WorldWideScience

Sample records for alkalinity

  1. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  2. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  3. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  4. Alkaline earth metal thioindates

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov-Ehmin, B.N.; Ivlieva, V.I.; Filatenko, L.A.; Zajtsev, B.E.; Kaziev, G.Z.; Sarabiya, M.G.

    1984-08-01

    Alkaline earth metal thioindates of MIn/sub 2/S/sub 4/ composition were synthesized by interaction of alkaline earth metal oxoindates with hydrogen sulfide during heating. Investigation into the compounds by X-ray analysis showed that calcium compound crystallizes in cubic crystal system and strontium and barium compounds in rhombic crystal system. Lattice parameters and the number of formula units were determined. Thioindates of M/sub 3/In/sub 2/S/sub 6/ composition were synthesized, their individuality was shown.

  5. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  6. An alkaline element

    Energy Technology Data Exchange (ETDEWEB)

    Arita, T.; Murakami, K.; Okha, K.

    1983-04-28

    A cathode with a dual layer active mass is installed in the disk shaped alkaline silver and zinc element. The first layer, which is turned towards the anode, contains 85 parts Ag2O, 5 parts electrolytic MnO2 and 10 parts graphite. The second layer, which contacts the bottom of the element, contains 35 parts Ag2O, 60 parts electrolytic MnO2 and 5 parts graphite. The electrical capacity of the first and second layers is 60 and 40, respectively. The first layer may be discharged with a high current density and the second layer with less current density. The element has high characteristics with comparatively low cost.

  7. 2nd Generation Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Yde, Lars; Kjartansdóttir, Cecilia Kristin; Allebrod, Frank;

    This report provides the results of the 2nd Generation Alkaline Electrolysis project which was initiated in 2008. The project has been conducted from 2009-2012 by a consortium comprising Århus University Business and Social Science – Centre for Energy Technologies (CET (former HIRC)), Technical...

  8. Alkaline resistant ceramics; Alkalimotstaandskraftiga keramer

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Stig-Bjoern [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-02-01

    Despite durability in several environments, ceramics and refractories can not endure alkaline environments at high temperature. An example of such an environment is when burning biofuel in modern heat and power plants in which the demand for increasing efficiency results in higher combustion temperatures and content of alkaline substances in the flue gas. Some experiences of these environments has been gained from such vastly different equipment as regenerator chambers in the glass industry and MHD-generators. The grains of a ceramic material are usually bonded together by a glassy phase which despite it frequently being a minor constituent render the materials properties and limits its use at elevated temperature. The damage is usually caused by alkaline containing low-melting phases and the decrease of the viscosity of the bonding glass phase which is caused by the alkaline. The surfaces which are exposed to the flue gas in a modern power plant are not only exposed to the high temperature but also a corroding and eroding, particle containing, gas flow of high velocity. The use of conventional refractory products is limited to 1300-1350 deg C. Higher strength and fracture toughness as well as durability against gases, slag and melts at temperatures exceeding 1700 deg C are expected of the materials of the future. Continuous transport of corrosive compounds to the surface and corrosion products from the surface as well as a suitable environment for the corrosion to occur in are prerequisites for extensive corrosion to come about. The highest corrosion rate is therefore found in a temperature interval between the dew point and the melting point of the alkaline-constituent containing compound. It is therefore important that the corrosion resistance is sufficient in the environment in which alkaline containing melts or slag may appear. In environments such as these, even under normal circumstances durable ceramics, such as alumina and silicon carbide, are attacked

  9. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  10. Alkaline Water and Longevity: A Murine Study.

    Science.gov (United States)

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of "deceleration aging factor" as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models.

  11. Handbook of Indigenous Foods Involving Alkaline Fermentation

    NARCIS (Netherlands)

    Sarkar, P.K.; Nout, M.J.R.

    2014-01-01

    This book details the basic approaches of alkaline fermentation, provides a brief history, and offers an overview of the subject. The book discusses the diversity of indigenous fermented foods involving an alkaline reaction, as well as the taxonomy, ecology, physiology, and genetics of predominant m

  12. Association of alkaline phosphatase phenotypes with arthritides

    Directory of Open Access Journals (Sweden)

    Padmini A

    2004-01-01

    Full Text Available Arthritides, a symmetrical polyarticular disease of the bone are a heterogenous group of disorders in which hereditary and environmental factors in combination with an altered immune response appear to play a causative and pathogenic role in its occurrence. Alkaline phosphatase (ALP is an enzyme found in all tissues, with particularly high concentrations of ALP observed in the liver, bile ducts, placenta, and bone.Alkaline phosphatase is an orthophosphoric monoester phosphohydrolase catalyzing the hydrolysis of organic esters at alkaline pH, indicating that alkaline phosphatase is involved in fundamental biological processes.1 The present study envisages on identifying the specific electromorphic association of alkaline phosphatase with arthritides. Phenotyping of serum samples was carried out by PAGE (Polyacrylamide gel electrophoresis following Davies (19642 protocol on 41 juvenile arthritis, 150 rheumatoid arthritis and 100 osteo arthritis apart from, 25 normal children and 100 adult healthy subjects. Phenotyping of alkaline phosphatase revealed an increase in preponderance of p+ and p++ phenotypes in juvenile, rheumatoid and osteo arthritic patients. However a significant association of these phenotypes was observed only with rheumatoid arthritis condition (c2:17.46. Similarly, a significant increase of p+ phenotypes in female rheumatoid arthritis patients was observed (c2:14.973, suggesting that the decrease in p° (tissue non specific synthesis/secretion of alkaline phosphatase could be associated with decreased mineralization and ossification process in arthritis condition.

  13. Alkaline solution neutralization capacity of soil.

    Science.gov (United States)

    Asakura, Hiroshi; Sakanakura, Hirofumi; Matsuto, Toshihiko

    2010-10-01

    Alkaline eluate from municipal solid waste (MSW) incineration residue deposited in landfill alkalizes waste and soil layers. From the viewpoint of accelerating stability and preventing heavy metal elution, pH of the landfill layer (waste and daily cover soil) should be controlled. On the other hand, pH of leachate from existing MSW landfill sites is usually approximately neutral. One of the reasons is that daily cover soil can neutralize alkaline solution containing Ca(2+) as cation. However, in landfill layer where various types of wastes and reactions should be taken into consideration, the ability to neutralize alkaline solutions other than Ca(OH)(2) by soil should be evaluated. In this study, the neutralization capacities of various types of soils were measured using Ca(OH)(2) and NaOH solutions. Each soil used in this study showed approximately the same capacity to neutralize both alkaline solutions of Ca(OH)(2) and NaOH. The cation exchange capacity was less than 30% of the maximum alkali neutralization capacity obtained by the titration test. The mechanism of neutralization by the pH-dependent charge can explain the same neutralization capacities of the soils. Although further investigation on the neutralization capacity of the soils for alkaline substances other than NaOH is required, daily cover soil could serve as a buffer zone for alkaline leachates containing Ca(OH)(2) or other alkaline substances.

  14. [Alkaline phosphatase in Amoeba proteus].

    Science.gov (United States)

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  15. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    2012-01-01

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  16. Uptake of arsenic by alkaline soils near alkaline coal fly ash disposal facilities.

    Science.gov (United States)

    Khodadoust, Amid P; Theis, Thomas L; Murarka, Ishwar P; Naithani, Pratibha; Babaeivelni, Kamel

    2013-12-01

    The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment.

  17. Some durability aspects of hybrid alkaline cements

    Directory of Open Access Journals (Sweden)

    Donatello S.

    2014-04-01

    Full Text Available Blended cements that contain a high content of fly ash and a low content of Portland cement typically suffer from low early strength development and long setting times. Recently, one method of overcoming these problems has been to use an alkali activator to enhance the reactivity of fly ash particles at early ages. Such cements can be grouped under the generic term “hybrid alkaline cements”, where both cement clinker and fly ash, encouraged by the presence of alkalis, are expected to contribute to cementitious gel formation. The work presented here examines some of the durability aspects of high fly ash content hybrid alkaline cement. Specifically, the aspects investigated were: exposure at high temperatures (up to 1000°C, resistance to immersion in aggressive solutions and susceptibility to the alkali aggregate reaction. All tests were repeated with a commercially available sulfate resistant Portland cement for comparison. When exposed to high temperatures, the hybrid alkaline cement showed strikingly different behaviour compared to the control Portland cement, showing fewer micro-cracks and maintaining residual compressive strengths at least equal to original strengths. Beyond 700°C, the hybrid alkaline cement began to sinter, which resulted in shrinkage of around 5% and a 100% increase in residual compressive strengths. No such sintering event was noted in the control Portland cement, which showed a drastic loss in residual compressive strengths upon heating. In immersion tests, the hybrid alkaline cement possessed excellent resistance to sulfate and seawater attack, similar to the control sulfate resistant cement. Both cements were however severely degraded by immersion in 0.1M HCl for 90 days. Both binders complied with the accelerated alkali-aggregate test but when this test was extended, the hybrid alkaline binder showed much greater dimensional stability. Possible reasons for the differences in durability behaviour in both cements

  18. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  19. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    C L Aravinda; S M Mayanna; V R Muralidharan

    2000-10-01

    A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the deposition of copper involves the slow formation of a monovalent species. Adsorption of this species obeys Langmuir isotherm. In TEA solutions the deposition involves the formation of monovalent ions obeying the non-activated Temkin isotherm. Conversion of divalent to monovalent copper is also slow. In TEA and TSC alkaline copper solutions, the predominant species that undergo stepwise reduction contain only TEA ligands

  20. The alkaline diet: is there evidence that an alkaline pH diet benefits health?

    Science.gov (United States)

    Schwalfenberg, Gerry K

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  1. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  2. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  3. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    Science.gov (United States)

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  4. Alkaline electrochemical cells and method of making

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  5. Titanium corrosion in alkaline hydrogen peroxide environments

    Science.gov (United States)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  6. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.;

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  7. [Leucocyte alkaline phosphatase in normal and pathological pregnancy (author's transl)].

    Science.gov (United States)

    Stark, K H; Zaki, I; Sobolewski, K

    1981-01-01

    The activities of leucocyte alkaline phosphatase were determined in 511 patients with normal and pathological pregnancy. Mean values were compared and the enzyme followed up, and the conclusion was drawn that leucocyte alkaline phosphatase was no safe indicator of foetal condition. No direct relationship were found to exist between leucocyte alkaline phosphatase, total oestrogens, HSAP, HLAP, HPL, and oxytocinase.

  8. Oxidation catalysts on alkaline earth supports

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  9. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    Science.gov (United States)

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  10. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, J.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States))

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine the influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.

  11. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  12. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K. [Russian Academy of Sciences (Russian Federation). Inst. of Physical Chemistry

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  13. Low serum alkaline phosphatase activity in Wilson's disease.

    Science.gov (United States)

    Shaver, W A; Bhatt, H; Combes, B

    1986-01-01

    Low values for serum alkaline phosphatase activity were observed early in the course of two patients with Wilson's disease presenting with the combination of severe liver disease and Coombs' negative acute hemolytic anemia. A review of other cases of Wilson's disease revealed that 11 of 12 patients presenting with hemolytic anemia had values for serum alkaline phosphatase less than their respective sex- and age-adjusted mean values; in eight, serum alkaline phosphatase activity was less than the lower value for the normal range of the test. Low values for serum alkaline phosphatase were much less common in Wilson's disease patients with more chronic forms of presentation. Copper added in high concentration to serum in vitro did not have an important effect on serum alkaline phosphatase activity. The mechanism responsible for the decrease in serum alkaline phosphatase activity in patients is uncertain.

  14. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  15. The effect of alkaline agents on retention of EOR chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  16. Polyvinyl alcohol membranes as alkaline battery separators

    Science.gov (United States)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  17. Acylglucuronide in alkaline conditions: migration vs. hydrolysis.

    Science.gov (United States)

    Di Meo, Florent; Steel, Michele; Nicolas, Picard; Marquet, Pierre; Duroux, Jean-Luc; Trouillas, Patrick

    2013-06-01

    This work rationalizes the glucuronidation process (one of the reactions of the phase II metabolism) for drugs having a carboxylic acid moiety. At this stage, acylglucuronides (AG) metabolites are produced, that have largely been reported in the literature for various drugs (e.g., mycophenolic acid (MPA), diclofenac, ibuprofen, phenylacetic acids). The competition between migration and hydrolysis is rationalized by adequate quantum calculations, combing MP2 and density functional theory (DFT) methods. At the molecular scale, the former process is a real rotation of the drug around the glucuconic acid. This chemical-engine provides four different metabolites with various toxicities. Migration definitely appears feasible under alkaline conditions, making proton release from the OH groups. The latter reaction (hydrolysis) releases the free drug, so the competition is of crucial importance to tackle drug action and elimination. From the theoretical data, both migration and hydrolysis appear kinetically and thermodynamically favored, respectively.

  18. Hydrogen production by alkaline water electrolysis

    Directory of Open Access Journals (Sweden)

    Diogo M. F. Santos

    2013-01-01

    Full Text Available Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.

  19. Advanced-capability alkaline fuel cell powerplant

    Science.gov (United States)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  20. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  1. RES Hydrogen: efficient pressurised alkaline electrolysers

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Jørgensen, Peter Stanley;

    including BoP. Investigation of cathodes revealed highly heterogeneous microstructures and 3D microstructure quantification methods were developed. Nanometre scale -Ni(OH)2 formation was identified on tested cathode surfaces and is considered a potential degradation mechanism that is not presently well......The RESelyser project addresses issues associated with coupling alkaline electrolysis to renewable energy sources such as electrode stability and gas purity by implementing improved electrodes and a new separator membrane concept. The project aims to improve performance, operation pressure...... and reduce system cost. The project supports DTU Energy's activities on electrodes within the larger FCH-JU project. The overall project demonstrated: improved electrode efficiency also during cyclic operation, safe gas purity at a system pressure of 30 bar, 10 kW stack operation and estimated system costs...

  2. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  3. On electrochemical devices using alkaline polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, L. [Wuhan Univ., Wuhan (China). Dept. of Chemistry

    2010-07-01

    Solid polymer electrolytes (SPEs) enable a compact assembly of fuel cells and electrolyzers, thereby increasing the space-specific conversion efficiency and avoiding electrolyte leakage. The most widely used SPE in proton exchange membrane fuel cells (PEMFC) and chloro-alkali electrolyzers is Nafion. However, this strongly acidic polyelectrolyte allows only noble metals to be used as the catalysts in the electrochemical devices, which poses a problem in terms of price and resource limits. In principle, alkaline polymer electrolytes (APEs) should be used to eliminate the dependence on noble metal catalysts. The general structure of alkaline polymer electrolytes is a positively charged polymer, notably, a polymer chain attached with fixed cations such as quaternary ammonia group, and dissociated anion, OH-, to act as the charge carrier. This presentation described the challenges of developing APEs in terms of the chemical stability of quaternary ammonia group, the mobility of OH-, and high ionic concentration. The authors have been working on developing high-performance APEs since 2001. The most recent APEs were quaternary ammonia polysulfone (QAPS), which were found to be suitable for fuel cell and electrolyzer applications. The ionic conductivity was high and the crosslinked membrane had excellent mechanical strength, enabling operation at 90 degrees C. Non-precious metal catalysts were used in the APEs. For APE-based fuel cells (APEFC), chromium decorated nickel was used as the anode catalyst for hydrogen oxidation, and silver was used as the cathode catalyst for oxygen reduction. The preliminary performance of such an APEFC with non-Pt catalysts was found to be much better than that of traditional water electrolyzers using KOH solutions. 2 refs.

  4. Increased river alkalinization in the Eastern U.S

    Science.gov (United States)

    Kaushal, S.; Likens, G. E.; Utz, R.; Pace, M.; Grese, M.; Yepsen, M.

    2013-12-01

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km2. We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These 3 variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  5. Space-time variability of alkalinity in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    G. Cossarini

    2014-09-01

    Full Text Available The paper provides a basin assessment of the spatial distribution of ocean alkalinity in the Mediterranean Sea. The assessment is made using a 3-D transport-biogeochemical-carbonate model to integrate the available experimental findings, which also constrains model output. The results indicate that the Mediterranean Sea shows alkalinity values that are much higher than those observed in the Atlantic Ocean on a basin-wide scale. A marked west-to-east surface gradient of alkalinity is reproduced as a response to the terrestrial discharges, the mixing effect with the Atlantic water entering from the Gibraltar Strait and the Black Sea water from Dardanelles, and the surface flux of evaporation minus precipitation. Dense water production in marginal seas (Adriatic and Aegean Seas, where alkaline inputs are relevant, and the Mediterranean thermohaline circulation sustains the west-to-east gradient along the entire water column. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 μmol kg−1 that is driven both by physical and biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships. In regions of freshwater influence, the two measures are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open seas. Alkalinity always is much higher than in the Atlantic waters, which might indicate a higher than usual buffering capacity towards ocean acidification, even at high concentrations of dissolved inorganic carbon.

  6. Increased river alkalinization in the Eastern U.S.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  7. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids.

    Science.gov (United States)

    Marino, M G; Kreuer, K D

    2015-02-01

    The alkaline stability of 26 different quaternary ammonium groups (QA) is investigated for temperatures up to 160 °C and NaOH concentrations up to 10 mol L(-1) with the aim to provide a basis for the selection of functional groups for hydroxide exchange membranes in alkaline fuel cells and of ionic-liquid cations stable in basic conditions. Most QAs exhibit unexpectedly high alkaline stability with the exception of aromatic cations. β-Protons are found to be far less susceptible to nucleophilic attack than previously suggested, whereas the presence of benzyl groups, nearby hetero-atoms, or other electron-withdrawing species promote degradation reactions significantly. Cyclic QAs proved to be exceptionally stable, with the piperidine-based 6-azonia-spiro[5.5]undecane featuring the highest half-life at the chosen conditions. Absolute and relative stabilities presented herein stand in contrast to literature data, the differences being ascribed to solvent effects on degradation.

  8. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  9. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done w

  10. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  11. Microbial thiocyanate utilization under highly alkaline conditions.

    Science.gov (United States)

    Sorokin, D Y; Tourova, T P; Lysenko, A M; Kuenen, J G

    2001-02-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  12. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  13. Process for treating alkaline wastes for vitrification

    Science.gov (United States)

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  14. 2nd Generation alkaline electrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L. [Aarhus Univ. Business and Social Science - Centre for Energy Technologies (CET), Aarhus (Denmark); Kjartansdottir, C.K. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Allebrod, F. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2013-03-15

    The overall purpose of this project has been to contribute to this load management by developing a 2{sup nd} generation of alkaline electrolysis system characterized by being compact, reliable, inexpensive and energy efficient. The specific targets for the project have been to: 1) Increase cell efficiency to more than 88% (according to the higher heating value (HHV)) at a current density of 200 mA /cm{sup 2}; 2) Increase operation temperature to more than 100 degree Celsius to make the cooling energy more valuable; 3) Obtain an operation pressure more than 30 bar hereby minimizing the need for further compression of hydrogen for storage; 4) Improve stack architecture decreasing the price of the stack with at least 50%; 5) Develop a modular design making it easy to customize plants in the size from 20 to 200 kW; 6) Demonstrating a 20 kW 2{sup nd} generation stack in H2College at the campus of Arhus University in Herning. The project has included research and development on three different technology tracks of electrodes; an electrochemical plating, an atmospheric plasma spray (APS) and finally a high temperature and pressure (HTP) track with operating temperature around 250 deg. C and pressure around 40 bar. The results show that all three electrode tracks have reached high energy efficiencies. In the electrochemical plating track a stack efficiency of 86.5% at a current density of 177mA/cm{sup 2} and a temperature of 74.4 deg. C has been shown. The APS track showed cell efficiencies of 97%, however, coatings for the anode side still need to be developed. The HTP cell has reached 100 % electric efficiency operating at 1.5 V (the thermoneutral voltage) with a current density of 1. 1 A/cm{sup 2}. This track only tested small cells in an externally heated laboratory set-up, and thus the thermal loss to surroundings cannot be given. The goal set for the 2{sup nd} generation electrolyser system, has been to generate 30 bar pressure in the cell stack. An obstacle to be

  15. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  16. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    and pressures. Two measurement systems were built to perform measurements under high pressures and at elevated temperatures of up to 95 bar and 250 °C, respectively. The conductivity of aqueous KOH and aqueous KOH immobilized in a porous SrTiO3 structure were investigated at elevated temperatures and high...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... concentrations of the electrolyte using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.9 S cm-1 for 45 wt% KOH aqueous KOH and 0.84 S cm-1 for the immobilized KOH of the same concentration were measured at 200 °C. Porous SrTiO3 was used...

  17. Optimization of Soilless Media for Alkaline Irrigation Water

    OpenAIRE

    Tramp, Cody Alexander; Chard, Julie K.; Bugbee, Bruce

    2009-01-01

    High root zone pH reduces nutrient availability and high alkalinity water is strongly buffered around an alkaline pH. Soilless media can be altered to improve nutrient availability. This study was conducted to optimize the composition of soilless media for use with high alkalinity water. Mixes of peat and/or perlite or vermiculite in 50/50 and 33/33/33 volumetric ratios were tested. In some studies, mixes were also amended with up to 2.4 g/L of dolomite limestone to neutralize the initial aci...

  18. Sulfate—Exchange Alkalinity of Ferralsol Colloid

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; ZHANGXIAONIAN

    1999-01-01

    The amount of OH- replaced by sulfate,i.e.,sulfate-exchange alkalinity,from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.The amount of OH- release increased with the amount of Na2SO4 added and decreased with raising pH in the suspension of ferralsol colloid.The exchange acidity was displayed as pH was higher than 5.6,If the negative effect of sodium ions was offset,the amount of OH- replaced by sulfate was larger than the original amount of OH- released in the pH range of lower than 5.8.The amount of OH- released decreased rapidly as pH was higher than 6.0 and dropped to zero when pH reached 6.5.In the solution of 2.0molL-1 NaClO4,the amount of OH- repleaced by sulfate from the surface of ferralsol colloid could be considered as the amount of OH- adsorbed by ligand exchange reaction.The amount of OH- released in the solution of NaClO4 concentration below 2.0mol L-1 from which the amount of OH- adsorbed by ligand exchange reaction was subtracted could be conidered as the OH- adsorbed by electrostatic force,The OH- adsorbed by electrostatic force decreased with increases in the concentration of NaClO4 and pH and increased almost linearly with the increasing amount of Na2SON4 added.The percentages of OH- adsorbed by electrostatic force in water and in the electrolyte solutions of 0.05 and 0.5mol L-1 NaClO4 in the total OH- released were calculated,respectively.

  19. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  20. Photovoltaic hydrogen production with commercial alkaline electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Ursua, A.; Lopez, J.; Gubia, E.; Marroyo, L.; Sanchis, P. [Public Univ. of Navarra, Pamplona (Spain). Dept. of Electric and Electronic Engineering

    2010-07-01

    Renewable energy sources and Electrolysis generate the so-called green Hydrogen, a zero-emission and potentially fossil fuel independent energy source. However, the inherent variability of the renewable energy sources implies a mode of operation for which most current electrolysers have not been designed. This paper analyses the operation of a water electrolyser fed with photovoltaic (PV) generator electric profile. The system, Integrated by a 1 Nm{sup 3}/h Hydrogenics alkaline electrolyser and a 5100 W PV generator with 60 BP585 modules, is installed at the Public University of Navarra (Spain). The PV generator profile fed to the electrolyser is emulated by a custom-made apparatus designed and built by the authors of this paper. The profile is designed according to real irradiance data measured by a calibration cell. The irradiance data are converted to the electric power profile that the PV generator would have delivered in case of having been connected to the electrolyser by means of a DC/DC converter with maximum power point tracking (MPPT). Finally, from previously measured power-current electrolyser characteristic curves, the current profile to be delivered to the electrolyser is obtained and programmed to the electronic device. The electrolyser was tested for two types of days. During the first day, the irradiance was very stable, whereas during the second day, the irradiance was very variable. The experimental results show an average power consumption rate and an efficiency of 4908 Wh/Nm{sup 3} and 72.1%, on the first day, and 4842 Wh/Nm{sup 3} and 73.3% on the second day. The electrolyser performance was particularly good in spite of the high variability of the electric supply of the second day. (orig.)

  1. Marked Transient Alkaline Phosphatemia Following Pediatric Liver Transplantation

    Science.gov (United States)

    Koneru, Baburao; Carone, Eduardo; Malatack, J. Jeffrey; Esquivel, Carlos O.; Starzl, Thomas E.

    2010-01-01

    An isolated marked transient rise in serum alkaline phosphatase levels in otherwise healthy children is a well-documented occurrence. However, in children undergoing liver transplantation, elevated alkaline phosphatase values raise the possibility of biliary obstruction, rejection, or both. During a 6-year period, 6 of 278 children undergoing liver transplantation exhibited a similar phenomenon as an isolated abnormality. None had rejection, biliary obstruction, or other allograft dysfunction during a long follow-up. Eventually and without intervention, the alkaline phosphatase levels returned to normal. These instructive cases suggest that caution be used in advocating Invasive procedures if elevated alkaline phosphatase levels are an isolated abnormality, and close observation with noninvasive testing is recommended. PMID:2658549

  2. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    Science.gov (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  3. Evaluation of some bean lines tolerance to alkaline soil

    Directory of Open Access Journals (Sweden)

    Abeer A. Radi

    2012-01-01

    Full Text Available Introduction: In less arid climates, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. The development and identification of salt-tolerant crop cultivars or lines would complement salt management programs to improve the productivity and yields of salt stressed plants.Materials and methods: This work was to study the evaluation of alkalinity tolerance of some bean lines grown under different levels of sodium carbonate (Na2CO3 to select the most alkalinity tolerant lines versus the most-sensitive ones out of 6 lines of the test plants.Results: The symptoms induced by alkalinity included reduction in root, shoot growth, and leaf area which were more severe in some bean lines. Potassium leakage was severely affected by alkalinity in some lines at all tested levels, while in some others a moderate damage was manifested only at the higher levels. The increase in Na2CO3 level was associated with a gradual fall in chlorophyll a and b biosynthesis of all the test bean lines. However, alkalinity at low and moderate levels had a favorable effect on the biosynthesis of carotenoids in all the test bean lines. The increase in Na2CO3 supply had a considerable stimulatory effect on sodium accumulation, while potassium accumulation fluctuated in organs of bean lines.Conclusion: Assiut 1104 out of all the different lines investigated was found to display the lowest sensitivity to alkalinity stress, while Assiut 12/104 was the most sensitive one.

  4. Alkalinity Enrichment Enhances Net Calcification of a Coral Reef Flat

    Science.gov (United States)

    Albright, R.; Caldeira, K.

    2015-12-01

    Ocean acidification is projected to shift reefs from a state of net accretion to one of net dissolution sometime this century. While retrospective studies show large-scale changes in coral calcification over the last several decades, it is not possible to unequivocally link these results to ocean acidification due to confounding factors of temperature and other environmental parameters. Here, we quantified the calcification response of a coral reef flat to alkalinity enrichment to test whether reef calcification increases when ocean chemistry is restored to near pre-industrial conditions. We used sodium hydroxide (NaOH) to increase the total alkalinity of seawater flowing over a reef flat, with the aim of increasing carbonate ion concentrations [CO32-] and the aragonite saturation state (Ωarag) to values that would have been attained under pre-industrial atmospheric pCO2 levels. We developed a dual tracer regression method to estimate alkalinity uptake (i.e., calcification) in response to alkalinity enrichment. This approach uses the change in ratios between a non-conservative tracer (alkalinity) and a conservative tracer (a non-reactive dye, Rhodamine WT) to assess the fraction of added alkalinity that is taken up by the reef as a result of an induced increase in calcification rate. Using this method, we estimate that an average of 17.3% ± 2.3% of the added alkalinity was taken up by the reef community. In providing results from the first seawater chemistry manipulation experiment performed on a natural coral reef community (without artificial confinement), we demonstrate that, upon increase of [CO32-] and Ωarag to near pre-industrial values, reef calcification increases. Thus, we conclude that, the impacts of ocean acidification are already being felt by coral reefs. This work is the culmination of years of work in the Caldeira lab at the Carnegie Institution for Science, involving many people including Jack Silverman, Kenny Schneider, and Jana Maclaren.

  5. CHARACTERIZATION OF BULK SOIL HUMIN AND ITS ALKALINE-SOLUBLE AND ALKALINE-INSOLUBLE FRACTIONS

    Directory of Open Access Journals (Sweden)

    Cuilan Li

    2015-02-01

    Full Text Available Humic substances are the major components of soil organic matter. Among the three humic substance components (humic acid, fulvic acid, and humin, humin is the most insoluble in aqueous solution at any pH value and, in turn, the least understood. Humin has poor solubility mainly because it is tightly bonded to inorganic soil colloids. By breaking the linkage between humin and inorganic soil colloids using inorganic or organic solvents, bulk humin can be partially soluble in alkali, enabling a better understanding of the structure and properties of humin. However, the structural relationship between bulk humin and its alkaline-soluble (AS and alkaline-insoluble (AIS fractions is still unknown. In this study, we isolated bulk humin from two soils of Northeast China by exhaustive extraction (25 to 28 times with 0.1 mol L-1 NaOH + 0.1 mol L-1 Na4P2O7, followed by the traditional treatment with 10 % HF-HCl. The isolated bulk humin was then fractionated into AS-humin and AIS-humin by exhaustive extraction (12 to 15 times with 0.1 mol L-1 NaOH. Elemental analysis and solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR spectroscopy were used to characterize and compare the chemical structures of bulk humin and its corresponding fractions. The results showed that, regardless of soil types, bulk humin was the most aliphatic and most hydrophobic, AS-humin was the least aliphatic, and AIS-humin was the least alkylated among the three humic components. The results showed that bulk humin and its corresponding AS-humin and AIS-humin fractions are structurally differed from one another, implying that the functions of these humic components in the soil environment differed.

  6. Martian alkaline basites chemically resemble basic rocks of the Lovozero alkaline massif, Kola peninsula

    Science.gov (United States)

    Kochemasov, G.

    The comparative wave planetology [1, 5] successfully overcomes the most principal martian test having now analyses of alkaline rocks from Columbia Hills [2, 3, 4]. This kind of rocks was predicted earlier on basis of the wave paradigm having stated that "the higher planetary relief range - the higher density difference between lithologies composing hypsometrically (tectonically) contrasting blocks [5]. This paradigm declares that "celestial bodies are dichotomic"(Theorem 1), "celestial bodies are sectoral" (Theorem 2), "celestial bodies are granular"(Theorem 3), "angular momenta of different level blocks tend to be equal" (Theorem 4)[1, 5]. Mars is a typical terrestrial planet but the farthest from Sun and thus with the smallest tide effects. Nevertheless it has the highest relief range and seems to be most distorted (ellipsoid in shape) and broken by deep fissures. The wave approach explains this by a warping action of standing waves of 4 ortho- and diagonal directions - they are the longest and highest in the martian case. These interfering warping waves caused by the elliptic keplerian orbits implying periodically changing accelerations and inertia-gravity forces produce inevitable tectonic dichotomy (the fundamental wave 1 long 2πR), sectoring (wave 2, πR, and other overtones), granulation. A granule size depends on an orbital frequency: the higher frequency the smaller granule. The Earth's granule, as a scale, is πR/4 (see it in NASA's PIA04159), Venus ` πR/6, Mercury's πR/16, Mars' πR/2 (the sizes are strictly tied to orb. fr.). Along with the granule sizes increase relief ranges ( Mercury ˜5 km, Venus 14, Earth 20, Mars ˜30) and compositional (density) difference between lowland and highland lithologies [5]. The lowland compositions become Fericher and denser: enstatite (Mercury), Mg-basalt (Venus), tholeiite (Earth), Fe-basalt (Mars). The highland compositions get less dense, lighter: anorthosite, alkaline basalt, andesite and conditional "albitite

  7. Studies on Fast Remediation of Soda Meadow Alkaline Soil

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lianren; SUN Yankun; LI Dawei

    2010-01-01

    Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lymc grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil.

  8. Metasomatized lithosphere and the origin of alkaline lavas.

    Science.gov (United States)

    Pilet, Sébastien; Baker, Michael B; Stolper, Edward M

    2008-05-16

    Recycled oceanic crust, with or without sediment, is often invoked as a source component of continental and oceanic alkaline magmas to account for their trace-element and isotopic characteristics. Alternatively, these features have been attributed to sources containing veined, metasomatized lithosphere. In melting experiments on natural amphibole-rich veins at 1.5 gigapascals, we found that partial melts of metasomatic veins can reproduce key major- and trace-element features of oceanic and continental alkaline magmas. Moreover, experiments with hornblendite plus lherzolite showed that reaction of melts of amphibole-rich veins with surrounding lherzolite can explain observed compositional trends from nephelinites to alkali olivine basalts. We conclude that melting of metasomatized lithosphere is a viable alternative to models of alkaline basalt formation by melting of recycled oceanic crust with or without sediment.

  9. ADVANCES IN THE MODEL OF CYLINDRICAL ALKALINE CELLS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The advancement of a systematic investigation on the modeling of cylindrical alkaline cells is presented.Initial analysis utilizes thermodynamic and kinetic information to predict alkaline cell performance under low discharge rates.Subsequent modling has taken into consideration detailed information on the chemistry of electrode reactions,mass tranport of dissolved species,physical and chemical properties of the electrolyte and solid phases,and internal geonetry of cell systems.The model is capable of predicting alkaline cell performance under a variety of dicharge conditions.The model also provides information regarding internal cell changes during discharge.The model is the basis of a rational approach for the optimal design of cells.

  10. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  11. POLYETHER POLYURETHANE FROM MODIFIED WHEAT STRAW OXYGEN-ALKALINE LIGNIN

    Institute of Scientific and Technical Information of China (English)

    QuanxiaoLiu; HuaiyuZhan; BeihaiHe; ShuhuiYang; JianhuaLiu; JianluLiu(1); ZhenxingPang

    2004-01-01

    Polyether polyurethane was synthesized from modified wheat straw oxygen-alkaline lignin, polyethylene glycol and two different diisocyanates (diphenylemethane-4, 4'-diisocyanate, tolulene diisocyanate) by solution casting method, its properties were investigated. The results show that modified wheat straw oxygen-alkaline lignin can substitute part of polyethylene glycol to react with diisocyanate to synthesize polyurethane. The molar ratio of NCO to OH and modified wheat straw oxygen-alkaline lignin content affect the properties of lignin-based polyether polyurethane respectively. The addition of plasticizer in the polyurethane synthesis process improves the properties of synthesized polyurethane, especially the elasticity of polyurethane. The synthesized polyurethane from modified wheat straw oxygen-alkali lignin can be used as both engineering plastic and hard foam plastic in future.

  12. POLYETHER POLYURETHANE FROM MODIFIED WHEAT STRAW OXYGEN-ALKALINE LIGNIN

    Institute of Scientific and Technical Information of China (English)

    Quanxiao Liu; Huaiyu Zhan; Beihai He; Shuhui Yang; Jianhua Liu; Jianlu Liu; Zhenxing Pang

    2004-01-01

    Polyether polyurethane was synthesized from modified wheat straw oxygen-alkaline lignin,polyethylene glycol and two different diisocyanates (diphenylemethane-4, 4′-diisocyanate, tolulene diisocyanate) by solution casting method, its properties were investigated. The results show that modified wheat straw oxygen-alkaline lignin can substitute part of polyethylene glycol to react with diisocyanate to synthesize polyurethane. The molar ratio of NCO to OH and modified wheat straw oxygen-alkaline lignin content affect the properties of lignin-based polyether polyurethane respectively. The addition of plasticizer in the polyurethane synthesis process improves the properties of synthesized polyurethane, especially the elasticity of polyurethane. The synthesized polyurethane from modified wheat straw oxygen-alkali lignin can be used as both engineering plastic and hard foam plastic in future.

  13. 2nd Generation alkaline electrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yde, L. [Aarhus Univ. Business and Social Science - Centre for Energy Technologies (CET), Aarhus (Denmark); Kjartansdottir, C.K. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Allebrod, F. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2013-03-15

    The overall purpose of this project has been to contribute to this load management by developing a 2{sup nd} generation of alkaline electrolysis system characterized by being compact, reliable, inexpensive and energy efficient. The specific targets for the project have been to: 1) Increase cell efficiency to more than 88% (according to the higher heating value (HHV)) at a current density of 200 mA /cm{sup 2}; 2) Increase operation temperature to more than 100 degree Celsius to make the cooling energy more valuable; 3) Obtain an operation pressure more than 30 bar hereby minimizing the need for further compression of hydrogen for storage; 4) Improve stack architecture decreasing the price of the stack with at least 50%; 5) Develop a modular design making it easy to customize plants in the size from 20 to 200 kW; 6) Demonstrating a 20 kW 2{sup nd} generation stack in H2College at the campus of Arhus University in Herning. The project has included research and development on three different technology tracks of electrodes; an electrochemical plating, an atmospheric plasma spray (APS) and finally a high temperature and pressure (HTP) track with operating temperature around 250 deg. C and pressure around 40 bar. The results show that all three electrode tracks have reached high energy efficiencies. In the electrochemical plating track a stack efficiency of 86.5% at a current density of 177mA/cm{sup 2} and a temperature of 74.4 deg. C has been shown. The APS track showed cell efficiencies of 97%, however, coatings for the anode side still need to be developed. The HTP cell has reached 100 % electric efficiency operating at 1.5 V (the thermoneutral voltage) with a current density of 1. 1 A/cm{sup 2}. This track only tested small cells in an externally heated laboratory set-up, and thus the thermal loss to surroundings cannot be given. The goal set for the 2{sup nd} generation electrolyser system, has been to generate 30 bar pressure in the cell stack. An obstacle to be

  14. Direct Promotion of Collagen Calcification by Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alkaline phosphatase promotes hydrolysis of phosphate containing substrates, causes a rise in inorganic phosphate and, therefore, enhances calcification of biological tissues. In this work, the calcification of collagen in a model serum was used as a model of collagenous tissue biomaterials to study the possible calcification promotion mechanism of alkaline phosphatase. In the enzyme concentration range of 0.10.5mg/mL, the enzyme shows a direct calcification promoting effect which is independent of the hydrolysis of its phosphate containing substrates but proportional to the enzyme concentration. Potassium pyrophosphate somewhat inhibits the calcification promotion.

  15. Research on Alkaline Filler Flame-Retarded Asphalt Pavement

    Institute of Scientific and Technical Information of China (English)

    HU Shuguang; ZHANG Houji; WANG Jiaolan

    2006-01-01

    Used as flame retardant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, and the flame-retarded asphalt mixtures were produced. Experimental results show that these asphalt mixtures are smoke restrained; the performances and construction technology of asphalt pavement are not influenced; also the alkaline filler is of low-price. So this kind of flame-retarded asphalt mixtures is suitable for tunnel pavement.

  16. Impact of Alkaline Dust Pollution on Soil Microbial Biomass Carbon

    OpenAIRE

    Kara, Ömer; Bolat, İlyas

    2007-01-01

    The effect of alkaline dust pollution emitted from Bartın cement plant on the soil microbial biomass carbon was investigated using the chloroform fumigation-extraction (CFE) method. Microbial biomass C (Cmic) values ranged from 157.82 to 1201.51 µg g-1 soils in the polluted area and from 726.70 to 1529.14 µg g-1 soils in the control area. Soils polluted with alkaline cement dust resulted in significant reductions in Cmic levels compared to control soils. Microbial biomass C correlated negativ...

  17. Immobilization of cesium in alkaline activated fly ash matrix

    Science.gov (United States)

    Fernandez-Jimenez, A.; Macphee, D. E.; Lachowski, E. E.; Palomo, A.

    2005-11-01

    The immobilization potential of alkaline activated fly ash (AAFA) matrices for cesium has been investigated. The presence of Cs in the AAFA pastes, prepared using 8M NaOH solution as activator, showed no significant adverse effects on mechanical strength or microstructure, nor were significant quantities of Cs leached following application of the Toxic Characteristic Leaching Procedure (TCLP) and American Nuclear Society (ANS) 16.1 leaching protocols. Microstructural analysis shows Cs associated with the main reaction product in the AAFA suggesting that cesium is chemically bound rather than physically encapsulated. It is proposed that cesium is incorporated into the alkaline aluminosilicate gel, a precursor for zeolite formation.

  18. Alkaline protease production by solid state fermentation on polyurethane foam

    OpenAIRE

    Hongzhang, Chen; Hui, Wang; Aijun, Zhang; Zuohu, Li

    2006-01-01

    This paper investigated the process of solid state fermentation (SSF) using PUF (polyurethane foam) as inert solid support to produce alkaline protease. Maximal enzyme activity was 2185U/ml at pH 9.0, incubation temperature 32 0C inoculum amount of 1.0 % (v/v) , nutrient solution3.75 ml/g PUF, incubation time for 2 h and 15.0 mM of added CaCl2. Under the same conditions, the yield of alkaline protease produced by SSF using PUF as support is higher than that by submerged fermentation (SMF).

  19. Advances in alkaline cooling water treatment technology: An update

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, A.E. Jr.; Klatskin, S.D.

    1985-01-01

    A series of chromate and non-chromate treatment programs, specifically designed for alkaline pH cooling waters, have been developed. The treatments provide excellent corrosion and scale control over a broad range of water chemistries and are applicable to high conductivity and iron contaminated waters. Low levels of zinc are used to reduce the dependency on alkalinity, chromate and calcium carbonate supersaturation for corrosion control. The precipitation and fouling problems previously encountered with zinc containing treatments have been eliminated by the use of polymeric dispersants.

  20. Application conditions for ester cured alkaline phenolic resin sand

    Institute of Scientific and Technical Information of China (English)

    Ren-he Huang; Bao-ping Zhang; Yao-ji Tang

    2016-01-01

    Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A); 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B); glycerol diacetate; dibasic ester (DBE) (i.e. low-speed ester C), were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand) and the amount of added organic ester and curing temperature were investigated. The results indicated the folowing: (1) The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2) High-speed ester A (propylene carbonate) has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3) High-speed ester A, medium-speed ester B (glycerol triacetate) and low-speed ester C (dibasic ester, i.e., DBE) should be used below 15 ºC, 35 ºC and 50 ºC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4) There should be a suitable solid content (generaly 45wt.%-65wt.% of resin), alkali content (generaly 10wt.%-15wt.% of resin) and viscosity of alkaline phenolic resin (generaly 50-300 mPa·s) in the preparation of alkaline phenolic resin. Finaly, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  1. Surface-treatment of Alkaline Earth Sulfides Based Phosphor

    Institute of Scientific and Technical Information of China (English)

    GUO Chong-feng; CHU Ben-li; XU Jian; SU Qiang

    2004-01-01

    A series of alkaline earth sulfides based phosphors Ca0.8Sr0.2S∶Eu2+, Tm3+ were covered with a layer of protective coating with alkaline earth fluorides by heating the mixture of phosphor and NH4HF2 at elevated temperatures. The coatings were characterized by means of XRD and SEM. The optical properties of the coated phosphors and the influences of the coating on their properties have been discussed extensively. The stabilities of the coated and uncoated phosphors have been compared.

  2. Human placental alkaline phosphatase electrophoretic alleles: Quantitative studies

    Science.gov (United States)

    Lucarelli, Paola; Scacchi, Renato; Corbo, Rosa Maria; Benincasa, Alberto; Palmarino, Ricciotti

    1982-01-01

    Human placental alkaline phosphatase (ALP) activity has been determined in specimens obtained from 562 Italian subjects. The mean activities of the three common homozygotes (Pl 2 = 4.70 ± 0.24, Pl 1 = 4.09 ± 0.08, and Pl 3 = 2.15 ± 0.71 μmol of p-nitrophenol produced) were significantly different. The differences among the various allelic forms account for 10% of the total quantitative variation of the human placental alkaline phosphatase. PMID:7072721

  3. Impact of Alkaline Dust Pollution on Soil Microbial Biomass Carbon

    OpenAIRE

    KARA, Ömer; Bolat, İlyas

    2014-01-01

    The effect of alkaline dust pollution emitted from Bartın cement plant on the soil microbial biomass carbon was investigated using the chloroform fumigation-extraction (CFE) method. Microbial biomass C (Cmic) values ranged from 157.82 to 1201.51 µg g-1 soils in the polluted area and from 726.70 to 1529.14 µg g-1 soils in the control area. Soils polluted with alkaline cement dust resulted in significant reductions in Cmic levels compared to control soils. Microbial biomass C correlated negativ...

