    The oxidation of niacinamide in alkaline media is carried out using potassium permanganate as a oxiding agent. The reaction was monitored using UV-Visible spectrophotometer at 525 nm. It was found to be zero order with respect to oxidant,, fractional order with respect to hydrogen ion concentration and first order with respect to substrate. The thermodynamic parameters(were determinied . The average (?G#) was found to be 87.60 KJ/mol. The values ?S# was found to be -0.2132 K...

  4. Hyper production of alkaline protease by mutagenized bacillus subtilis

    International Nuclear Information System (INIS)

    The purpose of this work was to augment the alkaline protease production from Bacillus subtilis by using chemical mutagen (MMS) and UV mutagenesis. A number of mutants were isolated which produce high levels of extra cellular proteases. Analysis of culture supernatants of these mutants had shown that the total amounts of proteolysis activity were increased from 1 to 2 fold over the wild strain. Clones showing promote response were further characterized by analyzing different parameters; like of Temperature, pH substrate concentration and incubation period, to study the activity of protease enzyme. (author)

  5. Mechanistic studies of the alkaline degradation of cellulose in cement

    International Nuclear Information System (INIS)

    The alkaline degradation of cellulose-based materials under conditions simulating those of a deep underground radioactive waste repository has been investigated. A number of key degradation products, of which 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid) is the most important, have been synthesised, and the solubilities of their plutonium complexes have been determined. Analysis of leachates of anaerobically degraded cellulose has shown concentrations of organic acids which are broadly consistent with the enhanced plutonium solubilities found in these leachates. Reaction mechanisms have been identified that can lead to isosaccharinic acid production by non-oxidative transformations, which may be catalysed by some divalent cations. (Author)

  6. Bose-Einstein condensation of alkaline earth atoms: $^{40}${Ca}

    OpenAIRE

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-01-01

    We have achieved Bose-Einstein condensation of $^{40}$Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground state s-wave scattering length of $^{40}$Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about $2 \\cdot 10^4$ atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less ...

  7. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    distinct differences in the distribution of species and growth forms among the lakes. The lakes separated into five groups of characteristic species compositions. Alkalinity was the main factor responsible for the species distribution. Lakes of high alkalinity were dominated by vascular plants......Main distribution patterns of submerged macrophytes in a large number of Danish lakes were determined and relationships to environmental variables evaluated by different multivariate analysis techniques. The lakes varied greatly in location, size, depth, alkalinity and trophic status. There were...... of the elodeid growth form, lakes of intermediate alkalinity contained a variety of elodeids and vascular plants of the isoetid growth form, while lakes of low alkalinity and low pH had several isoetids and bryophytes, but very few elodeids. Alkalinity is a close descriptor of the bicarbonate concentration...

  8. Stability for a novel low-pH alkaline slurry during the copper chemical mechanical planarization

    International Nuclear Information System (INIS)

    The stability of a novel low-pH alkaline slurry (marked as slurry A, pH = 8.5) for copper chemical mechanical planarization was investigated in this paper. First of all, the stability mechanism of the alkaline slurry was studied. Then many parameters have been tested for researching the stability of the slurry through comparing with a traditional alkaline slurry (marked as slurry B, pH = 9.5), such as the pH value, particle size and zeta potential. Apart from this, the stability of the copper removal rate, dishing, erosion and surface roughness were also studied. All the results show that the stability of the novel low-pH alkaline slurry is better than the traditional alkaline slurry. The working-life of the novel low-pH alkaline slurry reaches 48 h. (semiconductor technology)

  9. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    DEFF Research Database (Denmark)

    Faerk, J; Peitersen, Birgit; Petersen, S; Michaelsen, K F

    2002-01-01

    BACKGROUND: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation. OBJECTIVE: To analyse the association between bone mineral content...... and serum alkaline phosphatase and serum phosphate. METHODS: Serum alkaline phosphatase and phosphate were measured at weekly intervals during admission in 108 premature infants of gestational age below 32 weeks (mean (SD) gestational age 29 (2) weeks; mean (SD) birth weight 1129 (279) g). Bone...... alkaline phosphatase (p = 0.8), peak serum alkaline phosphatase (p = 0.5), or mean serum phosphate (p = 0.2) at term. CONCLUSION:Routine measurements of serum alkaline phosphatase and serum phosphate are of no use in predicting bone mineralisation outcome in premature infants....

  10. A constructed alkaline consortium and its dynamics in treating alkaline black liquor with very high pollution load.

    Directory of Open Access Journals (Sweden)

    Chunyu Yang

    Full Text Available BACKGROUND: Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor. FINDINGS: Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs using random amplified polymorphic DNA-PCR profiles (RAPD. Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l(-1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l(-1 (27.3% COD(cr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE and gas chromatography/mass spectrometry (GC/MS analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions. CONCLUSIONS/SIGNIFICANCE: Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor

  11. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes

    International Nuclear Information System (INIS)

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  12. Digestibility Improvement of Sorted Waste with Alkaline Hydrothermai Pretreatment

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; WANG Hongtao; LU Wenjing; ZHAO Yan

    2009-01-01

    The digestibility of sorted municipal solid waste (MSW) is often limited by the high content of structured green waste. The objectives of this study are to investigate the effect of alkaline hydrothermal pretreatment on the anaerobic digestion of sorted waste and to analyze the biogas production of different parts of the waste. The waste was hydrothermally pretreated in a dilute alkali solution. The hydrolysis product was then incubated in a 500 mL saline bottle to determine the biochemical methane potential (BMP) under mesophilic anaerobic conditions. The optimum hydrothermal condition was 170℃ at 4 g NaOH/100 g solid for one hour. The concentration of chemical oxygen demand (COD) was 13 936 mg/L and the methane yield was 164 mL/g volatile solid (VS) for 6 days incubation at the optimum conditions. The biogas production was increased more than 50% over the control, with the methane conversion ratio on a carbon basis enhanced to 30.6%. The organic part of the sorted waste was mainly kitchen garbage and leaves. Model kitchen garbage completely liquified at 130℃ for one hour had a methane yield of 276 mL/g VS. The alkali addition slightly enhanced the hydrolyzation rate and methane yield. The biogas potential of leaves was improved by pre-treatment at above 150℃ under alkaline conditions.

  13. Alkaline earths as main group reagents in molecular catalysis.

    Science.gov (United States)

    Hill, Michael S; Liptrot, David J; Weetman, Catherine

    2016-02-21

    The past decade has witnessed some remarkable advances in our appreciation of the structural and reaction chemistry of the heavier alkaline earth (Ae = Mg, Ca, Sr, Ba) elements. Derived from complexes of these metals in their immutable +2 oxidation state, a broad and widely applicable catalytic chemistry has also emerged, driven by considerations of cost and inherent low toxicity. The considerable adjustments incurred to ionic radius and resultant cation charge density also provide reactivity with significant mechanistic and kinetic variability as group 2 is descended. In an attempt to place these advances in the broader context of contemporary main group element chemistry, this review focusses on the developing state of the art in both multiple bond heterofunctionalisation and cross coupling catalysis. We review specific advances in alkene and alkyne hydroamination and hydrophosphination catalysis and related extensions of this reactivity that allow the synthesis of a wide variety of acyclic and heterocyclic small molecules. The use of heavier alkaline earth hydride derivatives as pre-catalysts and intermediates in multiple bond hydrogenation, hydrosilylation and hydroboration is also described along with the emergence of these and related reagents in a variety of dehydrocoupling processes that allow that facile catalytic construction of Si-C, Si-N and B-N bonds. PMID:26797470

  14. Neutralization potential as an assay of alkalinity of environmental solids

    International Nuclear Information System (INIS)

    The method to determine neutralizing equivalence of agricultural limestone has been applied to quantify the amount of bases present in a broad diversity of mineral materials, solid reagents, and products involved in environmental processes. The capacity to neutralize native or imposed acidity must be known in many processes in order to preserve near-neutral material. The standard method for assaying agricultural limestones was adapted to quantify native alkalinity in calcareous rocks exposed by coal surface mining. Data from these analyses continue to provide the surface mining industry and regulating agencies with a measure of the extent to which acidic mine drainage may be neutralized by the natural components of surrounding rock strata and disturbed materials. This approach to determine base content has also been applied to commercially available industrial byproducts added to soils or wastes. Kiln dust, fly ash, sludge, and other additives have been evaluated routinely to measure their alkalinity contribution and also batch-to-batch uniformity. The application of this technique to monitor amounts of reagents added to neutralize acid waste materials by adding alkalis is discussed. Use of this procedure to evaluate different materials is documented with exemplary data. Results of analyses of a broad variety of rock and soil materials, amended soils, soil additives or amendments, industrial waste byproducts, sludge, and treated wastes are presented. Utility of the procedure for routine quality control in soil treatment, amendment uniformity, and product analysis is discussed

  15. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives

    Directory of Open Access Journals (Sweden)

    Nilesh P. Nirmal

    2014-01-01

    Full Text Available A fungal strain (Conidiobolus brefeldianus MTCC 5184 isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found to be very effective in increasing the stability of FAP, which was found to be concentration dependent. Fivefold increase in residual activity of FAP was observed in the presence of trehalose (50% and sorbitol (50% at 50°C for 4 h, compared to FAP without additive. Other additives like calcium at 20 mM and 10–15% ammonium sulphate showed lower stability improvement than trehalose and sorbitol. NaCl, MgCl2, K2HPO4, and glycine were found to be poor stabilizers and showed only a marginal improvement. PEG 6000 did not show any increase in stability but was found to be slightly inhibitory.

  16. Evaluation of high solids alkaline pretreatment of rice straw.

    Science.gov (United States)

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M; Jenkins, Bryan M; VanderGheynst, Jean S

    2010-11-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H(2)O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H(2)O/g straw by hydrated lime (Ca(OH)(2)). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held constant at 95 degrees C for lime pretreatment and 55 degrees C for NaOH pretreatment. The range of delignification was 13.1% to 27.0% for lime pretreatments and was 8.6% to 23.1% for NaOH pretreatments. Both alkaline loading and reaction time had significant positive effects (p lime-pretreated and unwashed biomass and were 142.3 mg/g dried biomass (39.2% conversion efficiency of total glucose) in NaOH-pretreated and unwashed biomass. PMID:20440580

  17. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    Science.gov (United States)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  18. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

    Science.gov (United States)

    McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F., III; Herkenhoff, K.; Gellert, Ralf; Stockstill, K.R.; Tornabene, L.L.; Squyres, S. W.; Crisp, J.A.; Christensen, P.R.; McCoy, T.J.; Mittlefehldt, D. W.; Schmidt, M.

    2006-01-01

    Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater. Copyright 2006 by the American Geophysical Union.

  19. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report

  20. Kraft lignin behavior during reaction in an alkaline medium

    International Nuclear Information System (INIS)

    The reaction of kraft lignin in an alkaline medium was studied using a microreactor set. Chemical changes in reacted kraft lignins that include ash content, Klason lignin, acid-soluble lignin and sugars were studied. Structural characteristics of these lignins were also determined in terms of phenolic-hydroxyl, aliphatic-hydroxyl, methoxyl, Mw, Mn and polydispersity. The techniques employed were HPLC, UV spectroscopy, FTIR spectroscopy, proton nuclear magnetic resonance spectroscopy and organic gel permeation chromatography (GPC). The effects of temperature and reaction time on lignin properties were studied using response surface methodology. The reaction temperature ranged from 116 to 180 oC and the reaction time ranged from 18 to 103 min. The obtained response surfaces show that both factors affected lignin properties within these ranges. The phenolic and aliphatic-hydroxyl content and the number of active sites increased when the treatment severity was increased. Weight-average molecular weight (Mw), number-average molecular weight (Mn) and solid-yield percentage decreased when the treatment severity was increased. -- Highlights: → We studied the chemical and structural changes of Kraft lignin during its reaction in alkaline medium. → The phenolic and aliphatic hydroxyl content and the number of active sites increased when the treatment severity was increased. → Weight-average MW, number-average MW and solid-yield percentage decreased when the treatment severity was increased.

  1. Electrocatalysis of the HER in acid and alkaline media

    Directory of Open Access Journals (Sweden)

    Danilovic Nemanja

    2013-01-01

    Full Text Available Trends in the HER are studied on selected metals (M= Cu, Ag, Au, Pt, Ru, Ir, Ti in acid and alkaline environments. We found that with the exception of Pt, Ir and Au, due to high coverage by spectator species on non-noble metal catalysts, experimentally established positions of Cu , Ag, Ru and Ti in the observed volcano relations are still uncertain. We also found that while in acidic solutions the M-Hupd binding energy most likely is controlling the activity trends, the trends in activity in alkaline solutions are controlled by a delicate balance between two descriptors: the M-Had interaction as well as the energetics required to dissociate water molecules. The importance of the second descriptor is confirmed by introducing bifunctional catalysts such as M modified by Ni(OH; e.g. while the latter serves to enhance catalytic decomposition of water, the metal sites are required for collecting and recombining the produced hydrogen intermediates.

  2. Potential control flotation of galena in strong alkaline media

    Institute of Scientific and Technical Information of China (English)

    顾帼华; 胡岳华; 邱冠周; 王晖; 王淀佐

    2002-01-01

    The electrochemical oxidation of galena in collectorless and collector flotation systems, particularly in strong alkaline media, was studied. The results show that, with pH value higher than 12.5 and potentials below 0.17 V, the oxidation products of galena are elemental sulfur and HPbO-2. Elemental sulfur was present on the mineral surface in excess of oxidized lead species due to dissolution of HPbO-2, which is beneficial to the flotation of galena. Under the same conditions, sphalerite and pyrite were depressed as a result of significant surface oxidation. Diethyldithiocarbamate (DDTC) was found to be the most suitable collector for galena flotation in strongly alkaline media. The very potential produced hydrophobic PbD2-the surface reaction product of DDTC with galena, is 0 to 0.2 V. Meantime DDTC can depress the surface over-oxidation of galena. Investigations also indicate that, in the range of -0.9 V to 0.6 V, hydrophobic PbD2 can be firmly adsorbed on galena.

  3. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion

    Institute of Scientific and Technical Information of China (English)

    JIN Yiying; LI Huan; MAHAR Rasool Bux; WANG Zhiyu; NIE Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can both be used as pretreatments of waste activated sludge (WAS) for improving the subsequent anaerobic or aerobic digestion. The pretreatment has been carried out using different combination of these two methods in this study. The effect was evaluated based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the following aerobic digestion. For WAS samples with combined pretreatment, the released COD was in high level than those with ultrasonic or alkaline treatment. When combined with the same ultrasonic treatment, NaOH treatment resulted in more solubilization of WAS than Ca(OH)2. For combined NaOH and ultrasonic treatments with different sequences, the released COD were in the order: simultaneous treatment > ultrasonic treatment following NaOH treatment > NaOH treatment following ultrasonic treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7 500 kJ/kg dry solid) were beneficial for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with the optimium parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  4. Synthesis of Zeolites by Alkaline Activation of Fly Ash

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In terms of mineral transformation, and chemical composition of acid-soluble component as a function of reaction time, the effect of alkaline solution on zeolite-like fly ash was studied by employing fly ash and NaOH solution as starting materials. When fly ash and 1€? 0mol/L NaOH solution were processed at 100℃ for 24h with 1:10 W/S rat io in a relatively closed system, powder XRD patterns of resulting pro ducts indicated the formation of various zeolites. Zeolite P crystalli zed early at low alkaline concentration, which was replaced then by ze olites X and A. At high concentration, hydroxy sodalite was the only n ew phase. Quartz, in fly ash and NaOH solution system, gradually disso lved, and mullite, however, remained stable. It was concluded that, wi th Al/Si and Na/Si finally reaching equilibrium in molar ratio, compos ition of starting mixtures affects the crystallization of zeolite from fly ash.

  5. Processes determining the marine alkalinity and carbonate saturation distributions

    Directory of Open Access Journals (Sweden)

    B. R. Carter

    2014-07-01

    Full Text Available We introduce a composite tracer, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* also highlights riverine alkalinity plumes that are due to dissolved calcium carbonate from land. We estimate the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near river mouths. Strong net carbonate precipitation lowers basin mean Indian and Atlantic Alk*, while upwelling of dissolved CaCO3 rich deep waters elevates Northern Pacific and Southern Ocean Alk*. We use the Alk* distribution to estimate the carbonate saturation variability resulting from CaCO3 cycling and other processes. We show regional variations in surface carbonate saturation are due to temperature changes driving CO2 fluxes and, to a lesser extent, freshwater cycling. Calcium carbonate cycling plays a tertiary role. Monitoring the Alk* distribution would allow us to isolate the impact of acidification on biological calcification and remineralization.

  6. Recent advances in Rydberg physics using alkaline-earth atoms

    Science.gov (United States)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  7. ALKALINE PEROXIDE MECHANICAL PULPING OF NOVEL BRAZILIAN EUCALYPTUS HYBRIDS

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho dos Santos Muguet,

    2012-07-01

    Full Text Available Eucalyptus wood is among the most important biomass resource in the world. Wood mechanical defibration and fibrillation are energy-intensive processes utilized not only to produce pulp for papermaking, but also to produce reinforcement fibers for biocomposites, nanocellulose, or pretreat lignocellulosic material for biofuels production. The structural features of different Eucalyptus hybrids affecting the refining energy consumption and produced fiber furnish properties were evaluated. The defibration and fiber development were performed using an alkaline peroxide mechanical pulping (APMP process, which included chelation followed by an alkaline peroxide treatment prior to wood chip defibration. Despite the similar wood densities and chemical compositions of different Eucalyptus hybrids, there was a clear difference in the extent of defibration and fibrillation among the hybrids. The high energy consumption was related to a high amount of guaiacyl lignin. This observation is of major importance when considering the optimal wood hybrids for mechanical wood defibration and for understanding the fundamental phenomena taking place in chemi-mechanical defibration of wood.

  8. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    International Nuclear Information System (INIS)

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO3·2H2O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions

  9. [DNA degradation during standard alkaline of thermal denaturation].

    Science.gov (United States)

    Drozhdeniuk, A P; Sulimova, G E; Vaniushin, B F

    1976-01-01

    Essential degradation 8 DNA (up to 10 per cent) with liberation of acid-soluble fragments takes place on the standard alkaline (0,01 M sodium phosphate, pH 12, 60 degrees, 15 min) or thermal (0.06 M sodium phosphate buffer, pH 6.8, 102 degrees C, 15 min) denaturation. This degradation is more or less selective: fraction of low molecular weight fragments, isolated by hydroxyapatite cromatography and eluted by 0.06 M sodium phosphate buffer, pH 6.8 is rich in adenine and thymine and contains about 2 times less 5-methylcytosine than the total wheat germ DNA. The degree of degradation of DNA on thermal denaturation is higher than on alkaline degradation. Therefore while studying reassociation of various DNA, one and the same standard method of DNA denaturation should be used. Besides, both the level of DNA degradation and the nature of the resulting products (fragments) should be taken into account. PMID:999984

  10. Identification of Listeria monocytogenes Genes Involved in Salt and Alkaline-pH Tolerance

    OpenAIRE

    Gardan, Rozenn; Cossart, Pascale; Labadie, Jean

    2003-01-01

    The capacity of Listeria monocytogenes to tolerate salt and alkaline stresses is of particular importance, as this pathogen is often exposed to such environments during food processing and food preservation. We screened a library of Tn917-lacZ insertional mutants in order to identify genes involved in salt and/or alkaline tolerance. We isolated six mutants sensitive to salt stress and 12 mutants sensitive to salt and alkaline stresses. The position of the insertion of the transposon was locat...

  11. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Directory of Open Access Journals (Sweden)

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  12. Decrease in dynamic viscosity and average molecular weight of alginate from Laminaria digitata during alkaline extraction

    OpenAIRE

    Vauchel, Peggy; Arhaliass, Abdellah; Legrand, Jack; Kaas, Raymond; Baron, Regis

    2008-01-01

    Alginates are natural polysaccharides that are extracted from brown seaweeds and widely used for their rheological properties. The central step in the extraction protocol used in the alginate industry is the alkaline extraction, which requires several hours. In this study, a significant decrease in alginate dynamic viscosity was observed after 2 h of alkaline treatment. Intrinsic viscosity and average molecular weight of alginates from alkaline extractions 1-4 h in duration were determined, i...

  13. Geology and petrology of alkaline Massif from Ilha de Vitoria, Sao Paulo State

    International Nuclear Information System (INIS)

    Geological and petrological studies of the Vitoria Island Alkaline Complex, State of Sao Paulo, have been carried out by means of photo interpretation; field work, thin section studies, whole-rock chemical analysis, x-ray diffractometry, EPMA mineral analysis, and K-Ar and Rb-Sr dating. Radiometric dating indicates a late Cretaceous age for the Vitoria Island Alkaline Complex, which is concordant with the ages of other neighbouring alkaline bodies. (author)

  14. Hydrolysis of pyridoxal-5'-phosphate in plasma in conditions with raised alkaline phosphate.

    OpenAIRE

    Anderson, B B; O'Brien, H.; Griffin, G E; Mollin, D. L.

    1980-01-01

    Hydrolysis of pyridoxal phosphate in plasma was demonstrated in patients with liver disease and other conditions with raised alkaline phosphatase, and this usually closely paralleled the alkaline phosphatase level, whether of liver or bone origin. The endogenous plasma pyridoxal phosphate was inversely related to the alkaline phosphatase, and plasma hydrolysis of pyridoxal phosphate may at least in part be responsible. Very large doses of vitamin B6 may be necessary to compensate for this hyd...

  15. Eco-physiological Characteristics of Alfalfa Seedlings in Response to Various Mixed Salt-alkaline Stresses

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Soil salinization and alkalization frequently co-occur in nature, but little is known about the mixed effects of salt-alkaline stresses on plants. An experiment with mixed salts (NaCl, Na2SO4, NaHCO3 and Na2CO3) and 30 salt-alkaline combinations(salinity 24-120 mmol/L and pH 7.03-10.32) treating Medicago sativa seedlings was conducted. The results demonstrated that salinity and alkalinity significantly affected total biomass and biomass components of seedlings. There were interactive effects of salt composition and concentration on biomass (P ≤ 0.001). The interactions between salinity and alkalinity stresses led to changes in the root activity along the salinity gradient (P ≤ 0.001). The effects of alkalinity on seedling survival rate were more significant than those of salinity, and the seedlings demonstrated some physiological responses(leaf electrolyte leakage rate and proline content) in order to adapt to mixed salt-alkaline stresses. It was concluded that the mixed salt-alkaline stresses, which differ from either salt or alkali stress, emphasize the significant interaction between salt concentration (salinity) and salt component (alkalinity). Further, the effects of the interaction between high alkalinity and salinity are more severe than those of either salt or alkali stress, and such a cooperative interaction results in more sensitive responses of ecological and physiological characteristics in plants.

  16. Potassium salts of fatty acids as precipitating agents of alkaline earth metal ions

    International Nuclear Information System (INIS)

    Regularities have been studied of precipitation of ions of alkaline-earth elements with caprilate, pelargonate, caprinate, undecanate, laurate, tridecanate, myristate, pentadecanate, palmitate, and stearate of potassium. It has been shown that completeness of precipitation of metal ions is determined by the nature of alkaline-earth metal and potassium salt as well as by pH value and temperature of the solution. The study of temperature dependence of soaps of alkaline-earth metals makes it possible to calculate the heats of dissolution of laurates of alkaline-earth metals, and a change in entropy and free energy

  17. Block copolymers for alkaline fuel cell membrane materials

    Science.gov (United States)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  18. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    Science.gov (United States)

    Burtis, C A; Seibert, L E; Baird, M A; Sampson, E J

    1977-09-01

    The absorbance of an alkaline solution of 4-nitrophenyl phosphate is a function of temperature. Quantitative evaluation of this phenomenon indicates that it (a) depends on the concentration of the compound and is independent of source, buffer concentration, and pH above 9.0; (b) is reversible; (c) is not a result of alkaline hydrolysis or 4-nitrophenol contamination; and (d) correlates with a temperature-induced shift of its absorbance spectrum. The phenomenon may represent a potential analytical problem in methods for alkaline phosphatase in which this compound is the substrate. If thermal equilibrium is not reached and maintained during an alkaline phosphatase assay, the thermochromic response will be included in the measured rate. The magnitude of this error depends on the thermal response and control characteristics of each particular instrument and the reaction conditions under which such an analysis is performed. PMID:19164

  19. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk

    Science.gov (United States)

    Chon, Jung-Whan; Kim, Hyunsook; Kim, Kwang-Yup

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  20. Electrochemical processing of alkaline nitrate and nitrite wastes

    International Nuclear Information System (INIS)

    Processing of high-level waste at the Savannah River Plant (SRP) will produce, as a by-product, a low-level, alkaline salt solution containing approximately 17% sodium nitrate and sodium nitrite. This solution will be incorporated into a cement formulation, saltstone, and placed in an engineered landfill. Electrochemical methods have been investigated to decrease the nitrate and nitrite in this solution in order to lower the leaching of nitrate and nitrite from saltstone and to reduce the volume of saltstone. Laboratory experiments have demonstrated the technical feasibility of electrolytically reducing the nitrate and nitrite in a synthetic salt solution similar in composition to that expected to be produced at SRP. Greater than 99% of the sodium nitrate and sodium nitrite can be reduced, producing ammonia, nitrogen, oxygen, and sodium hydroxide. In addition, significant reductions in the volume of saltstone may be realized if the sodium hydroxide produced by electrolysis can be recycled

  1. Stability and selectivity of alkaline proteases in hydrophilic solvents

    DEFF Research Database (Denmark)

    Pedersen, Lars Haastrup; Ritthitham, Sinthuwat; Pleissner, Daniel

    2008-01-01

    substitution. Some of the most abundant hexoses were all substituted at the primary hydroxyl group at the C-6 position in processes catalysed by different alkaline proteases [3,4,5]. However by adding DMSO to the reaction medium the regio-selectivity in a Streptomyces sp protease catalysed reaction was shifted...... was 10 minutes. The activity was effected by the solvation of the enzyme in both DMSO and DMF [11]. Literature   [1]           H. Ogino, H. Ishikawa, J. Biosci. Bioeng. 2001, 91, 109. [2]           K. Watanabe, S. Ueji, Biotechnol. Lett. 2000, 22, 599. {3]           M. Kitagawa, H. Fan, T. Raku, S...

