WorldWideScience

Sample records for alkaline wet oxidation

  1. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products...... are Cl- and CO-2, the rest comprising a range of water-soluble compounds, a small, Cl-free residue, and a recognizable amount of H-2....

  2. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda

    2002-01-01

    reacted differently in the two processes. The chemical composition changed little following enzyme treatment. After alkaline wet oxidation, fibers enriched in cellulose were obtained. With both materials, almost all hemicellulose (80%) together with a large portion of the lignin were solubilised......Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... by alkaline wet oxidation, but essentially all cellulose remained in the solid fraction. Following enzyme treatment most material remained as a solid. For wheat straw, reaction with acetic anhydride indicated that both treatments resulted in more hydroxyl groups being accessible for reaction. The enzyme...

  3. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reaction...... time was less important within the range studied. Nitrifying bacteria were used to measure the inhibition from wet oxidative-treated samples to study the effect of the (wet oxidation) reaction conditions. Wet oxidation made quinoline more toxic to Nitrosomonas. This was observed for Nitrobacter as well....... The combined wet oxidation and biological treatment of reaction products resulted in 91% oxidation of the parent compound to CO2 and water. Following combined wet oxidation and biological treatment the sample showed low toxicity towards Nitrosomonas and no toxicity towards Nitrobacter. (C) 1998 Elsevier...

  4. Evaluation and Application of Resist for Alkaline Wet Etching

    Science.gov (United States)

    Takahashi, Tomokazu; Makihata, Mitsutoshi; Esashi, Masayoshi; Tanaka, Shuji

    ProTEK PSB and ProTEK B3 (Brewer Science, Inc.) are negative type photosensitive resist and non-photosensitive resist for alkaline wet etching, respectively. This paper mainly reports the patterning characteristics, etch resistance and removal characteristics of ProTEK PSB under practical conditions for a real application. Our study found two problems of ProTEK PSB: unacceptably-large side-etching and difficulty in removing the primer by organic solvents or O2 ashing. For the fabrication of a LSI-integrated tactile sensor, we used ProTEK PSB with a low temperature oxide underlayer. This combination solves both side etching problem for ProTEK PSB and pinhole problem for low temperature oxide, providing the practical alkaline etching mask which can be prepared at low temperature.

  5. catalysed oxidation of atenolol by alkaline permanganate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0⋅30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry.

  6. Catalytic wet oxidation of black liquor

    OpenAIRE

    Viader Riera, Gerard

    2012-01-01

    The major aspects of wet air oxidation and catalytic wet air oxidation have been reviewed in this work paying special attention to the reaction mechanisms, kinetics and the industrial process. In the experimental section a set of heterogeneous catalysts have been tested in the wet oxidation of non-wood black liquor. The oxidation runs were performed batchwise in a laboratory-scale mechanically stirred slurry reactor for 1 h at a temperature of 170°C and total pressure of 12 bar. Pure oxygen w...

  7. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  8. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  9. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  11. Optimization of wet oxidation pretreatment of wheat straw

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Thomsen, A.B.

    1998-01-01

    The wet oxidation process (water; oxygen and elevated temperature) was investigated under alkaline conditions for fractionation of hemicellulose, cellulose, and lignin from wheat straw. At higher temperature and longer reaction time, a purified cellulose fraction (69% w/w) was produced with high...... with a 15-min reaction time. Under these conditions, 55% of the lignin and 80% of the hemicellulose were solubilized, while 95% of the cellulose remained in the solid fraction. At 185 degrees C, the reaction kinetics was of pseudo first-order. The rate constant for hemicellulose solubilization was higher...... than that for lignin, whereas the rate for cellulose was very low. The cellulose recovery (95-100%) was significantly higher than that for hemicellulose (60%). At temperatures above 185 degrees C, recoveries decreased due to increased degradation. Only half of the COD-content could be accounted...

  12. Wet oxidation catalyzed by ruthenium supported on cerium (IV) oxides

    International Nuclear Information System (INIS)

    Imamura, S.; Fukuda, I.; Ishida, S.

    1988-01-01

    The activity of precious meta catalysts in the wet oxidation of organic compounds was investigated. Ruthenium was the most active catalyst among the precious metals examined, and cerium (IV) oxide was the most effective support. The Ru/Ce catalyst rivaled homogeneous copper catalyst, which is used in the practical wastewater treatment, for the oxidation of n-propyl alcohol, n-butyl alcohol, phenol, acetamide, poly (propylene glycol), and acetic acid. In addition, it was especially effective for the oxidation of some compounds with high oxygen content such as poly (ethylene glycol), ethylene glycol, formaldehyde, and formic acid

  13. Specific features of aluminum nanoparticle water and wet air oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lozhkomoev, Aleksandr S., E-mail: asl@ispms.tsc.ru; Glazkova, Elena A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, Natalia V., E-mail: nvsv@ispms.tsc.ru; Bakina, Olga V., E-mail: ovbakina@ispms.tsc.ru; Kazantsev, Sergey O., E-mail: kzso@mail.ru; Lerner, Marat I., E-mail: lerner@ispms.tsc.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  14. Electrochemical oxidation and detection of sodium urate in alkaline ...

    African Journals Online (AJOL)

    Electrochemical behaviour of copper oxides electrode in the presence of sodium urate was investigated. The correlation between the anodic oxidation and the amperometric detection of sodium urate in the alkaline medium on copper oxides electrode was analysed by cyclic voltammetry (CV) and electrochemical ...

  15. Enhanced wet air oxidation : synergistic rate acceleration upon effluent recirculation

    Science.gov (United States)

    Matthew J. Birchmeier; Charles G. Hill; Carl J. Houtman; Rajai H. Atalla; Ira A. Weinstock

    2000-01-01

    Wet air oxidation (WAO) reactions of cellobiose, phenol, and syringic acid were carried out under mild conditions (155°C; 0.93MPa 02; soluble catalyst, Na5[PV2Mo10O40]). Initial oxidation rates were rapid but decreased to small values as less reactive oxidation products accumulated. Recalcitrant oxidation products were consumed more rapidly, however, if additional...

  16. Catalytic wet peroxide oxidation of formic acid in wastewater with ...

    African Journals Online (AJOL)

    2016-07-03

    Jul 3, 2016 ... ABSTRACT. The catalytic wet oxidation of formic acid, using hydrogen peroxide as the oxidizing agent over naturally-occurring iron ore, was explored. Firstly, the decomposition of hydrogen peroxide to its hydroxyl radicals (HO• and HOO•) over naturally-occurring iron ore was investigated. The reaction was ...

  17. Catalytic wet peroxide oxidation of formic acid in wastewater with ...

    African Journals Online (AJOL)

    The catalytic wet oxidation of formic acid, using hydrogen peroxide as the oxidizing agent over naturally-occurring iron ore, was explored. Firstly, the decomposition of hydrogen peroxide to its hydroxyl radicals (HO• and HOO•) over naturally-occurring iron ore was investigated. The reaction was monitored by ATR FTIR by ...

  18. Wet-air oxidation cleans up black wastewater

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the color from the wastewater.

  19. Development of nano indium tin oxide (ITO) grains by alkaline ...

    Indian Academy of Sciences (India)

    Unknown

    Bull. Mater. Sci., Vol. 25, No. 6, November 2002, pp. 505–507. © Indian Academy of Sciences. 505. Development of nano indium tin oxide (ITO) grains by alkaline hydrolysis of In(III) and Sn(IV) salts. NIMAI CHAND ... et al 1996; Yanagisawa and Udawatte 2000; Denoy and. Pradeep 1997) with low Sn content (In : Sn ≥ 90 ...

  20. Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...

    African Journals Online (AJOL)

    The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.

  1. Reuse of Ammonium Nitrate - Wet Air Oxidation

    National Research Council Canada - National Science Library

    Maloney, Stephen

    1999-01-01

    ... it. AN is commonly used as a fertilizer (80 percent of AN produced) and an oxidizer. Owing to the high demand and wide availability of AN for its most common use, the commercial cost is very low...

  2. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A.B.; Skammelsen Schmidt, A.

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates `losses` of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation.

  3. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    International Nuclear Information System (INIS)

    Bjerre, A.B.; Skammelsen Schmidt, A.

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates 'losses' of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation

  4. The use of thermal wet oxidation for enhanced biogas recovery from raw and digested biowaste

    Energy Technology Data Exchange (ETDEWEB)

    Lissens, G.; Verstraete, W. [Gent Univ. (Belgium). LabMET; Thomsen, A.B. [Rise National Lab (Denmark). Dept. of Plant Research; Ahring, B.K. [Technical Univ., of Denmark (Denmark). Environmental Microbiology and Biotechnology

    2004-07-01

    The energy content of biodegradable organic waste and sewage sludge generated in the European Union represents 8 per cent of the European petroleum consumption, or on a per capita basis about 180 litres per year. Most of this material is still incinerated or disposed of in landfills despite the potential for anaerobic digestion to make this energy available. Current biodegradation plants only convert the easily digested portion of the waste, converting this to methane, leaving the rest to be stabilized by, for instance, composting. However, increased environmental consciousness is causing researchers to look at ways of increasing the methane yield. In this study, the anaerobic biodegradability of three waste sources was investigated: source-separated food waste, woody yard waste, and mixed biowaste from yard and kitchen waste after digestion in a full-scale digester. Thermal alkaline wet oxidation was applied to establish its effect on methane production and the digestion kinetics of raw and digested biowaste in batch and continuous tests. Results show that thermal alkaline wet oxidation can significantly increase methane production. 1 fig.

  5. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by ¤Thermoanaerobacter mathranii¤

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, B.K.

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g/l), ali...

  6. Electro-oxidation of methanol on copper in alkaline solution

    International Nuclear Information System (INIS)

    Heli, H.; Jafarian, M.; Mahjani, M.G.; Gobal, F.

    2004-01-01

    The electro-oxidation of methanol on copper in alkaline solutions has been studied by the methods of cyclic voltammetry, quasi-steady state polarization and chronoamperometry. It has been found that in the course of an anodic potential sweep the electro-oxidation of methanol follows the formation of Cu III and is catalysed by this species through a mediated electron transfer mechanism. The reaction also continues in the early stages of the reversed cycle until it is stopped by the prohibitively negative potentials. The process is diffusion controlled and the current-time responses follow Cottrellian behavior. The rate constants, turnover frequency, anodic transfer coefficient and the apparent activation energy of the electro-oxidation reaction are reported

  7. Kinetics studies of oxidation of niacinamide by alkaline potassium permanganate

    Directory of Open Access Journals (Sweden)

    Sandipsingh Gour

    2012-04-01

    Full Text Available The oxidation of niacinamide in alkaline media is carried out using potassium permanganate as a oxiding agent. The reaction was monitored using UV-Visible spectrophotometer at 525 nm. It was found to be zero order with respect to oxidant,, fractional order with respect to hydrogen ion concentration and first order with respect to substrate. The thermodynamic parameters(were determinied . The average (?G# was found to be 87.60 KJ/mol. The values ?S# was found to be -0.2132 KJ/mole and energy of activation was found to be 23.95 KJ/mole. A suitable mechanism is proposed based on the experimental conditions.

  8. Catalytic wet oxidative degradation of filter paper waste simulates

    International Nuclear Information System (INIS)

    Shatta, H.A.; Saleh, H.M.; Bayoumi, T.A.

    2005-01-01

    This study is part of a comprehensive research program carried out at Radioisotope Department, Atomic Energy Authority, Egypt, aiming at the treatment of organic wastes simulate to achieve acceptable weight and volume reduction. The process is based on the wet oxidative degradation of these wastes, at a laboratory scale, using hydrogen peroxide as oxidant at atmospheric pressure and at 100 degree C. The present study was concerned with the treatment of filter paper waste simulates, as one of organic wastes originating from the peaceful applications of the nuclear technology, in the presence of two types of catalysts namely; copper sulphate and ferrous sulphate. The main aim of this treatment is to achieve an acceptable weight and volume reduction. That waste was subjected to wet oxidative degradation process at atmospheric pressure and 100 degree C using 35% hydrogen peroxide as oxidant in the presence of different concentrations of ferrous sulphate or copper sulphate as catalysts. Elemental analysis and IR spectroscopy were performed for the solid residue and the secondary waste solution resulted from the treatment process to follow the degradation process. Increasing the concentration of catalyst was accompanied with an acceptable increase in the weight reduction and conversion percentages. Up to 95% total weight reduction was obtained in the case of using copper sulphate as catalyst. Also, through this technique, the organic portion of these wastes is converted to carbon dioxide and water and hence the remaining solution is considered as a form suitable for subsequent immobilization process

  9. Precipitation of uranium oxide by reduction in alkaline solution

    International Nuclear Information System (INIS)

    Pottier, P.; Claus, J.

    1964-01-01

    In the first part of the report the authors study the reaction mechanism for this reduction which makes it possible to precipitate a hydrated uranium oxide from alkaline uranyl carbonate solutions. The research into the effects of different variables on numerous cycles are then summarized. Optical, X-ray and thermogravimetric examinations then make it possible to predict the properties of this oxide. In the second part the authors carry out calculations for the continuous operation of single cells and cells in series. These calculations give the data required for the construction of 2 cells having capacities of 0.3 and 10 litres. Results obtained from the continuous operation of this latter cell lead to certain conclusions concerning the applicability of this method to the hydrometallurgy of uranium. (authors) [fr

  10. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar.

    Science.gov (United States)

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J; Fountain, Mackenzie; Ralph, John; Hodge, David B; Hegg, Eric L

    2016-01-01

    Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. This study demonstrated that the fed-batch, two-stage Cu-AHP pretreatment

  11. Ethanol production from wet oxidized corn straw by simultaneous saccharification and fermentation

    DEFF Research Database (Denmark)

    Zhang, Q.; Yin, Y.; Thygesen, Anders

    2010-01-01

    remained in the solid fraction and recovery of cellulose was 95.87% after pretreatment. After 24 h hydrolysis at 50°C using cellulase, the achieved conversion of cellulose to glucose was about 67.6%. After 142 h of SSF with substrate concentration of 8%, ethanol yield of 79.0% of the theoretical......In order to find out the appropriate process for ethanol production from corn straw, alkaline wet-oxidation pretreatment (195°C, 15 min, Na2CO3 2 g/L, O2 1200 kPa) and simultaneous saccharification and fermentation (SSF) were adopted to produce ethanol. The results showed that 90% of cellulose...... was obtained. The estimated total ethanol production was 262.7 kg/t raw material by assuming the consumption of both C-6 and C-5. No obvious inhibition effect occurred during SSF. These offered experiment evidences for ethanol production from corn straw....

  12. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

    DEFF Research Database (Denmark)

    Varga, E.; Klinke, H.B.; Reczey, K.

    2004-01-01

    In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degreesC, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50....../L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved...... with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest...

  13. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    , and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...... of the pretreatment, the residual hemicellulose content of the substrate, and the type of the commercial cellulase preparation used were the most important factors affecting the enzymatic hydrolysis. The highest sugar yield in a 72-h hydrolysis, 79% of theoretical, was obtained using a pretreatment of 200degrees...

  14. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast.

    Science.gov (United States)

    Klinke, H B; Olsson, L; Thomsen, A B; Ahring, B K

    2003-03-20

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195 degrees C) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested in concentrations of 50-100 times the concentration found in the hydrolysate for their effect on fermentation by yeast. At these high concentrations (10 mM), 4-hydroxybenzaldehyde, vanillin, 4-hydroxyacetophenone and acetovanillone caused a 53-67% decrease in the volumetric ethanol productivity in S. cerevisiae compared to controls with an ethanol productivity of 3.8 g/L. The phenol acids (4-hydroxy, vanillic and syringic acid), 2-furoic acid, syringaldehyde and acetosyringone were less inhibitory, causing a 5-16% decrease in ethanol productivity. By adding the same aromatic compounds to hydrolysate (10 mM), it was shown that syringaldehyde and acetovanillone interacted negatively with hydrolysate components on the ethanol productivity. Fermentation in WO hydrolysate, that had been concentrated 6 times by freeze-drying, lasted 4 hours longer than in regular hydrolysate; however, the ethanol yield was the same. The longer fermentation time could not be explained by an inhibitory action of phenols alone, but was more likely caused by inhibitory interactions of phenols with carboxylic acids, such as acetic and formic acid. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 738-747, 2003.

  15. Integrating alkaline extraction of proteins with enzymatic hydrolysis of cellulose from wet distiller's grains and solubles.

    Science.gov (United States)

    Bals, Bryan; Balan, Venkatesh; Dale, Bruce

    2009-12-01

    Fractionation of distiller's grains into value added products may serve to improve the economic viability of dry grind corn ethanol facilities in the wake of variable corn and ethanol prices. This research is aimed at creating a high protein, high lysine product from the grain using alkaline protein extractions in conjunction with hydrolysis of the remaining fiber to sugars which are then fermented to ethanol. Alkaline extractions improved the lysine content in protein products, although protein solubility did not exceed 45% of the total protein. In addition, oligomeric carbohydrates, starch, and other water solubles were also extracted, leading to a low purity protein product. Resulting sugar yields following ammonia fiber expansion (AFEX) pretreatment were also lower for extracted distiller's grains. From these experiments, it does not appear likely that alkaline extraction is a useful tool for fractionation of distiller's grains. However, pretreatment and hydrolysis can be an effective tool for further fractionation of protein.

  16. Development studies for a novel wet oxidation process

    International Nuclear Information System (INIS)

    Dhooge, P.M.; Hakim, L.B.

    1994-01-01

    A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, and vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests

  17. Wet air oxidation of seedcorn wastes containing pesticides and insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, M.; Schlaefer, O.; Onyeche, T.I.; Schroeder, C.; Bormann, H.; Schaefer, S. [CUTEC-Inst. GmbH (Clausthal Environment Technology Inst.), Clausthal-Zellerfeld (Germany)

    2003-07-01

    Wet air oxidation as an alternative treatment process to pyrolysis and combustion of seedcorn wastes was investigated in lab-scale experiments. Due to solid condition of the seed corn waste, the process has been adapted by repeated spraying of water on the seed corn bulk to avoid the production of sludge and its subsequent dewatering. Original seed corns from industrial production plants were used for a degradation kinetic study under smooth wet air oxidation conditions. The temperatures were between 80 and 150 C, the pressure from 1 to 4.5 bar and the pH at different values from 3 to 13. Degradation rates for five different compounds of pesticides and insecticides, namely Imidacloprid, Thiram, Hymexazol, Carbofuran and Tefluthrin were conducted. These compounds represent the recently used in agricultural seedcorn applications. The degradation rate depends linearly on temperature between 80 and 150 C. At 120 C the lowest degradation rate was found for Tefluthrin by 25 mg/h per L reaction volume while the highest degradation rate to be conducted was for Imidacloprid at 363 mg/h L. (orig.)

  18. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Li Ning; Descorme, Claude; Besson, Michele

    2007-01-01

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3 wt.% Ru/ZrO 2 . 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3 wt.% Ru/ZrO 2 is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393 K) and lower total pressure (3 MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect

  19. Preliminary comparison of three processes of AlN oxidation: dry, wet and mixed ones

    Directory of Open Access Journals (Sweden)

    Korbutowicz R.

    2016-03-01

    Full Text Available Three methods of AlN layers oxidation: dry, wet and mixed (wet with oxygen were compared. Some physical parameters of oxidized thin films of aluminum nitride (AlN layers grown on silicon Si(1 1 1 were investigated by means Energy-Dispersive X-ray Spectroscopy (EDS and Spectroscopic Ellipsometry (SE. Three series of the thermal oxidations processes were carried out at 1012 °C in pure nitrogen as carrying gas and various gas ambients: (a dry oxidation with oxygen, (b wet oxidation with water steam and (c mixed atmosphere with various process times. All the research methods have shown that along with the rising of the oxidation time, AlN layer across the aluminum oxide nitride transforms to aluminum oxide. The mixed oxidation was a faster method than the dry or wet ones.

  20. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  1. USING WET AIR OXIDATION TECHNOLOGY TO DESTROY TETRAPHENYLBORATE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Daniel McCabe, D; Bill Wilmarth, B

    2007-04-04

    A bench-scale feasibility study on the use of a Wet Air Oxidation (WAO) process to destroy a slurry laden with tetraphenylborate (TPB) compounds has been undertaken. WAO is an aqueous phase process in which soluble and/or insoluble waste constituents are oxidized using oxygen or oxygen in air at elevated temperatures and pressures ranging from 150 C and 1 MPa to 320 C and 22 MPa. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). Test results indicate WAO is a feasible process for destroying TPB, its primary daughter products [triphenylborane (3PB), diphenylborinic acid (2PB), and phenylboronic acid (1PB)], phenol, and most of the biphenyl byproduct. The required conditions are a temperature of 300 C, a reaction time of 3 hours, 1:1 feed slurry dilution with 2M NaOH solution, the addition of CuSO{sub 4}.5H{sub 2}O solution (500 mg/L Cu) as catalyst, and the addition of 2000 mL/L of antifoam. However, for the destruction of TPB, its daughter compounds (3PB, 2PB, and 1PB), and phenol without consideration for biphenyl destruction, less severe conditions (280 C and 1-hour reaction time with similar remaining above conditions) are adequate.

  2. Formation of tectonic peperites from alkaline magmas intruded into wet sediments in the Beiya area, western Yunnan, China

    Science.gov (United States)

    Xu, Xing-Wang; Cai, Xin-Ping; Zhong, Jia-You; Song, Bao-Chang; Peters, Stephen G.

    2007-01-01

    Tertiary (3.78 Ma to 3.65 Ma) biotite-K-feldspar porphyritic bodies intrude Tertiary, poorly consolidated lacustrine sedimentary rocks in the Beiya mineral district in southwestern China. The intrusives are characterized by a microcrystalline and vitreous-cryptocrystalline groundmass, by replacement of some tabular K-feldspar phenocrysts with microcrystalline chlorite and calcite, and by Fe-rich rings surrounding biotite phenocrysts. Peculiar structures, such as contemporary contact faults and slickensides, ductile shear zones and flow folds, foliation and lineations, tension fractures, and banded and boudin peperites, are developed along the contact zones of the intrusives. These features are related to the forceful intrusion of the alkaline magmas into the wet Tertiary sediments. The partially consolidated magmas were deformed and flattened by continued forceful magma intrusion that produced boudinaged and banded peperites. These peperites characterized by containing oriented deformation fabrics are classified as tectonic peperites as a new type of peperite, and formation of these tectonic peperites was related to fracturing of magmas caused by forceful intrusion and shear deformation and to contemporary migration and injection of fluidized sediments along fractures that dismembered the porphyritic magma. Emplacement of the magma into the wet sediments in the Beiya area is interpreted to be related to a large pressure difference rather than to the buoyancy force.

  3. Kinetics and mechanism of oxidation of L-leucine by alkaline ...

    Indian Academy of Sciences (India)

    The kinetics of oxidation of L-leucine by diperiodatocuprate (III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.10mol dm-3 was studied spectrophotometrically. The reaction between L-leucine and DPC in alkaline medium exhibits 1:4 stoichiometry (L-leucine: DPC). The reaction is of first order in [DPC] ...

  4. Development studies for a novel wet oxidation process. Phase 2

    International Nuclear Information System (INIS)

    1994-07-01

    DETOX SM is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set of site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit

  5. Desorption of acetone from alkaline-earth exchanged Y zeolite after propane selective oxidation

    NARCIS (Netherlands)

    Xu, J.; Mojet, Barbara; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    The desorption of products from a series of alkaline-earth exchanged Y zeolites after room-temperature propane selective oxidation was investigated by in situ infrared and mass spectroscopy. The intermediate product, isopropylhydroperoxide (IHP), did not desorb during

  6. Deuterium Labelling of L-Tyrosine with Raney Alloys in Alkaline Deuterium Oxide Solutions

    OpenAIRE

    Tsuzuki, Hirohisa; Mukumoto, Mamoru; Udagawa, Jun; Mataka, Shuntaro; Tashiro, Masashi

    1997-01-01

    The synthesis of deuteriated L-tyrosines with Raney alloys in alkaline deuterium oxide solutions, involving reductive debromination of brominated L-tyrosines and hydrogen-deuterium (H-D) exchange of L-tyrosines, without causing racemization, is presented.

  7. Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal.

    Science.gov (United States)

    Liu, Na; Gong, Biao; Jin, Zhiyong; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2015-08-15

    The present study was designed to determine the interactive effect of exogenous melatonin and nitric oxide (NO) on sodic alkaline stress mitigation in tomato seedlings. It was observed that exogenous melatonin treatment elevated NO levels in alkaline-stressed tomato roots. However, exogenous NO had little effects on melatonin levels. Importantly, melatonin-induced NO generation was accompanied by increased tolerance to alkaline stress. Chemical scavenging of NO reduced melatonin-induced alkaline stress tolerance and defense genes' expression. However, inhibition of melatonin biosynthesis had a little effect on NO-induced alkaline stress tolerance. These results strongly suggest that NO, acting as a downstream signal, is involved in the melatonin-induced tomato tolerance to alkaline stress. This process creates a new signaling pathway for improving stress tolerance in plant. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    Science.gov (United States)

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. IrPdRu/C as H2Oxidation Catalysts for Alkaline Fuel Cells.