  4. Extracellular Alkalinization as a Defense Response in Potato Cells

    Science.gov (United States)

    Moroz, Natalia; Fritch, Karen R.; Marcec, Matthew J.; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists (Phytophthora infestans and Spongospora subterranea) and fungi (Verticillium dahliae and Colletotrichum coccodes). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes. PMID:28174578

  5. Bone alkaline phosphatase and mortality in dialysis patients

    NARCIS (Netherlands)

    C. Drechsler; M. Verduijn; S. Pilz; R.T. Krediet; F.W. Dekker; C. Wanner; M. Ketteler; E.W. Boeschoten; V. Brandenburg

    2011-01-01

    Serum alkaline phosphatase (AP) is associated with vascular calcification and mortality in hemodialysis patients, but AP derives from various tissues of origin. The aim of this study was to assess the effect of bone-specific AP (BAP) on morbidity and mortality in dialysis patients. From a prospectiv

  6. Alkalinity and hardness: Critical but elusive concepts in aquaculture

    Science.gov (United States)

    Total alkalinity and total hardness are familiar variables to those involved in aquatic animal production. Aquaculturists – both scientists and practitioners alike – tend to have some understanding of the two variables and of methods for adjusting their concentrations. The chemistry and the biolog...

  7. Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide

    NARCIS (Netherlands)

    Kapojos, Jola Jovita; Poelstra, Klaas; Borghuis, Theo; van den Berg, Anke; Baelde, Hans J.; Klok, P.A; Bakker, W.W

    2003-01-01

    Alkaline phosphatase (AP) can be considered as a host defence molecule since this enzyme is able to detoxify bacterial endotoxin at physiological pH. The question emerged whether this anti-endotoxin principle is inducible in the glomerulus and if so, which glomerular cells might be involved in the e

  8. The catalytic properties of alkaline phosphatases under various conditions

    Science.gov (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Poltorak, O. M.

    2008-11-01

    A comparative study was performed to examine the catalytic properties of alkaline phosphatases from bacteria Escherichia coli and bovine and chicken intestines. The activity of enzyme dimers and tetramers was determined. The activity of the dimer was three or four times higher than that of the tetramer. The maximum activity and affinity for 4-nitrophenylphosphate was observed for the bacterial alkaline phosphatase ( K M = 1.7 × 10-5 M, V max = 1800 μmol/(min mg of protein) for dimers and V max = 420 μmol/(min mg of protein) for tetramers). The Michaelis constants were equal for two animal phosphatases in various buffer media (pH 8.5) ((3.5 ± 0.2) × 10-4 M). Five buffer systems were investigated: tris, carbonate, hepes, borate, and glycine buffers, and the lowest catalytic activity of alkaline phosphatases at equal pH was observed in the borate buffer (for enzyme from bovine intestine, V max = 80 μmol/(min mg of protein)). Cu2+ cations formed a complex with tris-(oxymethyl)-aminomethane ( tris-HCl buffer) and inhibited the intestine alkaline phosphatases by a noncompetitive mechanism.

  9. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4....

  10. Dephosphorylation of endotoxin by alkaline phosphatase in vivo

    NARCIS (Netherlands)

    Poelstra, Klaas; Bakker, W.W; Klok, P.A; Kamps, J.AAM; Hardonk, M.J; Meijer, D.K F

    1997-01-01

    Natural substrates for alkaline phosphatase (AP) are at present not identified despite extensive investigations. Difficulties in imagining a possible physiological function involve its extremely high pH optimum for the usual exogenous substrates and its localization as an ecto-enzyme. As endotoxin i

  11. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  12. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.The Great Konya Basin, some 300 k

  13. Transcriptome Analysis of Enterococcus faecalis in Response to Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Ran eshujun

    2015-08-01

    Full Text Available E. faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing.We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections.

  14. Solvent Extraction of Alkaline Earth Metals with Alkylphosphorus Acids

    Institute of Scientific and Technical Information of China (English)

    XUXin; ZHUTun

    2002-01-01

    Solvent extraction equiliria of four main alkaline earth metals (magnesium, calcium, strontium and barium) with di(2-ethylhexyl) phosphoric acid (DEHPA), 2-ethylhexyl phosphonic acid mono-(2-ethylhexyl) ester, di(2,4,4-tri-methylpentyl) phosphinic acid and IR spectra of the extracts have been studied. The selectivity order is dependent of the e/r value and hydration energy of the metal ions. The minor shift of the P→O in IR absorption of the alkaline earth metal extracts indicates that the interaction between the metal ions and P→O is much weaker for alkaline earth metals than for transitional metals. The distribution of the four alkaline earth elements between aqueous solutions and solutions of DEHPA and neutral organophosphorus compunds, tri-n-butyl phosphate (TBP) or tri-octyl phosphine oxide (TOPO) in kerosene have been determined at varying ratio of TBP or TOPO to DEHPA and the positive synergism is observed. The synergic effects is explained by using IR spectra of the loaded organic phase.

  15. Determination of the density of zinc powders for alkaline battery

    Institute of Scientific and Technical Information of China (English)

    Beatriz Ares Tejero; David Guede Carnero

    2007-01-01

    The density of zinc powder for alkaline battery was determined using a pyknometer.The results showed that powders made before the end of 2003 could reach relative densities above 99% of the theoretical density.Investigating the relative volume swelling of electrolysed gels of zinc powders,no evident relation between swelling and pyknometer density was found.

  16. Endotoxin detoxification by alkaline phosphatase in cholestatic livers

    NARCIS (Netherlands)

    Poelstra, K; Bakker, WW; Hardonk, MJ; Meijer, DKF; Wisse, E; Knook, DL; Balabaud, C

    1997-01-01

    Increased expression of alkaline phosphatase (AP) in the liver is a hallmark of cholestasis but the pathophysiological role of this is not clear. We argue that deprotonation of carboxyl groups at the active site of the enzyme may be a prerequisite for optimal AP activity. Such a creation of negative

  17. Curing mechanism of alkaline phenolic resin with organic ester

    Institute of Scientific and Technical Information of China (English)

    Huang Renhe; Wang Yanmin; Zhang Baoping

    2014-01-01

    To study the curing mechanism of alkaline phenolic resin with organic ester, three esters were chosen to react with three systems - alkaline phenolic resin, potassium hydroxide aqueous solution containing phenol, and potassium hydroxide aqueous solution. The variations of pH, heat release and gel pH during the reactions were monitored and measured. Infrared spectroscopy (IR) and thermal gravity analysis (TG) techniques were used to characterize the curing reaction. It was found that organic ester is only partial y hydrolyzed and resin can be cured through organic ester hydrolysis process as wel as the reaction with redundant organic ester. The sequential curing mechanism of alkaline phenolic resin cured by organic ester was identified as fol ows: a portion of organic ester is firstly hydrolyzed owing to the effect of the strong alkaline; the gel is then formed after the pH decreases to about 10.8-10.88, meanwhile, the redundant organic ester (i.e. non-hydrolysis ester) starts the curing reaction with the resin. It has also been found that the curing rate depends on the hydrolysis velocity of organic ester. The faster the hydrolysis speed of the ester, the faster the curing rate of the resin.

  18. Kinetic characteristics of acidic and alkaline ceramidase in human epidermis

    NARCIS (Netherlands)

    Houben, E.; Uchida, Y.; Nieuwenhuizen, W.F.; Paepe, K. de; Vanhaecke, T.; Holleran, W.M.; Rogiers, V.

    2007-01-01

    It has recently become evident that at least five ceramidase (CDase) isoforms are present in human epidermis, and that specifically acidic CDase (aCDase) and alkaline CDase (alkCDase) activities increase during keratinocyte differentiation, and thus might play a pivotal role(s) in permeability barri

  19. Field screening of cowpea cultivars for alkaline soil tolerance

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  20. Yield performance of cowpea genotypes grown in alkaline soils

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  1. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    Science.gov (United States)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  2. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-04-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe2O3 to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. However, mineral dust particles also have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model, which is incorporated with a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution in aerosol solution during the long-range transport. Over the North Pacific Ocean, only a small fraction (<0.2% of iron dissolves from hematite in the coarse-mode dust aerosols, when assuming internally mixed with carbonate minerals. However, if the iron-containing minerals are externally mixed with carbonate minerals, a significant amount (1–2% of iron would dissolve from the acid mobilization. It implies that the alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size.

  3. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  4. A new electrochemical oscillatory system of bromate in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new electrochemical oscillatory system of bromate in alkaline solution is reported. In PtBromate-Alkaline solution system, two different types of electrochemical oscillations (Type Ⅰ and Type Ⅱ) can be observed. Type Ⅰ appears before hydrogen evolution and Type Ⅱ involves periodic hydrogen evolution. Type Ⅰ relates to the adsorption/desorption of the hydrogen on platinum electrode, and Type Ⅱ with periodic oscillation stems from the coupling of electrochemical reactions (the reduction of bromate and evolution hydrogen reaction) with mass transfer (diffusion and convection). More over, under the right conditions, the two types appear in different oscillatory modes, for example,simple periodical mode and mixed one, etc,, Crossed cycle in the cyclic voltammograms, which is the basiccharacteristics for electrochemical oscillatory systems, has also been observed as expected.

  5. Solubilisation of lignite during oxydesulphurization in alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Kuecuekbayrak, S. [Istanbul Technical Univ., Chemical Engineering Dept. (Turkey)

    1997-12-31

    Some desulphurization processes such as oxydesulphurization in which dissolved oxygen is attached to coal particles are performed usually in alkaline solutions. Therefore, these processes are resulted in not only sulphur removal but also some solubilisation of the coal matrix. In this study three different Turkish lignite samples are subjected to various oxydesulphurization processes in which dilute solutions of NaOH, Na{sub 2}CO{sub 3}, NH{sub 4}OH or Na{sub 2}B{sub 4}O{sub 7} containing dissolved oxygen under pressure were applied. The experiments were performed in a magnetically stirred and electrically heated Parr autoclave. The extent of the solubilisation is varied depending on the type and concentration of the alkaline used, the applied temperature and the rank of the lignite sample used. (orig.)

  6. Copper Plating from Non-Cyanide Alkaline Baths

    Science.gov (United States)

    Li, Minggang; Wei, Guoying; Wang, Jianfang; Li, Meng; Zhao, Xixi; Bai, Yuze

    2014-12-01

    Non-cyanide alkaline bath was used to prepare copper thin films. Influences of various temperatures on deposition rates, surface morphologies and microstructures of films were investigated. Copper thin films prepared from non-cyanide alkaline bath show typical nodular structures. Copper films fabricated at higher temperature possess rough surface due to hydrolysis of complexing agents. According to the XRD patterns, all deposited films were crystalline and showed Cu (111), Cu (200) and Cu (220) peaks. The intensity of peak (200) increases gradually with the rise on bath temperatures. Films with maximum thickness (7.5 μm) could be obtained at the temperature of 40°C. From the cyclic voltammetry curve, it was found that the cathodic polarization decreased slightly with increase of bath temperatures. In addition, when the bath temperature was equal to 50°C, current efficiency could reach to 96.95%.

  7. Controlled charge exchange between alkaline earth metals and their ions

    Science.gov (United States)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  8. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    Energy Technology Data Exchange (ETDEWEB)

    Costarrosa, L. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Calvino-Casilda, V. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Ferrera-Escudero, S. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain); Duran-Valle, C.J. [Dpto. de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz (Spain); Martin-Aranda, R.M. [Dpto. de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/Senda del Rey, 9, E-28040 Madrid (Spain)]. E-mail: rmartin@ccia.uned.es

    2006-06-30

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N{sub 2} adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  9. Lithuanian Quarry Aggregates Concrete Effects of Alkaline Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Aurimas Rutkauskas

    2016-02-01

    Full Text Available Aggregate alkaline corrosion of cement in concrete is going to respond in sodium and potassium hydroxide (lye with active SiO2 found in some aggregates. During this reaction, the concrete has resulted in significant internal stresses which cause deformation of the concrete, cracking and disintegration. The reaction is slow and concrete signs of decomposition appear only after a few months or years. The study used two different aggregates quarries. Studies show that Lithuania gravel contaminated with reactive particles having amorphous silicon dioxide reacting with cement in sodium and potassium hydroxide and the resulting alkaline concrete corrosion. It was found that, according to AAR 2 large aggregates include Group II – potentially reactive because of their expansion after 14 days, higher than 0.1%.

  10. Alkaline Protease Production by a Strain of Marine Yeasts

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; CHI Zhenming; MA Chunling

    2006-01-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China.The protease had the highest activity at pH 9.0 and 45 ℃.The optimal medium for the maximum alkaline protease production of strain 10 was 2.5 g soluble starch and 2.0 g NaNO3 in 100 mL seawater with initial pH6.0.The optimal cultivation conditions for the maximum protease production were temperature 24.5 ℃, aeration rate 8.0 L min -1 and agitation speed 150 r min-1.Under the optimal conditions, 623.1 Umg-1 protein of alkaline protease was reached in the culture within 30 h of fermentation.

  11. Electrical Conductivity of Alkaline-reduced Graphene Oxide

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; TIAN Hong-wei; WANG Xin-wei; QIAO Liang; WANG Shu-min; WANG Xing-li; ZHENG Wei-tao; LIU Yi-chun

    2011-01-01

    A green route using a very simple and straightforward ultrasonic process under alkaline conditions,rather than a general chemical reduction process using hydrazine,was utilized to obtain the hydrophilic reduced graphene oxide(RGO) sheets,via removing oxygen functional groups from graphene oxide(GO) and repairing the aromatic structure.It is found that the conductivity of the obtained RGO could be tuned by changing pH value in alkaline solution,and the current-voltage(Ⅰ-Ⅴ) curves of both GO and RGO are nonlinear and slightly asymmetric.Under the same applied voltage,the current of RGO is much larger than that of GO,indicating a pronounced increase in the electrical conductivity of RGO,compared to that of GO.

  12. Alkaline protease production by a strain of marine yeasts

    Science.gov (United States)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  13. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  14. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    OpenAIRE

    Chen Ye; Stevens Mark A; Zhu Yongming; Holmes Jason; Xu Hui

    2013-01-01

    Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali conce...

  15. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    Science.gov (United States)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51

  16. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    Science.gov (United States)

    2015-01-20

    Fuel! Cells.! Macromolecules!2009,!42,!831688321.! 142 ! (27)! Ong ,!A.!L.;!Saad,!S.;!Lan,!R.;!Goodfellow,!R.!J.;!Tao,!S.:!Anionic!membrane!and...Stabilized!Per!fl!uorinated!Ionomers!for!Alkaline!Membrane!Fuel!Cells.!2013.! ! (76)! Ran,!J.;!Wu,!L.;!Varcoe,!J.!R.;! Ong ,!A.!L.;!Poynton,!S.!D.;!Xu,!T...L.;! Liu,! Y.;! Ong ,! A.! L.;! Poynton,! S.! D.;! Varcoe,! J.! R.;! Xu,! T.:! Alkali! resistant! and! conductive! guanidinium8based! anion8exchange

  17. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...... for the topology of multicomponent melts, before accurate prediction of phase relations within boron-containing glass ceramics can be obtained....

  18. Interaction of alkali and alkaline earth ions with Ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Poor, Miklos [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary); Kunsagi-Mate, Sandor; Matisz, Gergely; Li, Yin; Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Janos Szentagothai Research Center, Pecs H-7624 (Hungary); Peles-Lemli, Beata [Department of General and Physical Chemistry, University of Pecs, Pecs H-7624 (Hungary); Koszegi, Tamas, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pecs, Pecs H-7624 (Hungary)

    2013-03-15

    The effect of alkali and alkaline earth ions on the chemical equilibrium of mono- and dianionic forms of the mycotoxin Ochratoxin A (OTA) and their bonding onto the surface of Bovine Serum Albumin (BSA) have been investigated by fluorescence spectroscopy and fluorescence polarization techniques. Our results show that alkali metal ions shift the chemical equilibrium towards formation of dianionic form of OTA. Furthermore, the alkaline earth ions can compete with BSA for binding to OTA when these ions are present in millimolar concentrations. Our data also highlight the possibility that the 'free' fraction of OTA (not bound onto the surface of albumin) or at least a part of it is present in cation-bound form in body fluids. These observations are supported by stability constants and quantum-chemical calculations. Among the studied alkaline metal ions magnesium showed the highest affinity towards OTA under physiological conditions. Further research is required to analyze the potential significance of Mg{sup 2+}-OTA complex in cellular uptake and/or elimination of the toxin in the human body. - Highlights: Black-Right-Pointing-Pointer Fluorescence spectroscopy reveals cation-Ochratoxin A (OTA) interactions. Black-Right-Pointing-Pointer Alkali ions shift the equilibrium of OTA to formation of a dianionic structure. Black-Right-Pointing-Pointer Alkaline earth ions directly bind to OTA in the order: Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+}. Black-Right-Pointing-Pointer Quantum chemical calculations and logK values support our experimental data.

  19. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    Science.gov (United States)

    2013-06-25

    Bicarbonate Ion Transport in Alk Block 13: Supplementary Note © 2013 . Published in Journal of the Electrochemical Society , Vol. Ed. 0 160, (9) (2013...for public release; distribution is unlimited. ... 60325.7-CH-II F994 Journal of The Electrochemical Society , 160 (9) F994-F999 (2013) 0013-4651/2013...160(9)/F994/6/$31.00 © The Electrochemical Society Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes Andrew M. Kiss,a

  20. The Origin of Life in Alkaline Hydrothermal Vents.

    Science.gov (United States)

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  1. Combination of alkaline phosphatase anti-alkaline phosphatase (APAAP)- and avidin-biotin-alkaline phosphatase complex (ABAP)-techniques for amplification of immunocytochemical staining of human testicular tissue.

    Science.gov (United States)

    Davidoff, M S; Schulze, W; Holstein, A F

    1991-01-01

    An amplification procedure was developed for the visualization of antigens in human testis using monoclonal antibodies against desmin and vimentin. The technique combines the high sensitive and specific APAAP- and ABAP-methods. Depending on the quality of the antibodies used and the processing of the material prior to the immunocytochemical staining the amplification technique may be applied either as a single APAAP and ABAP- or as a double APAAP and ABAP-combination. Especially after the double amplification reaction a distinct increase of the staining intensity of the vimentin- (in Sertoli cells, myofibroblasts of the lamina propria, and fibroblasts of the interstitium) and desmin- (in myofibroblasts of the lamina propria and smooth muscle cells of the blood vessels) like immunoreactivity was observed. If different diazonium salts were used for the visualization of the alkaline phosphatase activity (e.g. Fast Red TR Salt, Fast Blue BB Salt) desmin- and vimentin-like immunoreactivity can be demonstrated in the same tissue section in a double sequential staining approach. For double staining, the alkaline phosphatase technique may be combined successfully with a technique or a combination that uses peroxidase as a marker.

  2. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    Science.gov (United States)

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films.

  3. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    Science.gov (United States)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems.

  4. Adsorptive desulfurization over hierarchical beta zeolite by alkaline treatment

    Institute of Scientific and Technical Information of China (English)

    Fuping Tian; Xiaojian Yang; Yanchun Shi; Cuiying Jia; Yongying Chen

    2012-01-01

    Hierarchical beta zeolites with SiO2/Al2O3 molar ratios of 16 to 25 were obtained by alkaline treatment in NaOH solution.The effects of treatment temperature on crystallinity,textural properties and chemical composites were studied by XRD,N2 sorption,FT-IR and XRF techniques.The desulfurization performance of parent and alkaline-treated beta zeolites was investigated by static absorption in four model fuels,containing four sulfur compounds of different molecular sizes like thiophene (TP),3-methylthiophene (3-MT),benzothiophene (BT) and dibenzothiophene (DBT),respectively.The crystallinity was observed to be successfully maintained when the treatment temperature was below 50℃.Mesoporosity of beta zeolite was evidently developed with alkaline treatment.The formation of mesopore remarkably improved the desulfurization performance for TP,3-MT,BT and DBT,especially for DBT with larger molecular diameter.Though the addition of toluene in the model fuels resulted in a significant drop of the desulfurization performance of mesoporous beta zeolite,the introduction of cerium ions to some extent mitigated the effect of toluene,which means that both the adsorbents porous structure and the adsorption mode are responsible for the desulfurization performance.The adsorbent of cerium ion-exchanged mesoporous beta showed about 80% recovery of desulfurization after the first regeneration.

  5. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite.

    Science.gov (United States)

    Vandamme, Dries; Pohl, Philip I; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V; Hewson, John C; Muylaert, Koenraad

    2015-11-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5mM, flocculation was also observed at a pH of 10. Zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.

  6. Mechanism of gold dissolving in alkaline thiourea solution

    Institute of Scientific and Technical Information of China (English)

    CHAI Li-yuan; WANG Yun-yan

    2007-01-01

    Reaction mechanism of gold dissolving in alkaline thiourea solution was studied by electrochemical methods, such as cyclic voltammetry, chronopotentiometry, AC impedance, linear sweep voltammetry. Apparent activation energy of anodic process of gold electrode dissolving in alkaline thiourea solution is 14.91 kJ/mol. Rate determining step is the process of gold thiourea complex diffusing away from electrode surface to solution. The results of AC impedance and chronopotentiometry indicate that thiourea adsorbs on gold electrode surface before dissolving in solution. There does not exist proceeding chemical reactions. Formamidine disulfide, the decomposed product of thiourea, does not participate the process of gold dissolution and thiourea complex. Species with electro-activity produced in the process of electrode reaction adsorbs on the electrode surface. In alkaline thiourea solution, gold dissolving mechanism undergoes the following courses: adsorption of thiourea on electrode surface; charge transfer from gold atom to thiourea molecule; Au[SC(NH2)2]ads+ receiving a thiourea molecule and forming stable Au[SC(NH2)2]2+; and then Au[SC(NH2)2]2+diffusing away from the electrode surface to solution, the last step is the rate-determining one.

  7. Silicon Improves Maize Photosynthesis in Saline-Alkaline Soils

    Directory of Open Access Journals (Sweden)

    Zhiming Xie

    2015-01-01

    Full Text Available The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (Pn, stomatal conductance (gs, transpiration rate (E, and intercellular CO2 concentration (Ci of maize in the field with five levels (0, 45, 90, 150, and 225 kg·ha−1 of Si supplying. Experimental results showed that the values of Pn, gs, and Ci of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg·ha−1 Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize.

  8. Silicon improves maize photosynthesis in saline-alkaline soils.

    Science.gov (United States)

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of Si supplying. Experimental results showed that the values of P n, g s, and C i of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg · ha(-1) Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize.

  9. Activation of Calf Intestinal Alkaline Phosphatase by Trifluoroethanol

    Institute of Scientific and Technical Information of China (English)

    曹志方; 徐真; 朴龙斗; 周海梦

    2001-01-01

    Alkaline phosphatase is a stable enzyme which is strongly resistant to urea, guanidine hydrochloride, acid pH, and heat. But there have been few studies on the effect of organic cosolvents on the activity and structure of alkaline phosphatase. The activity of calf intestinal alkaline phosphatase (CIAP) is markedly increased when incubated in solutions with elevated trifluoroethanol (TFE) concentrations. The activation is a time dependent course. There is a very fast phase in the activation kinetics in the mixing dead time (30 s) using convential methods. Further activation after the very fast phase follows biphasic kinetics. The structural basis of the activation has been monitored by intrinsic fluorescence and far ultraviolet circular dichroism. TFE (0 - 60%) did not lead to any significant change in the intrinsic fluorescence emission maximum, indicating no significant change in the tertiary structure of CIAP. But TFE did significantly change the secondary structure of CIAP, especially increasing α-helix content. We conclude that the activation of ClAP is due to its secondary structural change. The time for the secondary structure change induced by TFE preceds that of the activity increase. These results suggest that a rapid conformational change of ClAP induced by TFE results in the enhancement of ClAP activity, followed by further increase of this activity because of the further slightly slower rearrangements of the activated conformation. It is concluded that the higher catalytic activity of ClAP can be attained with various secondary structures.

  10. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    distinct differences in the distribution of species and growth forms among the lakes. The lakes separated into five groups of characteristic species compositions. Alkalinity was the main factor responsible for the species distribution. Lakes of high alkalinity were dominated by vascular plants...... of the elodeid growth form, lakes of intermediate alkalinity contained a variety of elodeids and vascular plants of the isoetid growth form, while lakes of low alkalinity and low pH had several isoetids and bryophytes, but very few elodeids. Alkalinity is a close descriptor of the bicarbonate concentration...

  11. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  12. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    Science.gov (United States)

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  13. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    Science.gov (United States)

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.

  14. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye

    2013-01-01

    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  15. Hydrogen embrittlement on {alpha}-iron in high alkaline environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, R.; Habashi, M.; Galland, J. [Ecole Central Paris, Chatenay-Malabry (France)

    1994-12-31

    The partial pressure of hydrogen in concrete`s pore is very low. This hydrogen is due to the chemical reaction between the silica fumes and the alkaline solutions filling the concrete`s pore. Silica fumes are added in the concrete to increase its compression resistance. If the hydrogen pressure is low, the risk of hydrogen embrittlement is also low. However, for constructional works destined to endure more than 50 years, is this risk negligible? To answer this question, the authors have studied the hydrogen embrittlement on {alpha}-iron in alkaline solutions, in the pH range 9.5 to 13.3, presenting the liquids found in the concrete`s pores after different aging, periods. Cathodic charging has been performed for low current densities in the range 0.25 to 90 A/m{sup 2} simulating several partial pressures of hydrogen on the {alpha}-iron surface with and without EDTA inhibitor. The deformation rate was 2.5{times}10{sup {minus}5} s{sup {minus}1}. Finally {alpha}-iron samples and tensile specimens have been immersed in a mixture of silica fumes and an alkaline solution at pH 13.3 in an autoclave during 1,000 hours with the aim to measure the outgassed quantity of hydrogen under vacuum at 600C and to measure also the hydrogen embrittlement. The main conclusions of this study are as following: (1) Hydrogen embrittlement is promoted by oxide Fe{sub 3}O{sub 4} film rupture and/or hydroxide Fe(OH){sub 2}. This mechanism is efficient for current densities equivalent to a cathodic potential lower or equal to {minus}1V/NHE. (2) Silica fumes in contact with a solution of pH 13.3 provoke hydrogen release and its diffusion into the {alpha}-iron, but this quantity is not enough to embrittle it.

  16. phoD Alkaline Phosphatase Gene Diversity in Soil.

    Science.gov (United States)

    Ragot, Sabine A; Kertesz, Michael A; Bünemann, Else K

    2015-10-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples.

  17. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    KOSINIAK-KAMYSZ K.

    2007-01-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  18. Fire Resistance of Wood Impregnated with Soluble Alkaline Silicates

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Giudice

    2007-01-01

    Full Text Available The aim of this paper is to determine the fire performance of wood panels (Araucaria angustifolia impregnated with soluble alkaline silicates. Commercial silicates based on sodium and potassium with 2.5/1.0 and 3.0/1.0 silica/alkali molar ratios were selected; solutions and glasses were previously characterized. Experimental panels were tested in a limiting oxygen chamber and in a two-foot tunnel. Results displayed a high fire-retardant efficiency using some soluble silicates.

  19. Evaluation of High Solids Alkaline Pretreatment of Rice Straw

    OpenAIRE

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M.; Jenkins, Bryan M.; VanderGheynst, Jean S.

    2010-01-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H2O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H2O/g straw by hydrated lime (Ca(OH)2). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held c...

  20. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pivovar, B.

    2012-02-01

    A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

  1. Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344.

    Science.gov (United States)

    Luque-Almagro, V M; Blasco, R; Huertas, M J; Martínez-Luque, M; Moreno-Vivián, C; Castillo, F; Roldán, M D

    2005-02-01

    Pseudomonas pseudoalcaligenes CECT5344 uses cyanide, cyanate, beta-cyanoalanine, and other cyanoderivatives as nitrogen sources under alkaline conditions, which prevents volatile HCN (pK(a) 9.2) formation. The cyanide consumed by this strain is stoichiometrically converted into ammonium. In addition, this bacterium grows with the heavy metal, cyanide-containing waste water generated by the jewellery industry, and is also a cyanide-resistant strain which induces an alternative oxidase and a siderophore-based mechanism for iron acquisition in the presence of cyanide. The detection of cyanase and beta-cyanoalanine nitrilase activities in cyanide-induced cells suggests their implication in the cyanide degradation pathway.

  2. Koilocytes are enriched for alkaline-labile sites

    Directory of Open Access Journals (Sweden)

    E. I. Cortés-Gutiérrez

    2010-10-01

    Full Text Available This study investigated possible variations in the chromatin structure of koilocytes resulting from human papillomavirus (HPV infection. Alkaline-labile sites (ALS were detected with the DNA breakage detection–fluorescence in situ hybridization (DBD-FISH technique using a whole human genome DNA probe obtained from individuals without koilocytosis. The variable levels of ALS present were measured quantitatively using image analysis after whole-genome DNA hybridization. A significant increase in the number of ALS was observed in koilocytes compared with normal cells. We demonstrated that the presence of ALS could be an indicator of chromatin change in koilocytes caused by HPV infection.

  3. Development of a pressurized bipolar alkaline water electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da; Rapelli, Rubia; Pinto, Cristiano da Silva [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada], Email: nevesjr@unicamp.br; Marin Neto, Antonio Jose; Lopes, Daniel Gabriel; Camargo, Joao Carlos; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil); Furlan, Andre Luis [Universidade Estadual de Campinas (DE/FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This paper reports the actual development status of a bipolar alkaline water electrolyzer with maximum production capacity of 1 m3/h of hydrogen and controlled by a PLC (Programmable Logic Controller), which also interfaces the electrolytic system with operators and other equipment, such as gas storage tanks, fuel cells and photovoltaic panels. The project also includes the construction of an electrolysis test bench to record electrical parameters (cathode, anode, separator and electrolyte potentials), the amount of produced gases and gas quality determined by gas chromatography. (author)

  4. Silicon Improves Maize Photosynthesis in Saline-Alkaline Soils

    OpenAIRE

    Zhiming Xie; Ri Song; Hongbo Shao; Fengbin Song; Hongwen Xu; Yan Lu

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg·ha−1) of Si supplying. Experimental results showed that the values of P n , g s , and C i of maize were significantly enhanced while the values of E of maize were dra...

  5. Structural variations in layered alkaline earth metal cyclohexyl phosphonates

    Indian Academy of Sciences (India)

    Ramaswamy Murugavel; Nayanmoni Gogoi

    2009-06-01

    Two series of alkaline earth metal cyclohexyl phosphonates, M(C6H11PO3H)2(H2O) (M = Ca, Sr and Ba) (1–3) and M(C6H11PO3)(H2O) (M = Mg, Ca, Sr, and Ba) (4–7) have been synthesized under mild reaction conditions. All new compounds have been characterized using elemental analysis, IR, TGA and powder X-ray diffraction techniques. The molecular structure of compound 2 determined using single crystal X-ray diffraction technique reveals a layered polymeric structure.

  6. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products...

  7. Predicting Carbonate Ion Transport in Alkaline Anion Exchange Materials

    Science.gov (United States)

    2012-01-01

    Electrochemical Society , 2013. 2. Wilson K. S. Chiu, "Part 1. Role of the 3-D Electrode Microstructure on Charge Transfer, Mass Transfer, and Electrochemical Reactions in Solid Oxide Fuel Cells; Part 2. Ion and Water Transport in Alkaline Anion Exchange Membranes," technical seminar for the Army Research Laboratory (host: Dr. Deryn Chu), Adelphi, MD, August 13, 2012. (c) Presentations Number of Presentations: 2.00 Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Received Paper TOTAL: Number of Non Peer-Reviewed

  8. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO

  9. In vitro alkaline pH resistance of Enterococcus faecalis.

    Science.gov (United States)

    Weckwerth, Paulo Henrique; Zapata, Ronald Ordinola; Vivan, Rodrigo Ricci; Tanomaru Filho, Mário; Maliza, Amanda Garcia Alves; Duarte, Marco Antonio Hungaro

    2013-01-01

    Enterococcus faecalis is a bacterial species often found in root canals with failed endodontic treatment. Alkaline pastes are widely used in Endodontics because of their biocompatibility and antimicrobial activity, but this microorganism can resist alkalinity. The purpose of this study was to evaluate in vitro the alkaline pH resistance of E. faecalis for different periods up to 14 days. Samples were obtained from the oral cavity of 150 patients from the Endodontic clinic. The pH of the experimental tubes (n=84) was first adjusted with 6M NaOH to pH values of 9.5, 10.5, 11.5 and 12.5 (21 tubes per pH). Twenty clinical isolates and the ATCC 29212 strain were tested. The 5 positive controls and experimental tubes of each pH were inoculated with 10 µL of bacterial suspension and incubated at 36 °C for 24, 48 and 72 h, 7 and 14 days. For each period, the turbidity of the medium was visually compared with a 0.5 McFarland standard. The presence of the microorganism was confirmed by seeding on M-Enterococcus agar. Four tubes containing BHI broth adjusted to the tested pHs were incubated for 14 days to verify if pH changes occurred. The pH of inoculated BHI broth was also measured on day 14 to determine if the microorganism acidified the medium. The growth of all E. faecalis strains occurred at pH 9.5 to 11.5 in all periods. Although turbidity was not observed at pH 12.5, there was growth of 13 and 2 strains at 24 and 48 h, respectively, on M-Enterococcus agar. No tube showed growth at pH 12.5 after 72 h. It was concluded that E. faecalis can survive in highly alkaline pH, and some clinical isolates require 72 h at pH 12.5 to be killed.

  10. Quantum computing with alkaline-Earth-metal atoms.

    Science.gov (United States)

    Daley, Andrew J; Boyd, Martin M; Ye, Jun; Zoller, Peter

    2008-10-24

    We present a complete scheme for quantum information processing using the unique features of alkaline-earth-metal atoms. We show how two completely independent lattices can be formed for the 1S0 and 3P0 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the 3P2 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.

  11. Changes in the Vascular Cylinder of Wild Soybean Roots Under Alkaline Stress

    Institute of Scientific and Technical Information of China (English)

    NIU Lu; LU Jing-mei; WU Dong-mei; LI Yan; GAO Ting-ting

    2014-01-01

    Changes in the vascular cylinder of wild soybean (Glycine soja Sieb. et Zucc) roots under alkaline stress were investigated in an experiment that applied 90 mmol L-1 alkaline stress for 10 d at the ifve-trifoliate plant growth stage in Huinan County, Jilin Province, China. Root samples were collected and parafifn-cut sections were made, and the root structure was observed under an optical microscope. There were signiifcant changes in the vascular cylinder of G. soja roots under alkaline stress. Root diameter was reduced and the vascular cylinder changed from tetrarch to triarch pattern. Alkaline stress resulted in reduced, diameters of root vessels, and a large amount of residual, alkaline solution was stained cyaneous in vessels. The paratracheal parenchymatous cells of the vessels were large and there was little secondary xylem. Thus, alkaline stress caused structural changes in the vascular cylinder of G. soja.

  12. Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Eileen Hao Yu

    2010-08-01

    Full Text Available Direct alkaline alcohol fuel cells (DAAFCs have attracted increasing interest over the past decade because of their favourable reaction kinetics in alkaline media, higher energy densities achievable and the easy handling of the liquid fuels. In this review, principles and mechanisms of DAAFCs in alcohol oxidation and oxygen reduction are discussed. Despite the high energy densities available during the oxidation of polycarbon alcohols they are difficult to oxidise. Apart from methanol, the complete oxidation of other polycarbon alcohols to CO2 has not been achieved with current catalysts. Different types of catalysts, from conventional precious metal catalyst of Pt and Pt alloys to other lower cost Pd, Au and Ag metal catalysts are compared. Non precious metal catalysts, and lanthanum, strontium oxides and perovskite-type oxides are also discussed. Membranes like the ones used as polymer electrolytes and developed for DAAFCs are reviewed. Unlike conventional proton exchange membrane fuel cells, anion exchange membranes are used in present DAAFCs. Fuel cell performance with DAAFCs using different alcohols, catalysts and membranes, as well as operating parameters are summarised. In order to improve the power output of the DAAFCs, further developments in catalysts, membrane materials and fuel cell systems are essential.

  13. Key factors governing alkaline pretreatment of waste activated sludge

    Institute of Scientific and Technical Information of China (English)

    Xianli Shi; Li Deng; Fangfang Sun; Jieyu Liang; Xu Deng

    2015-01-01

    Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. pH value or alkali concentration is usually adjusted in order to deter-mine a proper dosage of alkali. Our work has found that this is not a good strategy. A new parameter, the ratio of alkali to sludge (Ra/s), is more sensitive in controlling the alkali dosage. The sludge concentration Cs and reten-tion time t are two other important factors to consider. The validity of these arguments is confirmed with model-ing and experiments. The individual effect of Ra/s, Cs and t was studied separately. Then the combined effect of these three factors was evaluated. The sludge disintegration degree of 44.7%was achieved with the optimized factors. Furthermore, an alkaline-microwave combined pretreatment process was carried out under these optimized conditions. A high disintegration degree of 62.3%was achieved while the energy consumption of microwave was much lower than previously reported.

  14. Corrosion testing of candidates for the alkaline fuel cell cathode

    Science.gov (United States)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  15. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.C.; Peper, S.M.; Douglas, M.; Ziegelgruber, K.L. [PNNL, PO Box 999, MS P8-08, Richland, WA 99352 (United States)

    2009-06-15

    Understanding the dissolution of uranium oxides is critical for designing and optimizing next-generation spent nuclear fuel (SNF) reprocessing methods. Bench scale experiments were conducted to determine the optimal dissolution parameters for size-fractionated aliquots of UO{sub 2}, UO{sub 3}, and U{sub 3}O{sub 8} powders in aqueous peroxide-carbonate solutions. Experimental parameters included; peroxide and carbonate concentrations, and temperature. Solution pH was varied with ammonium hydroxide. We will present details of the dissolution experiment set-up as well as information on the kinetics of dissolution of the various U-oxides as a function of the above variables. We will also discuss efforts to characterize solution and solid-state complexes in peroxide-carbonate systems. This study will demonstrate the applicability of peroxide-containing alkaline solutions for effectively dissolving SNF, and will enhance the current level of understanding of actinide behavior in peroxide-containing alkaline solutions. (authors)

  16. Potential control flotation of galena in strong alkaline media

    Institute of Scientific and Technical Information of China (English)

    顾帼华; 胡岳华; 邱冠周; 王晖; 王淀佐

    2002-01-01

    The electrochemical oxidation of galena in collectorless and collector flotation systems, particularly in strong alkaline media, was studied. The results show that, with pH value higher than 12.5 and potentials below 0.17 V, the oxidation products of galena are elemental sulfur and HPbO-2. Elemental sulfur was present on the mineral surface in excess of oxidized lead species due to dissolution of HPbO-2, which is beneficial to the flotation of galena. Under the same conditions, sphalerite and pyrite were depressed as a result of significant surface oxidation. Diethyldithiocarbamate (DDTC) was found to be the most suitable collector for galena flotation in strongly alkaline media. The very potential produced hydrophobic PbD2-the surface reaction product of DDTC with galena, is 0 to 0.2 V. Meantime DDTC can depress the surface over-oxidation of galena. Investigations also indicate that, in the range of -0.9 V to 0.6 V, hydrophobic PbD2 can be firmly adsorbed on galena.

  17. [Behavior of serum alkaline during pregnancy. II. Pathological pregnancy].

    Science.gov (United States)

    Stark, K H; Nabel, H J; Kyank, H; Neumayer, E; Dässler, C G; Töwe, J

    1976-01-01

    832 estimations of heat stable alkaline phosphatase (HSAP) and of heat alkaline phosphatase (HLAP) were carried out simultaneously in late pregnant women at 25th to the 42nd weeks of pregnancy. 147 of them delivered children with normal birth-weight. All these women suffered from pre-eclampsia, hypertension or any kind of superimposed pre-eclampsia. 110 other pregnant women with or without symptoms of pre-eclampsia gave birth to small for dates babies. In addition, the values of these patients were compared with 372 estimations of the same enzymes carried out in 120 patients with normal pregnancy and outcome of normal weighted children. The site of the values of every group showed no typical correlation to the course and outcome of their pregnancy. Regarding four special criterions it was possible to give a good prediction by serial determinations for the weight of the newborn in 80 per cent of the cases. A correlation between the urinary excretion of total oestrogens as well as HLAP and the values of HSAP was to be found only in some groups of patients.

  18. ALKALINE PEROXIDE MECHANICAL PULPING OF NOVEL BRAZILIAN EUCALYPTUS HYBRIDS

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho dos Santos Muguet,

    2012-07-01

    Full Text Available Eucalyptus wood is among the most important biomass resource in the world. Wood mechanical defibration and fibrillation are energy-intensive processes utilized not only to produce pulp for papermaking, but also to produce reinforcement fibers for biocomposites, nanocellulose, or pretreat lignocellulosic material for biofuels production. The structural features of different Eucalyptus hybrids affecting the refining energy consumption and produced fiber furnish properties were evaluated. The defibration and fiber development were performed using an alkaline peroxide mechanical pulping (APMP process, which included chelation followed by an alkaline peroxide treatment prior to wood chip defibration. Despite the similar wood densities and chemical compositions of different Eucalyptus hybrids, there was a clear difference in the extent of defibration and fibrillation among the hybrids. The high energy consumption was related to a high amount of guaiacyl lignin. This observation is of major importance when considering the optimal wood hybrids for mechanical wood defibration and for understanding the fundamental phenomena taking place in chemi-mechanical defibration of wood.

  19. Evaluation of high solids alkaline pretreatment of rice straw.

    Science.gov (United States)

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M; Jenkins, Bryan M; VanderGheynst, Jean S

    2010-11-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H(2)O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H(2)O/g straw by hydrated lime (Ca(OH)(2)). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held constant at 95 degrees C for lime pretreatment and 55 degrees C for NaOH pretreatment. The range of delignification was 13.1% to 27.0% for lime pretreatments and was 8.6% to 23.1% for NaOH pretreatments. Both alkaline loading and reaction time had significant positive effects (p pretreatment at 95 degrees C, but there was little effect observed at 55 degrees C. Post-pretreatment washing of biomass was not necessary for subsequent enzymatic hydrolysis. Maximum glucose yields were 176.3 mg/g dried biomass (48.5% conversion efficiency of total glucose) in lime-pretreated and unwashed biomass and were 142.3 mg/g dried biomass (39.2% conversion efficiency of total glucose) in NaOH-pretreated and unwashed biomass.

  20. Degradation modes of alkaline fuel cells and their components

    Science.gov (United States)

    Tomantschger, Klaus; Findlay, Robert; Hanson, Michael; Kordesch, Karl; Srinivasan, Supramaniam

    The performance and life-limiting parameters of multilayer polytetrafluoroethylene (PTFE) bonded carbon air cathodes and hydrogen anodes, developed at the Institute for Hydrogen Systems (IHS) for use in low temperature alkaline electrolyte fuel cells (AFC) and batteries, were investigated. Scanning electron microscopy (SEM), X-ray energy spectroscopy (XES), electron spectroscopy for chemical analysis (ESCA), microcalorimetry and intrusion porosimetry techniques in conjunction with electrochemical testing methods were used to characterize electrode components, electrodes and alkaline fuel cells. The lifetime of air cathodes is mainly limited by carbon corrosion and structural degradation, while that of hydrogen anodes is frequently limited by electrocatalyst problems and structural degradation. The PTFE binder was also found to degrade in both the cathodes and the anodes. The internal resistance, which was found to generally increase in AFCs in particular between the cathode and the current collector, can be minimized by the proper choice of materials. Temperature cycling of AFCs may result in mechanical problems; however, these problems can be overcome by using AFC components with compatible thermal expansion coefficients.

  1. Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions

    Science.gov (United States)

    Ruiz-Bermejo, Marta; Rivas, Luis A.; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH4. At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.

  2. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion

    Institute of Scientific and Technical Information of China (English)

    JIN Yiying; LI Huan; MAHAR Rasool Bux; WANG Zhiyu; NIE Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can both be used as pretreatments of waste activated sludge (WAS) for improving the subsequent anaerobic or aerobic digestion. The pretreatment has been carried out using different combination of these two methods in this study. The effect was evaluated based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the following aerobic digestion. For WAS samples with combined pretreatment, the released COD was in high level than those with ultrasonic or alkaline treatment. When combined with the same ultrasonic treatment, NaOH treatment resulted in more solubilization of WAS than Ca(OH)2. For combined NaOH and ultrasonic treatments with different sequences, the released COD were in the order: simultaneous treatment > ultrasonic treatment following NaOH treatment > NaOH treatment following ultrasonic treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7 500 kJ/kg dry solid) were beneficial for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with the optimium parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  3. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    Science.gov (United States)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  4. Kinetic aspects of human placental alkaline phosphatase enzyme membrane.