  2. Apparent Dissolution Kinetics of Diatomite in Alkaline Solution

    Institute of Scientific and Technical Information of China (English)

    DU Gaoxiang; L(U) Guocheng; HE Xuwen

    2013-01-01

    The dissolution kinetics of diatomite in alkaline solution is the theoretical basis for the process optimization of alkali-diatomite reaction and its applications.In this study,the dissolution kinetics of diatomite in NaOH solution is investigated.The results indicate that the dissolution reaction fits well the unreacted shrinking core model for solid-liquid heterogeneous reactions.The apparent reaction order for NaOH is 2 and the apparent activation energy for the reaction (Ea) is 28.06 kJ.mol-1.The intra-particle diffusion through the sodium silicate layer is the rate-controlling step.When the dissolution reaction occurs at the interface of unreacted diatomite solid core,the diffusion in the trans-layer (the liquid film around the wetted particle) reduces the rate of whole dissolution process.

  3. Purification and Characterization of An Alkaline Protease from Acetes chinensis

    Institute of Scientific and Technical Information of China (English)

    XU Jiachao; LIU Xin; LI Zhaojie; XU Jie; XUE Changhu; GAO Xin

    2005-01-01

    An alkaline protease from Acetes chinensis was purified and characterized in this study. The steps of purification include ammonium sulfate precipitation, ion-exchange chromatography with Q-sepharose Fast Flow, gel filtration chromatography with S300 and the second ion-exchange chromatography with Q-sepharose Fast Flow. The protease was isolated and purified, which was present and active on protein substrates (azocasein and casein). The specific protease activity was 17.15folds and the recovery was 4.67. The molecular weight of the protease was estimated at 23.2 kD by SDS-PAGE. With azocasein as the susbstrate, the optimal temperature was 55 ℃ and the optimal pH value was 5.5. Ion Ca2+ could enhance the proteolytic activity of the protease, while Cu2+ , EDTA and PMSF could inhibit its activity.

  4. Alkaline dissolution behavior of montmorillonite under compacted condition

    International Nuclear Information System (INIS)

    The dissolution rate for montmorillonite under compacted condition was studied in order to evaluate long-term alteration behavior of bentonite buffer materials by highly alkaline groundwater. The dissolution rate of compacted montmorillonite was found to be larger than that of montmorillonite in compacted sand-bentonite mixtures at 130°C, which revealed that the dissolution of montmorillonite was inhibited by decreasing the activity of hydroxide ions (aOH-) in the compacted mixtures including accessory minerals such as silica. In order to provide reliability for the analysis of bentonite alteration using dissolution rate of montmorillonite, it is important to quantify the decrease of aOH- in the compacted mixtures and to formulate the dissolution rate of compacted montmorillonite. (author)

  5. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. PMID:26530809

  6. Phisicochemistry of alkaline-earth metals oxides surface

    Science.gov (United States)

    Ekimova, Irina; Minakova, Tamara; Ogneva, Tatyana

    2016-01-01

    The surface state of alkaline-earth metals and magnesium oxides obtained by means of commercial and laboratory ways has been studied in this paper. A complex of methods has been used for identification, determination of a phase composition and morphology of the samples. The high basic character of surface centres has been shown with the help of pH-metry and adsorption of indicators methods. Acid-basic parameters (pHt, pHiis, etc.) can be used for the estimation of a general acid-basic state of metal oxides samples surface and for the supposition about different nature and strength of acid-basic centres as well as for the initial control in the process of acid basic properties of solid oxides surface properties evaluation.

  7. Tune-out wavelengths for the alkaline earth atoms

    CERN Document Server

    Cheng, Yongjun; Mitroy, Jim

    2013-01-01

    The lowest 3 tune-out wavelengths of the four alkaline-earth atoms, Be, Mg, Ca and Sr are determined from tabulations of matrix elements produced from large first principles calculations. The tune-out wavelengths are located near the wavelengths for $^3P^o_1$ and $^1P^o_1$ excitations. The measurement of the tune-out wavelengths could be used to establish a quantitative relationship between the oscillator strength of the transition leading to existence of the tune-out wavelength and the dynamic polarizability of the atom at the tune-out frequency. The longest tune-out wavelengths for Be, Mg, Ca, Sr, Ba and Yb are 454.9813 nm, 457.2372 nm, 657.446 nm, 689.200 nm, 788.875 nm and 553.00 nm respectively.

  8. Alkaline regenerative fuel cell systems for energy storage

    Science.gov (United States)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  9. Corrosion of silicon nitride in high temperature alkaline solutions

    Science.gov (United States)

    Qiu, Liyan; Guzonas, Dave A.; Qian, Jing

    2016-08-01

    The corrosion of silicon nitride (Si3N4) in alkaline solutions was studied at temperatures from 60 to 300 °C. Si3N4 experienced significant corrosion above 100 °C. The release rates of silicon and nitrogen follow zero order reaction kinetics and increase with increasing temperature. The molar ratio of dissolved silicon and nitrogen species in the high temperature solutions is the same as that in the solid phase (congruent dissolution). The activation energy for silicon and nitrogen release rates is 75 kJ/mol which agrees well with that of silica dissolution. At 300 °C, the release of aluminum is observed and follows first order reaction kinetics while other minor constituents including Ti and Y are highly enriched on the corrosion films due to the low solubility of their oxides.

  10. The alkaline zinc electrode as a mixed potential system

    Science.gov (United States)

    Fielder, W. L.

    1979-01-01

    Cathodic and anodic processes for the alkaline zinc electrode in 0.01 molar zincate electrolyte (9 molar hydroxide) were investigated. Cyclic voltammograms and current-voltage curves were obtained by supplying pulses through a potentiostat to a zinc rotating disk electrode. The data are interpreted by treating the system as one with a mixed potential; the processes are termed The zincate and corrosion reactions. The relative proportions of the two processes vary with the supplied potential. For the cathodic region, the cathodic corrosion process predominates at higher potentials while both processes occur simultaneously at a lower potential (i.e., 50 mV). For the anodic region, the anodic zincate process predominates at higher potentials while the anodic corrosion process is dominant at lower potential (i.e., 50 mV) if H2 is present.

  11. Surfactant and adhesive formulations from alkaline biomass extracts

    Science.gov (United States)

    Baxter, Matthew

    This work studies the ability to produce effective surfactant and adhesive formulations using surface active biological material extracted from different biomass sources using alkaline extraction methods. Two urban waste biomass sources were used to produce surfactants, Return Activated Sludge (RAS), and solid Urban Refuse (UR). The third biomass source investigated was isolated mustard protein (MP). RAS and MP extracts were investigated for adhesive production. The results indicate that extracts from the waste biomass sources, RAS and UR, can be combined with a commercial surfactant, sodium dioctyl sulfosuccinate (AOT), to produce surfactants with low interfacial tensions against various oils. These highly surface-active formulations were shown to be useful in the removal of bitumen from contaminated sand. RAS and MP showed potential as protein-based wood adhesives. These sources were used in adhesive formulations to produce a strong bond strength under low-pressure, ambient pressing conditions.

  12. Electrolytic denitrification of alkaline nitrate and nitrite solution

    International Nuclear Information System (INIS)

    Processing of high-level waste at the Savannah River Plant (SRP) will produce a low-level alkaline salt solution, containing approximately 17% sodium nitrate and sodium nitrite. This solution will be incorporated into a cement wasteform, saltstone, and placed in an engineered landfill. Laboratory experiments have demonstrated the technical feasibility of electrochemically reducing the nitrate and nitrite in a synthetic, nonradioactive salt solution similar in composition to that expected to be produced at SRP. Greater than ninety-five percent of the sodium nitrate and sodium nitrite can be reduced electrolytically, producing ammonia, nitrogen, oxygen, and sodium hydroxide. Reduction of the nitrate and nitrite will reduce the leaching of nitrate and nitrite from the saltstone monolith. In addition, significant reductions in the volume of saltstone may be realized if the sodium hydroxide produced by electrolysis can be recycled

  13. Electrochemical processing of alkaline nitrate and nitrite solutions

    International Nuclear Information System (INIS)

    Processing of high-level waste at the Savannah River Plant (SRP) will produce, as a by product, a low- level, alkaline salt solution containing approximately 17% sodium nitrate and sodium nitrite. This solution will be incorporated into a cement formulation, saltstone, and placed in an engineered landfill. Electrochemical methods have been investigated to decrease the nitrate and nitrite in this solution in order to lower the leaching of nitrate and nitrite from saltstone and to reduce the volume of saltstone. Laboratory experiments have demonstrated the technical feasibility of electrolytically reducing the nitrate and nitrite in a synthetic salt solution similar in composition to that expected to be produced at SRP. Greater than 99% of the sodium nitrate and sodium nitrite can be reduced, producing ammonia, nitrogen, oxygen, and sodium hydroxide. In addition, significant reductions in the volume of saltstone may be realized if the sodium hydroxide produced by electrolysis can be recycled

  14. Composite corrosion inhibitors for secondary alkaline zinc anodes

    Institute of Scientific and Technical Information of China (English)

    JIA Zheng; ZHOU De-rui; ZHANG Cui-fen

    2005-01-01

    The corrosion inhibition property of PEG600 and In(OH)3 as composite corrosion inhibitors for secondary alkaline zinc electrodes was studied,and the inhibition efficiency was determined as 81.9%.The research focused on the mechanism by the methods of electrochemical impedance spectroscopy,polarization curves and IR spectroscopy.The results indicate that the corrosion inhibition effectiveness is attributed to the joint inhibition of anodic zinc dissolution and cathodic hydrogen evolution.And the anodic process is depressed to a greater extent than the cathodic process.The synergistic mechanism of the composite inhinbitors proves to be the enhancement of adsorption of PEG600 by In(OH)3.Potentiostatic experiment results and SEM images verify the inhibition of dendritic growth by the composite inhibitors.

  15. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily.

    Science.gov (United States)

    Pabis, Anna; Kamerlin, Shina Caroline Lynn

    2016-04-01

    Catalytic promiscuity, that is, the ability of single enzymes to facilitate the turnover of multiple, chemically distinct substrates, is a widespread phenomenon that plays an important role in the evolution of enzyme function. Additionally, such pre-existing multifunctionality can be harnessed in artificial enzyme design. The members of the alkaline phosphatase superfamily have served extensively as both experimental and computational model systems for enhancing our understanding of catalytic promiscuity. In this Opinion, we present key recent computational studies into the catalytic activity of these highly promiscuous enzymes, highlighting the valuable insight they have provided into both the molecular basis for catalytic promiscuity in general, and its implications for the evolution of phosphatase activity. PMID:26716576

  16. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  17. The influence of complexing pharmaceutical compositions on alkaline phosphatase

    Science.gov (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.

    2011-06-01

    It is established that the pharmaceutical compositions xydiphon, medifon, succimer, and EDTA, which are used as complexing agents for accelerating the excretion of heavy metals from human organism, at certain concentrations inhibit enzyme alkaline phosphatase (AP). It is concluded that xydiphon and EDTA have a noticeable effect on AP activity at concentrations over 0.01 mM; medifon and succimer, at concentrations of over 0.3-0.5 mM. The enzyme's inhibition constants and type of inhibition are determined. Xydiphon is found to manifest the highest affinity to AP ( K I = 0.35 mM). It is shown by kinetic analysis that dissociative chemoinactivation of the enzyme takes place under the action of complexing agents. The corresponding kinetic parameters are calculated.

  18. Chrono-amperometric studies in melt alkaline nitrates and chlorides

    International Nuclear Information System (INIS)

    This research thesis proposes a large overview of the electrochemical behaviour of a number of metals and alloys in melt alkaline chlorides and nitrates at various temperatures. These salts are generally pure but, in some experiments, contain humidity or gases. The author addresses and discusses all the reactions which may occur at the electrode between the salt decomposition potentials. After having recalled and commented some definitions and fundamental principles of thermodynamics and electrochemical kinetics, presented the methods (polarization curves, measurements and additional analysis), the experimental apparatus and the reference electrodes in melt salts, the author reports the results obtained with the studied melt salts, and proposes an interpretation of Log i/U curves

  19. Kinetics studies of oxidation of niacinamide by alkaline potassium permanganate

    Directory of Open Access Journals (Sweden)

    Sandipsingh Gour

    2012-04-01

    Full Text Available The oxidation of niacinamide in alkaline media is carried out using potassium permanganate as a oxiding agent. The reaction was monitored using UV-Visible spectrophotometer at 525 nm. It was found to be zero order with respect to oxidant,, fractional order with respect to hydrogen ion concentration and first order with respect to substrate. The thermodynamic parameters(were determinied . The average (?G# was found to be 87.60 KJ/mol. The values ?S# was found to be -0.2132 KJ/mole and energy of activation was found to be 23.95 KJ/mole. A suitable mechanism is proposed based on the experimental conditions.

  20. Search of microorganisms that degrade PAHs under alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, A.; Gemende, B. [Westsaechsische Hochschule Zwickau, Fachbereich Physikalische Technik/Informatik, D-08012 Zwickau (Germany); Krausse, S. [Hochschule Mittweida, Umwelttechnik/Wasser- und Abwassertechnik, Technikumplatz 17, D-09648 Mittweida (Germany); Mueller, R.H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Umweltmikrobiologie, Permoserstrasse 15, D-04318 Leipzig (Germany)

    2004-08-01

    Bacterial strains were enriched from building rubble contaminated with polycyclic aromatic hydrocarbons (PAHs). These strains were studied as an inoculum in bioremediation processes with contaminated building rubble. The selection criteria for the bacteria were broad profiles in PAH degradation, stable expression of the traits and tolerance to alkaline conditions. Various strains of Micrococcus sp., Dietzia sp., Rhodococcus sp. and Pseudomonas sp. met the selection criteria. In general, degradative activity was limited at higher pH values. Strains of Micrococcus were suitable for practical use as complete degradation of various PAHs was observed at pH values exceeding 10. Strains of Dietzia sp. showed broad PAH degradation profile, but in some cases degradation came to a halt leaving some of the PAHs unutilized. With Dietzia sp. this could be due to inhibitory effects from the accumulation of toxic PAH metabolic products and/or growth-limiting media conditions. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  1. Deep optical trap for cold alkaline-Earth atoms.

    Science.gov (United States)

    Cruz, Luciano S; Sereno, Milena; Cruz, Flavio C

    2008-03-01

    We describe a setup for a deep optical dipole trap or lattice designed for holding atoms at temperatures of a few mK, such as alkaline-Earth atoms which have undergone only regular Doppler cooling. We use an external optical cavity to amplify 3.2 W from a commercial single-frequency laser at 532 nm to 523 W. Powers of a few kW, attainable with low-loss optics or higher input powers, allow larger trap volumes for improved atom transfer from magneto-optical traps. We analyze possibilities for cooling inside the deep trap, the induced Stark shifts for calcium, and a cancellation scheme for the intercombination clock transition using an auxiliary laser. PMID:18542375

  2. Reinforcement corrosion in alkaline chloride media with reduced oxygen concentrations

    International Nuclear Information System (INIS)

    It is commonly considered that the corrosion of steel in concrete is controlled by the oxygen content of the pore solution and there are service life models that relate the corrosion rate to the amount of oxygen. It is also commonly believed that in water saturated conditions the oxygen content in the pores is negligible and that underwater there is no risk of depassivation and the corrosion rate is very low. However, the available data on corrosion rates in immersed conditions do not indicate such performance; on the contrary corrosion develops when sufficient chloride reaches the reinforcement. In the present paper, results are presented for tests performed in alkaline chloride solutions that were purged with nitrogen to reduce the oxygen content. The results indicate that at very low oxygen concentrations, corrosion may develop in the presence of chlorides. The presence or absence of corrosion is influenced by the amount of chloride, the corrosion potential and the steel surface condition. (authors)

  3. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China

    Science.gov (United States)

    Zhu, Yu-Sheng; Yang, Jin-Hui; Sun, Jin-Feng; Zhang, Ji-Heng; Wu, Fu-Yuan

    2016-03-01

    A combined study of zircon U-Pb ages, mineral chemistry, whole-rock elements and Sr-Nd-Hf isotopes was carried out for the Saima alkaline complex in the northeastern China, in order to investigate the source and petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks. The Saima alkaline complex consists of nepheline syenites, quartz-bearing syenites and alkaline volcanic rocks (i.e., phonolite and trachyte), with minor mafic dikes and carbonatitic veins. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS) zircon U-Pb dating gives consistent ages of 230-224 Ma for these rocks, suggesting that they are coeval. All alkaline rocks in the Saima complex are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs) with significant negative Nb, Ta and Ti anomalies. Geochemical data and Sr-Nd-Hf isotopic compositions indicate that the various alkaline rocks were all derived from partial melting of an ancient, re-enriched lithospheric mantle in the garnet stability field, but experienced variable siliceous- or carbonate-rich crustal contamination. Based on petrographic evidence, mineral compositions, and whole-rock geochemical data, two distinct magmatic evolutionary trends are proposed to explain the coeval emplacement of the various rock types within the Saima alkaline complex. The silica-undersaturated rocks (nepheline syenites and phonolites) result from alkali feldspar + apatite + titanite crystal fractionation of an alkaline mafic parental melt combined with assimilation of marine carbonate host rocks. In contrast, the generation of silica-saturated rocks (quartz-bearing syenites and trachytes) may be attributed to subsequent and continued clinopyroxene + apatite + biotite crystal fractionation coupled with assimilation of siliceous sediments.

  4. Improved double immunohistochemical staining method for cryostat and paraffin wax sections, combining alkaline phosphatase anti-alkaline phosphatase and indirect immunofluorescence

    OpenAIRE

    Tao, Q.; Srivastava, G; Loke, S L; Chan, E. Y.; Ho, F C

    1994-01-01

    Aims - To develop an immunohistochemical staining method for cryostat and paraffin wax sections so that two different antigens in the same section of tissues could be detected by combining immunoenzyme and immunofluorescence techniques. Methods - This double immunohistochemical staining method combines alkaline phosphatase-anti-alkaline phosphatase (APAAP) using New Fuchsin as a chromogen and indirect immunofluorescence. Results - APAAP staining for one antigen of this double immunohistochemi...

  5. Detection of protein adduction derived from dauricine by alkaline permethylation.

    Science.gov (United States)

    Xie, Honglei; Liu, Yuyang; Peng, Ying; Zhao, Dongmei; Zheng, Jiang

    2016-06-01

    Dauricine is a bisbenzylisoquinoline alkaloid derivative and has shown multiple pharmacological properties. Despite this, our previous study demonstrated that dauricine induced severe lung toxicity in experimental animals. Metabolic activation of dauricine to the corresponding quinone methide intermediate is suggested to play an important role in dauricine-induced cytotoxicity. Protein adduction derived from the reactive intermediate is considered to initiate the process of the toxicity. In the present study, we developed an alkaline permethylation- and mass spectrometry-based approach to detect dauricine-derived protein adduction. Protein samples were permethylated in the presence of NaOH and CH3I at 80 °C, followed by LC-MS/MS analysis. A thioether product was produced in the reaction. Not only does this technique quantify dauricine-derived protein adduction but also it tells the nature of the interaction between the target proteins and the reactive intermediate of dauricine. The recovery, precision, limit of detection, limit of quantity, and method detection limit were found to be 102.8 %±1.7 %, 1.89 %, 1.32 fmol/mL, 4.93 fmol/mL and 3.37 fmol/mL respectively. The surrogate recovery and surrogate RSD values were 81.5-103.0 % and 2.59 %, respectively. This analytical method has proven sensitive, selective, reliable, and feasible to assess total protein adduction derived from dauricine, and will facilitate the mechanistic investigation of dauricine and other bisbenzylisoquinoline toxicities. Graphical Abstract Alkaline permethylation of dauricine derived protein adduct. PMID:27071763

  6. Alkaline and high-temperature electrolysis for nuclear hydrogen production

    International Nuclear Information System (INIS)

    In anticipation to energy world evolution in the coming decades, we will discuss the role that hydrogen can play in the future energy systems. Facing strong energy demand growth in the transport field, expected oil production limitation and climate change constraints, the oil industry has to raise difficult challenges requiring short-term actions. Hydrogen being a key molecule for this industry, we will show how nuclear produced hydrogen can contribute to resolve some of the oil industry challenges, within a compatible time frame with the inertia of climate mechanisms. Technical solutions to produce hydrogen using nuclear energy and electrolysis will then be described. We will describe the relevant characteristics of alkaline electrolyser technology. Using results of nuclear-aided petrochemical processes technico-economic studies, we will show that synthetic fuels are accessible at reasonable costs. We will also discuss the limitations of these technological solutions and describe which improvements and evolutions can be expected and looked for, as regards both the nuclear industry and electrolyser technologies. For the latter, we will discuss both alkaline and high-temperature electrolysis. The evolutions to be looked for should minimise development efforts, therefore we will argue why advanced thermal integration should be studied in order to avoid too-stringent requirements on both the nuclear reactor and the electrolyser. Remaining challenges will be discussed. As a result, our paper will show how and why the nuclear industry, and specifically AREVA, will be able with relatively limited developments to massively de-carbonise transportation from well to wheel, through a variety of applications. (authors)

  7. The Alto Paraguay Alkaline Province: petrographic, geochemical and geochronological characteristics

    International Nuclear Information System (INIS)

    The Alto Paraguay Province is located at the border of the State of Mato Grosso do Sul and Paraguay, between the coordinates 21 deg 10'to 23 deg 25'of Southern latitude and 57 deg 10' to 58 deg 00', having the city of Porto Murtinho as the main reference point. The geotectonic domain of the area is governed by the precambric units of the Southern extreme of the Amazonic craton which developed a long and accentuated activity, giving rise to folds and important faults, that in several cases seem to have exerted an effective control of the magmatic manifestations. Radiometric data indicate that the emplacement of the syenitic bodies took place in the Permo-Triassic period, with a major incidence in the interval 260-240 Ma, representing thus, an important phase of alkaline magmatic affinity associated to the Parana Basin which is believed is to be unique, since the other known areas (Central, Amambay and Rio Apa Provinces, Paraguay, Velasco Province, Bolivia) are considerably younger (140-120 Ma). Syenitic rocks from the Alto Paraguay Province show wide variation in the ratio 87 Sr/86 Sr (0.703361 - 0.707734). Excluding the Cerro Boggiani rocks (0.703837-0.707734), values for the nepheline syenites (0.703361-0.703672) general lower than those of the other syenites types. Alkaline syenites cover the interval 0.703510- 0.703872, while quartz syenites and syenogranites are 0.704562 and 0.707076, respectively. geologic evidence, in addition to petrographic, geochemical and isotopic (Sr) data, suggest that the syenitic rocks have been derived from an unique mantelic parental liquid, by fractional crystallization and assimilation processes, which are assumed to be occurred during the emplacement of the magma in the crust. (author)

  8. Eruption of Alkaline Basalts Prior to the Calc-alkaline Lavas of Mt. Cleveland Volcano, Aleutian Arc, Alaska

    Science.gov (United States)

    Bridges, D. L.; Nicolaysen, K. P.

    2005-12-01

    Mt. Cleveland is a 1,730 m stratovolcano, located on Chuginadak Island, that has erupted at least 23 times historically, with the latest occurring in August 2005. Major, trace, and REE analyses of 63 samples from Mt. Cleveland, including 8 from proximal cinder cones and 4 from andesitic domes on the lower flanks, identify two distinct lava suites. Modern Cleveland (MC) basalts to dacites (50.5-66.7 wt.% SiO2) exhibit a calc-alkaline differentiation trend. Major element trends suggest crystal fractionation of plagioclase +/- ortho- and clinopyroxene in MC lavas and olivine in cinder cone deposits. Resorption textures on plagioclase and olivine phenocrysts and multiple populations of plagioclase predominate throughout the MC suite suggesting magma mixing is a major process at Cleveland. Frothy white xenoliths of plagioclase + quartz + biotite are encased in glass and erupted as small pumiceous fragments in 2001. The partial resorption of the xenocrysts indicates assimilation is also an active crustal process at Cleveland. MC trace element spider diagrams exhibit a typical arc pattern in which HFS elements including Nb are depleted, and Pb and LIL elements are enriched. Th/La, Sm/La, and Sr, Nd, Pb, and Hf isotopic ratios indicate both a North Pacific MORB and a sediment component in the source of modern Cleveland lavas, consistent with sediment flux estimates of 90 to 95 m3/m/yr and an updip sediment thickness of 1300 to 1400 meters. Average 206Pb/204Pb, 207Pb/204Pb, 87Sr/86Sr, and 143Nd/144Nd values for the calc-alkaline suite are 18.93, 15.58, 0.70345, and 0.51303 respectively. The second suite consists of 3 olivine-rich, mildly alkaline basalts (48.5-49.4 wt.% SiO2), of older stratigraphic position than MC lavas representing deposits from an older phase of activity (ancestral Cleveland, AC). La/Yb, Sr/Y, and Th/Nb ratios indicate lower degrees of partial melting, relative to MC lavas, and suggests presence of garnet in the source region. The AC lavas, however, are

  9. Survival and stress responses of E. coli exposed to alkaline cleaners

    Science.gov (United States)

    Studies were undertaken to evaluate the effects of alkaline cleaners commonly used in food processing environments on survival and stress responses of the foodborne pathogen Escherichia coli O157:H7. Alkaline cleaners containing either sodium hydroxide or potassium hydroxide and hypochlorite had gre...