    Science.gov (United States)

    Wang, Hongsen; Abruña, Héctor D

    2017-05-24

    H 2 oxidation kinetics on Pt in alkaline media are very sluggish, being over 100 times slower than in acidic media, and thus, new and more active H 2 oxidation electrocatalysts must be developed in order to enable alkaline exchange membrane fuel cells (AEMFCs). In this Communication, we present a new type of catalysts-carbon-supported IrPdRu nanoparticles-as H 2 oxidation catalysts in alkaline media. These catalysts exhibit higher activity than Pt/C and Ir/C catalysts and are also quite stable. In particular, Ir 3 Ru 7 /C and Ir 3 Pd 1 Ru 6 /C catalysts are significantly more active and less expensive than Pt/C and Ir/C, and are thus promising new anode catalysts for alkaline fuel cell applications.

  10. The Study of LeachateTreatment by Using Three Advanced Oxidation Process Based Wet air Oxidation

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2013-01-01

    Full Text Available Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300[degree sign] as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  11. An oxidant, detergent and salt stable alkaline protease from Bacillus ...

    African Journals Online (AJOL)

    A novel soil bacterium, Bacillus cereus SIU1 was earlier isolated from non-saline, slightly alkaline soil of Eastern Uttar Pradesh, India. The isolate B. cereus SIU1 was grown in modified glucose yeast extract (modified GYE) medium at pH 9.0 and 45°C. It produced maximum protease at 20 h incubation. The enzyme was ...

  12. Thermochemistry of the alkali metal and alkaline earth-actinide complex oxides

    International Nuclear Information System (INIS)

    Fuger, J.

    1985-01-01

    After a brief discussion of the various techniques used for the preparation of actinide complex oxides, the present status of the thermochemistry of these compounds is reviewed. Perovskite-related compounds are especially considered as thermodynamic data are available for compounds of several actinides and/or several alkali and alkaline earth metals. The stabilities of the complex oxides are discussed with respect to the parent binary oxides and to the aqueous ions; trends as a function of the size and the alkali or the alkaline earth cation are presented. Suggestions for synthesis of some analogous compounds with heavier actinides are also discussed. (orig./RK)

  13. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    , and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid...... significantly in steam explosion. This investigation demonstrates the potential of wet oxidation as a promising pretreatment method for enzyme-based bagasse-to-ethanol processes....

  14. Kinetic study of the alkaline metals oxidation by dry oxygen

    International Nuclear Information System (INIS)

    Touzain, Ph.

    1967-06-01

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [fr

  15. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides

    NARCIS (Netherlands)

    Hereijgers, B.P.C.; Weckhuysen, B.M.

    2009-01-01

    A series of alumina-supported gold catalysts was investigated for the CO-free production of hydrogen by partial oxidation of methanol. The addition of alkaline-earth metal oxide promoters resulted in a significant improvement of the catalytic performance. The methanol conversion was ca. 85 % with

  16. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  17. Measurement of the oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The present invention relates to processes for the recovery of uranium from wet-process phosphoric acid and more particularly to the oxidation-extraction steps in the DEPA-TOPO process for such recovery. A more efficient use of oxidant is obtained by monitoring the redox potential during the extraction step

  18. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    Science.gov (United States)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  19. Corrosion of uncoated and oxide-coated basalt fibre in different alkaline media

    International Nuclear Information System (INIS)

    Rybin, V.A.; Utkin, A.V.; Baklanova, N.I.

    2016-01-01

    Highlights: • Alkaline corrosion of uncoated and coated basalt fibre in alkali media was studied. • Degradation of the fibre involves the dissolution of alumosilicate network in alkali media. • Insoluble shell from iron and calcium hydroxides and carbonates is formed. • Zirconia and titania coatings slow down the corrosion of basalt fibre significantly. - Abstract: The corrosion behaviour of the zirconium dioxide and titanium dioxide coated basalt fibre in sodium and calcium hydroxide solutions was studied. The morphology, elemental, phase composition of fibre before and after exposure to alkaline media was examined by different analytical techniques. It was shown that the oxide coatings slow down corrosion, and zirconium dioxide slows down corrosion of basalt fibre to a higher extent than titanium dioxide. The morphology and composition of solid corrosion products depend on a type of alkaline medium. The schemes of corrosion for the uncoated and coated basalt fibres in alkaline media were proposed.

  20. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol.

    Science.gov (United States)

    Varga, Enikõ; Klinke, Helene B; Réczey, Kati; Thomsen, Anne Belinda

    2004-12-05

    In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degrees C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degrees C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degrees C. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.

  1. Biomarkers of oxidative stress in patients with wet age related macular degeneration.

    Science.gov (United States)

    Zafrilla, P; Losada, M; Perez, A; Caravaca, G; Mulero, J

    2013-03-01

    The aim of this study was to analyze biomarkers of oxidative stress in patients with wet age related macular degeneration (AMD). Case-control study that includes 163 patients with wet AMD (age group of 55-82 years with the mean age of 71 years and 170 age-matched healthy controls in the age group of 55-78 years with the mean age of 71 years. The following parameters were determined: reduced and oxidized Glutathione (GSH/GSSH), protein carbonyl groups, total antioxidant activity in plasma and the activity of endogenous antioxidant enzymes, such as, gluthatione peroxidase, gluthatione reductase and superoxide dismutase. We observed total antioxidant activity higher in control group (CG) compared with patients with wet AMD (7.1 ± 1.2 μM Trolox vs 5.8 ± 1.1 μM Trolox). Values of superoxide dismutase activity (SOD), gluthatione reductase (GR) and gluthatione peroxidase (GPx) are higher in control group than in patients with wet AMD. According to the GSH/GSSH results, average values were higher in the CG than in patients with wet AMD and data were not significantly different.. Values of protein carbonyl groups were higher in patients with wet AMD than in CG and significant differences were found. The finding of the present study suggests that the patients with wet AMD are an altered metabolic state of oxidation-reduction and that it is convenient to give therapeutic interventions with antioxidants. We have demonstrated that systematic oxidative stress, measured by different biomarkers is closely associated with the wet AMD.

  2. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Beusekom, van O.C.; Buisman, C.J.N.; Janssen, A.J.H.

    2007-01-01

    A biotechnological process is described to remove hydrogen sulfide (H2S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO) and

  3. Kinetics and mechanism of oxidation of L-leucine by alkaline ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 124, No. 4, July 2012, pp. 809–819. c Indian Academy of Sciences. Kinetics and mechanism of oxidation of L-leucine by alkaline ... Post Graduate Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India e-mail: ... anism of this drug by DPC, there was a need for under- standing the ...

  4. effects of mixed of mixed of mixed alkaline earth oxides in potash

    African Journals Online (AJOL)

    eobe

    2 DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF UYO,UYO, AKWA-IBOM STATE, NIGERIA. E-mail address mail address mail addresses: 1 oyeahama1@yahoo.com, 2 memetie@yahoo.com. ABSTRACT. The aim of this work is to investigate the effects of mixed alkaline earth oxide. The aim of this work ...

  5. Propane selective oxidation on alkaline earth exchanged zeolite Y: room temperature in situ IR study

    NARCIS (Netherlands)

    Xu, J.; Mojet, Barbara; van Ommen, J.G.; Lefferts, Leonardus

    2003-01-01

    The effect of zeolite Y ion-exchanged with a series of alkaline-earth cations on selective propane oxidation at room temperature was studied with in situ infrared spectroscopy. Isopropylhydroperoxide was observed as a reaction intermediate and can be decomposed into acetone and water. Contrary to

  6. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste

    DEFF Research Database (Denmark)

    Lissens, G.; Thomsen, Anne Belinda; De Baere, L.

    2004-01-01

    yield and digestion kinetics and permitted lignin utilization during a subsequent second digestion. The increase of the specific methane yield for the full-scale biogas plant by applying thermal wet oxidation was 35-40%, showing that there is still a considerable amount of methane that can be harvested...... profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability...

  7. Oxidant and solvent stable alkaline protease from Aspergillus flavus ...

    African Journals Online (AJOL)

    The enzyme retained 80% of its original activity in the presence of non ionic and ionic surfactants and 100% with 10% H2O2 after 1 h of incubation at 30°C. In addition, the enzyme showed excellent compatibility with some commercial powder detergents. The compatibility of our protease with several detergents, oxidants ...

  8. Development of nano indium tin oxide (ITO) grains by alkaline ...

    Indian Academy of Sciences (India)

    Unknown

    As the indium tin oxide (ITO) is an advanced ceramic material with many electronic and optical applications due to its high electrical conductivity and transparency .... Caulton K G and Hubert-Pfalzgraf L G 1990 Chem. Rev. 90. 969. Denoy M D and Pradeep B 1997 Bull. Mater. Sci. 20 1029. Gehman B L, Jonson S, Rudolf T, ...

  9. Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2014-05-01

    Full Text Available Electrocatalytic oxidation of alcohols in alkaline solutions is critical for the development of direct alkaline alcohol fuel cells (DAAFCs). This work investigated alcohol oxidation reaction (AOR) at a novel palladium-based core-shell nano catalyst...

  10. Theoretical study of support effect of Au catalyst for glucose oxidation of alkaline fuel cell anode

    Energy Technology Data Exchange (ETDEWEB)

    Ishimoto, Takayoshi, E-mail: ishimoto@ifrc.kyushu-u.ac.jp [Frontier Energy Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hamatake, Yumi [Frontier Energy Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Kazuno, Hiroki; Kishida, Takayuki [OLYMPUS Corporation, 2-3 Kuboyama-cho, Hachioji-shi, Tokyo 192-8512 (Japan); Koyama, Michihisa, E-mail: koyama@ifrc.kyushu-u.ac.jp [Frontier Energy Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2015-01-01

    Highlights: • The catalytic activity of Au in alkaline solution is studied theoretically. • Carbon and oxide materials are used to estimate support effect for glucose oxidation. • The glucose oxidation on SnO{sub 2}(1 1 0) supported Au catalyst shows high activity. • The charge transfer from Au catalyst to support materials is dominant. - Abstract: We theoretically analyzed the glucose oxidation reaction mechanism and reaction activity of Au catalyst supported by carbon (graphite(0 0 0 1), (101{sup ¯}0), and (112{sup ¯}0)) and oxide (ZrO{sub 2}(1 1 1) and SnO{sub 2}(1 1 0)) in alkaline solution environment by using density functional theory method. We observed large stabilization of Au catalyst on support materials due to the electron transfer in the case of graphite(112{sup ¯}0) and SnO{sub 2}(1 1 0) systems. The catalytic activity for glucose oxidation reaction over Au supported by graphite(101{sup ¯}0) and (112{sup ¯}0) is calculated to be low in comparison with those of unsupported system. We found that SnO{sub 2}(1 1 0) supported Au catalyst shows high activity toward the glucose oxidation. One of the main factors for the observed high catalytic activity is charge transfer from Au catalyst to support materials. When the atomic charge of Au catalyst becomes positive by the support effect, the activity of glucose oxidation reaction on Au catalyst is improved.

  11. Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes

    Science.gov (United States)

    Lugovskoy, Alex; Zinigrad, Michael; Kossenko, Aleksey; Kazanski, Barbara

    2013-01-01

    Plasma electrolytic oxidation (PEO) of aluminum alloy 5052 in alkaline-silicate electrolytes having different SiO2/Na2O ratios (silicate indexes) was studied. For all the electrolytes 20-90 μm thick technological layer was obtained; composition, structure and properties of the oxidized layer were studied. For each sample, the oxidized layer consists of a denser internal and looser external sublayer. While for “n = 1 electrolytes” the oxidized layer is mainly formed by several kinds of alumina, the principal constituent of the oxidized layer for “n = 3 electrolytes” is mullite. Measurements of microhardness evidenced that it is apparently not influenced by the kind of silicate (n = 1 or n = 3) and by its concentration in the electrolyte. Electrolytes with silicate index n = 3 ensure better corrosion protection than those with n = 1. Corrosion protection parameters are significantly better for all PEO oxidized samples than for the untreated Al5052 alloy.

  12. Wet Oxidation of Maleic Acid by a Pumice Supported Copper (II ...

    African Journals Online (AJOL)

    Pumice supported Cu (II) Schiff base catalysts were prepared by surface chemical modification followed by complexation with Cu (II) acetate. The resulting materials were characterised by Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) to confirm the modification. The materials were tested in a wet oxidation ...

  13. Subcritical wet air oxidation of organic solvents and chelating agents of the nuclear fuel

    International Nuclear Information System (INIS)

    Bachir, Souley

    1999-01-01

    This document deals with the environment control, more specially organic solvents and chelating agents destruction, employed in the nuclear industry. This work details the subcritical wet air oxidation process. Another part of the document deals with the possible coupling between this process and the biodegradation technic in the framework of the sewage sludges treatment. (A.L.B.)

  14. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

    DEFF Research Database (Denmark)

    Varga, E.; Schmidt, A.S.; Reczey, K.

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure...

  15. Testing of wet scrap recovery equipment for mixed oxide scrap reprocessing

    International Nuclear Information System (INIS)

    Demiter, J.A.; Klem, M.J.; Owen, T.J.

    1984-08-01

    The Wet Scrap Recovery (WSR) program was initiated at the Hanford Engineering Development Laboratory (HEDL) by Westinghouse Hanford Company in Richland, Washington to demonstrate fuel fabrication scrap recovery and reconversion to fuel grade oxide powder using the continuous coprecipitation-calcination (COPRECAL) conversion process. Advancements in process control equipment and instrumentation were also developed and demonstrated

  16. Actinides in Hanford Tank Waste Simulants: Chemistry of Selected Species in Oxidizing Alkaline Solutions

    International Nuclear Information System (INIS)

    Nash, Kenneth L.; Laszak, Ivan; Borkowski, Marian; Hancock, Melissa; Rao, Linfeng; Reed, Wendy

    2004-01-01

    To enhance removal of selected troublesome nonradioactive matrix elements (P, Cr, Al, S) from the sludges in radioactive waste tanks at the Hanford site, various chemical washing procedures have been evaluated. It is intended that leaching should leave the actinides in the residual sludge phase for direct vitrification. Oxidative treatment with strongly alkaline solutions has emerged as the best approach to accomplishing this feat. However, because the most important actinide ions in the sludge can exist in multiple oxidation states, it is conceivable that changes in actinide oxidation state speciation could interfere with hopes and plans for actinide insolubility. In this presentation, we discuss both the impact of oxidative alkaline leachants on actinide oxidation state speciation and the chemistry of oxidized actinide species in the solution phase. Actinide oxidation does occur during leaching, but the solubility behavior is complex. Mixed ligand complexes may dominate solution phase speciation of actinides under some circumstances. This work was supported by the U.S. Department of Energy, Offices of Science and Waste Management, Environmental Management Science Program under Contract DEAC03- 76SF0098 at Lawrence Berkeley National Laboratory and Contract W-31-109- ENG-38 at Argonne National Laboratory

  17. Ammonium carbonate and/or bicarbonate plus alkaline chlorate oxidant for recovery of uranium values

    International Nuclear Information System (INIS)

    Stapp, P.R.

    1983-01-01

    In accordance with the present invention, uranium values are extracted from materials containing uranium in valence states lower than its hexavalent state by contacting the materials containing uranium with an aqueous alkaline leach solution containing an alkaline chlorate in an amount sufficient to oxidize at least a portion of the uranium in valence states lower than its hexavalent state to its hexavalent state. In a further embodiment of the present invention, the alkaline leach solution is an aqueous solution of a carbonate selected from the group consisting of ammonium carbonate, ammonium bicarbonate and mixtures thereof. In yet another embodiment of the present invention, at least one catalytic compound of a metal selected from the group consisting of copper, cobalt, iron, nickel, chromium and mixtures thereof adapted to assure the presence of the ionic species Cu ++ , Co ++ , Fe +++ , Ni ++ , Cr +++ and mixtures thereof, respectively, during the contacting of the material containing uranium with the alkaline leach solution and in an amount sufficient to catalyze the oxidation of at least a portion of the uranium in its lower valence states to its hexavalent state, is present

  18. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed

  19. Valorization of Lignin by Partial Wet Oxidation Using Sustainable Heteropoly Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Abayneh Getachew Demesa

    2017-09-01

    Full Text Available The production of carboxylic acids by partial wet oxidation of alkali lignin at elevated temperatures and pressures was studied experimentally. Two different heteropoly acids, phosphotungstic acid (H3PW12O40 and phosphomolybdic acid (H3PMo12O40, were used to catalyze the oxidation of lignin under hydrothermal conditions. Factors influencing the total yield of carboxylic acids formed during the partial oxidation of lignin were investigated. Formic, acetic and succinic acids were the major products identified. Of the two catalysts used, phosphomolybdic acid gave the most promising results, with carboxylic acid yields and lignin conversions of up to 45% and 95%, respectively.

  20. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes.

    Science.gov (United States)

    Cohen, Jamie L; Volpe, David J; Abruña, Héctor D

    2007-01-07

    The oxidation pathways of methanol (MeOH) have been the subject of intense research due to its possible application as a liquid fuel in polyelectrolyte membrane (PEM) fuel cells. The design of improved catalysts for MeOH oxidation requires a deep understanding of these complex oxidation pathways. This paper will provide a discussion of the literature concerning the extensive research carried out in acidic and alkaline electrolytes. It will highlight techniques that have proven useful in the determination of product ratios, analysis of surface poisoning, anion adsorption, and oxide formation processes, in addition to the effects of temperature on the MeOH oxidation pathways at bulk polycrystalline platinum (Pt(poly)) electrodes. This discussion will provide a framework with which to begin the analysis of activation energy (E(a)) values. This kinetic parameter may prove useful in characterizing the rate-limiting step of the MeOH oxidation at an electrode surface. This paper will present a procedure for the determination of E(a) values for MeOH oxidation at a Pt(poly) electrode in acidic and alkaline media. Values from 24-76 kJ mol(-1) in acidic media and from 36-86 kJ mol(-1) in alkaline media were calculated and found to be a function of applied potential and direction of the potential sweep in a voltammetric experiment. Factors that influence the magnitude of the calculated E(a) include surface poisoning from MeOH oxidation intermediates, anion adsorption from the electrolyte, pH effects, and oxide formation processes. These factors are all potential, and temperature, dependent and must clearly be addressed when citing E(a) values in the literature. Comparison of E(a) values must be between systems of comparable electrochemical environment and at the same potential. E(a) values obtained on bulk Pt(poly), compared with other catalysts, may give insight into the superiority of other Pt-based catalysts for MeOH oxidation and lead to the development of new catalysts

  1. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from...... the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according...... to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products...

  2. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... by cellulases more than three times compared to the untreated control. During this wet oxidation, 51.7% of the hemicellulose and 58.3% of the lignin were solubilized, whereas 87.1% of the cellulose remained in the solids. After enzymatic hydrolysis of pretreated fibers from the same treatment, the conversion...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  3. On the degradability of printing and dyeing wastewater by wet air oxidation.

    Science.gov (United States)

    Hu, X; Lei, L; Chen, G; Yue, P L

    2001-06-01

    A modified first-order kinetics model was used to study the wet air oxidation of printing and dyeing wastewater. The model simulations are in good agreement with experimental data. The results indicate that a certain fraction of organic pollutants in the printing and dyeing wastewater could not be removed even at elevated temperature and prolonged reaction time. The ratio of degradable organic matter is found independent of temperature and can be improved by using a catalyst.

  4. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor.

    Science.gov (United States)

    Hassan, Sedky H A; Van Ginkel, Steven W; Oh, Sang-Eun

    2013-01-01

    The environmental risk assessment of toxic chemicals in stream water requires the use of a low cost standardized toxicity bioassay. Here, a biosensor for detection of toxic chemicals in stream water was studied using sulfur oxidizing bacteria (SOB) in continuous mode. The biosensor depends on the ability of SOB to oxidize sulfur particles under aerobic conditions to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The biosensor is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that the SOB biosensor can detect Cr(6+)at a low concentration (50 ppb) which is lower than many whole-cell biosensors. The effect of organic material in real stream water on SOB activity was studied. Due to the presence of mixotrophic SOB, we found that the presence of organic matter increases SOB activity which decreases the biosensor start up period. Low alkalinity (22 mg L(-1) CaCO(3)) increased effluent EC and decreased effluent pH which is optimal for biosensor operation. While at high alkalinity (820 mg L(-1) CaCO(3), the activity of SOB little decreased. We found that system can detect 50 ppb of Cr(6+) at low alkalinity (22 mg L(-1) CaCO(3)) in few hours while, complete inhibition was observed after 35 h of operation at high alkalinity (820 mg L(-1) CaCO(3)). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Wet oxidative destruction of spent ion-exchange resins using hydrogen peroxide

    International Nuclear Information System (INIS)

    Srinivas, C.; Ramaswamy, M.; Theyyunni, T.K.

    1994-01-01

    Spent organic ion exchange resins are generated in large quantities during the operation of nuclear facilities. Wet oxidation as a mode of treatment of these gel-type ion exchange resins was investigated using H 2 O 2 as oxidant in the presence of CuSO 4 as catalyst. Experiments using commercial samples were conducted at 95-100 deg C under reflux conditions at atmospheric pressure. It was found that the reaction of cation resin with H 2 O 2 was instantaneous whereas with anion resin, there was a lag time. For efficient utilization of the oxidant, low rate of addition of H 2 O 2 , 0.01M concentration of CuSO 4 and neutral pH in mixed resin reactions, were found to be useful. Foaming was noted during reactions involving anion resins. This could be controlled by silicone-based agents. The residual solution left after resin oxidation is aqueous in nature and is expected to contain all the radioactivity originally present in the resin. Preliminary experiments showed that it could be efficiently trapped using available inorganic sorbents. Wet oxidation system offers a simple method of converting organic waste into environmentally acceptable inorganic products. (author). 8 refs., 6 figs., 2 tabs

  6. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    Science.gov (United States)

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Wilhelm F. Maier

    2006-11-01

    Full Text Available A method of wet chemical synthesis suitable for high throughput and combinatorial applications has been developed for the synthesis of porous resistive thick-film gas sensors. This method is based on the robot-controlled application of unstable metal oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide sensors is illustrated by representative examples. The electrical characteristics and the sensor performance of the films were measured by high-throughput impedance spectroscopy while supplying various test gases (H2, CO, NO, NO2, propene. Data collection, data mining techniques applied and the best potential sensor materials discovered are presented.

  8. Ag supported on carbon fiber cloth as the catalyst for hydrazine oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Liu, Ran; Ye, Ke; Gao, Yinyi; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2015-01-01

    Highlights: • CFC supported microspherical Ag is obtained by square-wave potential method. • Ag/CFC electrode has high catalytic activity toward hydrazine oxidation. • Hydrazine oxidation on the electrode proceeds by a near 4-electron pathway. - Abstract: Silver particles with microspheric structure are directly electrodeposited on carbon fiber cloth (CFC) substrate by square-wave potential electrodeposition method. The electrocatalytic behaviors of the Ag/CFC electrode toward hydrazine oxidation in alkaline solution are examined by cyclic voltammetry and chronoamperometry. An onset oxidation potential of -0.5 V and a peak current density of 30 mA cm −2 are achieved in the solution containing 1.0 mol L −1 KOH and 20.0 mmol L −1 hydrazine. The microspheric structure of the Ag/CFC electrode provides large electroactive surface area, hence, abundant active sites are vacant for hydrazine oxidation. The calculated apparent activation energies at different potentials show that hydrazine electro-oxidation at higher potential has faster kinetics than that at lower potential. In addition, the transfer electron number of hydrazine oxidation reaction on the Ag/CFC electrode is close to four, suggesting hydrazine is almost completely electrooxidized on the electrode and the full use of hydrazine fuel is basically achieved.

  9. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2003-01-21

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  10. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    Science.gov (United States)

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cloud Nucleating Activity of Non-Spherical Particles: Applications of Wet CCN Measurement to Iodine Oxides

    Science.gov (United States)

    Camp, M. G.; Nakao, S.; Kreidenweis, S. M.

    2013-12-01

    This study employs a new experimental approach to better characterize the hygroscopicity of fractal-like particles. Traditional methods of measuring particle hygroscopicity with a size-resolved Cloud Condensation Nuclei (CCN) set-up require accurate measurement of the dry particle's volume. The relationship between the mobility diameter and the volume is straightforward for a spherical particle, or a slightly irregular particle with a known shape factor, but is not well known for fractal particles. The traditional CCN activity measurement overestimates the amount of solute in a particle when the particle has irregular geometry and thus underestimates hygroscopicity, as measured by the parameter κ developed in Petters and Kreidenweis, 2007. We used a new experimental approach to overcome this challenge: CCN measurements were carried out using wet particles so that the volume of the dry solute does not need to be measured directly. When sufficiently wetted, fractal particles collapse, and the spherical assumption for mobility sizing of the wetted particles is valid. In order to test the wet CCN approach on a fractal particle, iodine oxide particles were generated in a 65 L batch reactor by photolysis of CH2I2 to generate iodine radicals, which subsequently reacted with ozone under dry (RH65%)conditions in two separate series of experiments. The hygroscopicities of generated particles were measured using the traditional dry CCN method and our wet CCN method. For the particles generated under dry conditions, the observed κ for particles measured at low humidity was 0.2, an underestimate, while at RH above 40% κ values were 0.6-0.7, more in line with expectations. The wetted particles' observed higher hygroscopicity was consistent with collapsing of fractal particles at higher RH and was a more accurate determination of their water contents. Particles generated under humid reactor conditions exhibited κ≈0, suggesting the compounds produced via gas phase oxidation

  12. Hydrazide-Derivatized Microgels Bond to Wet, Oxidized Cellulose Giving Adhesion Without Drying or Curing.

    Science.gov (United States)

    Yang, Dong; Gustafsson, Emil; Stimpson, Taylor C; Esser, Anton; Pelton, Robert H

    2017-06-21

    Hydrazide-derivatized poly(N-isopropylacrylamide-co-acrylic acid) microgels gave strong adhesion to wet, TEMPO oxidized, regenerated cellulose membranes without a drying or heating step. Adhesion was attributed to hydrazone covalent bond formation with aldehyde groups present on the cellulose surfaces. This is one of only three chemistries we have found that gives significant never-dried adhesion between wet cellulose surfaces. By contrast, for cellulose joints that have been dried and heated before wet testing, the hydrazide-hydrazone chemistry offers no advantages over standard paper industry wet strength resins. The design rules for the hydrazide-microgel adhesives include: cationic microgels are superior to anionic gels; the lower the microgel cross-link density, the higher the adhesion; longer PEG-based hydrazide tethers offer no advantage over shorter attachments; and, adhesion is independent of microgel diameter. Many of these rules were in agreement with predictions of a simple adhesion model where the microgels were assumed to be ideal springs. We propose that the unexpected, high cohesion between neighboring microgels in multilayer films was a result of bond formation between hydrazide groups and residual NHS-carboxyl esters from the preparation of the hydrazide microgels.