    Science.gov (United States)

    Roig, M G; Serrano, M A; Bello, J F; Cachaza, J M; Kennedy, J F

    1991-01-01

    The crosslinking of alkaline phosphatase of human placenta with human serum albumin has been optimized. During the physico-chemical characterization of this immobilized biocatalyst, special attention was paid to attributes such as the irreversibility of the enzyme support bonding, the stability of the catalytic activity, and the effects of pH and temperature on this activity. Regarding stability, patterns of denaturation are proposed, to account for inactivation curves over time and under storage/operation conditions. These patterns, in some cases, indicate the existence of different populations of immobilized enzyme molecules, with a different degree of sensitivity to denaturation. The activity vs pH profiles are clearly modified by the immobilization process. This is because the pH of the free homogeneous solution, measurable with a pH-meter, differs from the real pH of the immediate microenvironment of the immobilized enzyme molecules due to the effects of proton accumulation in the microenvironment (in the reaction catalysed by alkaline phosphatase, protons are produced), to limitations to the free diffusion of H+ and to the possible partition effects of H+ due to polar interactions with residues or molecules of the enzyme membrane. In the experimental working conditions, the apparent optimum temperatures are centered at 40 degrees C, inactivation (thermal denaturation) occurring above this temperature. In the temperature range 10-40 degrees C, the kinetic control over the overall activity of the immobilized enzyme was observed, causing the Arrhenius profiles to be linear.

  5. Ferromagnetism in ZnO doped with alkaline elements

    Science.gov (United States)

    Wang, Yiren; Piao, Jingyuan; Xin, Guozhong; Lu, Yunhao; Ao, Zhimin; Bao, Nina; Ding, Jun; Li, Sean; Yi, Jiabao

    We have observed room temperature ferromagnetism (RTFM) in ZnO doped with alkaline elements Using first-principles calculations we found the magnetization in these systems is originated from the O2p hole states around Zn vacancies. Calculations indicate that the formation energy of Zn vacancies alone is rather high while further investigation indicates the formation can be much stabilized by the alkaline dopants in the form of defect complexes. By calculating the formation energy of concerned defects and complexes, we found the role of the dopants that under a certain doping concentration: Zn vacancy, substitutional and interstitial dopants can form a defect complex, which can lower formation energy, therefore stabilizing Zn vacancies. Moreover K dopants have shown unique functions on the ferromagnetism since the substitutional K can induce magnetic moments to the system by forming partial zinc vacancy via lattice distortion. Hence K doped ZnO can be magnetic at low doping concentrations. Experimentally, Li, Na doped ZnO films and K doped ZnO nanorods with different doping levels are synthesized, RTFM can be observed in all these systems. The magnetization is found to be greatly influenced by the doping concentrations. The experimental results have shown good consistence with our theoretical calculations. Our studies can inspire the defect induced ferromagnetism as a new route for the fabrication of new diluted magnetic semiconductors.

  6. [DNA degradation during standard alkaline of thermal denaturation].

    Science.gov (United States)

    Drozhdeniuk, A P; Sulimova, G E; Vaniushin, B F

    1976-01-01

    Essential degradation 8 DNA (up to 10 per cent) with liberation of acid-soluble fragments takes place on the standard alkaline (0,01 M sodium phosphate, pH 12, 60 degrees, 15 min) or thermal (0.06 M sodium phosphate buffer, pH 6.8, 102 degrees C, 15 min) denaturation. This degradation is more or less selective: fraction of low molecular weight fragments, isolated by hydroxyapatite cromatography and eluted by 0.06 M sodium phosphate buffer, pH 6.8 is rich in adenine and thymine and contains about 2 times less 5-methylcytosine than the total wheat germ DNA. The degree of degradation of DNA on thermal denaturation is higher than on alkaline degradation. Therefore while studying reassociation of various DNA, one and the same standard method of DNA denaturation should be used. Besides, both the level of DNA degradation and the nature of the resulting products (fragments) should be taken into account.

  7. Processes determining the marine alkalinity and carbonate saturation distributions

    Directory of Open Access Journals (Sweden)

    B. R. Carter

    2014-07-01

    Full Text Available We introduce a composite tracer, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* also highlights riverine alkalinity plumes that are due to dissolved calcium carbonate from land. We estimate the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near river mouths. Strong net carbonate precipitation lowers basin mean Indian and Atlantic Alk*, while upwelling of dissolved CaCO3 rich deep waters elevates Northern Pacific and Southern Ocean Alk*. We use the Alk* distribution to estimate the carbonate saturation variability resulting from CaCO3 cycling and other processes. We show regional variations in surface carbonate saturation are due to temperature changes driving CO2 fluxes and, to a lesser extent, freshwater cycling. Calcium carbonate cycling plays a tertiary role. Monitoring the Alk* distribution would allow us to isolate the impact of acidification on biological calcification and remineralization.

  8. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  9. Digestibility Improvement of Sorted Waste with Alkaline Hydrothermai Pretreatment

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; WANG Hongtao; LU Wenjing; ZHAO Yan

    2009-01-01

    The digestibility of sorted municipal solid waste (MSW) is often limited by the high content of structured green waste. The objectives of this study are to investigate the effect of alkaline hydrothermal pretreatment on the anaerobic digestion of sorted waste and to analyze the biogas production of different parts of the waste. The waste was hydrothermally pretreated in a dilute alkali solution. The hydrolysis product was then incubated in a 500 mL saline bottle to determine the biochemical methane potential (BMP) under mesophilic anaerobic conditions. The optimum hydrothermal condition was 170℃ at 4 g NaOH/100 g solid for one hour. The concentration of chemical oxygen demand (COD) was 13 936 mg/L and the methane yield was 164 mL/g volatile solid (VS) for 6 days incubation at the optimum conditions. The biogas production was increased more than 50% over the control, with the methane conversion ratio on a carbon basis enhanced to 30.6%. The organic part of the sorted waste was mainly kitchen garbage and leaves. Model kitchen garbage completely liquified at 130℃ for one hour had a methane yield of 276 mL/g VS. The alkali addition slightly enhanced the hydrolyzation rate and methane yield. The biogas potential of leaves was improved by pre-treatment at above 150℃ under alkaline conditions.

  10. CATALYSED ALKALINE OXIDATION AS A WOOD FRACTIONATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Stella Rovio,

    2012-01-01

    Full Text Available Alkaline oxidation (AlkOx is an effective fractionation technique for lignocellulosic raw materials. The efficiency of the AlkOx treatment can further be enhanced by using a catalyst (CatOx. Both CatOx and AlkOx provide a fiber fraction containing readily hydrolysable carbohydrates that can be utilized in biotechnical processes and a liquid fraction containing solubilized lignin and reaction products from various biomass components. The effects of different fractionation conditions on yields and chemical composition of solubilized and insoluble fractions were investigated. Two temperatures and two reaction times were studied with and without a catalyst. The composition and content of carbohydrates in the fiber and liquid fractions were examined. The generation of aliphatic carboxylic acids as oxidation products was also investigated. The catalytically assisted oxidation was more efficient than the alkaline counterpart in dissolution of wood components under a four-hour treatment period resulting in higher dissolution of hemicelluloses. A longer reaction time of 20 hours leveled out the differences between the oxidation processes. Comparison of different bases showed that similar solubilisation of dry matter was obtained with NaOH, KOH, and Na2CO3. Oxidation in Na2CO3 caused higher dissolution of glucomannan and greater acid production. The dissolution of hemicellulose and lignin, and their oxidation to acids was most efficient in the first 4 hours of oxidation.

  11. Synthesis of Zeolites by Alkaline Activation of Fly Ash

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In terms of mineral transformation, and chemical composition of acid-soluble component as a function of reaction time, the effect of alkaline solution on zeolite-like fly ash was studied by employing fly ash and NaOH solution as starting materials. When fly ash and 1€? 0mol/L NaOH solution were processed at 100℃ for 24h with 1:10 W/S rat io in a relatively closed system, powder XRD patterns of resulting pro ducts indicated the formation of various zeolites. Zeolite P crystalli zed early at low alkaline concentration, which was replaced then by ze olites X and A. At high concentration, hydroxy sodalite was the only n ew phase. Quartz, in fly ash and NaOH solution system, gradually disso lved, and mullite, however, remained stable. It was concluded that, wi th Al/Si and Na/Si finally reaching equilibrium in molar ratio, compos ition of starting mixtures affects the crystallization of zeolite from fly ash.

  12. Decrease in dynamic viscosity and average molecular weight of alginate from Laminaria digitata during alkaline extraction

    OpenAIRE

    Vauchel, Peggy; Arhaliass, Abdellah; Legrand, Jack; Kaas, Raymond; Baron, Regis

    2008-01-01

    Alginates are natural polysaccharides that are extracted from brown seaweeds and widely used for their rheological properties. The central step in the extraction protocol used in the alginate industry is the alkaline extraction, which requires several hours. In this study, a significant decrease in alginate dynamic viscosity was observed after 2 h of alkaline treatment. Intrinsic viscosity and average molecular weight of alginates from alkaline extractions 1-4 h in duration were determined, i...

  13. Plasma calcium, magnesium, phosphorus, and alkaline phosphatase levels in normal British schoolchildren.

    Science.gov (United States)

    Round, J M

    1973-07-21

    In a cross-sectional survey 624 schoolchildren were screened for plasma calcium, inorganic phosphate, and alkaline phosphatase levels. Plasma magnesium and alkaline phosphatase isoenzymes were also estimated in some cases.No significant difference was found between adult and childhood values for calcium and magnesium. Levels of alkaline phosphatase and inorganic phosphorus varied with both age and sex. The magnitude of these variations in normal ranges is of clear importance in assessing data from individual paediatric or adolescent patients.

  14. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan

    OpenAIRE

    Li, Longhui; Chen, Xi; Van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2013-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils,...

  15. Short chain aliphatic acid anions in oil field waters and their contribution to the measured alkalinity

    Science.gov (United States)

    Willey, L.M.; Kharaka, Y.K.; Presser, T.S.; Rapp, J.B.; Barnes, I.

    1975-01-01

    High alkalinity values found in some formation waters from Kettleman North Dome oil field are due chiefly to acetate and propionate ions, with some contribution from higher molecular weight organic acid ions. Some of these waters contain no detectable bicarbonate alkalinity. For waters such as these, high supersaturation with respect to calcite will be incorrectly indicated by thermodynamic calculations based upon carbonate concentrations inferred from traditional alkalinity measurements. ?? 1975.

  16. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Directory of Open Access Journals (Sweden)

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  17. Eco-physiological Characteristics of Alfalfa Seedlings in Response to Various Mixed Salt-alkaline Stresses

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Soil salinization and alkalization frequently co-occur in nature, but little is known about the mixed effects of salt-alkaline stresses on plants. An experiment with mixed salts (NaCl, Na2SO4, NaHCO3 and Na2CO3) and 30 salt-alkaline combinations(salinity 24-120 mmol/L and pH 7.03-10.32) treating Medicago sativa seedlings was conducted. The results demonstrated that salinity and alkalinity significantly affected total biomass and biomass components of seedlings. There were interactive effects of salt composition and concentration on biomass (P ≤ 0.001). The interactions between salinity and alkalinity stresses led to changes in the root activity along the salinity gradient (P ≤ 0.001). The effects of alkalinity on seedling survival rate were more significant than those of salinity, and the seedlings demonstrated some physiological responses(leaf electrolyte leakage rate and proline content) in order to adapt to mixed salt-alkaline stresses. It was concluded that the mixed salt-alkaline stresses, which differ from either salt or alkali stress, emphasize the significant interaction between salt concentration (salinity) and salt component (alkalinity). Further, the effects of the interaction between high alkalinity and salinity are more severe than those of either salt or alkali stress, and such a cooperative interaction results in more sensitive responses of ecological and physiological characteristics in plants.

  18. Permeability of alkaline magmas: a study from Campi Flegrei, Italy

    Science.gov (United States)

    Polacci, M.; Bouvet de Maissoneuve, C.; Giordano, D.; Piochi, M.; Degruyter, W.; Bachmann, O.; Mancini, L.

    2012-04-01

    Knowledge of permeability is of paramount importance for understanding the evolution of magma degassing during pre-, syn- and post-eruptive volcanic processes. Most permeability estimates existing to date refer to magmas of calc-alkaline compositions. We report here the preliminary results of permeability measurements performed on alkali-trachyte products erupted from the Campanian Ignimbrite (CI) and Monte Nuovo (MTN), two explosive eruptions from Campi Flegrei (CF), an active, hazardous caldera west of Naples, Southern Italy. Darcian (viscous) permeability spans a wide range between 10^-11 and 10^-14 m^2. We observe that the most permeable samples are the scoria clasts from the upper units of MTN; pumice samples from the Breccia Museo facies of CI are instead the least permeable. Non-Darcian (inertial) permeability follows the same trend as Darcian permeability. The first implication of this study is that porosity in alkaline as well as calc-alkaline magmas does not exert a first order control on permeability (e.g. the MTN samples are the most permeable but not the most porous). Second, sample geometry exhibits permeability anisotropy (higher permeability in the direction of vesicle elongation), suggesting stronger degassing in the vertical direction in the conduit. In addition, inertial effects are higher across the sample. As inertial effects are potentially generated by tortuosity (or tortuous vesicle paths), tortuosity is likely higher horizontally than vertically in the conduit. Finally, the measured CF permeability values overlap with those of rhyolitic pumice clasts from the Kos Plateau Tuff (Bouvet de Maisonneuve et al., 2009), together with CI one of the major Quaternary explosive eruptions of the Mediterranean region. This indicates that gas flow is strongly controlled by the geometry of the porous media, which is generated by the bubble dynamics during magma ascent. Therefore, permeability will depend on composition through the rheological properties

  19. Structural diversity of alkaline-earth 2,5-thiophenedicarboxylates

    Science.gov (United States)

    Balendra; Ramanan, Arunachalam

    2017-03-01

    Exploration of the structural landscape of the system containing divalent alkaline-earth metal ion (Mg, Ca and Sr) with the rigid 2,5-thiophenedicarboxylic acid (TDC) under varying solvothermal condition (DMF, DMA and DEF) yielded five new crystals: [Mg(TDC) (DEF)2(H2O)1/2] (1), [Ca(TDC) (DMA)] (2), [Ca(TDC) (DMA) (H2O)] (3), [Sr(TDC) (DMA)] (4) and [Sr(TDC) (DMA) (H2O)] (5) and two known solids. Single crystal structures of all the solids are characteristic of extended coordination interaction between metal and carboxylate ions. While the smaller magnesium ion crystallized into a 2D coordination polymer, the larger calcium and strontium compounds resulted into the growth of 3D metal organic frameworks. All the solids show blue emission arising from intra ligand charge transfer.

  20. Cu(II) complex formation with xylitol in alkaline solutions.

    Science.gov (United States)

    Norkus, Eugenijus; Vaiciūniene, Jūrate; Vuorinen, Tapani; Gaidamauskas, Ernestas; Reklaitis, Jonas; Jääskeläinen, Anna-Stiina; Crans, Debbie C

    2004-02-25

    The formation of four Cu(II)-xylitol complexes was observed in aqueous alkaline solutions (11.0 or =10), whereas dinuclear complex Cu2Xyl (log beta=29.2 +/- 0.3) is the predominant species at low ligand-to-metal ratio (L:M=0.5). Diffusion coefficients and molar absorptivities of the complex species were determined. pH variable 13C NMR suggested that pKa values of xylitol are rather similar and equal to 13.8 +/- 0.2, 13.9 +/- 0.1 and 13.9 +/- 0.2 for OH-groups adjacent to (C-1,C-5), (C-3) and (C-2,C-4) carbon atoms, respectively.

  1. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %.

  2. Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    Alkaline electrolysis cells operated at 250 °C and 40 bar have shown to be able to convert electrical energy into chemical energy in the form of hydrogen at very high efficiencies and power densities. Foam based gas diffusion electrodes and a liquid immobilized electrolyte allow the operation...... of the newly designed electrolysis cell as a fuel cell, but condensation of steam may lead to blocked pores, thereby inhibiting gas diffusion and decreasing the performance of the cell. In the here presented work we present the application of a hydrophobic, porous, and electro-catalytically active layer...... the electrochemical characteristics of the cell. The thickness of the electrolyte matrix was reduced to 200 µm, thereby achieving a serial resistance and area specific resistance as low as 60 mΩ cm2 and 150 mΩ cm2, respectively, at a temperature of 200 °C and 20 bar pressure. A new production method was developed...

  3. Surfactant and adhesive formulations from alkaline biomass extracts

    Science.gov (United States)

    Baxter, Matthew

    This work studies the ability to produce effective surfactant and adhesive formulations using surface active biological material extracted from different biomass sources using alkaline extraction methods. Two urban waste biomass sources were used to produce surfactants, Return Activated Sludge (RAS), and solid Urban Refuse (UR). The third biomass source investigated was isolated mustard protein (MP). RAS and MP extracts were investigated for adhesive production. The results indicate that extracts from the waste biomass sources, RAS and UR, can be combined with a commercial surfactant, sodium dioctyl sulfosuccinate (AOT), to produce surfactants with low interfacial tensions against various oils. These highly surface-active formulations were shown to be useful in the removal of bitumen from contaminated sand. RAS and MP showed potential as protein-based wood adhesives. These sources were used in adhesive formulations to produce a strong bond strength under low-pressure, ambient pressing conditions.

  4. Enhanced Magnetic Trap Loading for Alkaline-Earth Atoms

    Science.gov (United States)

    Reschovsky, Benjamin J.; Barker, Daniel S.; Pisenti, Neal C.; Campbell, Gretchen K.

    2016-05-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser addressing the 3P1 level. For the 3P1 -->3S1 (688-nm) transition in strontium, the depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  5. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk

    Science.gov (United States)

    Chon, Jung-Whan; Kim, Hyunsook; Kim, Kwang-Yup

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  6. Development of Hydrogen Electrodes for Alkaline Water Electrolysis

    DEFF Research Database (Denmark)

    Kjartansdóttir, Cecilía Kristín

    will be needed. Producing hydrogen via water electrolysis using surplus, low cost, power from renewables offers the possibility of increased production capacity and load management with no greenhouse emissions. Hydrogen is a valuable energy carrier, which is able to contribute to various forms of energy, such as......, production of electricity via fuel cells, fuel for internal combustion engines or gas turbines, or as a raw material for the production of synthetic fuels via Sabatier or Fischer - Tropsch process. In some situations it may be suitable to simply inject hydrogen into the existing natural gas based...... infrastructure. Alkaline water electrolysis (AWE) is the current standard (stat of the art) for industrial large-scale water electrolysis systems. One of the main criteria for industrial AWE is efficient and durable electrodes. The aim of the present PhD study was to develop electrode materials for hydrogen...

  7. Theoretical study on alkaline hydrolysis of trinitrotoluene: later steps

    Directory of Open Access Journals (Sweden)

    Liudmyla K. Sviatenko

    2015-10-01

    Full Text Available Alkaline hydrolysis is an effective method to destroy such the pollutant as 2,4,6-trinitrotoluene (TNT in solution and in well-mixed soil. The mechanism of hydrolytic transformation of polynegative complex, which is one of the products of early stages of TNT hydrolysis, was theoretically investigated at the SMD(Pauling/M06-2X/6-31+G(d,p level under alkali condition. The studied process consists of more than twenty steps and includes a six-membered cycle cleavage and sequenced [1,3]-hydrogen migration and C-C bond rupture. The highest energy barrier is observed for interaction of nitromethanide with hydroxide. The most exothermic steps are C–C bonds breaking. As a result final products such as formate, acetate, ammonium, and nitrogen are formed.

  8. A new alkaline elastase of an alkalophilic bacillus.

    Science.gov (United States)

    Tsai, Y C; Yamasaki, M; Yamamoto-Suzuki, Y; Tamura, G

    1983-11-01

    A new alkaline elastase was purified from the culture broth of an alkalophilic Bacillus sp. Ya-B. This was a serine proteinase. Molecular weight was 25,000. The optimum pH for elastin and casein was 11.75. The enzyme had very high specific activity, 12,400 units/mg protein for casein, and 2,440 units/mg protein for elastin at the optimum pH. It showed marked preference for elastin. The relative activity of elastin/casein of this enzyme was 17 and 6 times higher than those of subtilisin BPN' and subtilisin Carlsberg, respectively. This enzyme also had higher keratin and collagen hydrolyzing activity in comparison with subtilisin.

  9. [Risks associated with unrestricted consumption of alkaline-reduced water].

    Science.gov (United States)

    Henry, Marc; Chambron, Jacques

    2014-01-01

    Consumption of alkaline reduced water produced by domestic electrolysis devices was approved in Japan in 1965 by the Minister of Health, Work and Wellbeing, for the treatment of gastrointestinal disorders. Today, these devices are also freely available in France. The commercial information provided with the devices recommends the consumption of 1 to 1.5 liters per day, not only for gastrointestinal disorders but also for numerous other illnesses such as diabetes, cancer and inflammation. Academic research on this subject has been undergoing in Japan since 1990, and has established that the active ingredient is dissolved dihydrogen, which eliminates the free radical HO· in vivo. It has also been shown that electrode degradation during use of the devices releases highly reactive platinum nanoparticles, the toxicity of which is unknown. The authors of this report recommend alerting the French health authorities to the uncontrolled availability of these devices that generate drug substances and should therefore be subject to regulatory requirements.

  10. Purification and Characterization of An Alkaline Protease from Acetes chinensis

    Institute of Scientific and Technical Information of China (English)

    XU Jiachao; LIU Xin; LI Zhaojie; XU Jie; XUE Changhu; GAO Xin

    2005-01-01

    An alkaline protease from Acetes chinensis was purified and characterized in this study. The steps of purification include ammonium sulfate precipitation, ion-exchange chromatography with Q-sepharose Fast Flow, gel filtration chromatography with S300 and the second ion-exchange chromatography with Q-sepharose Fast Flow. The protease was isolated and purified, which was present and active on protein substrates (azocasein and casein). The specific protease activity was 17.15folds and the recovery was 4.67. The molecular weight of the protease was estimated at 23.2 kD by SDS-PAGE. With azocasein as the susbstrate, the optimal temperature was 55 ℃ and the optimal pH value was 5.5. Ion Ca2+ could enhance the proteolytic activity of the protease, while Cu2+ , EDTA and PMSF could inhibit its activity.

  11. Manganese Dioxide with High Specific Surface Area for Alkaline Battery

    Institute of Scientific and Technical Information of China (English)

    HUANG You-ju; LIN Yu-li; LI Wei-shan

    2012-01-01

    The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature.The prepared sample was characterized with X-ray diffraction(XRD),scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET) surface analysis,Fourier transform infrared(FTIR) spectrometry,cyclic voltammetry,altemative current(AC) impedance test and battery discharge test.It is found that the prepared sample belongs to α-MnO2 and has a microsphere morphology and a large BET surface area.The electrochemical characterization indicates that the prepared sample displays a larger electrochemical capacitance than the commercial electrolytic manganese dioxides(EMD) in Na2SO4 solution,and exhibits larger discharge capacity than EMD,especially at a high rate discharge condition when it is used as cathode of alkaline Zn/MnO2 battery.

  12. Alkaline Hydrolysis Kinetics Modeling of Bagasse Pentosan Dissolution

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2013-11-01

    Full Text Available The main pentosan components of sugarcane bagasse, which can be subjected to alkaline hydrolysis, are xylose, arabinose, glucose, and galactose. The pentosan reaction mechanism was considered for alkali-treated bagasse with variation of temperature and time. The kinetics of pentosan degradation were studied concurrently at temperatures of 50 °C, 70 °C, and 90 °C, with a solid-liquid mass ratio of 1:15, a stirring speed of 500 revolutions/min, and different holding times for bagasse alkali pre-extraction. With respect to residual pentosan content and the losses of raw material, the hydrolysis rates of alkali pre-extraction and pentosan degradation reactions of bagasse all followed pseudo-first-order kinetic models. Finally, the main degradation activation energy was determined to be 20.86 KJ/mol, and the residual degradation activation energy was 28.75 KJ/mol according to the Arrhenius equation.

  13. Electrochemical kinetics of gold dissolving in alkaline thiourea solution

    Institute of Scientific and Technical Information of China (English)

    CHAI Li-yuan; WANG Yun-yan

    2006-01-01

    Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The results show that the apparent transfer coefficient of anodic process is 0.058 2, diffusion coefficient of thiourea gold complex is 6.04 × 10-6 cm2/s,anodic reaction order of thiourea is 2. 018 3, and anodic reaction order of OH- is 0. 016 6. The theoretical kinetics equation of gold dissolving in alkaline thiourea solution is deduced,which indicates that anodic reaction order of thiourea is 2, and anodic reaction order of OH- is 0. The theoretical values of the kinetic parameters are consistent with experimental values very well. The correctness of the mechanism is further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in

  15. Composite corrosion inhibitors for secondary alkaline zinc anodes

    Institute of Scientific and Technical Information of China (English)

    JIA Zheng; ZHOU De-rui; ZHANG Cui-fen

    2005-01-01

    The corrosion inhibition property of PEG600 and In(OH)3 as composite corrosion inhibitors for secondary alkaline zinc electrodes was studied,and the inhibition efficiency was determined as 81.9%.The research focused on the mechanism by the methods of electrochemical impedance spectroscopy,polarization curves and IR spectroscopy.The results indicate that the corrosion inhibition effectiveness is attributed to the joint inhibition of anodic zinc dissolution and cathodic hydrogen evolution.And the anodic process is depressed to a greater extent than the cathodic process.The synergistic mechanism of the composite inhinbitors proves to be the enhancement of adsorption of PEG600 by In(OH)3.Potentiostatic experiment results and SEM images verify the inhibition of dendritic growth by the composite inhibitors.

  16. Apparent Dissolution Kinetics of Diatomite in Alkaline Solution

    Institute of Scientific and Technical Information of China (English)

    DU Gaoxiang; L(U) Guocheng; HE Xuwen

    2013-01-01

    The dissolution kinetics of diatomite in alkaline solution is the theoretical basis for the process optimization of alkali-diatomite reaction and its applications.In this study,the dissolution kinetics of diatomite in NaOH solution is investigated.The results indicate that the dissolution reaction fits well the unreacted shrinking core model for solid-liquid heterogeneous reactions.The apparent reaction order for NaOH is 2 and the apparent activation energy for the reaction (Ea) is 28.06 kJ.mol-1.The intra-particle diffusion through the sodium silicate layer is the rate-controlling step.When the dissolution reaction occurs at the interface of unreacted diatomite solid core,the diffusion in the trans-layer (the liquid film around the wetted particle) reduces the rate of whole dissolution process.

  17. Kinetics studies of oxidation of niacinamide by alkaline potassium permanganate

    Directory of Open Access Journals (Sweden)

    Sandipsingh Gour

    2012-04-01

    Full Text Available The oxidation of niacinamide in alkaline media is carried out using potassium permanganate as a oxiding agent. The reaction was monitored using UV-Visible spectrophotometer at 525 nm. It was found to be zero order with respect to oxidant,, fractional order with respect to hydrogen ion concentration and first order with respect to substrate. The thermodynamic parameters(were determinied . The average (?G# was found to be 87.60 KJ/mol. The values ?S# was found to be -0.2132 KJ/mole and energy of activation was found to be 23.95 KJ/mole. A suitable mechanism is proposed based on the experimental conditions.

  18. Intestinal alkaline phosphatase prevents metabolic syndrome in mice.

    Science.gov (United States)

    Kaliannan, Kanakaraju; Hamarneh, Sulaiman R; Economopoulos, Konstantinos P; Nasrin Alam, Sayeda; Moaven, Omeed; Patel, Palak; Malo, Nondita S; Ray, Madhury; Abtahi, Seyed M; Muhammad, Nur; Raychowdhury, Atri; Teshager, Abeba; Mohamed, Mussa M Rafat; Moss, Angela K; Ahmed, Rizwan; Hakimian, Shahrad; Narisawa, Sonoko; Millán, José Luis; Hohmann, Elizabeth; Warren, H Shaw; Bhan, Atul K; Malo, Madhu S; Hodin, Richard A

    2013-04-23

    Metabolic syndrome comprises a cluster of related disorders that includes obesity, glucose intolerance, insulin resistance, dyslipidemia, and fatty liver. Recently, gut-derived chronic endotoxemia has been identified as a primary mediator for triggering the low-grade inflammation responsible for the development of metabolic syndrome. In the present study we examined the role of the small intestinal brush-border enzyme, intestinal alkaline phosphatase (IAP), in preventing a high-fat-diet-induced metabolic syndrome in mice. We found that both endogenous and orally supplemented IAP inhibits absorption of endotoxin (lipopolysaccharides) that occurs with dietary fat, and oral IAP supplementation prevents as well as reverses metabolic syndrome. Furthermore, IAP supplementation improves the lipid profile in mice fed a standard, low-fat chow diet. These results point to a potentially unique therapy against metabolic syndrome in at-risk humans.

  19. Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Andreasen, Jens Wenzel;

    2015-01-01

    and washed out and the obtained porous materials allowed for swelling to reach water contents up to λ=85 [H2O] [−SO3K]−1. After equilibration in 22 wt% aqueous KOH, ion conductivity of 0.2 S cm−1 was recorded for this membrane type at room temperature, which is significantly higher than 0.01 S cm−1......Poly(perfluorosulfonic acid) (PFSA) is one of a few polymer types that combine excellent alkali resistance with extreme hydrophilicity. It is therefore of interest as a base material in separators for alkaline water electrolyzers. In the pristine form it, however, shows high cation selectivity....... To increase its ion conductivity in aqueous KOH, a method for the preparation of porous PFSA membranes was developed. It was based on an approach where PFSA was co-cast with poly(vinylpyrrolidone) (PVP) at different ratios to give transparent and colorless blend membranes. The PVP was subsequently dissolved...

  20. Chemical degradation of fluoroelastomer in an alkaline environment

    DEFF Research Database (Denmark)

    Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.;

    2004-01-01

    bond formation on the rubber backbone which accelerates the degradation even further with longer exposure. Furthermore, the cross-link sites of the exposed rubber samples are also found to be vulnerable to hydrolytic attack under the studied chemical environment as evidenced by the decrease in cross......We have investigated the time-dependent chemical degradation of a fluoroelastomer, FKM (Viton((R)) A), in an alkaline environment (10% NaOH, 80 degreesC). Optical microscopy and SEM analysis reveal that degradation starts with surface roughness right from the earliest stage of exposure (e.g., 1...... of this surface degradation is found to be strong enough to affect the bulk mechanical properties. The molecular mechanisms of the surface chemical degradation were determined using surface analysis (XPS and ATR-FTIR) where the initial degradation was found to proceed via dehydrofluorination. This leads to double...

  1. Purification and characterization of an alkaline protease from Acetes chinensis

    Science.gov (United States)

    Xu, Jiachao; Liu, Xin; Li, Zhaojie; Xu, Jie; Xue, Changhu; Gao, Xin

    2005-07-01

    An alkaline protease from Acetes chinensis was purified and characterized in this study. The steps of purification include ammonium sulfate precipitation, ion-exchange chromatography with Q-sepharose Fast Flow, gel filtration chromatography with S300 and the second ion-exchange chromatography with Q-sepharose Fast Flow. The protease was isolated and purified, which was present and active on protein substrates (azocasein and casein). The specific protease activity was 17.15 folds and the recovery was 4.67. The molecular weight of the protease was estimated at 23.2 kD by SDS-PAGE. With azocasein as the susbstrate, the optimal temperature was 55°C and the optimal pH value was 5.5. Ion Ca2+ could enhance the proteolytic activity of the protease, while Cu2+, EDTA and PMSF could inhibit its activity.

  2. Formulating a low-alkalinity cement for radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X

    2004-07-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  3. Electrochemical Impedance of Ethanol Oxidation in Alkaline Media

    Institute of Scientific and Technical Information of China (English)

    DANAEE Iman; JAFARIAN Majid; GOBAL Fereydoon; SHARAFI Mahboobeh; MAHJANI Mohammad-ghasem

    2012-01-01

    Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline solutions.The electro-oxidation of ethanol in a 1 mol/L NaOH solution at different concentrations of ethanol was studied by ac impedance spectroscopy.Electrooxidation of ethanol on Ni shows negative resistance on impedance plots.The impedance shows different patterns at different applied anodic potential.The influence of the electrode potential on impedance was studied and a quantitative explanation for the impedance of ethanol oxidation was given by means of a proposed mathematical model.At potentials higher than 0.52 V(vs.Ag/AgCl),a pseudoinductive behavior was observed,but at those higher than 0.57 V,impedance patterns were reversed to the second and third quadrants.The conditions required for the reversing of impedance pattern were delineated with the impedance model.

  4. Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Yanni Sudiyani

    2016-08-01

    Full Text Available Lignocellulosic material, which consist mainly of cellulose, hemicelluloses and lignin, are among the most promising renewable feedstocks for the production of energy and chemicals.   The bagasse residue of sweet sorghum can be utilized as raw material for alternative energy such as bioethanol.  Bioethanol production consists of pretreatment, saccharification, fermentation and purification process.  The pretreatment process was of great importance to ethanol yield.  In the present study, alkaline pretreatment was conducted using a steam explosion reactor at 1300C with concentrations of NaOH  6, and 10% (kg/L for 10, and 30 min.  For ethanol production separated hydrolysis and fermentation (SHF and simultaneous saccharification and fermentation (SSF process were conducted with 30 FPU of Ctec2 and Htec2 enzyme and yeast of Saccharomyces cerevisiae.   The results showed that maximum cellulose conversion to total glucose plus xylose were showed greatest with NaOH 10% for 30 min.  The highest yield of ethanol is 96.26% and high concentration of ethanol 66.88 g/L were obtained at SSF condition during 48 h process. Using SSF process could increase yields and concentration of ethanol with less energy process. Article History: Received January 16th 2016; Received in revised form May 25th 2016; Accepted June 28th 2016; Available online How to Cite This Article: Sudiyani, Y., Triwahyuni, E., Muryanto, Burhani, D., Waluyo, J. Sulaswaty, A. and Abimanyu, H. (2016 Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production. Int. Journal of Renewable Energy Development, 5(2, 113-118. http://dx.doi.org/10.14710/ijred.5.2.113-118 

  5. Measurement of bone alkaline phosphatase and relative study with osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    YANG Zhiping; HUO Yanqing; SUN Guangzhi; LI Jianmin; LI Xin

    2007-01-01

    The objective of this paper is to explore the value of bone alkaline phosphatase (BALP) for diagnosing osteosarcoma,evaluating the effect of the chemotherapy,judging the prognosis and supervising the relapse and metastasis.The immunoassay was used to check the BALP of the blood serum that was from 42 primary osteosarcoma patients.Alkaline phosphatase (ALP) in blood serum was checked with auto biochemistry equipment.The biopsy tissue and the lesion resected in operation were treated with pathology and histological response was counted.The patients were followed up from five months to 49 months with an average of 24.3 months.Eighteen cases relapsed and transferred,among which,16 of them were dead,and others were survival to the end of the follow-up.BALP was more sensitive than ALP in diagnosing osteosarcoma (P = 0.015).Fifteen cases decreased to normal value in ALP after preoperative chemotherapy,and 34 cases decreased in BALP.Both ALP and BALP in all cases decreased to normal value in postoperative.There was significant difference in positive correlation between the decrease of BALP and the increase of histological response (P = 0.001,r = 0.642).In the followup,there was significant difference in BALP between the group of relapse and transfer and the group of free disease survival (P=0.000).As a check marker in blood serum,BALP,reflecting the process of ossification,has a higher sensitivity than ALP.It has applied value in the diagnosis of osteosarcoma,reflection of the effect of chemotherapy and forecast the prognosis.

  6. Isolation, identification and optimization of alkaline protease production by Candida viswanathii

    Directory of Open Access Journals (Sweden)

    Mandana Lotfi

    2014-03-01

    Conclusion: Due to the high demand for industrial enzymes in the Country and the high activity of alkaline proteases produced by strain. It seems that the native strain can achieve high production of alkaline proteases.These native strains could be resulted in the independence of our country in industrial enzymes production.

  7. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate

    NARCIS (Netherlands)

    Peters, E; Geraci, S; Heemskerk, S; Wilmer, M J; Bilos, A; Kraenzlin, B; Gretz, N; Pickkers, P; Masereeuw, R

    2015-01-01

    BACKGROUND AND PURPOSE: Recently, two phase-II trials demonstrated improved renal function in critically ill patients with sepsis-associated acute kidney injury treated with the enzyme alkaline phosphatase. Here, we elucidated the dual active effect on renal protection by alkaline phosphatase presum

  8. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  9. Study on Soil Improvement Measure of Plant Landscape Construction in Saline and Alkaline Area in Tianjin

    Institute of Scientific and Technical Information of China (English)

    GENG Meiyun; CHEN Yajun; HU Haihui; YU Lei

    2006-01-01

    A detailed research in soil improving measure was conducted during the process of plants that were cultivated in Tianjin saline and alkaline area. The results showed that the commonly used measures could improve the soil, and also we got some useful advices and suggestions for plants cultivating in Tianjin saline and alkaline areas.

  10. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  11. [Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures].

    Science.gov (United States)

    Liu, Liancheng; Wang, Cong; Dong, Juan'e; Su, Hui; Zhuo, Zequn; Xue, Yaxin

    2013-07-01

    We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.

  12. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    Science.gov (United States)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  13. Cultivation of marine shrimp in biofloc technology (BFT) system under different water alkalinities.

    Science.gov (United States)

    Piérri, V; Valter-Severino, D; Goulart-de-Oliveira, K; Manoel-do-Espírito-Santo, C; Nascimento-Vieira, F; Quadros-Seiffert, W

    2015-08-01

    The aim of this study was to evaluate the influence of different levels of alkalinity for the superintensive cultivation of marine shrimp Litopenaeus vannamei in biofloc system. A total of 12 experimental circular units of 1000L were used supplied with 850L water from a nursery, populated at a density of 165 shrimps.m-3 and average weight of 5.6 g. The treatments, in triplicate, consisted in four levels of alkalinity in the water: 40, 80, 120 and 160 mg.L-1 of calcium carbonate. To correct the alkalinity was used calcium hydroxide (CaOH). It was observed a decrease in pH of the water in the treatments with lower alkalinity (pLitopenaeus vannamei in biofloc at density of 165 shrimps.m-3 can be performed in waters with alkalinity between 40 and 160 mg.L-1 of CaCO3, without compromising the zootechnical indexes of cultivation.

  14. Effect of carbon source on alkaline phosphatase production and excretion in Aspergillus caespitosus.

    Science.gov (United States)

    Guimarães, Luis Henrique Souza; Jorge, João Atilio; Terenzi, Héctor Francisco; Jamur, Maria Célia; Oliver, Constance; De Lourdes Teixeira De Moraes Polizeli, Maria

    2003-01-01

    The effect of several carbon sources on the production of alkaline phosphatase by the thermotolerant Aspergillus caespitosus was analysed. The fungus released high levels of alkaline phosphatases into the medium after being cultured for long periods with xylan or industrial residues such as wheat raw and sugar cane bagasse in the culture media. In contrast, the alkaline phosphatase activities were found only intracellulary when the fungus was cultured in glucose-supplemented media. The pH of the medium likely affects the process of enzyme secretion according to the carbon source used. Addition of xylan or industrial residues in the culture medium stimulated the secretion of phosphatases. In contrast, media supplemented with glucose or disaccharides promoted retention of these enzymes into the cells. The subcellular location activities of alkaline phosphatases were studied using histochemical and immunochemical methods and showed that alkaline phosphatases were present in the mycelial walls and septa.

  15. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    Science.gov (United States)

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen.

  16. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    DEFF Research Database (Denmark)

    Faerk, J; Peitersen, Birgit; Petersen, S

    2002-01-01

    BACKGROUND: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation. OBJECTIVE: To analyse the association between bone mineral content...... and serum alkaline phosphatase and serum phosphate. METHODS: Serum alkaline phosphatase and phosphate were measured at weekly intervals during admission in 108 premature infants of gestational age below 32 weeks (mean (SD) gestational age 29 (2) weeks; mean (SD) birth weight 1129 (279) g). Bone mineral...... content was measured at term (mean gestational age 41 weeks) by dual energy x ray absorptiometry and corrected for body size. RESULTS: Serum alkaline phosphatase was significantly negatively associated with serum phosphate (p serum alkaline...

  17. Alkaline phosphatase levels in patients with coronary heart disease saliva and its relation with periodontal status

    Science.gov (United States)

    Yunita, Dina Suci; Masulili, Sri Lelyati C.; Tadjoedin, Fatimah M.; Radi, Basuni

    2017-02-01

    Coronary heart disease (CHD) is a disease that causes narrowing of the coronary arteries. Currently, there is a hypothesis regarding periodontal infection that increases risk for heart disease. Alkaline phosphatase (ALP) as a marker of inflammation will increase in atherosclerosis and periodontal disease. The objective of this research is analyzing the relationship between the levels of alkaline phosphatase in saliva with periodontal status in patients with CHD and non CHD. Here, saliva of 104 subjects were taken, each 1 ml, and levels of Alkaline Phosphatase was analyzed using Abbott ci4100 architect. We found that no significant difference of Alkaline Phosphatase levels in saliva between CHD patients and non CHD. Therefore, it can be concluded that Alkaline Phosphatase levels in patients with CHD saliva was higher than non CHD and no association between ALP levels with periodontal status.

  18. Comparative evaluation of Schistosoma mansoni, Schistosoma intercalatum, and Schistosoma haematobium alkaline phosphatase antigenicity by the alkaline phosphatase immunoassay (APIA).

    Science.gov (United States)

    Cesari, I M; Ballén, D E; Mendoza, L; Ferrer, A; Pointier, J-P; Kombila, M; Richard-Lenoble, D; Théron, A

    2014-04-01

    To know if alkaline phosphatase (AP) from schistosomes other than Schistosoma mansoni can be used as diagnostic marker for schistosomiasis in alkaline phosphatase immunocapture assay (APIA), we comparatively tested n-butanol extracts of adult worm membranes from a Venezuelan (JL) strain of S. mansoni (Ven/AWBE/Sm); a Cameroonian (EDEN) strain of Schistosoma intercalatum (Cam/AWBE/Si) and a Yemeni strain of Schistosoma haematobium (Yem/AWBE/Sh). APIA was evaluated with sera of patients from Venezuela, Senegal, and Gabon infected with S. mansoni, from Gabon infected with S. intercalatum or S. haematobium, from Chine infected with Schistosoma japonicum and from Cambodian patients infected with Schistosoma mekongi. Results indicate that 92.5% (37/40) of Venezuela sera, 75% (15/20) of Senegal sera, 39.5% (17/43) of S. haematobium sera, and 19.2% (5/26) S. intercalatum sera were APIA-positive with the Ven/AWBE/Sm preparation. APIA with the Cam/AWBE/Si preparation showed that 53.8% of S. intercalatum-positive sera had anti-AP antibodies, and 51.2% S. haematobium-positive sera cross-immunocapturing the S. intercalatum AP. APIA performed with Yem/AWBE/Sh showed that 55.8% S. haematobium sera were positive. Only two out of nine S. japonicum sera were APIA-positive with the Ven/AWBE/Sm and Cam/AWBE/Si, and no reaction was observed with Cambodian S. mekongi-positive sera. AP activity was shown to be present in all the schistosome species/strains studied. The use of APIA as a tool to explore the APs antigenicity and the presence of Schistosoma sp. infections through the detection of anti-Schistosoma sp. AP antibodies in a host, allowed us to demonstrate the antigenicity of APs of S. mansoni, S. intercalatum, and S. haematobium.

  19. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  20. Postgraduate Symposium: Positive influence of nutritional alkalinity on bone health.

    Science.gov (United States)

    Wynn, E; Krieg, M A; Lanham-New, S A; Burckhardt, P

    2010-02-01

    There is growing evidence that consumption of a Western diet is a risk factor for osteoporosis through excess acid supply, while fruits and vegetables balance the excess acidity, mostly by providing K-rich bicarbonate-rich foods. Western diets consumed by adults generate approximately 50-100 mEq acid/d; therefore, healthy adults consuming such a diet are at risk of chronic low-grade metabolic acidosis, which worsens with age as a result of declining kidney function. Bone buffers the excess acid by delivering cations and it is considered that with time an overstimulation of this process will lead to the dissolution of the bone mineral content and hence to reduced bone mass. Intakes of K, Mg and fruit and vegetables have been associated with a higher alkaline status and a subsequent beneficial effect on bone health. In healthy male volunteers an acid-forming diet increases urinary Ca excretion by 74% and urinary C-terminal telopeptide of type I collagen (C-telopeptide) excretion by 19% when compared with an alkali (base-forming) diet. Cross-sectional studies have shown that there is a correlation between the nutritional acid load and bone health measured by bone ultrasound or dual-energy X-ray absorptiometry. Few studies have been undertaken in very elderly women (>75 years), whose osteoporosis risk is very pertinent. The EVAluation of Nutrients Intakes and Bone Ultra Sound Study has developed and validated (n 51) an FFQ for use in a very elderly Swiss population (mean age 80.4 (sd 2.99) years), which has shown intakes of key nutrients (energy, fat, carbohydrate, Ca, Mg, vitamin C, D and E) to be low in 401 subjects. A subsequent study to assess net endogenous acid production (NEAP) and bone ultrasound results in 256 women aged > or = 75 years has shown that lower NEAP (P=0.023) and higher K intake (P=0.033) are correlated with higher bone ultrasound results. High acid load may be an important additional risk factor that may be particularly relevant in very elderly

  1. Alkaline activated slag cements. Determination of reaction degree

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    2001-03-01

    Full Text Available The aim of the present work was to evaluate the validity of non-calorimetric different methods, used in the determination of reaction degree of alkaline activated slag pastes. The methods used were: (a chemical separation by methanol-salicylic acid; (b determination of the weight loss mass between 100-600°C in TG curves, associated to chemically combined water; (c quantification of the -74 ppm signal in 29Si MAS-NMR spectra. The parameters considered in the process were: nature of the alkaline activator (Waterglass, Na2CO3 and NaOH, activator concentration (4% and 3% Na2O in mass with respect to the slag, curing temperature (25 and 45°C, slag specific surface (460 and 900 m2/kg and time of reaction (from 7 days to 18 months. The results obtained indicate that none of the three methods is definitive but complementary and they provide to follow the reactive evolution of the alkaline activated slag cements. The method based on the quantification of the -74 ppm signal in the 29Si MAS NMR is the most suitable method.