  10. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  11. Study on Soil Improvement Measure of Plant Landscape Construction in Saline and Alkaline Area in Tianjin

    Institute of Scientific and Technical Information of China (English)

    GENG Meiyun; CHEN Yajun; HU Haihui; YU Lei

    2006-01-01

    A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the soil, and also we got some useful advices and suggestions for plants cultivating in Tianjin saline and alkaline areas.

  12. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  13. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. 2

    International Nuclear Information System (INIS)

    Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Several experimental studies have been carried out in this study in order to assess quantitatively water conductivity of bentonite which is altered by hyper alkaline and nitrate. Modeling for previous results is carried out and several requirements to be defined are proposed. The conclusion of this study is summarized as below. Secondary minerals of bentonite alteration due to hyper alkaline with nitrate: 1) CSH and CAH were observed corresponding to solving montmorillonite in AWN solution. 2) Na2O Al2O3 1.68SiO2 generated from 90 days in batch experiment and it was observed in 360 days. Assessment of swelling and water conductivity changing by hyper alkaline with nitrate: 1) Little changing of water conductivity of bentonite was observed by saturated Ca(OH)2 solution and hyper alkaline solution. The conductivity significantly increased by penetrating sodium nitrate solution. 2) Water conductivity of ion exchanged bentonite by hyper alkaline solution significantly increased. It increased more by penetrating AWN solution. Modeling of tuff alteration by hyper alkaline solution: 1) Flow through test is proposed since soluble velocity to hyper alkaline solution should be defined. (author)

  14. Conversion of ethanol to propylene over HZSM-5 type zeolites containing alkaline earth metals

    OpenAIRE

    Goto, Daisuke; Harada, Yasumitsu; Furumoto, Yoshiyasu; Takahashi, Atsushi; Fujitani, Tadahiro; Oumi, Yasunori; Sadakane, Masahiro; Sano, Tsuneji

    2010-01-01

    Protonated ZSM-5 type zeolites containing alkaline earth metals (M-HZSM-5, M: alkaline earth metal) were prepared under various synthesis conditions and their catalytic performance in conversion of ethanol to light olefins was investigated in detail. Among M-HZSM-5, Sr-HZSM-5 exhibited an excellent performance.

  15. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    Science.gov (United States)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  16. Isolation, identification and optimization of alkaline protease production by Candida viswanathii

    Directory of Open Access Journals (Sweden)

    Mandana Lotfi

    2014-03-01

    Conclusion: Due to the high demand for industrial enzymes in the Country and the high activity of alkaline proteases produced by strain. It seems that the native strain can achieve high production of alkaline proteases.These native strains could be resulted in the independence of our country in industrial enzymes production.

  17. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    Science.gov (United States)

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. PMID:26855359

  18. Bactericidal and virucidal mechanisms in the alkaline disinfection of compost using calcium lime and ash.

    Science.gov (United States)

    Hijikata, Nowaki; Tezuka, Rui; Kazama, Shinobu; Otaki, Masahiro; Ushijima, Ken; Ito, Ryusei; Okabe, Satoshi; Sano, Daisuke; Funamizu, Naoyuki

    2016-10-01

    In the present study, the bactericidal and virucidal mechanisms in the alkaline disinfection of compost with calcium lime and ash were investigated. Two indicator microorganisms, Escherichia coli and MS2 coliphage, were used as surrogates for enteric pathogens. The alkaline-treated compost with calcium oxide (CaO) or ash resulted primarily in damage to the outer membrane and enzyme activities of E. coli. The alkaline treatment of compost also led to the infectivity loss of the coliphage because of the partial capsid damage and RNA exteriorization due to a raised pH, which is proportional to the amount of alkaline agents added. These results indicate that the alkaline treatment of compost using calcium oxide and ash is effective and can contribute to the safe usage of compost from a mixing type dry toilet. PMID:27562698

  19. A precise study on effects that trigger alkaline hemicellulose extraction efficiency.

    Science.gov (United States)

    Hutterer, Christian; Schild, Gabriele; Potthast, Antje

    2016-08-01

    The conversion of paper-grade pulps into dissolving pulps requires efficient strategies and process steps to remove low-molecular noncellulosic macromolecules generally known as hemicelluloses. Current strategies include alkaline extractions and enzymatic treatments. This study focused on the evaluation of extraction efficiencies in alkaline extractions of three economically interesting hardwood species: beech (Fagus sylvatica), birch (Betula papyrifera), and eucalyptus (Eucalyptus globulus). Substrate pulps were subjected to alkaline treatments at different temperatures and alkalinities using white liquor as the alkali source, followed by analyses of both pulps and hemicellulose-containing extraction lyes. The extracted hardwood xylans have strong potential as an ingredient in the food and pharmaceutical industries. Subsequent analyses revealed strong dependencies of the extraction efficiencies and molar mass distributions of hemicelluloses on the process variables of temperature and effective alkalinity. The hemicellulose content of the initial pulps, the hardwood species, and the type of applied base played minor roles. PMID:27163434

  20. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  1. Pb/Pb single-zircon dating of Paleoproterozoic calc-alkaline/alkaline magmatism in the southeastern Sao Francisco Craton region, Brazil

    International Nuclear Information System (INIS)

    Two chemically and petrographically distinct intrusive bodies (a calc-alkaline trondhjemite and an alkaline quartz-syenite cut by granitic aplites) occur in the vicinity of Piranga (Minas Gerais State), near the southeastern border of the Sao Francisco craton, Brazil. They intrude the Rio das Velhas greenstone belt and the Mantiqueira complex, both of Archean age. Both intrusive bodies are variably deformed and mylonitized. Age determinations using the Pb/Pb single-zircon evaporation method yielded paleoproterozoic ages for the emplacement/crystallization of the trondhjemite (2058 ± 10 Ma, quartz-syenite (2036 ±4 Ma), as well as the younger aplites (2012 ± 8 Ma). These ages allow us to interpret the calc-alkaline as well as alkaline magmatism as manifestations of the Transamazonian event in the southeastern Sao Francisco craton region. Furthermore, the calc-alkaline trondhjemite is interpreted to have intrude during compressional deformation, while the alkaline quartz-syenite and its aplitic differentiates are post-orogenic, possibly extension-related In terms of the Rb vs. (Y+Nb) contents, the trondhjemite plots in the field of volcanic are granites, whereas the syenite and the aplites plot in the of post-collision granites. The mylonitic overprinting of the syenite and the trondhjemite is also Paleoproterozoic, as deduced from 2012± 8 Ma age of the undeformed younger aplitic dykes which cut the syenite. It is likely that this alkaline magmatism with a Paleoproterozoic post-collisional magmatic event well documented in the Transamazonian mobile belts of the northern Sao Francisco craton. (author)

  2. Pb/Pb single-zircon dating of Paleoproterozoic calc-alkaline/alkaline magmatism in the southeastern Sao Francisco Craton region, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Jordt-Evangelista, Hanna; Peres, Guilherme Gravina [Universidade Federal de Ouro Preto, MG (Brazil). Dept. de Geologia]. E-mail: hanna@degeo.ufop.br; Macambira, Moacir Jose Buenano [Para Univ., Belem, PA (Brazil)

    2000-03-01

    Two chemically and petrographically distinct intrusive bodies (a calc-alkaline trondhjemite and an alkaline quartz-syenite cut by granitic aplites) occur in the vicinity of Piranga (Minas Gerais State), near the southeastern border of the Sao Francisco craton, Brazil. They intrude the Rio das Velhas greenstone belt and the Mantiqueira complex, both of Archean age. Both intrusive bodies are variably deformed and mylonitized. Age determinations using the Pb/Pb single-zircon evaporation method yielded paleoproterozoic ages for the emplacement/crystallization of the trondhjemite (2058 {+-} 10 Ma), quartz-syenite (2036 {+-}4 Ma), as well as the younger aplites (2012 {+-} 8 Ma). These ages allow us to interpret the calc-alkaline as well as alkaline magmatism as manifestations of the Transamazonian event in the southeastern Sao Francisco craton region. Furthermore, the calc-alkaline trondhjemite is interpreted to have intrude during compressional deformation, while the alkaline quartz-syenite and its aplitic differentiates are post-orogenic, possibly extension-related In terms of the Rb vs. (Y+Nb) contents, the trondhjemite plots in the field of volcanic are granites, whereas the syenite and the aplites plot in the of post-collision granites. The mylonitic overprinting of the syenite and the trondhjemite is also Paleoproterozoic, as deduced from 2012{+-} 8 Ma age of the undeformed younger aplitic dykes which cut the syenite. It is likely that this alkaline magmatism with a Paleoproterozoic post-collisional magmatic event well documented in the Transamazonian mobile belts of the northern Sao Francisco craton. (author)

  3. Sensitivity analysis of alkaline plume modelling: influence of mineralogy

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In the context of a disposal facility for radioactive waste in clayey geological formation, an important modelling effort has been carried out in order to predict the time evolution of interacting cement based (concrete or cement) and clay (argillites and bentonite) materials. The high number of modelling input parameters associated with non negligible uncertainties makes often difficult the interpretation of modelling results. As a consequence, it is necessary to carry out sensitivity analysis on main modelling parameters. In a recent study, Marty et al. (2009) could demonstrate that numerical mesh refinement and consideration of dissolution/precipitation kinetics have a marked effect on (i) the time necessary to numerically clog the initial porosity and (ii) on the final mineral assemblage at the interface. On the contrary, these input parameters have little effect on the extension of the alkaline pH plume. In the present study, we propose to investigate the effects of the considered initial mineralogy on the principal simulation outputs: (1) the extension of the high pH plume, (2) the time to clog the porosity and (3) the alteration front in the clay barrier (extension and nature of mineralogy changes). This was done through sensitivity analysis on both concrete composition and clay mineralogical assemblies since in most published studies, authors considered either only one composition per materials or simplified mineralogy in order to facilitate or to reduce their calculation times. 1D Cartesian reactive transport models were run in order to point out the importance of (1) the crystallinity of concrete phases, (2) the type of clayey materials and (3) the choice of secondary phases that are allowed to precipitate during calculations. Two concrete materials with either nanocrystalline or crystalline phases were simulated in contact with two clayey materials (smectite MX80 or Callovo- Oxfordian argillites). Both

  4. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  5. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    International Nuclear Information System (INIS)

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels

  6. The rare-metal ore potential of the Proterozoic alkaline ultramafic massifs from eastern part of the Baltic Shield in the Kola alkaline province.

    Science.gov (United States)

    Sorokhtina, Natalia; Kogarko, Lia

    2014-05-01

    The Kola Alkaline Province consists of intrusions of two main stages of the intraplate alkaline magmatism. The early stage of igneous activity occurred in Proterozoic 1.9 billion years ago, the next in Paleozoic at 380 million years. The Proterozoic alkaline magmatism produced Gremyakha-Vyrmes and Elet'ozero large alkaline-ultrabasic massifs, Tiksheozero carbonatite massif and numerous small syenite complexes. Paleozoic magmatism on Baltic Shield exhibited more widely, than Proterozoic. The world largest Khibiny and Lovozero alkaline intrusions, numerous alkaline-ultrabasic massifs with carbonanites, alkaline dike swarms and diatremes were formed. It is well known that carbonatites of Paleozoic alkaline-ultrabasic massifs contain large-scale deposits of rare-metal ores (Afanasiev et al., 1998). The metasomatic rocks on foidolites and carbonatites of Gremyakha-Vyrmes are final products of differentiation of Proterozoic alkaline-ultrabasic magma enriched in incompatible elements, including Nb and Zr similar to Paleozoic carbonatites. The massif Gremyakha-Vyrmes is one of the largest titanomagnetite-ilmenite deposits in Russia associated with ultrabasites. Our investigation showed that albite-microcline and aegirine-albite metasomatites formed rich rare-metal ores consisting of 3.2 wt. % Nb2O5 and 0.7 ZrO2. Zircon and pyrochlore-group minerals represent the main minerals of rare-metal ores. The following evolutionary sequences of pyrochlore group minerals has been observed: betafite or U pyrochlore - Na-Ca pyrochlore - Ba-Sr pyrochlore - "silicified" pyrochlore - Fe-Nb, Al-Nb silicates. Such evolution from primary Nb oxides to secondary silicates under low temperature hydrothermal conditions is similar to the evolution of rare metal phases in Paleozoic alkaline massifs analogous to Lovozero syenites and in carbonatites. The rare metal minerals of Gremyakha-Vyrmes crystallized in high alkaline hydrothermal environment at increased activity of Nb, Ta, Zr, U, Th and at

  7. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  8. Physiological and Molecular Features of Puccinellia tenuiflora Tolerating Salt and Alkaline-Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Xia Zhang; Liqin Wei; Zizhang Wang; Tai Wang

    2013-01-01

    Saline-alkali soil seriously threatens agriculture productivity; therefore,understanding the mechanism of plant tolerance to alkaline-salt stress has become a major challenge.Halophytic Puccinellia tenuiflora can tolerate salt and alkaline-salt stress,and is thus an ideal plant for studying this tolerance mechanism.In this study,we examined the salt and alkaline-salt stress tolerance of P.tenuiflora,and analyzed gene expression profiles under these stresses.Physiological experiments revealed that P.tenuiflora can grow normally with maximum stress under 600 mmol/L NaCl and 150 mmol/L Na2CO3 (pH 11.0)for 6 d.We identified 4,982 unigenes closely homologous to rice and barley.Furthermore,1,105 genes showed differentially expressed profiles under salt and alkaline-salt treatments.Differentially expressed genes were overrepresented in functions of photosynthesis,oxidation reduction,signal transduction,and transcription regulation.Almost all genes downregulated under salt and alkaline-salt stress were related to cell structure,photosynthesis,and protein synthesis.Comparing with salt stress,alkaline-salt stress triggered more differentially expressed genes and significantly upregulated genes related to H+ transport and citric acid synthesis.These data indicate common and diverse features of salt and alkalinesalt stress tolerance,and give novel insights into the molecular and physiological mechanisms of plant salt and alkaline-salt tolerance.

  9. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of

  10. Synthesis and characterization of bismuth alkaline titanate powders

    International Nuclear Information System (INIS)

    In this work, samples of bismuth alkaline titanate, (K0.5Na0.5)(2-x/2)Bi(x/6)TiO3, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and α = 59.48o. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  11. Turbulent acidic jets and plumes injected into an alkaline environment

    Science.gov (United States)

    Ulpre, Hendrik

    2012-11-01

    The characteristics of a strong acidic turbulent jet or plume injected into an alkaline environment comprising of a weak/strong base are examined theoretically and experimentally. A chemistry model is developed to understand how the pH of a fluid parcel of monoprotic acid changes as it is diluted and reacts with the ambient fluid. A standard fluid model, based on a top-hat model for acid concentration and velocity is used to express how the dilution of acid varies with distance from the point of discharge. These models are applied to estimate the point of neutralisation and the travel time with distance within the jet/plume. An experimental study was undertaken to test the theoretical results. These experiments involved injecting jets or vertical plumes of dilute nitric acid into a large tank containing a variety of base salts dissolved in water. The injected fluid contained litmus indicator dye which showed a change in colour from red to blue close to the point of neutralisation. In order to obtain a range of neutralisation distances, additional basic salts were added to the water to increase its pH buffering capacity. The results are applied to discuss the environmental implications of an acidic jet/plume injected into the sea off the South East coast of Great Britain.

  12. Phosphorous and coagulant recovery by alkaline sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Kaoru; Momonoi, Kiyoshi; Saito, Masaaki; Tashiro, Yukio

    2003-07-01

    Recently, since 1995 to be specific, the regulations concerning effluent nitrogen and phosphorus have been reexamined in order to prevent eutrophication in drainage water in the Suwa Lake basin. The simultaneous phosphorus precipitation process has been introduced as a countermeasure for removing phosphorus. The phosphorus is removed, without fail, by the coagulant, and it is finally removed as sludge. However, phosphorus is rare resource. It is estimated that 10 to 15% of imported phosphorus of phosphate rock used for fertilizer ends up in municipal wastewater in Japan. Therefore, recycling it is more important than disposing of the phosphorus in the sludge. Through a basic experiment, it was confirmed that a large amount of coagulant metal composed of aluminum and phosphorus could be eluted by treating the sludge with the simultaneous phosphorus precipitation process and alkali. And it was confirmed that the phosphorus could be recovered, when calcium chloride was added to the elution liquid, and the eluted aluminum could be recycled as a coagulant. In addition, it was confirmed that the sludge was solubilized by the alkaline treatment and this could dramatically reduce the amount of sludge generated. (author)

  13. Purification and properties of alkaline phosphatase of silkworm Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    TANG Yunming; CEN Liang; CHU Bo; LI Changchun; XU Min; LUO Ying; LU Cheng

    2006-01-01

    Alkaline phosphatase(AKP),from the succus entericus of silkworm,was purified using 10%-50% ammonium sulfate fractions,ion exchange chromatography Of DEAE-Sepharose,and size exclusion chromatography of Sephacryl S-200.The purification fold was 464 times and specified activity was 3936 U/mg.Optimum pH value of the phosphatase was 10.5,and was stable between pH 7.5 and 11.The optimum temperature of the phosphatase was 40℃ and it was unstable over 50℃.Km value of the phosphatase was 1.25 mmol/L.In a given condition,the phosphatase was selectively modified by PCMB,NBS,PMSE TNBS,SUAN,DTT,BrAc,and IAc,the results indicate that PMSF,SUA,BrAc,IAc,and TNBS could Obviously inhibit the activity of the phosphatase,and the degree of inhibition depended on the concentration of these reagents.There was little effect on the activity of phosphatase after treatment by PMSF,DTT,and NBT.We primarily conclude that mercapto and imidazole are essential for AKP from silkworm.Also,Lys residue and disulfide bands are necessary to protect the catalysis of the AKP.

  14. Enhancement of accelerated carbonation of alkaline waste residues by ultrasound.

    Science.gov (United States)

    Araizi, Paris K; Hills, Colin D; Maries, Alan; Gunning, Peter J; Wray, David S

    2016-04-01

    The continuous growth of anthropogenic CO2 emissions into the atmosphere and the disposal of hazardous wastes into landfills present serious economic and environmental issues. Reaction of CO2 with alkaline residues or cementitius materials, known as accelerated carbonation, occurs rapidly under ambient temperature and pressure and is a proven and effective process of sequestering the gas. Moreover, further improvement of the reaction efficiency would increase the amount of CO2 that could be permanently sequestered into solid products. This paper examines the potential of enhancing the accelerated carbonation of air pollution control residues, cement bypass dust and ladle slag by applying ultrasound at various water-to-solid (w/s) ratios. Experimental results showed that application of ultrasound increased the CO2 uptake by up to four times at high w/s ratios, whereas the reactivity at low water content showed little change compared with controls. Upon sonication, the particle size of the waste residues decreased and the amount of calcite precipitates increased. Finally, the sonicated particles exhibited a rounded morphology when observed by scanning electron microscopy. PMID:26905698

  15. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    Science.gov (United States)

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  16. ALKALINE PEROXIDE BLEACHING OF HOT WATER TREATED WHEAT STRAW

    Directory of Open Access Journals (Sweden)

    Suvi Mustajoki

    2010-05-01

    Full Text Available The aim of this study was to evaluate the possibilities for chemical consumption reduction in P-P-Paa-P bleaching (P alkaline peroxide stage, Paa peracetic stage of hot water treated straw and the effect of the wheat straw variability on the process. Papermaking fibre production from wheat straw using such a process could be implemented on a small scale if chemical consumption was low enough to eliminate the need for chemical recovery. The pulp properties obtained with this process are equal to or even superior to the properties of wheat straw soda pulp. The possibility of enhancing the first peroxide stage with oxygen and pressure was studied. The possibility for substitution of sodium hydroxide partially with sodium carbonate was also investigated. The objective was to achieve International Standardization Organization (ISO brightness of 75%, with minimal sodium hydroxide consumption, whilst maintaining the pulp properties. The optimization of the peroxide bleaching is challenging if the final brightness target cannot be reduced. Results indicate that up to 25% of the sodium hydroxide could be substituted with sodium carbonate without losing brightness or affecting pulp properties. Another possibility is a mild alkali treatment between the hot water treatment and the bleaching sequence.

  17. Production of Biodiesel Using Ethanol Way and Alkaline Catalyst

    Directory of Open Access Journals (Sweden)

    Cesar Aparecido da Silva

    2010-06-01

    Full Text Available The potential inputs to promote the supply of the demand for power generation has become the aim of several scientific researches to mitigate environmental impacts. The biodiesel is the highlight solution that can be obtained through the transesterification process. The aim this present work was the biodiesel production using ethanol and crude oil sunflower as inputs and potassium ethoxide such as catalyst for the rection. Were produced seven samples using different parameters. The product with high rate of ethyl ester was the one with catalyst and reaction time optimized. However, it has showed the presence of glycerol, suggesting the use of other unit operations such as cooling and centrifugation to improve the purity of the biodiesel formed is necessary. The parameters used in this experiment (oil, catalyst and water washing contents, reaction time, temperature and agitation speed showed critical endpoints to be monitored during the production of biodiesel due interfering the quality and yield to the final product. In addition, the inappropriate speed of agitation in the reactor for ethanol way in the presence of an alkaline catalyst can gelatinize the mixture of reactants due the emulsion formed.

  18. Metal mobilization under alkaline conditions in ash-covered tailings.

    Science.gov (United States)

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. PMID:24681363

  19. Alkaline Leaching of Low Zinc Content Iron-Bearing Sludges

    Directory of Open Access Journals (Sweden)

    Gargul K.

    2016-03-01

    Full Text Available Various types of waste materials containing zinc (e.g. dusts and sludges from gas dedusting process are obtained in steel industry. The contents of Zn in these materials may vary considerably. Even a low concentration of zinc in recirculated products precludes their recycling in ferrous metallurgy aggregates. Long storage of this type of material can lead to contamination of soil and water by zinc compounds which can be leached out by acid rain, for example. This paper focuses on research involving alkaline leaching tests of low zinc content iron-bearing materials. These tests were preceded by the analysis of the elemental, phase and grain size composition, and analysis of the thermodynamic conditions of the leaching process. The main aim of research was to decrease the content of the zinc in the sludge to the level where it is suitable as an iron-bearing material for iron production (~1% Zn. Leaching at elevated temperatures (368 K, 60 min has led to a decrease in the zinc content in the sludge of about 66%. The research revealed that long hour leaching (298 K, 100 hours carried out at ambient temperatures caused a reduction in zinc content by 60% to the value of 1.15-1.2% Zn.

  20. Synthesis and characterization of bismuth alkaline titanate powders

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.mx [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Dominguez-Crespo, M.A. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Hernandez-Perez, M.A. [ESIQIE, Metalurgia, Instituto Politecnico Nacional, Mexico, D. F (Mexico); Garcia-Zaleta, D.S. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Brachetti-Sibaja, S.B. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo esq. Sor Juana Ines de la Cruz s/n Col. Los Mangos C.P.89440 Cd. Madero Tamaulipas (Mexico)

    2011-06-15

    In this work, samples of bismuth alkaline titanate, (K{sub 0.5}Na{sub 0.5}){sub (2-x/2)}Bi{sub (x/6)}TiO{sub 3}, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and {alpha} = 59.48{sup o}. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  1. Laundry detergent compatibility of the alkaline protease from Bacillus cereus.

    Science.gov (United States)

    Banik, Rathindra Mohan; Prakash, Monika

    2004-01-01

    The endogenous protease activity in various commercially available laundry detergents of international companies was studied. The maximum protease activity was found at 50 degrees C in pH range 10.5-11.0 in all the tested laundry detergents. The endogenous protease activity in the tested detergents retained up to 70% on incubation at 40 degrees C for 1 h, whereas less than 30% activity was only found on incubation at 50 degrees C for 1 h. The alkaline protease from an alkalophilic strain of Bacillus cereus was studied for its compatibility in commercial detergents. The cell free fermented broth from shake flask culture of the organism showed maximum activity at pH 10.5 and 50 degrees C. The protease from B. cereus showed much higher residual activity (more than 80%) on incubation with laundry detergents at 50 degrees C for 1 h or longer. The protease enzyme from B. cereus was found to be superior over the endogenous proteases present in the tested commercial laundry detergents in comparison to the enzyme stability during the washing at higher temperature, e.g., 40-50 degrees C. PMID:15293947

  2. Sensitive optical detection of alkaline phosphatase activity with quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiangling [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China); The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China); Chen, Zhenzhen; Chen, Xiaoying; Liu, Jing [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China); Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China)

    2014-01-15

    A simple method has been developed to detect the activity of alkaline phosphatase (ALP) by the changing of fluorescence intensities of the quantum dots (QDs). In this system, the fluorescence intensities of the QDs were quenched by p-nitrophenol (pNP) which was produced in the process of ALP catalytic reaction. A series of linear calibration curves of the activity of ALP were obtained in different pH buffer solutions. The wide linear range was 3–1000 U L{sup −1} and the detection limit was 3 U L{sup −1} (S/N=3). Furthermore, the experimental conditions of biosensor were optimized, and anti-interference ability was presented. The activity of ALP was also detected in serum and the recovery of ALP in serum samples was more than 95%. The excellent performance of this biosensor indicates that it can be used in practice detection of ALP. -- Highlights: • A sensitive ALP biosensor is constructed based on QDs without complex processes. • The analysis processing is very convenient, simple and rapid. • The detection mechanism of the ALP biosensor is studied by XPS. • The paper proposes a feasible approach for some substrates or enzymes detecting.