  13. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium

    Science.gov (United States)

    Chen, Dayi; Minteer, Shelley D.

    2015-06-01

    Nickel based catalysts have been studied as catalysts for either organic compound (especially methanol) oxidation or oxygen evolution reactions in alkaline medium for decades, but methanol oxidation and oxygen evolution reactions occur at a similar potential range and pH with nickel based catalysts. In contrast to previous studies, we studied these two reactions simultaneously under various pH and methanol concentrations with electrodes containing a series of NiOOH surface concentrations. We found that nickel based catalysts are more suitable to be used as oxygen evolution catalysts than methanol oxidation catalysts based on the observation that: The rate-determining step of methanol oxidation involves NiOOH, OH- and methanol while high methanol to OH- ratio could poison the NiOOH sites. Since NiOOH is involved in the rate-determining step, methanol oxidation suffers from high overpotential and oxygen evolution is favored over methanol oxidation in the presence of an equivalent amount (0.1 M) of alkali and methanol.

  14. Microwave-assisted pechini synthesis of Pd-Ni nanocatalyst for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Rohwer, M

    2012-11-01

    Full Text Available counterparts. For these reasons, electrocatalysts for the oxidation of ethanol in alkaline medium deserve special attention. Pd and its alloys, e.g. Pd-Ni, have been investigated widely as catalysts for ethanol electro-oxidation, and form the subject...

  15. A gravimetric method for the determination of oxygen in uranium oxides and ternary uranium oxides by addition of alkaline earth compounds

    International Nuclear Information System (INIS)

    Fujino, Takeo; Tagawa, Hiroaki; Adachi, Takeo; Hashitani, Hiroshi

    1978-01-01

    A simple gravimetric determination of oxygen in uranium oxides and ternary uranium oxides is described. In alkaline earth uranates which are formed by heating in air at 800-1100 0 C, uranium is in the hexavalent state over certain continuous ranges of alkaline earth-to-uranium ratios. Thus, if an alkaline earth uranate or a compound containing an alkaline earth element, e.g. MgO, is mixed with the oxide sample and heated in air under suitable conditions, oxygen can be determined from the weight change before and after the reaction. The standard deviation of the O:U ratio for a UOsub(2+x) test sample is +-0.0008-0.001, if a correction is applied for atmospheric moisture absorbed during mixing. (Auth.)

  16. Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; Jennifer Paradis

    2010-06-30

    This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the

  17. Wet oxidative degradation of cellulosic wastes 5- chemical and thermal properties of the final waste forms

    International Nuclear Information System (INIS)

    Eskander, S.B.; Saleh, H.M.

    2002-01-01

    In this study, the residual solution arising from the wet oxidative degradation of solid organic cellulosic materials, as one of the component of radioactive solid wastes, using hydrogen peroxide as oxidant. Were incorporated into ordinary Portland cement matrix. Leaching as well as thermal characterizations of the final solidified waste forms were evaluated to meet the final disposal requirements. Factors, such as the amount of the residual solution incorporated, types of leachant. Release of different radionuclides and freezing-thaw treatment, that may affect the leaching characterization. Were studied systematically from the data obtained, it was found that the final solid waste from containing 35% residual solution in tap water is higher than that in ground water or sea water. Based on the data obtained from thermal analysis, it could be concluded that incorporating the residual solution form the wet oxidative degradation of cellulosic materials has no negative effect on the hydration of cement materials and consequently on the thermal stability of the final solid waste from during the disposal process

  18. Metatranscriptomic and metagenomic description of the bacterial nitrogen metabolism in waste water wet oxidation effluents

    Directory of Open Access Journals (Sweden)

    Julien Crovadore

    2017-10-01

    Full Text Available Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS. For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA and nitrogen fixation processes in AS. Keywords: Applied sciences, Biological sciences, Environmental science, Genetics, Microbiology

  19. Green synthesis of core-shell gold-palladium@palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media

    Science.gov (United States)

    Zheng, Jie-Ning; Li, Shan-Shan; Ma, Xiaohong; Chen, Fang-Yi; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-09-01

    Well-defined core-shell gold-palladium@palladium nanocrystals (AuPd@Pd) are facilely prepared by a simple and green wet-chemical method at 25 °C. A Good's buffer, 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES), is used as a reducing agent and a shape-directing agent, while there is no template, seed, organic solvent, or surfactant involved. The AuPd@Pd nanocrystals are uniformly dispersed on graphene nanosheets by ultrasonication, resulting in the formation of graphene supported AuPd@Pd (G-AuPd@Pd). The as-prepared nanocomposites exhibit the improved catalytic activity, good tolerance, and better stability for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline media, compared with the G-Pd and commercial Pd black catalysts. The as-developed method may provide a promising pathway for large-scale fabrication of AuPd-based catalysts.

  20. Performance improvement and better scalability of wet-recessed and wet-oxidized AlGaN/GaN high electron mobility transistors

    Science.gov (United States)

    Takhar, Kuldeep; Meer, Mudassar; Upadhyay, Bhanu B.; Ganguly, Swaroop; Saha, Dipankar

    2017-05-01

    We have demonstrated that a thin layer of Al2O3 grown by wet-oxidation of wet-recessed AlGaN barrier layer in an AlGaN/GaN heterostructure can significantly improve the performance of GaN based high electron mobility transistors (HEMTs). The wet-etching leads to a damage free recession of the gate region and compensates for the decreased gate capacitance and increased gate leakage. The performance improvement is manifested as an increase in the saturation drain current, transconductance, and unity current gain frequency (fT). This is further augmented with a large decrease in the subthreshold current. The performance improvement is primarily ascribed to an increase in the effective velocity in two-dimensional electron gas without sacrificing gate capacitance, which make the wet-recessed gate oxide-HEMTs much more scalable in comparison to their conventional counterpart. The improved scalability leads to an increase in the product of unity current gain frequency and gate length (fT × Lg).

  1. Bench scale demonstration and conceptual engineering for DETOXSM catalyzed wet oxidation

    International Nuclear Information System (INIS)

    Moslander, J.; Bell, R.; Robertson, D.; Dhooge, P.; Goldblatt, S.

    1994-01-01

    Laboratory and bench scale studies of the DETOX SM catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals' fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes

  2. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Lisiecki, P.; Holm-Nielsen, J.B.

    2008-01-01

    was investigated using 2 1 bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation....... No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage. (C) 2007...

  3. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater

    Directory of Open Access Journals (Sweden)

    Nancy R. Sanabria

    2012-01-01

    Full Text Available This paper focuses on the use of pillared clays as catalysts for the Fenton-like advanced oxidation, specifically wet hydrogen peroxide catalytic oxidation (WHPCO. This paper discusses the limitations on the application of a homogeneous Fenton system, development of solid catalysts for the oxidation of phenol, advances in the synthesis of pillared clays, and their potential application as catalysts for phenol oxidation. Finally, it analyzes the use of pillared clays as heterogeneous Fenton-like catalysts for a real wastewater treatment, emphasizing the oxidation of phenolic compounds present in coffee wastewater. Typically, the wet hydrogen peroxide catalytic oxidation in a real effluent system is used as pretreatment, prior to biological treatment. In the specific case of coffee wet processing wastewater, catalytic oxidation with pillared bentonite with Al-Fe is performed to supplement the biological treatment, that is, as a posttreatment system. According to the results of catalytic activity of pillared bentonite with Al-Fe for oxidation of coffee processing wastewater (56% phenolic compounds conversion, 40% selectivity towards CO2, and high stability of active phase, catalytic wet hydrogen peroxide oxidation emerges as a viable alternative for management of this type of effluent.

  4. Steady-state analysis of the nickel oxide in neutral and weakly alkaline solutions

    International Nuclear Information System (INIS)

    Albu, C.; Deconinck, D.; Hotoiu, L.; Deconinck, J.; Topa, V.

    2013-01-01

    Thin passive nickel oxides are investigated in neutral and weakly alkaline pH solutions under steady-state conditions. The chemical species considered in the oxide film are nickel interstitials and vacancies, as well as oxygen vacancies. The set of differential equations used in this study is solved using the finite element method (FEM) and is able to reproduce the experimental data present in the literature. Steady-state oxide thickness variation with the applied electrode potential presents a linear behavior with an average slope of 2 nm/V. The role of dominant species in these thin films is investigated in terms of current density produced by the reactions at the interfaces, the reactions involving production and consumption of Ni 2+ vacancies playing a major role in the steady-state properties of the oxide. We show that the mass transport of species in the oxide is influenced more by the migration component of the flux than the diffusion component. Our results also show that the flux of Ni 2+ vacancies is approximately two orders of magnitude higher than the flux of oxygen vacancies and Ni 2+ interstitials, making them the dominant defects in the oxide (thus the p-type electronic character is present). Also, the Ni 2+ vacancies were found to have density levels of 10 20 –10 21 cm −3 close to the metal–film interface. Variations of the steady-state thickness and logarithm of the current density with the electrolyte pH, show a linear increase and decrease respectively. Some of these results are compared with data from experiments and simulations done on the iron oxide, showing that Ni forms steady-state passive films that are thinner than the ones formed on Fe under the same environment conditions (pH, temperature, and applied potential)

  5. Wet etching of InSb surfaces in aqueous solutions: Controlled oxide formation

    Energy Technology Data Exchange (ETDEWEB)

    Aureau, D., E-mail: damien.aureau@chimie.uvsq.fr [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France); Chaghi, R.; Gerard, I. [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France); Sik, H.; Fleury, J. [Sagem Defense Sécurité, 72-74, rue de la tour Billy, 95101, Argenteuil Cedex (France); Etcheberry, A. [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France)

    2013-07-01

    This paper investigates the wet etching of InSb surfaces by two different oxidant agents: Br{sub 2} and H{sub 2}O{sub 2} and the consecutive oxides generation onto the surfaces. The strong dependence between the chemical composition of the etching baths and the nature of the final surface chemistry of this low band-gap III–V semiconductor will be especially highlighted. One aqueous etching solution combined hydrobromic acid and Bromine (HBr–Br{sub 2}:H{sub 2}O) with adjusted concentrations. The other solution combines orthophosphoric and citric acids with hydrogen peroxide (H{sub 3}PO{sub 4}–H{sub 2}O{sub 2}:H{sub 2}O). Depending on its composition, each formulation gave rise to variable etching rate. The dosage of Indium traces in the etching solution by atomic absorption spectroscopy (AAS) gives the kinetic variation of the dissolution process. The variations on etching rates are associated to the properties and the nature of the formed oxides on InSb surfaces. Surface characterization is specifically performed by X-ray photoelectron spectroscopy (XPS). A clear evidence of the differences between the formed oxides is highlighted. Atomic force microscopy is used to monitor the surface morphology and pointed out that very different final morphologies can be reached. This paper presents new results on the strong variability of the InSb oxides in relation with the InSb reactivity toward environment interaction.

  6. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    Science.gov (United States)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  7. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  8. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  9. Treatment of toxic and hazardous organic wastes by wet oxidation process with oxygenated water at low temperature

    International Nuclear Information System (INIS)

    Piccinno, T.; Salluzzo, A.; Nardi, L.; Gili, M.; Luce, A.; Troiani, F.; Cornacchia, G.

    1989-11-01

    The wet oxidation process using air or molecular oxygen is a well-known process from long time. It is suitable to oxidize several types of waste refractory to the usual biological, thermal and chemical treatments. The drastic operating conditions (high pressures and temperatures) prevented its industrial development. In the last years a new interest was assigned to the process for the treatment of nuclear wastes (organic resins and exhaust organic wastes); the treatment is carried out at widely reduced operating conditions (atmospheric pressure and boiling temperature) by means of metallic catalysts and hydrogen peroxide. With some limits, the wet oxidation with hydrogen peroxide at low temperature can be applied to conventional waste waters containing toxic organic compounds. In the present report are summarized the activities developed at ENEA Fuel Cycle Department by the task force 'Deox' constituted by laboratory and plant specialists in order to verify the application of the wet oxidation process to the treatment of the toxic wastes. (author)

  10. Effective treatment of oily scum via catalytic wet persulfate oxidation process activated by Fe2.

    Science.gov (United States)

    Yuan, Xingzhong; Guan, Renpeng; Wu, Zhibin; Jiang, Longbo; Li, Yifu; Chen, Xiaohong; Zeng, Guangming

    2018-04-05

    Oily scum, a hazardous by-product of petroleum industry, need to be deposed urgently to reduce environmental risks. This paper introduces catalytic wet persulfate oxidation (CWPO) process in the treatment of oily scum to realize risk relief. Under the activation of heat and Fe 2+ , persulfate (PS) was decomposed into sulfate radicals and hydroxyl radicals, which played a major role on the degradation of petroleum hydrocarbons. The effects of wet air oxidation (WAO) and CWPO process on the degradation of oily scum were compared. In CWPO process, the total petroleum hydrocarbons (TPHs) content of oily scum was decreased from 92.63% to 16.75%, which was still up to 70.19% in WAO process. The degradation rate of TPHs in CWPO process was about 3.38 times higher than that in WAO process. The great performance of CWPO process was also confirmed by elemental analysis, which indicated that the C and H contents of oily scum were reduced significantly by CWPO process. These results indicated that CWPO process has high potential on the degradation of oily scum for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration.

    Science.gov (United States)

    Blöcher, Christoph; Niewersch, Claudia; Melin, Thomas

    2012-04-15

    Phosphorus recovery from sewage sludge will become increasingly important within the next decades due to depletion of mineral phosphorus resources. In this work a new process concept was investigated, which aims at realising phosphorus recovery in a synergistic way with the overall sewage sludge treatment scheme. This process combines a low pressure wet oxidation for sewage sludge decomposition as well as phosphorus dissolution and a nanofiltration process to separate phosphorus from heavy metals and obtain a clean diluted phosphoric acid, from which phosphorus can be recovered as clean fertiliser. It was shown that this process concept is feasible for sewage sludge for wastewater treatment plants that apply enhanced biological removal or precipitation with alumina salts for phosphorus removal. The critical parameter for phosphorus dissolution in the low pressure wet oxidation process is the iron concentration, while in the nanofiltration multi-valent cations play a predominant role. In total, a phosphorus recovery of 54% was obtained for an exemplary wastewater treatment plant. Costs of the entire process are in the same range as conventional sewage sludge disposal, with the benefit being phosphorus recovery and reduced emission of greenhouse gases due to avoidance of sludge incineration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Green chemicals from pulp production black liquor by partial wet oxidation.

    Science.gov (United States)

    Muddassar, Hassan Raja; Melin, Kristian; de Villalba Kokkonen, Daniela; Riera, Gerard Viader; Golam, Sarwar; Koskinen, Jukka

    2015-11-01

    To reduce greenhouse gas emissions, more sustainable sources of energy, fuel and chemicals are needed. Biomass side streams such as black liquor, which is a by-product of pulp production, has the potential to be used for this purpose. The aim of the study was the production of carboxylic acids, such as lactic acid, formic acid and acetic acid, from kraft and non-wood black liquor. The processes studied were partial wet oxidation (PWO) and catalytic partial wet oxidation (CPWO). The results show that the yield of carboxylic acid is higher when treated by PWO than the results from CPWO at temperatures of 170 °C and 230 °C. The results shows that the PWO process can increase the yield of carboxylic acids and hydroxy acids in black liquor, reduce lignin content and decrease pH, which makes further separation of the acids more favourable. The hydroxy acids are valuable raw materials for biopolymers, and acetic acid and formic acid are commonly used chemicals conventionally produced from fossil feedstock. © The Author(s) 2015.

  13. Spectroscopic and mechanistic investigations into oxidation of aspartame by diperiodatocuprate(III in aqueous alkaline medium

    Directory of Open Access Journals (Sweden)

    Jayant I. Gowda

    2015-12-01

    Full Text Available The oxidation of aspartame (ASP by diperiodatocuprate(III (DPC in aqueous alkaline medium at 298 K and a constant ionic strength of 0.30 mol dm−3 was studied spectrophotometrically. The reaction between aspartame and diperiodatocuprate(III in alkaline medium exhibits 1:6 stoichiometry in the reaction. The order of the reaction with respect to [diperiodatocuprate(III] was unity, while the apparent order with respect to [aspartame] was less than unity over the concentration range studied. The rate of the reaction increased with increase in [OH−] whereas the rate decreased with increase in [$ {\\text{IO}}^-_4 $]. Increasing the ionic strength of the medium increased the rate. The main products were identified by FT-IR, NMR, and LC-MS spectral studies. The probable mechanism was proposed. The activation parameters with respect to slow step of the mechanism were computed and discussed. Thermodynamic quantities were also calculated. Kinetic studies suggest that [Cu(H2IO6(H2O2] is the reactive species of Cu(III.

  14. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.

    Science.gov (United States)

    DuanMu, Huizi; Wang, Yang; Bai, Xi; Cheng, Shufei; Deyholos, Michael K; Wong, Gane Ka-Shu; Li, Dan; Zhu, Dan; Li, Ran; Yu, Yang; Cao, Lei; Chen, Chao; Zhu, Yanming

    2015-11-01

    Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.

  15. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater.

    Science.gov (United States)

    Melero, J A; Martínez, F; Botas, J A; Molina, R; Pariente, M I

    2009-09-01

    The aim of this work was to assess the treatment of wastewater coming from a pharmaceutical plant through a continuous heterogeneous catalytic wet peroxide oxidation (CWPO) process using an Fe(2)O(3)/SBA-15 nanocomposite catalyst. This catalyst was preliminary tested in a batch stirred tank reactor (STR), to elucidate the influence of significant parameters on the oxidation system, such as temperature, initial oxidant concentration and initial pH of the reaction medium. In that case, a temperature of 80 degrees C using an initial oxidant concentration corresponding to twice the theoretical stoichiometric amount for complete carbon depletion and initial pH of ca. 3 allow TOC degradation of around 50% after 200 min of contact time. Thereafter, the powder catalyst was extruded with bentonite to prepare pellets that could be used in a fixed bed reactor (FBR). Results in the up-flow FBR indicate that the catalyst shows high activity in terms of TOC mineralization (ca. 60% under steady-state conditions), with an excellent use of the oxidant and high stability of the supported iron species. The activity of the catalyst is kept constant, at least, for 55h of reaction. Furthermore, the BOD(5)/COD ratio is increased from 0.20 to 0.30, whereas the average oxidation stage (AOS) changed from 0.70 to 2.35. These two parameters show a high oxidation degree of organic compounds in the outlet effluent, which enhances its biodegradability, and favours the possibility of a subsequent coupling with a conventional biological treatment.

  16. Relation of oxidative stress, zinc and alkaline phosphatase in protein energy malnutrition.

    Science.gov (United States)

    Jain, Anuradha; Jadhav, Ashish Anantrao; Varma, Meena

    2013-02-01

    To determine serum zinc (Zn), total anti-oxidant capacity (TAC), malondialdehyde (MDA), alkaline phosphatase (ALP) and albumin in protein energy malnutrition (PEM) and to analyse the appropriateness of using low weight-for-age for detecting childhood under-nutrition. This study comprised 455 children (355 malnourished and 100 normal). They were classified according to the Nutrition Subcommittee of Indian Academy of Pediatrics, Z-Score Classification and Composite Index of Anthropometric Failure. Serum Zn, TAC, MDA, ALP and albumin levels were determined. The serum Zn, TAC, ALP and albumin levels were found to be significantly decreased and MDA levels were significantly increased in malnourished children as compared with control (P nutrition (low weight-for-age) may be missing out a considerable proportion of undernourished children present in the population.

  17. Kinetics and Mechanistic Study of Permanganate Oxidation of Fluorenone Hydrazone in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Ahmed Fawzy

    2016-01-01

    Full Text Available The oxidation kinetics of fluorenone hydrazone (FH using potassium permanganate in alkaline medium were measured at a constant ionic strength of 0.1 mol dm−3 and at 25°C using UV/VIS spectrophotometer. A first-order kinetics has been monitored in the reaction of FH with respect to [permanganate]. Less-than-unit order dependence of the reaction on [FH] and [OH−] was revealed. No pronounced effect on the reaction rate by increasing ionic strength was recorded. Intervention of free radicals was observed in the reaction. The reaction mechanism describing the kinetic results was illustrated which involves formation of 1 : 1 intermediate complex between fluorenone hydrazones and the active species of permanganate. 9H-Fluorenone as the corresponding ketone was found to be the final oxidation product of fluorenone hydrazone as confirmed by GC/MS analysis and FT-IR spectroscopy. The expression rate law for the oxidation reaction was deduced. The reaction constants and mechanism have been evaluated. The activation parameters associated with the rate-limiting step of the reaction, along with the thermodynamic quantities of the equilibrium constants, have been calculated and discussed.

  18. Chemical and structural changes associated with Cu-catalyzed alkaline-oxidative delignification of hybrid poplar.

    Science.gov (United States)

    Li, Zhenglun; Bansal, Namita; Azarpira, Ali; Bhalla, Aditya; Chen, Charles H; Ralph, John; Hegg, Eric L; Hodge, David B

    2015-01-01

    Alkaline hydrogen peroxide pretreatment catalyzed by Cu(II) 2,2'-bipyridine complexes has previously been determined to substantially improve the enzymatic hydrolysis of woody plants including hybrid poplar as a consequence of moderate delignification. In the present work, cell wall morphological and lignin structural changes were characterized for this pretreatment approach to gain insights into pretreatment outcomes and, specifically, to identify the extent and nature of lignin modification. Through TEM imaging, this catalytic oxidation process was shown to disrupt cell wall layers in hybrid poplar. Cu-containing nanoparticles, primarily in the Cu(I) oxidation state, co-localized with the disrupted regions, providing indirect evidence of catalytic activity whereby soluble Cu(II) complexes are reduced and precipitated during pretreatment. The concentration of alkali-soluble polymeric and oligomeric lignin was substantially higher for the Cu-catalyzed oxidative pretreatment. This alkali-soluble lignin content increased with time during the catalytic oxidation process, although the molecular weight distributions were unaltered. Yields of aromatic monomers (including phenolic acids and aldehydes) were found to be less than 0.2 % (wt/wt) on lignin. Oxidation of the benzylic alcohol in the lignin side-chain was evident in NMR spectra of the solubilized lignin, whereas minimal changes were observed for the pretreatment-insoluble lignin. These results provide indirect evidence for catalytic activity within the cell wall. The low yields of lignin-derived aromatic monomers, together with the detailed characterization of the pretreatment-soluble and pretreatment-insoluble lignins, indicate that the majority of both lignin pools remained relatively unmodified. As such, the lignins resulting from this process retain features closely resembling native lignins and may, therefore, be amenable to subsequent valorization.

  19. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Richard Rhudy

    2006-06-30

    This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon

  20. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Modibedi, RM

    2011-04-01

    Full Text Available Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  1. Establishing the potential dependent equilibrium oxide coverage on platinum in alkaline solution and its influence on the oxygen reduction

    DEFF Research Database (Denmark)

    Wiberg, Gustav; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Gustav K.H. Wiberg, Matthias Arenz The oxidation process of polycrystalline platinum subjected to alkaline solution is re-examined using a combination of cyclic voltammetry and potential hold techniques in Ar, H2 and O2 purged 0.1...

  2. Platinum Catalysts Supported on Ce, Zr, Pr - Oxides in Catalytic Wet Air Oxidation of Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Duprez, D.; Kappenstein, C.

    2007-01-01

    Roč. 146, č. 3 (2007), s. 1248-1253 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40720504 Keywords : platinum * cerium oxide * carbonate species Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2007

  3. Characterizations of Platinum Catalysts Supported on Ce, Zr, Pr-oxides and Formation of Carbonate Species in Catalytic Wet Air Oxidation of Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Duprez, D.; Kappenstein, C.

    2007-01-01

    Roč. 124, 3-4 (2007), s. 185-190 ISSN 0920-5861 Institutional research plan: CEZ:AV0Z40720504 Keywords : acetic acid * cerium oxide * catalytic wet air oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.764, year: 2007

  4. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    Energy Technology Data Exchange (ETDEWEB)

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  5. The cathodic reduction of dioxygen on uranium oxide in dilute alkaline aqueous solution

    International Nuclear Information System (INIS)

    Hocking, W.H.; Betteridge, J.S.; Shoesmith, D.W.