    El objetivo del presente trabajo fue evaluar la validez de diferentes métodos, no calorimétricos, utilizados en la determinación del grado de reacción de pastas de escoria activada alcalinamente. Los métodos utilizados fueron: (a método de separación química por disolución en metanol ácido-salicílico; (b determinación de las pérdidas de masa entre 100-600°C en las curvas de TG, pérdidas asociadas a la cantidad de agua químicamente combinada: (c cuantificación de la señal de -74 ppm de los espectros de 29Si RMN MAS. Las variables consideradas en el proceso fueron: naturaleza del activador alcalino (Waterglass, Na2CO3 y NaOH, concentración del activador (4% y 3% de Na2O en masa respecto a la escoria, temperatura de curado (25 y 45°C, superficie específica de la escoria (460 y 900 m2/kg y

  2. Enthalpies of formation and lattice enthalpies of alkaline metal acetates

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, Ana I. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisbon (Portugal); Oliveira, Pedro H. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal); Diogo, Herminio P. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal); Minas da Piedade, Manuel E. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisbon (Portugal)]. E-mail: memp@fc.ul.pt

    2005-04-15

    The standard (p{sup o}=0.1MPa) molar enthalpies of formation in the crystalline state of the alkaline metal acetates CH{sub 3}COOM (M=Li, Na, K, Rb, Cs), at T=298.15K, were determined by reaction-solution calorimetry as: {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COOLi,cr)=-(741.40+/-0.95)kJmol{sup -1}, {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COONa,cr)=-(711.01+/-0.51)kJmol{sup -1}, {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COOK,cr)=-(722.36+/-0.49)kJmol{sup -1}, {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COORb,cr)=-(722.31+/-1.09)kJmol{sup -1}, {delta}{sub f}H{sub m}{sup o}(CH{sub 3}COOCs,cr)=-(726.10+/-1.07)kJmol{sup -1}. These results, taken together with the enthalpies of formation of the haloacetates XCH{sub 2}COOM (M=Li, Na; X=Cl, Br, I) and chloropropionates ClCH(CH{sub 3})COOM (M=Li, Na) re-evaluated from literature data were used to derive a consistent set of lattice energies, and discuss some general trends of the structure-energetics relationship for the CH{sub 3}COOM, XCH{sub 2}COOM, and ClCH(CH{sub 3})COOM compounds, based on the Kapustinskii approximation. It was found that the lattice energies of the haloacetates are essentially independent of the halogen and ca. 17-25kJmol{sup -1} smaller than those of the corresponding acetates. In addition, no significant difference between the lattice enthalpy values of the haloacetates and chloropropionates was observed. Finally, linear correlations of very similar slope were obtained by plotting the M-O bond distances derived from the Kapustinskii equation against the published experimental M-O bond distances for alkaline metal acetates and alkoxides. The analysis of these relations suggests that the metal-oxygen bond distances for the lithium, potassium, and rubidium acetates, whose molecular structures in the solid state have not been determined, can be estimated as 214, 288, and 304pm, respectively.

  3. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  4. A review on alkaline activation: new analytical perspectives

    Directory of Open Access Journals (Sweden)

    Palomo, A.

    2014-09-01

    Full Text Available For many years now the idea of including alkalis in a Portland cement matrix has been regarded as a daft or inexcusably erroneous proposition: despite its absurdity, that opinion has been widely accepted as a basic premise by the scientific and technical community working in the area of the chemistry of cement. In 1957 Glukhovsky proposed a working hypothesis in which he established a close relationship between alkalis and cementitious materials. That hypothesis has become consolidated and has served as a basis for developing a new type of binders, initially called “alkaline cements”. The present paper reviews the most significant theoretical interpretations of the role played by alkalis in the formation of the “stony” structure of cement. It ends with a broad overview of the versatility of this type of materials for industrial applications and a discussion of the possibility of building on the existing legislation to meet the need for the future regulation of alkaline cement and concrete manufacture.Hace algunos años, la sola idea de la presencia de álcalis en una matriz de cemento Portland se consideraba casi como una aberración, o como un error imperdonable; convirtiéndose en un postulado básico (absurdo ampliamente aceptado por la comunidad científica y técnica vinculada a la química de los cementos. En 1957 Glukhovsky propuso una hipótesis en la que se establecía una estrecha relación entre los álcalis y los materiales cementantes. Hoy día nadie duda de que dicha hipótesis ha servido de base para el desarrollo de una nueva clase de materiales cementantes: “cementos alcalinos”. En el presente trabajo se hace una revisión sobre los aspectos teóricos más relevantes del papel de los álcalis en la formación de estos conglomerantes. También se da una visión genérica de su versatilidad, desarrollo industrial y estado de la normativa actual para regular en el futuro la fabricación de cementos y hormigones

  5. Calcium aluminate cement hydration in a high alkalinity environment

    Directory of Open Access Journals (Sweden)

    Palomo, Á.

    2009-03-01

    Full Text Available The present paper forms part of a broader research project that aims primarily to devise new cementitious products via the alkali activation of silico-aluminous materials. This work addresses the possibility of using small percentages of calcium aluminate cement (CAC as a source of reactive aluminium. For this reason, a preliminary review was needed of the behaviour of CACs in highly alkaline media (2, 8 and 12M NaOH solutions. Two, 28- and 180-day mechanical strength was determined and the reaction products were characterized with XRD and FTIR. The water-hydrated CAC was used as the control.The results obtained showed that CAC hardening took place much more slowly in highly alkaline media than in water. Nonetheless, the 28-day compressive strength obtained, ≥80MPa. As main reaction products, to ambient temperature and from the two days of cured, cubic aluminate C3AH6, and AH3 polymorphs are formed, instead of the usual hexagonal aluminatos (CAH10 and C2AH8 that are formed in the normal hydrate with water.El presente trabajo forma parte de una amplia investigación cuyo objetivo principal es el de elaborar nuevos materiales con propiedades cementantes mediante la activación alcalina de materiales de naturaleza silito-aluminosa. En estos estudios se contempla la posibilidad de utilizar pequeños porcentajes de cemento de aluminato de calcio (CAC como fuente de aluminio reactivo. Por ello inicialmente se ha estudiado el comportamiento de los CAC en medios fuertemente alcalinos (disoluciones de NaOH 2M, 8M y 12M. Se determinaron las resistencias mecánicas a 2, 28 y 180 días y se realizó una caracterización de los productos de reacción formados por DRX, FTIR. Como sistema de referencia se consideró la hidratación del CAC con agua.Los resultados obtenidos muestran que en medios fuertemente alcalinos se retrasan los procesos de rápido endurecimiento de CAC con agua. No obstante a 28 días se obtienen valores de resistencia a compresión

  6. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Snadra L. Fox; X. Xie; K. D. Schaller; E. P. Robertson; G. A. Bala

    2003-10-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones. Current technology relies on the use of cross-linking agents to initiate gelation. The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have produced a reactive alkaline-soluble biopolymer from Agrobacterium sp. ATCC no. 31749 that gels upon decreasing the pH of the polymeric solution. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability. Permeability modification was investigated by injecting solubilized biopolymer into Berea sandstone cores and defining the contribution of pH, salt, temperature, and Schuricht crude oil on biopolymer gelation. The biopolymer was soluble in KOH at a pH greater than 11.4 and gelled when the pH dropped below 10.8. The Berea sandstone core buffered the biopolymer solution, decreasing the pH sufficiently to form a gel, which subsequently decreased the permeability. The effluent pH of the control cores injected with 0.01 {und M} KOH (pH 12.0) and 0.10{und M} KOH (pH 13.0) decreased to 10.6 and 12.7, respectively. The permeability of the sandstone core injected with biopolymer was decreased to greater than 95% of the original permeability at 25 C in the presence of 2% NaCl, and Schuricht crude oil; however, the permeability increased when the temperature of the core was increased to 60 C. Residual resistance factors as high as 792 were seen in Berea cores treated with biopolymer. The buffering capacity of sandstone has been demonstrated to reduce the pH of a biopolymer solution sufficiently to cause the polymer to form a stable in-situ gel. This finding could potentially lead to alternate technology for permeability modification, thus

  7. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  8. TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neurons.

    Science.gov (United States)

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X Z Shawn

    2016-07-06

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation have been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins whose functions are largely unknown. Here, we characterize C. elegans TMC-1, which was suggested to form a Na(+)-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9, which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception.

  9. Physiological and Molecular Features of Puccinellia tenuiflora Tolerating Salt and Alkaline-Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Xia Zhang; Liqin Wei; Zizhang Wang; Tai Wang

    2013-01-01

    Saline-alkali soil seriously threatens agriculture productivity; therefore,understanding the mechanism of plant tolerance to alkaline-salt stress has become a major challenge.Halophytic Puccinellia tenuiflora can tolerate salt and alkaline-salt stress,and is thus an ideal plant for studying this tolerance mechanism.In this study,we examined the salt and alkaline-salt stress tolerance of P.tenuiflora,and analyzed gene expression profiles under these stresses.Physiological experiments revealed that P.tenuiflora can grow normally with maximum stress under 600 mmol/L NaCl and 150 mmol/L Na2CO3 (pH 11.0)for 6 d.We identified 4,982 unigenes closely homologous to rice and barley.Furthermore,1,105 genes showed differentially expressed profiles under salt and alkaline-salt treatments.Differentially expressed genes were overrepresented in functions of photosynthesis,oxidation reduction,signal transduction,and transcription regulation.Almost all genes downregulated under salt and alkaline-salt stress were related to cell structure,photosynthesis,and protein synthesis.Comparing with salt stress,alkaline-salt stress triggered more differentially expressed genes and significantly upregulated genes related to H+ transport and citric acid synthesis.These data indicate common and diverse features of salt and alkalinesalt stress tolerance,and give novel insights into the molecular and physiological mechanisms of plant salt and alkaline-salt tolerance.

  10. Gabbroic xenoliths in alkaline lavas in the region of Sanganguey Volcano, Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Giosa, T.A.; Nelson, S.A.

    1985-01-01

    Gabbroic xenoliths occur in alkaline cinder cones and lava flows erupted from vents along five parallel lines trending through the calc-alkaline volcano, Sanganguey in the northwestern portion of the Mexican Volcanic Belt. The xenoliths consist of varying proportions of olivine, clinopyroxene, orthopyroxene, and plagioclase. The complete lack of hydrous phases indicates that the gabbros crystallized under conditions of low PH/sub 2/O. Many xenoliths show textures indicative of a cumulate origin and others exhibit recrystallization indicative of subsolidus reactions prior to incorporation in the host liquids. Reaction between xenolithic minerals and host liquids are also observed. The range of Mg numbers calculated for liquids that would have been in equilibrium with olivines in the xenoliths suggests that these olivines crystallized from magmas such as those represented by either calc-alkaline basaltic andesites and andesites or the more evolved alkalic rocks which occur throughout the area. Crystal fractionation models show that the xenoliths may be related to such magmas. The fact that xenoliths occur most commonly in the alkaline rocks suggests that alkaline magmas rise to the surface more rapidly than the more chemically evolved calc-alkaline and alkaline magmas. Alternatively the lack of xenoliths in the more evolved magmas produced by high level crystal fractionation may indicate that the xenoliths are derived from zones below that from which the differentiated magmas begin their final ascent to the surface.

  11. Marinade with alkaline solutions for the improvement of pork quality

    Directory of Open Access Journals (Sweden)

    Viviane Maria Oliveira dos Santos

    2012-11-01

    Full Text Available The objective of this work was to evaluate the effects of alkaline solution marinades on the characteristics of pork subjected to post-mortem pH decrease in pig muscle. The pH of carcasses was measured in a commercial slaughterhouse (n = 526, 45 min after slaughtering (pH45 and, then, the carcasses were divided into the groups with pH455.7. Ten samples of the longissimus dorsi muscles of each group were collected and distributed in an entirely randomized design, in a 2x4 factorial arrangement, with two conditions (pH455.7, and four marinade solutions: TC, no marinade; TM1, sodium bicarbonate and sodium chloride; TM2, sodium tripolyphosphate and sodium chloride; TM3, sodium bicarbonate, sodium tripolyphosphate and sodium chloride. There was no interaction between pH45 of the meat and the marinade treatments. Meat with pH45<5.7 showed higher values for lightness, and for purge loss (PL, exudate loss (EL, cooking loss (CL and shear force (SF. Marinating increased the pH, reduced the lightness, EL, CL and SF, and improved tenderness, juiciness and flavor of meat. Marinades with solutions containing chloride, bicarbonate, and sodium tripolyphosphate are effective in the improvement of pork quality, making physical characteristics of marinated meat similar to those of fresh pork, as a consequence of accelerated postmortem glycolysis.

  12. Tracing the geochemical evolution of alkaline Lake Van, Turkey

    Science.gov (United States)

    Kwiecien, Ola; Viehberg, Finn; Plessen, Birgit; Litt, Thomas; Tillman Meyer, Felix

    2015-04-01

    Terminal Lake Van, the world's largest soda basin, is characterised by Na-CO3-Cl water chemistry (Reimer et al., 2008), salinity of ~22 ‰ and high pH of ~9.7. The sedimentary record of the lake goes ca. 600 ka back and documents major climatic events over that period (Stockhecke et al., 2014). Alas, the longevity of the basin does not mean that it persisted unchanged over such a long time. Information collected within the ICDP PALEOVAN project clearly suggests that upon its birth the chemistry of early Lake Van was very different from its modern alkaline equivalent. Here we document, by means of proxy data, the changes in water chemistry in a transforming basin. Results of lithological (Stockhecke et al., 2014) and micropaleontological (ostracod, gastropod and diatom assemblages) analysis, combined with geochemical data (δ18O, δ13C, Mg/Ca, Sr/Ca) obtained from the biogenic and authigenic carbonate fraction imply, that early Lake Van was a relatively shallow, fresh-to-brackish and, most probably, open basin. Sedimentological information points to tectonic factors rather than climatic changes responsible for closing the lake ca. 430 ka ago. Reimer, A., Landmann, G., Kempe, S., 2008. Lake Van, Eastern Anatolia, Hydrochemistry and History. Aquat. Geochemistry 15, 195-222. Stockhecke, M., Sturm, M., Brunner, I., Schmincke, H.-U., Sumita, M., Kipfer, R., Cukur, D., Kwiecien, O., Anselmetti, F.S., 2014. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years. Sedimentology.

  13. Production of Biodiesel Using Ethanol Way and Alkaline Catalyst

    Directory of Open Access Journals (Sweden)

    Cesar Aparecido da Silva

    2010-06-01

    Full Text Available The potential inputs to promote the supply of the demand for power generation has become the aim of several scientific researches to mitigate environmental impacts. The biodiesel is the highlight solution that can be obtained through the transesterification process. The aim this present work was the biodiesel production using ethanol and crude oil sunflower as inputs and potassium ethoxide such as catalyst for the rection. Were produced seven samples using different parameters. The product with high rate of ethyl ester was the one with catalyst and reaction time optimized. However, it has showed the presence of glycerol, suggesting the use of other unit operations such as cooling and centrifugation to improve the purity of the biodiesel formed is necessary. The parameters used in this experiment (oil, catalyst and water washing contents, reaction time, temperature and agitation speed showed critical endpoints to be monitored during the production of biodiesel due interfering the quality and yield to the final product. In addition, the inappropriate speed of agitation in the reactor for ethanol way in the presence of an alkaline catalyst can gelatinize the mixture of reactants due the emulsion formed.

  14. ALKALINE PEROXIDE BLEACHING OF HOT WATER TREATED WHEAT STRAW

    Directory of Open Access Journals (Sweden)

    Suvi Mustajoki

    2010-05-01

    Full Text Available The aim of this study was to evaluate the possibilities for chemical consumption reduction in P-P-Paa-P bleaching (P alkaline peroxide stage, Paa peracetic stage of hot water treated straw and the effect of the wheat straw variability on the process. Papermaking fibre production from wheat straw using such a process could be implemented on a small scale if chemical consumption was low enough to eliminate the need for chemical recovery. The pulp properties obtained with this process are equal to or even superior to the properties of wheat straw soda pulp. The possibility of enhancing the first peroxide stage with oxygen and pressure was studied. The possibility for substitution of sodium hydroxide partially with sodium carbonate was also investigated. The objective was to achieve International Standardization Organization (ISO brightness of 75%, with minimal sodium hydroxide consumption, whilst maintaining the pulp properties. The optimization of the peroxide bleaching is challenging if the final brightness target cannot be reduced. Results indicate that up to 25% of the sodium hydroxide could be substituted with sodium carbonate without losing brightness or affecting pulp properties. Another possibility is a mild alkali treatment between the hot water treatment and the bleaching sequence.

  15. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    Science.gov (United States)

    Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  16. Synthesis and characterization of bismuth alkaline titanate powders

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.mx [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Dominguez-Crespo, M.A. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Hernandez-Perez, M.A. [ESIQIE, Metalurgia, Instituto Politecnico Nacional, Mexico, D. F (Mexico); Garcia-Zaleta, D.S. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Brachetti-Sibaja, S.B. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo esq. Sor Juana Ines de la Cruz s/n Col. Los Mangos C.P.89440 Cd. Madero Tamaulipas (Mexico)

    2011-06-15

    In this work, samples of bismuth alkaline titanate, (K{sub 0.5}Na{sub 0.5}){sub (2-x/2)}Bi{sub (x/6)}TiO{sub 3}, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and {alpha} = 59.48{sup o}. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  17. Alkaline phosphatase in stallion semen: characterization and clinical applications.

    Science.gov (United States)

    Turner, R M O; McDonnell, S M

    2003-06-01

    Significant amounts of alkaline phosphatase (AP) activity have been found in semen plasma from numerous species. In species in which the majority of semen plasma AP (SPAP) activity originates from the epididymis and testicle, SPAP activity can be used clinically as a marker to differentiate testicular origin azoospermia or oligospermia from ejaculatory failure. Information on SPAP activity in stallions to date has been limited. In this study, a standard clinical chemistry analyzer was used to determine AP activity in pre-ejaculatory fluid and ejaculates from groups of normal stallions. Additionally, accessory glands, epididymides, testicles and other components of the urogenital tract of normal stallions were assayed to determine which tissues contain SPAP activity. The results indicated that levels of AP activity are low in pre-ejaculatory fluid, but significantly higher in ejaculatory fluid from normal stallions. Spermatozoa were not a significant source of SPAP activity. High levels of SPAP activity were found in the testes and epididymides. These findings suggest that SPAP activity is a candidate for a sperm-independent marker for ejaculation in the stallion. Finally, AP activity was determined in ejaculatory fluid from a stallion with bilaterally blocked ampullae, both before and after relief of the blockage. While the blockage was present, AP activity in ejaculatory fluid was low. However, following relief of the blockage, AP activity in ejaculatory fluid rose dramatically, thus suggesting that AP activity will be useful as an inexpensive, simple clinical assay for differentiating ejaculatory failure or excurrent duct blockages from testicular origin azoospermia and oligospermia.

  18. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    Science.gov (United States)

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  19. Stability and selectivity of alkaline proteases in hydrophilic solvents

    DEFF Research Database (Denmark)

    Pedersen, Lars Haastrup; Ritthitham, Sinthuwat; Pleissner, Daniel

    2008-01-01

    were synthesised in anhydrous DMF and pyridine, respectively with different acyl donors and a number of different subtilisins as biocatalysts - in all cases the 1'-O-monoester was the major product [6,7,8,9]. But the alkaline protease AL89 revealed regio-selectivity towards the C-2 position of sucrose....... Shibatani, Y. Maekawa, Y. Hiraguri, R. Kurane, Y. Tokiwa, Biotechnol. Lett.1999, 21, 355. [4]           S. Riva, J. Chopineau, A.P.G. Kieboom, A. Klibanov, J. Am. Chem. Soc.,1988, 110, 584. [5]           T. Watanabe, R. Matsue, Y. Honda, M. Kuwahara, Carbohydr. Res., 1995, 275, 215. [6]           P. Potier......, A. Bouchu, G. Descotes, Y. Queneau, Tetrahedron: Lett. 2000, 41, 3597. [7]           Q. Wu, N. Wang, Y.M. Xiao, D.S. Lu, X.F. Lin, Carbohydr. Res., 2004, 339, 2059. [8]           H.G. Park, H.N. Chang, Biotechnol. Lett. 2000, 22, 39 [9]           S. Riva, M. Nonini, G. Ottolina, B. Danieli...

  20. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity.

    Science.gov (United States)

    Estaki, Mehrbod; DeCoffe, Daniella; Gibson, Deanna L

    2014-11-14

    Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP's role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP's ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP's ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP's ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium.

  1. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    Directory of Open Access Journals (Sweden)

    Yendi E. Navarro-Noya

    2015-01-01

    Full Text Available In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5, indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances clearly clustered the communities by pH.

  2. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil.

    Science.gov (United States)

    Navarro-Noya, Yendi E; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G; Marsch, Rodolfo; Dendooven, Luc

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH.

  3. Metastable zinc–nickel alloys deposited from an alkaline electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Magagnin, Luca; Nobili, Luca, E-mail: luca.nobili@polimi.it; Cavallotti, Pietro Luigi

    2014-12-05

    Highlights: • Zn–Ni coatings with high corrosion resistance were prepared by electrodeposition. • The electrodeposited γ alloy is found to be different from the equilibrium γ phase. • A random atomic distribution is proposed for the electrodeposited alloy. • The calculated free energy function can explain the phase composition of Zn–Ni coatings. - Abstract: Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. In this work, the physico-chemical characterization of zinc–nickel electrodeposits obtained from an alkaline bath is carried out and a description of the structural and thermodynamic properties of these alloys is proposed. Contrary to the common acceptance, XRD spectra and DSC thermal analysis show that the electrodeposited γ alloy has to be regarded as a metastable phase, whose atomic arrangement is different from that of the equilibrium γ intermetallic compound. A model for atomic distribution in the electrodeposited alloy is proposed. The Gibbs free-energy function for the electrodeposited phase has been evaluated and the metastable boundaries of the single-phase and two-phase fields have been calculated. Reasonable agreement is found with experimental values reported in the literature for Zn–Ni coatings with different composition.

  4. Alkaline Leaching of Low Zinc Content Iron-Bearing Sludges

    Directory of Open Access Journals (Sweden)

    Gargul K.

    2016-03-01

    Full Text Available Various types of waste materials containing zinc (e.g. dusts and sludges from gas dedusting process are obtained in steel industry. The contents of Zn in these materials may vary considerably. Even a low concentration of zinc in recirculated products precludes their recycling in ferrous metallurgy aggregates. Long storage of this type of material can lead to contamination of soil and water by zinc compounds which can be leached out by acid rain, for example. This paper focuses on research involving alkaline leaching tests of low zinc content iron-bearing materials. These tests were preceded by the analysis of the elemental, phase and grain size composition, and analysis of the thermodynamic conditions of the leaching process. The main aim of research was to decrease the content of the zinc in the sludge to the level where it is suitable as an iron-bearing material for iron production (~1% Zn. Leaching at elevated temperatures (368 K, 60 min has led to a decrease in the zinc content in the sludge of about 66%. The research revealed that long hour leaching (298 K, 100 hours carried out at ambient temperatures caused a reduction in zinc content by 60% to the value of 1.15-1.2% Zn.

  5. Role of sialic acid and alkaline DNase in breast cancer.

    Science.gov (United States)

    Raval, G N; Parekh, L J; Patel, M M; Patel, P S; Rawal, R M; Balar, D B; Patel, D D

    1997-01-01

    Serum levels of sialic acid and alkaline DNase (ADA) were analysed in 495 blood samples collected from 170 breast cancer patients before and during/after anticancer treatment. Fifty-six healthy females were included in the study to define the cutoff values. The markers were analysed by highly sensitive spectrophotometric methods. Statistical evaluation of the data was done using Student's 't' test, paired 't' test and ROC curve analysis. The total sialic acid (TSA), lipid bound sialic acid (LSA) and ADA in sera of untreated breast cancer patients were significantly higher than in controls. ROC curve analysis revealed TSA and LSA to be useful markers for diagnosis of breast cancer. Serum levels of TSA and LSA were significantly decreased in complete responders as compared to their pretreatment values. The pretreatment ADA values showed much individual variation. However, responders showed higher levels of ADA than untreated patients. In nonresponders the values of the biomarkers were comparable with pretreatment levels. The study suggested that TSA and LSA can be helpful in the diagnosis of breast cancer. All three markers can be used for assessment of response to anticancer treatment in breast cancer patients.

  6. Purification and characterization of alkaline protease from Alcaligenes faecalis.

    Science.gov (United States)

    Thangam, E Berla; Rajkumar, G Suseela

    2002-04-01

    Extracellular alkaline protease from the alkalophilic bacterium Alcaligenes faecalis was purified by a combination of ion-exchange and size-exclusion chromatographic methods, and its properties were examined. The purified enzyme had a specific activity of 563.8 micromol of tyrosine/min per mg of protein and gave a single band on native PAGE and SDS/PAGE with a molecular mass of 67 kDa. Gelatin zymogram also revealed one clear zone of proteolytic activity which corresponded to the band obtained with native PAGE and SDS/PAGE. The enzyme had an optimal pH of 9.0 and exhibited its highest activity at 55 degrees C. The enzyme activity was inhibited by PMSF, suggesting the presence of serine residues at the active site. The enzyme had a K(m) of 1.66 mg/ml and a V(max) of 526 units/min per mg of protein with casein as the substrate.

  7. Activity of alkaline phosphatase adsorbed and grafted on "polydopamine" films.

    Science.gov (United States)

    Ball, Vincent

    2014-09-01

    The oxidation of dopamine in slightly basic solutions and in the presence of oxygen as an oxidant allows for the deposition of dopamine-eumelanin ("polydopamine") films on almost all kinds of materials allowing for an easy secondary functionalization. Molecules carrying nucleophilic groups like thiols and amines can be easily grafted on those films. Herein we show that alkaline phosphatase (ALP), as a model enzyme, adsorbs to "polydopamine" films and part of the adsorbed enzyme is rapidly desorbed in contact with Tris buffer. However a significant part of the enzyme remains irreversibly adsorbed and keeps some enzymatic activity for at least 2 weeks whereas ALP adsorbed on quartz slides is rapidly and quantitatively deactivated. In addition we estimated the Michaelis constant Km of the enzyme irreversibly bound to the "polydopamine" film. The Michaelis constant, and hence the affinity constant between paranitrophenol phosphate and ALP are almost identical between the enzyme bound on the film and the free enzyme in solution. Complementarily, it was found that "polydopamine" films display some phosphatase like catalytic activity.

  8. Purification and characterization of alkaline protease from Lysinibacillus fusiformis

    Directory of Open Access Journals (Sweden)

    Suppiah S*

    2012-08-01

    Full Text Available A novel alkaline protease producing bacterium was isolated from the gut of an estuarine fish Etroplus suratensis. The strain was identified by sequencing the fragment of their bacterial 16s rRNA and its homology was 97% closest to the Lysinibacillus fusiformis. An extracellular protease from this organism was purified by acetone precipitation, ion exchange chromatography and gel filtration chromatography methods and the specific activity of the purified enzyme was found to be 20.39 U/mg, 169.46U/mg and 352.0U/mg respectively. The molecular weight of the purified enzyme was determined to be 29kDa through SDS/PAGE analysis. The enzyme showed that the maximum at pH 9.0 and temperature at 40ºC. The purified enzyme remains active in the presence of various metal ions and it was strongly stimulated by the addition of Ca2+. Among the tested surfactants, the optimum activity was observed in SDS when compared to the other tested surfactants. Normal 0 false false false EN-US X-NONE X-NONE

  9. The photoprotective role of spermidine in tomato seedlings under salinity-alkalinity stress.

    Science.gov (United States)

    Hu, Lipan; Xiang, Lixia; Zhang, Li; Zhou, Xiaoting; Zou, Zhirong; Hu, Xiaohui

    2014-01-01

    Polyamines are small, ubiquitous, nitrogenous compounds that scavenge reactive oxygen species and stabilize the structure and function of the photosynthetic apparatus in response to abiotic stresses. Molecular details underlying polyamine-mediated photoprotective mechanisms are not completely resolved. This study investigated the role of spermidine (Spd) in the structure and function of the photosynthetic apparatus. Tomato seedlings were subjected to salinity-alkalinity stress with and without foliar application of Spd, and photosynthetic and morphological parameters were analyzed. Leaf dry weight and net photosynthetic rate were reduced by salinity-alkalinity stress. Salinity-alkalinity stress reduced photochemical quenching parameters, including maximum photochemistry efficiency of photosystem II, quantum yield of linear electron flux, and coefficient of photochemical quenching (qP). Salinity-alkalinity stress elevated nonphotochemical quenching parameters, including the de-epoxidation state of the xanthophyll cycle and nonphotochemical quenching (NPQ). Microscopic analysis revealed that salinity-alkalinity stress disrupted the internal lamellar system of granal and stromal thylakoids. Exogenous Spd alleviated the stress-induced reduction of leaf dry weight, net photosynthetic rate, and qP parameters. The NPQ parameters increased by salinity-alkalinity stress were also alleviated by Spd. Seedlings treated with exogenous Spd had higher zeaxanthin (Z) contents than those without Spd under salinity-alkalinity stress. The chloroplast ultrastructure had a more ordered arrangement in seedlings treated with exogenous Spd than in those without Spd under salinity-alkalinity stress. These results indicate that exogenous Spd can alleviate the growth inhibition and thylakoid membrane photodamage caused by salinity-alkalinity stress. The Spd-induced accumulation of Z also may have an important role in stabilizing the photosynthetic apparatus.

  10. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of

  11. Development of alkaline solution separations for potential partitioning of used nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory; Runde, Wolfgang H [Los Alamos National Laboratory; Goff, George S [Los Alamos National Laboratory

    2009-01-01

    The processing of used nuclear fuel in alkaline solution provides potentially useful new selectivity for separating the actinides from each other and f rom the fission products. Over the ast decade, several research teams around the world have considered dissolution of used fuel in alkaline solution and further partitioning in this medium as an alternative to acid dissolution. The chemistry of the actinides and fission products in alkaline soilltion requires extensive investigation to more carefully evaluate its potential for developing useful separation methods for used nuclear fueI.

  12. Effect of alkaline elements on the reactivity, strength and structural properties of blast furnace cokes

    Directory of Open Access Journals (Sweden)

    A. Bhattacharyya

    2015-07-01

    Full Text Available The present study concerns itself on the adverse effects of alkaline elements like sodium and potassium on blast furnace cokes. To achieve a deeper insight on the effects of alkaline elements on coke reactivity and strength, industrial coke samples impregnated with different alkaline species in various amounts have been tested under standard conditions to find out their Coke Reactivity Index (CRI and Coke Strength after Reaction (CSR values. Scanning electron microscopy, petrographic and Raman Spectrometric investigations demonstrate the change of structural properties. The mechanism of catalysis has been postulated.

  13. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  14. Isolation and identification of the thermophilic alkaline desulphuricant strain

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A desulfurization strain that belongs to the thermophilic alkaline desulphuricant is designated as strain GDJ-3 and isolated from Inner Mongolia, China. The colony of the strain shows tiny, yellow, or white-yellow, and it becomes henna with the protracting of cultivated time. The cells are bacilliform (0.3 -0.6 × 1.0-1.2 μm), motive, and Gram negative. The strain GDJ-3 is able to utilize respectively the thiosulphate, sulfate, sulfite, or sulfide as sulfur source, utilize the carbon dioxide as the carbon source, and utilize the ammonium or nitrate as the nitrogen source. According to GenBank data, 16s RNA results of GDJ-3 are in good agreement with Alpha proteobacterrium sp. (97%) and Ochrobactrum sp. (98%). For GDJ-3, the optimum growth temperature is at 45℃, the optimum pH is at 8.5-8.8, and the optimum rocking speed of sorting table is at 150 r/min. Under the optimum culture condition, the cells of the strain can live for about 18 h. In the desulfurization solution, which is prepared according to the composition of DDS solution, the objectionable constituents of sodium thiosulphate and sodium sulfide were added factitiously, and the bacterial cell concentration was set at 107/mL. After the regeneration of the above desulfurization solution by the strain cells, the concentration of sodium thiosulphate was decreased by 14.75 g/L (percentage loss of content 13.21%), the concentration of sodium sulfide was decreased by 0.76 g/L (percentage loss of content 87.36%) in the desulfurization solution in 9.5 hours, and sulfur appeared. Maybe, this kind of strain can be used as the regeneration’s bacterial source of DDS solution.

  15. Cinacalcet Lowers Serum Alkaline Phosphatase in Maintenance Hemodialysis Patients

    Science.gov (United States)

    Belozeroff, Vasily; Goodman, William G.; Ren, Lulu; Kalantar-Zadeh, Kamyar

    2009-01-01

    Background and objectives: Studies suggest an association between elevated serum alkaline phosphatase (AP) and increased mortality in hemodialysis patients, but the effect of existing therapies on AP is not fully understood. We assessed the effects of cinacalcet on AP in a secondary analysis of controlled trial data. Design, setting, participants, & measurements: This was a post hoc analysis of data from three 26-wk randomized, double-blind, placebo-controlled, phase 3 trials and a 26-wk double-blind, placebo-controlled extension trial that investigated cinacalcet in secondary hyperparathyroidism treatment in dialysis patients. Hemodialysis patients (n = 890) with intact parathyroid hormone ≥300 pg/ml and serum calcium ≥8.4 mg/dl received cinacalcet plus standard therapy or standard therapy alone for up to 52 wk. Total, not bone-specific, AP was assessed (proportion of cinacalcet/control subjects achieving a ≥20% or any AP reduction from baseline; the proportion of subjects with AP ≥120 U/L) at baseline; the end of titration; and study weeks 26, 42, and 52. Results: At 52 wk, a greater proportion of cinacalcet-treated patients had either a ≥20% (39 versus 18%) or any (58 versus 36%) AP reduction compared with control subjects, respectively. The likelihood of achieving either a ≥20% or any AP reduction (determined by relative proportion) was 2.33 (95% confidence interval 1.50 to 3.61) and 1.74 (95% confidence interval 1.31 to 2.31), respectively, at week 52. Cinacalcet treatment tended toward a decreased percentage of patients with AP ≥120 U/L (baseline, 42.6%; week 52, 30.6%) compared with control (35.0 to 48.6%, respectively). Conclusions: In this combined analysis of controlled trials of patients who were receiving hemodialysis, cinacalcet lowered total serum AP. PMID:19261825

  16. APPLICATION OF ALKALINE SULFITE PULPING ON CORN STALKS

    Directory of Open Access Journals (Sweden)

    Ahmad Jahan Latibari

    2011-02-01

    Full Text Available Alkaline sulfite pulping of corn stalks was investigated to produce supplementary pulp for corrugating board manufacture. Three pulping temperatures (125, 145, and 165°C and five active alkali charges (10, 12, 14, 16, and 18% were used. Cooking time at 30 minutes, Na2SO3/ NaOH ratio at 50:50, and liquor to residue ratio of 8:1 were kept constant. The highest total yield (61.9% was reached applying the treatment combination of 125°C and 10% active alkali, and the lowest total yield (42.5% was related to 165°C and 16% chemical. The influence of sodium sulfite/sodium hydroxide ratios was studied applying different ratios (30:70, 40:60, 50:50, 60:40, and 70:30 at constant time and temperature of 30 minutes and 145°C respectively and 14 and 16% active alkali. Pulping condition; 16% active alkali, 30 minutes time, 145°C pulping temperature and varying ratios of sodium sulfite/sodium hydroxide were selected for pulp strength evaluation. The results of handsheet evaluation indicated that 16% active alkali, 30 minutes pulping at 145ºC and sodium sulfite/sodium hydroxide ratio of 50:50 is the optimum pulping condition for corn stalks. Tear, tensile, and burst indices and breaking length of this pulp were measured as 10.53 mN.m2g-1, 62.4 N.mg-1, 3.80 kPa.m2g-1, and 6.07 km, respectively.

  17. IGCC sulfur compounds abatement with earth alkaline sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Alvarez-Rodriguez; Carmen Clemente-Jul [Universidad Politecnica de Madrid, Madrid (Spain). Escuela Tecnica Superior de Ingenieros de Minas

    2007-07-01

    In Integrated Gasification Combined Cycle (IGCC) process, in the reference plant built in Puertollano, Spain by Elcogas, a consortium formed by several utilities and engineering companies with a technology that is one of the most promising electricity generation options, both from the environmental and the efficiency point of view and that allows an efficient and environmentally friendly use of national coal, and also a refinery residue, petroleum coke, the high sulphur contents in coal and specially in petcoke, their presence in the feedstock, led to significant contents of gaseous sulphur compounds whose advanced removal has been the aim of this project. Different sorbents to reduce the presence of H{sub 2}S have been researched and between them the earth alkaline compounds, dolomite and calcite that react with H{sub 2}S to give calcium sulphide have been chosen due to their properties and low cost. The calcium sulphide is a reactive product because it reacts with water to regenerate the H{sub 2}S but it can be converted in calcium sulphate, inert product with diverse uses. This conversion to sulphate present some problems of possible lack of total conversion and different conditions to improve this conversion have been investigated. The tests have been carried out with dolomite and calcite and firstly the sulphuration of the same have been produced using a mixture of gases that simulates the IGCC gas and after their oxidation has been studied. The influence of the conditions of sulfurization and oxidation on the final conversion of calcium sulphide to sulphate as the presence of H{sub 2}O vapour, the variation in the composition of the gases, the temperature and the bed length have been evaluated. The solid products obtained have been characterized by X-ray diffraction and scanning electronic microscopy and chemical analysis to assess the evolution and progress of the reactions. 8 refs., 3 figs., 1 tab.

  18. ALKALINE PEROXIDE MECHANICAL PULPING OF FAST GROWTH PAULOWNIA WOOD

    Directory of Open Access Journals (Sweden)

    Ahmad Jahan Latibari,

    2011-11-01

    Full Text Available Alkaline peroxide mechanical pulping of paulownia wood harvested from exotic tree plantations in northern Iran was investigated. The fiber length, width, and cell wall thickness of this wood were measured as 0.82 mm, 40.3 μm, and 7.1 μm, respectively. The chemical composition including cellulose, lignin, and extractives soluble in ethanol-acetone, 1% NaOH, hot and cold water was determined as 49.5%, 25%, 12.1%, 26.9%, 11.4%, and 8.1% respectively. The ash content of this wood was 0.45%. Pre-washed chips were chemically treated at 70°C for 120 minutes with different combinations of three dosages (1.5, 3, and 4.5% of hydrogen peroxide and three dosages (1.5, 3, and 4.5% of sodium hydroxide prior to defibration. Other chemicals including DTPA, sodium silicate, and MgSO4 were constant at 0.5%, 3%, and 0.5%, respectively. The results showed that using a 1.5% hydrogen peroxide and 4.5% sodium hydroxide charge, the brightness of APMP pulp reached 68.7% ISO and higher chemical dosages did not improve the brightness; however, to produce APMP pulp with higher strength, a sodium hydroxide charge of 4.5% was needed. The tensile strength, tear strength, burst strength indices, and bulk density of the APMP pulp produced from 1.5% hydrogen peroxide and 4.5% sodium hydroxide were measured as 15.5Nm/g, 6.54mN.m2/g, 0.56kPa.m2/g, and 3.47cm3/g, respectively. The resulting pulp was bulky and is suitable for use in the middle layer of boxboard to provide the desired stiffness with a lower basis weight.

  19. Predicting Phosphorus Release from Anaerobic, Alkaline, Flooded Soils.

    Science.gov (United States)

    Amarawansha, Geethani; Kumaragamage, Darshani; Flaten, Don; Zvomuya, Francis; Tenuta, Mario

    2016-07-01

    Anaerobic conditions induced by prolonged flooding often lead to an enhanced release of phosphorus (P) to floodwater; however, this effect is not consistent across soils. This study aimed to develop an index to predict P release potential from alkaline soils under simulated flooded conditions. Twelve unamended or manure-amended surface soils from Manitoba were analyzed for basic soil properties, Olsen P (Ols-P), Mehlich-3 extractable total P (M3P), Mehlich-3 extractable molybdate-reactive P (M3P), water extractable P (WEP), soil P fractions, single-point P sorption capacity (P), and Mehlich-3 extractable Ca (M3Ca), and Mg (M3Mg). Degree of P saturation (DPS) was calculated using Ols-P, M3P or M3P as the intensity factor, and an estimated adsorption maximum based on either P or M3Ca + M3Mg as the capacity factor. To develop the model, we used the previously reported floodwater dissolved reactive P (DRP) concentration changes during 8 wk of flooding for the same unamended and manured soils. Relative changes in floodwater DRP concentration (DRP), calculated as the ratio of maximum to initial DRP concentration, ranged from 2 to 15 across ten of the soils, but were ≤1.5 in the two soils with the greatest clay content. Partial least squares analysis indicated that DPS3 calculated using M3P as the intensity factor and (2 × P) + M3P as the capacity factor with clay percentage can effectively predict DRP ( = 0.74). Results suggest that P release from a soil to floodwater may be predicted using simple and easily measurable soil properties measured before flooding, but validation with more soils is needed.

  20. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.

  1. The role of alkalinity generation in controlling the fluxes of CO

    NARCIS (Netherlands)

    Faber, P.A.; Kessler, A.J.; Bull, J.K.; McKelvie, I.D.; Meysman, F.J.R.; Cook, P.L.M.

    2012-01-01

    Dissolved inorganic carbon (DIC), gaseous CO2 and alkalinity fluxes from intertidal sediments were investigated during periods of exposure and inundation, using laboratory core incubations, previously published field data and reactive transport model simulations. In the incubations and previous fiel

  2. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  3. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those...

  4. Regiospecific Addition of Uracil to Acrylates Catalyzed by Alkaline Protease from Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Ying CAI; Jian Yi WU; Na WANG; Xiao Feng SUN; Xian Fu LIN

    2004-01-01

    Michael addition reactions of uracil to acrylates were catalyzed by an alkaline protease from Bacillus subtilis in dimethyl sulfoxide at 55 ℃ for 72 h. The adducts were determined by TLC, IR and 1H NMR.

  5. Chapter A6. Section 6.6. Alkalinity and Acid Neutralizing Capacity

    Science.gov (United States)

    Rounds, Stewart A.; Wilde, Franceska D.

    2002-01-01

    Alkalinity (determined on a filtered sample) and Acid Neutralizing Capacity (ANC) (determined on a whole-water sample) are measures of the ability of a water sample to neutralize strong acid. Alkalinity and ANC provide information on the suitability of water for uses such as irrigation, determining the efficiency of wastewater processes, determining the presence of contamination by anthropogenic wastes, and maintaining ecosystem health. In addition, alkalinity is used to gain insights on the chemical evolution of an aqueous system. This section of the National Field Manual (NFM) describes the USGS field protocols for alkalinity/ANC determination using either the inflection-point or Gran function plot methods, including calculation of carbonate species, and provides guidance on equipment selection.

  6. Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis.

    Science.gov (United States)

    Ling, Zhe; Chen, Sheng; Zhang, Xun; Xu, Feng

    2017-01-01

    The study aimed to explore the crystallinity and crystalline structure of alkaline pretreated cellulose. The enzymatic hydrolysis followed by pretreatment was conducted for measuring the efficiency of sugar conversion. For cellulose Iβ dominated samples, alkaline pretreatment (cellulose crystallinity and depolymerized hemicelluloses, that were superimposed to affect the enzymatic conversion to glucose. Varying crystallite sizes and lattice spacings indicated the separation of cellulose crystals during mercerization (8-12wt% NaOH). Completion of mercerization was proved under higher alkaline concentration (14-18wt% NaOH), leading to distortion of crystalline cellulose to some extent. Cellulose II crystallinity showed a stimulative impact on enzymatic hydrolysis due to the weakened hydrophobic interactions within cellulose chains. The current study may provide innovative explanations for enhanced enzymatic digestibility of alkaline pretreated lignocellulosic materials.