  3. Sensitive optical detection of alkaline phosphatase activity with quantum dots

    International Nuclear Information System (INIS)

    A simple method has been developed to detect the activity of alkaline phosphatase (ALP) by the changing of fluorescence intensities of the quantum dots (QDs). In this system, the fluorescence intensities of the QDs were quenched by p-nitrophenol (pNP) which was produced in the process of ALP catalytic reaction. A series of linear calibration curves of the activity of ALP were obtained in different pH buffer solutions. The wide linear range was 3–1000 U L−1 and the detection limit was 3 U L−1 (S/N=3). Furthermore, the experimental conditions of biosensor were optimized, and anti-interference ability was presented. The activity of ALP was also detected in serum and the recovery of ALP in serum samples was more than 95%. The excellent performance of this biosensor indicates that it can be used in practice detection of ALP. -- Highlights: • A sensitive ALP biosensor is constructed based on QDs without complex processes. • The analysis processing is very convenient, simple and rapid. • The detection mechanism of the ALP biosensor is studied by XPS. • The paper proposes a feasible approach for some substrates or enzymes detecting

  4. Purification and characterization of alkaline protease from Lysinibacillus fusiformis

    Directory of Open Access Journals (Sweden)

    Suppiah S*

    2012-08-01

    Full Text Available A novel alkaline protease producing bacterium was isolated from the gut of an estuarine fish Etroplus suratensis. The strain was identified by sequencing the fragment of their bacterial 16s rRNA and its homology was 97% closest to the Lysinibacillus fusiformis. An extracellular protease from this organism was purified by acetone precipitation, ion exchange chromatography and gel filtration chromatography methods and the specific activity of the purified enzyme was found to be 20.39 U/mg, 169.46U/mg and 352.0U/mg respectively. The molecular weight of the purified enzyme was determined to be 29kDa through SDS/PAGE analysis. The enzyme showed that the maximum at pH 9.0 and temperature at 40ºC. The purified enzyme remains active in the presence of various metal ions and it was strongly stimulated by the addition of Ca2+. Among the tested surfactants, the optimum activity was observed in SDS when compared to the other tested surfactants. Normal 0 false false false EN-US X-NONE X-NONE

  5. How Should an Increase in Alkaline Phosphatase Activity Be Interpreted?

    International Nuclear Information System (INIS)

    Low-level laser therapy, commonly known as LLLT, is the application of low power, monochromatic, and coherent light to injuries and lesions to stimulate healing and give pain relief. There are conflicting reports in the literature regarding the role of ALP. Objective: this study aimed to compare the cellular responses of wounded human skin fibroblasts exposed to doses of 0.5 J/cm2, 2.5 J/cm2, 5 J/cm2, or 16 J/cm2 using LLLT with a Helium-Neon laser (632.8 nm, 18.8 mW power output, 2.07 mW/cm2 power density, and 3.4 cm diameter spot size or area 9.1?cm2) to elucidate the role of alkaline phosphatase (ALP) in cell proliferation. Methods: cellular responses to laser irradiation were evaluated using ALP enzyme activity, LDH membrane integrity, neutral red for cell proliferation, optical density at 540?nm, and basic fibroblast growth factor (bFGF) expression. Results: results suggest that an increase in ALP is negatively correlated with cell growth depending on the concentration of growth factors in the medium. Results also indicate that an increase in ALP may be related to cellular damage. Conclusion: since the exact role of ALP is unknown, the ALP enzyme activity assay should be considered in conjunction with other cell proliferation assays such as neutral red, optical density, or more specifically bFGF expression.

  6. Belliella kenyensis sp. nov., isolated from an alkaline lake.

    Science.gov (United States)

    Akhwale, Juliah Khayeli; Göker, Markus; Rohde, Manfred; Schumann, Peter; Klenk, Hans-Peter; Boga, Hamadi Iddi

    2015-02-01

    A red-pigmented, Gram-reaction-negative, aerobic bacterial strain, designated No.164(T), was isolated from sediment sample from the alkaline Lake Elmenteita located in the Kenyan Rift Valley. Results of 16S rRNA gene sequence analysis indicated that the isolate represented a member of the genus Belliella, with the highest sequence similarity (97 %) to Belliella pelovolcani DSM 46698(T). Optimal growth temperature was 30-35 °C, at pH 7.0-12.0 in the presence of 0-4 % (w/v) NaCl. Flexirubins were absent. The respiratory menaquinone (MK-7), predominant cellular fatty acids (iso-C15 : 0, anteiso-C15 : 0 and a mixture of C16 : 1ω7c and/or iso-C15 : 0 2-OH) and DNA G+C content (38.1 mol%) of strain No.164(T) were consistent with those of other members of the genus Belliella. The polar lipids consisted of phosphatidylethanolamine, eight unspecified lipids and one unspecified phospholipid. Several phenotypic characteristics can be used to differentiate this isolate from those of other species of the genus Belliella. The results of polyphasic analyses presented in this study indicated that this isolate should be classified as representing a novel species of the genus Belliella. The name Belliella kenyensis sp. nov. is therefore proposed; the type strain is strain No.164(T) ( = DSM 46651(T) = CECT 8551(T)). PMID:25385994

  7. Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob.

    Science.gov (United States)

    Ma, Lijuan; Cui, Youzhi; Cai, Rui; Liu, Xueqiang; Zhang, Cuiying; Xiao, Dongguang

    2015-03-01

    Alkaline potassium permanganate solution (APP) was applied to the pretreatment of corncob with a simple and effective optimization of APP concentration, reaction time, temperature and solid to liquid ratio (SLR). The optimized pretreatment conditions were at 2% (w/v) potassium permanganate with SLR of 1:10 treating for 6h at 50°C. This simple one-step treatment resulted in significant 94.56% of the cellulose and 81.47% of the hemicellulose recoveries and 46.79% of the lignin removal of corncob. The reducing sugar in the hydrolysate from APP-pretreated corncob was 8.39g/L after 12h enzymatic hydrolysis, which was 1.44 and 1.29 folds higher than those from raw and acid pretreated corncobs. Physical characteristics, crystallinity and structure of the pretreated corncob were analyzed and assessed by SEM, XRD and FTIR. The APP pretreatment process was novel and enhanced enzymatic hydrolysis of lignocellulose by affecting composition and structural features. PMID:25585256

  8. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    Directory of Open Access Journals (Sweden)

    Yendi E. Navarro-Noya

    2015-01-01

    Full Text Available In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5, indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances clearly clustered the communities by pH.

  9. The autoreduction of pertechnetate in aqueous, alkaline solutions

    International Nuclear Information System (INIS)

    The autoreduction of pertechnetate (99TcO4-) to Tc(IV/V) alkoxide complexes in aqueous, alkaline, solutions is described. Solutions of sodium pertechnetate (0.01M) reacted with nitrogen and oxygen donor ligands (1.0M) in 2M sodium hydroxide. Solutions containing nitrogen donor ligands (e.g., EDTA) showed the initial formation of lightly colored complexes followed by rapid decomposition in air. In contrast, stable, reduced complexes were formed within minutes of mixing pertechnetate with mono- and disaccharides in strong base, as indicated by a persistent color change. Chemical yields of these reactions were determined by thin layer chromatography or paper chromatography and radiochemically assayed with a Bioscan imaging scanner. Analysis by UV-vis spectroscopy suggested that Tc(IV) or Tc(V) complexes were produced, with the oxidation state dependent on the reducing ligand. These experiments may help explain the reduction of pertechnetate to the soluble complexes that have been found in the Hanford nuclear waste tanks. (author)

  10. Initial subalkaline magmatism of the neoarchean alkaline province of the Kola Peninsula

    International Nuclear Information System (INIS)

    U-Pb Dating of zircons from sub-alkaline rock of latite-monzonite association has been performed to study the specific features of sub-alkaline magmatism of the neoarchean alkaline province of the Kola Peninsula central area. It is found that prevalent portions of zircon grains subjected to isotope dating have concordant ages as follows (m.a.): 2671 ± 6 (quartz latite), 2667 ± 10 (quartz monzonite), 2677 ± 5 (quartz syenite). Taking into account the error of age determination, a 2670 - 2680 m.a. limit is set on the time of magmatic crystallization of latite-monzonite rocks

  11. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    Science.gov (United States)

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. PMID:26642223

  12. Origin and evolution of overlapping calc-alkaline and alkaline magmas: The Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia)

    Science.gov (United States)

    Litvinovsky, B. A.; Tsygankov, A. A.; Jahn, B. M.; Katzir, Y.; Be'eri-Shlevin, Y.

    2011-08-01

    The Late Palaeozoic voluminous magmatism in Transbaikalia, Russia (a territory of > 600,000 km 2 to the east of Lake Baikal) is highly diverse and complex. Of special interest are (1) the significant overlap in time between magmatic suites commonly ascribed to post-collisional and within-plate settings and (2) the provenance of the coeval, but distinct, granitoid magmas that are closely spaced within a large region. Magmatic activity lasted almost continuously from ~ 330 Ma to ~ 275 Ma and included five igneous suites occupying a total area of ~ 200,000 km 2: (1) the Barguzin suite of high-K calc-alkaline granite (330-310 Ma); (2 and 3) the coeval Chivyrkui suite of low-silica calc-alkaline granitoids and the Zaza suite of high-K calc-alkaline to alkaline granite and quartz syenite which were emplaced between 305 and 285 Ma; and (4 and 5) the partially overlapped in time Lower-Selenga monzonite-syenite suite (285-278 Ma) and the Early-Kunalei suite of alkali-feldspar and peralkaline quartz syenite and granite (281-275 Ma). The overall increase in alkalinity of the granitoids with time reflects the progress from post-collisional to within-plate settings. However, a ~ 20 m.y. long transitional period during which both calc-alkaline and alkaline granitoids were emplaced indicates the coexistence of thickened (batholiths) and thinned (rift) crustal tracts. Sr-Nd-O isotope and elemental geochemical data suggest that the relative contribution of mantle-derived components to the generation of silicic magmas progressively increased with time. The high-K calc-alkaline granite magmas that formed the Angara-Vitim batholith were generated by high degree melting of supracrustal metamorphic rocks [ɛNd(t) = - 5.7 to - 7.7; δ 18O(Qtz) = 12‰], with minor contribution of H 2O and K from the underplated mafic magma (the convective diffusion model). The coeval calc-alkaline Chivyrkui suite and the transitional to alkaline Zaza suite formed as a result of mixing of crustal silicic

  13. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  14. Alkaline Phosphatase Activity in San Francisco and Monterey Bays

    Science.gov (United States)

    Nicholson, D. P.

    2002-12-01

    Phosphorus (P) is an essential nutrient utilized by all living organisms, and has been recognized as a limiting nutrient in some oceanic systems (Cotner et al., 1997; Karl et al., 1995; Michaels et al., 1996; Wu et al., 2000). However, relatively little is known about the extent of P limitation in natural environments, how P limitation varies spatially and temporally, and what determines how and when P becomes limiting (Benitez-Nelson, 2000). A more direct estimate of the degree of P limitation in a variety of oceanic systems is needed to better understand P cycling and dynamics within the ocean and how these have and will change in response to global climate and environmental perturbation. Accordingly, the objective this study is to assess the P-status of marine planktonic communities in Monterey and San Francisco Bays using the activity of alkaline phosphatase in the water column. Alkaline phosphatase (AP) is the most widely used enzyme that marine organisms use to hydrolize organic P compounds to biologically available orthophosphate. Accordingly it is expected that in areas where P is a limiting nutrient organisms will produce and release more AP to seawater so they can utilize the dissolved and particulate organic P compounds. Indeed it has been suggested that the AP activity is a reliable indicator of P-availability to planktonic communities (Ammerman and Azam, 1985; Cotner and Wetzel, 1991; Hong et al., 1998). High enzyme activities indicate low dissolved inorganic phosphate (DIP) availability while low levels suggest that DIP supply satisfies the community P-demand. This study examines AP activity in San Francisco and Monterey Bays over a 12 month period, from November, 2001 through November, 2002 using two enzyme assays. The study encompasses data from a three-station transect in Monterey Bay, at depths ranging from 0-60 meters. The stations range from coastal waters to open ocean depths of several thousand meters. In San Francisco Bay, surface water from

  15. Crystallization and preliminary X-ray study of alkaline alanine racemase from Bacillus pseudofirmus OF4

    OpenAIRE

    Ju, Jiansong; Qi, Jianxun; Xu, Shujing; Ohnishi, Kouhei; Benedik, Michael J.; Xue, Yanfen; Ma, Yanhe

    2009-01-01

    An alkaline alanine racemase from alkaliphilic B. pseudofirmus OF4 was expressed in E. coli and purified. Crystallization and preliminarily X-­ray crystallographic analysis were performed for the recombinant enzyme.

  16. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  17. Characterization of the phosphatidylinositol-glycan membrane anchor of human placental alkaline phosphatase

    International Nuclear Information System (INIS)

    Placental alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] is a member of a diverse group of membrane proteins whose attachment to the lipid bilayer is mediated by a phosphatidylinositol-glycan. To investigate structural aspects of the glycolipid anchor, cultured WISH cells were used because, they produce the enzyme in abundant quantities. When cell suspensions were incubated with purified phosphatidylinositol-specific phospholipase C, most of the placental alkaline phosphatase was released from membranes in a hydrophilic form. On incubation of the cells with [14C]ethanolamine, [14C]myristic acid, or myo[3H]inositol, each was incorporated into the phosphatase near the carboxyl terminus, showing that these components, which are found in other phosphatidylinositol membrane-linked proteins, are also present in placental alkaline phosphatase

  18. Rb-Sr age of the Sivamalai alkaline complex, Tamil Nadu

    International Nuclear Information System (INIS)

    The Sivamalai alkaline complex comprises ferro-, pyroxene- hornblende-and nepheline-syenites. Field relations show that the nepheline syenites followed the emplacement of non-feldspathoidal syenites. Mineralogical data on the syenite suite have been reviewed. The Sivamalai alkaline rocks are not strongly enriched in rare-earth elements like most miaskites. Rb-Sr isotopic analyses of a suite of six samples from the various members of the complex define an isochron corresponding to an age of 623 ± 21 Ma (2σ) and initial Sr ratio of 0.70376 ± 14 (2σ). This is consistent with a model of fractional crystallization of a parent magma derived from an upper mantle source with apparently no isotopic evidence for more than one magma source for the complex. The Sivamalai alkaline complex represents a Pan-African alkaline magmatic event in the southern granulite terrane of peninsular India. (author). 26 refs., 4 figs., 4 tabs

  19. Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Aili, David; Hansen, Martin Kalmar;

    2014-01-01

    Alkaline fuel cells and electrolyzers are attracting increasing interest. This is to a large extent due to the broad selection of catalyst materials not based on resource limited and expensive noble metals. The first fuel cells in practical use were Francis Thomas Bacon’s based on an alkaline...... electrolyte. The system has been quite successful with good oxygen kinetics, but the electrolyte suffers from carbonization when operated in normal CO2containing air and this has limited the application to space technology and similar niches. The alkaline electrolyzer on the other hand has been the state of...... art commercial choice for decades and the carbonization problem is absent since oxygen is produced, not consumed. However, the demand for high voltage efficiency has been limited and the alkaline electrolyzer has been optimized in the direction of robustness and long lifetime instead. Today it has...

  20. Regiospecific Addition of Uracil to Acrylates Catalyzed by Alkaline Protease from Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Ying CAI; Jian Yi WU; Na WANG; Xiao Feng SUN; Xian Fu LIN

    2004-01-01

    Michael addition reactions of uracil to acrylates were catalyzed by an alkaline protease from Bacillus subtilis in dimethyl sulfoxide at 55 ℃ for 72 h. The adducts were determined by TLC, IR and 1H NMR.

  1. Near relativistic study of bound levels in atoms. Application to alkaline atoms

    Energy Technology Data Exchange (ETDEWEB)

    Varade, A.; Delgado-Barrio, G.; Villarreal, P. (Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Estructura de la Materia)

    1985-01-01

    A model is described for the calculation of the atomic binding energies. The Pauli equation has been solved with a local potential. The results for alkaline atoms are reported here and compared with the perturbative calculation and experimental data.

  2. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    DEFF Research Database (Denmark)

    Faerk, J; Peitersen, Birgit; Petersen, S; Michaelsen, K F

    2002-01-01

    BACKGROUND: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation. OBJECTIVE: To analyse the association between bone mineral content...... and serum alkaline phosphatase and serum phosphate. METHODS: Serum alkaline phosphatase and phosphate were measured at weekly intervals during admission in 108 premature infants of gestational age below 32 weeks (mean (SD) gestational age 29 (2) weeks; mean (SD) birth weight 1129 (279) g). Bone...... mineral content was measured at term (mean gestational age 41 weeks) by dual energy x ray absorptiometry and corrected for body size. RESULTS: Serum alkaline phosphatase was significantly negatively associated with serum phosphate (p < 0.001). Bone mineral content was not associated with mean serum...

  3. Alkaline phosphatase activity in plasma and liver of rats submitted to chronic exposure to fluoride

    Directory of Open Access Journals (Sweden)

    Mileni da Silva Fernandes

    2011-12-01

    Full Text Available The aim of this study was to compare the effect of fluoride (F on alkaline phosphatase activity in the liver and plasma of the rats. Four groups of male Wistar rats (n=6, which received drinking water containing 5, 15 or 50 ppm F or deionized water (control throughout the experiment were included in the study. The animals were euthanized and had their tissues and blood plasma collected for the analysis of fluoride and alkaline phosphatase. There was an increase in F concentration in most tissues in the animals treated with higher F concentrations, except for the heart. The alkaline phosphatase assay showed an increase in the activity in the liver and blood plasma of the animals treated with fluoride concentrations of 15 and 50 ppm (p<0.05. This study suggested that F at a concentration of 50 ppm in drinking water promotes increased the activity of alkaline phosphatase in the liver and blood plasma.

  4. Cloning and sequencing of human intestinal alkaline phosphatase cDNA

    International Nuclear Information System (INIS)

    Partial protein sequence data obtained on intestinal alkaline phosphatase indicated a high degree of homology with the reported sequence of the placental isoenzyme. Accordingly, placental alkaline phosphatase cDNA was cloned and used as a probe to clone intestinal alkaline phosphatase cDNA. The latter is somewhat larger (3.1 kilobases) than the cDNA for the placental isozyme (2.8 kilobases). Although the 3' untranslated regions are quite different, there is almost 90% homology in the translated regions of the two isozymes. There are, however, significant differences at their amino and carboxyl termini and a substitution of an alanine in intestinal alkaline phosphatase for a glycine in the active site of the placental isozyme

  5. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold

    International Nuclear Information System (INIS)

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G [IgG] complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles were largely dispersed, and only a few clusters were found. The gold-IgG binding was quantitatively estimated by stereological analysis of labeled, frozen thin sections. This estimation of a variety of control samples showed that the labeling was specific for the alkaline phosphatase. Cluster formation of the gold -IgG particles in association with the plasma membrane suggests that existence of specific alkaline phosphatase binding sites (receptors) in the plasma membrane of B. licheniformis 749/C. 27 references, 6 figures, 1 table

  6. Alkaline diagenesis and its influence on a reservoir in the Biyang depression

    Institute of Scientific and Technical Information of China (English)

    邱隆伟; 姜在兴; 操应长; 邱荣华; 陈文学; 涂阳发

    2002-01-01

    Alkaline diagnesis is a diagenetic process that a reservoir undergoes under an alkaline environment. Because of the influence of alkaline formation water, the most typical characteristics of diagnesis is that quartz is obviously dissolved, feldspar is massively enlarged, and less late carbonate cement is formed in the evolution of carbonate minerals. With the decrease of the alkalinity of the formation water in diagenesis, the quartz overgrowths become common. The change in the chemical characteristics of the formation water leads to a more complex distribution of reservoir porosity at different depths than that of the secondary porosity formed by classical acidic water. It also makes the B stage of early diagenesis the important development period of secondary porosity.

  7. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  8. Predicting species' tolerance to salinity and alkalinity using distribution data and geochemical modelling

    DEFF Research Database (Denmark)

    Saslis-Lagoudakis, C Haris; Hua, Xia; Bui, Elisabeth; Moray, Camile; Bromham, Lindell; Saslis Lagoudakis, Haris

    2015-01-01

    alkalinity tolerance can be predicted using geochemical modelling for Australian grasses. The correlation between taxa found in conditions of high predicted salinity and alkalinity is then assessed. METHODS: Extensive occurrence data for Australian grasses is used together with geochemical modelling to...... of high predicted salinity are also found in conditions of high predicted alkalinity. KEY RESULTS: It is shown that genera containing known halophytes have higher predicted salinity conditions than those not containing known halophytes. Additionally, taxa occurring in high predicted salinity tend to...... also occur in high predicted alkalinity. CONCLUSIONS: Geochemical modelling using species' occurrence data is a potentially useful approach to predict species' relative natural tolerance to challenging environmental conditions. The findings also demonstrate a correlation between salinity tolerance and...

  9. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    OpenAIRE

    Faerk, J; Peitersen, B; Petersen, S; Michaelsen, K

    2002-01-01

    Background: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation.

  10. APPLICATION OF ALKALINE SULFITE PULPING ON CORN STALKS

    Directory of Open Access Journals (Sweden)

    Ahmad Jahan Latibari

    2011-02-01

    Full Text Available Alkaline sulfite pulping of corn stalks was investigated to produce supplementary pulp for corrugating board manufacture. Three pulping temperatures (125, 145, and 165°C and five active alkali charges (10, 12, 14, 16, and 18% were used. Cooking time at 30 minutes, Na2SO3/ NaOH ratio at 50:50, and liquor to residue ratio of 8:1 were kept constant. The highest total yield (61.9% was reached applying the treatment combination of 125°C and 10% active alkali, and the lowest total yield (42.5% was related to 165°C and 16% chemical. The influence of sodium sulfite/sodium hydroxide ratios was studied applying different ratios (30:70, 40:60, 50:50, 60:40, and 70:30 at constant time and temperature of 30 minutes and 145°C respectively and 14 and 16% active alkali. Pulping condition; 16% active alkali, 30 minutes time, 145°C pulping temperature and varying ratios of sodium sulfite/sodium hydroxide were selected for pulp strength evaluation. The results of handsheet evaluation indicated that 16% active alkali, 30 minutes pulping at 145ºC and sodium sulfite/sodium hydroxide ratio of 50:50 is the optimum pulping condition for corn stalks. Tear, tensile, and burst indices and breaking length of this pulp were measured as 10.53 mN.m2g-1, 62.4 N.mg-1, 3.80 kPa.m2g-1, and 6.07 km, respectively.

  11. Downscaling Alkaline Phosphatase Activity in a Subtropical Reservoir

    Science.gov (United States)

    Tseng, Y.

    2011-12-01

    This research was conducted by downscaling study to understand phosphorus (P)-deficient status of different plankton and the role of alkaline phosphatase activity (APA) in subtropical Feitsui Reservoir. Results from field survey showed that bulk APA (1.6~95.2 nM h-1) was widely observed in the epilimnion (0~20 m) with an apparent seasonal variations, suggesting that plankton in the system were subjected to P-deficient seasonally. Mixed layer depth (an index of phosphate availability) is the major factor influencing the variation of bulk APA and specific APA (124~1,253 nmol mg C-1 h-1), based on multiple linear regression analysis. Size-fractionated APA assays showed that picoplankton (size 0.2~3 um) contributed most of the bulk APA in the system. In addition, single-cell APA detected by enzyme-labeled fluorescence (ELF) assay indicated that heterotrophic bacteria are the major contributors of APA. Thus, we can infer that bacteria play an important role in accelerating P-cycle within P-deficient systems. Light/nutrient manipulation bioassays showed that bacterial growth was directly controlled by phosphate, while picocyanobacterial growth is controlled by light and can out-compete bacteria under P-limited condition with the aid of light. Further analysis revealed that the strength of summer typhoon is a factor responsible for the inter-annual variability of bulk and specific APA. APA study demonstrated the episodic events (e.g. strong typhoon and extreme precipitation) had significant influence on APA variability in sub-tropical to tropical aquatic ecosystems. Hence, the results herein will allow future studies on monitoring typhoon disturbance (intensity and frequency) as well as the APA of plankton during summer-to-autumn in subtropical systems.

  12. Geochemical aspects of alkaline massif of Banhadao, PR, Brazil

    International Nuclear Information System (INIS)

    The alkaline massif of Banhadao, located near Cerro Azul, State of Parana, southern Brazil, occupies an area of about 8 Km2 and is constituted by three magnetic associations: a group of mesocratic to leucocratic coarse nepheline syenites (NeS) (melanite NeS, NeS I, and light reddish and grey varieties of NeS II); a second group of medium to fine-grained ultrabasic to basic rocks (phlogopite melteigites and petrologically related malignites and feldspar-melanite ijolites); and a group of fine-grained to aphanitic phonolotic dikes, cutting NeS. The rocks of the complex are miaskitic, showing low concentrations of trace elements (V, Th and mainly REE), lack of rare metal silicates, and relative abundance of apatite and sphene. NeS are distinguished by a differentiation trend in which highly differentiated end members are enriched in alkalis and Al2O3, with decrease in MgO, FeO (total), CaO and TiO2. The less differentiated melanite-rich rocks show higher concentrations in Zr, Nb, Y and V. Phlogopite melteigites and associated rocks show the highest contents of MgO, FeO (total), CaO and TiO2, and the lowest concentration of alkalis and Al2O3; they are significantly enriched in Ba and are the only rocks with detectable amounts of Ni, Cu and Cr. The phonolites are chemically similar to NeS. The Banhadao rocks were probably formed during successive intrusions of two different magmas types. The source of NeS and phonolites was probably a nephelinitic magma, while phlogopite melteigites and related rocks were probably derived from an alkali-enriched ferromagnesian magna. Both parent magmas probably derived by melting of rocks of the lower crust or upper mantle. (author)

  13. In situ arsenic removal in an alkaline clastic aquifer

    Science.gov (United States)

    Welch, A.H.; Stollenwerk, K.G.; Paul, A.P.; Maurer, D.K.; Halford, K.J.