    1991-09-01

    The cathodic reduction of dioxygen on uranium oxide in dilute alkaline aqueous solutions has been investigated within the context of a program to develop a comprehensive model to predict the behaviour of used CANDU (Canada Deuterium Uranium) nuclear fuel under disposal-vault conditions. Two different kinds of ceramic UO 2 were studied: reactor-grade CANDU fuel with normal p-type electrical conductivity and low-resistance material that exhibits n-type photoelectrochemical behaviour. The transport of electroactive species in solution was controlled by varying the rotation rate of rotating disc electrodes (RDE) and rotating ring-disc electrodes (RRDE). Steady-state polarization measurements were made using the current-interrupt method to compensate for the potential drop caused by ohmic resistance. Any release of peroxide to solution from the UO 2 (disc) surface could be monitored by oxidizing it at the Au ring of an RRDE. The existing theory for the cathodic 0 2 -reduction process as applied to RDE and RRDE experiments has been reviewed as a starting point for the interpretation of the results obtained in our work. (37 figs., 2 tabs., 170 refs.)

  6. Wet Oxidation Pretreatment of Tobacco Stalks and Orange Waste for Bioethanol Production. Preliminary results

    DEFF Research Database (Denmark)

    Martin, Carlos; Fernandez, Teresa; Garcia, Ariel

    2009-01-01

    Wet oxidation (WO) was used as a pretreatment method prior to enzymatic hydrolysis of tobacco stalks and orange waste. The pretreatment, performed at 195 degrees C and an oxygen pressure of 1.2 MPa, for 15 min, in the presence of Na2CO3, increased the cellulose content of the materials and gave...... cellulose recoveries of approximately 90%. The pretreatment enhanced the susceptibility of cellulose to enzymatic hydrolysis. The highest enzymatic convertibility, that of 64.9%, was achieved for pretreated tobacco stalks. The ethanolic fermentation of the WO filtrates, using Saccharomyces cerevisiae......, was inhibited compared to the fermentation of a reference glucose solution. Inhibition was more intense for the filtrate of tobacco stalks than for that of orange waste. The inhibition degree of the volumetric productivity of ethanol was higher (79.1-86.8%) than that of the ethanol yield (7.1-9.5%)....

  7. Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports.

    Science.gov (United States)

    Torrellas, Silvia A; Escudero, Gabriel O; Rodriguez, Araceli R; Rodriguez, Juan G

    2015-01-01

    The effect of acid treatments with HCl and HNO3 on the surface area and surface chemistry of three granular activated carbons was studied. These supports were characterized and the hydrochloric acid treatment leads to the best activated carbon support (AC2-C). The catalytic behavior of Pt, Ru and Fe (1 wt.%) supported on granular activated carbon treated with HCl was tested in the phenylamine continuous catalytic wet air oxidation in a three-phase, high-pressure catalytic reactor over a range of reaction temperatures 130-170ºC and total pressure of 1.0-3.0 MPa at LHSV = 0.4-1 h(-1), whereas the phenylamine concentration range and the catalyst loading were 5-16 mol.m(-3) and 0.5-1.5 g, respectively. Activity as well as conversion varied as a function of the metal, the catalyst preparation method and operation conditions. Higher activities were obtained with Pt incorporated on hydrochloric acid -treated activated carbon by the ion exchange method. In steady state, approximately 98% phenylamine conversion, 77% of TOC and 94% of COD removal, was recorded at 150ºC, 11 mol m(-3) of phenylamine concentration and 1.5 g of catalyst, and the selectivity to non-organic compounds was 78%. Several reaction intermediaries were detected. A Langmuir-Hinshelwood model gave an excellent fit of the kinetic data of phenylamine continuous catalytic wet air oxidation over the catalysts of this work.

  8. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium

    International Nuclear Information System (INIS)

    Brandalise, Michele

    2012-01-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  9. Physical and spectroscopic studies of Cr{sup 3+} doped mixed alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samdani, E-mail: samdanimohd82@gmail.com [Department of Engineering, Salalah College of Technology, Salalah (Oman); Ramadevudu, G. [Department of Physics, Vasavi College of Engineering, Ibrahimbagh, Hyderabad 500031, Telangana (India); Chary, M. Narasimha; Shareefuddin, Md. [Department of Physics, Osmania University, Hyderabad 500007, Telangana (India)

    2017-01-15

    A series of mixed alkaline earth oxide glasses xMgO-(30-x)BaO-69.8B{sub 2}O{sub 3}-0.2Cr{sub 2}O{sub 3} were prepared and studied using electron paramagnetic resonance (EPR), optical absorption, Raman spectroscopy and photoluminescence experimental techniques. The optical absorption spectra revealed the characteristic octahedral symmetry of Cr{sup 3+}ions through three broad band transitions {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 1g}(F), and {sup 4}A{sub 2g}(F)→ {sup 2}T{sub 1g}(P). The crystal field (Dq) and Racah parameters (B and C), the optical band gap and Urbach energies of the glass samples were also reported along with the physical properties like density and molar volume. In the EPR spectra three resonance signals corresponding to Cr3+ ions were observed. A broad signal with g = 5.110 was observed which belongs to the isolated Cr3+ centers localized in the strongly distorted octahedral (rhombic) sites of the glass network, a narrow signal (g = 1.960) corresponding to the Cr{sup 3+} centers in the weekly distorted (cubic) sites of the glass network, and a third very broad signal (g = 2.210) was also observed corresponding to Cr{sup 3+}- Cr{sup 3+} paired centers coupled by magnetic dipolar interaction. Another resonance signal with effective value g ≈ 4.220 was attributed to Fe{sup 3+} ions impurity. The number of spins (N) participating in the resonance and susceptibility (χ) values at room temperature were reported and their values varied in a non-linear manner with the composition exhibiting mixed oxide effect. The estimated molecular bonding coefficients (α) values indicated stronger ionic contribution. The Raman spectral investigations were carried out. The Photoluminescence spectra bands near 690 and 750 nm correspond to the Cr{sup 3+} centers in high and low field sites respectively. - Highlights: • Spectroscopic studies were made on alkaline earth borate glasses. • Three resonance signals

  10. High electrocatalytic performance of nitrogen-doped carbon nanofiber-supported nickel oxide nanocomposite for methanol oxidation in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Al-Enizi, Abdullah M. [Department of Chemistry, King Saud University, PO Box: 2455, Riyadh 11451 (Saudi Arabia); Elzatahry, Ahmed A., E-mail: aelzatahry@ksu.edu.sa [Materials Science and Technology Program, College of Arts and Science, Qatar University, Doha 2713 (Qatar); Advanced Technology and New Materials Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria 21934 (Egypt); Abdullah, Aboubakr M., E-mail: bakr@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Vinu, Ajayan [Future Industries Institute, University of South Australia, Building X-X2-09, Mawson Lakes Campus, Mawson Lakes 5095 SA (Australia); Iwai, Hideo [Materials Analysis Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan); Al-Deyab, Salem S. [Petrochemical Research Chair, Department of Chemistry, King Saud University, PO Box: 2455, Riyadh 11451 (Saudi Arabia)

    2017-04-15

    Highlights: • A mixture of Polyvinylpyrrolidone (PVP), graphene and emeraldine base polyaniline (PANi) was electrospun and used as starting materials to prepare a nitrogen-doped carbon nanofiber (N-CNF). • Nickel oxide was loaded on the N-CNF to form a nanocomposite which was calcined later at different temperatures. • The effect of calcination temperature on the electrocatalytic behavior of the nanocomposite was studied which shows that the nanocomposite calcined at 500 °C was proved to be very high compared to the other calcination temperatures. • The stability of catalyst was excellent and its resistance to the adsorption of the intermediates generated from the methanol oxidation was very high. - Abstract: Nitrogen-Doped Carbon Nanofiber (N-CNF)–supported NiO composite was prepared by electrospinning a sol-gel mixture of graphene and polyaniline (PANi) with aqueous solutions of Polyvinylpyrrolidone (PVP) followed by a high-temperature annealing process. The electrospun was stabilized for 2 h at 280 °C, carbonized for 5 h at 1200 °C then loaded by 10% NiO. The electrocatalytic activities of the produced nanocomposite have been studied using cyclic voltammetry, and chronoamperometry. Also, N-CNF was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and scanning-electron microscopy (SEM). The obtained N-doped carbon nanofiber was found to have a nitrogen content of 2.6 atomic% with a diameter range of (140–160) nm, and a surface area (393.3 m{sup 2} g{sup −1}). In addition, it showed a high electrocatalytic behavior towards methanol oxidation reaction in alkaline medium and high stability and resistivity to the adsorption of intermediates.

  11. Ruthenium versus platinum on cerium materials in wet air oxidation of acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gaalova, J. [Institute of Chemical Process Fundamentals of the CAS, Rozvojova 135, 165 02 Prague 6, CZ (Czech Republic); Barbier, J., E-mail: Jacques.barbier.jr@univ-poitiers.fr [University of Poitiers, LACCO UMR 6503, Laboratoire de Catalyse par les Metaux, 40 Avenue du Recteur Pineau, F-86022 POITIERS Cedex (France); Rossignol, S. [University of Limoges, ENSCI, 47 Avenue Albert Thomas 87000 Limoges France (France)

    2010-09-15

    This study was a comparison between Ru-catalysts and similar, previously investigated, Pt-catalysts. In this paper, ruthenium catalysts for catalytic wet air oxidation are prepared, characterized and tested. Both catalysts were supported on commercial CeO{sub 2} as well as mixed oxide Zr{sub 0.1}(Ce{sub 0.75}Pr{sub 0.25}){sub 0.9}O{sub 2}. The catalysts were characterized by measuring the oxygen storage capacities (OSC), BET, XRD, FTIR and chemisorption of hydrogen. In addition, the effect of sintering (treatments under H{sub 2}) was compared with both of the catalysts. The comparison of the results showed that initial intrinsic activity of ruthenium is not significantly influenced by the type of the support, which is contrast to platinum. Furthermore, the particle size of Ru had an important effect on CWAO activity: the higher the particle size, the better the activity. This was different with Pt-catalysts, where the optimal particle size was smaller, having about 15% of metal dispersion.

  12. Colorimetric study of oxidation kinetics of thiolactic acid (2 - mercaptopropionic acid) by hexacyanoferrate (III) in acid and alkaline media

    International Nuclear Information System (INIS)

    Kachhwaha, O.P.; Potter, P.C.; Kapoor, R.C.

    1985-01-01

    The oxidation kinetics of thiolactic acid by hexacyanoferrate (III) in acid and alkaline media employing the calorimetric method have been described. The two compounds react in equimolar ratio in both media, but the kinetic results are different in both media. In acid medium the total order is three, two with respect to thiol and one in oxidant. The rate of the reaction shows an inverse proportionality to (H + ) and also varies inversely with decreasing dielectric constant of the medium. In alkaline medium, the total order of the reaction is two, being unity in each reactant. The rate increases with increased pH value. Additions of ferrocyanide and dithio dilactic acid have no effect on the rate in both media. Additions of a neutral electrolyte does not affect the rate in the acid medium, while a positive salt effect was observed in an alkaline medium. Activation parameters have been evaluated in both media and in a medium of low dialectric. Different reaction schemes have been proposed for acid and alkaline media and have satisfactory explained the experimental data, except for the pH rate. (author)

  13. Vanadium carbide and graphite promoted Pd electrocatalyst for ethanol oxidation in alkaline media

    Science.gov (United States)

    Yan, Zaoxue; Zhang, Mingmei; Xie, Jimin; Shen, Pei Kang

    2013-12-01

    The vanadium carbide particles with the diameter of 1-3 nm on graphitized resin (GC-V8C7) are synthesized through ionic exchange process. The materials are characterized by XRD, Raman, TEM, SEM and EDS measurements. The results prove that the ion-exchange resin as both carbon source and dispersion media favors the formation of very uniform and small (1-3 nm) V8C7 particles, and protect the V8C7 from conglomeration even at the temperature of 1500 °C. Meanwhile, the vanadium compound is found efficient catalytic effect on graphitization of ion-exchange resin, leading to high graphitization degree of GC-V8C7. Pd particles are loaded on the GC-V8C7 materials as electrocatalyst (Pd/GC-V8C7) for ethanol oxidation in alkaline media. The cyclic voltammograms measurements show that both V8C7 and GC (graphitized ion-exchange resin) give Pd electrocatalyst improved catalytic performance in activity, stability and overpotential, compared with that of Pd supporting on Vulcan XC-72 carbon (Pd/C). The present synthesizing method of GC-V8C7 is simple and effective, which can be readily scaled up for mass production of other nanomaterials.

  14. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, G., E-mail: srinu123g@gmail.com; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R. [Department of Physics, Osmania University, Hyderabad, Telangana, India. (India)

    2016-05-06

    The mixed alkali and alkaline earth oxide borate glass with the composition xK{sub 2}O - (25-x) Li{sub 2}O-12.5BaO-12.5MgO-50B{sub 2}O{sub 3} (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α{sub 0}2-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α{sub 0}2-), and (Λ) increases with increasing of K{sub 2}O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K{sub 2}O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  15. Pd-Au/C catalysts with different alloying degrees for ethanol oxidation in alkaline media

    International Nuclear Information System (INIS)

    Qin, Yuan-Hang; Li, Yunfeng; Lv, Ren-Liang; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2014-01-01

    High alloyed Pd-Au/C catalyst is prepared through a rate-limiting strategy in water/ethylene glycol solution. Pd/C and low alloyed Pd-Au/C catalysts are prepared with trisodium citrate and sodium borohydride as stabilizing and reducing agents, respectively. Transmission electron microscopy (TEM) shows that the synthesized Pd(Au) particles are well dispersed on the catalysts. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) show that the high alloyed Pd-Au/C catalyst presents a relatively homogenous structure while the low alloyed Pd-Au/C catalyst presents a Pd-rich shell/Au-rich core structure. Electrochemical characterization shows that the low alloyed Pd-Au/C catalyst exhibits the best catalytic activity for ethanol oxidation reaction (EOR) in alkaline media, which could be attributed to its relatively large exposed Pd surface area as compared with the high alloyed Pd-Au/C catalyst due to its Pd-rich shell structure and its enhanced adsorption of OH ads as compared with Pd/C catalyst due to its core-shell structure

  16. Development of a novel wet oxidation process for hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Dhooge, P.M.

    1994-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described

  17. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    Science.gov (United States)

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Science.gov (United States)

    Angermann, Heike

    2014-09-01

    The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution Dit(E), and density Dit,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on concentrated solutions. Therefore, special attention was put on the development of more environmentally acceptable processes, utilizing e.g. hot pure water with low contents of oxygen or hydrochloric acid, and of ozone, working at ambient temperatures. According to our results, these methods could be a high quality and low cost alternative to current approaches with liquid chemicals for the preparation of hydrophobic Si substrate surfaces and ultra-thin passivating oxide layers. As demonstrated for selected examples, the effect of optimized wet-chemical pre-treatments can be preserved during subsequent soft plasma enhanced chemical vapor depositions of Si oxides (SiOx), or amorphous materials such as Si (a-Si:H), Si nitride (a

  19. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    Science.gov (United States)

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  20. Radio-frequency magnetron sputtering and wet thermal oxidation of ZnO thin film

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-01-01

    The authors studied the growth and wet thermal oxidation (WTO) of ZnO thin films using a radio-frequency magnetron sputtering technique. X-ray diffraction reveals a preferred orientation of [1010]ZnO(0002)//[1120]Al 2 O 3 (0002) coexisted with a small amount of ZnO (1011) and ZnO (1013) crystals on the Al 2 O 3 (0001) substrate. The ZnO (1011) and ZnO (1013) crystals, as well as the in-plane preferred orientation, are absent from the growth of ZnO on the GaAs(001) substrate. WTO at 550 deg. C improves the crystalline and the photoluminescence more significantly than annealing in air, N 2 and O 2 ambient; it also tends to convert the crystal from ZnO (1011) and ZnO (1013) to ZnO (0002). The evolution of the photoluminescence upon WTO and annealing reveals that the green and orange emissions, centered at 520 and 650 nm, are likely originated from oxygen vacancies and oxygen interstitials, respectively; while the 420 nm emission, which is very sensitive to the postgrowth thermal processing regardless of the substrate and the ambient gas, is likely originated from the surface-state related defects

  1. Determination of boron in graphite by a wet oxidation decomposition/curcumin photometric method

    International Nuclear Information System (INIS)

    Watanabe, Kazuo; Toida, Yukio

    1995-01-01

    The wet oxidation decomposition of graphite materials has been studied for the accurate determination of boron using a curcumin photometric method. A graphite sample of 0.5 g was completely decomposed with a mixture of 5 ml of sulfuric acid, 3 ml of perchloric acid, 0.5 ml of nitric acid and 5 ml of phosphoric acid in a silica 100 ml Erlenmeyer flask fitted with an air condenser at 200degC. Any excess of perchloric and nitric acids in the solution was removed by heating on a hot plate at 150degC. Boron was distilled with methanol, and then recovered in 10 ml of 0.2 M sodium hydroxide. The solution was evaporated to dryness. To the residue were added curcumin-acetic acid and sulfuric-acetic acid. The mixture was diluted with ethanol, and the absorbance at 555 nm was measured. The addition of 5 ml of phosphoric acid proved to be effective to prevent any volatilization loss of boron during decomposition of the graphite sample and evaporation of the resulting solution. The relative standard deviation was 4-8% for samples with 2 μg g -1 levels of boron. The results on CRMs JAERI-G5 and G6 were in good agreement with the certified values. (author)

  2. Ruthenium and Platinum Catalysts Supported on Ce, Zr, Pr-O Mixed Oxides Prepared by Soft Chemistry for Acetic Acid Wet Air Oxidation

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Mesnard, D.; Kappenstein, C.; Duprez, D.

    2007-01-01

    Roč. 72, 1-2 (2007), s. 1-10 ISSN 0926-3373 Institutional research plan: CEZ:AV0Z40720504 Keywords : sol-gel * catalytic wet air oxidation * acetic acid Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.651, year: 2007

  3. Electrochemical behaviour of metal hexacyanoferrate converted to metal hydroxide films immobilized on indium tin oxide electrodes-Catalytic ability towards alcohol oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Ganesh, V.; Latha Maheswari, D.; Berchmans, Sheela

    2011-01-01

    Graphical abstract: - Abstract: In this work, we demonstrate a simple method to modify indium tin oxide (ITO) electrodes in order to perform electro-catalytic oxidation of alcohols in alkaline medium. Metal hexacyanoferrate (MHCF) films such as nickel hexacyanoferrate (NiHCF) and copper hexacyanoferrate (CuHCF) were successfully immobilized on ITO electrodes using an electrochemical method. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the structural and morphological aspects of MHCF films. Cyclic voltammetry (CV) was used to study the redox properties and to determine the surface coverage of these films on ITO electrodes. Electrochemical potential cycling was carried out in alkaline medium in order to alter the chemical structure of these films and convert to their corresponding metal hydroxide films. SEM and XPS were performed to analyze the structure and morphology of metal hydroxide modified electrodes. Electro-catalytic oxidation ability of these films towards methanol and ethanol in alkaline medium was investigated using CV. From these studies we found that metal hydroxide modified electrodes show a better catalytic performance and good stability for methanol oxidation along with the alleviation of CO poisoning effect. We have obtained an anodic oxidation current density of ∼82 mA cm -2 for methanol oxidation, which is at least 10 fold higher than that of any metal hydroxide modified electrodes reported till date. The onset potential for methanol oxidation is lowered by ∼200 mV compared to other chemically modified electrodes reported. A plausible mechanism was proposed for the alcohol oxidation based on the redox properties of these modified electrodes. The methodology adapted in this work does not contain costlier noble metals like platinum and ruthenium and is economically viable.

  4. Oxidation Behavior of Mo-Si-B Alloys in Wet Air; TOPICAL

    International Nuclear Information System (INIS)

    M. Kramer; A. Thom; O. Degirmen; V. Behrani; M. Akinc

    2002-01-01

    Multiphase composite alloys based on the Mo-Si-B system are candidate materials for ultra-high temperature applications. In non load-bearing uses such as thermal barrier coatings or heat exchangers in fossil fuel burners, these materials may be ideally suited. The present work investigated the effect of water vapor on the oxidation behavior of Mo-Si-B phase assemblages. Three alloys were studied: Alloy 1= Mo(sub 5)Si(sub 3)B(sub x) (T1)- MoSi(sub 2)- MoB, Alloy 2= T1- Mo(sub 5)SiB(sub 2) (T2)- Mo(sub 3)Si, and Alloy 3= Mo- T2- Mo(sub 3)Si. Tests were conducted at 1000 and 1100C in controlled atmospheres of dry air and wet air nominally containing 18, 55, and 150 Torr H(sub 2)O. The initial mass loss of each alloy was approximately independent of the test temperature and moisture content of the atmosphere. The magnitude of these initial losses varied according to the Mo content of the alloys. All alloys formed a continuous, external silica scale that protected against further mass change after volatilization of the initially formed MoO(sub 3). All alloys experienced a small steady state mass change, but the calculated rates cannot be quantitatively compared due to statistical uncertainty in the individual mass measurements. Of particular interest is that Alloy 3, which contains a significant volume fraction of Mo metal, formed a protective scale. All alloys formed varying amounts of subscale Mo and MoO(sub 2). This implies that oxygen transport through the external silica scale has been significantly reduced. For all alloys, water vapor accelerated the growth of a multiphase interlayer at the silica scale/unoxidized alloy interface. This interlayer is likely composed of fine Mo and MoO(sub 2) that is dispersed within a thin silica matrix. Alloy 3 was particularly sensitive to water accelerated growth of this interlayer. At 1100 C, the scale thickness after 300 hours increased from about 20 mm in dry air to nearly 100 mm in wet air

  5. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  6. Kinetic and Mechanistic Studies of Oxidation of an Antiallergic Drug with Bromamine-T in Acid and Alkaline Media

    International Nuclear Information System (INIS)

    Puttaswamy; Anu Sukhdev

    2012-01-01

    Cetrizine dihydrochloride (CTZH) is widely used as an anti-allergic drug. Sodium N-bromo-p-toluenesulfonamide or bromamine-T (BAT) is the bromine analogue of chloramine-T (CAT) and is found to be a better oxidizing agent than CAT. In the present research, the kinetics of oxidation of CTZH with BAT in acid and alkaline media was studied at 313 K. The experimental rate laws obtained are: -d[BAT]/dt = k[BAT] [CTZH] 0.80 [H + ] -0.48 in acid medium and -d[BAT]/dt = k[BAT][CTZH] 0.48 [OH - ] 0.52 [PTS] -0.40 in alkaline medium where PTS is p-toluenesulfonamide. Activation parameters and reaction constants were evaluated. The solvent isotope effect was studied using D 2 O. The dielectric effect is positive. The stoichiometry of the reaction was found to be 1:1 and the oxidation products were identified as 4-chlorobenzophenone and (2-piperazin-1-yl-ethoxy)-acetic acid in both media. The rate of oxidation of CTZH is faster in acid medium. Suitable mechanisms and related rate laws have been worked out

  7. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    Directory of Open Access Journals (Sweden)

    Narges Milani

    Full Text Available Zinc oxide (ZnO nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP and urea using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF mapping and absorption fine structure spectroscopy (μ-XAFS. Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO42.2H2O and zinc ammonium phosphate (Zn(NH4PO4 species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be

  8. Alkaline peroxide treatment of ECF bleached softwood kraft pulps: part 2. effect of increased fiber charge on refining, wet-end application, and hornification

    Science.gov (United States)

    Zheng Dang; Thomas Elder; Jeffery S. Hsieh; Arthur J. Ragauskas

    2007-01-01

    The effect of increased fiber charge on refining, cationic starch adsorption, and hornification was examined. Two pulps were investigated: (1) a softwood (SW) kraft pulp (KP) which was bleached elementally chlorine-free (ECF) and sewed as control; and (2) a control pulp treated with alkaline peroxide, which had a higher fiber charge. It was shown that increased fiber...

  9. Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation

    Science.gov (United States)

    Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji

    2018-04-01

    The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.

  10. Arsanilic acid modified superparamagnetic iron oxide nanoparticles for Purification of alkaline phosphatase from hen's egg yolk.

    Science.gov (United States)

    Farzi-Khajeh, Hamed; Safa, Kazem D; Dastmalchi, Siavoush

    2017-09-01

    Recent studies of magnetic carrier technology have focused on its applications in separation and purification technologies, due to easy separation of the target from the reaction medium by applying an external magnetic field. In the present study, Fe 3 O 4 superparamagnetic nanoparticles were prepared to utilize a chemical co-precipitation method, then the surfaces of the nanoparticles were modified with arsanilic acid derivatives which were used as the specific nanocarriers for the affinity purification of alkaline phosphatase from the hen's egg yolk. The six different types of magnetic nanocarriers with varied lengths of the linkers were obtained. All samples were characterized step by step and validated using FTIR, SEM, EDX, VSM and XRD analysis methods As the results were shown, the use of inflexible tags with long linkers on the surface of the nanocarrier could lead to better results for separation of alkaline phosphatase from the hen's egg yolk with 76.2% recovery and 1361.7-fold purification. The molecular weight of the purified alkaline phosphatase was estimated to be 68kDa by SDS-PAGE. The results of this study showed that the novel magnetic nanocarriers were capable of purifying alkaline phosphatase in a practically time and cost effective way. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol.