  7. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  8. Alkaline diagenesis and its influence on a reservoir in the Biyang depression

    Institute of Scientific and Technical Information of China (English)

    QIU; Longwei; (邱隆伟); JIANG; Zaixing; (姜在兴); CAO; Yingchang; (操应长); QIU; Ronghua(邱荣华); CHEN; Wenxue; (陈文学); &; TU; Yangfa; (涂阳发)

    2002-01-01

    Alkaline diagnesis is a diagenetic process that a reservoir undergoes under an alkaline environment. Because of the influence of alkaline formation water, the most typical characteristics of diagnesis is that quartz is obviously dissolved, feldspar is massively enlarged, and less late carbonate cement is formed in the evolution of carbonate minerals. With the decrease of the alkalinity of the formation water in diagenesis, the quartz overgrowths become common. The change in the chemical characteristics of the formation water leads to a more complex distribution of reservoir porosity at different depths than that of the secondary porosity formed by classical acidic water. It also makes the B stage of early diagenesis the important development period of secondary porosity.

  9. Alkaline phosphatase expression during relapse after orthodontic tooth movement

    Directory of Open Access Journals (Sweden)

    Pinandi Sri Pudyani

    2014-03-01

    Full Text Available Background: The increasing of osteoblast activities during bone formation will be accompanied with the increasing expression of alkaline phosphatase enzyme (ALP. ALP can be obtained from clear fluid excreted by gingival crevicular fluid (GCF. Bone turnover, especially bone formation process, can be monitored through the expression of ALP secreted by GCF during orthodontic treatment. Thus, retention period is an important period that can be monitored through the level of bone metabolism around teeth. Purpose: This research were aimed to determine the relation of distance change caused by tooth relapse and ALP activities in gingival crevicular fluid after orthodontic; and to determine ALP as a potential biomarker of bone formation during retention period. Methods: Lower incisors of 25 guinea pigs were moved 3 mm to the distally by using open coil spring. Those relapse distance were measured and the gingival crevicular fluid was taken by using paper points to evaluate ALP levels on days 0, 3, 7, 14 and 21 respectivelly by using a spectrophotometer (405 nm. t-test and ANOVA test were conducted to determine the difference of ALP activities among the time intervals. The correlation regression analysis was conducted to determine the relation of distance change caused by the relapse tooth movement and ALP activities. Results: The greatest relapse movement was occurred on day 3 after open coil spring was removed. There was significant difference of the average of distance decrease among groups A1-A5 (p<0.05. It was also known that ALP level was increased on day 3, but there was no significant difference of the average level of ALP among groups A1-A5 (p>0.05. Finally, based on the results of correlation analysis between the ALP level decreasing and the relapse distance on both right and left of mesial and distal sides, it is known that there was no relation between those two variables (p>0.05. Conclusion: It can be concluded that relapse after orthodontic

  10. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    Science.gov (United States)

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  11. Systemic and local effects of long-term exposure to alkaline drinking water in rats.

    Science.gov (United States)

    Merne, M E; Syrjänen, K J; Syrjänen, S M

    2001-08-01

    Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined.

  12. Deep-sea fungi as a source of alkaline and cold-tolerant proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.; Raghukumar, C.; Muraleedharan, U.; Raghukumar, S.

    and Chang CS. Bleach resistant alkaline protease produced by a Bacillus sp. Isolated from the Korean polychaete, Periserrula leucophryna. Proc Biochem 2004;39:1441-7. [12] Turkiewicz M, Gromek E, Kalinowska H and Zielinska M, Biosynthesis and properties...-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme Microb Technol 2003;32:294-304. [21] Oh KH, Seong CS, Lee SW, Kwon OS and Park YS. Isolation of a psychrotrophic Azospirillum sp. and characterizaion of its extracellular...

  13. Barley seed coating with free and immobilized alkaline phosphatase to improve P uptake and plant growth

    OpenAIRE

    Pilar Izquierdo, María Concepción; Ortega Santamaría, Natividad; Pérez Mateos, Manuel; Busto Núñez, Mª Dolores

    2012-01-01

    Coating barley seeds with free and immobilized alkaline phosphatase was investigated as a potential means to enhance plant utilization of accumulated soil phosphorus (P). Two coating techniques were studied: film-coating and pelleting. The highest phosphatase activity retention in the coating layer, ranging from 0·48 to 0·67, was observed when seeds were film-coated with phosphatase–polyresorcinol complex (PPC). The germination of seeds film-coated or pelleted with alkaline phosph...

  14. Conformational changes in the bilirubin-human serum albumin complex at extreme alkaline pH

    DEFF Research Database (Denmark)

    Honoré, B; Frandsen, P C

    1986-01-01

    Light-absorption, c.d. and fluorescence of the bilirubin-albumin complex were investigated at extreme alkaline pH. Above pH 11.1 albumin binds the bilirubin molecule, twisted oppositely to the configuration at more neutral pH. On the basis of light-absorption it is shown that two alkaline...... between tryptophan-214 and bilirubin, and partly exposing the liganded bilirubin to the solvent. Udgivelsesdato: 1986-Jun-1...

  15. A study on the occurrence of alkaline phosphatase in the sutura interfrontalis of Wistar rats.

    Science.gov (United States)

    Markens, I S; Oudhof, H A

    1979-01-01

    The aim of the present study was to determine the presence of alkaline phosphatase during various stages in development and closure of the sutura interfrontalis. The histological sections reveal that this enzyme could primarily be demonstrated in the dura mater of this suture. In further developmental stages, alkaline phosphatase could be observed within the intermediate zone as well as the pericranium. These findings are brought in relation with the occurrence of synostosis which can be induced under experimental conditions.

  16. Kidney alkaline phosphatase in mercuric chloride injected chicks resistant and susceptible to leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; McIntyre, J.A.; Bearse, G.E.

    1969-01-01

    Two strains of chickens were selected for resistance and susceptibility to avian leukosis. Researchers found that the resistant chicks retained two to four times as much mercury in the liver and kidneys as did the susceptible chicks following injection of mercuric chloride or phenylmercuric acetate. Differences in alkaline phosphatase in the kidneys of the resistant and susceptible chicks, and the effect of the mercuric chloride injection on the alkaline phosphatase activity were reported in this paper. 19 references, 2 tables.

  17. Management of Munitions Constituents in Soil Using Alkaline Hydrolysis: A Guide for Practitioners

    Science.gov (United States)

    2011-10-01

    Santiago et al. 2007 12.00 25 858 0.8 Santiago et al. 2007 ERDC/EL TR-11-16 5 Propellant residues have to date been studied less than secondary...explosives. Studies have shown the susceptibility of nitrocellulose to alkaline degradation (Kenyon and Gray 1936). Kim et al. (1998) have demonstrated...the ability of high strength caustic solutions to render nitrocellulose biodegradable. In summary, alkaline conditions are sufficient to degrade a

  18. THE TRANSFER OF ALKALINE EARTH-METAL ION AT W/NB INTERFACE FACILITATED BY JOSAMYCIN

    Institute of Scientific and Technical Information of China (English)

    范瑞溪; 狄俊伟

    1991-01-01

    This paper describes the invesligation of the transfer behaviour of the alkaline earth-metal cations across the water/nitrobenzene interface facilitated by josamycin in the nitrobenzene phase using semi-differential cyclic voltammetry .The peak height is directly proportional to the concentration of josaycin (nb) and to the potential scan rate.The complexes formed from alkaline earth-metal ions and josamycin at the w/nb interface are ML22+ ion.

  19. Human papillomavirus DNA from warts for typing by endonuclease restriction patterns: purification by alkaline plasmid methods.

    Science.gov (United States)

    Chinami, M; Tanikawa, E; Hachisuka, H; Sasai, Y; Shingu, M

    1990-01-01

    The alkaline plasmid DNA extraction method of Birnboim and Doly was applied for the isolation of human papillomavirus (HPV) from warts. Tissue from common and plantar warts was digested with proteinase K, and the extrachromosomal circular covalently-closed form of HPV-DNA was rapidly extracted by alkaline sodium dodecyl sulphate and phenol-chloroform treatment. Recovery of HPV-DNA from the tissue was sufficient for determination of endonuclease restriction patterns by agarose gel electrophoresis.

  20. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  1. Long-term and seasonal variations in CO2: linkages to catchment alkalinity generation

    Directory of Open Access Journals (Sweden)

    S.A. Norton

    2001-01-01

    Full Text Available As atmospheric emissions of S have declined in the Northern Hemisphere, there has been an expectation of increased pH and alkalinity in streams believed to have been acidified by excess S and N. Many streams and lakes have not recovered. Evidence from East Bear Brook in Maine, USA and modelling with the groundwater acid-base model MAGIC (Cosby et al. 1985a,b indicate that seasonal and yearly variations in soil PCO2 are adequate to enhance or even reverse acid-base (alkalinity changes anticipated from modest decreases of SO4 in surface waters. Alkalinity is generated in the soil by exchange of H+ from dissociation of H2CO3, which in turn is derived from the dissolving of soil CO2. The variation in soil PCO2 produces an alkalinity variation of up to 15 meq L-1 in stream water. Detecting and relating increases in alkalinity to decreases in stream SO4 are significantly more difficult in the short term because of this effect. For example, modelled alkalinity recovery at Bear Brook due to a decline of 20 meq SO4 L-1 in soil solution is compensated by a decline from 0.4 to 0.2% for soil air PCO2. This compensation ability decays over time as base saturation declines. Variable PCO2 has less effect in more acidic soils. Short-term decreases of PCO2 below the long-term average value produce short-term decreases in alkalinity, whereas short-term increases in PCO2 produce short-term alkalization. Trend analysis for detecting recovery of streams and lakes from acidification after reduced atmospheric emissions will require a longer monitoring period for statistical significance than previously appreciated. Keywords: CO2 , alkalinity, acidification, recovery, soils, climate change

  2. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    Science.gov (United States)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  3. Simulation and Prediction of Alkalinity in Sintering Process Based on Grey Least Squares Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    SONG Qiang; WANG Ai-min

    2009-01-01

    The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation.

  4. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    Science.gov (United States)

    Shengli, Wang; Kangda, Yin; Xiang, Li; Hongwei, Yue; Yunling, Liu

    2013-08-01

    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics. Different from the international dominant acidic copper slurry, the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions, the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA), by which the problems caused by BTA can be avoided. Through the experiments and theories research, the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory, the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions, the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier. The kinetic energy at the concave position should be lower than the complexation reaction barrier, which is the key to achieve planarization.

  5. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    Institute of Scientific and Technical Information of China (English)

    Wang Shengli; Yin Kangda; Li Xiang; Yue Hongwei; Liu Yunling

    2013-01-01

    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation.According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed.Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established.In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.

  6. Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces

    Science.gov (United States)

    Wan, Shanhong; Tieu, A. Kiet; Zhu, Qiang; Zhu, Hongtao; Cui, Shaogang; Mitchell, David R. G.; Kong, Charlie; Cowie, Bruce; Denman, John A.; Liu, Rong

    2016-05-01

    Alkaline polyphosphate has been demonstrated to be able to reduce significant wear and friction of sliding interfaces under heavy loads (>1 GPa) and elevated temperature (800 °C and above) conditions, e.g. hot metal manufacturing. The chemical composition and fine structure of polyphosphate lubricating film is not well understood as well as the role of alkaline elements within the reaction film at hot rubbing surface. This work makes use of the coupling surface analytical techniques on the alkaline polyphosphate tribofilm, XANES, TOF-SIMS and FIB/TEM. The data show the composition in gradient distribution and trilaminar structure of tribofilm: a shorter chain phosphate overlying a long chain polyphosphate that adheres onto oxide steel base through a short chain phosphate. The chemical hardness model well explains the anti-abrasive mechanism of alkaline polyphosphate at elevated temperatures and also predicts a depolymerisation and simultaneous cross-linking of the polyphosphate glass. The role of alkaline elements in the lubrication mechanism is especially explained. This work firstly serves as a basis for a detailed study of alkaline polyphosphate tribofilm at temperature over 600 °C.

  7. Expression and Characterization of Recombinant Thermostable Alkaline Phosphatase from a Novel Thermophilic Bacterium Thermus thermophilus XM

    Institute of Scientific and Technical Information of China (English)

    Jianbo LI; Limei XU; Feng YANG

    2007-01-01

    A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co2+, Fe2+, Mg2+, or Mn2+ but was strongly inhibited by 2.0 mM Fe2+. Under optimal conditions, the Michaelis constant (Km) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.

  8. Cultivation of marine shrimp in biofloc technology (BFT system under different water alkalinities

    Directory of Open Access Journals (Sweden)

    V Piérri

    Full Text Available AbstractThe aim of this study was to evaluate the influence of different levels of alkalinity for the superintensive cultivation of marine shrimp Litopenaeus vannamei in biofloc system. A total of 12 experimental circular units of 1000L were used supplied with 850L water from a nursery, populated at a density of 165 shrimps.m–3 and average weight of 5.6 g. The treatments, in triplicate, consisted in four levels of alkalinity in the water: 40, 80, 120 and 160 mg.L–1 of calcium carbonate. To correct the alkalinity was used calcium hydroxide (CaOH. It was observed a decrease in pH of the water in the treatments with lower alkalinity (p<0.05. The total suspended settleable solids were also lower in the treatment of low alkalinity. No significant difference was observed in other physico-chemical and biological parameters in the water quality assessed, as well as the zootechnical parameters of cultivation between treatments (p≥0.05. The results of survival and growth rate of shrimps were considered suitable for the cultivation system used in the different treatments. The cultivation of marine shrimp Litopenaeus vannamei in biofloc at density of 165 shrimps.m–3 can be performed in waters with alkalinity between 40 and 160 mg.L–1 of CaCO3, without compromising the zootechnical indexes of cultivation.

  9. Hydroxide-self-feeding high-temperature alkaline direct formate fuel cells.

    Science.gov (United States)

    Li, Y S; Sun, X D; Feng, Y

    2017-03-11

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction block the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenizimidazole membrane-based direct formate fuel cells (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 oC. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm-2, an order of magnitude higher than both alkaline direct ethanol fuel cell and alkaline direct methanol fuel cell, mainly because the hydrolysis of formate provides enough OH ions for formate oxidation reaction. It was also found that this hydroxide-self-feeding high-temperature alkaline DFFC shows a stable 100-minute constant-current discharge at 90 oC, proving the conceptual feasibility.

  10. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    Science.gov (United States)

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  11. Leaching properties of electric arc furnace dust prior/following alkaline extraction.

    Science.gov (United States)

    Orescanin, Visnja; Mikelić, Luka; Sofilić, Tahir; Rastovcan-Mioc, Alenka; Uzarević, Krunoslav; Medunić, Gordana; Elez, Loris; Lulić, Stipe

    2007-02-15

    This study was carried out to determine the appropriate treatment of electric arc furnace (EAF) dust prior to permanent disposal. The total heavy metal content as well as heavy metal leaching from EAF dust was investigated in five composite samples obtained from three Croatian and Slovenian steelworks. In order to recover zinc and reduce its leaching from the dust, all five samples were submitted to alkaline extraction with 10 M NaOH. Reduction of Cr (VI) to Cr(III) was conducted using FeSO4 x 7H2O solution. The elements Mn, Fe, Cu, Ni, and notably Zn and Pb, exhibited highest mobility during toxicity characteristic leaching procedure (TCLP). Comparing to TCLP extracts of initial EAF dust, zinc was found to be over 15 times lower and lead over 200 times lower in TCLP extracts of EAF dust processed by the alkaline leaching method. Since Cr (VI) exceeded its permissible level in the DIN 38414-S4 extracts of both initial and alkaline digested dust, its reduction to Cr (III) prior to permanent disposal is necessary. The recovery of zinc from EAF dust treated with alkaline agent ranged from 50.3% to 73.2%. According to phase analysis, recovery yield showed dependence on zincite/franklinite ratio. The results of the study indicate that permanent disposal of EAF dust require the following procedure: alkaline digestion (followed by leachate purification and alkaline zinc electrolyses), chromate reduction (if necessary), solidification of leaching residue and its testing using the leaching analyses.

  12. Degradation of pyrene by immobilized microorganisms in saline-alkaline soil.

    Science.gov (United States)

    Wang, Shanxian; Li, Xiaojun; Liu, Wan; Li, Peijun; Kong, Lingxue; Ren, Wenjie; Wu, Haiyan; Tu, Ying

    2012-01-01

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is very difficult in saline-alkaline soil due to the inhibition of microbial growth under saline-alkaline stress. The microorganisms that can most effectively degrade PAHs were screened by introducing microorganisms immobilized on farm byproducts and assessing the validity of the immobilizing technique for PAHs degradation in pyrene-contaminated saline-alkaline soil. Among the microorganisms examined, it was found that Mycobacterium sp. B2 is the best, and can degrade 82.2% and 83.2% of pyrene for free and immobilized cells after 30 days of incubation. The immobilization technique could increase the degradation of pyrene significantly, especially for fungi. The degradation of pyrene by the immobilized microorganisms Mucor sp. F2, fungal consortium MF and co-cultures of MB+MF was increased by 161.7% (P alkaline soil, as the interspace of the carrier material structure was relatively large, providing enough space for cell growth. Co-cultures of different bacterial and fungal species showed different abilities to degrade PAHs. The present study suggests that Mycobacterium sp. B2 can be employed for in situ bioremediation of PAHs in saline-alkaline soil, and immobilization of fungi on farm byproducts and nutrients as carriers will enhance fungus PAH-degradation ability in saline-alkaline soil.

  13. PURIFICATION AND CHARACTERIZATION OF AN EXTRACELLULAR ALKALINE PROTEASE PRODUCED FROM AN ISOLATED BACILLUS SUBTILIS

    Directory of Open Access Journals (Sweden)

    Vijaya Bundela

    2013-03-01

    Full Text Available This paper describes the studies on the purification and partial characterization of serine alkaline protease produced through submerged fermentation process from a locally isolated Bacillus subtilis. This strain, grown in a highly alkaline medium (pH 10, produces an extracellular proteolytic enzyme. The alkaline protease was purified in a simple two-step procedure involving ammonium sulphate precipitation and gel filtration. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE analysis of the purified alkaline protease indicated an estimated molecular mass of 30KDa. It was more active in the range of 20-60ºC and had an optimum activity at 55ºC with optimum pH of 10.5. Characterization of the protease showed that it required certain cations such as Mg++, Mn++ and Ca++ for maximal activity. The serine nature of the alkaline protease was confirmed by PMSF inhibition. The temperature and pH stability of this Alkaline Protease from Bacillus Subtilismakes it potentially useful forindustrial applications.

  14. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    Science.gov (United States)

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  15. Contrasting magmatic signatures in the Rairakhol and Koraput alkaline complexes, Eastern Ghats belt, India

    Indian Academy of Sciences (India)

    S Bhattacharya; M Basei

    2010-04-01

    The relation between alkaline magmatism and tectonism has been a contentious issue, particularly for the Precambrian continental regions. Alkaline complexes at the southwestern margin of Eastern Ghats belt, India, have been interpreted as rift-valley magmatism. However, those complexes occurring in granulite ensemble in the interior segments of the Eastern Ghats belt could not possibly be related to the rift-system, assumed for the western margin of the Eastern Ghats belt. Koraput complex was emplaced in a pull-apart structure, dominated by magmatic fabrics and geochemically similar to a fractionated alkaline complex, compatible with an alkalibasalt series. Rairakhol complex, on the other hand, shows dominantly solid-state deformation fabrics and geochemically similar to a fractionated calc-alkaline suite. Isotopic data for the Koraput complex indicate ca. 917 Ma alkaline magmatism from a depleted mantle source and postcrystalline thermal overprint at ca. 745 Ma, also recorded from sheared metapelitic country rocks. The calc-alkaline magmatism of the Rairakhol complex occurred around 938 Ma, from an enriched mantle source, closely following Grenvillian granulite facies imprint in the charnockitic country rocks.

  16. Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Solmaz, Ramazan [Bingoel University, Science and Letters Faculty, Chemistry Department, 12000 Bingoel (Turkey); Doener, Ali; Kardas, Guelfeza [Cukurova University, Science and Letters Faculty, Chemistry Department, 01330 Balcali Adana (Turkey)

    2010-10-15

    The NiCuZn ternary coating was electrochemically deposited on a copper electrode. Then, it was etched in a concentrated alkaline solution (30% NaOH) to produce a porous and electrocatalytic surface suitable for use in the hydrogen evolution reaction (HER). The surface composition of coating before and after alkaline leaching was determined by energy dispersive X-ray (EDX) analysis. The surface morphologies were investigated by scanning electron microscopy (SEM). The long-term stability of electrode prepared for alkaline water electrolysis was investigated in 1 M KOH solution with the help of cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that, the NiCuZn coating has a compact and porous structure with good physical stability. Alkaline leaching process further improved the activity of NiCuZn coating in comparison with binary NiCu deposit for the HER. The long-term operation at -100 mA cm{sup -2} showed good electrochemical stability over 120 h. (author)

  17. Associations between renal hyperfiltration and serum alkaline phosphatase.

    Directory of Open Access Journals (Sweden)

    Se Won Oh

    Full Text Available Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP level is also elevated in patients with diabetes (DM or metabolic syndrome (MS, and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in the Korea National Health and Nutrition Examination Survey IV-V databases (2008-2011 was performed. Renal hyperfiltration was defined as exceeding the age- and sex-specific 97.5th percentile. We divided participants into 4 groups according to their estimated glomerular filtration rate (eGFR: >120, 90-119, 60-89, and 120 mL/min/1.73 m2 showed the highest risk for MS, in the highest ALP quartiles (3.848, 95% CI, 1.876-7.892, compared to the lowest quartile. Similarly, the highest risk for DM, in the highest ALP quartiles, was observed in participants with eGFR >120 ml/min/1.73 m2 (2.166, 95% CI, 1.084-4.329. ALP quartiles were significantly associated with albuminuria in participants with eGFR ≥ 60 ml/min/1.73m2. The highest ALP quartile had a 1.631-fold risk elevation for albuminuria with adjustment of age and sex. (95% CI, 1.158-2.297, P = 0.005. After adjustment, the highest ALP quartile had a 1.624-fold risk elevation, for renal hyperfiltration (95% CI, 1.204-2.192, P = 0.002. In addition, hyperfiltration was significantly associated with hemoglobin, triglyceride, white blood cell count, DM, smoking, and alcohol consumption (P<0.05. The relationship between serum ALP and metabolic disorders is stronger in participants with an upper-normal range of eGFR. Higher ALP levels are significantly associated with renal hyperfiltration in Korean general population.

  18. Electrochemical behavior of Ag-Cu alloy in alkaline media

    Directory of Open Access Journals (Sweden)

    Grekulović Vesna J.

    2010-01-01

    Full Text Available Results of the investigation of electrochemical behaviour of Ag-Cu alloy containing 50 mass% Ag and 50 mass% Cu are presented in this paper. Pure silver and copper were investigated, too. Working electrodes were prepared by metallurgical process. 1 mol dm-3 and 0.5 mol dm-3 solutions of NaOH are chosen as the electrolyte. On the cyclic voltammograms, some current waves corresponding to number and quantity of phases present in the investigated electrodes appeared and they can be used for characterization of investigated alloy. On the voltammogram recorded for pure silver, two anodic and two cathodic peaks appeared. First peak consisted of two joined current waves which can be ascribed to the formation of the two different types of silver(I oxide, Ag2O. Second peak should correspond to the formation of silver(II oxide, AgO. Voltammogram obtained for pure copper exhibits one broad current wave corresponding to the formation of copper oxides, followed by a wide potential area in which copper is completely passive. At 0.4 V vs. SCE, current starts to increase again due to oxygen evolution and probably due to simultaneous dissolution of copper with formation of CuO22- as a product. In alkaline solutions copper has no significant influence on the shape and current values of the voltammograms recorded for Ag-Cu alloy; however, it has an influence only on the anodic and cathodic peak potentials, which are shifted to more negative values in comparison to Ag. It could mean an easier formation of oxides and their harder reduction. Comparing voltammograms recorded for Ag-Cu alloy in 0.5 moldm-3 NaOH and in 1 moldm-3 NaOH solutions, one can see that current waves appear at more positive potentials on the voltammograms obtained in the solution of lower concentration and with much higher current densities than those on the voltammograms obtained in the solution of higher concentration.

  19. Pseudomonas zhaodongensis sp. nov., isolated from saline and alkaline soils.

    Science.gov (United States)

    Zhang, Lei; Pan, Yuanyuan; Wang, Kaibiao; Zhang, Xiaoxia; Zhang, Cheng; Zhang, Shuang; Fu, Xiaowei; Jiang, Juquan

    2015-03-01

    Strain NEAU-ST5-21(T) was isolated from saline and alkaline soils in Zhaodong City, Heilongjiang Province, China. It was aerobic, Gram-stain-negative, rod-shaped and motile with a polar flagellum. It produced yellow-orange colonies with a smooth surface, and grew in the presence of 0-5 % (w/v) NaCl (optimum 0 %, w/v), at temperatures of 20-40 °C (optimum 28 °C) and at pH 7-11 (optimum pH 7). Phylogenetic analyses based on the separate 16S rRNA gene sequences and concatenated 16S rRNA, gyrB and rpoD gene sequences indicated that strain NEAU-ST5-21(T) belongs to the genus Pseudomonas in the class Gammaproteobacteria. The most closely related species is Pseudomonas xanthomarina, whose type strain (KMM 1447(T)) showed gene sequence similarities of 99.0 % for 16S rRNA, 81.8 % for gyrB and 85.0 % for rpoD with strain NEAU-ST5-21(T). DNA-DNA hybridization values between strain NEAU-ST5-21(T) and P. xanthomarina DSM 18231(T), Pseudomonas kunmingensis CGMCC 1.12273(T), Pseudomonas stutzeri DSM 5190(T), Pseudomonas oleovorans subsp. lubricantis DSM 21016(T), Pseudomomas chengduensis CGMCC 2318(T), Pseudomonas alcaliphila DSM 17744(T) and Pseudomonas toyotomiensis DSM 26169(T) were 52±0 % to 25±2 %. The DNA G+C content of strain NEAU-ST5-21(T) was 65 mol%. The major fatty acids (>10 %) were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 1ω7c and/or C16 : 1ω6c and C16 : 0, the predominant respiratory quinone was ubiquinone 9, and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid, phosphatidylglycerol, one unknown aminolipid, one unknown lipid and a glycolipid. The proposed name is Pseudomonas zhaodongensis sp. nov., NEAU-ST5-21(T) ( = ACCC 06362(T) = DSM 27559(T)) being the type strain.

  20. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water.

    Science.gov (United States)

    Kumai, Yusuke; Harris, Jessica; Al-Rewashdy, Hasanen; Kwong, Raymond W M; Perry, Steve F

    2015-01-01

    Although adult fish excrete their nitrogenous waste primarily as ammonia, larval fish may excrete a higher proportion as urea, an evolutionary strategy that lessens nitrogenous waste toxicity during early development. Previous studies firmly established that ammonia excretion is inhibited in adult fish acutely exposed to alkaline water. This study was designed to test the hypothesis that total nitrogen excretion is maintained in larval zebrafish raised in alkaline water (pH ∼ 10.0) as a result of compensatory adjustments to urea and/or ammonia transport pathways. Raising zebrafish in alkaline water from 0 to 4 d postfertilization (dpf) reduced ammonia excretion at 4 dpf, whereas urea excretion was elevated by 141%. The increase in urea excretion at 4 dpf served to maintain total nitrogen excretion constant, despite the persistent inhibition of ammonia excretion. Whole body ammonia and urea contents were not significantly altered by exposure to alkaline water. Protein and mRNA expression of Rhcg1, an apically expressed ammonia-conducting channel, were significantly elevated after 4-d exposure to alkaline water, whereas the mRNA expression of Rhag, Rhbg, and urea transporter were unaffected. The acute exposure to alkaline water of 4-dpf larvae reared in control water caused a rapid inhibition of ammonia excretion that had partially recovered within 6 h of continued exposure. The partial recovery of ammonia excretion despite continued exposure to alkaline water suggested an increased ammonia excretion capacity. In agreement with an increased capacity to excrete ammonia, the transfer of larvae back to the control (normal pH) water was accompanied by increased rates of ammonia excretion. Urea excretion was not stimulated during 6-h exposure to alkaline water. Following both chronic and acute exposure to alkaline water, the rate of uptake of methylamine (an ammonia analog) was significantly elevated, consistent with increased protein expression of the apical ammonia

  1. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    Directory of Open Access Journals (Sweden)

    Qian M

    2016-10-01

    Full Text Available Mengke Qian,1 Zhicen Lu,1 Chen Chen,2 Huaiqin Zhang,1 Haifeng Xie1 1Department of Prosthodontics, 2Department of Endodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China Abstract: Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogen­phosphate (MDP conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH2, nano-MgO, and nano-Zr(OH4. A shear bond strength (SBS test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH, -569.048 [Ca(OH2], -547.393 (MgO, and -530.279 kJ/mol [Zr(OH4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH2 > MgO > Zr(OH4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH4 or -Mg

  2. Transition from alkaline to calc-alkaline volcanism during evolution of the Paleoproterozoic Francevillian basin of eastern Gabon (Western Central Africa)

    Science.gov (United States)

    Thiéblemont, Denis; Bouton, Pascal; Préat, Alain; Goujou, Jean-Christian; Tegyey, Monique; Weber, Francis; Ebang Obiang, Michel; Joron, Jean Louis; Treuil, Michel

    2014-11-01

    We report new geochemical data for the volcanic and subvolcanic rocks associated with the evolution of the Francevillian basin of eastern Gabon during Paleoproterozoic times (c. 2.1-2 Ga). Filling of this basin has proceeded through four main sedimentary or volcano-sedimentary episodes, namely FA, FB, FC and FD. Volcanism started during the FB episode being present only in the northern part of the basin (Okondja sub-basin). This volcanism is ultramafic to trachytic in composition and displays a rather constant alkaline geochemical signature. This signature is typical of a within-plate environment, consistent with the rift-setting generally postulated for the Francevillian basin during the FB period. Following FB, the FC unit is 10-20 m-thick silicic horizon (jasper) attesting for a massive input of silica in the basin. Following FC, the FD unit is a c. 200-400 m-thick volcano-sedimentary sequence including felsic tuffs and epiclastic rocks. The geochemical signatures of these rocks are totally distinct from those of the FB alkaline lavas. High Th/Ta and La/Ta ratios attest for a calc-alkaline signature and slight fractionation between heavy rare-earth suggests melting at a rather low pressure. Such characteristics are comparable to those of felsic lavas associated with the Taupo zone of New Zealand, a modern ensialic back-arc basin. Following FD, the FE detrital unit is defined only in the Okondja region, probably associated with a late-stage collapse of the northern part of the basin. It is suggested that the alkaline to calc-alkaline volcanic transition reflects the evolution of the Francevillian basin from a diverging to a converging setting, in response to the onset of converging movements in the Eburnean Belt of Central Africa.

  3. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability

  4. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  5. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    Science.gov (United States)

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (pAlkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit.

  6. Alternative Alkaline Conditioning of Amidoxime Based Adsorbent for Uranium Extraction from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Liao, W. -P.; Flicker Byers, M.; Tsouris, C.; Janke, C. J.; Mayes, R. T.; Schneider, E.; Kuo, L. -J.; Wood, J. R.; Gill, G. A.; Dai, S.

    2016-04-20

    Alkaline conditioning of the amidoxime based adsorbents is a significant step in the preparation of the adsorbent for uranium uptake from seawater. The effects of various alkaline conditioning parameters such as the type of alkaline reagent, reaction temperature, and reaction time were investigated with respect to uranium adsorption capacity from simulated seawater (spiked with 8 ppm uranium) and natural seawater (from Sequim Bay, WA). An adsorbent (AF1) was prepared at the Oak Ridge National Laboratory by radiation-induced graft polymerization (RIGP) with acrylonitrile and itaconic acid onto high-surface-area polyethylene fibers. For the AF1 adsorbent, sodium hydroxide emerged as a better reagent for alkaline conditioning over potassium hydroxide, which has typically been used in previous studies, because of higher uranium uptake capacity and lower cost over the other candidate alkaline reagents investigated in this study. Use of sodium hydroxide in place of potassium hydroxide is shown to result in a 21-30% decrease in the cost of uranium recovery.

  7. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    Science.gov (United States)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  8. Oxidative dissolution of spent nuclear fuel in aqueous alkaline solutions - An alternative to the Purex process?

    Energy Technology Data Exchange (ETDEWEB)

    Runde, Wolfgang; Peper, Shane; Brodnax, Lia; Crooks, William; Zehnder, Ralph; Jarvinen, Gordon

    2004-07-01

    As an alternative to acidic reprocessing of spent nuclear, oxidative dissolution of UO{sub 2} into aqueous alkaline solutions and subsequent separation of fission products is considered. The efficacy of such a method is limited by the kinetics of the UO{sub 2} dissolution and the capacity of alkaline solutions for dissolved U(VI) species. We performed a series of dissolution studies on UO{sub 2} and U{sub 3}O{sub 8} in aqueous alkaline solutions applying various oxidants. Among the oxidative agents commonly used to transform low-valence actinides into their higher oxidation states, H{sub 2}O{sub 2} has proven to be the most effective in basic media. Consequently, we investigated the dissolution of UO{sub 2} and U{sub 3}O{sub 8} in NaOH-H{sub 2}O{sub 2} and Na{sub 2}CO{sub 3}-H{sub 2}O{sub 2} solutions and determined the dissolution kinetics as a function of peroxide and hydroxide (carbonate) concentrations. Methods to remove fission products, e.g., Cs, Sr, Ba and Zr, from alkaline solutions will be evaluated based upon their decontamination factors. We will discuss the feasibility of using chemically oxidizing alkaline solutions as an alternative spent nuclear fuel reprocessing method based on results from experimental quantitative investigations. (authors)

  9. Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Keli He

    2016-09-01

    Full Text Available Ammonium stripping has gained increasing interest for nitrogen recovery in anaerobically digested effluents. However, the stripped effluents often still do not meet discharge standards, having high pH and residual pollutants. Constructed wetlands (CWs are an easy to operate ecosystem and have a long history of application in treatment of wastewaters with extreme pH, such as acid mine drainage. However, knowledge of the mechanistic details involved in the use of CWs to treat high alkaline drainage, such as stripped effluent, is insufficient. This study explored the feasibility and effectiveness of using three sub-surface horizontal flow CWs to treat high alkaline stripped effluent (pH > 10. Two intensification strategies—intermittent aeration and effluent recirculation—were evaluated to enhance nitrogen depuration performance. The results show that the treatment of alkaline stripped effluent is feasible due to the high buffering capacity of the wetlands. Effluent recirculation combined with intermittent artificial aeration improves nitrogen removal, with 71% total nitrogen (TN removal. Ammonia volatilization from the surface of the wetlands in high alkaline conditions only contributed to 3% of the total removed ammonium. The microbial abundance and activity had significant diversity for the various enhancement strategies used in the constructed wetland systems. Anammox is an important process for nitrogen removal in CWs treating alkaline stripped effluent, and possible enhancements of this process should be investigated further.

  10. Relation of salivary calcium, phosphorus and alkaline phosphatase with the incidence of dental caries in children

    Directory of Open Access Journals (Sweden)

    Vijayaprasad K

    2010-09-01

    Full Text Available Aim: The purpose of this study was to assess possible relationship of Calcium, Phosphorus and Alkaline-phophatase levels in saliva with incidence of caries in child patients. Settings and Design: Children (n=75 attending Department of Pedodontics, St. Joseph Dental college, Eluru, with and without caries were categorized in to Group I: Consisting of 25 children with non-rampant caries, Group II: Consisting of 25 children with rampant caries, Group III: Consisting of 25 children without caries. (Control group. Materials and Methods: The samples of saliva were collected one week after oral prophylaxis. Unstimulated directly expectorated whole saliva samples were collected in clean, dry, sterilized glass bottles and fitted with proper rubber stoppers immediately. The samples were subjected to biochemical assay for estimation of calcium, phosphorus and alkaline phosphatase levels. Statistical analysis used: ANOVA. Results: The alkaline Phosphatase activity for rampant caries group was 18.66 K.A, and control group was 4.68 K.A. The values of alkaline phosphatase activity for minimal caries group was 6.16 KA. Conclusion: Saliva could reflect a caries risk situation was supported by the fact that alkaline phosphatase activity was very much significantly higher in caries prone groups.

  11. Controlled intracellular proteolysis during postpartal involution of the uterus: characterization and regulation of an alkaline proteinase.

    Science.gov (United States)

    Roth, M; Hoechst, M; Afting, E G

    1981-01-01

    The postpartal involution of the uterus is predominantly due to cellular hypotrophy. This implies an intracellular proteolytic system which must be carefully controlled pre and post partum. We have characterized and partially purified a proteinase with an alkaline pH-optimum of activity and a proteinase inhibitor protein which inhibits this proteinase very strongly. The alkaline proteinase copurifies with the actomyosin complex of the uterine myometrium and degrades the actomyosin complex with a concomitant loss of its myosin-ATPase activity. The alkaline proteinase is a very labile enzyme, markedly sensitive to SH-group modifying agents and has very high molecular weight at the present state of purification. This proteolytic enzyme could specifically be separated from the main components of the actomyosin complex by extraction with low ionic strength phosphate buffers. The proteinase inhibitor protein may control the activity of this alkaline proteinase during pregnancy and involution. The inhibitor protein raises 15-fold during pregnancy, possibly blocks important steps of intracellular proteolysis and permits organ growth. The dramatic fall of the inhibitor protein activity after parturition, which precedes the loss of weight, could release the proteolytic system, including the alkaline proteinase, and permits controlled intracellular degradation.

  12. Bio-oils from acidic, neutral and alkaline hydrothermal liquefaction of cellulose: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Sudong [Department of Mechanical and Manufacturing Engineering, Centre for Environmental Engineering Research and Education, Schulich School of Engineering, University of Calgary (Canada); Liu, Fang; Tan, Zhongchao [Department of Mechanical and Mechatronics Engineering, University of Waterloo (Canada)

    2011-07-01

    Hydrothermal liquefaction (HTL) is a popular technology for the conversion of biomass to bio-oil. Although alkaline and neutral HTL have been widely studied in the literature so far, there are almost no data available in the literature on acidic HTL of biomass to bio-oil and on the differences between acidic and neutral/alkaline HTL of biomass to bio-oil. The purpose of this study was therefore to investigate and compare acidic, neutral and alkaline HTL of cellulose to bio-oil, with respect to bio-oil compositions and yields in specific conditions. As the result found was that acidic, neutral and alkaline conditions clearly impact the HTL bio-oil compositions. There is a similar trend for high temperatures and long residence time to have negative effects on HTL bio-oil yields for acidic, neutral and alkaline HTL. However, the reaction mechanisms behind them are various. This study presents the highly different underlying chemistries and the HTL bio-oil compositions that were investigated. Further classification of HTL of biomass to bio-oil is therefore necessary.

  13. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  14. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  15. Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model

    Directory of Open Access Journals (Sweden)

    Inés Garcia-Lodeiro

    2016-07-01

    Full Text Available In hybrid alkaline fly ash cements, a new generation of binders, hydration, is characterized by features found in both ordinary portland cement (OPC hydration and the alkali activation of fly ash (AAFA. Hybrid alkaline fly ash cements typically have a high fly ash (70 wt % to 80 wt % and low clinker (20 wt % to 30 wt % content. The clinker component favors curing at ambient temperature. A hydration mechanism is proposed based on the authors’ research on these hybrid binders over the last five years. The mechanisms for OPC hydration and FA alkaline activation are summarized by way of reference. In hybrid systems, fly ash activity is visible at very early ages, when two types of gel are formed: C–S–H from the OPC and N–A–S–H from the fly ash. In their mutual presence, these gels tend to evolve, respectively, into C–A–S–H and (N,C–A–S–H. The use of activators with different degrees of alkalinity has a direct impact on reaction kinetics but does not modify the main final products, a mixture of C–A–S–H and (N,C–A–S–H gels. The proportion of each gel in the mix does, however, depend on the alkalinity generated in the medium.

  16. Production of Alkaline Cellulase by Fungi Isolated from an Undisturbed Rain Forest of Peru

    Directory of Open Access Journals (Sweden)

    Karin Vega

    2012-01-01

    Full Text Available Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL−1 with higher specific productivities (>30 U g−1 h−1. Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry.

  17. Statistical optimization of alkaline protease production from Penicillium citrinum YL-1 under solid-state fermentation.

    Science.gov (United States)

    Xiao, Yun-Zhu; Wu, Duan-Kai; Zhao, Si-Yang; Lin, Wei-Min; Gao, Xiang-Yang

    2015-01-01

    Proteases from halotolerant and halophilic microorganisms were found in traditional Chinese fish sauce. In this study, 30 fungi were isolated from fermented fish sauce in five growth media based on their morphology. However, only one strain, YL-1, which was identified as Penicillium citrinum by internal transcribed spacer (ITS) sequence analysis, can produce alkaline protease. This study is the first to report that a protease-producing fungus strain was isolated and identified in traditional Chinese fish sauce. Furthermore, the culture conditions of alkaline protease production by P. citrinum YL-1 in solid-state fermentation were optimized by response surface methodology. First, three variables including peptone, initial pH, and moisture content were selected by Plackett-Burman design as the significant variables for alkaline protease production. The Box-Behnken design was then adopted to further investigate the interaction effects between the three variables on alkaline protease production and determine the optimal values of the variables. The maximal production (94.30 U/mL) of alkaline protease by P. citrinum YL-1 took place under the optimal conditions of peptone, initial pH, and moisture content (v/w) of 35.5 g/L, 7.73, and 136%, respectively.

  18. THE RELATIONSHIP BETWEEN THE SPONTANEOUS NOCTURNALEPISODES OF ALKALINIZATION AND AUTONOMIC NERVOUSFUNCTION ON FD PATIENTS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To study the relationship between the spontaneous nocturnal episodes of alkalinization and the autonomic nerve system function and vagal function. Methods 24-hour intragastric pH was measured and auto nomic and vagal function was measured with the time domain analyses of heart rate variability in 20 patients with functional dyspepsia but without diseases of the cardiovascular system. Results 13 of 20 had the nocturnal episodes of alkalinization. The total 24-hour SDNN and rMSSD were normal in 20 subjects with FD. There was no significant dif ference (P >0. 05) in the comparison of the total SDNN and rMSSD of the 2 groups with alkalinization and without alkalinization. The 2 groups both had higher PNN50s in the nocturnal time, and there was no significant difference (P >0. 05). Conclusion The results suggest that the total autonomic nerve function and vagal function of patients with FD are normal, vagal activities of the 2 groups are both increased in the nocturnal period. The reason for the nocturnal episodes of alkalinization is not a decrease of vagal activity with a subsequent decrease of secretion.

  19. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan.

    Science.gov (United States)

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.

  20. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    Science.gov (United States)

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  1. Spectroscopic characterization of manganese-doped alkaline earth lead zinc phosphate glasses

    Indian Academy of Sciences (India)

    S Sreehari Sastry; B Rupa Venkateswara Rao

    2015-04-01

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four bands which are characteristic of Mn(II) in distorted octahedral site symmetry. The crystal field parameter Dq and Racah interelectronic-repulsion parameters and have been evaluated. All investigated samples exhibit EPR signals which are characteristic to the Mn2+ ions. The shapes of spectra are also changed with varying alkaline earth ions content. FTIR spectra show specific vibrations of phosphate units. The characteristic Raman bands of these glasses due to stretching and bending vibrations were identified and analysed by varying alkaline earth content. The intensity and frequency variations for the characteristic phosphate group vibrations have been correlated with the changes of the structural units present in these glasses. Depolymerization of the phosphate chains in all the glasses is observed with replacement of alkaline earth content by spectroscopic studies. This leads to a strong decrease of the average chain length and a small decrease of the average P–O–P bridging angle with replacement of alkaline earth content.

  2. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential.

    Science.gov (United States)

    Chowdhury, Saikat; Bolan, Nanthi S; Seshadri, Balaji; Kunhikrishnan, Anitha; Wijesekara, Hasintha; Xu, Yilu; Yang, Jianjun; Kim, Geon-Ha; Sparks, Donald; Rumpel, Cornelia

    2016-04-01

    Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals.

  3. AMP makes native snake muscle fructose-1,6-bisphosphatase to an alkaline enzyme

    Institute of Scientific and Technical Information of China (English)

    赵辅昆; 徐松琴; 杜立林; 许根俊

    2000-01-01

    A substance in the crude preparation of NADP+ has been found, which activates snake muscle fructose-1,6-bisphosphatase at pH 9.2 and inhibits the enzyme at pH 7.5. After isolation and extensive characterization, the substance has been determined to be AMP. The activation depends on the concentrations of Mg2+ and could be observed only at concentrations above 1 mmol/L. In the presence of AMP, snake muscle fructose-1,6-bisphosphatase resembles an alkaline enzyme. Kinetic studies indicate that AMP and Mg2+ competitively regulate the activity of the enzyme. AMP releases the inhibition of Mg2+ at high concentration at alkaline pH. It has been reported that fructose-1,6-bisphosphatase with a pH optimum in the alkaline region is caused by limited proteolysis. AMP is also able to make fructose-1,6-bisphosphatase to be an alkaline enzyme. This finding indicates that proteolysis may not be the only reason for shift of the optimum pH of fructose-1,6-bisphosphatase to alkaline side and it may imply some significanc

  4. Effects of alkalinity sources on the stability of anaerobic digestion from food waste.

    Science.gov (United States)

    Chen, Shujun; Zhang, Jishi; Wang, Xikui

    2015-11-01

    This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW.