    2008-01-01

    In situ removal of As from ground water used for water supply has been accomplished elsewhere in circum-neutral ground water containing high dissolved Fe(II) concentrations. The objective of this study was to evaluate in situ As ground-water treatment approaches in alkaline ground-water (pH > 8) that contains low dissolved Fe (

  14. ALKALINE PEROXIDE MECHANICAL PULPING OF FAST GROWTH PAULOWNIA WOOD

    Directory of Open Access Journals (Sweden)

    Ahmad Jahan Latibari,

    2011-11-01

    Full Text Available Alkaline peroxide mechanical pulping of paulownia wood harvested from exotic tree plantations in northern Iran was investigated. The fiber length, width, and cell wall thickness of this wood were measured as 0.82 mm, 40.3 μm, and 7.1 μm, respectively. The chemical composition including cellulose, lignin, and extractives soluble in ethanol-acetone, 1% NaOH, hot and cold water was determined as 49.5%, 25%, 12.1%, 26.9%, 11.4%, and 8.1% respectively. The ash content of this wood was 0.45%. Pre-washed chips were chemically treated at 70°C for 120 minutes with different combinations of three dosages (1.5, 3, and 4.5% of hydrogen peroxide and three dosages (1.5, 3, and 4.5% of sodium hydroxide prior to defibration. Other chemicals including DTPA, sodium silicate, and MgSO4 were constant at 0.5%, 3%, and 0.5%, respectively. The results showed that using a 1.5% hydrogen peroxide and 4.5% sodium hydroxide charge, the brightness of APMP pulp reached 68.7% ISO and higher chemical dosages did not improve the brightness; however, to produce APMP pulp with higher strength, a sodium hydroxide charge of 4.5% was needed. The tensile strength, tear strength, burst strength indices, and bulk density of the APMP pulp produced from 1.5% hydrogen peroxide and 4.5% sodium hydroxide were measured as 15.5Nm/g, 6.54mN.m2/g, 0.56kPa.m2/g, and 3.47cm3/g, respectively. The resulting pulp was bulky and is suitable for use in the middle layer of boxboard to provide the desired stiffness with a lower basis weight.

  15. Isolation and identification of the thermophilic alkaline desulphuricant strain

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A desulfurization strain that belongs to the thermophilic alkaline desulphuricant is designated as strain GDJ-3 and isolated from Inner Mongolia, China. The colony of the strain shows tiny, yellow, or white-yellow, and it becomes henna with the protracting of cultivated time. The cells are bacilliform (0.3 -0.6 × 1.0-1.2 μm), motive, and Gram negative. The strain GDJ-3 is able to utilize respectively the thiosulphate, sulfate, sulfite, or sulfide as sulfur source, utilize the carbon dioxide as the carbon source, and utilize the ammonium or nitrate as the nitrogen source. According to GenBank data, 16s RNA results of GDJ-3 are in good agreement with Alpha proteobacterrium sp. (97%) and Ochrobactrum sp. (98%). For GDJ-3, the optimum growth temperature is at 45℃, the optimum pH is at 8.5-8.8, and the optimum rocking speed of sorting table is at 150 r/min. Under the optimum culture condition, the cells of the strain can live for about 18 h. In the desulfurization solution, which is prepared according to the composition of DDS solution, the objectionable constituents of sodium thiosulphate and sodium sulfide were added factitiously, and the bacterial cell concentration was set at 107/mL. After the regeneration of the above desulfurization solution by the strain cells, the concentration of sodium thiosulphate was decreased by 14.75 g/L (percentage loss of content 13.21%), the concentration of sodium sulfide was decreased by 0.76 g/L (percentage loss of content 87.36%) in the desulfurization solution in 9.5 hours, and sulfur appeared. Maybe, this kind of strain can be used as the regeneration’s bacterial source of DDS solution.

  16. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems.

    Science.gov (United States)

    Burcar, Bradley T; Barge, Laura M; Trail, Dustin; Watson, E Bruce; Russell, Michael J; McGown, Linda B

    2015-07-01

    Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys. PMID:26154881

  17. New sand consolidation technique using hot alkaline solutions: laboratory evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, F.E.; Rico, A.; Mendez, Z. [PDVSA-Intevep, Caracas (Venezuela); Materan, S. [Simon Bolivar Univ., Caracas (Venezuela)

    2002-06-01

    Some well known problems in the petroleum industry are related to sanding problems caused by pressure falls, friction and dissolution of minerals during steam injection. The prospect of using hot alkaline solutions to achieve sand consolidation was investigated in this paper. Experimental work was performed using Venezuelan sand samples (S-1, S-2, and S-3) from various unconsolidated heavy oil reservoirs and commercial Silboca (S-4) sands to validate this new reservoir sand consolidation technique. A pressure of 500 pounds per square inch was applied to samples that had been packed into Teflon tubes and placed in a horizontal stainless steel cell. Following this, for a period varying from 2 to 5 hours, a hot sodium carbonate solution between 120 and 250 Celsius was injected. Every twenty minutes, the effluent solution was sampled. Before and after each run, permeability measurements were obtained to monitor the variations. Sand packs were dried at 100 Celsius after each test. An electron microscope was used to observe the morphology of secondary phases. For S-1 and S-2, sodium aluminium silicates were identified in the secondary phases for tests with temperature above 240 Celsius. In the case of S-3 and S-4, no consolidation was observed. The authors believe that large grain sizes and a 98 per cent quartz content respectively explain this phenomenon. It is suspected that sand consolidation requires the presence of aluminium contained in clays and/or feldspar. The critical parameters for sand consolidation were identified as temperature, pore volume, composition, and grain size. The process did not seem greatly affected by soaking time and injection rate. The advantages of this technique would be principally the minimization of sanding problems and reductions in the costs associated with production operations. 7 refs., 12 figs.

  18. Glass Forming Ability of Sub-Alkaline Silicate Melts

    Science.gov (United States)

    Vetere, F. P.; Iezzi, G.; Behrens, H.; Holtz, F.; Ventura, G.; Misiti, V.; Mollo, S.; Perugini, D.

    2014-12-01

    The glass forming ability (GFA) and critical cooling rate (Rc) of six natural sub-alkaline melts from basalt to rhyolite (i.e., B100, B80R20, B60R40, B40R60, B20R80, and R100) have been quantified through cooling-induced solidification experiments of 9000, 1800, 180, 60, 7 and 1 °C/h conducted at ambient pressure and air buffering conditions, in a temperature range between 1300 °C (superliquidus region) and 800 °C (glass transition region), The phase proportion in each run-product was determined by image analysis on about 500 BS-SEM microphotographs. The phase assemblage consists of glass, clinopyroxene, spinel, and plagioclase with the occurrence of sporadic olivine, orthopyroxene and melilite. Both the glass and crystalline fractions are well correlated with the composition of residual melt. Generally, the amount of crystals decreases with increasing cooling rate. However, some exceptions occurs showing no correlations or even opposite trends. For the example of, Al2O3 and CaO in clinopyroxenes from B100, B80R20, B60R40 and B40R60, their concentrations scale as a function of both cooling rate and the degree of clinopyroxene crystallization. The value of Rc changes of 5 order of magnitude from retrieve the solidification conditions of aphyric, degassed and oxidised lavas. Indeed, the relationship between crystal content and cooling kinetics suggests that the solidification path is more complex than previously assumed and strongly non-linear. This finding has also implications to design glass-ceramics based on natural, accessible and low-cost starting materials.

  19. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    Science.gov (United States)

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  20. A study of the anodic behaviour of aluminium alloys in alkaline electrolytes

    OpenAIRE

    Walters, B N

    1988-01-01

    Recent studies an the discharge performance of aluminium alloys in alkaline media have led to improved alloys with significantly lower corrosion rates and more anodic potentials. Performance, of various alkaline electrolytes have also been examined and considerable progress has been made in this area. A review of the available literature reveals a list of several elements which are suitable for alloying with aluminium as regards reducing corrosion and overpotential. Previous work at the Chemi...

  1. Application of Intracellular Alkaline Phosphatase Activity Measurement in Detection of Neutrophil Adherence In Vitro

    OpenAIRE

    Katarzyna Bednarska; Magdalena Klink; Zofia Sulowska

    2006-01-01

    We have proposed the use of the fluorimetric method with 4-methylumbelliferyl phosphate (4-MUP) specific substrate for the alkaline phosphatase determination in the neutrophil adhesion assay. We provide evidence that the endogenous neutrophil alkaline phosphatase (NAP) activity evaluation is reliable to quantify neutrophil adhesion at a wide range of cell numbers (104–106). The results obtained by fluorimetric NAP activity test correlate to the results of adherence evaluated using...

  2. Hydrogen embrittlement risk of high strength galvanized steel in contact with alkaline media

    OpenAIRE

    Sanz Recio, Javier; Alonso Alonso, Maria Cruz; Gaillet, L.; Sanchez Oreja, Maria Elena

    2011-01-01

    The critical conditions for hydrogen embrittlement (HE) risk of high strength galvanized steel (HSGS) wires and tendons exposed to alkaline concrete pore solutions have been evaluated by means of electrochemical and mechanical testing. There is a relationship between the hydrogen embrittlement risk in HSGS and the length of hydrogen evolution process in alkaline media. The galvanized steel suffers anodic dissolution simultaneously to the hydrogen evolution which does not stop until the passiv...

  3. PHYSICAL, MECHANICAL, AND DURABILITY PERFORMANCE OF GFRP SQUARE REINFORCING BARS EXPOSED TO ALKALINE SOLUTION

    OpenAIRE

    Ahmed H. Ali; Awad El hashimy; Hesham Haggag

    2015-01-01

    This paper presents an experimental study that investigated the mechanical, physical , and durability characterization of square glass fibre - reinforced polymer (GFRP) bars exposed to alkaline solution. The GFRP square bars were exposed to alkaline solution at 22, 40, and 60°C to accelerate the effect of the concrete environment. The measured tensile strengths of the GFRP square bars before and after exposure were considered as a measure of ...

  4. Carbon nanotubes-gold nanohybrid as potent electrocatalyst for oxygen reduction in alkaline media.

    Science.gov (United States)

    Morozan, Adina; Donck, Simon; Artero, Vincent; Gravel, Edmond; Doris, Eric

    2015-11-01

    A carbon nanotube-gold nanohybrid was used as catalyst for the reduction of molecular oxygen in acidic and alkaline media, the relevant cathode reaction in fuel cells. In alkaline medium, the nanohybrid exhibits excellent activity with a dominant 4e(-) reduction of O2 and low overpotential requirement compared to previously reported nano-gold materials. This property is linked to its capability to efficiently mediate HO2(-) dismutation. PMID:26439282

  5. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18

    OpenAIRE

    Ogbonnaya Nwokoro; Odiase Anthonia

    2015-01-01

    Background. Amylases are among the main enzymes used in food and other industries. They hydrolyse starch molecules into polymers composing glucose units. Amylases have potential applications in a number of industrial processes including foods and pharmaceutical industries. Alkaline α-amylase has the potential of hydrolysing starch under alkaline pH and is useful in the starch and textile industries and as an ingredient of detergents. Amylases are produced from plants, however, microbial...

  6. Solubility of fluorides of alkaline earth metals and some rare earths in anhydrous trifluoroacetic acid

    International Nuclear Information System (INIS)

    Solubility of fluorides of alkaline earth and some rare earth metals in anhydrous trifluoroacetic acid is studied. For each type of fluoride solubility depends on the ionic radius of the cation. Solubility of fluorides of alkaline earth metals grows from magnesium to barium. All the fluorides in anhydrous trifluoroacetic acid form solvates. Solvates of strontium and scandium fluorides are shown to decompose at 110 and 150 deg C respectively

  7. Long-term and seasonal variations in CO2: linkages to catchment alkalinity generation

    Directory of Open Access Journals (Sweden)

    S.A. Norton

    2001-01-01

    Full Text Available As atmospheric emissions of S have declined in the Northern Hemisphere, there has been an expectation of increased pH and alkalinity in streams believed to have been acidified by excess S and N. Many streams and lakes have not recovered. Evidence from East Bear Brook in Maine, USA and modelling with the groundwater acid-base model MAGIC (Cosby et al. 1985a,b indicate that seasonal and yearly variations in soil PCO2 are adequate to enhance or even reverse acid-base (alkalinity changes anticipated from modest decreases of SO4 in surface waters. Alkalinity is generated in the soil by exchange of H+ from dissociation of H2CO3, which in turn is derived from the dissolving of soil CO2. The variation in soil PCO2 produces an alkalinity variation of up to 15 meq L-1 in stream water. Detecting and relating increases in alkalinity to decreases in stream SO4 are significantly more difficult in the short term because of this effect. For example, modelled alkalinity recovery at Bear Brook due to a decline of 20 meq SO4 L-1 in soil solution is compensated by a decline from 0.4 to 0.2% for soil air PCO2. This compensation ability decays over time as base saturation declines. Variable PCO2 has less effect in more acidic soils. Short-term decreases of PCO2 below the long-term average value produce short-term decreases in alkalinity, whereas short-term increases in PCO2 produce short-term alkalization. Trend analysis for detecting recovery of streams and lakes from acidification after reduced atmospheric emissions will require a longer monitoring period for statistical significance than previously appreciated. Keywords: CO2 , alkalinity, acidification, recovery, soils, climate change

  8. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    OpenAIRE

    Donna Vanhauteghem; Geert Paul Jules Janssens; Angelo Lauwaerts; Stanislas Sys; Filip Boyen; Eric Cox; Evelyne Meyer

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometr...

  9. Production of Alkaline Cellulase by Fungi Isolated from an Undisturbed Rain Forest of Peru

    OpenAIRE

    Karin Vega; Gretty K. Villena; Sarmiento, Victor H.; Yvette Ludeña; Nadia Vera; Marcel Gutiérrez-Correa

    2012-01-01

    Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an ap...

  10. Optical Algal Biosensor using Alkaline Phosphatase for Determination of Heavy Metals

    OpenAIRE

    Durrieu, Claude; Tran-Minh, Canh

    2002-01-01

    International audience A biosensor is constructed to detect heavy metals from inhibition of alkaline phosphatase (AP) present on the external membrane of Chlorella vulgaris microalgae. The microalgal cells are immobilized on removable membranes placed in front of the tip of an optical fiber bundle inside a homemade microcell. C. vulgaris was cultivated in the laboratory and its alkaline phosphatase activity is strongly inhibited in the presence of heavy metals. This property has been used ...

  11. THE TRANSFER OF ALKALINE EARTH-METAL ION AT W/NB INTERFACE FACILITATED BY JOSAMYCIN

    Institute of Scientific and Technical Information of China (English)

    范瑞溪; 狄俊伟

    1991-01-01

    This paper describes the invesligation of the transfer behaviour of the alkaline earth-metal cations across the water/nitrobenzene interface facilitated by josamycin in the nitrobenzene phase using semi-differential cyclic voltammetry .The peak height is directly proportional to the concentration of josaycin (nb) and to the potential scan rate.The complexes formed from alkaline earth-metal ions and josamycin at the w/nb interface are ML22+ ion.

  12. Uranium prospecting in alkaline mountain chimneys of Serra Negra and Salitre - Minas Gerais, Brasil

    International Nuclear Information System (INIS)

    The occurence of radioactive minerals such as apatite and pyrochlore, in the alkaline chimneys of Serra Negra and Salitre (Minas Gerais, Brazil), is discussed. Also mentioned are other minerals of interest associated with the alkaline magma such as columbite, fluorite, monazite, zircon, baddeleyite, etc, which in favourable conditions may occur in deposits of great economical value, and which may present high contents of rare earths, thorium and uranium

  13. X-Ray Structure Reveals a New Class and Provides Insight into Evolution of Alkaline Phosphatases

    OpenAIRE

    Bihani, Subhash C.; Das, Amit; Nilgiriwala, Kayzad S.; Prashar, Vishal; Pirocchi, Michel; Apte, Shree Kumar; Ferrer, Jean-Luc; Hosur, Madhusoodan V.

    2011-01-01

    The alkaline phosphatase (AP) is a bi-metalloenzyme of potential applications in biotechnology and bioremediation, in which phosphate monoesters are nonspecifically hydrolysed under alkaline conditions to yield inorganic phosphate. The hydrolysis occurs through an enzyme intermediate in which the catalytic residue is phosphorylated. The reaction, which also requires a third metal ion, is proposed to proceed through a mechanism of in-line displacement involving a trigonal bipyramidal transitio...

  14. Electrochemical study of benzene on Pt of various surface structures in alkaline and acidic solutions

    OpenAIRE

    Montilla Jiménez, Francisco; Morallón Núñez, Emilia; Vázquez Picó, José Luis

    2002-01-01

    The electrochemical behaviour of benzene on platinum electrodes (polycrystalline and single-crystal electrodes) has been studied in acidic and alkaline solutions. In acid solutions the reduction of benzene to cyclohexane takes place in all the platinum surface structure employed, however it does not occur in alkaline media (0.1 M NaOH). In this case, the hydrogen adsorption/desorption processes displace the adsorbed benzene from the electrode surface. The oxidation of benzene is also af...

  15. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus

    OpenAIRE

    Mothe, Thirumala; Sultanpuram, Vishnuvardhan Reddy

    2016-01-01

    Alkaline proteases are important enzymes in many industrial applications, especially as additives in laundry detergent industry. Though there are a number of Bacillus species which are reported to be producing proteases, the efficiency of a protease produced by a novel strain has to be studied in comparison to the others. Hence, in this study, an alkaline serine protease produced by a novel species Bacillus caseinilyticus was purified and characterized for its possible usage in detergent indu...

  16. Formation of magnetite in highly alkaline media in the presence of small amounts of ruthenium

    OpenAIRE

    Krehula, Stjepko; Musić, Svetozar

    2007-01-01

    The effect of small amounts of ruthenium on the formation of magnetite in highly alkaline media was investigated using X-ray powder diffraction (XRD), Mossbauer and FT-IR spectroscopies, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Acicular alpha-FeOOH particles precipitated in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH) were used as a reference material. Initial addition of small amounts of Ru(NO)(...

  17. Development of durable and efficient electrodes for large-scale alkaline water electrolysis

    DEFF Research Database (Denmark)

    Kjartansdóttir, Cecilia Kristin; Nielsen, Lars Pleth; Møller, Per

    2013-01-01

    A new type of electrodes for alkaline water electrolysis is produced by physical vapour depositing (PVD) of aluminium onto a nickel substrate. The PVD Al/Ni is heat-treated to facilitate alloy formation followed by a selective aluminium alkaline leaching. The obtained porous Ni surface is uniform...... a commercially produced bipolar electrolyser stack. The developed electrodes showed stable behaviour under intermittent operation for over 9000 h indicating no serious deactivation in the density of active sites....

  18. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold.

    OpenAIRE

    Tinglu, G; Ghosh, A.; Ghosh, B K

    1984-01-01

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G [IgG] complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles...

  19. Kidney alkaline phosphatase in mercuric chloride injected chicks resistant and susceptible to leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; McIntyre, J.A.; Bearse, G.E.

    1969-01-01

    Two strains of chickens were selected for resistance and susceptibility to avian leukosis. Researchers found that the resistant chicks retained two to four times as much mercury in the liver and kidneys as did the susceptible chicks following injection of mercuric chloride or phenylmercuric acetate. Differences in alkaline phosphatase in the kidneys of the resistant and susceptible chicks, and the effect of the mercuric chloride injection on the alkaline phosphatase activity were reported in this paper. 19 references, 2 tables.

  20. ALKALINE SULFITE-ALCOHOL DELIGNIFICATION OF STEMS OF HELIANTHUS ANNUUS AND BUNIAS

    OpenAIRE

    Трембус, Ірина Віталіївна; Плосконос, Віктор Григорович; Швидкий, А. М.

    2015-01-01

    Stems of Helianthus annuus and Bunias can be processed into semi-finished fiber products using alkaline sulfite-alcohol delignification. These semi-finished fiber products in their physical and mechanical characteristics are similar to those of the pulp of hardwood. The dependences of quality semi-finished fiber products on the temperature and duration of delignification are obtained.Keywords: alkaline sulfite-alcohol delignification, semi-finished fiber products, Helianthus annuus, Bunias

  1. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  2. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    OpenAIRE

    EeroSalminen; Jyri-PekkaTuomoMikkola

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths ...

  3. Solid / solution interaction: The effect of carbonate alkalinity on adsorbed thorium

    Science.gov (United States)

    LaFlamme, Brian D.; Murray, James W.

    1987-02-01

    Elevated activities of dissolved Th have been found in Soap Lake, an alkaline lake in Eastern Washington. Dissolved 232Th ranges from less than 0.001 to 4.9 dpm/L compared to about 1.3 × 10 -5 dpm/ L in sea water. The enhanced activity in the lake coincides with an increase in carbonate alkalinity. Experiments were conducted to evaluate the effect of pH, ionic strength and carbonate alkalinity on Th adsorption on goethite. Thorium (10 -13 M total) in the presence of 5.22 mg/L α-FeOOH and 0.1 M NaNO 3 has an adsorption edge from pH 2-5. At pH 9.0 ± 0.6 the percent Th absorbed on the solid began to decrease from 100% at 100 meq/L carbonate alkalinity and exhibited no adsorption above 300 meq/L. The experimental data were modeled to obtain the intrinsic adsorption equilibrium constants for Th hydrolysis species. These adsorption constants were incorporated in the model to interpret the observed effect of carbonate alkalinity on Th adsorption. There are two main effects of the alkalinity. To a significant degree the decrease in Th adsorption is due to competition of HCO -3 and CO 2-3 ions for surface sites. Dissolved Th carbonate complexes also contribute to the increase of Th in solution.

  4. Expression and Characterization of Recombinant Thermostable Alkaline Phosphatase from a Novel Thermophilic Bacterium Thermus thermophilus XM

    Institute of Scientific and Technical Information of China (English)

    Jianbo LI; Limei XU; Feng YANG

    2007-01-01

    A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co2+, Fe2+, Mg2+, or Mn2+ but was strongly inhibited by 2.0 mM Fe2+. Under optimal conditions, the Michaelis constant (Km) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.

  5. Contrasting magmatic signatures in the Rairakhol and Koraput alkaline complexes, Eastern Ghats belt, India

    Indian Academy of Sciences (India)

    S Bhattacharya; M Basei

    2010-04-01

    The relation between alkaline magmatism and tectonism has been a contentious issue, particularly for the Precambrian continental regions. Alkaline complexes at the southwestern margin of Eastern Ghats belt, India, have been interpreted as rift-valley magmatism. However, those complexes occurring in granulite ensemble in the interior segments of the Eastern Ghats belt could not possibly be related to the rift-system, assumed for the western margin of the Eastern Ghats belt. Koraput complex was emplaced in a pull-apart structure, dominated by magmatic fabrics and geochemically similar to a fractionated alkaline complex, compatible with an alkalibasalt series. Rairakhol complex, on the other hand, shows dominantly solid-state deformation fabrics and geochemically similar to a fractionated calc-alkaline suite. Isotopic data for the Koraput complex indicate ca. 917 Ma alkaline magmatism from a depleted mantle source and postcrystalline thermal overprint at ca. 745 Ma, also recorded from sheared metapelitic country rocks. The calc-alkaline magmatism of the Rairakhol complex occurred around 938 Ma, from an enriched mantle source, closely following Grenvillian granulite facies imprint in the charnockitic country rocks.

  6. Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces

    Science.gov (United States)

    Wan, Shanhong; Tieu, A. Kiet; Zhu, Qiang; Zhu, Hongtao; Cui, Shaogang; Mitchell, David R. G.; Kong, Charlie; Cowie, Bruce; Denman, John A.; Liu, Rong

    2016-05-01

    Alkaline polyphosphate has been demonstrated to be able to reduce significant wear and friction of sliding interfaces under heavy loads (>1 GPa) and elevated temperature (800 °C and above) conditions, e.g. hot metal manufacturing. The chemical composition and fine structure of polyphosphate lubricating film is not well understood as well as the role of alkaline elements within the reaction film at hot rubbing surface. This work makes use of the coupling surface analytical techniques on the alkaline polyphosphate tribofilm, XANES, TOF-SIMS and FIB/TEM. The data show the composition in gradient distribution and trilaminar structure of tribofilm: a shorter chain phosphate overlying a long chain polyphosphate that adheres onto oxide steel base through a short chain phosphate. The chemical hardness model well explains the anti-abrasive mechanism of alkaline polyphosphate at elevated temperatures and also predicts a depolymerisation and simultaneous cross-linking of the polyphosphate glass. The role of alkaline elements in the lubrication mechanism is especially explained. This work firstly serves as a basis for a detailed study of alkaline polyphosphate tribofilm at temperature over 600 °C.

  7. Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces

    Science.gov (United States)

    Wan, Shanhong; Tieu, A. Kiet; Zhu, Qiang; Zhu, Hongtao; Cui, Shaogang; Mitchell, David R. G.; Kong, Charlie; Cowie, Bruce; Denman, John A.; Liu, Rong

    2016-01-01

    Alkaline polyphosphate has been demonstrated to be able to reduce significant wear and friction of sliding interfaces under heavy loads (>1 GPa) and elevated temperature (800 °C and above) conditions, e.g. hot metal manufacturing. The chemical composition and fine structure of polyphosphate lubricating film is not well understood as well as the role of alkaline elements within the reaction film at hot rubbing surface. This work makes use of the coupling surface analytical techniques on the alkaline polyphosphate tribofilm, XANES, TOF-SIMS and FIB/TEM. The data show the composition in gradient distribution and trilaminar structure of tribofilm: a shorter chain phosphate overlying a long chain polyphosphate that adheres onto oxide steel base through a short chain phosphate. The chemical hardness model well explains the anti-abrasive mechanism of alkaline polyphosphate at elevated temperatures and also predicts a depolymerisation and simultaneous cross-linking of the polyphosphate glass. The role of alkaline elements in the lubrication mechanism is especially explained. This work firstly serves as a basis for a detailed study of alkaline polyphosphate tribofilm at temperature over 600 °C. PMID:27180956

  8. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    International Nuclear Information System (INIS)

    Highlights: ► Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. ► The alkaline cation adsorption may raise potential barrier of the electron emission. ► The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li+, Na+, and K+) and alkaline earth (Be2+, Mg2+, and Ca2+) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54–1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be2+ ≫ Mg2+ ≫ Ca2+ ≫ Li+ ∼ Na+ ∼ K+.