    Science.gov (United States)

    Calleja, G; Melero, J A; Martínez, F; Molina, R

    2005-05-01

    Iron-containing materials have been prepared following several strategies of synthesis and using different silica supports (amorphous, zeolitic and mesostructured materials). Activity and stability of these materials was evaluated on the wet peroxide oxidation of phenol under mild reaction conditions (100 degrees C, air pressure of 1MPa and stoichiometric amount of hydrogen peroxide for the complete mineralisation of phenol). Their catalytic performance was monitored in terms of phenol and total organic carbon (TOC) conversions, by-products distribution (aromatics compounds and carboxylic acids) and degree of metal leached into the aqueous solution. The nature and local environment of iron species is strongly dependent on the synthetic route, which dramatically influences their catalytic performance. Crystalline iron oxide species supported over mesostructured SBA-15 materials have demonstrated to be the most interesting catalysts for phenol degradation according to its high organic mineralisation, low sensitivity to leaching out and good oxidant efficiency.

  12. ALT1, a Snf2 Family Chromatin Remodeling ATPase, Negatively Regulates Alkaline Tolerance through Enhanced Defense against Oxidative Stress in Rice

    Science.gov (United States)

    Guo, Mingxin; Wang, Ruci; Wang, Juan; Hua, Kai; Wang, Yueming; Liu, Xiaoqiang; Yao, Shanguo

    2014-01-01

    Alkaline salt stress adversely affects rice growth, productivity and grain quality. However, the mechanism underlying this process remains elusive. We characterized here an alkaline tolerant mutant, alt1 in rice. Map-based cloning revealed that alt1 harbors a mutation in a chromatin remodeling ATPase gene. ALT1-RNAi transgenic plants under different genetic background mimicked the alt1 phenotype, exhibiting tolerance to alkaline stress in a transcript dosage-dependent manner. The predicted ALT1 protein belonged to the Ris1 subgroup of the Snf2 family and was localized in the nucleus, and transcription of ALT1 was transiently suppressed after alkaline treatment. Although the absorption of several metal ions maintained well in the mutant under alkaline stress, expression level of the genes involved in metal ions homeostasis was not altered in the alt1 mutant. Classification of differentially expressed abiotic stress related genes, as revealed by microarray analysis, found that the majority (50/78) were involved in ROS production, ROS scavenging, and DNA repair. This finding was further confirmed by that alt1 exhibited lower levels of H2O2 under alkaline stress and tolerance to methyl viologen treatment. Taken together, these results suggest that ALT1 negatively functions in alkaline tolerance mainly through the defense against oxidative damage, and provide a potential two-step strategy for improving the tolerance of rice plants to alkaline stress. PMID:25473841

  13. The heterogeneous reactions of silica, titania and zirconia with alkaline-earth metal oxides in metal chloride melts - to form alkaline-earth metal silicates titanates and zirconates. 1

    International Nuclear Information System (INIS)

    Packter, A.; Zaidi, S.A.

    1982-01-01

    The solubility versus temperature phase diagrams, for calcium, strontium and barium oxide (silicate and titanate) solutions in the metal chloride melts at 800 to 1400 0 C, have been analysed. The alkaline-earth metal oxide solutions are binary mixtures with solvate formation and the liquid phases probably contain [O . 4 MCl 2 ] 2- , [O . MCl 2 ] 2- and O 2- anions. The alkaline-earth metal metsilicate solutions are non-ideal binary mixtures and the liquid phases probably contain mainly Si 3 O 9 6- anions: the orthosilicate solutions probably contain [SiO 4 . MCl 2 ] 4- and SiO 4 4- anions. The alkaline-earth metal titanate solutions are ideal binary mixtures upto titanate mole fraction 0.3-0.6 and the liquid phases probably contain only TiO 3 2- anions. The overall ionic equilibria, occurring in the liquid phases during the chemical reactions of silica (and titania) with alkaline-earth metal oxides in metal chloride melts in this temperature range, were thence assessed. (author)

  14. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    Science.gov (United States)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  15. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose

    DEFF Research Database (Denmark)

    Bjerre, A.B.; Bjerring Olesen, A.; Fernqvist, T.

    1996-01-01

    to 10 min) gave about 85% w/w yield of converting cellulose to glucose. The process water, containing dissolved hemicellulose and carboxylic acids, has proven to be a direct nutrient source for the fungus Aspergillus niger producing exo-beta-xylosidase. Furfural and hydroxymethyl-furfural, known...

  16. TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR OUT-OF-TANK DESTRUCTION OF TETRAPHENYLBORATE VIA WET AIR OXIDATION TECHNOLOGY: PHASE I - BENCH SCALE TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K

    2006-03-31

    Tank 48H return to service is critical to the processing of high level waste (HLW) at Savannah River Site (SRS). Liquid Waste Disposition (LWD) management has the goal of returning Tank 48H to routine service by January 2010 or as soon as practical. Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to Tank Farm service. Tank 48H currently contains {approx}240,000 gallons of alkaline slurry with about 2 wt % potassium and cesium tetraphenylborate (KTPB and CsTPB). The main radioactive component in Tank 48H is {sup 137}Cs. The waste also contains {approx}0.15 wt % Monosodium Titanate (MST) which has adsorbed {sup 90}Sr, U, and Pu isotopes. A System Engineering Evaluation of technologies/ideas for the treatment of TPB identified Wet Air Oxidation (WAO) as a leading alternative technology to the baseline aggregation approach. Over 75 technologies/ideas were evaluated overall. Forty-one technologies/ideas passed the initial screening evaluation. The 41 technologies/ideas were then combined to 16 complete solutions for the disposition of TPB and evaluated in detail. Wet Air Oxidation (WAO) is an aqueous phase process in which soluble or suspended waste components are oxidized using molecular oxygen contained in air. The process operates at elevated temperatures and pressures ranging from 150 to 320 C and 7 to 210 atmospheres, respectively. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). The basic flow scheme for a typical WAO system is as follows. The waste solution or slurry is pumped through a high-pressure feed pump. An air stream containing sufficient oxygen to meet the oxygen requirements of the waste stream is

  17. Controlling the shape and gap width of silicon electrodes using local anodic oxidation and anisotropic TMAH wet etching

    International Nuclear Information System (INIS)

    Rouhi, Jalal; Mahmud, Shahrom; Naderi, Nima; Abdullah, Mat Johar; Hutagalung, Sabar Derita; Kakooei, Saeid

    2012-01-01

    A simple method for fabricating silicon electrodes with various shapes and gap widths was designed using the special properties of anisotropic tetramethylammonium hydroxide (TMAH) wet etching and local anodic oxidation (LAO). A statistical system was used for the optimization of the parameters of the LAO process to facilitate a better understanding and precise analysis of the process. Analyses of the interaction effects among the significant factors of LAO showed that the relative humidity and applied voltage were interdependent. They had the strongest interaction effect on the dimensions of the oxide mask. TMAH with a concentration of 25% was used as an etchant solution in (1 0 0) silicon with a rectangular oxide mask. The observed undercutting at convex corners, tip shape of emitters and gap widths of electrodes were exactly consistent with theoretical studies. Combination of the LAO method and anisotropic TMAH wet etching was successfully used to fabricate Si nano-gap electrodes. This fabrication method of sharp and round tip emitters was simple, controllable and faster than common techniques. These results indicate that the method can be a new approach for studying the electrical properties of nano-gap electrodes. (paper)

  18. Microwave activation of palladium nanoparticles for enhanced ethanol electrocatalytic oxidation reaction in alkaline medium

    CSIR Research Space (South Africa)

    Rohwer, MB

    2015-02-01

    Full Text Available gave higher electrochemical active surface area (EASA= 67 m(SUP2)g(SUP-1), aggregation/uniformity of dispersion, showed higher amount of the palladium oxides, and showed remarkable electrocatalytic behaviour towards ethanol oxidation reaction...

  19. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    Science.gov (United States)

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Microwave-Assisted Synthesis of Co3(PO42 Nanospheres for Electrocatalytic Oxidation of Methanol in Alkaline Media

    Directory of Open Access Journals (Sweden)

    Prabhakarn Arunachalam

    2017-04-01

    Full Text Available Low-cost and high-performance advanced electrocatalysts for direct methanol fuel cells are of key significance for the improvement of environmentally-pleasant energy technologies. Herein, we report the facile synthesis of cobalt phosphate (Co3(PO42 nanospheres by a microwave-assisted process and utilized as an electrocatalyst for methanol oxidation. The phase formation, morphological surface structure, elemental composition, and textural properties of the synthesized (Co3(PO42 nanospheres have been examined by powder X-ray diffraction (XRD, Fourier transform-infrared spectroscopy (FT-IR, field emission-scanning electron microscopy (FE-SEM, high-resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, and nitrogen adsorption-desorption isotherm investigations. The performance of an electrocatalytic oxidation of methanol over a Co3(PO42 nanosphere-modified electrode was evaluated in an alkaline solution using cyclic voltammetry (CV and chronopotentiometry (CP techniques. Detailed studies were made for the methanol oxidation by varying the experimental parameters, such as catalyst loading, methanol concentration, and long-term stability for the electro-oxidation of methanol. The good electrocatalytic performances of Co3(PO42 should be related to its good surface morphological structure and high number of active surface sites. The present investigation illustrates the promising application of Co3(PO42 nanospheres as a low-cost and more abundant electrocatalyst for direct methanol fuel cells.

  1. Microwave assisted synthesis and characterization of Ni/NiO nanoparticles as electrocatalyst for methanol oxidation in alkaline solution

    Science.gov (United States)

    Arunachalam, Prabhakarn; Ghanem, Mohamed A.; Al-Mayouf, Abdullah M.; Al-shalwi, Matar; Hamed Abd-Elkader, Omar

    2017-02-01

    Nickel/Nickel oxide (Ni/NiO) nanoparticles catalyst is prepared by microwave-assisted liquid-phase deposition using ethylene glycol (EG) and water mixture under atmospheric conditions. The physicochemical characterizations of the catalyst carried out by surface area analyzer, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electron microscopes measurements suggest the formation of crystalline nanoparticles structure of NiO. The surface area of Ni/NiO prepared using EG/water mixture reaches 70 m2 g-1 which is 2-fold enhsancement in surface area in comparison with NiO prepared in pure EG and an order of magnitude higher than that of bulk nickel prepared in pure water. The methanol electro-oxidation activity of the Ni/NiO nanoparticles obtained in EG/water mixture displayed more than 4-fold increase in oxidation current at 1.7 V versus RHE in comparison with NiO nanoparticles obtained in EG and 20-fold increase compared to bulk nickel catalyst concord with the enhancement of electro-active surface area. The results show the Ni/NiO nanoparticles produced by microwave assisted synthesis has superior activity for methanol oxidation in alkaline solution over the other nickel based catalysts and has potential for mass production.

  2. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  3. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... conversion efficiency during SSF was 50, 62 65 and 70% for a total enzyme loading of 5, 10, 15 and 25 FPU g(-1) DS, respectively. Hence, this study shows that wet oxidation is a suitable pre-treatment for the conversion of organic waste carbohydrates into ethanol and that compatible conversion yields (60......-toxic carboxylic acids mainly (2.2-4.5 % on DS basis). Simultaneous saccharification and fermentation (SSF) of the treated waste at 10% DS by Saccharomyces cerevisae yielded average ethanol concentrations of 16.5 to 22 g l(-1) for enzyme loadings of 5 and 25 FPU g(-1) DS, respectively. The cellulose to ethanol...

  4. Wet oxidation pre-treatment of woody yard waste: Parameter optimization and enzymatic digestibility for ethanol production

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Woody yard waste with high lignin content (22% of dry matter (DM)) was subjected to wet oxidation pre-treatment for subsequent enzymatic conversion and fermentation. The effects of temperature (185-200 degreesC), oxygen pressure (3-12 bar) and addition of sodium carbonate (0-3.3 g per 100 g DM...... biomass) on enzymatic cellulose and hemicellulose (xylan) convertibility were studied. The enzymatic cellulose conversion was highest after wet oxidation for 15 min at 185 degreesC with addition of 12 bars of oxygen and 3.3 g Na2CO3 per 100g waste. At 25 FPU (filter paper unit) cellulase g(-1) DM added......, 58-67% and 80-83% of the cellulose and hemicellulose contained in the waste were converted into monomeric sugars. The cellulose conversion efficiency during a simultaneous saccharification and fermentation (SSF) assay at 10% DM was 79% for the highest enzyme loading (25 FPU g(-1) DM) while 69...

  5. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    International Nuclear Information System (INIS)

    Azabou, Samia; Najjar, Wahiba; Bouaziz, Mohamed; Ghorbel, Abdelhamid; Sayadi, Sami

    2010-01-01

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H 2 O 2 /ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H 2 O 2 ) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H 2 O 2 ), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H 2 O 2 ) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  6. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    Energy Technology Data Exchange (ETDEWEB)

    Azabou, Samia [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Najjar, Wahiba [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Bouaziz, Mohamed [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Ghorbel, Abdelhamid [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia)

    2010-11-15

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H{sub 2}O{sub 2}/ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H{sub 2}O{sub 2}) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H{sub 2}O{sub 2}), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H{sub 2}O{sub 2}) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  7. Speciation and Oxidative Stability of Alkaline Soluble, Non-Pertechnetate Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rapko, Brian M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peterson, James M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The long half-life, complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes, and high mobility in subsurface environments make technetium (Tc) one of the most difficult contaminants to dispose of and/or remediate. Technetium exists predominantly in the liquid tank waste phase as the relatively mobile form of pertechnetate, TcO4-. However, based on experimentation to date a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non- pertechnetate species. The presence of a non-pertechnetate species significantly complicates disposition of low-activity waste (LAW), and the development of methods to either convert them to pertechnetate or to separate directly is needed. The challenge is the uncertainty regarding the chemical form of the alkaline-soluble low-valent non-pertechnetate species in the liquid tank waste. This report summarizes work done in fiscal year (FY) 2014 exploring the chemistry of a low-valence technetium(I) species, [(CO)3Tc(H2O)3]+, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants.

  8. Order of Activity of Nitrogen, Iron Oxide, and FeNx Complexes towards Oxygen Reduction in Alkaline Medium.

    Science.gov (United States)

    Zhu, Yansong; Zhang, Bingsen; Wang, Da-Wei; Su, Dang Sheng

    2015-12-07

    In alkaline medium, it seems that both metal-free and iron-containing carbon-based catalysts, such as nitrogen-doped nanocarbon materials, FeOx -doped carbon, and Fe/N/C catalysts, are active for the oxygen reduction reaction (ORR). However, the order of activity of these different active compositions has not been clearly determined. Herein, we synthesized nitrogen-doped carbon black (NCB), Fe3 O4 /CB, Fe3 O4 /NCB, and FeN4 /CB. Through the systematic study of the ORR catalytic activity of these four catalysts in alkaline solution, we confirmed the difference in the catalytic activity and catalytic mechanism for nitrogen, iron oxides, and Fe-N complexes, respectively. In metal-free NCB, nitrogen can improve the ORR catalytic activity with a four-electron pathway. Fe3 O4 /CB catalyst did not exhibit improved activity over that of NCB owing to the poor conductivity and spinel structure of Fe3 O4 . However, FeN4 coordination compounds as the active sites showed excellent ORR catalytic activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films

    International Nuclear Information System (INIS)

    RodrIguez, A; Ortiz, M I; Sangrador, J; RodrIguez, T; Avella, M; Prieto, A C; Torres, A; Jimenez, J; Kling, A; Ballesteros, C

    2007-01-01

    The luminescence emission of structures containing Ge nanocrystals embedded in a dielectric matrix obtained by dry and wet oxidation of polycrystalline SiGe layers has been studied as a function of the oxidation time and initial SiGe layer thickness. A clear relationship between the intensity of the luminescence, the structure of the sample, the formation of Ge nanocrystals and the oxidation process parameters that allows us to select the appropriate process conditions to get the most efficient emission has been established. The evolution of the composition and thickness of the growing oxides and the remaining SiGe layer during the oxidation processes has been characterized using Raman spectroscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, Rutherford backscattering spectrometry and transmission electron microscopy. For dry oxidation, the luminescence appears suddenly, regardless of the initial SiGe layer thickness, when all the Si of the SiGe has been oxidized and the remaining layer of the segregated Ge starts to be oxidized forming Ge nanocrystals. Luminescence is observed as long as Ge nanocrystals are present. For wet oxidation, the luminescence appears from the first stages of the oxidation, and is related to the formation of Ge-rich nanoclusters trapped in the mixed (Si and Ge) growing oxide. A sharp increase of the luminescence intensity for long oxidation times is also observed, due to the formation of Ge nanocrystals by the oxidation of the layer of segregated Ge. For both processes the luminescence is quenched when the oxidation time is long enough to cause the full oxidation of the Ge nanocrystals. The intensity of the luminescence in the dry oxidized samples is about ten times higher than in the wet oxidized ones for equal initial thickness of the SiGe layer

  10. Kinetics and Mechanism of Oxidation of Triethylene Glycol and Tetraethylene Glycol by Ditelluratoargentate (III in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Jinhuan Shan

    2013-01-01

    Full Text Available The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III (DTA in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant (kobs increased with an increase in concentration of OH− and a decrease in concentration of H4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.

  11. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    Science.gov (United States)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  12. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah

    2013-12-01

    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.

  13. Direct synthesis of nanocrystalline oxide powders by wet-chemical techniques

    Directory of Open Access Journals (Sweden)

    Vladimir V. Srdić

    2010-09-01

    Full Text Available In a recent period there is a great need for increasing the knowledge of tailoring the innovative procedures for the synthesis of electroceramic nanopowders and materials with improved quality for specific application. In order to produce electroceramics with desirable microstructure and properties, synthesis of stoichiometric, ultra-fine and agglomerate free powders with narrow size distributions is one of the most important steps. Within this scope, in the present paper we summarize our recent results on direct synthesis of some important perovskites and ferrites nanopowders by wet-chemical techniques.

  14. Theoretical study on the role of surface basicity and Lewis acidity on the etherification of glycerol over alkaline earth metal oxides

    NARCIS (Netherlands)

    Calatayud, M.; Ruppert, A.M.|info:eu-repo/dai/nl/314003398; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2009-01-01

    Alkaline earth metal oxides (MO) are catalytically active in the etherification of glycerol. Density Functional Theory (DFT) calculations have been used to examine the reactivity of glycerol with MO surfaces with M=Mg, Ca, Sr or Ba. More specifically, the optimum glycerol adsorption mode and the

  15. Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Ramulifho, T

    2012-01-01

    Full Text Available -MWCNT-Pd and its "mixed" bimetallic electrocatalysts (i.e., SF-MWCNT-PdSn mix and SF-MWCNT-PdNi) towards ethanol oxidation in alkaline medium was investigated. The result shows that the mixed Pd-based catalysts (obtained by simple ultrasonic...

  16. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    OpenAIRE

    Luna, A. J.; Rojas, L. O. A.; Melo, D. M. A.; Benachour, M.; Sousa, J. F. de

    2009-01-01

    In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO). A mixed oxide of Mn-Ce (7:3), the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and...

  17. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  18. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution.

    Science.gov (United States)

    Basirun, Wan J; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R; Ebadi, Mehdi

    2013-09-24

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  19. Carbon isotope analysis of dissolved organic carbon in fresh and saline (NaCl) water via continuous flow cavity ring-down spectroscopy following wet chemical oxidation.

    Science.gov (United States)

    Conaway, Christopher H; Thomas, Burt; Saad, Nabil; Thordsen, James J; Kharaka, Yousif K

    2015-01-01

    This work examines the performance and limitations of a wet chemical oxidation carbon analyser interfaced with a cavity ring-down spectrometer (WCO-CRDS) in a continuous flow (CF) configuration for measuring δ(13)C of dissolved organic carbon (δ(13)C-DOC) in natural water samples. Low-chloride matrix (towards lighter δ(13)C-DOC was observed because of incomplete oxidation despite using high-concentration oxidant, extended reaction time, or post-wet chemical oxidation gas-phase combustion. However, through a combination of dilution, chloride removal, and increasing the oxidant:sample ratio, high-salinity samples with sufficient DOC (>22.5 µg C/aliquot) may be analysed. The WCO-CRDS approach requires more total carbon (µg C/aliquot) than conventional CF-isotope ratio mass spectrometer, but is nonetheless applicable to a wide range of DOC concentration and water types, including brackish water, produced water, and basinal brines.

  20. Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gwon Woo [Biomass and Waste Energy Laboratory, KIER, Daejeon (Korea, Republic of); Seo, Tae Wan; Lee, Hong-Cheol; Hwang, In-Ju [Environmental and Plant Engineering Research Institute, KICT, Goyang (Korea, Republic of)

    2016-04-15

    Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

  1. Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation

    International Nuclear Information System (INIS)

    Park, Gwon Woo; Seo, Tae Wan; Lee, Hong-Cheol; Hwang, In-Ju

    2016-01-01

    Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively

  2. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Aysha Kamran

    2015-06-01

    Full Text Available Alkaline serine protease was purified to homogeneity from culture supernatant of a thermophilic, alkaliphilic Bacillus sp. by 80% ammonium sulphate precipitation followed by CM-cellulose and DEAE-cellulose ion exchange column chromatography. The enzyme was purified up to 16.5-fold with 6900 U/mg activity. The protease exhibited maximum activity towards casein at pH 8.0 and at 80 °C. The enzyme was stable at pH 8.0 and 80 °C temperature up to 2 h. The Ca2+ and Mn2+ enhanced the proteolytic activity up to 44% and 36% as compared to control, respectively. However, Zn2+, K+, Ba2+, Co2+, Hg2+ and Cu2+ significantly reduced the enzyme activity. PMSF (phenyl methyl sulphonyl fluoride completely inhibited the protease activity, whereas the activity of protease was stimulated up to two folds in the presence of 5 mM 2-mercaptoethanol. The enzyme was also stable in surfactant (Tween-80 and other commercial detergents (SDS, Triton X-100.

  3. Preparation of zirconium oxide by alkaline fusion from zirconium silicate and its characterization

    International Nuclear Information System (INIS)

    Zaghete, M.A.; Varela, J.A.; Castro e Castro, J.H.

    1985-01-01

    Zirconia was prepared from zirconite by alkaline fusion. The purity of zirconia (with hafnium) was determined by atomic absorption spectroscopy and was found to be 90.94%. An unglomerated hidrous zirconia powder was obtained by washing with acetone and alcohol, and by controlling the drying rate, atmosphere and temperature of the oven. The physical characteristics of the hidrous zirconia powder were determined after calcining in several conditions. The crystalline structure after calcining at 800 0 C results only in monoclinic structure. The mean partide size of zirconia powder, determined by sedimentation varied from 2,4μm to 3,5μ depending on the calcining conditions. The surface areas determined by BET method varied from 33,8 m 2 /g when calcined at 700 0 C during 5 hours to 3,5 m 2 /g when calcined at 1000 0 C, during 3 hours. The zirconia powder were pressed at 200 MPa and the pore size distribution determined by mercury porosimetry showed a midpore diameter of 0,06μm indicating that the aglomeretes were broken during compaction. (Author) [pt

  4. Collective evolution of submicron hillocks during the early stages of anisotropic alkaline wet chemical etching of Si(1 0 0) surfaces

    Science.gov (United States)

    Sana, P.; Vázquez, Luis; Cuerno, Rodolfo; Sarkar, Subhendu

    2017-11-01

    We address experimentally the large-scale dynamics of Si(1 0 0) surfaces during the initial stages of anisotropic wet (KOH) chemical etching, which are characterized through atomic force microscopy. These systems are known to lead to the formation of characteristic pyramids, or hillocks, of typical sizes in the nanometric/micrometer scales, thus with the potential for a large number of applications that can benefit from the nanotexturing of Si surfaces. The present pattern formation process is very strongly disordered in space. We assess the space correlations in such a type of rough surface and elucidate the existence of a complex and rich morphological evolution, featuring at least three different regimes in just 10 min of etching. Such a complex time behavior cannot be consistently explained within a single formalism for dynamic scaling. The pyramidal structure reveals itself as the basic morphological motif of the surface throughout the dynamics. A detailed analysis of the surface slope distribution with etching time reveals that the texturing process induced by the KOH etching is rather gradual and progressive, which accounts for the dynamic complexity. The various stages of the morphological evolution can be accurately reproduced by computer-generated surfaces composed by uncorrelated pyramidal structures. To reach such an agreement, the key parameters are the average pyramid size, which increases with etching time, its distribution and the surface coverage by the pyramidal structures.

  5. EQCM behavior of copper anodes in alkaline medium and characterization of the electrocatalysis of ethanol oxidation by Cu(III

    Directory of Open Access Journals (Sweden)

    Paixão Thiago R. L. C.

    2006-01-01

    Full Text Available The anodic oxidation of copper electrodes in alkaline solutions was investigated by using voltammetry, chronoamperometry, impedance measurements and the electrochemical quartz crystal microbalance (EQCM. Experiments were carried out in NaOH solutions in the 0.1 to 3.0 mol L-1 concentration range. The formation of soluble and insoluble species such as Cu(OH4(2- and Cu2O during the electrodic dissolution of copper anodes was characterized by analyzing potentiodynamic mass responses and the relationship between mass changes and charge. On the other hand, EQCM data were not effective to confirm the nature of other copper species proposed in literature named as CuO and Cu(OH2 because of viscoelastic changes in the film layer electrodeposited onto the quartz crystal. The participation of a Cu(III soluble species in the electrocatalytic oxidation of ethanol was proved by EQCM measurements, data providing valuable information on the mechanism of the electrode process and formation of a Cu(II insoluble species from the reaction of Cu(III with ethanol.

  6. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Thomsen, A.B.; Ahring, Birgitte Kiær

    2001-01-01

    /l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...... in the hydrolysate, were each tested in concentrations of 10-100x the concentration found in the hydrolysate for their effect on fermentation by T. mathranii. At 2 mM, these aromatic compounds were not inhibitory to growth or ethanol yield in T mathranii. When the concentration of aromatics was increased to 10 m...