  5. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5, has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α(8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α(8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK(a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further

  6. Effects of Saline and Alkaline Stresses on Growth and Physiological Changes in Oat (Avena sativa L. Seedlings

    Directory of Open Access Journals (Sweden)

    Zhanwu GAO

    2014-12-01

    Full Text Available Two neutral salts (NaCl and Na2SO4 and alkaline salts (NaHCO3 and Na2CO3 were both mixed in 2:1 ratio, and the effects of saline and alkaline stresses on growth and physiological changes in oat seedlings were explored. Result showed that biomass, water content and chlorophyll content decreased while cell membrane permeability significantly increased under alkaline stress. Saline stress did not have obvious effect on pH value in tissue fluids of shoot and root, but alkaline stress increased pH value in root tissue fluid. The contents of Na+, Na+/K+, SO42- increased more, and K+, NO3-,H2PO4- decreased more under alkaline stress, the Cl- content increased obviously under saline stress but had little change under alkaline stress. The increments of proline and organic acid were both greater under alkaline stress, but organic acid content kept the same level under saline stress. Alkaline stress caused more harmful effects on growth and physiological changes in oat seedlings especially broke the pH stability in root tissue fluid. Physiological adaptive mechanisms of oat seedlings under saline stress and alkaline stress were different, which mainly took the way of accumulating organic acid under alkali stress but accumulating Cl- under saline stress.

  7. Assimilation and Translocation of Dry Matter and Phosphorus in Rice Genotypes Affected by Salt-Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2016-06-01

    Full Text Available Salt-alkaline stress generally leads to soil compaction and fertility decline. It also restricts rice growth and phosphorus acquisition. In this pot experiment, two relatively salt-alkaline tolerant (Dongdao-4 and Changbai-9 and sensitive (Changbai-25 and Tongyu-315 rice genotypes were planted in sandy (control and salt-alkaline soil to evaluate the characteristics of dry matter and phosphorus assimilation and translocation in rice. The results showed that dry matter and phosphorus assimilation in rice greatly decreased under salt-alkaline stress as the plants grew. The translocation and contribution of dry matter and phosphorus to the grains also increased markedly; different performances were observed between genotypes under salt-alkaline stress. D4 and C9 showed higher dry matter translocation, translocation efficiency and contribution of dry matter assimilation to panicles than those of C25 and T315. These changes in D4 and C9 indexes occurred at low levels of salt-alkaline treatment. Higher phosphorus acquisition efficiency of D4 and C9 were also found under salt-alkaline conditions. Additionally, the phosphorus translocation significantly decreased in C25 and T315 in the stress treatment. In conclusion, the results indicated that salt-alkaline-tolerant rice genotypes may have stronger abilities to assimilate and transfer biomass and phosphorus than sensitive genotypes, especially in salt-alkaline conditions.

  8. Planarization properties of an alkaline slurry without an inhibitor on copper patterned wafer CMP

    Institute of Scientific and Technical Information of China (English)

    Wang Chenwei; Liu Yuling; Tian Jianying; Niu Xinhuan; Zheng Weiyan; Yue Hongwei

    2012-01-01

    The chemical mechanical polishing/planarization (CMP) performance of an inhibitor-free alkaline copper slurry is investigated.The results of the Cu dissolution rate (DR) and the polish rate (PR) show that the alkaline slurry without inhibitors has a relatively high copper removal rate and considerable dissolution rate.Although the slurry with inhibitors has a somewhat low DR,the copper removal rate was significantly reduced due to the addition of inhibitors (Benzotriazole,BTA).The results obtained from pattern wafers show that the alkaline slurry withoutinhibitors has a better planarization efficacy; it can planarize the uneven patterned surface during the excess copper removal.These results indicate that the proposed inhibitor-free copper slurry has a considerable planarization capability for CMP of Cu pattern wafers,it can be applied in the first step ofCu CMP for copper bulk removal.

  9. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Frison, A.

    2016-01-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from...... the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments......, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55 °C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas...

  10. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  11. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    Science.gov (United States)

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank.

  12. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  13. Anodic dissolution of gold in alkaline solutions containing thiourea, thiosulfate and sulfite ions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Gold dissolves electrochemically in alkaline solutions containing ligands to form complex ions with gold ion. Therefore, selective leaching of noble metals is expected without dissolution of base metals such as steels, aluminum alloys in scrap treatment. Gold electrodes were investigated using linear sweep voltammetry, EQCM method and potentiostatic electrolysis in alkaline solutions containing thiourea, Na2SO3 and Na2S2O3. The solution composition, electrode potential affect gold dissolution rate and current efficiency. The gold dissolved from anode electrode forms complex ions, suspension particles as compound precipitates and deposits on cathode electrode as a metal. Anodic efficiency for gold dissolution is between 10% and 22%. This is caused by the oxidation decomposition of sulfite ions and thiourea. The stability of the alkaline solution containing these elements was also estimated by capillary electrophoresis technique.

  14. Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation

    Science.gov (United States)

    Alp, Ibrahim; Celep, Oktay; Deveci, Haci

    2010-11-01

    This paper presents the alkaline sulfide pretreatment of an antimonial refractory gold and silver ore. In the ore, gold occurs mainly as gold-silver alloys and as associated with quartz and framboidal pyrite grains, and, to a small extent, as the inclusions within antimonial sulfides. Silver is present extensively as antimonial sulfides such as andorite. Alkaline sulfide pretreatment was shown to allow the decomposition of the antimonial sulfide minerals (up to 98% Sb removal) and to remarkably improve the amenability of gold (e.g., from silver (e.g., from leaching. An increase in reagent concentration (1-4 mol/L Na2S or NaOH) and temperature (20-80°C), and a decrease in particle size seem to produce an enhancing effect on metal extraction. These findings suggest that alkaline sulfide leaching can be suitably used as a chemical pretreatment method prior to the conventional cyanidation for antimonial refractory gold and silver ores.

  15. Synthesis, characterization and antimicrobial activity of alkaline ion-exchanged ZnO/bentonite nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Hamideh Pouraboulghasem; Mohammad Ghorbanpour; Razieh Shayegh; Samaneh Lotfiman

    2016-01-01

    Nanocomposites of zinc/bentonite clay were synthesized for use as an antibacterial material by a quick and simple alkaline ion exchange method. The synthesis of zinc doped bentonite nanocomposite was accomplished by placing bentonite in a melting bath of ZnSO4 for 10, 20, 40, 60 and 90 min. The complexes were characterized by XRD, SEM and DRS. XRD analyses and SEM observations confirmed the diffusion of zinc to the clay surfaces. Antibacterial activity tests againstEscherichia coli showed that bentonite did not present any antibacterial properties, but after alkaline ion exchange treatment, inhibition was noted. The highest antibacterial activity was observed with ZnO/bentonite composite alkaline ion exchange for 60 and 90 min. Interestingly, the leaching test indicated that ZnO/bentonite did not present any risk for drinking water treatment.

  16. Studies of community structure and seasonal dynamics of planktonic copepods in saline-alkaline ponds

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen; DONG Shuanglin

    2005-01-01

    Species abundance and seasonal succession of copepods in aline-alkaline ponds were studied in Zhaodian Fish Farm, Gaoqing County, Shandong Province, from 5 April 1997 to 1 September 1998. The results indicated that in the conditions of salinity ranging from 1.36 to 20 g/L, total alkalinity changing from 2.4 to 7.2 mmol/L and pH 8-9, zooplankton in saline-alkaline ponds was composed of freshwater salt-tolerated species or halophile species, some of which are halobiont species and usually occurs in freshwater In our study, copepods were predominant in many fish-culture ponds and all control ponds without fishes in spring, late autumn and early winter Dominant species of copepods were Sinocalanus tenellus, Cyclops vicinus, Thermocyclops taihokuensis. The biomass of copepods in the control ponds without fishes was higher than that of the fish-culture ponds. ponds.

  17. Acellular comet assay: a tool for assessing variables influencing the alkaline comet assay.

    Science.gov (United States)

    Kennedy, Erin K; McNamee, James P; Prud'homme Lalonde, Louise; Jones, Trevor; Wilkinson, Diana

    2012-01-01

    In this study, an acellular modification to the alkaline comet assay to further evaluate key variables within the assay that may influence the outcome of genotoxicity studies is described. This acellular comet assay can detect differences of 0.2 Gy of (60)Co gamma-ray radiation between 0 and 1 Gy and differences of 1 Gy between 0 and 8 Gy; thus, this assay is applicable for a wide range of DNA damage levels. It is also shown that DNA damage from different radiation energies was not significantly different from (60)Co gamma-ray. This assay displayed a statistical increase in DNA damage due to uncontrolled exposure to natural light; however, the slope of the dose-response curve for light-exposed samples was similar to that for samples protected from light. A comparison of the alkaline comet assay with the acellular comet assay allowed for the intrinsic repair capacity of the alkaline comet assay to be quantified.

  18. Alkaline corrosion properties of laser-clad aluminum/titanium coatings

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Herbreteau, Alexis; Rombouts, Marleen

    2015-01-01

    with supersaturated titanium ( (1 weight per cent), Al3Ti intermetallics and large partially undissolved Ti6Al4V particles. Heat treatment lowered the titanium concentration in the aluminum matrix, changed the shape of the Al3Ti precipitates and increased the degree of dissolution of the Ti6Al4V particles. Corrosion...... testing showed significant localized dissolution of the aluminum matrix. Research limitations/implications – Increased titanium concentration and heat treatment gave improved alkaline corrosion properties. At pH 13.5, the Al3Ti phases were protected, while the aluminum matrix corroded. Practical...... implications – For alkaline corrosion-protection of aluminum in the automobile industry, titanium might be useful at pH values below 13.5 or by using other coating techniques. Originality/value – This is the first study testing the use of titanium as a protective element of aluminum in stringent alkaline...

  19. REE Geochemical Characteristics of Apatite,Sphene and Zircon from Alkaline Rocks

    Institute of Scientific and Technical Information of China (English)

    周玲棣; 王杨传

    1989-01-01

    The accessory minerals apatite and sphene are the main carriers of REE in alkaline rocks.Their chondrite-normalized REE patterns decline sharply to the right as those of the host rocks,In the patterns an obvious negative Eu anomaly and a positive Ce anomaly can be seen in apatite and sphene,respectively.Zircon from alkaline rocks is different in REE pattern,I,e,. a nearly symmetric"V"-shaped pattern with a maximum negative Eu anomaly.Compared with the equivalents from granites,apatite,sphene and zircon from alkaline rocks are all characterized by higher (La/Yb)N ratio and less Eu depletion,As to the relative contents of REE in minerals,apatite,sphene and zircon are enriched in LREE,MREE and HREE respectively,depending on their crystallochemical properties.

  20. Synthesis of Calcium Silicate Hydrate based on Steel Slag with Various Alkalinities

    Institute of Scientific and Technical Information of China (English)

    WANG Shuping; PENG Xiaoqin; GENG Jianqiang; LI Bin; WANG Kaiyu

    2014-01-01

    This study aimed to improve the hydraulic potential properties of the slag. Therefore, a method of dynamic hydrothermal synthesis was applied to synthesize calcium silicate hydrate. The phases and nanostructures were characterized by XRD, FTIR, TEM, and BET nitrogen adsorption. The influence of alkalinity of steel slag on its structures and properties was discussed. The experimental results show that, the main product is amorphous calcium silicate hydrate gel with flocculent or fibrous pattern with a BET specific surface area up to 77 m2/g and pore volume of 0.34 mL/g. Compared with low alkalinity steel slag, calcium silicate hydrate synthesized from higher alkalinity steel slag is prone to transform to tobermorite structure.

  1. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand.

    Science.gov (United States)

    Goloran, Johnvie B; Chen, Chengrong; Phillips, Ian R; Elser, James J

    2015-10-07

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.

  2. Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch.

    Science.gov (United States)

    Murciano Martínez, Patricia; Kabel, Mirjam A; Gruppen, Harry

    2016-11-20

    Enzyme hydrolysed (hemi-)celluloses from oil palm empty fruit bunches (EFBs) are a source for production of bio-fuels or chemicals. In this study, after either peracetic acid delignification or alkaline extraction, EFB hemicellulose structures were described, aided by xylanase hydrolysis. Delignification of EFB facilitated the hydrolysis of EFB-xylan by a pure endo-β-1,4-xylanase. Up to 91% (w/w) of the non-extracted xylan in the delignified EFB was hydrolysed compared to less than 4% (w/w) of that in untreated EFB. Alkaline extraction of EFB, without prior delignification, yielded only 50% of the xylan. The xylan obtained was hydrolysed only for 40% by the endo-xylanase used. Hence, delignification alone outperformed alkaline extraction as pretreatment for enzymatic fingerprinting of EFB xylans. From the analysis of the oligosaccharide-fingerprint of the delignified endo-xylanase hydrolysed EFB xylan, the structure was proposed as acetylated 4-O-methylglucuronoarabinoxylan.

  3. Comparative evaluation of different hemicelluloses isolation processes integrated with alkaline cooking - HemiEx

    Energy Technology Data Exchange (ETDEWEB)

    Sixta, H.; Testova, L.; Rauhala, T. (and others) (Aalto Univ. School of Science and Technology, Espoo (Finland). Dept. of Forest Products Technology)

    2010-10-15

    HemiEx is a project focusing on the selective extraction of hemicelluloses from hardwood species in connection with alkaline pulping and study of different chemical aspects of the process. The project scope includes investigation of hemicelluloses isolation methods i.e. water prehydrolysis and alkaline pre-extraction prior to and subsequent to alkaline pulping. The sugar fraction of the extracts is then separated from other wood degradation products by means of membrane separation technology before it is converted to furanic compounds and xylose-based food additives. As regards pulp production, both dissolving and paper pulps are aimed at. The effect of pretreatment conditions on papermaking properties of pulp will also be investigated. (orig.)

  4. Comparative evaluation of different hemicelluloses isolation processes integrated with alkaline cooking - HemiEx

    Energy Technology Data Exchange (ETDEWEB)

    Sixta, H.; Testova, L.; Rauhala, T. (and others) (Helsinki Univ. of Technology, Dept. of Forest Products Technology, Espoo (Finland))

    2009-10-15

    HemiEx is a project focusing on the selective extraction of hemicelluloses from hardwood species in connection with alkaline pulping and study of different chemical aspects of the process. The project scope includes investigation of hemicelluloses isolation methods i.e. water prehydrolysis and alkaline pre-extraction prior to and novel solvents extraction subsequent to alkaline pulping. The sugar fraction of the extracts is then separated from other wood degradation products by means of membrane separation technology before it is converted to furanic compounds and xylose-based food additives. As regards pulp production, both dissolving and paper pulps are aimed at. The effect of pretreatment conditions on papermaking properties of pulp will also be investigated. (orig.)

  5. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.

    Science.gov (United States)

    Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G

    2016-07-15

    There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life.

  6. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress

    Directory of Open Access Journals (Sweden)

    ِArafat eAbdel Latef

    2016-03-01

    Full Text Available Silicon (Si has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L. is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this work, grains of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50 and 75 mM with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC, and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K+, as well as potassium/sodium ion (K+/Na+ ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na+ and malondialdehyde (MDA, as well as the activities of superoxide dismutase (SOD, catalase (CAT and peroxidase (POD in stressed plants. On the other hand, application of Si by grain priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids, K+ and activities of SOD, CAT and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na+, which together with enhanced K+ level led to a favorable adjustment of K+/Na+ ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on the maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K+/Na+. Thus, our findings demonstrate that seed priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress.

  7. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Wright, Andrew G.; Kraglund, Mikkel Rykær

    2017-01-01

    Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes represents a new direction in the field of electrochemical hydrogen production. Polybenzimidazole membranes equilibrated in aqueous KOH combine the mechanical robustness and gas-tightness of a polymer...... stability in alkaline environments. The novel electrolytes are extensively characterized with respect to physicochemical and electrochemical properties and the chemical stability is assessed in 0-50 wt% aqueous KOH for more than 6 months at 88 degrees C. In water electrolysis tests using porous 3...

  8. A practical total synthesis of the microbial alkaline proteinase inhibitor (MAPI).

    Science.gov (United States)

    Haebich, Dieter; Hillisch, Alexander; El Sheikh, Sherif

    2009-12-01

    Diverse serine and cysteine proteases as well as alkaline proteinases and elastases play a crucial role in numerous biological processes. Natural peptide aldehydes such as the "microbial alkaline proteinase inhibitor" (MAPI, 1) are valuable tools to characterize novel enzymes and to study their function in nature. Within a drug discovery program we wanted to design and explore non-natural MAPI congeners with novel biological profiles. To that end we devised a simple, practical, and scalable synthesis of MAPI 1 from readily available amino acid building blocks. The modular nature of our approach allows convenient structural modification of the MAPI backbone.

  9. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  10. Alkaline Phosphatase Assay for Freshwater Sediments: Application to Perturbed Sediment Systems

    Science.gov (United States)

    Sayler, Gary S.; Puziss, Marla; Silver, Martin

    1979-01-01

    The p-nitrophenyl phosphate hydrolysis-phosphatase assay was modified for use in freshwater sediment. Laboratory studies indicated that the recovery of purified alkaline phosphatase activity was 100% efficient in sterile freshwater sediments when optimized incubation and sonication conditions were used. Field studies of diverse freshwater sediments demonstrated the potential use of this assay for determining stream perturbation. Significant correlations between phosphatase and total viable cell counts, as well as adenosine triphosphate biomass, suggested that alkaline phosphatase activity has utility as an indicator of microbial population density and biomass in freshwater sediments. PMID:16345464

  11. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Chen, R.

    2016-10-01

    Alkaline direct ethylene glycol fuel cells are one of the most promising power sources for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a sustainable fuel and the key materials that constitute the fuel cell are relatively inexpensive. This review article summarizes and discusses the past investigations on the development of alkaline direct ethylene glycol fuel cells, including the physical and chemical processes through the fuel cell structure, the electrocatalytic oxidation and electrocatalysts of ethylene glycol, the singe-cell performance, and innovative system designs.

  12. Mechanism of enhancement of prochymosin renaturation by solubilization of inclusion bodies at alkaline pH

    Institute of Scientific and Technical Information of China (English)

    张治洲; 张渝英; 杨开宇

    1997-01-01

    The renaturation efficiency of recombinant prochymosin depends on not only the renaturation condi-tions but also the solubilization (denaturation) conditions. Compared with pH 8, solubilization of prochymosin-contain-ing inclusion bodies at pH 11 (8 mol/L urea) results in onefold increase of renaturation efficiency ( ~ 40% vs. ~ 20 % ). Alkaline pH facilitates the solubilization of inclusion bodies via the breakage of intermolecular disulfide bonds. Moreover, alkaline pH renders prochymosin molecules to be in a more reduced and more unfolded state which undergoes refolding readily.

  13. Screening of Strains Producing Alkaline Protease from Soil and Study on the Conditions for Enzyme Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to screen strains producing alkaline protease from soil and study the conditions for enzyme production.[Method] Eight strains producing alkaline protease were isolated from soil through plate isolation,and the ability of enzyme production was measured by filter paper and Folin-phenol method.The strain with the strongest ability of enzyme production was screened as a candidate strain,then the factors influencing the ability of enzyme production was studied,finally the conditions for e...

  14. Development of durable and efficient electrodes for large-scale alkaline water electrolysis

    DEFF Research Database (Denmark)

    Kjartansdóttir, Cecilia Kristin; Nielsen, Lars Pleth; Møller, Per

    2013-01-01

    A new type of electrodes for alkaline water electrolysis is produced by physical vapour depositing (PVD) of aluminium onto a nickel substrate. The PVD Al/Ni is heat-treated to facilitate alloy formation followed by a selective aluminium alkaline leaching. The obtained porous Ni surface is uniform...... and characterized by a unique interlayer adhesion, which is critical for industrial application. IR-compensated polarisation curves prepared in a half-cell setup with 1 M KOH electrolyte at room temperature reveals that at least 400 mV less potential is needed to decompose water into hydrogen and oxygen...

  15. Ocean-Based Alkalinity Enhancement: Mitigation Potential, Side Effects and the Fate of Added Alkalinity Assessed in an Earth System Model

    Science.gov (United States)

    Gonzalez, M. F.; Ilyina, T.

    2014-12-01

    Artificial ocean alkalinization (AOA) has been proposed as a mean to mitigate climate change and ocean acidification. Whilst the mitigation potential of this geo-engineering technology may sound promising, it poses environmental risks. Within the Priority Program "Climate Engineering" of the German Science Foundation (DFG), we investigate the mitigation potential of AOA to reduce atmospheric CO2 and counteract the consequences of ocean acidification. We are particularly interested in the residence time of the added alkalinity at the ocean surface because it must stay in the upper ocean in order to increase the oceanic CO2 uptake. The mitigation potential, risks and the unintended consequences of this geo-engineering method are also exhaustively studied. These questions are tackled through the analysis of different alkalinity enhancement scenarios in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology (MPI-ESM) in a configuration based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Model scenarios are designed so that AOA is performed to keep the atmospheric CO2 concentrations similar to values of the stabilization scenario RCP4.5, while fossil fuel CO2 emissions follow the pathway of the high-CO2 scenario RCP8.5. Alkalinity is added globally into the upper 12 meters of the ocean in different seasons and years. We found that on the time scale of relevance (i.e. from years to decades), season and location are key aspects to take into account in the implementation of AOA. This is because of inhomogeneous vertical mixing of added alkalinity due to the mixed layer depth which is established by the season. We also show that the rate of addition greatly determines impact and outcome of this geo-engineering method. Changes driven by the implementation of this method in the ocean biogeochemistry are also discussed. For instance, the associated changes in the carbon cycle, marine oxygen levels, saturation state of

  16. Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture

    NARCIS (Netherlands)

    Jiang, Y.; Mikova, G.; Kleerebezem, R.; Van der Wielen, L.A.M.; Cuellar Soares, M.C.

    2015-01-01

    This study focused on investigating the feasibility of purifying polyhydroxybutyrate (PHB) from mixed culture biomass by alkaline-based chemical treatment. The PHB-containing biomass was enriched on acetate under non-sterile conditions. Alkaline treatment (0.2 M NaOH) together with surfactant SDS (0

  17. Optimization of alkaline cellulase production by the marine-derived fungus Chaetomium sp. using agricultural and industrial wastes as substrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Naveenan, T.; Varatharajan, G.R.

    , among which Chaetomium sp. (NIOCC 36) was found to grow in a wide range of pH (between 4 and 12). This alkaline tolerant fungus was further tested for production of alkaline cellulases (Beta-endoglucanase, Beta-exoglucanase, Beta-glucosidase) using...

  18. Alkaline phosphatase immobilization onto Bio-Gide(R) and Bio-Oss(R) for periodontal and bone regeneration.

    NARCIS (Netherlands)

    Oortgiesen, D.A.W.; Plachokova, A.S.; Geenen, C.; Meijer, G.J.; Walboomers, X.F.; Beucken, J.J.J.P van den; Jansen, J.B.M.J.

    2012-01-01

    AIM: To evaluate the effect of alkaline phosphatase (ALP) immobilization onto Bio-Gide((R)) in vitro, and to study the in vivo performance of ALP-enriched Bio-Gide((R)) and/or Bio-Oss((R)) with the purpose to enhance periodontal regeneration. MATERIALS AND METHODS: Alkaline phosphatase ALP was immob

  19. Critical parameters in cost-effective alkaline extraction for high protein yield from leaves

    NARCIS (Netherlands)

    Zhang, C.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Leaves are potential resources for feed or food, but their applications are limited due to a high proportion of insoluble protein and inefficient processing. To overcome these problems, parameters of alkaline extraction were evaluated using green tea residue (GTR). Protein extraction could be maximi

  20. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    Science.gov (United States)

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  1. Proposal for management and alkalinity transformation of bauxite residue in China.

    Science.gov (United States)

    Xue, Shengguo; Kong, Xiangfeng; Zhu, Feng; Hartley, William; Li, Xiaofei; Li, Yiwei

    2016-07-01

    Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.

  2. Regioselective Synthesis of Polymerizable Vinyl Guaifenesin Esters Catalyzed by an Alkaline Protease of Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Na WANG; Qi WU; Jian Ming XU; Xiu Ming JIANG; Xian Fu LIN

    2004-01-01

    Three polymerizable vinyl guaifenesin esters with different acyl donor carbon chain lengths (C4,C6,C10) were regioselectivly synthesized by an alkaline protease from Bacillus subtilis in pyridine at 50°C for 1, 3, 5 days respectively.

  3. Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2010-10-01

    Full Text Available The purpose of the present investigations was to improve the yield of alkaline protease for leather dehairing by subjecting the indigenous proteolytic strain Bacillus licheniformis N-2 to various mutagenic treatments viz. UV irradiations, NTG (N-methyl-N-nitro-N-nitrosoguinidine and MMS (methyl methane sulfonate. After screening on skim milk agar plates, a total of nine positive mutants were selected for shake flask experiments. Among these, the best proteolytic mutant designated as UV-9 showed 1.4 fold higher alkaline protease activity in preoptimized growth medium than the parent strain. The fermentation profile and kinetic parameters such u(h-1, Yp/s, Yp/x, Yx/s, q s, Qs, q p and Qp also indicated the superiority of the selected mutant UV-9 for alkaline protease production over the parent strain and rest of the mutants. The dehairing capability of mutant UV-9 alkaline protease was analyzed by soaking goat skin pieces for different time intervals (3-15 h at 40 º C. A complete dehairing without degradation of collagen was achieved after 12 h, indicating its commercial exploitation in leather industry.

  4. THE BIOENERGETICS OF AMMONIA AND HYDROXYLAMINE OXIDATION IN NITROSOMONAS-EUROPAEA AT ACID AND ALKALINE PH

    NARCIS (Netherlands)

    FRIJLINK, MJ; ABEE, T; LAANBROEK, HJ; DEBOER, W; KONINGS, WN

    1992-01-01

    Autotrophic ammonia oxidizers depend on alkaline or neutral conditions for optimal activity. Below pH 7 growth and metabolic activity decrease dramatically. Actively oxidizing cells of Nitrosomonas europaea do not maintain a constant internal pH when the external pH is varied from 5 to 8. Studies of

  5. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-23

    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  6. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis

    DEFF Research Database (Denmark)

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng;

    2016-01-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased...

  7. Acid- and alkaline phosphatase in amniotic fluid in normal and complicated pregnancy.

    Science.gov (United States)

    Beckman, G; Beckman, L; Löfstrand, T

    1978-01-01

    171 samples of amniotic fluid were obtained by abdominal amniocentesis from 67 women with complicated pregnancies (isoimmunization, diabetes mellitus or toxaemia). The levels of heat-labile alkaline phosphatase (HLAP), heat-stable alkaline phosphatase (HSAP) and acid phosphatase (AcP) were determined and compared to the enzyme levels in 179 samples from women with normal pregnancies of corresponding gestational ages. HLAP showed two "peaks" of activity, one in the 5th-22nd week and the other at term. HSAP and AcP showed increased activity at term. HSAP was decreased (p less than 0.01) in isoimmunization between the 36th and 40th week. 11 cases of toxaemia with placental insufficiency showed no differences in the levels of HLAP and HSAP compared with normal pregnancy. AcP showed no differences between normal and complicated pregnancy. Samples contaminated by blood showed no significant increase in the acid- and alkaline phosphatase levels. Samples contaminated by meconium showed a complex pattern. Some samples had normal enzyme levels, some had high levels of HLAP only and some had high levels of HSAP and AcP. The origin of the enzymes is not known with certainty. HSAP in amniotic fluid is most likely not of placental but intestinal origin. Determinations of acid- and alkaline phosphatase in amniotic fluid seem to be of little values in the clinical management of complicated pregnancy.

  8. Methane production and microbial community structure for alkaline pretreated waste activated sludge.

    Science.gov (United States)

    Sun, Rui; Xing, Defeng; Jia, Jianna; Zhou, Aijuan; Zhang, Lu; Ren, Nanqi

    2014-10-01

    Alkaline pretreatment was studied to analyze the influence on waste activated sludge (WAS) reduction, methane production and microbial community structure during anaerobic digestion. Methane production from alkaline pretreated sludge (A-WAS) (pH = 12) increased from 251.2 mL/Ld to 362.2 mL/Ld with the methane content of 68.7% compared to raw sludge (R-WAS). Sludge reduction had been improved, and volatile suspended solids (VSS) removal rate and protein reduction had increased by ∼ 10% and ∼ 35%, respectively. The bacterial and methanogenic communities were analyzed using 454 pyrosequencing and clone libraries of 16S rRNA gene. Remarkable shifts were observed in microbial community structures after alkaline pretreatment, especially for Archaea. The dominant methanogenic population changed from Methanosaeta for R-WAS to Methanosarcina for A-WAS. In addition to the enhancement of solubilization and hydrolysis of anaerobic digestion of WAS, alkaline pretreatment showed significant impacts on the enrichment and syntrophic interactions between microbial communities.

  9. The Mechanism of the Copper Ion Catalyzed Autoxidation of Cysteine in Alkaline Medium

    NARCIS (Netherlands)

    Koningsberger, D.C.; Zwart, J.; Wolput, J.H.M.C. van

    1981-01-01

    Quantitative e.s.r. measurements carried out during the copper catalysed alkaline autoxidation of cysteine show that the Cu(II)-dicysteine complex represents almost the total amount of copper. Only a small fraction (<2%) of the copper ions might be present in a state which is not detectable by e.s.r

  10. Desorption of acetone from alkaline-earth exchanged Y zeolite after propane selective oxidation

    NARCIS (Netherlands)

    Xu, Jiang; Mojet, B.L.; Ommen, van J.G.; Lefferts, L.

    2004-01-01

    The desorption of products from a series of alkaline-earth exchanged Y zeolites after room-temperature propane selective oxidation was investigated by in situ infrared and mass spectroscopy. The intermediate product, isopropylhydroperoxide (IHP), did not desorb during temperature-programmed-desorpti

  11. Displacement mechanisms of enhanced heavy oil recovery by alkaline flooding in a micromodel

    Institute of Scientific and Technical Information of China (English)

    Mingzhe Dong; Qiang Liu; Aifen Li

    2012-01-01

    Enhanced oil recovery (EOR) by alkaline flooding for conventional oils has been extensively studied.For heavy oils,investigations are very limited due to the unfavorable mobility ratio between the water and oil phases.In this study,the displacement mechanisms of alkaline flooding for heavy oil EOR are investigated by conducting flood tests in a micromodel.Two different displacement mechanisms are observed for enhancing heavy oil recovery.One is in situ water-in-oil (W/O) emulsion formation and partial wettability alteration.The W/O emulsion formed during the injection of alkaline solution plugs high permeability water channels,and pore walls are altered to become partially oil-wetted,leading to an improvement in sweep efficiency and high tertiary oil recovery.The other mechanism is the formation of an oil-in-water (O/W) emulsion.Heavy oil is dispersed into the water phase by injecting an alkaline solution containing a very dilute surfactant.The oil is then entrained in the water phase and flows out of the model with the water phase.

  12. Biological treatment of refinery spent caustics under halo-alkaline conditions

    NARCIS (Netherlands)

    Graaff, de M.; Bijmans, M.F.M.; Abbas, B.; Euverink, G.J.W.; Muyzer, G.; Janssen, A.J.H.

    2011-01-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at

  13. FORMATION (DECOMPOSITION) ENTHALPY CALCULATIONS FOR CRYSTAL LATTICES OF ALKALINE-EARTH FLUORIDES

    OpenAIRE

    Gruba, O.; Germanyuk, N.; Ryabukhin, A.

    2015-01-01

    A series of calculations of structural and thermochemical properties has been carried out for the alkaline-earth fluorides. The calculations have been carried out using the modified model of effective ionic radii and the model of enthalpy calculation for the crystal lattice. The results of the calculations are in accordance with the known experimental data within confidence intervals.

  14. Propane selective oxidation on alkaline earth exchanged zeolite Y: room temperature in situ IR study

    NARCIS (Netherlands)

    Xu, Jiang; Mojet, Barbara L.; Ommen, van Jan G.; Lefferts, Leon

    2003-01-01

    The effect of zeolite Y ion-exchanged with a series of alkaline-earth cations on selective propane oxidation at room temperature was studied with in situ infrared spectroscopy. Isopropylhydroperoxide was observed as a reaction intermediate and can be decomposed into acetone and water. Contrary to pr

  15. Coated magnetic particles in electrochemical systems: Synthesis, modified electrodes, alkaline batteries, and paste electrodes

    Science.gov (United States)

    Unlu, Murat

    Magnetic field effects on electrochemical reactions have been studied and shown to influence kinetics and dynamics. Recently, our group has introduced a novel method to establish magnetic field effects by incorporating inert, magnetic microparticles onto the electrode structure. This modification improved several electrochemical systems including modified electrodes, alkaline batteries, and fuel cells. This dissertation describes the applicability of magnetic microparticles and the understanding of magnetic field effects in modified electrodes, alkaline batteries, and paste electrodes. Magnetic effects are studied on electrodes that are coated with an ion exchange polymer that embeds chemically inert, commercial, magnetic microparticles. The flux (electrolysis current) of redox probe to the magnetically modified system is compared to a similar non-magnetic electrode. Flux enhancements of 60% are achieved at magnetically modified electrode as compared to non-magnetic controls. In addition to modifying electrode surfaces, the incorporation of magnetic microparticles into the electrode material itself establishes a 20% increase in flux. Possible magnetic field effects are evaluated. Study of samarium cobalt modified electrolytic manganese dioxide, EMD electrodes further establish a magnetic effect on alkaline cathode performance. Magnetic modification improves alkaline battery performance in primary and secondary applications. The reaction mechanism is examined through voltammetric methods. This work also includes coating protocols to produce inert magnetic microparticles with high magnetic content. Magnetite powders are encapsulated in a polymer matrix by dispersion polymerization. Composite particles are examined in proton exchange membrane fuel cells to study carbon monoxide tolerance.

  16. Microbial diversity in a permanently cold and alkaline environment in Greenland

    DEFF Research Database (Denmark)

    Glaring, Mikkel Andreas; Vester, Jan Kjølhede; Lylloff, Jeanette Eva

    2015-01-01

    The submarine ikaite columns located in the Ikka Fjord in Southern Greenland represent a unique, permanently cold (less than 6°C) and alkaline (above pH 10) environment and are home to a microbial community adapted to these extreme conditions. The bacterial and archaeal community inhabiting...

  17. Engineering of quorum-sensing systems for improved production of alkaline protease by Bacillus subtilis

    NARCIS (Netherlands)

    Tjalsma, H; Koetje, EJ; Kiewiet, R; Kuipers, OP; Kolkman, M; van der Laan, J; Daskin, R; Ferrari, E; Bron, S

    2004-01-01

    Aim: Engineering of Rap-Phr quorum-sensing systems of Bacillus subtilis and subsequent evaluation of the transcription of the aprE gene, encoding a major extracellular alkaline protease. Methods and Results: Addition of synthetic Phr pentapeptides to the growth medium, or overproduction of pre-Phr p

  18. Doping of graphite by an alkaline-earth metal to reduce the work function

    NARCIS (Netherlands)

    Baturin, AS; Nikolski, KN; Knyazev, AI; Tchesov, RG; Sheshin, EP

    2004-01-01

    A technique for reducing the work function of a field-emission graphite cathode by doping it by an alkaline-earth metal (barium) is suggested. A model of formation of a barium monolayer on the cathode surface is proposed. Field-emission tests show that the operating voltage of the doped cathode is l

  19. Integration of galacturonic acid extraction with alkaline protein extraction from green tea leaf residue

    NARCIS (Netherlands)

    Zhang, Chen; Bozileva, Elvira; Klis, van der Frits; Dong, Yiyuan; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Leaf pectin can be used as a feedstock for galacturonic acid (GA) production, but high extraction costs limit economic feasibility. To improve the extraction efficiency, leaf pectin extraction was integrated with an already cost-effective alkaline protein extraction, focusing on high yield of GA

  20. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2011-12-01

    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  1. Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production

    Science.gov (United States)

    Alkaline hydrogen peroxide (AHP) pretreatment and enzymatic saccharification were evaluated for conversion of corn stover cellulose and hemicellulose to fermentable sugars. Corn stover used in this study contained 37.0±0.2% cellulose, 26.8±0.2% hemicellulose and 18.0±0.1% lignin on dry basis. Unde...

  2. Role of miR-21 in alkalinity stress tolerance in tilapia.

    Science.gov (United States)

    Zhao, Yan; Wu, Jun-Wei; Wang, Yan; Zhao, Jin-Liang

    2016-02-26

    MicroRNAs (miRNAs) are a class of short, evolutionary conserved non-coding RNA molecules, which are shown as the key regulators of many biological functions. External stress can alter miRNA expression levels, thereby changing the expression of mRNA target genes. Here, we show that miR-21 is involved in the regulation of alkalinity tolerance in Nile tilapia. Alkalinity stress results in a marked reduction in miR-21 levels. miR-21 loss of function could affect ion balance regulation, ROS production, and antioxidant enzyme activity in vivo. Moreover, miR-21 knockdown protects cell against alkalinity stress-induced injury in vitro. miR-21 directly regulates VEGFB and VEGFC expression by targeting the 3'-untranslated regions (UTRs) of their mRNAs, and inhibition of miR-21 significantly increases the levels of VEGFB and VEGFC expression in vivo. Taken together, our study reveals that miR-21 knockdown plays a protective role in alkalinity tolerance in tilapia.

  3. THREE SHRUBS WOOD PULPS PREPARED BY HYDROGEN PEROXIDE -ALKALINE (PA) COOKING

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; RunCang Sun; huaiyu Zhan

    2004-01-01

    The physical, chemical and fiber characteristics of Caragana Korshinskii, Salix psammophila and Hedysarum scoparium fischer Mey were assessed for their suitability for papermaking. Nonsulfur cooking of hydrogen peroxide-alkaline (PA) was carried out.It is shown from the results that all these three shrubs are good raw materials for pulping and papermaking.The unbleached pulps have high mechanical strengthes.

  4. THREE SHRUBS WOOD PULPS PREPARED BY HYDROGEN PEROXIDE -ALKALINE (PA) COOKING

    Institute of Scientific and Technical Information of China (English)

    FengXu; RunCangSun; huaiyuZhan

    2004-01-01

    The physical, chemical and fiber characteristics ofCaragana Korshinskii, Salix psammophila andHedysarum scoparium fischet Mey were assessed fortheir suitability for papermaking. Nonsulfur cookingof hydrogen peroxide-alkaline (PA) was carried out.It is shown from the results that all these three shrubsare good raw materials for pulping and papermaking.The unbleached pulps have high mechanicalstren~hes.

  5. Molecular cloning and characterization of the alkaline ceramidase from Pseudomonas aeruginosa PA01

    NARCIS (Netherlands)

    Nieuwenhuizen, W.F.; Leeuwen, S. van; Jack, R.W.; Egmond, M.R.; Götz, F.

    2003-01-01

    Ceramidase (CDase) hydrolyzes the amide bond in ceramides to yield free fatty acid and sphingosine. From a 3-L Pseudomonas aeruginosa PA01 culture, 70 μg of extracellular alkaline, Ca2+-dependent CDase, was purified to homogeneity, the N-terminal sequence was determined, and the CDase gene was clone

  6. A sequential injection system for the spectrophotometric determination of calcium, magnesium and alkalinity in water samples.

    Science.gov (United States)

    Mesquita, Raquel B R; Rangel, António O S S

    2004-08-01

    A sequential injection methodology for the spectrophotometric determination of calcium, magnesium and alkalinity in water samples is proposed. A single manifold is used for the determination of the three analytes, and the same protocol sequence allows the sequential determination of calcium and magnesium (the sum corresponds to the water hardness). The determination of both metals is based on their reaction with cresolphtalein complexone; mutual interference is minimized by using 8-hydroxyquinoline for the determination of calcium and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) for the determination of magnesium. Alkalinity determination is based on a reaction with acetic acid, and corresponding color change of Bromcresol Green. Working ranges of 0.5 - 5 mg dm(-3) for Ca, 0.5 - 10 mg dm(-3) for Mg, and 10 - 100 mg HCO3- dm(-3), for alkalinity have been achieved. The results for water samples were comparable to those of the reference methods and to a certified reference water sample. RSDs lower than 5% were obtained, a low reagent consumption and a reduced volume of effluent have been accomplished. The determination rate for calcium and magnesium is 80 h(-1), corresponding to 40 h(-1) per element, while 65 determinations of alkalinity per hour could be carried out.

  7. Acid and alkaline treatments for enhancing the growth of rhizobia in sludge

    Energy Technology Data Exchange (ETDEWEB)

    Rebah, F. B.; Tyagi, R. D. [Quebec Univ., Institut national de la recherche scientifique, Sainte Foy, PQ (Canada); Prevost, D. [Agriculture and Agri-Food Canada, Centre de recherche et de developpement sur les sols et les grandes cultures, Sainte Foy, PQ (Canada)

    2001-06-01

    Wastewater treatment processes produce large amounts of sludge. The application of sludge to agricultural soils improves the soil's physical and biological properties because it contains organic matter and plant nutrients. Wastewater sludge has been used for producing certain bacteria. It has also been proposed as an effective method for the production of rhizobia. Although the amount of sludge required for the production of bacterial inoculum is low, this new application constitutes an additional and suitable alternative for wastewater sludge recycling. The purpose of this study was to determine the potential of using acid or alkaline pre-treatments in sludges having different solid concentrations, to increase the biodegradability of organic material, thereby to enhance the growth of rhizobia, while using sludge as a culture medium. Results of the experiment show that both acid and alkaline treatments improved the rhizobial cell count and reduced mean generation time in primary and secondary sludges, but the efficiency of the treatment was also dependent on the total suspended solids (TSS) concentration. The highest cell count was obtained with primary sludge at 0.65 per cent TSS under alkaline treatment. For secondary sludge, the highest cell count was reached under acid hydrolysis. The mean generation time was reduced by both pre-treatments, with best values obtained for alkaline treatment in primary sludge. 31 refs., 6 tabs.

  8. Conformation Switching in Gas-Phase Complexes of Histidine with Alkaline Earth Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Hopkinson, A. C.; Oomens, J.; Siu, C. K.; Siu, K. W. M.; Steill, J. D.; Verkerk, U. H.; Zhao, J. F.

    2009-01-01

    Infrared multiple photon dissociation spectroscopy of gas-phase doubly charged alkaline earth complexes of histidine reveals a transition from dominance of the zwitterion (salt bridge, SB) conformation with Ba2+ to substantial presence of the canonical (charge-solvated, CS) conformation with Ca2+. T

  9. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2015-01-01

    This study explored the potential of volatile fatty acids (VFA) production from sewage by a combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production was optimized with respect to SRT and alkaline pH (pH 8–10). Application of pH shock to a value of 9 at the start of a s

  10. Challenges Associated with Technological Aspects for Modernization of Alkaline-Fermented Foods

    NARCIS (Netherlands)

    Linnemann, A.R.; Hansen, E.B.; Lelieveld, H.L.M.; Heising, J.K.; Dekker, M.

    2014-01-01

    Among the new generations, the awareness and appreciation of indigenous healthy foods including alkaline-fermented foods (AFFs) needs to be enhanced. AFFs are considered to be old-fashioned. In fact, some of the food processing techniques are outdated with low hygiene and quality standards. Some AFF

  11. High Temperature Alkaline Electrolysis Cells with Metal Foam Based Gas Diffusion Electrodes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2016-01-01

    Alkaline electrolysis cells operating at 250°C and 40 bar are able to convert electrical energy into hydrogen at very high efficiencies and power densities. In the present work we demonstrate the application of a PTFE hydrophobic network and Ag nanowires as oxygen evolution electrocatalyst...

  12. Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells.

    Science.gov (United States)

    Wu, Haibin; Chen, Wei

    2011-10-05

    Copper nitride nanocubes are synthesized in a facile one-phase process. The crystal size could be tuned easily by using different primary amines as capping agents. Such Pt-free nanocrystals exhibit electrocatalytic activity toward oxygen reduction and appear to be promising cathodic electrocatalysts in alkaline fuel cells.

  13. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity

    NARCIS (Netherlands)

    Chen, K.T.; Malo, M.; Beasley-Topliffe, L.K.; Poelstra, K.; Millan, J.; Mostafa, G.; Alam, S.; Ramasamy, S.; Warren, H.; Hohmann, E.; Hodin, R.A.