  9. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    Institute of Scientific and Technical Information of China (English)

    Wang Shengli; Yin Kangda; Li Xiang; Yue Hongwei; Liu Yunling

    2013-01-01

    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation.According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed.Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established.In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.

  10. Simulation and Prediction of Alkalinity in Sintering Process Based on Grey Least Squares Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    SONG Qiang; WANG Ai-min

    2009-01-01

    The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation.

  11. Measurement of DNA strand breakage and DNA repair induced with hydrogen peroxide using single cell gel electrophoresis, alkaline DNA unwinding and alkaline elution of DNA

    International Nuclear Information System (INIS)

    Three techniques single cell gel electrophoresis (SCGE), alkaline elution of DNA, and alkaline DNA unwinding (ADU) were chosen to compare the sensitivity among these methods in detection of DNA damage and repair in human diploid VH10 cell line after short-term exposure to hydrogen peroxide. Using SCGE technique a dose-dependent increase in DNA migration was found in cell exposed to hydrogen peroxide in concentration range from 10 μmol/l. Alkaline DNA unwinding method detected increased level of single strand breaks (ssb) in concentration range from 25 μmol/l of H2O2, and alkaline elution of DNA estimated increased DNA elution rate from concentration 50 μmol/l of H2O2. In a time course study to evaluate the kinetics of DNA repair, both SCGE and ADU techniques showed that the repair of DNA strand breaks is very rapid; the level of ssb in treated cells has returned to near the background level within two hours. After this time damage remaining in the DNA was in the form of oxidised bases as revealed the incubation of treated cells with specific DNA repair endonuclease, formamidopyridine-DNA glycosylase. (author)

  12. Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Solmaz, Ramazan [Bingoel University, Science and Letters Faculty, Chemistry Department, 12000 Bingoel (Turkey); Doener, Ali; Kardas, Guelfeza [Cukurova University, Science and Letters Faculty, Chemistry Department, 01330 Balcali Adana (Turkey)

    2010-10-15

    The NiCuZn ternary coating was electrochemically deposited on a copper electrode. Then, it was etched in a concentrated alkaline solution (30% NaOH) to produce a porous and electrocatalytic surface suitable for use in the hydrogen evolution reaction (HER). The surface composition of coating before and after alkaline leaching was determined by energy dispersive X-ray (EDX) analysis. The surface morphologies were investigated by scanning electron microscopy (SEM). The long-term stability of electrode prepared for alkaline water electrolysis was investigated in 1 M KOH solution with the help of cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that, the NiCuZn coating has a compact and porous structure with good physical stability. Alkaline leaching process further improved the activity of NiCuZn coating in comparison with binary NiCu deposit for the HER. The long-term operation at -100 mA cm{sup -2} showed good electrochemical stability over 120 h. (author)

  13. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    Science.gov (United States)

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  14. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    Science.gov (United States)

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  15. Uptake of alkaline earth metals in Alcyonarian spicules (Octocorallia)

    Science.gov (United States)

    Taubner, I.; Böhm, F.; Eisenhauer, A.; Garbe-Schönberg, D.; Erez, J.

    2012-05-01

    Alcyonarian corals (Octocorallia) living in shallow tropical seas produce spicules of high-Mg calcite with ˜13 mol% MgCO3. We cultured the tropical alcyonarian coral Rhythisma fulvum in experiments varying temperature (19-32 °C) and pH (8.15-8.44). Alkalinity depletion caused by spicule formation systematically varied in the temperature experiments increasing from 19 to 29 °C. Spicules were investigated for their elemental ratios (Mg/Ca, Sr/Ca) using ICP-OES, δ44/40Ca using TIMS, as well as δ18O and δ13C by IRMS. Mg/Ca increased with temperature from 146 to 164 mmol/mol, in good agreement with the range observed for marine inorganic calcite. Mg/Ca increased by 1.0 ± 0.4 mmol/mol/°C, similar to the sensitivity of Miliolid foraminifera. The pH experiments revealed a linear relationship between Mg/Ca and carbonate ion concentration of +0.03 ± 0.02 mmol/mol/μMol. Sr/Ca ranges from 2.5 to 2.9 mmol/mol being in good agreement with other high-Mg calcites. Temperature and pH experiments showed linear dependencies of Sr/Ca matching inorganic calcite trends and pointing to a decoupling of crystal precipitation rate and calcification rate. Ca isotopes range between 0.7‰ and 0.9‰ in good agreement with aragonitic scleractinian corals and calcitic coccoliths. Presumably Ca isotopes are fractionated by a biological mechanism that may be independent of the skeletal mineralogy. We observe no temperature trend, but a significant decrease of δ44/40Ca with increasing pH. This inverse correlation may characterise biologically controlled intracellular calcification. Oxygen isotope ratios are higher than expected for isotopic equilibrium with a temperature sensitivity of -0.15 ± 0.03‰/°C. Carbon isotope ratios are significantly lower than expected for equilibrium and positively correlated with temperature with a slope of 0.20 ± 0.04‰/°C. Many of our observations on trace element incorporation in R. fulvum may be explained by inorganic processes during crystal

  16. Electrochemical behavior of Ag-Cu alloy in alkaline media

    Directory of Open Access Journals (Sweden)

    Grekulović Vesna J.

    2010-01-01

    Full Text Available Results of the investigation of electrochemical behaviour of Ag-Cu alloy containing 50 mass% Ag and 50 mass% Cu are presented in this paper. Pure silver and copper were investigated, too. Working electrodes were prepared by metallurgical process. 1 mol dm-3 and 0.5 mol dm-3 solutions of NaOH are chosen as the electrolyte. On the cyclic voltammograms, some current waves corresponding to number and quantity of phases present in the investigated electrodes appeared and they can be used for characterization of investigated alloy. On the voltammogram recorded for pure silver, two anodic and two cathodic peaks appeared. First peak consisted of two joined current waves which can be ascribed to the formation of the two different types of silver(I oxide, Ag2O. Second peak should correspond to the formation of silver(II oxide, AgO. Voltammogram obtained for pure copper exhibits one broad current wave corresponding to the formation of copper oxides, followed by a wide potential area in which copper is completely passive. At 0.4 V vs. SCE, current starts to increase again due to oxygen evolution and probably due to simultaneous dissolution of copper with formation of CuO22- as a product. In alkaline solutions copper has no significant influence on the shape and current values of the voltammograms recorded for Ag-Cu alloy; however, it has an influence only on the anodic and cathodic peak potentials, which are shifted to more negative values in comparison to Ag. It could mean an easier formation of oxides and their harder reduction. Comparing voltammograms recorded for Ag-Cu alloy in 0.5 moldm-3 NaOH and in 1 moldm-3 NaOH solutions, one can see that current waves appear at more positive potentials on the voltammograms obtained in the solution of lower concentration and with much higher current densities than those on the voltammograms obtained in the solution of higher concentration.

  17. Associations between renal hyperfiltration and serum alkaline phosphatase.

    Directory of Open Access Journals (Sweden)

    Se Won Oh

    Full Text Available Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP level is also elevated in patients with diabetes (DM or metabolic syndrome (MS, and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in the Korea National Health and Nutrition Examination Survey IV-V databases (2008-2011 was performed. Renal hyperfiltration was defined as exceeding the age- and sex-specific 97.5th percentile. We divided participants into 4 groups according to their estimated glomerular filtration rate (eGFR: >120, 90-119, 60-89, and 120 mL/min/1.73 m2 showed the highest risk for MS, in the highest ALP quartiles (3.848, 95% CI, 1.876-7.892, compared to the lowest quartile. Similarly, the highest risk for DM, in the highest ALP quartiles, was observed in participants with eGFR >120 ml/min/1.73 m2 (2.166, 95% CI, 1.084-4.329. ALP quartiles were significantly associated with albuminuria in participants with eGFR ≥ 60 ml/min/1.73m2. The highest ALP quartile had a 1.631-fold risk elevation for albuminuria with adjustment of age and sex. (95% CI, 1.158-2.297, P = 0.005. After adjustment, the highest ALP quartile had a 1.624-fold risk elevation, for renal hyperfiltration (95% CI, 1.204-2.192, P = 0.002. In addition, hyperfiltration was significantly associated with hemoglobin, triglyceride, white blood cell count, DM, smoking, and alcohol consumption (P<0.05. The relationship between serum ALP and metabolic disorders is stronger in participants with an upper-normal range of eGFR. Higher ALP levels are significantly associated with renal hyperfiltration in Korean general population.

  18. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  19. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    Science.gov (United States)

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (pelectrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit. PMID:27233098

  20. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions

    International Nuclear Information System (INIS)

    Highlights: ► Hydrothermal liquefaction (HTL) at acidic, neutral and alkaline conditions. ► Bio-oil compositions varied with acidic, neutral and alkaline conditions. ► Reaction mechanisms varied with acidic, neutral and alkaline conditions. ► HTL should be classified to acidic, neutral and alkaline processes. -- Abstract: Hydrothermal liquefaction (HTL) of biomass to bio-oil under alkaline or neutral conditions has been widely reported in literature. However, there has been limited data available in literature on comparing HTL of biomass to bio-oil under acidic, neutral, and alkaline in terms of chemical compositions and yields by using the same reaction conditions and reactor. Using cellulose as a feedstock we conducted the comparative studies for pH = 3, 7 and 14 at temperatures of 275–320 °C with reaction residence times of 0–30 min. Results showed that the chemical compositions of the bio-oils were different for acidic, neutral and alkaline conditions. Under acidic and neutral conditions, the main composition of HTL bio-oil was 5-(Hydroxymethyl)furfural (HMF). Under alkaline conditions, the main compounds became C2–5 carboxylic acids. For bio-oil yields, it was observed that high temperatures and long residence times had negative effects, regardless of the pH levels. However, the corresponding reaction mechanisms are different. Under acidic conditions, the decrease in the bio-oil yields was mainly caused by polymerization of 5-HMF to solids. Under neutral conditions, the bio-oil yields decreased because 5-HMF was converted to both solid and gaseous products. Under alkaline conditions, the bio-oil decomposed to gases through the formation of short chain acids and aldehydes. Therefore, although they were all referred to as HTL bio-oil in literature, they were formed by different reaction pathways and had different properties due to their different chemical compositions. Given these differences, different strategies are recommended in this study to

  1. Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model

    Directory of Open Access Journals (Sweden)

    Inés Garcia-Lodeiro

    2016-07-01

    Full Text Available In hybrid alkaline fly ash cements, a new generation of binders, hydration, is characterized by features found in both ordinary portland cement (OPC hydration and the alkali activation of fly ash (AAFA. Hybrid alkaline fly ash cements typically have a high fly ash (70 wt % to 80 wt % and low clinker (20 wt % to 30 wt % content. The clinker component favors curing at ambient temperature. A hydration mechanism is proposed based on the authors’ research on these hybrid binders over the last five years. The mechanisms for OPC hydration and FA alkaline activation are summarized by way of reference. In hybrid systems, fly ash activity is visible at very early ages, when two types of gel are formed: C–S–H from the OPC and N–A–S–H from the fly ash. In their mutual presence, these gels tend to evolve, respectively, into C–A–S–H and (N,C–A–S–H. The use of activators with different degrees of alkalinity has a direct impact on reaction kinetics but does not modify the main final products, a mixture of C–A–S–H and (N,C–A–S–H gels. The proportion of each gel in the mix does, however, depend on the alkalinity generated in the medium.

  2. THE RELATIONSHIP BETWEEN THE SPONTANEOUS NOCTURNALEPISODES OF ALKALINIZATION AND AUTONOMIC NERVOUSFUNCTION ON FD PATIENTS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To study the relationship between the spontaneous nocturnal episodes of alkalinization and the autonomic nerve system function and vagal function. Methods 24-hour intragastric pH was measured and auto nomic and vagal function was measured with the time domain analyses of heart rate variability in 20 patients with functional dyspepsia but without diseases of the cardiovascular system. Results 13 of 20 had the nocturnal episodes of alkalinization. The total 24-hour SDNN and rMSSD were normal in 20 subjects with FD. There was no significant dif ference (P >0. 05) in the comparison of the total SDNN and rMSSD of the 2 groups with alkalinization and without alkalinization. The 2 groups both had higher PNN50s in the nocturnal time, and there was no significant difference (P >0. 05). Conclusion The results suggest that the total autonomic nerve function and vagal function of patients with FD are normal, vagal activities of the 2 groups are both increased in the nocturnal period. The reason for the nocturnal episodes of alkalinization is not a decrease of vagal activity with a subsequent decrease of secretion.

  3. Production of Alkaline Cellulase by Fungi Isolated from an Undisturbed Rain Forest of Peru

    Directory of Open Access Journals (Sweden)

    Karin Vega

    2012-01-01

    Full Text Available Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL−1 with higher specific productivities (>30 U g−1 h−1. Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry.

  4. Actinides in alkaline media: dissolution, mineral associations, and speciation in hanford waste tank sludge simulants

    International Nuclear Information System (INIS)

    We have investigated the leaching behavior of actinides from simulants of tank waste sludges derived from the BiPO4, Redox, and PUREX processes, the principal chemical separations processes that operated at the Hanford site during 40+years of plutonium production. Fundamental investigations of the speciation of uranium and neptunium in solutions representative of proposed alkaline sludge washing liquors have also been completed. Correlation of the results from sludge leaching indicate that, while Am and Pu are generally not appreciably dissolved from the sludges into alkaline solutions in the absence of oxidants, Np and U can be mobilized during alkaline sludge washing. Leaching of sludges with acidic solutions and strong complexing agents indicate considerable association of all actinide ions with Cr, Fe, and Mn oxides in the sludge simulants. Electrochemical experiments conducted in strongly alkaline solutions have defined the formal potentials of Np in strong base and reveal that mononuclear hydrolysis products dominate the speciation of neptunium (and by analogy U and Pu) in concentrated alkali. The results of these observations are discussed in the context of alkaline sludge washing procedures associated with waste tank remediation. This work supported by the Assistant Secretary for Environmental Management under U.S. Department of Energy Contract Numbers W-31-109ENG-38 at Argonne National Laboratory and DE-AC03-76SF0098 at Lawrence Berkeley National Laboratory. (author)

  5. Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Keli He

    2016-09-01

    Full Text Available Ammonium stripping has gained increasing interest for nitrogen recovery in anaerobically digested effluents. However, the stripped effluents often still do not meet discharge standards, having high pH and residual pollutants. Constructed wetlands (CWs are an easy to operate ecosystem and have a long history of application in treatment of wastewaters with extreme pH, such as acid mine drainage. However, knowledge of the mechanistic details involved in the use of CWs to treat high alkaline drainage, such as stripped effluent, is insufficient. This study explored the feasibility and effectiveness of using three sub-surface horizontal flow CWs to treat high alkaline stripped effluent (pH > 10. Two intensification strategies—intermittent aeration and effluent recirculation—were evaluated to enhance nitrogen depuration performance. The results show that the treatment of alkaline stripped effluent is feasible due to the high buffering capacity of the wetlands. Effluent recirculation combined with intermittent artificial aeration improves nitrogen removal, with 71% total nitrogen (TN removal. Ammonia volatilization from the surface of the wetlands in high alkaline conditions only contributed to 3% of the total removed ammonium. The microbial abundance and activity had significant diversity for the various enhancement strategies used in the constructed wetland systems. Anammox is an important process for nitrogen removal in CWs treating alkaline stripped effluent, and possible enhancements of this process should be investigated further.

  6. Iron tetrasulfophthalocyanine functionalized graphene nanosheets for oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    A Fe-based macromolecule composite was synthesized by functionalizing graphene nanosheets (GNs) with iron tetrasulfophthalocyanine (FeTSPc), a non-noble electrocatalyst for oxygen reduction reaction (ORR) in alkaline media in a simple and greener way. Utilizing GNs as a support can avoid FeTSPc being washed away from the electrode surface and catalyze ORR in alkaline media. The predominant properties of GNs not only make Fe center in the N4-ring protrude to serve as a catalyst, but also increase the active sites, resulting in excellent ORR catalytic activity in alkaline electrolytes. Conversely, by taking advantage of the excellent solubility of FeTSPc which helps to prevent the aggregation of GNs, the composite (demonstrated as GNs-FeTSPc) showed a long-term stability in alkaline aqueous solution and maintained the catalytic activity. Better yet, the composite GNs-FeTSPc is insensitive to CO due to the special structure of FeTSPc and can facilitate ORR with a direct four-electron process which was demonstrated by the rotating disc electrode (RDE) results. Clearly, our nanohybrid catalysts show great potential in the large-scale practical application of alkaline fuel cells (AFCs)

  7. Methylene blue adsorption of GMZ bentonite and the effect of hyper-alkaline solution erosion

    International Nuclear Information System (INIS)

    The method of combining the halo method with the spectrometer method, was used to study on the Methylene blue (MB) adsorption of Gaomiaozi (GMZ) bentonite, which had been eroded by hyper-alkaline solution, to investigate the mechanism of the effect of hyper-alkaline pore water on the buffer/backfill properties of GMZ bentonite. Results present, method employed in this article is brief and feasible, and high accuracy; The total specific surface area calculated by the test of MB adsorption is more accurate than the method of ethylene glycol monomethyl ether (EGIVIE). The MB adsorption of samples, which had been eroded by hyper-alkaline solution, decreases with the increase of the concentration of hyper-alkaline solution, and the change law agrees with the variation of the mass percentage of montmorillonite in bentonite tested by X- Ray diffraction (XRD). Therefore, the erosion of hyper-alkaline pore water might dissolve montmorillonite, which is the effective composition of bentonite, and destroy the tetrahedron- octahedron-tetrahedron (T-O-T) structure of montmorillonite, then lead to the decrease of cation exchange capability and the specific surface area of montmorillonite, and the the macroscopic expressions are the decrease of MB adsorption, the swelling potential and the increase of permeability. (authors)

  8. Effects of alkalinity sources on the stability of anaerobic digestion from food waste.

    Science.gov (United States)

    Chen, Shujun; Zhang, Jishi; Wang, Xikui

    2015-11-01

    This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW. PMID:26391806

  9. Effect of alkaline treatment on the characterization of zalacca midrib wastes fibers

    Science.gov (United States)

    Raharjo, Wahyu Purwo; Soenoko, Rudy; Purnowidodo, Anindito; Choiron, Mochammad Agus; Triyono

    2016-03-01

    Nowadays, the need for new materials is urgent due to the scarcity of conventional materials and energy resources. The environmental issue requires materials which are biodegradable. There are many composites, arranged from synthetic fibers and matrix, which cannot be recyclable after their lifetime. In this research, the utilization potency of zalacca midrib wastes for their fibers as composite reinforcement were investigated, especially after the alkaline treatment to improve their characteristics. The influence of alkaline treatment on the density, functional groups of the fiber surface, thermal stability and crystallinity were measured and/or analyzed by linear-density-and-diameter-calculation, FTIR, TGA-DTA and XRD, respectively. The result showed that the zalacca midrib fibers had lower density than synthetic fibers and several natural fibers. Analysis of FTIR spectra indicated that the alkaline treatment of NaOH slightly raised their density because it removed several functional groups which attributed to the hemicellulose and lignin. TGA-DTA analysis indicated that zalacca fibers had good thermal stability until temperature of 220°C and it was improved by alkaline treatment. XRD analysis showed that the crystallinity of zalacca fibers was higher than several natural fibers like rice straw, sorghum stem and wheat straw fibers. Their crystallinity index was higher than wheat straw fiber. The alkaline treatment increases the crystallinity and crystallinity index rather than untreated fibers.

  10. [Inhibition of alkaline phosphatase I of Pichia guilliermondii yeast in vitro and in vivo].

    Science.gov (United States)

    Sibirnyi, A A; Shavlovskii, G M

    1978-01-01

    The rate of p-nitrophenyl phosphate and flavin mononucleotide (FMN) hydrolysis by the partially purified preparation of alkaline phosphatase I of Pichia guilliermondii flavinogenic yeast was studied as affected by different substrates and inorganic ions. Their Km was established to be 2.0 X 10(-4) m and 2.5 X 10(-4) M, respectively. Dephosphorylation of p-nitrophenylphosphate and FMN was inhibited competitively by beta-glycerophosphate (Ki = 3.1 X 10(-3) M, respectively). The presence of inorganic phosphate ions in the reaction mixture decreases or removes inhibition of these compounds hydrolysis by other substrates of alkaline phosphatase I. The activity of alkaline phosphatase I increases in the presence of Mg2+ and was strongly inhibited in the presence of Be2+, Cu2+, Zn2+, Cd2+ and inorganic phosphate, the mixture of Be2+ and F- being the most effective. This mixture inhibited the phosphatase activity of the partially purified preparation of alkaline phosphatase I of the cell-free extract as well as of intact cells in both the alkaline and acid zones of pH (8.6 and 5.5, respectively). Incubation of the washed iron-deficient P. guilliermondii cells in the presence of Be2+ and F- did not result in accumulation of FMN in the yeast culture. A possible role of nonspecific phosphomonoesterases in hydrolysis of FMN in vivo is discussed. PMID:208203

  11. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential.

    Science.gov (United States)

    Chowdhury, Saikat; Bolan, Nanthi S; Seshadri, Balaji; Kunhikrishnan, Anitha; Wijesekara, Hasintha; Xu, Yilu; Yang, Jianjun; Kim, Geon-Ha; Sparks, Donald; Rumpel, Cornelia

    2016-04-01

    Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals. PMID:26381784

  12. AMP makes native snake muscle fructose-1,6-bisphosphatase to an alkaline enzyme

    Institute of Scientific and Technical Information of China (English)

    赵辅昆; 徐松琴; 杜立林; 许根俊

    2000-01-01

    A substance in the crude preparation of NADP+ has been found, which activates snake muscle fructose-1,6-bisphosphatase at pH 9.2 and inhibits the enzyme at pH 7.5. After isolation and extensive characterization, the substance has been determined to be AMP. The activation depends on the concentrations of Mg2+ and could be observed only at concentrations above 1 mmol/L. In the presence of AMP, snake muscle fructose-1,6-bisphosphatase resembles an alkaline enzyme. Kinetic studies indicate that AMP and Mg2+ competitively regulate the activity of the enzyme. AMP releases the inhibition of Mg2+ at high concentration at alkaline pH. It has been reported that fructose-1,6-bisphosphatase with a pH optimum in the alkaline region is caused by limited proteolysis. AMP is also able to make fructose-1,6-bisphosphatase to be an alkaline enzyme. This finding indicates that proteolysis may not be the only reason for shift of the optimum pH of fructose-1,6-bisphosphatase to alkaline side and it may imply some significanc

  13. Low-alkaline cementitious grout for high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    The stratum disposal system for high-level nuclear waste mainly involves the use of natural bedrock, called the natural barrier, and over pack and the buffer, those are designated as the artificial barrier. Grouting technology is indispensable for the environment that the crack and the underground water flow of the bedrock bring about mass transport, also ratio active component. However, typical cementitious grout material is strongly alkaline and the alkalinity that it imparts to the barrier material, especially to mineral substances in the bedrock or buffer, is suspected to compromise the performance of the barrier system over the long term. In order to avoid this undesirable alkaline influence, we have developed a procedure for reducing the alkaline state in cementitious materials by employing high volumes of additives such as pozzolanic materials. In this paper, we discuss the basic properties of low-alkaline cementitious grout, and explain how to select and mix appropriate proportions of grout to accomplish the end-objective, i.e., develop an efficient stratum disposal system. We also elaborate on progress achieved in research on this topic over the last two years. (author)

  14. Spectroscopic characterization of manganese-doped alkaline earth lead zinc phosphate glasses

    Indian Academy of Sciences (India)

    S Sreehari Sastry; B Rupa Venkateswara Rao

    2015-04-01

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four bands which are characteristic of Mn(II) in distorted octahedral site symmetry. The crystal field parameter Dq and Racah interelectronic-repulsion parameters and have been evaluated. All investigated samples exhibit EPR signals which are characteristic to the Mn2+ ions. The shapes of spectra are also changed with varying alkaline earth ions content. FTIR spectra show specific vibrations of phosphate units. The characteristic Raman bands of these glasses due to stretching and bending vibrations were identified and analysed by varying alkaline earth content. The intensity and frequency variations for the characteristic phosphate group vibrations have been correlated with the changes of the structural units present in these glasses. Depolymerization of the phosphate chains in all the glasses is observed with replacement of alkaline earth content by spectroscopic studies. This leads to a strong decrease of the average chain length and a small decrease of the average P–O–P bridging angle with replacement of alkaline earth content.

  15. Effects of Saline and Alkaline Stresses on Growth and Physiological Changes in Oat (Avena sativa L. Seedlings

    Directory of Open Access Journals (Sweden)

    Zhanwu GAO

    2014-12-01

    Full Text Available Two neutral salts (NaCl and Na2SO4 and alkaline salts (NaHCO3 and Na2CO3 were both mixed in 2:1 ratio, and the effects of saline and alkaline stresses on growth and physiological changes in oat seedlings were explored. Result showed that biomass, water content and chlorophyll content decreased while cell membrane permeability significantly increased under alkaline stress. Saline stress did not have obvious effect on pH value in tissue fluids of shoot and root, but alkaline stress increased pH value in root tissue fluid. The contents of Na+, Na+/K+, SO42- increased more, and K+, NO3-,H2PO4- decreased more under alkaline stress, the Cl- content increased obviously under saline stress but had little change under alkaline stress. The increments of proline and organic acid were both greater under alkaline stress, but organic acid content kept the same level under saline stress. Alkaline stress caused more harmful effects on growth and physiological changes in oat seedlings especially broke the pH stability in root tissue fluid. Physiological adaptive mechanisms of oat seedlings under saline stress and alkaline stress were different, which mainly took the way of accumulating organic acid under alkali stress but accumulating Cl- under saline stress.