  7. Wet etching mechanism and crystallization of indium–tin oxide layer for application in light-emitting diodes

    Science.gov (United States)

    Su, Shui-Hsiang; Kong, Hsieng-Jen; Tseng, Chun-Lung; Chen, Guan-Yu

    2018-01-01

    In the article, we describe the etching mechanism of indium–tin oxide (ITO) film, which was wet-etched using a solution of hydrochloric acid (HCl) and ferric chloride (FeCl3). The etching mechanism is analyzed at various etching durations of ITO films by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and selective area diffraction (SAD) analysis. In comparison with the crystalline phase of SnO2, the In2O3 phase can be more easily transformed to In3+ and can form an inverted conical structure during the etching process. By adjusting the etching duration, the residual ITO is completely removed to show a designed pattern. This is attributed to the negative Gibbs energy of In2O3 transformed to In3+. The result also corresponds to the finding of energy-dispersive X-ray spectroscopy (EDS) analysis that the Sn/In ratio increases with increasing etching duration.

  8. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, Henrik B.

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...... oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy...

  9. Ion bombardment effects on surface states in selected oxide systems: rutile and alkaline earth titanates

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1978-01-01

    In this paper, the nature of the surface states of n-type TiO 2 and SrTiO 3 is discussed and the role of ion bombardment in modifying the properties of these states is elucidated. Insofar as possible, the interrelationships between oxide nonstoichiometry, surface states, ion bombardment effects and photoelectrolysis are explored

  10. Kinetics and mechanism of oxidation of L-leucine by alkaline ...

    Indian Academy of Sciences (India)

    forms active sites of enzymes and helps in maintain- ing their proper conformation by keeping them in proper ionic states. So, oxidation of L-leucine may help in understanding some aspects of enzyme kinet- ics. Recent research has discovered that L-leucine acts in a unique way: it can help burn fat without burning muscle.

  11. Water resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property

    OpenAIRE

    Ennaceri, H.; Wang, L.; Erfurt, D.; Riedel, W.; Mangalgiri, G.; Khaldoun, A.; El Kenz, A.; Benyoussef, A.; Ennaoui, A

    2016-01-01

    This study presents an experimental approach for fabricating super hydrophobic coatings based on a dual roughness structure composed of zinc oxide nanorod arrays coated with a sputtered zinc oxide nano layer. The ZnO nanorod arrays were grown by means of a low temperature electrochemical deposition technique 75 C on FTO substrates. The ZnO nanorods show a 002 orientation along the c axis, and have a hexagonal structure, with an average length of 710 nm, and average width of 156 nm. On th...

  12. Hydrolysis of solubilized hemicellulose derived from wet-oxidized wheat straw by a mixture of commercial fungal enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Skammelsen Schmidt, Anette; Thomsen, Alle Belinda; Woidemann, Anders [Risoe National Lab. (Denmark); Tenkanen, Maija [VTT Biotechnology and Food Research (Finland)

    1998-04-01

    The enzymatic hydrolysis of the solubilized hemicellulose fraction from wet-oxidized wheat straw was investigated for quantification purposes. An optimal hydrolysis depends on factors such as composition of the applied enzyme mixture and the hydrolysis conditions (enzyme loading, hydrolysis time, pH-value, and temperature). A concentrated enzyme mixture was used in this study prepared at VTT Biotechnology and Food Research, Finland, by mixing four commercial enzyme preparations. No distinctive pH-value and temperature optima were identified after a prolonged incubation of 24 hours. By reducing the hydrolysis time to 2 hours a temperature optimum was found at 50 deg. C, where a pH-value higher than 5.2 resulted in reduced activity. An enzyme-substrate-volume-ratio of 0.042, a pH-value of 5.0, and a temperature of 50 deg. C were chosen as the best hydrolysis conditions due to an improved monosaccharide yield. The hydrolysis time was chosen to be 24 hours to ensure equilibrium and total quantification. Even under the best hydrolysis conditions, the overall sugar yield from the enzymatic hydrolysis was only 85% of that of the optimal acid hydrolysis. The glucose yield were approximately the same for the two types of hydrolyses, probably due to the high cellulase activity in the VTT-enzyme mixture. For xylose and arabinose the enzymatic hydrolysis yielded only 80% of that of the acid hydrolysis. As the pentoses existed mainly as complex polymers their degradation required many different enzymes, some of which might be missing from the VTT-enzyme mixture. Furthermore, the removal of side-choins from the xylan backbone during the wet-oxidation pretreatment process might enable the hemicellulosic polymers to interact and precipitate, hence, reducing the enzymatic digestibility of the hemicellulose. (au) 8 tabs., 10 ills., 65 refs.

  13. Nature of the chemical bond between metal atoms and oxide surfaces: new evidences from spin density studies of K atoms on alkaline earth oxides.

    Science.gov (United States)

    Chiesa, Mario; Giamello, Elio; Di Valentin, Cristiana; Pacchioni, Gianfranco; Sojka, Zbigniew; Van Doorslaer, Sabine

    2005-12-07

    We have studied the interaction of K atoms with the surface of polycrystalline alkaline-earth metal oxides (MgO, CaO, SrO) by means of CW- and Pulsed-EPR, UV-Vis-NIR spectroscopies and DFT cluster model calculations. The K adsorption site is proposed to be an anionic reverse corner formed at the intersection of two steps, where K binds by more than 1 eV, resulting in thermally stable species up to about 400 K. The bonding has small covalent and large polarization contributions, and the K atom remains neutral, with one unpaired electron in the valence shell. The interaction results in strong modifications of the K electronic wave function which are directly reflected by the hyperfine coupling constant, (K)a(iso). This is found to be a very efficient "probe" to measure the degree of metal-oxide interaction which directly depends on the substrate basicity. These results provide an original and general model of the early stages of the metal-support interaction in the case of ionic oxides.

  14. Characterization of Pt-Pd/C Electrocatalyst for Methanol Oxidation in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    S. S. Mahapatra

    2011-01-01

    Full Text Available The Pt-Pd/C electrocatalyst was synthesized on graphite substrate by the electrochemical codeposition technique. The physicochemical characterization of the catalyst was done by SEM, XRD, and EDX. The electrochemical characterization of the Pt-Pd/C catalyst for methanol electro-oxidation was studied over a range of NaOH and methanol concentrations using cyclic voltammetry, quasisteady-state polarization, chronoamperometry, and electrochemical impedance spectroscopy. The activity of methanol oxidation increased with pH due to better OH species coverage on the electrode surface. At methanol concentration (>1.0 M, there is no change in the oxidation peak current density because of excess methanol at the electrode surface and/or depletion of OH− at the electrode surface. The Pt-Pd/C catalyst shows good stability and the low value of Tafel slope and charge transfer resistance. The enhanced electrocatalytic activity of the electrodes is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH− adsorption, and ad-atom contribution on the alloyed surface.

  15. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  16. Oxidation of arsenite by molecular oxygen in strong alkaline solution under γ-radiation

    International Nuclear Information System (INIS)

    Burkitbaev, M.M.

    1996-01-01

    The kinetics and mechanism of radiation-stimulated process in 1 mole/1 l of potassium hydroxide have been studied. Radiation chemical yield of (G(As)(Y)) oxygenation grows directly proportionally to oxygen concentration and inversely proportionally to dose rate in proportion 1/2. Mechanism of oxidation, including two chain cycles (long chain cycle - with participation of O - ; O 2 - ; O 3 - radicals and short chain one -with participation of arsenic contenting radicals: As(IV), As(IV)O, As(IV)O 2 ) is proposed. (author)

  17. Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Saumita [Environmental Biotechnology Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020 Maharashtra (India); Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 West Bengal (India); Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 West Bengal (India); Pandey, R.A.; Chakrabarti, Tapan; Satpute, Dewanand; Giri, Balendu Shekher; Mudliar, Sandeep [Environmental Biotechnology Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020 Maharashtra (India)

    2009-12-15

    The pretreatment of rice husk by the wet air oxidation (WAO) technique was investigated by means of a statistically designed set of experiments. Reaction temperature, air pressure, and reaction time were the process parameters considered. WAO pretreatment of rice husk increased the cellulose content of the solid fraction by virtue of lignin removal and hemicellulose solubilization. The cellulose recovery was around 92%, while lignin recovery was in the tune of 8-20%, indicating oxidation of a bulk quantity of lignin. The liquid fraction was found to be rich in hexose and pentose sugars, which could be directly utilized as substrate for ethanol fermentation. The WAO process was optimized by multi-objective numerical optimization with the help of MINITAB 14 suite of statistical software, and an optimum WAO condition of 185 C, 0.5 MPa, and 15 min was predicted and experimentally validated to give 67% (w/w) cellulose content in the solid fraction, along with 89% lignin removal, and 70% hemicellulose solubilization; 13.1 gl{sup -1} glucose and 3.4 gl{sup -1} xylose were detected in the liquid fraction. The high cellulose content and negligible residual lignin in the solid fraction would greatly facilitate subsequent enzymatic hydrolysis, and result in improved ethanol yields from rice husk. (author)

  18. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    International Nuclear Information System (INIS)

    Krot, N.N.; Shilov, V.P.; Fedoseev, A.M.; Budantseva, N.A.; Nikonov, M.V.; Yusov, A.B.; Garnov, A.Yu.; Charushnikova, I.A.; Perminov, V.P.; Astafurova, L.N.; Lapitskaya, T.S.; Makarenkov, V.I.

    1999-01-01

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH) 4 - through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported

  19. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    Science.gov (United States)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2017-01-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  20. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  1. Facile and scalable fabrication engineering of fullerenol nanoparticles by improved alkaline-oxidation approach and its antioxidant potential in maize

    International Nuclear Information System (INIS)

    Liu, Fu-yang; Xiong, Feng-xia; Fan, Yi-kang; Li, Juan; Wang, He-zhong; Xing, Geng-mei; Yan, Feng-ming; Tai, Fu-ju; He, Rui

    2016-01-01

    A feasible in operation, labor-saving and low-cost one-step technology to fabricate fullerenol nanoparticles (FNPs) up to 10 g in laboratory was developed by improved alkaline-oxidation approach using moderately concentrated sodium hydroxide solution as the hydroxylation agent and o-dichlorobenzene as the solvent. This strategy paves the avenue for industrial-scale bulk production of FNPs. The resulted product, [C 60 (OH) 22 ·8H 2 O] n , were characterized by various measurements including matrix-assisted laser desorption ionization time-of-flight mass spectrometry, high-resolution 1 H nuclear magnetic resonance spectrometry, Fourier transform infrared spectroscopy, UV-Visible spectrophotometer, thermogravimetric analysis, differential scanning calorimetry, dynamic light scattering analysis, scanning electron microscopy, and electron spin resonance spectrometer. Radical scavenging assay in vitro confirmed the high efficiency of water-soluble [C 60 (OH) 22 ·8H 2 O] n as a novel radical scavenger. Furthermore, [C 60 (OH) 22 ·8H 2 O] n as an excellent candidate has the potential to serve as the plant defense stimulation agent in maize.

  2. Facile and scalable fabrication engineering of fullerenol nanoparticles by improved alkaline-oxidation approach and its antioxidant potential in maize

    Science.gov (United States)

    Liu, Fu-yang; Xiong, Feng-xia; Fan, Yi-kang; Li, Juan; Wang, He-zhong; Xing, Geng-mei; Yan, Feng-ming; Tai, Fu-ju; He, Rui

    2016-11-01

    A feasible in operation, labor-saving and low-cost one-step technology to fabricate fullerenol nanoparticles (FNPs) up to 10 g in laboratory was developed by improved alkaline-oxidation approach using moderately concentrated sodium hydroxide solution as the hydroxylation agent and o-dichlorobenzene as the solvent. This strategy paves the avenue for industrial-scale bulk production of FNPs. The resulted product, [C60(OH)22·8H2O]n, were characterized by various measurements including matrix-assisted laser desorption ionization time-of-flight mass spectrometry, high-resolution 1H nuclear magnetic resonance spectrometry, Fourier transform infrared spectroscopy, UV-Visible spectrophotometer, thermogravimetric analysis, differential scanning calorimetry, dynamic light scattering analysis, scanning electron microscopy, and electron spin resonance spectrometer. Radical scavenging assay in vitro confirmed the high efficiency of water-soluble [C60(OH)22·8H2O]n as a novel radical scavenger. Furthermore, [C60(OH)22·8H2O]n as an excellent candidate has the potential to serve as the plant defense stimulation agent in maize.

  3. Facile and scalable fabrication engineering of fullerenol nanoparticles by improved alkaline-oxidation approach and its antioxidant potential in maize

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fu-yang [Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science (China); Xiong, Feng-xia; Fan, Yi-kang [Henan Agricultural University, NanoAgro Center, College of Plant Protection (China); Li, Juan [Chinese Academy of Sciences, Lab. for Bio-Environmental Health Sciences of Nanoscale Materials, Institute of High Energy Physics (China); Wang, He-zhong [Henan Agricultural University, NanoAgro Center, College of Plant Protection (China); Xing, Geng-mei [Chinese Academy of Sciences, Lab. for Bio-Environmental Health Sciences of Nanoscale Materials, Institute of High Energy Physics (China); Yan, Feng-ming [Henan Agricultural University, NanoAgro Center, College of Plant Protection (China); Tai, Fu-ju, E-mail: taifj2008@163.com [Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science (China); He, Rui, E-mail: herui@henau.edu.cn [Henan Agricultural University, NanoAgro Center, College of Plant Protection (China)

    2016-11-15

    A feasible in operation, labor-saving and low-cost one-step technology to fabricate fullerenol nanoparticles (FNPs) up to 10 g in laboratory was developed by improved alkaline-oxidation approach using moderately concentrated sodium hydroxide solution as the hydroxylation agent and o-dichlorobenzene as the solvent. This strategy paves the avenue for industrial-scale bulk production of FNPs. The resulted product, [C{sub 60}(OH){sub 22}·8H{sub 2}O]{sub n}, were characterized by various measurements including matrix-assisted laser desorption ionization time-of-flight mass spectrometry, high-resolution {sup 1}H nuclear magnetic resonance spectrometry, Fourier transform infrared spectroscopy, UV-Visible spectrophotometer, thermogravimetric analysis, differential scanning calorimetry, dynamic light scattering analysis, scanning electron microscopy, and electron spin resonance spectrometer. Radical scavenging assay in vitro confirmed the high efficiency of water-soluble [C{sub 60}(OH){sub 22}·8H{sub 2}O]{sub n} as a novel radical scavenger. Furthermore, [C{sub 60}(OH){sub 22}·8H{sub 2}O]{sub n} as an excellent candidate has the potential to serve as the plant defense stimulation agent in maize.

  4. White-rot fungi pretreatment combined with alkaline/oxidative pretreatment to improve enzymatic saccharification of industrial hemp.

    Science.gov (United States)

    Xie, Chunliang; Gong, Wenbing; Yang, Qi; Zhu, Zuohua; Yan, Li; Hu, Zhenxiu; Peng, Yuande

    2017-11-01

    White-rot fungi combined with alkaline/oxidative (A/O) pretreatments of industrial hemp woody core were proposed to improve enzymatic saccharification. In this study, hemp woody core were treated with only white rot fungi, only A/O and combined with the two methods. The results showed that Pleurotus eryngii (P. eryngii) was the most effective fungus for pretreatment. Reducing sugars yield was 329mg/g with 30 Filter Paper Unit (FPU)/g cellulase loading when treated 21day. In the A/O groups, the results showed that when treated with 3% NaOH and 3% H 2 O 2 , the yield of reducing sugars was 288mg/g with 30FPU/g cellulase loading. After combination pretreatment with P. eryngii and A/O pretreatment, the reducing sugar yield from enzymatic hydrolysis of combined sample increased 1.10-1.29-fold than that of bio-treated or A/O pretreatment sample at the same conditions, suggesting that P. eryngii combined with A/O pretreatment was an effective method to improve enzyme hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Arsenic mobilization in an oxidizing alkaline groundwater: Experimental studies, comparison and optimization of geochemical modeling parameters

    International Nuclear Information System (INIS)

    Hafeznezami, Saeedreza; Lam, Jacquelyn R.; Xiang, Yang; Reynolds, Matthew D.; Davis, James A.; Lin, Tiffany; Jay, Jennifer A.

    2016-01-01

    Arsenic (As) mobilization and contamination of groundwater affects millions of people worldwide. Progress in developing effective in-situ remediation schemes requires the incorporation of data from laboratory experiments and field samples into calibrated geochemical models. In an oxidizing aquifer where leaching of high pH industrial waste from unlined surface impoundments led to mobilization of naturally occurring As up to 2 mg L −1 , sequential extractions of solid phase As as well as, batch sediment microcosm experiments were conducted to understand As partitioning and solid-phase sorptive and buffering capacity. These data were combined with field data to create a series of geochemical models of the system with modeling programs PHREEQC and FITEQL. Different surface complexation modeling approaches, including component additivity (CA), generalized composite (GC), and a hybrid method were developed, compared and fitted to data from batch acidification experiments to simulate potential remediation scenarios. Several parameters strongly influence the concentration of dissolved As including pH, presence of competing ions (particularly phosphate) and the number of available sorption sites on the aquifer solids. Lowering the pH of groundwater to 7 was found to have a variable, but limited impact (<63%) on decreasing the concentration of dissolved As. The models indicate that in addition to lowering pH, decreasing the concentration of dissolved phosphate and/or increasing the number of available sorption sites could significantly decrease the As solubility to levels below 10 μg L −1 . The hybrid and GC modeling results fit the experimental data well (NRMSE<10%) with reasonable effort and can be implemented in further studies for validation. - Highlights: • Samples were collected from an oxidizing aquifer where high pH waste has led to mobilization of naturally occurring As. • Three surface complexation modeling approaches were used in modeling adsorption

  6. Extraction-wet oxidation process using sulphuric acid for treatment of TBP-dodecane wastes

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Kartha, P.K.S.

    1998-03-01

    In the nuclear fuel reprocessing plants, 30% n-tributyl phosphate in hydrocarbon diluent is used for extraction of uranium and plutonium from the spent fuel by Purex process. When TBP-dodecane can no longer be purified from its degradation products, it is discarded as alpha bearing, intermediate level wastes containing plutonium and ruthenium-106. To overcome shortcomings of extraction-pyrolysis and saponification processes, studies were undertaken to find the suitability of H 2 SO 4 as an alternative extractant for TBP. Oxidation of TBP to H 3 PO 4 using H 2 O 2 was also explored as H 3 PO 4 can be treated by known procedures for removal of plutonium and ruthenium-106. The experiments were conducted with aged spent solvent wastes discharged from reprocessing plant at Trombay using H 2 SO 4 and H 2 SO 4 - H 3 PO 4 mixture. The decontamination factors (DFs) for alpha activity were found to be satisfactory. The DFs for ruthenium were lower as compared to those obtained in experiments with simulated degraded waste. The gas chromatographic analysis of separated diluent revealed high branched alkane content and low n-dodecane content of separated diluent. It is very much different from that of diluent currently in use. Hence incineration of separated diluent is recommended. (author)

  7. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  8. Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides

    Science.gov (United States)

    Shukla, Adarsh

    In a thermodynamic system which contains several elements, the phase relationships among the components are usually very complex. Especially, systems containing oxides are generally very difficult to investigate owing to the very high experimental temperatures and corrosive action of slags. Due to such difficulties, large inconsistencies are often observed among the available experimental data. In order to investigate and understand the complex phase relationships effectively, it is very useful to develop thermodynamic databases containing optimized model parameters giving the thermodynamic properties of all phases as functions of temperature and composition. In a thermodynamic optimization, adjustable model parameters are calculated using, simultaneously, all available thermodynamic and phase-equilibrium data in order to obtain one set of model equations as functions of temperature and composition. Thermodynamic data, such as activities, can aid in the evaluation of the phase diagrams, and information on phase equilibria can be used to deduce thermodynamic properties. Thus, it is frequently possible to resolve discrepancies in the available data. From the model equations, all the thermodynamic properties and phase diagrams can be back-calculated, and interpolations and extrapolations can be made in a thermodynamically correct manner. The data are thereby rendered self-consistent and consistent with thermodynamic principles, and the available data are distilled into a small set of model parameters, ideal for computer storage. As part of a broader research project at the Centre de Recherche en Calcul Thermochimique (CRCT), Ecole Polytechnique to develop a thermodynamic database for multicomponent oxide systems, this thesis deals with the addition of components SrO and BaO to the existing multicomponent database of the SiO2-B2O3-Al2O 3-CaO-MgO system. Over the years, in collaboration with many industrial companies, a thermodynamic database for the SiO2-B2O 3-Al2O3-Ca

  9. Degradation of cellulose at the wet-dry interface. II. Study of oxidation reactions and effect of antioxidants.

    Science.gov (United States)

    Jeong, Myung-Joon; Dupont, Anne-Laurence; de la Rie, E René

    2014-01-30

    To better understand the degradation of cellulose upon the formation of a tideline at the wet-dry interface when paper is suspended in water, the production of chemical species involved in oxidation reactions was studied. The quantitation of hydroperoxides and hydroxyl radicals was carried out in reverse phase chromatography using triphenylphosphine and terephthalic acid, respectively, as chemical probes. Both reactive oxygen species were found in the tideline immediately after its formation, in the range of micromoles and nanomoles per gram of paper, respectively. The results indicate that hydroxyl radicals form for the most part in paper before the tideline experiment, whereas hydroperoxides appear to be produced primarily during tideline formation. Iron sulfate impregnation of the paper raised the production of hydroperoxides. After hygrothermal aging in sealed vials the hydroxyl radical content in paper increased significantly. When aged together in the same vial, tideline samples strongly influenced the degradation of samples from other areas of the paper (multi-sample aging). Different types of antioxidants were added to the paper before the tideline experiment to investigate their effect on the oxidation reactions taking place. In samples treated with iron sulfate or artificially aged, the addition of Irgafos 168 (tris(2,4-ditert-butylphenyl) phosphate) and Tinuvin 292 (bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) reduced the concentration of hydroperoxides and hydroxyl radicals, respectively. Tinuvin 292 was also found to considerably lower the rate of cellulose chain scission reactions during hygrothermal aging of the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Preparation and Photocatalytic Activity of Potassium- Incorporated Titanium Oxide Nanostructures Produced by the Wet Corrosion Process Using Various Titanium Alloys

    Directory of Open Access Journals (Sweden)

    So Yoon Lee

    2015-08-01

    Full Text Available Nanostructured potassium-incorporated Ti-based oxides have attracted much attention because the incorporated potassium can influence their structural and physico-chemical properties. With the aim of tuning the structural and physical properties, we have demonstrated the wet corrosion process (WCP as a simple method for nanostructure fabrication using various Ti-based materials, namely Ti–6Al–4V alloy (TAV, Ti–Ni (TN alloy and pure Ti, which have 90%, 50% and 100% initial Ti content, respectively. We have systematically investigated the relationship between the Ti content in the initial metal and the precise condition of WCP to control the structural and physical properties of the resulting nanostructures. The WCP treatment involved various concentrations of KOH solutions. The precise conditions for producing K-incorporated nanostructured titanium oxide films (nTOFs were strongly dependent on the Ti content of the initial metal. Ti and TAV yielded one-dimensional nanowires of K-incorporated nTOFs after treatment with 10 mol/L-KOH solution, whereas TN required a higher concentration (20 mol/L-KOH solution to produce comparable nanostructures. The obtained nanostructures revealed a blue-shift in UV absorption spectra due to the quantum confinement effects. A significant enhancement of the photocatalytic activity was observed via the chromomeric change and the intermediate formation of methylene blue molecules under UV irradiation. This study demonstrates the WCP as a simple, versatile and scalable method for the production of nanostructured K-incorporated nTOFs to be used as high-performance photocatalysts for environmental and energy applications.

  11. Treatment of printing and dyeing wastewater by catalytic wet hydrogen peroxide oxidation of honeycomb cinder as carrier catalyst

    Science.gov (United States)

    Zhang, D. H.; Yang, H. M.; Ou, Y. J.; Xu, C.; Gu, J. C.

    2017-06-01

    Under the condition of 35 °C, honeycomb cinder was used as the carrier, nickel as the active ingredient, impregnated for 2h, and calcined at 300 °C for 2h. The catalyst was used to Catalytic Wet Peroxide Oxidation of methylene blue simulated printing and dyeing wastewater. The effect of the amount of catalyst, the amount of catalyst, the reaction temperature and the reaction time on the treatment efficiency and the effect of the self-made catalyst on the simulated wastewater with different concentration gradient were studied in the experiment. The results showed that when the reaction conditions were H2O2 8ml/L, catalyst 12g/L and reaction time 1h, the degradation rate of methylene blue reached more than 77% for the wastewater with concentration ranging from 40 mg/L to 200 mg/L. In addition, at a temperature of 30 DEG C, the wastewater, the concentration was 80mg/L, degradation rate was up to 85.70%.

  12. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.