    2010-01-01

    Background and Aims: Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor known to dephosphorylate lipopolysaccharide (LPS); however, the role of IAP in the gut response to luminal bacteria remains undefined. We investigated immune responses of wildtype (WT) and IAP-knockout (IAP-KO

  14. Activation of fly ashes by the high temperature and high alkalinity in ASR tests

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    High temperature and high alkalinity are typical testing conditions to accelerate the appraisal process of the suppressing effect of fly ashes on alkali silica reaction(ASR),but the reaction mechanism of fly ashes would be quite different under such conditions compared to the normal condition of temperature and alkalinity.To make a reasonable analysis of the suppressing effect of fly ashes,13 types of fly ashes were tested in this paper by both the accelerated mortar bar test method and the 60°C accelerated concrete prism test method.The results showed that the effect of fly ashes would be magnified under the condition of high temperature and high alkalinity.The XRD analysis showed that all the phases of fly ash could react with the hot alkaline solution except for mullite and a small amount of quartz.Fly ash could be significantly activated by the 80°C 1 mol/L NaOH solution,and form mainly C-S-H phase and P type zeolite,but its effect on inhibiting ASR was exaggerated then.According to the mortar strength test and the ASR suppressing test results,C-S-H phase contributed to mortar strength,but its amount did not decide the ASR suppressing effect of fly ash.

  15. A laboratorial study on influence of alkaline and oxidative environment on preservation of Pinus tabulaeformis pollen

    Institute of Scientific and Technical Information of China (English)

    Fang TIAN; Xianyong CAO; Qinghai XU; Yuecong LI

    2009-01-01

    Different sedimentary settings can influence preservation of pollens, which would lead to mis-interpretation of fossil pollen spectrum. This study investigates the influence on the preservation of Pinus tabulaeformis pollen by simulating alkaline and oxidative environment in the laboratory. There was no obvious change in the content ofPinus tabulaeformis pollen while comparing the original with the ones that were immersed with 10% NaOH liquor for ten days, or boiled for five hours, and or boiled with 20%-30% NaOH for one hour,respectively. However, the pollen fossils were obviously corroded and eroded after being boiled with 40% NaOH for one hour and were seriously corroded after five hours. The result indicates that Pinus tabulaeformis pollen is quite durable in alkaline environment and heating condition within a shorter period of time, although alkaline environment has a disadvantage for its preservation. We also tested the influence of oxidation on Pinus tabulae-formis pollen preservation with KMnO4 as oxidant. The result presents that the number of remaining Pinus tabulaeformis pollen grains decreased quickly after being dipped in KMnO4 along with extending the reaction time and reinforcing oxidant. The rate of remnant pollen grains was less than 1% after being dipped with 2% KMnO4 for one hour. It is suggested that oxidative environment has stronger influence on Pinus tabulaeformis pollen preserva tion than alkaline environment.

  16. The effect of alkaline phosphatase coated onto titanium alloys on bone responses in rats.

    NARCIS (Netherlands)

    Schouten, C.; Beucken, J.J.J.P. van den; Jonge, L.T. de; Bronkhorst, E.M.; Meijer, G.J.; Spauwen, P.H.M.; Jansen, J.A.

    2009-01-01

    The enzyme alkaline phosphatase (ALP) was recently proposed as an implant coating material in order to improve the biological performance of orthopedic and dental implants. The present study evaluated the in vivo bone response to electrosprayed coatings, consisting of ALP, calcium phosphate (CaP) or

  17. Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch

    NARCIS (Netherlands)

    Murciano Martínez, Patricia; Kabel, Mirjam A.; Gruppen, Harry

    2016-01-01

    Enzyme hydrolysed (hemi-)celluloses from oil palm empty fruit bunches (EFBs) are a source for production of bio-fuels or chemicals. In this study, after either peracetic acid delignification or alkaline extraction, EFB hemicellulose structures were described, aided by xylanase hydrolysis. Deligni

  18. A method for making an electrode for an alkaline storage cell

    Energy Technology Data Exchange (ETDEWEB)

    Yanagikhara, N.; Isitobi, M.; Ivaki, T.; Matsumoto, I.

    1983-07-21

    A paste forming active mass is applied to a foam metallic base, which is then etched into the surface of the base filling the pores. The etching is performed in a specific mode. The alkaline storage battery electrode produced in this way has high electrical characteristics. Its manufacturing is mechanized.

  19. Pyramidal texturing of silicon surface via inorganic-organic hybrid alkaline liquor for heterojunction solar cells

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Zhao, Ying

    2015-10-01

    We demonstrate a new class of silicon texturing approach based on inorganic (sodium hydroxide, NaOH) and organic (tetramethylammonium hydroxide, TMAH) alkaline liquor etching processes for photovoltaic applications. The first stage of inorganic alkaline etching textures the silicon surface rapidly with large pyramids and reduces the cost. The subsequent organic alkaline second-etching improves the coverage of small pyramids on the silicon surface and strip off the metallic contaminants produced by the first etching step. In addition, it could smoothen the surface of the pyramids to yield good morphology. In this study, the texturing duration of both etching steps was controlled to optimize the optical and electrical properties as well as the surface morphology and passivation characteristics of the silicon substrates. Compared with traditional inorganic NaOH texturing, this hybrid process yields smoother (111) facets of the pyramids, fewer residual Na+ ions on the silicon surface, and a shorter processing period. It also offers the advantage of lower cost compared with the organic texturing method based on the use of only TMAH. We applied this hybrid texturing process to fabricate silicon heterojunction solar cells, which showed a remarkable improvement compared with the cells based on traditional alkaline texturing processes.

  20. Calculated Structural Phase-Transitions in the Alkaline-Earth Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1982-01-01

    The local-density approximation and the linear muffin-tin orbital method have been used within the atomic-sphere approximation to calculate structural energy differences for all the alkaline earth metals at zero temperature. At ordinary pressure the calculations predict the crystal structure...

  1. Alkaline hemp woody core pulping: impregnation characteristics, kinetic modelling and papermaking qualities.

    NARCIS (Netherlands)

    Groot, de B.

    1998-01-01

    The aim of this thesis is to elucidate alkaline processing of hemp woody core, supporting the development and optimization of an efficient and non-polluting pulping process. This study has been a constituent of an integral programme to study fibre hemp.It is known that the outer part of the fibre he

  2. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Li Jianghua

    2011-10-01

    Full Text Available Abstract Background Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase. Results The alkaline α-amylase gene from Bacillus alcalophilus JN21 (CCTCC NO. M 2011229 was cloned and expressed in Bacillus subtilis strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the Km and Vmax of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min, respectively. The effects of medium compositions (starch, peptone, and soybean meal and temperature on the recombinant production of alkaline α-amylase in B. subtilis were investigated. Under the optimal conditions (starch concentration 0.6% (w/v, peptone concentration 1.45% (w/v, soybean meal concentration 1.3% (w/v, and temperature 37°C, the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from B. alcalophilus JN21. Conclusions This is the first report concerning the heterologous expression of alkaline α-amylase in B. subtilis, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant B. subtilis.

  3. Studies on alkaline band formation in Chara corallina: ameliorating effect of Ca2+ on inhibition induced by osmotic shock.

    Science.gov (United States)

    Shimmen, Teruo; Yonemura, Satoko; Negoro, Mio; Lucas, William J

    2003-09-01

    Although the decrease in cell turgor by application of sorbitol to the external medium did not inhibit the alkaline band formation in Chara corallina, recovery of normal turgor severely inhibited it. Alkaline-loading analysis suggested that the inhibition of alkaline band formation was caused by inhibition of HCO(3)(-) influx but not that of OH(-) efflux. In the presence of 10 mM CaCl(2), the capacity of alkaline band formation was maintained during osmotic treatment. Cells could not form alkaline bands, when plasmolysis was induced by application of sorbitol at a higher concentration. Addition of 10 mM CaCl(2) could ameliorate the inhibition caused by plasmolyis.

  4. The Potential of Soft Soil Improvement Through a Coupled Technique Between Electro Kinetic and Alkaline Activation of Soft Soil

    Science.gov (United States)

    Ahmed, G. E.; Ismail, H. B.; Huat, B. K.; Afshin, A.; Azhar, A. T. S.

    2016-07-01

    Soil stabilization techniques have been in development for decades with different rates of success. Alkaline activation of soft soil is one of those techniques that has proved to deliver some of the best shear strength values with minor drawbacks in comparison with conventional soil stabilization methods. However, environmental considerations have not been taken into account, as major mineral glassy phase activators are poisoning alkaline solutions, such as sodium-, potassium-hydroxide, and sodium-, potassium-silicate, which poses serious hazards to man and environment. This paper addresses the ways of discarding the involvement of the aforementioned alkaline solutions in soft soil stabilization by investigating the potential of a coupled electro kinetic alkaline activation technique for soft soil strengthening, through which the provision of alkaline pH is governed by electro kinetic potential. Uncertainties in regard to the dissolution of aluminosilicate as well as the dominance of acidic front are challenges that need to be overcome.

  5. Long-term landscape evolution of the southeast Brazilian highlands: comparison of two alkaline intrusions areas

    Science.gov (United States)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Glasmacher, Ulrich Anton

    2016-04-01

    The southeast Brazilian highlands records a long history of tectonic and magmatic events that were consequence of the South Atlantic Ocean opening. After the rifting process has ceased, an epeirogenic uplift of the continental crust has started in response to the drifting of the South American Platform over a thermal anomaly that accompanied an intense alkaline and basaltic magmatism. Related Late Cretaceous alkaline intrusions are distributed from the southeast Brazilian coast to the interior of the South American Platform. The landscape evolution is associated with several distinct exhumation events at the South American passive continental margin (Hackspacher 2004; Doranti et al, 2014). The present study intent providing insights on the behaviour of the coupled magmatic tectonic-erosional system, comparing thermochronological data from two alkaline intrusions, Poços de Caldas Alkaline Massif (PCAM) and São Sebastião Island (SSI). The PCAM is the biggest alkaline structure located in the interior of the continent, 300km from the coastline (Rio de Janeiro). The structure is formed as a caldera, covering over 800km2, intruding Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. Meanwhile, the SSI (236km²) is located at the coast, 200 km southeast of the city of São Paulo and is characterized by an intrusion in Precambrian granitic-gnaissic rocks affected by the Panafrican/Brazilian Orogen. This crystalline basement is intruded by Early Cretaceous subalkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). The Apatite Fission-Track ages for PCAM range from 333.3±27.6 to 94.0±13.7 Ma at the surrounded metamorphic basement area, and 76.8±10.9 to 48.7±10.7 Ma in the alkaline Massif. The older ages, are concentrated on the lower topography region (700 until 1200m) in the north side alkaline massif

  6. Degradation of pyrene by immobilized microorganisms in saline-alkaline soil

    Institute of Scientific and Technical Information of China (English)

    Shanxian Wang; Xiaojun Li; Wan Liu; Peijun Li; Lingxue Kong; Wenjie Ren; Haiyan Wu; Ying TU

    2012-01-01

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is very difficult in saline-alkaline soil due to the inhibition of microbial growth under saline-alkaline stress.The microorganisms that can most effectively degrade PAHs were screened by introducing microorganisms immobilized on farm byproducts and assessing the validity of the immobilizing technique for PAHs degradation in pyrene-contaminated saline-alkaline soil.Among the microorganisms examined,it was found that Mycobacterium sp.B2 is the best,and can degrade 82.2% and 83.2% of pyrene for free and immobilized cells after 30 days of incubation.The immobilization technique could increase the degradation of pyrene significantly,especially for fungi.The degradation of pyrene by the immobilized microorganisms Mucor sp.F2,fungal consortium MF and co-cultures of MB+MF was increased by 161.7% (P < 0.05),60.1% (P <0.05) and 59.6% (P < 0.05) after 30 days,respectively,when compared with free F2,MF and MB+MF.Scanning electron micrographs of the immobilized microstructure proved the positive effects of the immobilized microbial technique on pyrene remediation in salinealkaline soil,as the interspace of the carrier material structure was relatively large,providing enough space for cell growth.Co-cultures of different bacterial and fungal species showed different abilities to degrade PAHs.The present study suggests that Mycobacterium sp.B2 can be employed for in situ bioremediation of PAHs in saline-alkaline soil,and immobilization of fungi on farm byproducts and nutrients as carriers will enhance fungus PAH-degradation ability in saline-alkaline soil.

  7. Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis.

    Science.gov (United States)

    Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Lever, Mark Alexander; Ingvorsen, Kjeld

    2014-04-01

    A combination of culture-dependent and culture-independent techniques was used to characterize bacterial and archaeal communities in a highly polluted waste dump and to assess the effect of remediation by alkaline hydrolysis on these communities. This waste dump (Breakwater 42), located in Denmark, contains approximately 100 different toxic compounds including large amounts of organophosphorous pesticides such as parathions. The alkaline hydrolysis (12 months at pH >12) decimated bacterial and archaeal abundances, as estimated by 16S rRNA gene-based qPCR, from 2.1 × 10(4) and 2.9 × 10(3) gene copies per gram wet soil respectively to below the detection limit of the qPCR assay. Clone libraries constructed from PCR-amplified 16S rRNA gene fragments showed a significant reduction in bacterial diversity as a result of the alkaline hydrolysis, with preferential survival of Betaproteobacteria, which increased in relative abundance from 0 to 48 %. Many of the bacterial clone sequences and the 27 isolates were related to known xenobiotic degraders. An archaeal clone library from a non-hydrolyzed sample showed the presence of three main clusters, two representing methanogens and one representing marine aerobic ammonia oxidizers. Isolation of alkalitolerant bacterial pure cultures from the hydrolyzed soil confirmed that although alkaline hydrolysis severely reduces microbial community diversity and size certain bacteria survive a prolonged alkaline hydrolysis process. Some of the isolates from the hydrolyzed soil were capable of growing at high pH (pH 10.0) in synthetic media indicating that they could become active in in situ biodegradation upon hydrolysis.

  8. Direct determination of total mercury in phosphate rock using alkaline fusion digestion

    Energy Technology Data Exchange (ETDEWEB)

    D’Agostino, Fabio, E-mail: fabio.dagostino@iamc.cnr.it [Institute for Coastal Marine Environment (IAMC) – CNR, Via del Mare 3, 91021 Torretta Granitola (Trapani) (Italy); Oliveri, Elvira [Institute for Coastal Marine Environment (IAMC) – CNR, Via del Mare 3, 91021 Torretta Granitola (Trapani) (Italy); Bagnato, Emanuela [DiSTeM, University of Palermo, Via Archirafi 36, 90123 Palermo (Italy); Falco, Francesca; Mazzola, Salvatore; Sprovieri, Mario [Institute for Coastal Marine Environment (IAMC) – CNR, Via del Mare 3, 91021 Torretta Granitola (Trapani) (Italy)

    2014-12-10

    Highlights: • Determination of total mercury concentration within phosphate rock by alkaline fusion digestion. • Digestion by alkaline fusion salts mixture which melts at 400 °C. • Total Hg determination by atomic absorption spectrophotometry comply with EPA method 7473. • Comparison of Hg recovery between EPA method 7473 and alkaline fusion digestion method. - Abstract: The aim of this work was to develop a new method to determine the mercury (Hg) concentrations in phosphate rock using a dedicated analytical instrument (the DMA80 Tricell by Milestone) that employs an integrated sequence of thermal decomposition followed by catalyst conversion, amalgamation and atomic absorption spectrophotometry. However, this instrument underestimates Hg concentrations when phosphorite and apatite rocks are investigated with a classic thermal decomposition treatment that complies with US EPA method 7473. Therefore, to improve the recovery of total Hg, we performed alkaline fusion digestion (AFD) directly inside the furnace of the instrument, using BCR(32) as a certified reference material (Moroccan phosphate rock – phosphorite). The salts used for the AFD were a mixture of Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}, which melt at about 400 °C, due to their ability to form a ternary eutectic and to decompose the phosphorite matrices at 700 °C. By adopting this analytical approach, the Hg recovery in BCR(32) was about 100%, compared to 40% when the reference material was analysed without using the alkaline fusion salt. We suggest that the AFD allowed the decomposition of the sample matrix and that some Hg compounds linked with other functional groups may be transformed in carbonates that sublimate at lower temperatures than other Hg compounds. This original method was tested on a number of different geological samples to compare the differences between the AFD method and the thermal treatment in order to verify the working range and to check the

  9. Ecofriendly and Simplified Synthetic Route for Polysulfone-based Solid-State Alkaline Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Nittaya Pantamas

    2012-01-01

    Full Text Available Problem statement: Recently the alkaline system for fuel cell enhance their presence because of possibility of no-precious-metal catalyst and low over potential at cathode reaction. The anion exchange membrane for alkaline membrane fuel cell should be a key technology in order to achieve the practical performance as fuel cells. Alkaline anion exchange membranes of high ionic conductivities are made from polysulfone by adding a chloromethyl pendant group to the polysulfone, follow by reacting the chloromethyl group with amine to form quarternary ammonium pendant groups which act as the counter ion for hydroxide anion. Chloromethyl methyl ether, N,N-dimethylformamide and methanol are commonly used as agent for providing excellent conversions, but they are now considered to be carcinogenic. To avoid the use of such hazardous materials, in our work we used paraformaldehyde, chlorotrimethylsilane, N-methylpyrrolidone and ethanol as agent for providing conversion. Approach: Polysulfone (PS was chloromethylated using chlorotrimethylsilane as a chloromethylation reagent, resulting in the formation of Chloromethylated Polysulfone (CMPS. CMPS was converted to a quaternized form using trimethylamine and precipitated into ethanol. The powder was dissolved in N-methylpyrrolidone, followed by aminated with a 25 wt% trimethylamine. Results: The resulting solution was cast onto a flat glass plate and dried in an oven. The membrane was immersed in KOH solution for 24 h to replace the Cl- anion in the polymer with OH-. Conclusion: The swelling behavior of polysulfone-based solid-state alkaline electrolyte membrane was closely related to the degree of water uptake (25 WU%, 7.5 SD% and the ion-exchange capacity was 1.05 mmol g-1, which is sufficient for electrolyte membranes used in alkaline fuel cells.

  10. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Sayali; Ballal, Anand; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2013-11-15

    Highlights: • Deinococcus radiodurans was genetically engineered to overexpress alkaline phosphatase (PhoK). • Deino-PhoK bioprecipitated U efficiently over a wide range of input U concentration. • A maximal loading of 10.7 g U/g of biomass at 10 mM input U was observed. • Radioresistance and U precipitation by Deino-PhoK remained unaffected by γ radiation. • Immobilization of Deino-PhoK facilitated easy separation of precipitated U. -- Abstract: Bioremediation of uranium (U) from alkaline waste solutions remains inadequately explored. We engineered the phoK gene (encoding a novel alkaline phosphatase, PhoK) from Sphingomonas sp. for overexpression in the radioresistant bacterium Deinococcus radiodurans. The recombinant strain thus obtained (Deino-PhoK) exhibited remarkably high alkaline phosphatase activity as evidenced by zymographic and enzyme activity assays. Deino-PhoK cells could efficiently precipitate uranium over a wide range of input U concentrations. At low uranyl concentrations (1 mM), the strain precipitated >90% of uranium within 2 h while a high loading capacity of around 10.7 g U/g of dry weight of cells was achieved at 10 mM U concentration. Uranium bioprecipitation by Deino-PhoK cells was not affected in the presence of Cs and Sr, commonly present in intermediate and low level liquid radioactive waste, or after exposure to very high doses of ionizing radiation. Transmission electron micrographs revealed the extracellular nature of bioprecipitated U, while X-ray diffraction and fluorescence analysis identified the precipitated uranyl phosphate species as chernikovite. When immobilized into calcium alginate beads, Deino-PhoK cells efficiently removed uranium, which remained trapped in beads, thus accomplishing physical separation of precipitated uranyl phosphate from solutions. The data demonstrate superior ability of Deino-PhoK, over earlier reported strains, in removal of uranium from alkaline solutions and its potential use in

  11. Physicochemical changes in the hull of corn grains during their alkaline cooking.

    Science.gov (United States)

    González, Regino; Reguera, Edilso; Mendoza, Leobardo; Figueroa, Juan Manuel; Sánchez-Sinencio, Feliciano

    2004-06-16

    The alkaline cooking of corn in a solution of Ca(OH)2 to produce corn-based foods is oriented to make corn proteins available, to incorporate Ca to the cooked grains, and also to remove the corn hull. This process (nixtamalization) is known in Mexico and Guatemala from prehispanic times; however, the effect of the alkaline cooking on the corn hull remains poorly documented. In this work, the physicochemical changes that take place in the corn hull during its cooking in a saturated solution of Ca(OH)2 were studied using infrared, X-ray diffraction, 13C cross-polarization/magic-angle spinning (CP/MAS) NMR, confocal imaging microscopy, differential scanning calorimetry, and thermogravimetry techniques. The main effect of this treatment on the hull is the removal of hemicelluloses and lignin, increasing the hull permeability and, as a consequence, facilitating the entry of the alkaline solution into the corn kernel. No significant changes were observed in the cellulose fiber network, which remains as native cellulose I, with a crystalline index, according to 13C CP/MAS NMR spectra, of 0.60. The alkaline treatment does not allow the cellulose fibers to swell and their regeneration in the form of cellulose(II). It seems any attempt to make use of the Ca binding capacity of the hull to increase the Ca availability in nixtamalized corn-based foods requires a separated treatment for the hull and kernel. On alkaline cooking, the hull hemicellulose fraction dissolves, losing its ability to bind Ca as a way to incorporate this element into foods elaborated from nixtamalized corn.

  12. Transcriptome exploration in Leymus chinensis under saline-alkaline treatment using 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yepeng Sun

    Full Text Available BACKGROUND: Leymus chinensis (Trin. Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. RESULTS: We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO(3. A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of "log2 Ratio ≥1", there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. CONCLUSIONS: This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and

  13. Trypanosoma cruzi alkaline 2-DE: Optimization and application to comparative proteome analysis of flagellate life stages

    Directory of Open Access Journals (Sweden)

    Santana Jaime M

    2008-09-01

    Full Text Available Abstract Background Trypanosoma cruzi, a flagellate protozoan, is the etiological agent of Chagas disease, a chronic illness that causes irreversible damage to heart and digestive tract in humans. Previous 2-DE analyses of T. cruzi proteome have not focused on basic proteins, possibly because of inherent difficulties for optimizing 2-DE in the alkaline pH range. However, T. cruzi wide pH range 2-DE gels have shown few visible spots in the alkaline region, indicating that the parasite either did not have an appreciable amount of alkaline proteins or that these proteins were underrepresented in the 2-DE gels. Results Different IEF conditions using 6–11 pH gradient strips were tested for separation of T. cruzi alkaline proteins. The optimized methodology described here was performed using anodic "paper bridge" sample loading supplemented by increased concentration of DTT and Triton X-100 on Multiphor II (GE Healthcare equipment and an electrode pad embedded in DTT- containing solution near the cathode in order to avoid depletion of reducing agent during IEF. Landmark proteins were identified by peptide mass fingerprinting allowing the production of an epimastigote 2-DE map. Most identified proteins corresponded to metabolic enzymes, especially those related to amino acid metabolism. The optimized 2-DE protocol was applied in combination with the "two-in-one gel" method to verify the relative expression of the identified proteins between samples from epimastigote and trypomastigote life stages. Conclusion High resolution 2-DE gels of T. cruzi life forms were achieved using the optimized methodology and a partial epimastigote alkaline 2-DE map was built. Among 700 protein spots detected, 422 were alkaline with a pI above 7.0. The "two-in-one gel" method simplified the comparative analysis between T. cruzi life stages since it minimized variations in spot migration and silver-stained spot volumes. The comparative data were in agreement with

  14. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors

    Science.gov (United States)

    When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out...

  15. MudPIT analysis of alkaline tolerance by Listeria monocytogenes strains recovered as persistent food factory contaminants.

    Science.gov (United States)

    Nilsson, Rolf E; Latham, Roger; Mellefont, Lyndal; Ross, Tom; Bowman, John P

    2012-05-01

    Alkaline solutions are used to clean food production environments but the role of alkaline resistance in persistent food factory contamination by Listeria monocytogenes is unknown. We used shotgun proteomics to characterise alkaline adapted L. monocytogenes recovered as persistent and transient food factory contaminants. Three unrelated strains were studied including two persistent and a transient food factory contaminant determined using multilocus sequence typing (MLST). The strains were adapted to growth at pH 8.5 and harvested in exponential phase. Protein extracts were analysed using multidimensional protein identification technology (MudPIT) and protein abundance compared by spectra counting. The strains elicited core responses to alkaline growth including modulation of intracellular pH, stabilisation of cellular processes and reduced cell-division, independent to lineage, MLST or whether the strains were transient or persistent contaminants. Alkaline adaptation by all strains corresponded to that expected in stringent-response induced cells, with protein expression supporting metabolic shifts concordant with elevated alarmone production and indicating that the alkaline-stringent response results from energy rather than nutrient limitation. We believe this is the first report describing induction of a stringent response in different L. monocytogenes strains by alkaline pH under non-limiting growth conditions. The work emphasises the need for early intervention to avoid persistent food factory contamination by L. monocytogenes.

  16. Prevention of ARD through stabilization of waste rock with alkaline by-products : results from a meso-scale experiment

    Energy Technology Data Exchange (ETDEWEB)

    Backstrom, M.; Allard, B. [Orebro Univ. (Sweden). Man-Technology Environment Research Centre; Sartz, L.; Karlsson, S. [Orebro Univ. (Sweden). Man-Technology Environment Research Centre; Bergskraft Bergslagen, Kopparberg (Sweden)

    2010-07-01

    Mine waste can be mixed with alkaline materials to neutralize and increase the immobilization of trace elements. An impermeable layer can also be created if the alkaline additions react with the waste to form hardpans. Alkaline injection processes have been used in the western United States, where approximately 2 to 3.5 million tonnes of mine tailings have been limed with calcite, calcium hydroxide (Ca(OH){sub 2}), and calcium oxide (CaO). In this study, stabilization experiments were conducted to simulate conditions where weathered mine waste was mixed with various alkaline materials. The aim of the study was to determine the optimal conditions for preventing the oxidation of mine waste isolating surfaces. The alkaline materials included fly ash, lime mud, green liquor dregs, and lime kiln dust. The mine waste and alkaline materials were layered in barrels. Expanded clay aggregates were used to minimize the risk of clogging. Results of the experiments showed that the pH in the alkaline-treated systems increased between 1.3 and 27 pH units when compared with untreated reference samples. The increased pH resulted in a decrease in trace element concentrations of approximately 96 percent. The samples containing fly ash performed better than other systems. 4 refs., 1 tab., 2 figs.

  17. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  18. Recombination of Geminate (OH,eaq-) Pairs in Concentrated Alkaline Solutions: Lack of Evidence For Hydroxyl Radical Deprotonation

    CERN Document Server

    Lian, R; Shkrob, I A; Bartels, D M; Oulianov, D A; Gosztola, D J; Lian, Rui; Crowell, Robert A.; Shkrob, Ilya A.; Bartels, David M.; Oulianov, Dmitri A.; Gosztola, David

    2004-01-01

    Picosecond dynamics of hydrated electrons and hydroxyl radicals generated in 200 nm photodissociation of aqueous hydroxide and 400 nm (3-photon) ionization of water in concentrated alkaline solutions were obtained. No deprotonation of hydroxyl radicals was observed on sub-nanosecond time scale, even in 1-10 M KOH solutions. This result is completely at odds with the kinetic data for deprotonation of OH radical in dilute alkaline solutions. We suggest that the deprotonation of hydroxyl radical is slowed down dramatically in concentrated alkaline solutions.

  19. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  20. The effect of glycine on the growth of calcium carbonate in alkaline silica gel

    Science.gov (United States)

    Gan, Xiong; He, Kunhuan; Qian, Baosong; Deng, Qin; Lu, Laixian; Wang, Yun

    2017-01-01

    Calcium carbonate was crystallized in alkaline silica gel with the presence of glycine. The crystallization proceeded with a counterdiffusion method by the reaction of calcium chloride and sodium carbonate. Optical microscopy observation showed a significant effect of glycine on the morphology control of calcite crystals. When the initial concentration of glycine was high enough (10 mg/mL, 20 mg/mL), spherical vaterite particles formed in alkaline silica gel concomitantly together with dumbbell shaped calcite particles. The in situ study by micro-Raman spectroscopy demonstrated that both vaterite and the concomitant calcite were stable phases during their growth processes since the initial appearance. A possible mechanism has been discussed to emphasize the effect of glycine on the nucleation of vaterite and the morphological control of calcite.

  1. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  2. The choice of low-temperature hydrogen fuel cells: Acidic - or alkaline

    Science.gov (United States)

    Kordesch, K.

    A comparison of the major types of hydrogen-oxygen (air) fuel cells is given. The criteria for the selection is the fuel availability, system performance, optimal cost and life expectancy in most suitable application areas. Special recommendations are given for designs of bipolar alkaline batteries for intermittent use in electric vehicles on the road, combining high conversion efficiency with long stand-by periods. Such batteries with liquid alkaline electrolytes will have to compete with matrix-type cells using improved acidic- or membrane-type cells. Hybrid systems will be discussed and their advantages from the economic point of view will be considered. In electric vehicles the combination with an advanced rechargeable battery system, like zinc-bromine, could be decisive for success. Unfortunately, there are not enough cost data available to compare the systems now.

  3. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  4. Observations on the alkaline phosphatase isoenzyme distribution in maternal and amniotic fluid compartments in Nigerian parturients.

    Science.gov (United States)

    Okpere, E; Okorodudu, A; Gbinigie, O

    1988-01-01

    Estimation of the alkaline phosphates isoenzymes in paired maternal serum and amniotic fluids in term uncomplicated pregnancies and in patients with pre-eclampsia, showed poor correlation coefficients between the levels of both heat stable and heat labile isoenzymes. There was a statistically significant fall in AF (P less than .05) HSAP in pre-eclampsia and a highly significant rise of HLAP in meconial liquor. It is concluded that the poor correlation between the levels of HSAP in maternal serum and amniotic fluid (despite their common source of origin), the normal levels of HLAP in maternal serum in the presence of significantly high levels of HSAP in maternal serum in the presence of significantly diminished levels in amniotic fluid point to a state of relatively diminished permeability of the chorioamniotic membranes to the alkaline phosphatase isoenzymes in Nigerians.

  5. Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Arash Fattah-alhosseini

    2015-10-01

    Full Text Available The passivation behavior of AISI 430 ferritic stainless steel was investigated in concentrated alkaline solutions in relation to several test parameters, using electrochemical techniques. Increasing solution pH (varying from 11.5 to 14.0 leads to an increase in the corrosion rate of the alloy. Mott–Schottky analysis revealed that passive films formed on AISI 430 ferritic stainless steel behave as n-type semiconductor and the donor densities increased with pH. Electrochemical impedance spectroscopy (EIS results showed that the reciprocal capacitance of the passive film is directly proportional to its thickness, which decreases with pH increase. The results revealed that for this ferritic stainless steel in concentrated alkaline solutions, decreasing the solution pH offers better conditions for forming passive films with higher protection behavior, due to the growth of a much thicker and less defective film.

  6. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

    Directory of Open Access Journals (Sweden)

    Gaber Hashem Gaber Ahmed

    2016-05-01

    Full Text Available Carbonization of tomatoes at 240 °C using 30% (w/v NaOH as catalyst produced carbon onions (C-onions, while solely carbon dots (C-dots were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum, under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined.

  7. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions.

    Science.gov (United States)

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz

    2016-01-01

    Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV-vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined.

  8. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    Science.gov (United States)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  9. Two types of alkaline volcanics in the southwestern Iberian margin: The causes of their diversity

    Science.gov (United States)

    Chernysheva, E. A.; Matveenkov, V. V.; Medvedev, A. Ya.

    2012-09-01

    The diverse geodynamic conditions of the parental magma's melting are responsible for the compositional diversity of the alkaline volcanics near the southwestern margin of Iberia. The petrological-geochemical data show that the volcanics of the Gorringe Bank originated within the continental plate. The parental melilitite melts depleted in silica and anomalously enriched with trace elements could have been generated only in deep settings with a low degree of metasomatically enriched mantle matter melting. The volcanic melilitite-nephelinite-phonolite series is widespread in alkaline provinces of the Eurasian, African, and other continental plates. The Ampere, Josephine, and other seamounts and islands of the region are largely composed of volcanic rocks belonging to the picrobasalt-hawaiite-mugearite association. Their parental magmas were generated within the oceanic plate at shallower depths under a higher degree of moderately enriched oceanic lithospheric mantle melting. Both series of volcanics were formed under the influence of mantle plumes.

  10. The direct formate fuel cell with an alkaline anion exchange membrane

    Science.gov (United States)

    Bartrom, Amy M.; Haan, John L.

    2012-09-01

    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  11. Precise U-Pb Zircon Dating of the Syenite Phase from the Ditrau Alkaline Igneous Complex

    Directory of Open Access Journals (Sweden)

    Pană Dinu

    2000-04-01

    Full Text Available The Ditrău igneous complex represents the largest alkaline intrusion in the Carpathian-Pannonian region consisting of a plethora of rock types formed by complicated magmatic and metasomatic processes. A detailed U-Pb zircon age study is currently underway and the results for the syenite intrusion phase is reported herein. The U-Pb zircon emplacement age of the syenite of 229.6 +1.7/-1.2 Ma documents the quasi-contemporaneous production and emplacement of the gabbro and syenite magmas. We suggest that the syenite and associated granite formed by crustal melting during the emplacement of the mantle derived gabbroic magma around 230 Ma. The thermal contact aureole produced by the Ditrău alkaline igneous complex constrains the main tectonism recorded by surrounding metamorphic lithotectonic assemblages to be pre-Ladinian.

  12. Helical ternary complexes of alkaline earth picrates with open-chain crown ether

    Institute of Scientific and Technical Information of China (English)

    刘伟生; 温永红; 刘雪原; 谭民裕

    2003-01-01

    Four solid complexes of alkaline earth picrates with N,N,N′,N′-tetraphenyl-3,6,9-tri- oxaundecanediamide (TTD), M (Pic)2TTD (1, M = Mg; 2, M = Ca; 3, M = Sr; 4, M = Ba), have been prepared and characterized by elemental analysis, conductivity measurement, IR spectra, 1H NMR spectra and TG-DTA techniques. Crystal structure of complex 3 shows that the Sr(Ⅱ) ion is 9-coordinated by five oxygen atoms from TTD and four oxygen atoms from two bidentate picrates, and the coordination polyhedron is distorted tricapped trigonal prism. TTD as a pentadentate ligand forms a right-handed helical coordination structure. The chelating helical chain has a relative fixed radius and then shows a high coordination selectivity to metal ion. The high selectivity of TTD to alkaline earth ions is explained elementarily from the special coordination structures.

  13. Reclamation of self-setting mixtures with olivine bound with alkaline resols

    Directory of Open Access Journals (Sweden)

    P. Jelínek

    2012-01-01

    Full Text Available For the reasons of environmental problems connected with the use of furan binders the attention is increasingly paid to self-setting mixtures with alkali resols. A resol binder stabilized with KOH, NaOH is hardened by liquid esters with the formation of alkaline salts. The increase of their concentration affects the shortening of the mixture bench life, it decreases strength, abrasive wear of moulds and cores is growing, and it results in uneconomical dilution of the reclaim with expensive new base sand. Length of life (bench life of mixtures plays an important role just in manufacture of huge and voluminous moulds and cores in self-setting mixtures. This contribution aims at analyzing the function of reactive alkaline salts in the reclaim, it monitors consequences of its thermal exposure on properties of self-setting mixtures, and it deals with development of methods evaluating its qualities.

  14. Calculations of Self-diffusion Activation Energies for Alkaline Metals With Embedded Atom Method

    Institute of Scientific and Technical Information of China (English)

    欧阳义芳; 张邦维; 廖树帜

    1994-01-01

    Calculations were performed for the self-diffusion activation energies of monovacancy and both formation and binding energies of divacancies for alkaline metals Li, Na, K, Rb, Cs using the embedded atom method (EAM) model for bcc transition metals developed by the authors recently. The aim of the paper is to extend the application of the new model, to compare the calculated values for self-diffusion with the experimental data and those of previous calculations, and to discuss the intrinsic characteristic of self-diffusion in alkaline metals. The calculated monovacancy migration energies and activation energies are in excellent agreement with experimental data, and the calculated divacancy migration and activation energies are in good agreement with the experimental values available.

  15. Effect of radiation on alkaline DNAase activity in rat thymocytes. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Ivannik, B.P.; Proskuryakov, S.Ya.; Golubeva, R.V.; Ryabchenko, N.I.

    1978-01-01

    Determination was made of changes in activity of alkaline DNAase in irradiated rat thymocytes using a modified viscosimetric method. Alkaline DNAase activity increases 4 h after irradiation by 2.17, 3.33, and 4.50 times with delivery of 500, 900, and 3000 R, respectively. There is a 4.21-, 6.18-, and 7.83-fold increase in activity of DNAase 6 h after delivery of radiation in doses of 500, 900, and 3000 R, respectively. For the first 3 h after exposure to a dosage of 3000 R, there is virtually no change in DNAase activity, while it demonstrates a 1.32-fold increase 3 h after irradiation.

  16. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup;

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K......) are compared in order to determine the influence of the thermal history on these properties. Vickers hardness is found to be essentially unaffected by the environmental conditions, while the stress intensity factor (fracture toughness) and the crack resistance decrease significantly with increasing humidity...

  17. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev

    2016-03-01

    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  18. Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation.

    Science.gov (United States)

    Lama, Sanjaya; Muylaert, Koenraad; Karki, Tika Bahadur; Foubert, Imogen; Henderson, Rita K; Vandamme, Dries

    2016-11-01

    Flocculation holds great potential as a low-cost harvesting method for microalgae biomass production. Three flocculation methods (ferric chloride, chitosan, and alkaline flocculation) were compared in this study for the harvesting of 9 different freshwater and marine microalgae and one cyanobacterium species. Ferric chloride resulted in a separation efficiency greater than 90% with a concentration factor (CF) higher than 10 for all species. Chitosan flocculation worked generally very well for freshwater microalgae, but not for marine species. Alkaline flocculation was most efficient for harvesting of Nannochloropsis, Chlamydomonas and Chlorella sp. The concentration factor was highly variable between microalgae species. Generally, minimum flocculant dosages were highly variable across species, which shows that flocculation may be a good harvesting method for some species but not for others. This study shows that microalgae and cyanobacteria species should not be selected solely based on their productivity but also on their potential for low-cost separation.

  19. Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell.

    Science.gov (United States)

    Liu, Susu; Liu, Xianhua; Wang, Ying; Zhang, Pingping

    2016-12-01

    The goal of this work was to develop a method for the direct power generation using macroalgae Enteromorpha prolifera. The process conditions for the saccharification of macroalgae were optimized and a type of alkaline fuel cell contained no precious metal catalysts was developed. Under optimum conditions (170°C and 2% hydrochloric acid for 45min), dilute acid hydrolysis of the homogenized plants yielded 272.25g reducing sugar/kg dry algal biomass. The maximum power density reached 3.81W/m(2) under the condition of 3M KOH and 18.15g/L reducing sugar in hydrolysate, higher than any other reported algae-fed fuel cells. This study represents the first report on direct electricity generation from macroalgae using alkaline fuel cells, suggesting that there is great potential for the production of renewable energy using marine biomass.

  20. Benomyl inhibits phosphorus transport but not fungal alkaline phosphatase activity in a Glomus–cucumber symbiosis

    DEFF Research Database (Denmark)

    Larsen, John; Thingstrup, Ida; Jakobsen, Iver;

    1996-01-01

    when benomyl was applied to the HC at 10 µg g-1 soil, whereas the uptake of 32P from RHC I roots + hyphae) was reduced only at the highest dose of application to the RHC (100 µ g g-1 soil). In contrast to the marked reduction of benomyl on fungal P transport, the activity of fungal alkaline phosphatase......Short-term effects of benomyl on the arbuscular mycorrhizal fungus Glomus caledonium (Nicol. & Gerd.) Trappe and Gerdeman associated with Cucumis sativus L. were studied by measuring effects on fungal P transport and on fungal alkaline phosphatase activity. Mycorrhizal plants were grown in three...... compartment systems where nylon mesh was used to separate n root-free hyphal compartment (HC) and a root + hyphal compartment(RHC) from The main root compartment (RC). Non-mycorrhizal control plants were grown in similar growth units. After 6 wk benomyl was applied to the plants in three ways: as soil...

  1. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry.

    Science.gov (United States)

    Turner, Benjamin L; Newman, Susan; Reddy, K Ramesh

    2006-05-15

    Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.

  2. Molecular dynamics of liquid alkaline-earth metals near the melting point

    Indian Academy of Sciences (India)

    J K Baria; A R Jani

    2010-10-01

    Results of the studies of the properties like binding energy, the pair distribution function (), the structure factor (), specific heat at constant volume, velocity autocorrelation function (VACF), radial distribution function, self-diffusion coefficient and coordination number of alkaline-earth metals (Be, Mg, Ca, Sr and Ba) near melting point using molecular dynamics (MD) simulation technique using a pseudopotential proposed by us are presented in this article. Good agreement with the experiment is achieved for the binding energy, pair distribution function and structure factor, and these results compare favourably with the results obtained by other such calculations, showing the transferability of the pseudopotential used from solid to liquid environment in the case of alkaline-earth metals.

  3. Significance of bone specific alkaline phosphatase as a tumor marker in malignant bone tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sug Jun; Jeon, Dae Geun; Huh, Kwang [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-01-01

    The relationship between total alkaline phosphatase activity and bone forming lesion is a well known fact. But alkaline phosphatase consist mainly of two portion (liver, bone). To clarify the exact activity of bone forming tissue, quantitative measurement of BALP is essential. Two finds of tests were performed for their feasibility as a laboratory test (wheat germ lectin vs electrophoresis). We analyzed 40 bony lesion and got 58 samples. Lectin method was simple, economic, with reliable resproducability. Owing to the small number of test sample, we could not identify the relationship between the disease activity and measured BALP level. Further collection of clinical sample and analysis the pattern of BALP on each clinical settings. (author). 8 refs.

  4. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    Science.gov (United States)

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries.

  5. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    Science.gov (United States)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  6. Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Aili, David; Hansen, Martin Kalmar;

    2014-01-01

    Alkaline fuel cells and electrolyzers are attracting increasing interest. This is to a large extent due to the broad selection of catalyst materials not based on resource limited and expensive noble metals. The first fuel cells in practical use were Francis Thomas Bacon’s based on an alkaline...... or a porous diaphragm is used instead in direct contact with both electrodes (zero gap). In proton exchange membrane (PEM) electrolyzers proton conducting membranes like in PEM fuel cells have been very successful, but for the equivalent anion exchange membranes a similar conductivity has not yet been...... demonstrated; in contrast it is typically about an order of magnitude lower, which is insufficient [1]. The aromatic fluorine free polymer polybenzimidazole (PBI) has been very successful as a high temperature fuel cell membrane when doped with phosphoric acid [2] and it has been shown by Xing and Savadogo [3...

  7. Characterization of rice starch and protein obtained by a fast alkaline extraction method.

    Science.gov (United States)

    Souza, Daiana de; Sbardelotto, Arthur Francisco; Ziegler, Denize Righetto; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina

    2016-01-15

    This study evaluated the characteristics of rice starch and protein obtained by a fast alkaline extraction method on rice flour (RF) derived from broken rice. The extraction was conducted using 0.18% NaOH at 30°C for 30min followed by centrifugation to separate the starch rich and the protein rich fractions. This fast extraction method allowed to obtain an isoelectric precipitation protein concentrate (IPPC) with 79% protein and a starchy product with low protein content. The amino acid content of IPPC was practically unchanged compared to the protein in RF. The proteins of the IPPC underwent denaturation during extraction and some of the starch suffered the cold gelatinization phenomenon, due to the alkaline treatment. With some modifications, the fast method can be interesting in a technological point of view as it enables process cost reduction and useful ingredients obtention to the food and chemical industries.

  8. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    Science.gov (United States)

    Berezhetskyy, A.

    2008-09-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  9. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    CERN Document Server

    Berezhetskyy, A

    2008-01-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  10. PdNi hollow nanoparticles for improved electrocatalytic oxygen reduction in alkaline environments.

    Science.gov (United States)

    Wang, Meng; Zhang, Weimin; Wang, Jiazhao; Wexler, David; Poynton, Simon D; Slade, Robert C T; Liu, Huakun; Winther-Jensen, Bjorn; Kerr, Robert; Shi, Dongqi; Chen, Jun

    2013-12-11

    Palladium-nickel (PdNi) hollow nanoparticles were synthesized via a modified galvanic replacement method using Ni nanoparticles as sacrificial templates in an aqueous medium. X-ray diffraction and transmission electron microscopy show that the as-synthesized nanoparticles are alloyed nanostructures and have hollow interiors with an average particle size of 30 nm and shell thickness of 5 nm. Compared with the commercially available Pt/C or Pd/C catalysts, the synthesized PdNi/C has superior electrocatalytic performance towards the oxygen reduction reaction, which makes it a promising electrocatalyst for alkaline anion exchange membrane fuel cells and alkali-based air-batteries. The electrocatalyst is finally examined in a H2/O2 alkaline anion exchange membrane fuel cell; the results show that such electrocatalysts could work in a real fuel cell application as a more efficient catalyst than state-of-the-art commercially available Pt/C.