  16. A study of the direct dimethyl ether fuel cell using alkaline anolyte

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kan; Lao, Shao Jiang; Qin, Hai Ying; Li, Zhou Peng [Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Bin Hong [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2010-09-01

    The electrooxidation behavior of dimethyl ether (DME) dissolved in acidic, neutral or alkaline anolyte has been studied. The cyclic voltammetry measurements reveal that DME in alkaline anolyte demonstrates higher electrooxidation reactivity than that in acidic or neutral anolyte. With increasing the NaOH concentration in the anolyte, the electrooxidation reactivity of DME can be further improved. Direct dimethyl ether fuel cells (DDFCs) are assembled by using Nafion membrane as the electrolyte, Pt/C as the cathode catalyst, and Pt-Ru/C as the anode catalyst. It is found that the use of alkaline anolyte can significantly improve the performance of DDFCs. A maximum power density of 60 mW cm{sup -2} has been achieved when operating the DDFC at 80 C under ambient pressure. (author)

  17. Acellular comet assay: A tool for assessing variables influencing the alkaline comet assay

    International Nuclear Information System (INIS)

    In this study, an acellular modification to the alkaline comet assay to further evaluate key variables within the assay that may influence the outcome of genotoxicity studies is described. This acellular comet assay can detect differences of 0.2 Gy of 60Co gamma-ray radiation between 0 and 1 Gy and differences of 1 Gy between 0 and 8 Gy; thus, this assay is applicable for a wide range of DNA damage levels. It is also shown that DNA damage from different radiation energies was not significantly different from 60Co gamma-ray. This assay displayed a statistical increase in DNA damage due to uncontrolled exposure to natural light; however, the slope of the dose-response curve for light-exposed samples was similar to that for samples protected from light. A comparison of the alkaline comet assay with the acellular comet assay allowed for the intrinsic repair capacity of the alkaline comet assay to be quantified. (authors)

  18. Synthesis, characterization and antimicrobial activity of alkaline ion-exchanged ZnO/bentonite nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Hamideh Pouraboulghasem; Mohammad Ghorbanpour; Razieh Shayegh; Samaneh Lotfiman

    2016-01-01

    Nanocomposites of zinc/bentonite clay were synthesized for use as an antibacterial material by a quick and simple alkaline ion exchange method. The synthesis of zinc doped bentonite nanocomposite was accomplished by placing bentonite in a melting bath of ZnSO4 for 10, 20, 40, 60 and 90 min. The complexes were characterized by XRD, SEM and DRS. XRD analyses and SEM observations confirmed the diffusion of zinc to the clay surfaces. Antibacterial activity tests againstEscherichia coli showed that bentonite did not present any antibacterial properties, but after alkaline ion exchange treatment, inhibition was noted. The highest antibacterial activity was observed with ZnO/bentonite composite alkaline ion exchange for 60 and 90 min. Interestingly, the leaching test indicated that ZnO/bentonite did not present any risk for drinking water treatment.

  19. Application of intracellular alkaline phosphatase activity measurement in detection of neutrophil adherence in vitro.

    Science.gov (United States)

    Bednarska, Katarzyna; Klink, Magdalena; Sulowska, Zofia

    2006-01-01

    We have proposed the use of the fluorimetric method with 4-methylumbelliferyl phosphate (4-MUP) specific substrate for the alkaline phosphatase determination in the neutrophil adhesion assay. We provide evidence that the endogenous neutrophil alkaline phosphatase (NAP) activity evaluation is reliable to quantify neutrophil adhesion at a wide range of cell numbers (10(4)-10(6)). The results obtained by fluorimetric NAP activity test correlate to the results of adherence evaluated using the MTT reduction assay. The fluorimetric NAP activity test may be applied for resting as well as activated neutrophils without the risk of the activators interferences into the test. The alkaline phosphatase survey with the use of 4-MUP substrate is recommended herein as a sensitive, repeatable, simple, and reliable method of the neutrophil adherence determination in vitro. PMID:17047286

  20. Eichrom's ABEC trademark resins: Alkaline radioactive waste treatment, radiopharmaceutical, and potential hydrometallurgical applications

    International Nuclear Information System (INIS)

    Eichrom's ABEC trademark resins selectivity extract certain anions from high ionic strength acidic, neutral, or strongly alkaline media, and solute stripping can be accomplished by eluting with water. ABEC resins are stable to pH extreme and radiolysis and operate in high ionic strength and/or alkaline solutions where anion-exchange is often ineffective. Potential applications of the ABEC materials include heavy metal and ReO4- separations in hydrometallurgy and purification of perrhenate iodide, and iodate in radiopharmaceutical production. Separation of 99mTcO4- from its 99MoO42- parent and stripping with water or physiological saline solution have been demonstrated for radiopharmaceutical applications. Removal of 99TcO4- and 129I- from alkaline tank wastes has also been successfully demonstrated. The authors will discuss the scale-up studies, process-scale testing, and market development of this new extraction material

  1. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    Science.gov (United States)

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank. PMID:27268439

  2. Comparative evaluation of different hemicelluloses isolation processes integrated with alkaline cooking - HemiEx

    Energy Technology Data Exchange (ETDEWEB)

    Sixta, H.; Testova, L.; Rauhala, T. (and others) (Helsinki Univ. of Technology, Dept. of Forest Products Technology, Espoo (Finland))

    2009-10-15

    HemiEx is a project focusing on the selective extraction of hemicelluloses from hardwood species in connection with alkaline pulping and study of different chemical aspects of the process. The project scope includes investigation of hemicelluloses isolation methods i.e. water prehydrolysis and alkaline pre-extraction prior to and novel solvents extraction subsequent to alkaline pulping. The sugar fraction of the extracts is then separated from other wood degradation products by means of membrane separation technology before it is converted to furanic compounds and xylose-based food additives. As regards pulp production, both dissolving and paper pulps are aimed at. The effect of pretreatment conditions on papermaking properties of pulp will also be investigated. (orig.)

  3. Comparative evaluation of different hemicelluloses isolation processes integrated with alkaline cooking - HemiEx

    Energy Technology Data Exchange (ETDEWEB)

    Sixta, H.; Testova, L.; Rauhala, T. (and others) (Aalto Univ. School of Science and Technology, Espoo (Finland). Dept. of Forest Products Technology)

    2010-10-15

    HemiEx is a project focusing on the selective extraction of hemicelluloses from hardwood species in connection with alkaline pulping and study of different chemical aspects of the process. The project scope includes investigation of hemicelluloses isolation methods i.e. water prehydrolysis and alkaline pre-extraction prior to and subsequent to alkaline pulping. The sugar fraction of the extracts is then separated from other wood degradation products by means of membrane separation technology before it is converted to furanic compounds and xylose-based food additives. As regards pulp production, both dissolving and paper pulps are aimed at. The effect of pretreatment conditions on papermaking properties of pulp will also be investigated. (orig.)

  4. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions (3) (Summary)

    International Nuclear Information System (INIS)

    This report is the summary of JNC-TJ--8400-2005-002. 1) Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Consolidation test and permeability test are carried out in order to as. exchanged with nitrate. It is noted that permeability of bentonite increased at from 40 to 200 times by cation exchange. 2) Permeability of hyper alkaline solution is almost same to water. Permeability of hyper alkaline solution with nitrates increased corresponding to rising ion strength. 3) The results of batch of column test were simulated. The model can explain clearly the results in short period. This can estimate leaching ratio and secondary minerals. The model can simulate the experimental results by two types of velocity theory on altering bentonite. (author)

  5. Anodic dissolution of gold in alkaline solutions containing thiourea, thiosulfate and sulfite ions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Gold dissolves electrochemically in alkaline solutions containing ligands to form complex ions with gold ion. Therefore, selective leaching of noble metals is expected without dissolution of base metals such as steels, aluminum alloys in scrap treatment. Gold electrodes were investigated using linear sweep voltammetry, EQCM method and potentiostatic electrolysis in alkaline solutions containing thiourea, Na2SO3 and Na2S2O3. The solution composition, electrode potential affect gold dissolution rate and current efficiency. The gold dissolved from anode electrode forms complex ions, suspension particles as compound precipitates and deposits on cathode electrode as a metal. Anodic efficiency for gold dissolution is between 10% and 22%. This is caused by the oxidation decomposition of sulfite ions and thiourea. The stability of the alkaline solution containing these elements was also estimated by capillary electrophoresis technique.

  6. pH recovery from intracellular alkalinization in Retzius neurones of the leech central nervous system.

    Science.gov (United States)

    Frey, G; Schlue, W R

    1993-03-01

    1. Neutral-carrier pH-sensitive microelectrodes were used to investigate intracellular pH (pHi) recovery from alkalinization in leech Retzius neurones in Hepes- and in CO2-HCO3(-)-buffered solution. The Retzius neurones were alkaline loaded by the addition and subsequent removal of 16 mM acetate, by changing from 5% CO2-27 mM HCO3- to 2% CO2-11 mM HCO3- or by changing from CO2-HCO3(-)- to Hepes-buffered solution. 2. In Hepes-buffered solution (pH 7.4) the mean pHi was 7.29 +/- 0.11 and the mean membrane potential -44.7 +/- 5.9 mV (mean +/- S.D.; n = 83). 3. The rate of pHi recovery from alkalinization increased with decreasing pH of the bathing medium (pHb). pHi changed about 0.30 pH units for a pHb unit change. 4. A decrease of extracellular buffer concentration (Hepes concentration lowered from 20 to 5 mM) caused an acidification of extracellular and intracellular pH and an acceleration of pHi recovery from alkalinization. 5. A depolarization of the Retzius cell membrane-induced by increasing the K+ concentration of the bathing medium from 4 to 20 mM (delta Em = 16.5 +/- 5.5 mV) or from 4 to 40 mM (delta Em = 24.8 +/- 3.5 mV)--evoked a decrease of pHi and an acceleration of pHi recovery from alkalinization. 6. The H+ current blocker Zn2+ (0.5 mM) inhibited pHi recovery from alkalinization at resting membrane potential as well as during depolarization. The inhibition was more pronounced during depolarization. 7. In Cl(-)-free, CO2-HCO3(-)-buffered solution pHi recovery from an alkaline load by changing from 5% CO2-27 mM HCO3- to 2% CO2-11 mM HCO3- was slowed by 48-71%. The rate of pHi recovery from an alkaline load induced by changing from CO2-HCO3- to Hepes buffer was reduced by 33-56% in Cl(-)-free solution. The removal of external Cl- did not affect pHi recovery in Hepes-buffered solution. 8. The pHi recovery from alkalinization was DIDS-insensitive in CO2-HCO3(-)- as in Hepes-buffered solutions and was not slowed in the absence of external Na+. 9. It is

  7. Correlation of acid rain with the distributions of acid and alkaline elements in aerosols

    International Nuclear Information System (INIS)

    Acid rain often appeared both in Guiyang city of Guizhou province and Chongqing city of Sichuan province in the southwest of China. Aerosol samples in these two cities were collected by Andersen cascade sampler during the spring and autumn of 1995 respectively. The contents of 18 elements in the aerosol particles were analyzed by PIXE. The distributions of acid elements such as S, Cl and alkaline elements such as Ca, K in the aerosol samples from these two cities were calculated. The comparison of the distributions of acid and alkaline elements in the aerosols samples was made between these two cities and Beijing where no acid rain was found. The results showed that the acid rain in the southwest of China was caused by the dominant concentration of acid elements in the aerosol particles, which mainly resulted from the coal combustion and the lower alkalinity of soil in this area

  8. Studies of community structure and seasonal dynamics of planktonic copepods in saline-alkaline ponds

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen; DONG Shuanglin

    2005-01-01

    Species abundance and seasonal succession of copepods in aline-alkaline ponds were studied in Zhaodian Fish Farm, Gaoqing County, Shandong Province, from 5 April 1997 to 1 September 1998. The results indicated that in the conditions of salinity ranging from 1.36 to 20 g/L, total alkalinity changing from 2.4 to 7.2 mmol/L and pH 8-9, zooplankton in saline-alkaline ponds was composed of freshwater salt-tolerated species or halophile species, some of which are halobiont species and usually occurs in freshwater In our study, copepods were predominant in many fish-culture ponds and all control ponds without fishes in spring, late autumn and early winter Dominant species of copepods were Sinocalanus tenellus, Cyclops vicinus, Thermocyclops taihokuensis. The biomass of copepods in the control ponds without fishes was higher than that of the fish-culture ponds. ponds.

  9. Alkaline degradation of organic materials contained in TRU wastes under repository conditions

    International Nuclear Information System (INIS)

    Alkaline degradation tests for 9 organic materials were conducted under the conditions of TRU waste disposal: anaerobic alkaline conditions. The tests were carried out at 90degC for 91 days. The sample materials for the tests were selected from the standpoint of constituent organic materials of TRU wastes. It has been found that cellulose and plastic solidified products are degraded relatively easily and that rubbers are difficult to degrade. It could be presumed that the alkaline degradation of organic materials occurs starting from the functional group in the material. Therefore, the degree of degradation difficulty is expected to be dependent on the kinds of functional group contained in the organic material. (author)

  10. Entrappment of alkaline protease and β-galactosidase in radiation stitched together poly-N-vinylcaprolactam

    International Nuclear Information System (INIS)

    The gel formations by poly-N-vinylcaprolactam upon its γ-irradiation by the 20-25 kGy dose as a results of partial polymer stitching together is shown, which is confirmed by the CD-and thermogravimetric data. By the alkaline protease and β-galactosidase entrapment in poly-N- vinylcaprolactam stitched together by γ-irradiation, the active preparations are obtained with 90-98 % and 30-35 % activity retained for alkaline protease and β-galactosidase, respectively. The increased stability of alkaline protease at acidic pH values and higher temperature was noted, and for β-galactosidase - the possibility of repeated use of the obtained preparation for lactose hydrolysis

  11. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  12. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  13. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.

    Science.gov (United States)

    Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G

    2016-07-15

    There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life. PMID:27060657

  14. [Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress].

    Science.gov (United States)

    Pan, Xiong-bo; Xiang, Li-xia; Hu, Xiao-hui; Ren, Wen-qi; Zhang, Li; Ni, Xin-xin

    2016-02-01

    Two cultivars of tomato (Solanum lycopersicum, cvs. 'Jinpengchaoguan' and 'Zhongza No. 9', with the former being more tolerant to saline-alkaline stress) seedlings grown hydroponically were subjected to salinity-alkalinity stress condition (NaCl: Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) without or with foliar application of 0.25 mmol . L-1 spermidine (Spd), and the root morphology and physiological characteristics of mitochondrial membrane were analyzed 8 days after treatment, to explore the protective effects of exogenous Spd on mitochondrial function in tomato roots under salinity-alkalinity stress. The results showed that the salinity-alkalinity stress increased the concentrations of both mitochondrial H2O2 and MDA as well as the mitochondrial membrane permeability in the roots of the two cultivars, while it decreased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity, which impaired the mitochondria and therefore inhibited the root growth; and these effects were more obvious in 'Zhongza No. 9' than in 'Jinpengechaoguan'. Under the salinity-alkalinity stress, foliar application Spd could effectively decrease the concentrations of mitochondrial H2O2 and MDA and mitochondrial membrane permeability, while increased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity. These results suggested that exogenous Spd could effectively mitigate the damage on mitochondria induced by salinity-alkalinity stress, and the alleviation effect was more obvious in 'Zhongza No. 9' than in 'Jinpengchaoguan'. PMID:27396122

  15. Multi proxy approach for the formation of calcium carbonates in alkaline man-made environments

    Science.gov (United States)

    Rinder, T.; Dietzel, M.; Leis, A.

    2009-04-01

    The formation of calcium carbonates, e.g. in drainage systems of tunnels, may be induced by degassing of CO2-rich groundwater which enters the building. However, the dissolution of portlandite (Ca(OH)2) from cements or the shotcrete of the tunnel wall bears an additional and immense potential for the formation of carbonates from alkaline solutions. Variations in trace element incorporation and distribution of the stable isotopes of carbon and oxygen in the precipitated calcium carbonates may represent powerful tools to identify individual mechanisms for carbonate formation. As portlandite dissolves, highly alkaline solutions are obtained. In this case, precipitation of calcium carbonate can be related to the absorption of CO2 from the atmosphere. Isotopic analyses of the calcite show that fixation of CO2 from the Earth's atmosphere leads to significantly lighter ^13Ccalcite values (down to -25 o/oo, VPDB) as expected for the fixation of groundwater carbonate (typical ^13Ccalcite values between -10 and -16o/oo, VPDB). The evolution of Sr/Ca ratios in the alkaline drainage solutions and in the corresponding calcium carbonate precipitation provides insight into the dissolution process at the concrete with respect to the amount of primarily dissolved portlandite from the cement. Moreover, an inverse relationship between Mg/Ca and Sr/Ca ratios is observed due to the liberation of aqueous strontium by the dissolution of portlandite and the formation of brucite (Mg(OH)2) at alkaline conditions. Less incorporation of magnesium in the calcite structure is a strong indicator for carbonate precipitation from highly alkaline environments. Applications of such multi proxy approaches are discussed with case studies. Main tasks are the reconstruction of the environmental conditions during primary CaCO3 formation and monitoring of ongoing precipitation of calcium carbonates and cement-water interaction in alkaline man-made environments.

  16. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  17. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Baei, Mohammad T. [Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Golestan (Iran, Islamic Republic of); Bagheri, Zargham [Physics Group, Science Department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. Black-Right-Pointing-Pointer The alkaline cation adsorption may raise potential barrier of the electron emission. Black-Right-Pointing-Pointer The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li{sup +}, Na{sup +}, and K{sup +}) and alkaline earth (Be{sup 2+}, Mg{sup 2+}, and Ca{sup 2+}) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54-1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be{sup 2+} Much-Greater-Than Mg{sup 2+} Much-Greater-Than Ca{sup 2+} Much-Greater-Than Li{sup +} {approx} Na{sup +} {approx} K{sup +}.

  18. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    OpenAIRE

    Martínez, S.; Acción, F.; Puertas, F.

    1992-01-01

    Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide), employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium) allowed us to determine the Lambe...

  19. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Frison, A.;

    2016-01-01

    , enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55 °C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas......Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from...

  20. Behaviour of alkaline cement mortars reinforced with acrylic and polypropylene fibres

    OpenAIRE

    Puertas, P.; Amat, T.; Vázquez, T.

    2000-01-01

    In the present work, the behaviour of alkaline cement mortars reinforced with fibres of different nature (acrylic and polypropylene fibres) is studied. Also the chemical stability of those fibres in strong alkaline medium has been investigated. Three different matrixes have been used: glass blast furnace slag activated with NaOH 2M (room temperature, 22 ºC); fly ash activated with NaOH 8M, cured at 85ºC during 24 hours and 50% fly ash / 50% slag activated with NaOH 8M, room temperature. The f...

  1. Alkaline-sulphate activation processes of a Spanish blast furnace slag

    OpenAIRE

    Fernández Jiménez, A.; Puertas, F.; Fernández-Carrasco, L.

    1996-01-01

    Alkaline-sulphate activation processes of a Spanish granulated blast furnace slag (Avilés, Ensidesa) have been studied. Activator solutions used were: deionized water (as reference solution), Ca(OH)2 (3,5∙10-3N), NaOH (1N), Na2CO3 (2N), CaSO4∙2H2O (3,0∙10-3N) at 25ºC. The influence of the nature of alkaline or sulphate solution cation...

  2. Benomyl inhibits phosphorus transport but not fungal alkaline phosphatase activity in a Glomus–cucumber symbiosis

    DEFF Research Database (Denmark)

    Larsen, John; Thingstrup, Ida; Jakobsen, Iver;

    1996-01-01

    Short-term effects of benomyl on the arbuscular mycorrhizal fungus Glomus caledonium (Nicol. & Gerd.) Trappe and Gerdeman associated with Cucumis sativus L. were studied by measuring effects on fungal P transport and on fungal alkaline phosphatase activity. Mycorrhizal plants were grown in three...... when benomyl was applied to the HC at 10 µg g-1 soil, whereas the uptake of 32P from RHC I roots + hyphae) was reduced only at the highest dose of application to the RHC (100 µ g g-1 soil). In contrast to the marked reduction of benomyl on fungal P transport, the activity of fungal alkaline phosphatase...

  3. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    Science.gov (United States)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  4. Investigation of the repair of single-strand breaks in human DNA using alkaline gel electrophoresis

    International Nuclear Information System (INIS)

    Unstimulated lymphocytes from eight healthy persons were exposed to 10-, 30-, and 100-Gy doses of 60Co gamma radiation. The repair of damaged DNA was measured by (1) alkaline gel electrophoresis (extracted DNA loaded on 0.25% agarose gel, run at 1 V/cm for 39-44 h) at 0, 1, and 2 h after exposure and (2) incorporation of [3H]thymidine into unstimulated lymphocytes in the presence of 2 mM hydroxyurea 1 and 2 h after exposure. Both methods--alkaline gel electrophoresis and thymidine incorporation--showed that repair was completed within 2 h

  5. Long-term and seasonal variations in CO2: linkages to catchment alkalinity generation

    OpenAIRE

    Norton, S. A.; B.J. Cosby; Fernandez, I.J.; J.S. Kahl; Robbins Church, M.

    2002-01-01

    As atmospheric emissions of S have declined in the Northern Hemisphere, there has been an expectation of increased pH and alkalinity in streams believed to have been acidified by excess S and N. Many streams and lakes have not recovered. Evidence from East Bear Brook in Maine, USA and modelling with the groundwater acid-base model MAGIC (Cosby et al. 1985a,b) indicate that seasonal and yearly variations in soil PCO2 are adequate to enhance or even reverse acid-base (alkalin...

  6. Long-term and seasonal variations in CO2: linkages to catchment alkalinity generation

    OpenAIRE

    Norton, S. A.; B.J. Cosby; Fernandez, I.J.; J.S. Kahl; Robbins Church, M.

    2001-01-01

    As atmospheric emissions of S have declined in the Northern Hemisphere, there has been an expectation of increased pH and alkalinity in streams believed to have been acidified by excess S and N. Many streams and lakes have not recovered. Evidence from East Bear Brook in Maine, USA and modelling with the groundwater acid-base model MAGIC (Cosby et al. 1985a,b) indicate that seasonal and yearly variations in soil PCO2 are adequate to enhance or even reverse acid-base (alkalinity) changes antic...

  7. Identification of a macro-alkaline phosphatase complex in a patient with inflammatory bowel disease.

    Science.gov (United States)

    McTaggart, Malcolm P; Rawson, Catherine; Lawrence, David; Raney, Barbara S; Jaundrill, Linnet; Miller, Lorna A; Murtinho-Braga, Joseph; Kearney, Edward M

    2012-07-01

    We report the rare finding of a macro-alkaline phosphatase (macroALP) complex in a patient with a previously unexplained raised alkaline phosphatase activity. The clinical symptoms were persistent, daily diarrhoea for two months with blood in the stool. The patient was subsequently diagnosed with inflammatory bowel disease, specifically ulcerative colitis, following a rectal biopsy and colonoscopy. Two cases of macroALP associated with ulcerative colitis have been reported before, suggesting there could be an increased prevalence of macroALP in these patients. PMID:22454544

  8. A micro alkaline direct ethanol fuel cell with platinum-free catalysts

    International Nuclear Information System (INIS)

    This paper presents the fabrication and characterization of a micro alkaline direct ethanol fuel cell. The device has been conceived as a feasibility demonstrator, using microtechnologies for the fabrication of the current collectors and traditional techniques for the membrane electrode assembly production. The fuel cell works in passive mode, as expected for the simplicity required for micro power systems. Non-noble catalysts have been used in order to implement the main advantage of alkaline systems, showing the feasibility of such a device as a potential very-low-cost power device at mini- and micro scales. (paper)

  9. Acid equilibrium during bioleaching of alkaline low-grade sulfide copper ore

    Institute of Scientific and Technical Information of China (English)

    WEN Jiankang; RUAN Renman; YAO Guocheng; SONG Yongsheng

    2006-01-01

    This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore.Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid production carried out simultaneously because the auxiliary agents can be oxidized by bacteria and the oxidation products involve acid. The acid required for dissolving alkaline gangue during bacterial leaching is produced, and acid equilibrium is reached during the ore bio-leaching. The recovery of copper reaches more than 95%.

  10. Extracellular expression of alkaline phytase in Pichia pastoris: Influence of signal peptides, promoters and growth medium

    OpenAIRE

    Mimi Yang; Sasha Teymorian; Philip Olivares; Pushpalatha P.N. Murthy

    2015-01-01

    Alkaline phytase isolated from pollen grains of Lilium longiflorum (LlALP) possesses unique catalytic and thermal stability properties that suggest it has the potential to be used as a feed supplement. However, substantial amounts of active enzymes are needed for animal feed studies and endogenous levels of LlALP in lily pollen are too low to provide the required amounts. Active rLlALP2 (coded by LlAlp2, one of two isoforms of alkaline phytase cDNA identified in lily pollen) has been successf...

  11. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    Science.gov (United States)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.