    Science.gov (United States)

    Liu, Wei-Min; Hu, Yi-Qiang; Tu, Shan-Tung

    2010-07-15

    Active carbon-ceramic sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation (CWAO) of resin effluent in a packed-bed reactor. Active carbon-ceramic sphere and ruthenium catalysts were characterized by N(2) adsorption and chemisorption measurements. BET surface area and total pore volume of active carbon (AC) in the active carbon-ceramic sphere increase with increasing KOH-to-carbon ratio, and AC in the sample KC-120 possesses values as high as 1100 m(2) g(-1) and 0.69 cm(3) g(-1) (carbon percentage: 4.73 wt.%), especially. Active carbon-ceramic sphere supported ruthenium catalysts were prepared using the RuCl(3) solution impregnation onto these supports, the ruthenium loading was fixed at 1-5 wt.% of AC in the support. The catalytic activity varies according to the following order: Ru/KC-120>Ru/KC-80>Ru/KC-60>KC-120>without catalysts. It is found that the 3 wt.% Ru/KC-120 catalyst displays highest stability in the CWAO of resin effluent during 30 days. Chemical oxygen demand (COD) and phenol removal were about 92% and 96%, respectively at the reaction temperature of 200 degrees C, oxygen pressure of 1.5 MPa, the water flow rate of 0.75 L h(-1) and the oxygen flow rate of 13.5 L h(-1). 2010 Elsevier B.V. All rights reserved.

  13. Wet air oxidation of resorcinol as a model treatment for refractory organics in wastewaters from the wood processing industry.

    Science.gov (United States)

    Weber, Bernd; Chavez, Alma; Morales-Mejia, Julio; Eichenauer, Sabrina; Stadlbauer, Ernst A; Almanza, Rafael

    2015-09-15

    Wastewater treatment systems are important tools to enhance sustainability in terms of reducing environmental impact and complying with sanitary requirements. This work addresses the wet air oxidation (WAO) process for pre-treatment of phenolic wastewater effluents. The aim was to increase biodegradability prior to a subsequent anaerobic stage. In WAO laboratory experiments using a micro-autoclave, the model compound resorcinol was degraded under different oxygen availability regims within the temperature range 150 °C-270 °C. The activation energy was determined to be 51.5 kJ/mol. Analysis of the products revealed that after 3 h of reaction at 230 °C, 97.5% degradation of resorcinol was achieved. At 250 °C and the same reaction time complete removal of resorcinol was observed. In this case the total organic carbon content was reduced down to 29%, from 118.0 mg/L down to 34.4 mg/L. Under these process conditions, the pollutant was only partially mineralized and the ratio of the biological oxygen demand relative to the chemical oxygen demand, which is 0.07 for resorcinol, was increased to a value exceeding 0.5. The main by-product acetic acid, which is a preferred compound for methanogenic bacteria, was found to account for 33% of the total organic carbon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of wet air oxidation variables for removal of organophosphorus pesticide malathion using Box-Behnken design.

    Science.gov (United States)

    Isgoren, Melike; Gengec, Erhan; Veli, Sevil

    2017-02-01

    This paper deals with finding optimum reaction conditions for wet air oxidation (WAO) of malathion aqueous solution, by Response Surface Methodology. Reaction conditions, which affect the removal efficiencies most during the non-catalytic WAO system, are: temperature (60-120 °C), applied pressure (20-40 bar), the pH value (3-7), and reaction time (0-120 min). Those were chosen as independent parameters of the model. The interactions between parameters were evaluated by Box-Behnken and the quadratic model fitted very well with the experimental data (29 runs). A higher value of R 2 and adjusted R 2 (>0.91) demonstrated that the model could explain the results successfully. As a result, optimum removal efficiency (97.8%) was obtained at pH 5, 20 bars of pressure, 116 °C, and 96 min. These results showed that Box-Behnken is a suitable design to optimize operating conditions and removal efficiency for non-catalytic WAO process. The EC 20 value of raw wastewater was measured as 35.40% for malathion (20 mg/L). After the treatment, no toxicity was observed at the optimum reaction conditions. The results show that the WAO is an efficient treatment system for malathion degradation and has the ability of converting malathion to the non-toxic forms.

  15. Thermodynamic study contribution of U-Fe and U-Ga alloys by high temperature mass spectroscopy, and of the wetting of yttrium oxide by uranium

    International Nuclear Information System (INIS)

    Gardie, P.

    1992-01-01

    High temperature thermodynamic properties study of U-Fe and U-Ga alloys, and wetting study of yttrium oxide by uranium are presented. High temperature mass spectrometry coupled to a Knudsen effusion multi-cell allows to measure iron activity in U-Fe alloys and of gallium in U-Ga alloys, the U activity is deduced from Gibbs-Duhem equation. Wetting of the system U/Y 2 O 3-x is studied between 1413 K and 1973 K by the put drop method visualized by X-rays. This technique also furnishes density, surface tension of U and of U-Fe alloys put on Y 2 O 3-x . A new model of the interfacial oxygen action on wetting is done for the system U/Y 2 O 3-x . (A.B.)

  16. An oxidant and organic solvent tolerant alkaline lipase by P. aeruginosa mutant: downstream processing and biochemical characterization

    Directory of Open Access Journals (Sweden)

    Deepali Bisht

    2013-12-01

    Full Text Available An extracellular alkaline lipase from Pseudomonas aeruginosa mutant has been purified to homogeneity using acetone precipitation followed by anion exchange and gel filtration chromatography and resulted in 27-fold purification with 19.6% final recovery. SDS-PAGE study suggested that the purified lipase has an apparent molecular mass of 67 kDa. The optimum temperature and pH for the purified lipase were 45°C and 8.0, respectively. The enzyme showed considerable stability in pH range of 7.0-11.0 and temperature range 35-55 °C. The metal ions Ca2+, Mg2+ and Na+ tend to increase the enzyme activity, whereas, Fe2+ and Mn2+ ions resulted in discreet decrease in the activity. Divalent cations Ca+2 and Mg+2 seemed to protect the enzyme against thermal denaturation at high temperatures and in presence of Ca+2 (5 mM the optimum temperature shifted from 45°C to 55°C. The purified lipase displayed significant stability in the presence of several hydrophilic and hydrophobic organic solvents (25%, v/v up to 168 h. The pure enzyme preparation exhibited significant stability and compatibility with oxidizing agents and commercial detergents as it retained 40-70% of its original activities. The values of Km and Vmax for p-nitrophenyl palmitate (p-NPP under optimal conditions were determined to be 2.0 mg.mL-1 and 5000 μg.mL-1.min-1, respectively.

  17. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  18. One-pot wet-chemical co-reduction synthesis of bimetallic gold-platinum nanochains supported on reduced graphene oxide with enhanced electrocatalytic activity

    Science.gov (United States)

    Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju

    2015-08-01

    In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.

  19. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses.

    Science.gov (United States)

    Harter, Eva; Wagner, Eva Maria; Zaiser, Andreas; Halecker, Sabrina; Wagner, Martin; Rychli, Kathrin

    2017-08-15

    The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481 , and two homologous genes of the nonpathogenic species Listeria innocua : lin0464 , coding for a putative transcriptional regulator, and lin0465 , encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σ B Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation

  20. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses

    Science.gov (United States)

    Harter, Eva; Wagner, Eva Maria; Zaiser, Andreas; Halecker, Sabrina; Wagner, Martin

    2017-01-01

    ABSTRACT The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481, and two homologous genes of the nonpathogenic species Listeria innocua: lin0464, coding for a putative transcriptional regulator, and lin0465, encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σB. Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche

  1. Electrochemical determination of the oxidation potentials and the thermodynamic stability of the valence states of the transuranium elements in aqueous alkaline media

    International Nuclear Information System (INIS)

    Peretrukhin, V.F.; Spitsyn, V.I.

    1982-01-01

    The oxidation potentials of neptunium, plutonium, and americium in the valance states from (III) to (VII) have been determined experimentally in 0.1-15 M NaOH. Heptavalent plutonium and americium are thermodynamically able to oxidize water with the evolution of oxygen in 0.1-15 M NaOH, neptunium(VII) in 0.1-7 M NaOH. All valance states of plutonium resist disproportionation in alkaline solutions; in the case of neptunium and americium only one disproportionation reaction is possible; of the hexavalent state in to penta- and heptavalent states. The degree of completion of the reaction can be calculated accurately from the oxidation potentials determined

  2. Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media

    Science.gov (United States)

    Zhang, Yunmao; Liu, Yong; Liu, Weihua; Li, Xiying; Mao, Liqun

    2017-06-01

    This paper reports the convenient synthesis of honeycomb-like mesoporous nitrogen-doped carbon spheres (MNCS) using a self-assembly strategy that employs dopamine (DA) as a carbon and nitrogen precursor and a polystyrene-b-poly(ethylene oxide) (PS173-b-PEO170) diblock copolymer as a soft template. The MNCS have large BET surface areas of up to 554 m2 g-1 and high nitrogen contents of up to 6.9 wt%. The obtained MNCS are used as a support for Pt catalysts, which promote methanol oxidation in alkaline media. The MNCS-supported Pt (Pt/MNCS) catalyst has a larger electrochemically active surface area (ESA) (89.2 m2 g-1) than does a commercially available Vulcan XC-72R supported Pt/C catalyst. Compared to the Pt/C catalyst, Pt/MNCS displays a higher peak current density (1007 mA mg-1) and is more stable during methanol oxidation. These improvements are attributed to the honeycomb-like porous structure of the MNCS and the introduction of nitrogen to the carbon support. The MNCS effectively stabilize Pt nanoparticles and assuage the agglomeration of the nanoparticles, suggesting that MNCS are potential and promising application as electrocatalyst supports in alkaline direct methanol fuel cells.

  3. Ethanol electro-oxidation in alkaline medium using Pd/MWCNT and PdAuSn/MWCNT electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Andrade e Silva, Leonardo Gondin de; Spinace, Estevam Vitorio; Oliveira Neto, Almir; Santos, Mauro Coelho dos

    2015-01-01

    Environmental problems and the world growing demand for energy has mobilized the scientific community in finding of clean and renewable energy sources. In this context, fuel cells appear as appropriate technology for generating electricity through alcohols electro-oxidation. Multi Wall Carbon Nanotubes (MWCNT)-supported Pd and trimetallic PdAuSn (Pd:Au:Sn 50:10:40 atomic ratio) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by VC, Chronoamperometry, EDX, TEM and XRD. The catalytic activities of electrocatalysts toward ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC) in a range temperature 60 to 90 deg C. The best performances were obtained at 85 deg C: 33 mW.cm -2 and 31 mW.cm -2 for Pd/ MWCNT and PdAuSn/MWCNT electrocatalysts, respectively. X-ray diffractograms of electrocatalysts showed the presence of Pd-rich (fcc) and Au-rich (fcc) phases. Cyclic voltammetry and chronoamperometry experiments showed that PdAuSn/MWCNT electrocatalyst demonstrated similar activity toward ethanol electro-oxidation at room temperature, compared to electrocatalyst Pd/MWCNT. (author)

  4. Electrocatalysis of the Ethylene glycol oxidation reaction and in situ Fourier-transform infared study on PtMo/C electrocatalysts in alkaline and acid media

    Science.gov (United States)

    Pech-Rodríguez, W. J.; Calles-Arriaga, C.; González-Quijano, D.; Vargas-Gutiérrez, G.; Morais, C.; Napporn, T. W.; Rodríguez-Varela, F. J.

    2018-01-01

    PtMo/C (Pt:Mo atomic ratios of 1:1, 2:1 and 3:1) and Pt/C electrocatalysts synthesized by the formic acid method are investigated for the ethylene glycol oxidation reaction (EGOR) in alkaline and acid media. From XRD measurements, the crystallite sizes are between 2.5 and 4.3 nm. Electrochemical characterization of the EGOR on the electrocatalysts shows that the PtMo/C series exhibit higher electrocatalytic activity. When comparing the two electrolytes, the mass current densities obtained in alkaline media are significantly higher than in the acid counterpart. Among the bimetallic anodes, Pt1Mo1/C delivered a high performance in both media. In situ FTIR spectroscopy analysis has been performed to study the pathway of the EGOR. In alkaline media, the PtMo/C electrocatalysts have a higher selectivity for the C2 pathway resulting in the formation of species such as glycolate, glyoxal and glyoxylate. On the other hand, in acid electrolyte, the PtMo/C anodes show a preferential C1 pathway at high potentials and the main intermediate is identified as glycolic acid. The results indicate that the higher catalytic activity of PtMo/C electrocatalysts towards the EGOR may be attributed to the bifunctional mechanism and also to an electronic effect because of the incorporation of Mo atoms into the catalysts structure.

  5. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation

    Science.gov (United States)

    Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang

    2018-04-01

    By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.

  6. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery

    Science.gov (United States)

    Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin

    2017-12-01

    Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.

  7. The electrochemical reduction of PdCl42- and PdCl62- in polyaniline: Influence of Pd deposit morphology on methanol oxidation in alkaline solution

    International Nuclear Information System (INIS)

    Hatchett, David W.; Millick, Nicole M.; Kinyanjui, John M.; Pookpanratana, Sujitra; Baer, Marcus; Hofmann, Timo; Luinetti, Alessio; Heske, Clemens

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → The synthesis of PANI/Pd composites using PdCl 4 2- and PdCl 6 2- is achieved. → Conductivity of PANI/Pd composites is observed in alkaline solution (pH ∼ 14). → Oxidation of methanol at PANI/Pd is influenced to be the Pd surface morphology. → Surface poisoning is minimized for PANI/Pd produced using PdCl 4 2- . → The Pd metal acts as a solid state dopant in PANI. - Abstract: The controlled uptake and electrochemical reduction of metal precursors PdCl 4 2- and PdCl 6 2- in polyaniline (PANI) is demonstrated. The formation of PANI/Pd composites is achieved with a reduction in proton doping and an increase in the oxidation of the polymer with Pd deposits physically blocking the nitrogen groups. High surface area filaments (PdCl 4 2- ) or a rough encapsulation (PdCl 6 2- ) of Pd metal on PANI are obtained. The structural differences highlight the influence of the metal precursor oxidation state on the morphology of the Pd deposits in PANI. Thermal gravimetric analysis provides an estimate of the Pd content for each composite of ∼40%. X-ray Photoelectron Spectroscopy and X-ray-excited Auger Electron Spectroscopy analyses confirm the deposition of Pd metal. The catalytic oxidation of methanol was demonstrated for both PANI/Pd composites in alkaline solutions that prohibit proton doping of the polymer. The data indicates that Pd metal acts as a solid-state dopant that may delocalize the charge on the polymer backbone to maintain conductivity. Methanol oxidation at PANI/Pd composites produced using PdCl 4 2- was enhanced relative to the composite produced using PdCl 6 2- and a planar Pd electrode. Comparison of PANI/Pd composite produced using PdCl 4 2- with other Pd catalysts from the literature indicates surface poisoning is reduced when Pd is coupled with the polymer. The composite is robust and stable in alkaline solution with the charge density decreasing by 5% on the positive scan and 13% on the

  8. The Silver Oxide-Zinc Alkaline Primary Cell. Part 2. Effects of Various Types of Negative Electrodes on Cell Characteristics

    National Research Council Canada - National Science Library

    Shepherd, C. M

    1951-01-01

    ... (generally a potassium hydroxide solution). During discharge, the silver peroxide in the positive electrode is reduced to metallic silver and the metallic zinc in the negative electrode is oxidized either to zinc oxide or to a complex zincate ion...

  9. Aeration to degas CO2, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage

    International Nuclear Information System (INIS)

    Kirby, C.S.; Dennis, A.; Kahler, A.

    2009-01-01

    Passive treatment systems for mine drainage use no energy other than gravity, but they require greater area than active treatment systems. Researchers are considering 'hybrid' systems that have passive and active components for increased efficiency, especially where space limitations render passive-only technology ineffective. Flow-through reactor field experiments were conducted at two large net-alkaline anthracite mine discharges in central Pennsylvania. Assuming an Fe removal rate of 20 g m -2 day -1 and Fe loading from field data, 3.6 x 10 3 and 3.0 x 10 4 m 2 oxidation ponds would be required for the passive treatment of Site 21 and Packer 5 discharges, respectively. However, only a small area is available at each site. This paper demonstrates aeration to drive off CO 2 , increase pH, and increase Fe(II) oxidation rates, enabling treatment within a small area compared to passive treatment methods, and introduces a geochemical model to accurately predict these rates as well as semi-passive treatment system sizing parameters. Both net-alkaline discharges were suboxic with a pH of ∼5.7, Fe(II) concentration of ∼16 mg L -1 , and low Mn and Al concentrations. Flow rates were ∼4000 L min -1 at Site 21 and 15,000 L min -1 at Packer 5. Three-h aeration experiments with flow rates scaled to a 14-L reactor resulted in pH increases from 5.7 to greater than 7, temperature increases from 12 to 22 deg. C, dissolved O 2 increases to saturation with respect to the atmosphere, and Fe(II) concentration decreases from 16 to -1 . A 17,000-L pilot-scale reactor at Site 21 produced similar results although aeration was not as complete as in the smaller reactor. Two non-aerated experiments at Site 21 with 13 and 25-h run times resulted in pH changes of ≤0.2 and Fe(II) concentration decreases of less than 3 mg L -1 . An Fe(II) oxidation model written in a differential equation solver matched the field experiments very well using field-measured pH, temperature, dissolved O 2

  10. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.

    Science.gov (United States)

    Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D

    2010-12-01

    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    Directory of Open Access Journals (Sweden)

    A. J. Luna

    2009-09-01

    Full Text Available In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO. A mixed oxide of Mn-Ce (7:3, the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4-dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed.

  12. Carbon isotope analysis of dissolved organic carbon in fresh and saline (NaCl) water via continuous flow cavity ring-down spectroscopy following wet chemical oxidation

    Science.gov (United States)

    Conaway, Christopher; Thomas, Randal B.; Saad, Nabil; Thordsen, James J.; Kharaka, Yousif K.

    2015-01-01

    This work examines the performance and limitations of a wet chemical oxidation carbon analyser interfaced with a cavity ring-down spectrometer (WCO-CRDS) in a continuous flow (CF) configuration for measuring δ13C of dissolved organic carbon (δ13C-DOC) in natural water samples. Low-chloride matrix (22.5 µg C/aliquot) may be analysed. The WCO-CRDS approach requires more total carbon (µg C/aliquot) than conventional CF-isotope ratio mass spectrometer, but is nonetheless applicable to a wide range of DOC concentration and water types, including brackish water, produced water, and basinal brines.

  13. Assessment for development of an industrial wet oxidation system for burning waste and low-grade fuels. Final report, October 18, 1989--February 28, 1995

    International Nuclear Information System (INIS)

    Sundback, C.

    1995-05-01

    The ultimate goal of this program was to demonstrate safe, reliable, and effective operation of the supercritical water oxidation process (SCWO) at a pilot plant-level throughput. This program was a three phase program. Phase 1 of the program preceded MODEC's participation in the program. MODEC did participate in Phases 2 and 3 of the program. In Phase 2, the target waste and industry were pulp mill sludges from the pulp and paper industry. In Phase 3, the target was modified to be DOE-generated mixed low level waste; wastes containing RCRA hazardous constituents and radionuclide surrogates were used as model wastes. The paper describes the research unit planning and design; bench-scale development of SCWO; research and development of wet oxidation of fuels; and the design of a super-critical water pilot plant

  14. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of nonpurgeable suspended organic carbon by wet-chemical oxidation and infrared spectrometry

    Science.gov (United States)

    Burkhardt, Mark R.; Kammer, James A.; Jha, Virendra K.; O'Mara-Lopez, Peggy G.; Woodworth, Mark T.

    1997-01-01

    Precision and accuracy results are described for the determination of nonpurgeable suspended organic carbon (SOC) by silver-filter filtration, wet-chemical oxidation, and infrared determination of hte resulting carbon dioxide (CO2) used at the U.S. Geological Survey's nationalWater Quality Laboratory. An aliquot of raw water isfiltered through a 0.45-micrometer silver filter. The trapped organic material is oxidized using phosphoric acid and potassium persulfate in a scaled glass ampule,and the rseulting CO2 is measured by an infrared CO2 detector. The amount of CO3 is proportional to the concentration of chemically oxidizable nonpurgeable organic carbon in the sample. The SOC method detection limit for routine analysis is 0.2 milligram per liter. The average percent recovery is 97.1 percent and the average standard deviation is 11 percent.

  15. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    Science.gov (United States)

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  16. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion.

    Science.gov (United States)

    Nguyen, Tuyet Thi; Quan, Xianglan; Xu, Shanhua; Das, Ranjan; Cha, Seung-Kuy; Kong, In Deok; Shong, Minho; Wollheim, Claes B; Park, Kyu-Sang

    2016-12-01

    Elevated plasma levels of inorganic phosphate (P i ) are harmful, causing, among other complications, vascular calcification and defective insulin secretion. The underlying molecular mechanisms of these complications remain poorly understood. We demonstrated the role of P i transport across the plasmalemma on P i toxicity in INS-1E rat clonal β cells and rat pancreatic islet cells. Type III sodium-phosphate cotransporters (NaP i s) are the predominant P i transporters expressed in insulin-secreting cells. Transcript and protein levels of sodium-dependent phosphate transporter 1 and 2 (PiT-1 and -2), isotypes of type III NaP i , were up-regulated by high-P i incubation. In patch-clamp experiments, extracellular P i elicited a Na + -dependent, inwardly rectifying current, which was markedly reduced under acidic extracellular conditions. Cellular uptake of P i elicited cytosolic alkalinization; intriguingly, this pH change facilitated P i transport into the mitochondrial matrix. Increased mitochondrial P i uptake accelerated superoxide generation, mitochondrial permeability transition (mPT), and endoplasmic reticulum stress-mediated translational attenuation, leading to reduced insulin content and impaired glucose-stimulated insulin secretion. Silencing of PiT-1/2 prevented P i -induced superoxide generation and mPT, and restored insulin secretion. We propose that P i transport across the plasma membrane and consequent cytosolic alkalinization could be a therapeutic target for protection from P i toxicity in insulin-secreting cells, as well as in other cell types.-Nguyen, T. T., Quan, X., Xu, S., Das, R., Cha, S.-K., Kong, I. D., Shong, M., Wollheim, C. B., Park, K.-S. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion. © FASEB.

  17. Characterization of Rio Blanco retort 1 water following treatment by lime-soda softening and reverse osmosis; Residual brine treated by wet-air oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kocornik, D.; Renk, R.

    1986-09-01

    Laboratory research has been conducted to evaluate the chemical, physical, and toxicological characteristics of treated and untreated water pumped from the flooded modified in situ retort at lease tract C-a. This wastewater had a total dissolved solids (TDS) content of about 5450 mg/L and a total organic carbon content of about 16 mg/L. Wet chemical analyses, metals analyses, particle-size analyses, and MICROTOX assays were performed on the wastewater before and after treatment by lime-soda softening and reverse osmosis. The reverse osmosis membrane used in this research was a Filmtec model SW30-2521 spiral-wound polyamide unit. In a short duration test at a TDS of 21,800 mg/L, the reverse osmosis system successfully removed dissolved solids and organics from the wastewater. The water was also much less toxic to the MICROTOX organism after treatment by reverse osmosis. Membrane fouling was observed when water with a TDS of 54,500 mg/L was treated. Treatment of the reverse osmosis residual brine was attempted by subcritical wet-air oxidation. The brine remaining after the 170-hour test on the water with a TDS of 5450 mg/L was subjected to temperatures ranging from 204/sup 0/C (400/sup 0/F) to 315/sup 0/C (600/sup 0/F) and pressures from 500 to 1600 psig for approximately 30 minutes. The waste treated by the higher temperatures and pressures showed good removals of organics, nitrogen compounds, and some metals. The sample treated at 302/sup 0/C (575/sup 0/F) and 1300 psi was assayed for MICROTOX response and no toxicity was measured. The reverse osmosis brine was significantly toxic to the MICROTOX organism before treatment by subcritical wet-air oxidation. 14 refs., 8 figs., 14 tabs.

  18. Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx

    Directory of Open Access Journals (Sweden)

    Zengfeng Guo

    2016-04-01

    Full Text Available Different proportions of oxide-rich PdCu/C nanoparticle catalysts were prepared by the NaBH4 reduction method, and their compositions were tuned by the molar ratios of the metal precursors. Among them, oxide-rich Pd0.9Cu0.1/C (Pd:Cu = 9:1, metal atomic ratio exhibits the highest electrocatalytic activity for ethanol oxidation reaction (EOR in alkaline media. X-ray photoelectron spectroscopy (XPS and high resolution transmission electron microscopy (HRTEM confirmed the existence of both Cu and CuOx in the as-prepared Pd0.9Cu0.1/C. About 74% of the Cu atoms are in their oxide form (CuO or Cu2O. Besides the synergistic effect of Cu, CuOx existed in the Pd-Cu bimetallic nanoparticles works as a promoter for the EOR. The decreased Pd 3d electron density disclosed by XPS is ascribed to the formation of CuOx and the spill-over of oxygen-containing species from CuOx to Pd. The low Pd 3d electron density will decrease the adsorption of CH3COads intermediates. As a result, the electrocatalytic activity is enhanced. The onset potential of oxide-rich Pd0.9Cu0.1/C is negative shifted 150 mV compared to Pd/C. The oxide-rich Pd0.9Cu0.1/C also exhibited high stability, which indicated that it is a candidate for the anode of direct ethanol fuel cells (DEFCs.