  11. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    Alkaline wet oxidation pre-treatment (water, sodium carbonate, oxygen, high temperature and pressure) of wheat straw was performed as a 2(4-1) fractional factorial design with the process parameters: temperature, reaction time, sodium carbonate and oxygen. Alkaline wet oxidation was an efficient...... pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery (96%) and high enzymatic convertibility to glucose (67%). Carbonate and temperature were the most important factors for fractionation of wheat straw by wet oxidation. Optimal conditions were 10 min at 195...... the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according...

  12. Application of remote sensing to the geological study of the alkaline complex region of Itatiaia. [Brazil

    Science.gov (United States)

    Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.

    1980-01-01

    The methodology of remote sensing applied to geological study in a complex area was evaluated. Itatiaia was selected as a test area, which covers the alkaline massives and its precambrian basement. LANDSAT-MSS and radar mosaic of the RADAMBRASIL Project were used for photointerpretation. Previous geological works were consulted and many discrepancies in the distribution of stratigraphic units were found. Moreover, structural lineaments and talus deposits were clearly delineated.

  13. Properties of the triplet metastable states of the alkaline-earth atoms

    CERN Document Server

    Mitroy, J

    2004-01-01

    The static and dynamic properties of the alkaline-earth atoms in their metastable state are computed in a configuration interaction approach with a semi-empirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  14. Cultivation of Pleurotus pulmonarius on substrates treated by immersion in alkaline water in Guerrero, Mexico

    OpenAIRE

    T. Bernabé-González; M. Cayetano-Catarino

    2009-01-01

    Pleurotus pulmonarius was cultivated on dry banana leaves (Musa paradisiaca) or dry "palmareca" leaves (Chrysalidocarpus lutescens), using two substrate treatments. Substrates were immersed in water containing 2% lime for 24 h and used for mushroom cultivation, in comparison with the method of immersing substrates in hot water at ±80 C for 1 h. The highest mushroom production was obtained on banana leaves immersed in alkaline water, reaching 120.1% of biological efficiency in a period of 61 d...

  15. Electrochemical Reduction of Oxygen on Multi-walled Carbon Nanotubes Electrode in Alkaline Solution

    Institute of Scientific and Technical Information of China (English)

    You Qun CHU; Chun An MA; Feng Ming ZHAO; Hui HUANG

    2004-01-01

    The multi-walled carbon nanotubes (MWNTs) electrode was constructed using poly- tetrafluoroethylene as binder, and the electrochemical reductive behavior of oxygen in alkaline solution was first examined on this electrode. Compared with other carbon materials, MWNTs show higher electrocatalytic activity, and the reversibility of O2 reduction reaction is greatly improved. The experiments reveal that the electrochemical reduction of O2 to HO2- is controlled by adsorption. The preliminary results illustrate the potential application of MWNTs in fuel cells.

  16. Oat hulls treated with alkaline hydrogen peroxide associated with extrusion as fiber source in cookies

    OpenAIRE

    Galdeano,Melícia Cintia; Grossmann,Maria Victória Eiras

    2006-01-01

    Cookies were prepared with the replacement of 20% of wheat flour by chemically (alkaline hydrogen peroxide) and physically (extrusion) treated oat hulls, with the objective to investigate the possibility of use of this modified material. Cookies elaborated with the untreated hulls were used as control. Cookies were evaluated for their physical (spread ratio, specific volume and color) and sensory characteristics, and no difference was detected (p

  17. Elucidating how bamboo salt interacts with supported lipid membranes: influence of alkalinity on membrane fluidity.

    Science.gov (United States)

    Jeong, Jong Hee; Choi, Jae-Hyeok; Kim, Min Chul; Park, Jae Hyeon; Herrin, Jason Scott; Kim, Seung Hyun; Lee, Haiwon; Cho, Nam-Joon

    2015-07-01

    Bamboo salt is a traditional medicine produced from sea salt. It is widely used in Oriental medicine and is an alkalizing agent with reported antiinflammatory, antimicrobial and chemotherapeutic properties. Notwithstanding, linking specific molecular mechanisms with these properties has been challenging to establish in biological systems. In part, this issue may be related to bamboo salt eliciting nonspecific effects on components found within these systems. Herein, we investigated the effects of bamboo salt solution on supported lipid bilayers as a model system to characterize the interaction between lipid membranes and bamboo salt. The atomic composition of unprocessed and processed bamboo salts was first analyzed by mass spectrometry, and we identified several elements that have not been previously reported in other bamboo salt preparations. The alkalinity of hydrated samples was also measured and determined to be between pH 10 and 11 for bamboo salts. The effect of processed bamboo salt solutions on the fluidic properties of a supported lipid bilayer on glass was next investigated by fluorescence recovery after photobleaching (FRAP) analysis. It was demonstrated that, with increasing ionic strength of the bamboo salt solution, the fluidity of a lipid bilayer increased. On the contrary, increasing the ionic strength of near-neutral buffer solutions with sodium chloride salt diminished fluidity. To reconcile these two observations, we identified that solution alkalinity is critical for the effects of bamboo salt on membrane fluidity, as confirmed using three additional commercial bamboo salt preparations. Extended-DLVO model calculations support that the effects of bamboo salt on lipid membranes are due to the alkalinity imparting a stronger hydration force. Collectively, the results of this work demonstrate that processing of bamboo salt strongly affects its atomic composition and that the alkalinity of bamboo salt solutions contributes to its effect on membrane

  18. Mechanical properties of untreated and alkaline treated fibers from zalacca midrib wastes

    Science.gov (United States)

    Raharjo, Wahyu Purwo; Soenoko, Rudy; Purnowidodo, Anindito; Choiron, Mochammad Agus; Triyono

    2016-03-01

    The environmental concern has been raised due to the abundance of waste from synthetic materials which cannot be biodegraded after their life-time. It provides opportunity to exploit natural resources which are neglected. For example, midrib wastes from zalacca plants after cutting are able to utilize as composite reinforcement. The aim of this research was to characterize the mechanical properties of zalacca midrib fibers. As other ones, zalacca midrib fibers consisted of cellulose, hemicellulose and lignin, which their compositions were 42.54, 34.35 and 28.01 % respectively. To raise their cellulose content, the zalacca fibers were alkaline treated by immersion in the sodium hydroxide for 2 hours and rinsing in the distilled water. The concentration of sodium hydroxide was varied 1 and 5%. To investigate the influence of alkaline treatment, the mechanical testing and morphological analysis was performed. The tensile testing was done to obtain ultimate strength, elastic modulus and strain to fracture. The surface morphology of fibers was observed by SEM. The average ultimate tensile strength of zalacca fibers ranged from 182.12 MPa (untreated) to 417.94 MPa (5%NaOH treated). The diameter measurement showed that the alkaline treatment reduce the average fiber diameters due to the decline of the hemicellulose and lignin content as fiber matrix. This caused the increase of the tensile strength and elastic modulus due to the reduction of diameters as divider meanwhile the cellulose content as structural supporter of the fibers was relatively constant. From the SEM analysis, it was shown that the alkaline treatment reduced the fiber matrix so that its surface morphology became rougher due to the microfibrils appearance.

  19. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  20. Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Angela Yu-Chen, E-mail: yuchenlin@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan (China); Panchangam, Sri Chandana; Chang, Cheng-Yi [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan (China); Hong, P.K. Andy [Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Hsueh, Han-Fang [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer PFOA and PFOS are degraded by O{sub 3} or O{sub 3}/H{sub 2}O{sub 2} treatment at pH 11. Black-Right-Pointing-Pointer Degradation of PFOA and PFOS by O{sub 3} or O{sub 3}/H{sub 2}O{sub 2} under alkaline condition is enhanced when the compounds are pretreated by 15 min of ozonation at ambient pH (4-5). Black-Right-Pointing-Pointer PFOA and PFOS removal by O{sub 3} or O{sub 3}/H{sub 2}O{sub 2} at pH 11 was efficient relative to existing methods in terms of energy and contact time. - Abstract: The elimination of recalcitrant, ubiquitous perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) is desirable for reducing potential human health and environmental risks. We here report the degradation of PFOA and PFOS by 85-100% via ozonation under alkaline condition being studied at environmentally relevant contaminant concentrations of 50 {mu}g L{sup -1} to 5 mg L{sup -1}, with enhanced removal rates by addition of hydrogen peroxide. Enhanced removal is achieved by ozonation pretreatment for 15 min at the ambient pH (i.e. 4-5), followed by elevation of pH to 11 and continued ozonation treatment for 4 h. The ozonation pretreatment resulted in increased degradation of PFOA by 56% and PFOS by 42%. The results indicated hydroxyl radical-driven degradation of PFOA and PFOS in both treatments by ozone and peroxone under alkaline conditions. Wastewaters from electronics and semiconductor fabrication plants in the Science Park of Hsinchu city, Taiwan containing PFOA and PFOS have been readily treated by ozonation under alkaline condition. Treatment of PFAAs by ozone or peroxone proves to be efficient in terms of energy requirement, contact time, and removal rate.

  1. Cretaceous alkaline intra-plate magmatism in the Ecuadorian Oriente Basin: Geochemical, geochronological and tectonic evidence

    Science.gov (United States)

    Barragán, Roberto; Baby, Patrice; Duncan, Robert

    2005-08-01

    Small volumes of Cretaceous alkaline basaltic magmas have been identified in the sedimentary infill of the Ecuadorian Oriente foreland basin. They are characterized by a restricted range of compositional variation, low LILE/HFSE ratios and Sr-Nd isotope values within the range of oceanic island basalts (OIB). Reflection seismic data show that a pre-existing NNE-SSW Triassic and Jurassic rift controls the location and occurrence of these alkaline eruptive sites. Radiometric ages ( 40Ar- 39Ar, incremental heating method) and the biostratigraphic record of their surrounding sediments indicate a NNE-SSW systematic age variation for the emplacement of this alkaline volcanism: from Albian (110 ± 5.2 Ma) in the northern part of the Oriente Basin, to Campanian (82.2 ± 2.0 Ma) in the west-central part. The geochemical, geochronological and tectonic evidences suggest that asthenospheric mantle has upwelled and migrated to the SSW, into the region underlying the pre-existing Triassic and Jurassic rift (thin-spot?). We propose that subduction was abandoned, subsequent to the accretion of allochthonous terranes onto the Ecuadorian and Colombian margin in the latest Jurassic-earliest Cretaceous, causing the relict slab material, corresponding to the eastwards-directed leading plate, to roll-back. Unmodified asthenospheric mantle migrated into the region previously occupied by the slab. This resulted in partial melting and the release of magmatic material to the surface in the northern part of the Oriente Basin since at least Aptian times. Then, magmatism migrated along the SSW-trending Central Wrench Corridor of the Oriente Basin during the Upper Cretaceous, probably as a consequence of the lateral propagation of the transpressive inversion of the Triassic-Jurassic rift. Eventually, the Late Cretaceous east-dipping Andean subduction system was renewed farther west, and the development of the compressional retro-foreland Oriente Basin system halted the Cretaceous alkaline

  2. The Implications of Petit-Spot Volcanism for the Origin of Alkaline Intraplate Magmas

    Science.gov (United States)

    Pilet, S.; Rochat, L.; Abe, N.

    2014-12-01

    The compositions of alkaline lavas are mostly similar even though they are observed in various tectonic contexts. This similarity has been used to suggest that these rocks are all produced by deep processes. Nevertheless, the formation of petit-spot seamounts, which are interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, demonstrates that alkaline lavas could also be produced by shallow tectonic processes. In this presentation, petit-spot lavas will be compared to intraplate basalts to reveal the processes that control the petrogenesis of intraplate lavas. Petit-spot lavas are characterized by an alkaline basaltic composition rich in potassium (K2O/Na2O>0.7). This distinguishes them from oceanic island basalts, which are characterized by a lower alkali ratio. The K-rich nature of petit-spot melts is explained either by the melting of an asthenospheric mantle domain enriched in K2O, TiO2 and trace elements, or by the interaction of low-degree melts extracted from the low velocity zone (LVZ) with phlogopite-rich metasomatic lithologies present in the lower part of the lithospheric mantle; metasomatic cumulates formed during an early stage of LVZ melt migration. The latter model is supported by the recent discovery of metasomatized peridotite xenoliths in petit-spot lavas which demonstrates that low degree melts, similar in composition to the melts responsible for the formation of phlogopite-rich cumulates in continental lithospheric mantle, percolate through the oceanic lithospheric mantle producing a metasomatic enrichment. The involvement of metasomatic processes in the formation of petit-spot lavas provides a link to the metasomatic lithospheric model for the origin of alkaline magmas, a model that suggests that these rocks are not produced directly from the asthenosphere, but by the melting of hydrous veins produced by the percolation and differentiation of low degree asthonospheric melts across the

  3. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment.

    Science.gov (United States)

    Pinho, Sílvia C; Nunes, Olga C; Lobo-da-Cunha, Alexandre; Almeida, Manuel F

    2015-09-15

    Although alkaline hydrolysis treatment emerges as an alternative disinfection/sterilization method for medical waste, information on its effects on the inactivation of biological indicators is scarce. The effects of alkaline treatment on the resistance of Geobacillus stearothermophilus spores were investigated and the influence of temperature (80 °C, 100 °C and 110 °C) and NaOH concentration was evaluated. In addition, spore inactivation in the presence of animal tissues and discarded medical components, used as surrogate of medical waste, was also assessed. The effectiveness of the alkaline treatment was carried out by determination of survival curves and D-values. No significant differences were seen in D-values obtained at 80 °C and 100 °C for NaOH concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 °C (2.3-0.5 min) were approximately 3 times lower than those at 100 °C (8.8-1.6 min). Independent of the presence of animal tissues and discarded medical components, 6 log10 reduction times varied between 66 and 5 min at 100 °C-0.1 M NaOH and 110 °C-1 M NaOH, respectively. The alkaline treatment may be used in future as a disinfection or sterilization alternative method for contaminated waste.

  4. Technogenic Magnetic Particles in Alkaline Dusts from Power and Cement Plants

    OpenAIRE

    2012-01-01

    During this study, we investigated the mineralogical characterization of technogenic magnetic particles (TMPs) contained in alkaline industrial dust and fly ash emitted by coal burning power plants and cement plants. The reaction of tested dust samples varied between values of pH 8 and pH 12. Their magnetic properties were characterized by measurement of magnetic susceptibility (χ), frequency dependence of magnetic susceptibility (χfd), and temperature dependence of magnetic susceptibility. M...

  5. The Nature of Surface Oxides on Corrosion-Resistant Nickel Alloy Covered by Alkaline Water

    Directory of Open Access Journals (Sweden)

    Gervasio DF

    2010-01-01

    Full Text Available Abstract A nickel alloy with high chrome and molybdenum content was found to form a highly resistive and passive oxide layer. The donor density and mobility of ions in the oxide layer has been determined as a function of the electrical potential when alkaline water layers are on the alloy surface in order to account for the relative inertness of the nickel alloy in corrosive environments.

  6. Electrocatalytic Oxidation of Cellulose to Gluconate on Carbon Aerogel Supported Gold Nanoparticles Anode in Alkaline Medium

    OpenAIRE

    Hanshuang Xiao; Meifen Wu; Guohua Zhao

    2015-01-01

    The development of high efficient and low energy consumption approaches for the transformation of cellulose is of high significance for a sustainable production of high value-added feedstocks. Herein, electrocatalytic oxidation technique was employed for the selective conversion of cellulose to gluconate in alkaline medium by using concentrated HNO3 pretreated carbon aerogel (CA) supported Au nanoparticles as anode. Results show that a high gluconate yield of 67.8% and sum salts yield of 88.9...

  7. Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw.

    Science.gov (United States)

    Yan, Qingqi; Wang, Yumei; Rodiahwati, Wawat; Spiess, Antje; Modigell, Michael

    2017-02-01

    Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of lignocellulosic biomass with high shear and pressure forces. The combination with chemical treatment has been suggested to increase the conversion of lignocellulosic biomass to fermentable sugars. Within the study, the synergetic effect of alkaline (sodium hydroxide, NaOH) soaking and screw press pretreatment on wheat straw was evaluated based on, e.g., sugar recovery and energy efficiency. After alkaline soaking (at 0.1 M for 30 min) and sequential screw press pretreatment with various screw press configurations and modified screw barrel, the lignin content of pretreated wheat straw was quantified. In addition, the structure of pretreated wheat straw was investigated by scanning electron microscopy and measurement of specific surface area. It could be shown that removal of lignin is more important than increase of surface area of the biomass to reach a high sugar recovery. The rate constant of the enzymatic hydrolysis increased from 1.1 × 10(-3) 1/h for the non-treated material over 2.3 × 10(-3) 1/h for the alkaline-soaked material to 26.9 × 10(-3) 1/h for alkaline-assisted screw press pretreated material, indicating a nearly 25-fold improvement of the digestibility by the combined chemo-mechanical pretreatment. Finally, the screw configuration was found to be an important factor for improving the sugar recovery and for reducing the specific energy consumption of the screw press pretreatment.

  8. Synthesis of High-Quality Graphene through Electrochemical Exfoliation of Graphite in Alkaline Electrolyte

    OpenAIRE

    Tripathi, Prashant; Patel, Ch. Ravi Prakash; Shaz, M. A.; Srivastava, O N

    2013-01-01

    Owing to wide variety of applications of graphene, high-quality and economical way of synthesizing graphene is highly desirable. In this study, we report a cost effective and simple approach to production of high-quality graphene. Here the synthesis route is based on electrochemical exfoliation of graphite. Instead of using strong acids (which oxidise and damage the geometrical topology of graphene), we have used alkaline solution (KOH dissolved in water) as electrolyte. TEM analysis shows th...

  9. Biochemical and functional properties of mammalian bone alkaline phosphatase isoforms during osteogenesis

    OpenAIRE

    Halling Linder, Cecilia

    2016-01-01

    The human skeleton is a living and dynamic tissue that constantly is being renewed in a process called bone remodeling. Old bone is resorbed by osteoclasts and new bone is formed by osteoblasts. Bone is a composite material made up by mineral crystals in the form of hydroxyapatite (calcium and phosphate) that provides the hardness of bone, and collagen fibrils that provides elasticity and flexibility. Alkaline phosphatase (ALP) is a family of enzymes that is present in most species and cataly...

  10. [Development of conductometric biosensor based on alkaline phosphatase for determining concentration of cadmium ions].

    Science.gov (United States)

    Sosovs'ka, O F; Berezhets'kyĭ, A L

    2007-01-01

    The paper describes a novel conductometric biosensor sensitive to cadmium ions based on alkaline phosphatase immobilized on gold planar microelectrodes used as transducers. Assays have been carried out with paranitrophenyl phosphate as substrate for the immobilized enzyme. Various parameters such as reticulation time, along with pH, ionic strength and buffer concentration of the measuring solution were studied. The optimized biosensor was stable, reproducible and it exhibited a detection limit of 4.45 microM for cadmium ions.

  11. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    OpenAIRE

    2008-01-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devote...

  12. Preparation of Silica by Alkaline-Heating and Precipitation Method from Corn Straw Ash

    OpenAIRE

    Xudong Chen; Ming Xie; Huaibin Wang; Yingxi Xue; Zhengqi Li

    2014-01-01

    The preparation of silica by an alkaline-heating and precipitation method from corn straw ash (CSA) obtained from a biomass power plant was the focus of this study. Sodium hydroxide was used as the silica extraction reagent, and H2SO4 was the precipitator. The concentration of sodium hydroxide solution was confirmed to have a significant influence on the production of sodium silicate from CSA. The optimum technological parameters for the preparation of sodium silicate and the suitable paramet...

  13. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric; Depraetere, Orily; Noppe, Wim; Dutta, Abhishek; Foubert, Imogen; Laurens, Lieve; Muylaert, Koenraad

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and this fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L-1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.

  14. Study on rare earth/alkaline earth oxide-doped CeO2 solid electrolyte

    Institute of Scientific and Technical Information of China (English)

    YAN Kai; ZHEN Qiang; Song Xiwen

    2007-01-01

    Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the Sm2O3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Sm0.20Ce0.8O1.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the Arrhenius equation. Then the Sm2O3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.

  15. Evaluation of the environmental sustainability of farmers' land use decisions in the saline-alkaline areas.

    Science.gov (United States)

    Yu, Ran; Wang, Jiali

    2015-04-01

    Environmental sustainability has become the focus of agricultural sustainability. This study is aimed at evaluating the environmental sustainability of farmers' land use decisions on saline-alkaline soil in China. Based on empirical and theoretical approaches, the decisions mainly include planting, crop distribution, irrigation, drainage, and fertilization. By surveying 22 administrative villages in typical ecologically fragile saline-alkaline areas of five regions (Shandong, Jiangsu, Jilin, Ningxia, and Xinjiang), the paper builds the evaluation criteria at village level, and obtains a comprehensive index. From the results, irrigation concerns are absent from decision-making. For other decisions, farmers in most villages can appropriately deal with planting, drainage, and fertilization according to the regional natural and social geography conditions. But the comprehensive index of crop distribution in the coastal areas is much stronger than in the northeast and northwest. It is found that the similarities of unsustainability lie in the planting of water-consuming crops, the arbitrary distribution of crops, lack of drainage planning, obsolete water conservancy facilities, excessive use of chemical fertilizers, etc. According to the research, on the one hand, it can guide farmers to rationally make use of saline-alkaline land; on the other hand, it can also provide the basis for government to make differentiated policies in different areas and enhance pertinence in the course of technological extension and application.

  16. Corrosion and anodic behaviour of zinc and its ternary alloys in alkaline battery electrolytes

    Science.gov (United States)

    Suresh Kannan, A. R.; Muralidharan, S.; Sarangapani, K. B.; Balaramachandran, V.; Kapali, V.

    Several attempts are being made to avoid the use of mercury-bearing zinc/zinc alloys as anodes in alkaline power sources. The work presented here suggests the possible use of some ternary alloys based on zinc of purity 99.9 to 99.95 wt.% as anodes in 10 M NaOH solution with sodium citrate, sodium stannate and calcium oxide as complexing agents and inhibitors. The corrosion of zinc and its alloys in 10 M NaOH solution is under cathodic control; in other alkaline electrolytes, it is under anodic control. Anode efficiency of up to 99.0% is achieved. The corrosion rates of zinc and its alloys are found to be comparable with those of mercury-bearing zinc in the chosen electrolytes. It is concluded that both dry cells and Zn-air batteries can be constructed with the above anodes and alkaline electrolytes. Thus, the presence of mercury, either in the anode or in the electrolyte, is avoided.

  17. Effect of thermal and alkaline pretreatment of giant miscanthus and Chinese fountaingrass on biogas production.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Li, Yongqiang; Hao, Xiying

    2016-01-01

    Giant miscanthus (Miscanthus × giganteus) and Chinese fountaingrass (Pennisetum alopecuroides (L.) Spreng), cultivated for landscaping and soil conservation, are potential energy crops. The study investigated the effect of combined thermal and alkaline pretreatments on biogas production of these energy crops. The pretreatment included two types of alkali (6% CaO and 6% NaOH) at 22, 70 and 100 °C. The alkaline pretreatment resulted in a greater breakdown of the hemicellulose fraction, with CaO more effective than NaOH. Pretreatment of giant miscanthus with 6% CaO at 100 °C for 24 h produced a CH4 yield (313 mL g(-1) volatile solids (VS)) that was 1.7 times that of the untreated sample (186 mL g(-1) VS). However, pretreatment of Chinese fountaingrass with 6% CaO or 6% NaOH at 70 °C for 24 h resulted in similar CH4 yields (328 and 302 mL g(-1) VS for CaO and NaOH pretreatments) as the untreated sample (311 mL g(-1) VS). Chinese fountaingrass was more easily digestible but had a low overall CH4 yield per hectare (1,831 m(3) ha(-1) y(-1)) compared to giant miscanthus (6,868 m(3) ha(-1) y(-1)). This study demonstrates the potential of thermal/alkaline pretreatment and the use of giant miscanthus and Chinese fountaingrass for biogas production.

  18. Intraspecific variation in alkaline phosphatase activity in Phaeodactylum tricornutum (Bacillariophyceae, Bohlin

    Directory of Open Access Journals (Sweden)

    Domênica Teixeira de Lima

    2016-01-01

    Full Text Available ABSTRACT To describe potential intraspecific variation in phosphorus incorporation in two strains of Phaeodactylum tricornutum (Bohlin, Ub3 and Ub7, alkaline phosphatase (AP activity was evaluated via enzyme-labeled fluorescence assay. Analysis using the probe ELF-97(r provides individual evaluation, and therefore can determine the nutritional status of inorganic phosphorus in phytoplanktonic cells. Bioassays compared the control treatment to both phosphate-enriched and phosphate-depleted treatments by varying only the phosphate concentration in the media. The P. tricornutum strains exhibited differences in their development when incubated in the phosphate-enriched media. The development of the Ub7 strain differed by exhibiting "luxury uptake" and utilization of organic phosphorus, and the alkaline phosphatase analysis indicated limitations of this clone under such conditions. The Ub7 strain showed higher AP activity, when compared to Ub3, in the P-enriched condition. P. tricornutum presented increases in AP activity and low variation in Surface/Volume ratio, by increasing biovolume and its maximum linear dimension, as strategies for phosphate incorporation. Our results highlight intraspecific differences in alkaline phosphatase activity, and hence differences in the incorporation of organic phosphorus, as the tested species regulated enzymatic activity under different external phosphate concentrations.

  19. Differentiating intracellular from extracellular alkaline phosphatase activity in soil by sonication.

    Directory of Open Access Journals (Sweden)

    Shuping Qin

    Full Text Available Differentiating intracellular from extracellular enzyme activity is important in soil enzymology, but not easy. Here, we report on an adjusted sonication method for the separation of intracellular from extracellular phosphatase activity in soil. Under optimal sonication conditions [soil:water ratio  =  1/8 (w/v and power density  =  15 watt ml(-1], the activity of alkaline phosphomonoesterase (phosphatase in a Haplic Cambisol soil increased with sonication time in two distinct steps. A first plateau of enzyme activity was reached between 60 and 100 s, and a second higher plateau after 300 s. We also found that sonication for 100 s under optimal conditions activated most (about 80% of the alkaline phosphatase that was added to an autoclaved soil, while total bacteria number was not affected. Sonication for 300 s reduced the total bacteria number by three orders of magnitude but had no further effects on enzyme activity. Our results indicate that the first plateau of alkaline phosphatase activity was derived from extracellular enzymes attached to soil particles, and the second plateau to the combination of extracellular and intracellular enzymes after cell lysis. We conclude that our adjusted sonication method may be an alternative to the currently used physiological and chloroform-fumigation methods for differentiating intracellular from extracellular phosphatase activity in soil. Further testing is needed to find out whether this holds for other soil types.

  20. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  1. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Directory of Open Access Journals (Sweden)

    LI Wei

    2007-02-01

    Full Text Available A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  2. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Institute of Scientific and Technical Information of China (English)

    LI Wei; LIU Jun-quan; TU Xiao-hui

    2007-01-01

    A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303 g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  3. EFFECTS OF ALKALINE PRE-IMPREGNATION AND PULPING ON MALAYSIA CULTIVATED KENAF (HIBISCUS CANNABINUS

    Directory of Open Access Journals (Sweden)

    Lin Suan Ang

    2010-05-01

    Full Text Available This study was carried out to identify an appropriate alkaline pulping condition for Malaysia cultivated kenaf (Hibiscus cannabinus L.. The chemical composition of the kenaf bast and core fibers, and also whole stalk with different growing time were examined prior to pulping attempts. The results of various soda-AQ pulping showed that the degree of carbohydrate degradation and delignification increased with the increase of active alkali and cooking temperature, but decreased with the increase of liquor to material (L:M ratio. The most satisfactory properties of pulp and handsheets from bast could be attained by employing soda-AQ pulping with 19.4% active alkali, 0.10% AQ, and L:M ratio of 7:1 cooked for 2 hours at 160˚C. Besides, it was also found that a mild alkaline pre-impregnation prior pulping improved the pulp viscosity and handsheets’ strength properties, especially the tensile index and folding endurance effectively. Moreover, among the three alkaline pulping processes—kraft, kraft-AQ, and soda-AQ—the results of pulp and handsheet properties showed that the soda-AQ pulp was comparable or even slightly of higher quality than the kraft pulps. Between the unbeaten bast and core soda-AQ handsheets, the strength properties of the core were higher than the bast, as the thin-walled core fibers exhibited much better conformability than the thick-walled bast fibers.

  4. Effect of Alkaline-Stabilised Sewage Sludge on Extractable Organic Carbon and Copper in Soils

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An incubation experiment was conducted to evaluate the potential for water contamination with sludgederived organic substances and copper following land application of alkaline-stabilised sewage sludge. Two contrasting sludge-amended soils were studied. Both soils were previously treated with urban and rural alkaline biosolids separately at sludge application rates of 0, 30 and 120 t ha-1 fresh product. The air-dried soil/sludge mixtures were wetted with distilled water, maintained at 40 % of water-holding capacity and equilibrated for three weeks at 4 ℃ before extraction. Subsamples were extracted with either distilled water or 0.5 mol L-1 K2SO4 solution. The concentrations of organic C in the aqueous and chemical extracts were determined directly with a total organic carbon (TOC) analyser. The concentrations of Cu in the two extracts were also determined by atomic absorption spectrophotometry. The relationship between the two extractable organic C fractions was examined, together with that between extractable organic C concentration and extractable Cu concentration. Application of alkaline biosolids increased the concentrations of soil mobile organic substances and Cu. The results are discussed in terms of a possible increase in the potential for leaching of sludge-derived organics and Cu in the sludge-amended soils

  5. Extremely alkaline (pH > 12) ground water hosts diverse microbial community.

    Science.gov (United States)

    Roadcap, George S; Sanford, Robert A; Jin, Qusheng; Pardinas, José R; Bethke, Craig M

    2006-01-01

    Chemically unusual ground water can provide an environment for novel communities of bacteria to develop. Here, we describe a diverse microbial community that inhabits extremely alkaline (pH > 12) ground water from the Lake Calumet area of Chicago, Illinois, where historic dumping of steel slag has filled in a wetland. Using microbial 16S ribosomal ribonucleic acid gene sequencing and microcosm experiments, we confirmed the presence and growth of a variety of alkaliphilic beta-Proteobacteria, Bacillus, and Clostridium species at pH up to 13.2. Many of the bacterial sequences most closely matched those of other alkaliphiles found in more moderately alkaline water around the world. Oxidation of dihydrogen produced by reaction of water with steel slag is likely a primary energy source to the community. The widespread occurrence of iron-oxidizing bacteria suggests that reduced iron serves as an additional energy source. These results extend upward the known range of pH tolerance for a microbial community by as much as 2 pH units. The community may provide a source of novel microbes and enzymes that can be exploited under alkaline conditions.

  6. Susceptibility of a polycaprolactone-based root canal filling material to degradation. I. Alkaline hydrolysis.

    Science.gov (United States)

    Tay, Franklin R; Pashley, David H; Williams, M Chad; Raina, Rakesh; Loushine, Robert J; Weller, R Norman; Kimbrough, W Frank; King, Nigel M

    2005-08-01

    Polycaprolactone, a thermoplastic aliphatic polyester, is reportedly susceptible to both alkaline and enzymatic hydrolyzes. This screening study examined the susceptibility of Resilon, a polycaprolactone-based root filling composite, to alkaline hydrolysis. There were 15-mm diameter disks of Resilon and Obtura gutta-percha prepared by compressive molding and immersed in 20% sodium ethoxide for 20 or 60 min. Control disks were immersed in ethanol for 60 min. These disks were examined using field-emission scanning electron microscopy and energy dispersive X-ray analysis. For Resilon, the surface resinous component was hydrolyzed after 20 min of sodium ethoxide immersion, exposing the spherulitic polymer structure and subsurface glass and bismuth oxychloride fillers. More severe erosion occurred after 60 min of sodium ethoxide treatment. Gutta-percha was unaffected after immersion in sodium ethoxide. As Resilon is susceptible to alkaline hydrolysis, it is possible that enzymatic hydrolysis may occur. Biodegradation of Resilon by bacterial/salivary enzymes and endodontically relevant bacteria warrants further investigation.

  7. Anaerobic digestion of poplar processing residues for methane production after alkaline treatment.

    Science.gov (United States)

    Yao, Yiqing; He, Mulan; Ren, Yubing; Ma, Liying; Luo, Yang; Sheng, Hongmei; Xiang, Yun; Zhang, Hua; Li, Qien; An, Lizhe

    2013-04-01

    Poplar processing residues were used for methane production by anaerobic digestion after alkaline treatment and methane production was measured. The highest methane production of 271.9 L/kg volatile solid (VS) was obtained at conditions of 35 g/L and 5.0% NaOH, which was 113.8% higher than non-alkaline treated samples, and 28.9% higher than that of corn straw, which is the conventional anaerobic digestion material in China. The maximal enhancement of 275.5% obtained at conditions of 50 g/L and 7.0% NaOH. Degradation of cellulose, hemicellulose and lignin after treatment increased by 4.0-9.0%, 3.3-6.2%, and 11.1-20.5%, respectively, with NaOH dose ranged from 3.0% to 7.0%. Scanning electron microscopy (SEM), FTIR spectra and Crystallinity measurements showed that the lignocellulosic structures were disrupted by NaOH. The results indicate poplar processing residues might be an efficient substrate for methane production after alkaline treatment.

  8. Synthesis, alkaline phosphatase inhibition studies and molecular docking of novel derivatives of 4-quinolones.

    Science.gov (United States)

    Miliutina, Mariia; Ejaz, Syeda Abida; Khan, Shafi Ullah; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter

    2017-01-27

    New and convenient methods for the functionalization of the 4-quinolone scaffold at positions C-1, C-3 and C-6 were developed. The 4-quinolone derivatives were evaluated for their inhibitory potential on alkaline phosphatase isozymes. Most of the compounds exhibit excellent inhibitory activity and moderate selectivity. The IC50 values on tissue non-specific alkaline phosphatase (TNAP) were in the range of 1.34 ± 0.11 to 44.80 ± 2.34 μM, while the values on intestinal alkaline phosphatase (IAP) were in the range of 1.06 ± 0.32 to 192.10 ± 3.78 μM. The most active derivative exhibits a potent inhibition on IAP with a ≈14 fold higher selectivity as compared to TNAP. Furthermore, molecular docking calculations were performed for the most potent inhibitors to show their binding interactions within the active site of the respective enzymes.

  9. Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions

    Directory of Open Access Journals (Sweden)

    Yan Xiuling

    2011-01-01

    Full Text Available Abstract Exploiting electrocatalysts with high activity for glucose oxidation is of central importance for practical applications such as glucose fuel cell. Pt-decorated nanoporous gold (NPG-Pt, created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray powder diffraction (XRD, and cyclic voltammetry (CV. The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt. A direct glucose fuel cell (DGFC was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60 μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition.

  10. Usefulness of Organic Acid Produced by Exiguobacterium sp. 12/1 on Neutralization of Alkaline Wastewater

    Directory of Open Access Journals (Sweden)

    Niha Mohan Kulshreshtha

    2012-01-01

    Full Text Available The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148 in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s. The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  11. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  12. Neutralization of Alkaline Wasterwater with CO{sub 2} in a continuous flow jet loop reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Yeop; Kim, Mi Ran; Lim, Jun Heok; Lee, Tae Yoon; Lee, Jea Keun [Pukyong National Univ., Busan (Korea, Republic of)

    2016-02-15

    This paper investigates the feasibility of applying the jet loop reactor for the neutralization of alkaline wastewater using carbon dioxide (CO2). In this study, pH changes and CO2 removal characteristics were examined by changing influent flow rate of alkaline wastewater (initial pH=10.1) and influent CO2 flow rates. Influent flow rates of alkaline wastewater (QL,in) ranged between 0.9 and 6.6 L/min, and inlet gas flow rate (QG,in) of 1 and 6 L/min in a lab-scale continuous flow jet loop reactor. The outlet pH of wastewater was maintained at 7.2 when the ratio (QL,in/QG,in) of QL,in and QG,in was 1.1. However, the CO2 removal efficiency and the outlet pH of wastewater were increased when QL,in/QG,in ratio was higher than 1.1. Throughout the experiments, the maximum CO2 removal efficiency and the outlet pH of wastewater were 98.06% and 8.43 at the condition when QG,in and QL,in were 2 L/min and 4 L/min, respectively.

  13. Production of extracellular alkaline protease from Bacillus subtilis RSKK96 with solid state fermentation

    Directory of Open Access Journals (Sweden)

    Nurullah Akcan

    2011-09-01

    Full Text Available The production of extracellular alkaline protease by producing Bacillus subtilis RSKK96 was studied with solid state fermentation (SSF. Different agro residues as substrate were studied for enzyme production. The highest enzyme production was expressed with lentil husk as units per mass of dry substrate (3937.0 U/mg. Production parameters were optimized as incubation time 120 h, extraction medium Triton-X100 1%, initial moisture content 30%, initial pH 9.0. The high level of alkaline protease was obtained in the medium containing arabinose followed by lactose, galactose, and fructose. Among various nitrogen sources, beef extract was found to be the best inducer of alkaline protease, while other nitrogen sources repressed enzyme production. Among metal salts FeSO4.7H2O and MgSO4.7H2O was found to increase protease production. The maximum enzyme production (5759.2 U/mg was observed with lentil husk in 1000 mL of fermentation medium volume.

  14. Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures.

    Science.gov (United States)

    Keshk, Sherif M A S

    2015-01-22

    Effect of alkaline solutions such as 10% NaOH, NaOH/urea and NaOH/ethylene glycol solutions on crystalline structure of different cellulosic fibers (cotton linter and filter paper) was investigated at room temperature and -4°C. The highest dissolution of cotton linter and filter paper was observed in NaOH/ethylene glycol at both temperatures. X-ray patterns of treated cotton linter with different alkaline solutions at low temperature showed only two diffractions at 2θ=12.5° and 21.0°, which belonged to the crystalline structure of cellulose II. CP/MAS (13)C NMR spectra showed the doublet peaks at 89.2 ppm and 88.3 ppm representing C4 resonance for cellulose I at room temperature, Whereas, at low temperature the doublet peaks were observed at 89.2 ppm and 87.8 ppm representing C4 resonance for cellulose II. Degree of polymerization of cellulose plays an important role in cellulose dissolution in different alkaline solutions and temperatures, where, a low temperature gives high dissolutions percentage with change in crystalline structure from cellulose I to cellulose II forms.

  15. Experimental Simulation of Long Term Weathering in Alkaline Bauxite Residue Tailings

    Directory of Open Access Journals (Sweden)

    Talitha C. Santini

    2015-07-01

    Full Text Available Bauxite residue is an alkaline, saline tailings material generated as a byproduct of the Bayer process used for alumina refining. Developing effective plans for the long term management of potential environmental impacts associated with storage of these tailings is dependent on understanding how the chemical and mineralogical properties of the tailings will change during weathering and transformation into a soil-like material. Hydrothermal treatment of bauxite residue was used to compress geological weathering timescales and examine potential mineral transformations during weathering. Gibbsite was rapidly converted to boehmite; this transformation was examined with in situ synchrotron XRD. Goethite, hematite, and calcite all precipitated over longer weathering timeframes, while tricalcium aluminate dissolved. pH, total alkalinity, and salinity (electrical conductivity all decreased during weathering despite these experiments being performed under “closed” conditions (i.e., no leaching. This indicates the potential for auto-attenuation of the high alkalinity and salinity that presents challenges for long term environmental management, and suggests that management requirements will decrease during weathering as a result of these mineral transformations.

  16. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium.

    Science.gov (United States)

    Youcai, Z; Stanforth, R

    2000-12-30

    In this study, a novel and integrated hydrometallurgical process for the production of zinc powder from electric arc furnace (EAF) dust in alkaline medium is reported. The dust is firstly hydrolysed in water, and then fused in caustic soda at 350 degrees C for 1h, followed by leaching in alkaline solution in which both zinc and lead are effectively extracted. Zinc powder is then produced by electrowinning from the leach solution after the lead is selectively removed by precipitation using sodium sulphide as precipitant. The EAF dust tested contained 25% Zn, 1.8% Pb and 33% Fe. It was found that 38% of zinc and 68% of lead could be extracted from the dust when leached directly in caustic soda solution. Leaching of zinc increased to 80% when dust was directly fused with caustic soda followed by alkaline leaching. However, the leaching further increased to 95% when the dust was hydrolysed first with water before fusion. Zinc powder with a purity of 99.95% was then produced by electrowinning from the lead depleted solution. Stainless electrodes were used as both anode and cathode.

  17. Single-site substitutions improve cold activity and increase thermostability of the dehairing alkaline protease (DHAP).

    Science.gov (United States)

    Zhao, Hong-Yan; Wu, Li-Ying; Liu, Gang; Feng, Hong

    2016-12-01

    To engineer dehairing alkaline protease (DHAP) variants to improve cold activity and increase thermostability so these variants are suitable for the leather processing industry. Based on previous studies with bacterial alkaline proteases, double-site mutations (W106K/V149I and W106K/M124L) were introduced into the DHAP from Bacillus pumilus. Compared with the wild-type DHAP hydrolytic activity, the double-site variant W106K/V149I showed an increase in specific hydrolytic activity at 15 °C by 2.3-fold toward casein in terms of hydrolytic rate and 2.7-fold toward the synthetic peptide AAPF-pN by means of kcat/Km value. The thermostability of the variant (W106K/V149I) was improved with the half-life at 60 and 70 °C increased by 2.7- and 5.0-fold, respectively, when compared with the thermostability of the wild-type DHAP. Conclusively, an increase in the cold activity and thermostability of a bacterial alkaline protease was achieved by protein engineering.

  18. Cretaceous alkaline volcanism in south Marzanabad, northern central Alborz, Iran: Geochemistry and petrogenesis

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi

    2016-11-01

    Full Text Available The alkali-basalt and basaltic trachy-andesites volcanic rocks of south Marzanabad were erupted during Cretaceous in central Alborz, which is regarded as the northern part of the Alpine-Himalayan orogenic belt. Based on petrography and geochemistry, en route fractional crystallization of ascending magma was an important process in the evolution of the volcanic rocks. Geochemical characteristics imply that the south Marzanabad alkaline basaltic magma was originated from the asthenospheric mantle source, whereas the high ratios of (La/YbN and (Dy/YbN are related to the low degree of partial melting from the garnet bearing mantle source. Enrichment pattern of Nb and depletion of Rb, K and Y, are similar to the OIB pattern and intraplate alkaline magmatic rocks. The K/Nb and Zr/Nb ratios of volcanic rocks range from 62 to 588 and from 4.27 to 9 respectively, that are some higher in more evolved samples which may reflect minor crustal contamination. The isotopic ratios of Sr and Nd respectively vary from 0.70370 to 0.704387 and from 0.51266 to 0.51281 that suggest the depleted mantle as a magma source. The development of south Marzanabad volcanic rocks could be related to the presence of extensional phase, upwelling and decompressional melting of asthenospheric mantle in the rift basin which made the alkaline magmatism in Cretaceous, in northern central Alborz of Iran.

  19. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol.

    Science.gov (United States)

    Menezes, Evandro G T; do Carmo, Juliana R; Alves, José Guilherme L F; Menezes, Aline G T; Guimarães, Isabela C; Queiroz, Fabiana; Pimenta, Carlos J

    2014-01-01

    The use of lignocellulosic raw materials in bioethanol production has been intensively investigated in recent years. However, for efficient conversion to ethanol, many pretreatment steps are required prior to hydrolysis and fermentation. Coffee stands out as the most important agricultural product in Brazil and wastes such as pulp and coffee husk are generated during the wet and dry processing to obtain green grains, respectively. This work focused on the optimization of alkaline pretreatment of coffee pulp with the aim of making its use in the alcoholic fermentation. A central composite rotatable design was used with three independent variables: sodium hydroxide and calcium hydroxide concentrations and alkaline pretreatment time, totaling 17 experiments. After alkaline pretreatment the concentration of cellulose, hemicellulose, and lignin remaining in the material, the subsequent hydrolysis of the cellulose component and its fermentation of substrate were evaluated. The results indicated that pretreatment using 4% (w/v) sodium hydroxide solution, with no calcium hydroxide, and 25 min treatment time gave the best results (69.18% cellulose remaining, 44.15% hemicelluloses remaining, 25.19% lignin remaining, 38.13 g/L of reducing sugars, and 27.02 g/L of glucose) and produced 13.66 g/L of ethanol with a yield of 0.4 g ethanol/g glucose.

  20. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.