    2015-11-01

    Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  12. Age and genesis of carbonatites of the Khibiny alkaline massif (Rb and Sr isotope data)

    International Nuclear Information System (INIS)

    Rubidium and strontium isotope composition in six rocks and seven carbonatite minerals of the Khibiny alkaline massif is studied, isochrone is constructed. The obtained data testify to carbonite pallial sources. Though 87Sr/86Sr primary ratio in carbonatites of the Khibiny massif significantly exceeds this value for rocks and apatite deposits of the Khibiny massif. Consanguinity and belonging of the carbonatites from the Khibiny massif to universal Paleozoic complex of ultrabasic-alkaline rocks including giant massifs of agpaitic nepheline syenites - Khibiny, Lovozero aged about 365 mln years is shown

  13. Mechanism of Oxidation of L-Histidine by Heptavalent Manganese in Alkaline Medium

    OpenAIRE

    Jose, Timy P.; Nandibewoor, Sharanappa T.; Suresh M. Tuwar

    2005-01-01

    The kinetics of oxidation of L-histidine by manganese(VII) in aqueous alkaline medium at a constant ionic strength of 0.05 mol dm-3 was studied spectrophotometrically. The reaction between permanganate and L-histidine in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-histidine). The reaction is of first order in [KMnO4], less than unit order in [L-histidine] and [alkali]. Decrease in the dielectric constant of the medium decreases the rate of reaction. Effect of added products and ionic...

  14. Partitioning high-level waste from alkaline solution: A literature survey

    International Nuclear Information System (INIS)

    Most chemical partitioning procedures are designed for acidic feed solutions. However, the high-level waste solutions in the underground storage tanks at US Department of Energy defense production sites are alkaline. Effective partitioning procedures for alkaline solutions could decrease the need to acidify these solutions and to dissolve the solids in acid, which would simplify subsequent processing and decrease the generation of secondary waste. The author compiles candidate technologies from his review of the chemical literature, experience, and personal contacts. Several of these are recommended for evaluation

  15. Screening of Strains Producing Alkaline Protease from Soil and Study on the Conditions for Enzyme Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to screen strains producing alkaline protease from soil and study the conditions for enzyme production.[Method] Eight strains producing alkaline protease were isolated from soil through plate isolation,and the ability of enzyme production was measured by filter paper and Folin-phenol method.The strain with the strongest ability of enzyme production was screened as a candidate strain,then the factors influencing the ability of enzyme production was studied,finally the conditions for e...

  16. Evaluation of alkaline deconstruction processes for Brazilian new generation of eucalypt clones

    OpenAIRE

    Borges Gomes, Fernando José; Colodette, Jorge Luiz; Milanez, Augusto; Río Andrade, José Carlos del; dos Santos Muguet, Marcelo Coelho; Ribas Batalha, Larisse Aparecida; Gomez Gouvêa, Adriana de Fátima

    2015-01-01

    Wood utilization for pulp and paper and biorefinery applications requires some kind of mechanical and/or physical–chemical pretreatment. Among the chemical treatments the alkaline ones are the most used worldwide, although acid and solvent treatments have also being used. This paper deals with eucalypt wood deconstruction with alkaline processes including soda-AQ, soda-AQ-O2, soda-O2, and kraft. The kraft process is largely used by the pulp industry and is evaluated here only to serve as a re...

  17. Cyanide Degradation under Alkaline Conditions by a Strain of Fusarium solani Isolated from Contaminated Soils

    OpenAIRE

    Dumestre, A.; Chone, T.; Portal, J.; M. GERARD; Berthelin, J.

    1997-01-01

    Several cyanide-tolerant microorganisms have been selected from alkaline wastes and soils contaminated with cyanide. Among them, a fungus identified as Fusarium solani IHEM 8026 shows a good potential for cyanide biodegradation under alkaline conditions (pH 9.2 to 10.7). Results of K(sup14)CN biodegradation studies show that fungal metabolism seems to proceed by a two-step hydrolytic mechanism: (i) the first reaction involves the conversion of cyanide to formamide by a cyanide-hydrolyzing enz...

  18. Ocean-Based Alkalinity Enhancement: Mitigation Potential, Side Effects and the Fate of Added Alkalinity Assessed in an Earth System Model

    Science.gov (United States)

    Gonzalez, M. F.; Ilyina, T.

    2014-12-01

    Artificial ocean alkalinization (AOA) has been proposed as a mean to mitigate climate change and ocean acidification. Whilst the mitigation potential of this geo-engineering technology may sound promising, it poses environmental risks. Within the Priority Program "Climate Engineering" of the German Science Foundation (DFG), we investigate the mitigation potential of AOA to reduce atmospheric CO2 and counteract the consequences of ocean acidification. We are particularly interested in the residence time of the added alkalinity at the ocean surface because it must stay in the upper ocean in order to increase the oceanic CO2 uptake. The mitigation potential, risks and the unintended consequences of this geo-engineering method are also exhaustively studied. These questions are tackled through the analysis of different alkalinity enhancement scenarios in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology (MPI-ESM) in a configuration based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Model scenarios are designed so that AOA is performed to keep the atmospheric CO2 concentrations similar to values of the stabilization scenario RCP4.5, while fossil fuel CO2 emissions follow the pathway of the high-CO2 scenario RCP8.5. Alkalinity is added globally into the upper 12 meters of the ocean in different seasons and years. We found that on the time scale of relevance (i.e. from years to decades), season and location are key aspects to take into account in the implementation of AOA. This is because of inhomogeneous vertical mixing of added alkalinity due to the mixed layer depth which is established by the season. We also show that the rate of addition greatly determines impact and outcome of this geo-engineering method. Changes driven by the implementation of this method in the ocean biogeochemistry are also discussed. For instance, the associated changes in the carbon cycle, marine oxygen levels, saturation state of

  19. 75 FR 80826 - Compliance Policy Guide Sec. 527.300 Dairy Products-Microbial Contaminants and Alkaline...

    Science.gov (United States)

    2010-12-23

    ... In the Federal Register of December 1, 2009 (74 FR 62795), FDA made available draft CPG Sec. 527.300...--Microbial Contaminants and Alkaline Phosphatase Activity; Availability AGENCY: Food and Drug Administration... Compliance Policy Guide Sec. 527.300 Dairy Products-- Microbial Contaminants and Alkaline...

  20. ALKALINE AND STRETFORD SCRUBBING TESTS FOR H2S REMOVAL FROM IN-SITU OIL RETORT OFFGAS

    Science.gov (United States)

    The report gives results of an evaluation of two mobile pilot-plant scrubbers (one alkaline, the other Stretford) for removing reduced sulfur compounds from the offgas of an in-situ retort at Geokinetics. The alkaline scrubber had a tray tower and a venturi contactor used alterna...

  1. SIMULATION AND OPTIMIZATION OF TIMBER ALKALINE PULPING PROCESS IN PRESENCE OF SALTS OF SOME METALS HAVING MIXED VALENCE

    OpenAIRE

    I. Karpunin

    2012-01-01

    Process of alkaline pulping in the presence of salts of some metals having mixed valence has been simulated on the basis of the executed investigations. The paper reveals that optimization of alkaline (sulphate) pulping depends on chemical nature and metal and its amount which is introduced in the form of salt.

  2. SIMULATION AND OPTIMIZATION OF TIMBER ALKALINE PULPING PROCESS IN PRESENCE OF SALTS OF SOME METALS HAVING MIXED VALENCE

    Directory of Open Access Journals (Sweden)

    I. Karpunin

    2012-01-01

    Full Text Available Process of alkaline pulping in the presence of salts of some metals having mixed valence has been simulated on the basis of the executed investigations. The paper reveals that optimization of alkaline (sulphate pulping depends on chemical nature and metal and its amount which is introduced in the form of salt.

  3. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    Science.gov (United States)

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (Pskin, could serve as a potential source of functional food ingredients for health promotion. PMID:26304317

  4. Extreme Elevation of Alkaline Phosphatase in a Pregnancy Complicated by Gestational Diabetes and Infant with Neonatal Alloimmune Thrombocytopenia.

    Science.gov (United States)

    Lozo, Svjetlana; Atabeygi, Amir; Healey, Michael

    2016-01-01

    There have been few case reports of isolated elevation of alkaline phosphatase beyond the normal physiologic amount with subsequent return to baseline after delivery. Here we present a similar case of extreme elevation of alkaline phosphatase in a pregnancy complicated by gestational diabetes and subsequently by neonatal alloimmune thrombocytopenia (NAIT). PMID:27610256

  5. Effect of salinity induced pH/alkalinity changes on benthic foraminifera: A laboratory culture experiment

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Kouthanker, M.; Kurtarkar, S.R.; Nigam, R.; Naqvi, S.W.A; Linshy, V.N.

    to understand the relationship between salinity, pH and total alkalinity (TA). The pH decreased with decreasing salinity during both the seasons. A similar decrease in TA with decreasing salinity was also observed but only till 20 psu salinity, below which...

  6. Functional studies of human intestinal alkaline sphingomyelinase by deglycosylation and mutagenesis

    DEFF Research Database (Denmark)

    Wu, Jun; Hansen, Gert H; Nilsson, Ake;

    2005-01-01

    Intestinal alk-SMase (alkaline sphingomyelinase) is an ectoenzyme related to the NPP (nucleotide phosphodiesterase) family. It has five potential N-glycosylation sites and predicated transmembrane domains at both the N- and C-termini. The amino acid residues forming the two metal-binding sites...

  7. Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice

    DEFF Research Database (Denmark)

    Zhang, Yao; Cheng, Yajun; Hansen, Gert H;

    2011-01-01

    Alkaline sphingomyelinase (alk-SMase) hydrolyses sphingomyelin (SM) to ceramide in the gut. To evaluate the physiological importance of the enzyme, we generated alk-SMase knockout (KO) mice by the Cre-recombinase-Locus of X-over P1(Cre-LoxP) system and studied SM digestion. Both wild-type (WT...

  8. Cenozoic alkaline volcanic rocks with carbonatite affinity in the Bohemian Massif: Their sources and magma generation

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Štěpánková-Svobodová, Jana

    2014-01-01

    Roč. 46, 1/2 (2014), s. 45-58. ISSN 0369-2086 R&D Projects: GA AV ČR(CZ) IAA300130902 Institutional support: RVO:67985831 Keywords : alkaline volcanic rocks * melilitic rocks * carbonatite s * magma generation * metasomatism * Cenozoic * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy

  9. Alkaline Rocks with Carbonatite Affinity in the Bohemian Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Ulrych, Jaromír

    Madras: University of Madras, 2001. s. 42. [Symposium on Carbonatite s and Associated Alkaline Rocks and Field Workshop on Carbonatite s of Tamil Nadu. 12.02.2001-18.02.2001, Madras] Institutional research plan: CEZ:AV0Z3013912 Subject RIV: DB - Geology ; Mineralogy

  10. Creation of hollow SAPO-34 single crystals via alkaline or acid etching.

    Science.gov (United States)

    Qiao, Yuyan; Yang, Miao; Gao, Beibei; Wang, Linying; Tian, Peng; Xu, Shutao; Liu, Zhongmin

    2016-04-14

    Hollow SAPO-34 crystals are created via selective etching of their precursor under controlled alkaline or acid conditions. The abundant/interconnected Si-O-Al domains and Si-O-Si networks at the outer layer of SAPO-34 crystals are revealed to be decisive factors for the base and acid treatments respectively to achieve a well-preserved hollow structure. PMID:27042708

  11. Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2010-10-01

    Full Text Available The purpose of the present investigations was to improve the yield of alkaline protease for leather dehairing by subjecting the indigenous proteolytic strain Bacillus licheniformis N-2 to various mutagenic treatments viz. UV irradiations, NTG (N-methyl-N-nitro-N-nitrosoguinidine and MMS (methyl methane sulfonate. After screening on skim milk agar plates, a total of nine positive mutants were selected for shake flask experiments. Among these, the best proteolytic mutant designated as UV-9 showed 1.4 fold higher alkaline protease activity in preoptimized growth medium than the parent strain. The fermentation profile and kinetic parameters such u(h-1, Yp/s, Yp/x, Yx/s, q s, Qs, q p and Qp also indicated the superiority of the selected mutant UV-9 for alkaline protease production over the parent strain and rest of the mutants. The dehairing capability of mutant UV-9 alkaline protease was analyzed by soaking goat skin pieces for different time intervals (3-15 h at 40 º C. A complete dehairing without degradation of collagen was achieved after 12 h, indicating its commercial exploitation in leather industry.

  12. DELINEATING THE ROLE OF POLYPHENOL OXIDASE IN THE DARKENING OF ALKALINE WHEAT NOODLES

    Science.gov (United States)

    This study evaluated the effects of inhibitors on polyphenol oxidase (PPO) activity, the effect of the PPO inhibitor tropolone on noodle darkening, and the correlation of PPO activity with darkening of alkaline noodles. The PPO inhibitors tropolone and salicylhydroxamic acid (each at 1 'M) reduced k...

  13. Tectonic control of mesozoic mafic and alkaline bodies in the Amazon craton (Brazil)

    International Nuclear Information System (INIS)

    The main alkaline Mesozoic bodies in the Amazon Craton are the Maecuru (MEA), Maraconai (MRA), Camaipi (CA), Catrimani (CTA), and Seis Lagos (SLA) bodies. Of these, CTA is the only one which has been radiometrically dated (100 Ma), although all the others are also interpreted as Mesozoic. (author)

  14. Non-covalent (iso)guanosine-based ionophores for alkali(ne earth) cations

    NARCIS (Netherlands)

    Leeuwen, van Fijs W.B.; Davis, Jeffery T.; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    Different (iso)guanosine-based self-assembled ionophores give distinctly different results in extraction experiments with alkali(ne earth) cations. A lipophilic guanosine derivative gives good extraction results for K+, Rb+, Ca2+, Sr2+, and Ba2+ and in competition experiments it clearly favors the d

  15. Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase

    NARCIS (Netherlands)

    Douglas, T.E.L.; Skwarczynska, A.; Modrzejewska, Z.; Balcaen, L.; Schaubroeck, D.; Lycke, S.; Vanhaecke, F.; Vandenabeele, P.; Dubruel, P.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2013-01-01

    Thermosensitive chitosan hydrogels containing sodium beta-glycerophosphate (beta-GP), whose gelation is induced by increasing temperature to body temperature, were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone. ALP incorporation led to ac

  16. ALKALINE SCRUBBING OF IN-SITU OIL SHALE RETORT OFFGAS AT GEOKINETICS

    Science.gov (United States)

    The paper discusses the use of EPA's mobile wet scrubber on a 200-acfm slipstream of Geokinetics' retort offgas to investigate the H2S removal efficiency and selectivity (percent H2S removal/percent CO2 removal) as a function of liquid/gas contact time, alkaline solution OH(minus...

  17. Activation of fly ashes by the high temperature and high alkalinity in ASR tests

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    High temperature and high alkalinity are typical testing conditions to accelerate the appraisal process of the suppressing effect of fly ashes on alkali silica reaction(ASR),but the reaction mechanism of fly ashes would be quite different under such conditions compared to the normal condition of temperature and alkalinity.To make a reasonable analysis of the suppressing effect of fly ashes,13 types of fly ashes were tested in this paper by both the accelerated mortar bar test method and the 60°C accelerated concrete prism test method.The results showed that the effect of fly ashes would be magnified under the condition of high temperature and high alkalinity.The XRD analysis showed that all the phases of fly ash could react with the hot alkaline solution except for mullite and a small amount of quartz.Fly ash could be significantly activated by the 80°C 1 mol/L NaOH solution,and form mainly C-S-H phase and P type zeolite,but its effect on inhibiting ASR was exaggerated then.According to the mortar strength test and the ASR suppressing test results,C-S-H phase contributed to mortar strength,but its amount did not decide the ASR suppressing effect of fly ash.

  18. Characterization of an Aspergillus flavus alkaline protease and its role in the infection of maize kernels

    Science.gov (United States)

    A 33 kDa protein present in Aspergillus flavus infected maize embryo tissue was identified as a fungal alkaline protease (ALP). This protein became one of the major extracellular proteins of A. flavus in potato dextrose broth medium cultural filtrate after 3 days, but was expressed at low levels or ...

  19. Properties of novel anion selective material with DABCO functional groups for alkaline water electrolysis

    Czech Academy of Sciences Publication Activity Database

    Hnát, J.; Žitka, Jan; Paidar, M.; Bouzek, K.

    Prague: University of Chemistry and Technology, Czech Hydrogen Technology Platform, 2015 - (Bouzek, K.; Doucek, A.). s. 28 ISBN 978-80-7080-920-4. [International Conference on Hydrogen Technologies /6./ - Hydrogen Days 2015. 18.03.2015-20.03.2015, Prague] Institutional support: RVO:61389013 Keywords : alkaline water electrolysis * anion selective polymer electrolyte * zero-gap arrangement Subject RIV: CD - Macromolecular Chemistry

  20. Millimeter-scale alkalinity measurement in marine sediment using DET probes and colorimetric determination.

    Science.gov (United States)

    Metzger, E; Viollier, E; Simonucci, C; Prévot, F; Langlet, D; Jézéquel, D

    2013-10-01

    Constrained DET (Diffusive Equilibration in Thin films) probes equipped with 75 sampling layers of agarose gel (DGT Research(©)) were used to sample bottom and pore waters in marine sediment with a 2 mm vertical resolution. After retrieval, each piece of hydrogel, corresponding to 25 μL, was introduced into 1 mL of colorimetric reagent (CR) solution consisting of formic acid and bromophenol blue. After the elution/reaction time, absorbance of the latter mixture was read at 590 nm and compared to a calibration curve obtained with the same protocol applied to mini DET probes soaked in sodium hydrogen carbonate standard solutions. This method allows rapid alkalinity determinations for the small volumes of anoxic pore water entrapped into the gel. The method was assessed on organic-rich coastal marine sediments from Thau lagoon (France). Alkalinity values in the overlying waters were in agreement with data obtained by classical sampling techniques. Pore water data showed a progressive increase of alkalinity in the sediment from 2 to 10 mmol kg(-1), corresponding to anaerobic respiration in organic-rich sediments. Moreover, replicates of high-resolution DET profiles showed important lateral heterogeneity at a decimeter scale. This underlines the importance of high-resolution spatial methods for alkalinity profiling in coastal marine systems. PMID:23870435

  1. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten;

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  2. Pyramidal texturing of silicon surface via inorganic-organic hybrid alkaline liquor for heterojunction solar cells

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Zhao, Ying

    2015-10-01

    We demonstrate a new class of silicon texturing approach based on inorganic (sodium hydroxide, NaOH) and organic (tetramethylammonium hydroxide, TMAH) alkaline liquor etching processes for photovoltaic applications. The first stage of inorganic alkaline etching textures the silicon surface rapidly with large pyramids and reduces the cost. The subsequent organic alkaline second-etching improves the coverage of small pyramids on the silicon surface and strip off the metallic contaminants produced by the first etching step. In addition, it could smoothen the surface of the pyramids to yield good morphology. In this study, the texturing duration of both etching steps was controlled to optimize the optical and electrical properties as well as the surface morphology and passivation characteristics of the silicon substrates. Compared with traditional inorganic NaOH texturing, this hybrid process yields smoother (111) facets of the pyramids, fewer residual Na+ ions on the silicon surface, and a shorter processing period. It also offers the advantage of lower cost compared with the organic texturing method based on the use of only TMAH. We applied this hybrid texturing process to fabricate silicon heterojunction solar cells, which showed a remarkable improvement compared with the cells based on traditional alkaline texturing processes.

  3. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Beusekom, van O.C.; Buisman, C.J.N.; Janssen, A.J.H.

    2007-01-01

    A biotechnological process is described to remove hydrogen sulfide (H2S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO) and thiosul

  4. Long-term evolution of highly alkaline steel slag drainage waters.

    Science.gov (United States)

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible. PMID:26108748

  5. Influence of solvent on proton transport in complexes of pyridine alkalines with trifluoroacetic acid

    International Nuclear Information System (INIS)

    The influence of solvent on proton transport in complexes of pyridine alkalines with trifluoroacetic acid was studied by nuclear magnetic resonance. The values of proton chemical shift are given. The influence of solution strength on chemical shift is also presented. (A.S.)

  6. Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment

    DEFF Research Database (Denmark)

    Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Hvilsted, Søren; Almdal, K.

    2004-01-01

    The chemical degradation of an uncrosslinked pure fluoroelastomer (FKM; Viton A) in an alkaline environment (10% NaOH and 80 degreesC) was investigated. Scanning electron microscopy images showed that on a microscopic level, significant degradation substantially increased the surface roughness af...

  7. Zinc electrodes for alkaline reserve cells. [German patent; Ag oxide cathode

    Energy Technology Data Exchange (ETDEWEB)

    Lala, A.

    1977-01-20

    Higher current densities at lower operational temperatures can be obtained from alkaline filler elements with silver oxide cathodes if according to the invention a foil or net each of aluminium or aluminium alloy lies on both sides of the current tap of the anode and a zinc foil each on the electrolyte side.

  8. An Evaluation of Magazines Suitable for Public Libraries for the Presence of Alkaline Paper.

    Science.gov (United States)

    Gambrill, Linda

    Conservation of library materials is becoming an increasing concern, and there has been some effort by publishers to avert the problems created by acidic paper by switching to acid-free alkaline paper. University publishers, responded to this concern by committing themselves to using acid-free paper; however, most commercial publishers, who…

  9. Alkaline resistant phosphate glasses and method of preparation and use thereof

    Science.gov (United States)

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  10. Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production

    Science.gov (United States)

    Alkaline hydrogen peroxide (AHP) pretreatment and enzymatic saccharification were evaluated for conversion of corn stover cellulose and hemicellulose to fermentable sugars. Corn stover used in this study contained 37.0±0.2% cellulose, 26.8±0.2% hemicellulose and 18.0±0.1% lignin on dry basis. Unde...

  11. Ammonium carbonate and/or bicarbonate plus alkaline chlorate oxidant for recovery of uranium values

    International Nuclear Information System (INIS)

    In accordance with the present invention, uranium values are extracted from materials containing uranium in valence states lower than its hexavalent state by contacting the materials containing uranium with an aqueous alkaline leach solution containing an alkaline chlorate in an amount sufficient to oxidize at least a portion of the uranium in valence states lower than its hexavalent state to its hexavalent state. In a further embodiment of the present invention, the alkaline leach solution is an aqueous solution of a carbonate selected from the group consisting of ammonium carbonate, ammonium bicarbonate and mixtures thereof. In yet another embodiment of the present invention, at least one catalytic compound of a metal selected from the group consisting of copper, cobalt, iron, nickel, chromium and mixtures thereof adapted to assure the presence of the ionic species Cu++, Co++, Fe+++, Ni++, Cr+++ and mixtures thereof, respectively, during the contacting of the material containing uranium with the alkaline leach solution and in an amount sufficient to catalyze the oxidation of at least a portion of the uranium in its lower valence states to its hexavalent state, is present

  12. Regioselective Synthesis of Polymerizable Vinyl Guaifenesin Esters Catalyzed by an Alkaline Protease of Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Na WANG; Qi WU; Jian Ming XU; Xiu Ming JIANG; Xian Fu LIN

    2004-01-01

    Three polymerizable vinyl guaifenesin esters with different acyl donor carbon chain lengths (C4,C6,C10) were regioselectivly synthesized by an alkaline protease from Bacillus subtilis in pyridine at 50°C for 1, 3, 5 days respectively.

  13. Alkaline-earth metal phosphonocarboxylates: synthesis, structures, chirality, and luminescence properties

    Czech Academy of Sciences Publication Activity Database

    Zima, Vítězslav; Raja, D. S.; Lee, Y. S.; Chang, T. G.; Wu, Ch. Y.; Hu, Ch. Ch.; Lee, K. R.; Lai, J. Y.; Yeh, J. M.; Lin, Ch. H.

    2013-01-01

    Roč. 42, č. 43 (2013), s. 15332-15342. ISSN 1477-9226 Grant ostatní: AV ČR(CZ) M200501202 Institutional support: RVO:61389013 Keywords : coordination polymers * phosphonates * alkaline-earth Subject RIV: CA - Inorganic Chemistry Impact factor: 4.097, year: 2013

  14. Distribution of alkaline earth elements between aqueous solutions and polymer sorbents impregnated by 8-hydroxyquinoline

    International Nuclear Information System (INIS)

    Interphase distribution of alkaline-earth element (AEE) microimpurities between solutions of alkali metal chlorides and macroporous copolymer of styrene with divinylbenzene impregnated by 8-hydroxyquinoline is investigated. The effect of phase composition on AEE and 8-hydroxyquinoline distribution coefficient is considered. Advantages of the mixture sorption with impregnated sorbent as compared with liquid extraction for thorough purification of salt solution are shown

  15. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacteri

  16. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacteri

  17. Proposal for management and alkalinity transformation of bauxite residue in China.

    Science.gov (United States)

    Xue, Shengguo; Kong, Xiangfeng; Zhu, Feng; Hartley, William; Li, Xiaofei; Li, Yiwei

    2016-07-01

    Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue. PMID:27023808

  18. Biological treatment of refinery spent caustics under halo-alkaline conditions

    NARCIS (Netherlands)

    Graaff, de M.; Bijmans, M.F.M.; Abbas, B.; Euverink, G.J.W.; Muyzer, G.; Janssen, A.J.H.

    2011-01-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at

  19. Biological treatment of refinery spent caustics under halo-alkaline conditions

    NARCIS (Netherlands)

    M. de Graaff; M.F.M. Bijmans; B. Abbas; G.J.W. Euverink; G. Muijzer; A.J.H. Janssen

    2011-01-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na+ = 0.8 M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at

  20. Biological treatment of refinery spent caustics under halo-alkaline conditions

    NARCIS (Netherlands)

    Graaff, Marco de; Bijmans, Martijn F.M.; Abbas, Ben; Euverink, Gert-J.W.; Muyzer, Gerard; Janssen, Albert J.H.

    2011-01-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na+ = 0.8 M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80–90% saturation) at