  19. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    Science.gov (United States)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  20. Controlling the Molecular Weight of Lignosulfonates by an Alkaline Oxidative Treatment at Moderate Temperatures and Atmospheric Pressure: A Size-Exclusion and Reverse-Phase Chromatography Study

    Directory of Open Access Journals (Sweden)

    Chamseddine Guizani

    2017-11-01

    Full Text Available The molecular weights of lignosulfonates (LSs are modified by a rather simple process involving an alkaline oxidative treatment at moderate temperatures (70–90 °C and atmospheric pressure. Starting from LSs with an average molecular weight of 90,000 Da, and using such a treatment, one can prepare controlled molecular weight LSs in the range of 30,000 to 3500 Da based on the average mass molecular weight. The LS depolymerisation was monitored via reverse-phase and size-exclusion chromatography. It has been shown that the combination of O2, H2O2 and Cu as a catalyst in alkaline conditions at 80 °C induces a high LS depolymerisation. The depolymerisation was systemically accompanied by a vanillin production, the yields of which reached 1.4 wt % (weight percentage on LS raw basis in such conditions. Also, the average molecular weight and vanillin concentration were correlated and depended linearly on the temperature and reaction duration.

  1. Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by net-alkaline coal-mine drainage, Pennsylvania, USA

    Science.gov (United States)

    Cravotta,, Charles A.

    2015-01-01

    Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the

  2. Fundamental mechanisms of oxidation of alkaline earth-bearing metal precursors: yttrium-barium-copper-silver-palladium and silver bariate

    Science.gov (United States)

    Sitaraman, Vilayannur R.

    Noble-metal-bearing metallic precursors can be selectively oxidized to yield oxide/noble metal composites. This processing method is investigated for producing 123/Ag-Pd laminates from a solid metallic Y-Ba-Cu-Ag-Pd precursor. A unique feature heretofore unnoticed is the external oxidation mechanism of Ba. The extent of external oxidation at 840C in a 3%H2-Ar atmosphere (PO2 ˜ 10-19 atm.) as measured by a segregation factor, is higher for Ba than for Y. Combined with the fact that Ba does not have significant solid solubility in Ag, Cu or Pd, this means that a short circuit transport path is possible for transport of Ba through such metals as described in chapter 1. Since diffusion through grain boundaries, is fast, the effective permeability of Ba can be relatively high even though its solubility is low. This proposed mechanism is proven using a model system, the Ag5Ba intermetallic compound. Both internal and external oxidation has been demonstrated in this material. Grain boundary diffusion is demonstrated using Ag clad Ag 5Ba. Due to a change in the mechanism from external to internal oxidation of Y in Y-Ba-Cu-Ag-Pd alloys, the imbalance in the surface stoichiometry caused by Ba segregation is not easily removed. A mechanism proposed by Meijering for copper oxide dissolution, Cu migration and Cu reoxidation at the outer surface is also consistent with the microstructural observations in oxidized Y-Ba-Cu-Ag-Pd specimens.

  3. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    Science.gov (United States)

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Alkaline direct alcohol fuel cells

    Science.gov (United States)

    Antolini, E.; Gonzalez, E. R.

    The faster kinetics of the alcohol oxidation and oxygen reduction reactions in alkaline direct alcohol fuel cells (ADAFCs), opening up the possibility of using less expensive metal catalysts, as silver, nickel and palladium, makes the alkaline direct alcohol fuel cell a potentially low cost technology compared to acid direct alcohol fuel cell technology, which employs platinum catalysts. A boost in the research regarding alkaline fuel cells, fuelled with hydrogen or alcohols, was due to the development of alkaline anion-exchange membranes, which allows the overcoming of the problem of the progressive carbonation of the alkaline electrolyte. This paper presents an overview of catalysts and membranes for ADAFCs, and of testing of ADAFCs, fuelled with methanol, ethanol and ethylene glycol, formed by these materials.

  5. Well-dispersed NiO nanoparticles supported on nitrogen-doped carbon nanotube for methanol electrocatalytic oxidation in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengcheng; Zhou, Yingke, E-mail: zhouyk888@hotmail.com; Hu, Min; Chen, Jian

    2017-01-15

    Highlights: • Nitrogen-doped carbon nanotube supporting ultrafine NiO nanoparticles with high dispersity are facile synthesized. • The nitrogen doping, calcination temperature and NiO loading present great effects on the catalyst morphology, structure and electrochemical performance. • NiO-NCNT-3x-400 demonstrates remarkable catalytic activity and stability for the methanol electrolytic oxidation reaction. - Abstract: Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.

  6. Impact of wet-oxidized Al2O3/AlGaN interface on AlGaN/GaN 2-DEGs

    Science.gov (United States)

    Meer, Mudassar; Majety, Sridhar; Takhar, Kuldeep; Ganguly, Swaroop; Saha, Dipankar

    2017-04-01

    We investigated the impact of wet-oxidation of AlGaN in an AlGaN/GaN heterostructure by selectively probing the metal/AlGaN interface. The two-dimensional electron gas (2-DEG) characteristics show improved mobility with increasing oxidation time and Al2O3 thickness. The change is attributed to an interplay of the interface trap density (D it) and the oxide thickness. D it is found to reduce progressively for thicker gate oxides as determined by selectively probing the Al2O3/AlGaN interface and employing frequency dependent capacitance and conductance spectroscopy on these devices. The energies of the interface traps are found to be in the range of 0.35-0.45 eV below the conduction band edge. The D it is found to reduce from 2 × 1013 cm-2 eV-1 for 2.3 nm of Al2O3 to 5 × 1012 cm-2 eV-1 for 16 nm of Al2O3. Contrary to the earlier reports of increased 2-DEG electron density, the primary advantage is found to be a reduction in Dit leading to an increased electron mobility from 1730 to 2800 cm2V-1s-1.

  7. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  8. Catalytic performances of supported gold nano-particles in catalytic oxidation of organic acids by wet way; Performances catalytiques de nanoparticules d'or supportees en oxydation catalytique d'acides organiques par voie humide

    Energy Technology Data Exchange (ETDEWEB)

    Doan, Pham Minh; Aubert, G.; Gallezot, P.; Bessona, M. [Institut de Recherche sur la Catalyse (IRC), UPR 5401-CNRS, 69 - Villeurbanne (France); Zanella, R.; Delannoy, L.; Louis, C. [Paris-6 Univ., Lab. de Reactivite de Surface, UMR 7609-CNRS 75 (France)

    2004-07-01

    It has been shown for the first time that gold catalysts in the form of supported nano-particles, active in the reactions of CO oxidation and VOC combustion, are active too for the elimination reactions of organic acids in aqueous solution by the air wet oxidation process. The acids are mainly oxidized in CO{sub 2} and H{sub 2}O. (O.M.)

  9. INVESTIGATION OF DNA REPAIR BY SISTER CHROMATID EXCHANGE (SCE) ANALYSIS AND THE ALKALINE SINGLE CELL GEL ASSAY (SCG) IN MAMMALIAN GO-LYMPHOCYTES AFTER IN VITRO EXPOSURE TO ETHYLENE OXIDE (EO)

    Science.gov (United States)

    Investigation ofDNA Repair by Sister Chromatid Exchange (SCE) Analysis and the Alkaline Single Cell Gel Assay (SCG) in Mammalian Go-Lymphocytes after In Vitro Exposure to Ethylene Oxide (EO). EO is a large volume chemical used primarily as an intermediate in manufacturing...

  10. Wet oxidation of ordered mesoporous carbon FDU-15 by using (NH4)2S2O8 for fast adsorption of Sr(II): An investigation on surface chemistry and adsorption mechanism

    International Nuclear Information System (INIS)

    Song, Yang; Ye, Gang; Chen, Jing; Lv, Dachao; Wang, Jianchen

    2015-01-01

    Graphical abstract: - Abstract: Surface modification of ordered mesoporous carbon (OMC) by wet oxidation provides an oxygen-enriched platform for complexation of metal ions. Here, we present a comprehensive study on the surface chemistry and textual property of OMC FDU-15 modified by wet oxidation using (NH 4 ) 2 S 2 O 8 as a benign oxidant. And, for the first time, the adsorption behavior and mechanism of wet-oxidized OMC FDU-15 toward Sr(II) in aqueous solutions were investigated. The mesostructural regularity of the OMC FDU-15 was well-reserved under wet oxidation. Compared to OMC CMK-type counterparts prepared via nanocasting, the OMC FDU-15 by soft template method showed much-enhanced structural stability. Due to the introduction of abundant oxygen-containing species, the oxidized OMC FDU-15 exhibited excellent hydrophilicity and dispersibility in aqueous solutions. The adsorption behavior toward Sr(II) was fully investigated, showing a super-fast adsorption kinetics (< 5 min to reach equilibrium) and a Langmuir adsorption isotherm. Moreover, an in-depth X-ray photoelectron spectroscopy analysis through deconvolution of high resolution C1s and O1s spectra was implemented to identify the chemical species of the surface functional groups, while probing the adsorption mechanism. The results suggested that oxygen donor atoms in C−O single bonds mainly contribute to the adsorption of Sr(II) via formation of metal-ligand complexation.

  11. Wet oxidation of ordered mesoporous carbon FDU-15 by using (NH{sub 4}){sub 2}S{sub 2}O{sub 8} for fast adsorption of Sr(II): An investigation on surface chemistry and adsorption mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Ye, Gang, E-mail: yegang@mail.tsinghua.edu.cn [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing 100084 (China); Chen, Jing [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing 100084 (China); Lv, Dachao [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Jianchen, E-mail: wangjianchen@mail.tsinghua.edu.cn [Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Graphical abstract: - Abstract: Surface modification of ordered mesoporous carbon (OMC) by wet oxidation provides an oxygen-enriched platform for complexation of metal ions. Here, we present a comprehensive study on the surface chemistry and textual property of OMC FDU-15 modified by wet oxidation using (NH{sub 4}){sub 2}S{sub 2}O{sub 8} as a benign oxidant. And, for the first time, the adsorption behavior and mechanism of wet-oxidized OMC FDU-15 toward Sr(II) in aqueous solutions were investigated. The mesostructural regularity of the OMC FDU-15 was well-reserved under wet oxidation. Compared to OMC CMK-type counterparts prepared via nanocasting, the OMC FDU-15 by soft template method showed much-enhanced structural stability. Due to the introduction of abundant oxygen-containing species, the oxidized OMC FDU-15 exhibited excellent hydrophilicity and dispersibility in aqueous solutions. The adsorption behavior toward Sr(II) was fully investigated, showing a super-fast adsorption kinetics (< 5 min to reach equilibrium) and a Langmuir adsorption isotherm. Moreover, an in-depth X-ray photoelectron spectroscopy analysis through deconvolution of high resolution C1s and O1s spectra was implemented to identify the chemical species of the surface functional groups, while probing the adsorption mechanism. The results suggested that oxygen donor atoms in C−O single bonds mainly contribute to the adsorption of Sr(II) via formation of metal-ligand complexation.

  12. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Electrocatalytic oxidation of meso-erythritol in anion-exchange membrane alkaline fuel cell on PdAg/CNT catalyst

    Science.gov (United States)

    Benipal, Neeva; Qi, Ji; McSweeney, Ryan F.; Liang, Changhai; Li, Wenzhen

    2018-01-01

    C-C bond cleavage during electrocatalytic oxidation of glycerol and C3+ polyols often occurs and can significantly affect the Faradaic efficiency, fuel utilization, and output power density of a direct polyol fuel cell, although this has not been deeply investigated. With the goal of acquiring new knowledge of C-C bond breaking of polyols, this study examines the electrocatalytic oxidation of a C4 polyol meso-erythritol on carbon nanotube supported Pd-based catalysts (Pd/CNT, PdAg/CNT, and PdAg3/CNT) in an anion-exchange membrane fuel cell (AEMFC). Our results show that PdAg/CNT improves the fuel efficiency of meso-erythritol oxidation by contributing to the C-C bond cleavage of meso-erythritol in C3 and C2 chemicals. Based on the analysis of electro-oxidation products and half-cell cyclic voltammetry (CV) of intermediates, a meso-erythritol electro-oxidation pathway has been proposed to demonstrate that Ag is likely to assist Pd to promote the cleavage of C-C bonds of meso-erythritol.

  14. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    was investigated for cellulosic ethanol production. The biomass raw materials were pretreated using wet explosion (WEx) at 25% dry matter concentration with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was significantly improved after pretreatment. The highest conversion......The choice of a suitable pretreatment method and the adjustment of the pretreatment parameters for efficient conversion of biomass are crucial for a successful biorefinery concept. In this study, cocksfoot grass, a suitable lignocellulosic biomass with a potential for large-scale production...... into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...

  15. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, H.B.

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops. The ...... crops competitive to the use of corn and this combination will make the production of biogas from energy crops more sustainable.......Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...

  16. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media.

    Science.gov (United States)

    Meng, Yongtao; Song, Wenqiao; Huang, Hui; Ren, Zheng; Chen, Sheng-Yu; Suib, Steven L

    2014-08-13

    Manganese oxides of various structures (α-, β-, and δ-MnO2 and amorphous) were synthesized by facile methods. The electrocatalytic properties of these materials were systematically investigated for catalyzing both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in alkaline media. Extensive characterization was correlated with the activity study by investigating the crystal structures (XRD, HRTEM), morphologies (SEM), porosities (BET), surfaces (XPS, O2-TPD/MS), and electrochemical properties (Tafel analysis, Koutechy-Levich plots, and constant-current electrolysis). These combined results show that the electrocatalytic activities are strongly dependent on the crystallographic structures, and follow an order of α-MnO2 > AMO > β-MnO2 > δ-MnO2. Both OER studies and ORR studies reveal similar structure-determined activity trends in alkaline media. In the OER studies, α-MnO2 displays an overpotential of 490 mV compared to 380 mV shown by an Ir/C catalyst in reaching 10 mA cm(-2). Meanwhile, α-MnO2 also exhibits stability for 3 h when supplying a constant current density of 5 mA cm(-2). This was further improved by adding Ni(2+) dopants (ca. 8 h). The superior OER activity was attributed to several factors, including abundant di-μ-oxo bridges existing in α-MnO2 as the protonation sites, analogous to the OEC in PS-II of the natural water oxidation system; the mixed valencies (AOS = 3.7); and the lowest charge transfer resistances (91.8 Ω, η = 430 mV) as revealed from in situ electrochemical impedance spectroscopy (EIS). In the ORR studies, when reaching 3 mA cm(-2), α-MnO2 shows 760 mV close to 860 mV for the best ORR catalyst (20% Pt/C). The outstanding ORR activity was due to the strongest O2 adsorption capability of α-MnO2 suggested by temperature-programmed desorption. As a result, this discovery of the structure-related electrocatalytic activities could provide guidance in the further development of easily prepared, scalable, and low

  17. [Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].

    Science.gov (United States)

    Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin

    2007-07-01

    Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.

  18. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction

    International Nuclear Information System (INIS)

    Fontes, Eric Hossein

    2017-01-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H 2 PtCl 6 3•6H 2 0 and (RhNO 3 ) 3 , the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  19. Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Abbas, B.; Tourova, T.P.; Bumazhkin, B.K.; Kolganova, T.V.; Muyzer, G.

    2014-01-01

    So far, anaerobic sulfate-dependent acetate oxidation at high pH has only been demonstrated for a low-salt-tolerant syntrophic association of a clostridium ‘Candidatus Contubernalis alkalaceticum’ and its hydrogenotrophic sulfate-reducing partner Desulfonatronum cooperativum. Anaerobic enrichments

  20. Ce1-xFexO2 nanocatalysts for priority organic pollutants removal through catalytic wet air oxidation

    Directory of Open Access Journals (Sweden)

    Anushree

    2017-12-01

    Full Text Available A series of Ce1-xFexO2 nanocatalysts, prepared by co-precipitation method, were applied for the catalytic oxidation of priority organic pollutants present in paper industry wastewater. To investigate the synergic effect of various Fe contents, detailed characterizations of Ce1-xFexO2 were done by Raman, XPS, XRD, TEM and EDX techniques. The addition of Fe to CeO2 lattice increased the amount of oxygen vacancies, which have an efficient role in the oxidation of organic pollutants under oxygen-rich conditions. Ce0.4Fe0.6O2 catalyst showed the highest removal of TOC (72%, AOX (68%, chlorophenols (62% and chloroguaicols (86%. The superior catalytic activity of Ce0.4Fe0.6O2 is ascribed to its higher oxygen vacancy concentration. The presence of two oxidation states of Ce (4+,3+ and Fe (3+,2+ confirmed the role of redox couples in oxidation of organic pollutants.

  1. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes

    International Nuclear Information System (INIS)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-01-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m 3 of copper and 1.35 kg/m 3 of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater

  2. Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium

    Czech Academy of Sciences Publication Activity Database

    Roche, I.; Chainet, E.; Chatenet, M.; Vondrák, Jiří

    2008-01-01

    Roč. 38, č. 9 (2008), s. 1195-1201 ISSN 0021-891X R&D Projects: GA AV ČR KJB4813302; GA ČR GA104/02/0731 Grant - others:CNRS(FR) 18105 Institutional research plan: CEZ:AV0Z40320502 Keywords : oxygen reduction reaction * rotating ring-disc electrode * carbon-supported manganese oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 1.540, year: 2008

  3. Copper(II catalysis for oxidation of l-tryptophan by hexacyanoferrate(III in alkaline medium: A kinetic and mechanistic approach

    Directory of Open Access Journals (Sweden)

    Basim H. Asghar

    2017-12-01

    Full Text Available The catalytic effect of copper(II catalyst on the oxidation of l-tryptophan (Trp by hexacyanoferrate(III (HCF, has been investigated spectrophotometrically in an aqueous alkaline medium at a constant ionic strength of 0.5 mol dm−3 and at 25 °C. The stoichiometry for both the uncatalyzed and catalyzed reactions was 1:2 (Trp:HCF. The reactions exhibited first order kinetics with respect to [HCF] and less than unit orders with respect to [Trp] and [OH−]. The catalyzed reaction exhibited fractional-first order kinetics with respect to [CuII]. The reaction rates were found to increase as the ionic strength and dielectric constant of the reaction medium increase. The effect of temperature on the rates of reactions has also been studied, and the activation parameters associated with the rate-determining steps of the reactions have been evaluated and discussed. Addition of the reaction product HCF(II to the reaction mixture did not affect the rates. Plausible mechanistic schemes for uncatalyzed and catalyzed reactions explaining all of the observed kinetic results have been proposed. In both cases, the final oxidation products are identified as indole-3-acetaldehyde, ammonia, and carbon dioxide. The rate laws associated with the reactions’ mechanisms are derived. The rate constants of the slow steps of the reactions along with the equilibrium constants are also calculated. Keywords: Oxidation, Kinetics, l-Tryptophan, Hexacyanoferrate(III, Copper(II, Catalysis

  4. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium; Preparacao e caracterizacao de eletrocatalisadores a base de paladio para oxidacao eletroquimica de alcoois em meio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Brandalise, Michele

    2012-07-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  5. APPLICATION OF MAGNETIC CATALYSTS TO THE CATALYTIC WET PEROXIDE OXIDATION (CWPO OF INDUSTRIAL WASTEWATER CONTAINING NON BIODEGRADABLE ORGANIC POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Macarena Munoz

    2014-03-01

    Full Text Available A new ferromagnetic -Al2O3-supported iron catalyst has been prepared and its activity and stability have been compared with those of a previous iron-based conventional catalyst and with the traditional homogeneous Fenton process in the oxidation of chlorophenols. The use of solid catalysts improved significantly the efficiency on the use of H2O2, achieving higher mineralization degrees. The magnetic catalyst led to significantly higher oxidation rates than the conventional one due to the presence of both Fe (II and Fe (III. On the other hand, the use of a catalyst with magnetic properties is of interest, since it allows rapid recovery after treatment using a magnetic field. Moreover, it showed a high stability with fairly low iron leaching (<1% upon CWPO runs. An additional clear advantage of this new catalyst is its easy separation and recovery from the reaction medium by applying an external magnetic field.

  6. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Cai, Jindi; Huang, Yiyin; Guo, Yonglang

    2013-01-01

    Highlights: • Pd-Bi/C catalysts were easily prepared by irreversible adsorption of Bi on Pd/C surface. • The adsorption of Bi increases the oxygen-containing species obviously on Pd-Bi/C surface. • Only a little amount of Bi on Pd-Bi/C can play a significant role in ethanol oxidation reaction (EOR). • Current density of EOR on Pd-Bi/C (20:1) is 2.4 times higher than that on Pd/C. • Anti-poisoning ability and durability of Pd-Bi/C (20:1) is greatly enhanced. -- Abstract: A facile approach to promote ethanol electro-oxidation on Pd-based catalysts is presented by the modification of Bi on Pd/C catalyst via irreversible adsorption. X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) measurements show that the modification of Bi has no significant effect on the Pd morphology and particle size distribution. Bi(III) and Pd(0) are the dominant forms in Pd-Bi/C catalyst. Electrochemical tests show that the modification of the appropriate amount of Bi on Pd/C catalyst can remarkably enhance activity toward ethanol oxidation reaction (EOR) up to about 2.4 times higher compared to Pd/C catalyst. The Pd-Bi/C (20:1) catalyst exhibits excellent stability and enhances CO tolerance. The enhanced electrochemical performance of Pd-Bi/C catalyst is attributed to the electronic effect and the bifunctional mechanism. The high exchange current density and the low apparent activation energy on Pd-Bi/C (20:1) catalyst reveal its faster kinetics and higher intrinsic activity compared to Pd/C catalyst

  7. Wet Aerobic Oxidation of Lignin into Aromatic Aldehydes Catalysed by a Perovskite-type Oxide: LaFe1-xCuxO3 (x=0, 0.1, 0.2

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2009-07-01

    Full Text Available The perovskite-type oxide catalyst LaFe1-xCuxO3 (x=0, 0.1, 0.2 was prepared by the sol–gel method, and tested as a catalyst in the wet aerobic oxidation (WAO of lignin into aromatic aldehydes. The lignin conversion and the yield of each aromatic aldehyde were significantly enhanced in the catalytic process, compared with the non-catalyzed process. Moreover, it was shown that the stability of activity and structure of LaFe1-xCuxO3 (x=0, 0.1, 0.2 remained nearly unchanged after a series of successive recyclings of the catalytic reactions, indicating it was an efficient and recyclable heterogeneous catalyst for the conversion of lignin into aromatic aldehydes in the WAO process.

  8. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se2 thin-film solar cell absorbers

    Science.gov (United States)

    Lehmann, Jascha; Lehmann, Sebastian; Lauermann, Iver; Rissom, Thorsten; Kaufmann, Christian A.; Lux-Steiner, Martha Ch.; Bär, Marcus; Sadewasser, Sascha

    2014-12-01

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for "realistic" surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In1-xGax)Se2 thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH3-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is - apart from a slight change in surface composition - identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.

  9. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.

    Science.gov (United States)

    Xu, Yin; Li, Xiaoyi; Cheng, Xiang; Sun, Dezhi; Wang, Xueye

    2012-03-06

    To overcome the drawback of catalytic wet air oxidation (CWAO) with high temperature and high pressure, the catalytic activity of Mo-Zn-Al-O catalyst for degradation of cationic red GTL under room temperature and atmospheric pressure was investigated. Mo-Zn-Al-O catalyst was prepared by coprecipitation and impregnation. XRD, TG-DTG, and XPS were used to characterize the resulting sample. Central composition design using response surface methodology was employed to optimize correlation of factors on the decolorization of cationic red GTL. The results show that the optimal conditions of pH value, initial concentration of dye and catalyst dosage were found to be 4.0, 85 mg/L and 2.72 g/L, respectively, for maximum decolorization of 80.1% and TOC removal of 50.9%. Furthermore, the reaction on the Mo-Zn-Al-O catalyst and degradation mechanism of cationic red GTL was studied by Electron spin resonance (ESR) and GC-MS technique. The possible reaction mechanism was that the Mo-Zn-Al-O catalyst can efficiently react with adsorbed oxygen/H(2)O to produce ·OH and (1)O(2) and finally induce the degradation of cationic red GTL. GC-MS analysis of the degradation products indicates that cationic red GTL was initiated by the cleavage of -N ═ N- and the intermediates were further oxidized by ·OH or (1)O(2).

  10. Microwave assisted catalytic wet air oxidation of H-acid in aqueous solution under the atmospheric pressure using activated carbon as catalyst

    International Nuclear Information System (INIS)

    Zhang Yaobin; Quan Xie; Chen Shuo; Zhao Yazhi; Yang Fenglin

    2006-01-01

    Catalytic wet air oxidation (CWAO) is a promising method for the treatment of heavily contaminated wastewater. However, its application is restricted due to severe operation conditions (high pressure and high temperature). A microwave (MW) assisted oxidation method was investigated aiming to treat heavily contaminated wastewater under milder conditions. H-acid (1-amino-8-naphthol-3, 6-disulfonic acid) was selected as target compound to evaluate the performance of this novel process. The removal of H-acid and TOC (total organic carbon) for H-acid solution of 3000 mg/L reached as high as 92.6% in 20 min and 84.2% in 60 min, respectively under optimal conditions. The existence of activated carbon and oxygen proved to be critical for effective treatment. The activated carbon acted not only as a catalyst for H-acid decomposition, but also as a special material for the absorption of MW energy. Air was supplied to the reactor as an oxygen source at constant flows. The amino group in H-acid was converted ultimately into nitrate, and sulfonic group into sulfate. This observation gave an evidence of H-acid mineralization although other organic intermediates were unable to be determined. The value of BOD 5 /COD (ratio of 5d biochemical oxygen demand to chemical oxygen demand) increased from 0.008 to 0.467 indicating a significant improvement of biodegradability for the solution, which is beneficial for the further biological treatment of the wastewater

  11. Improved method for the determination of nonpurgeable suspended organic carbon in natural water by silver filter filtration, wet chemical oxidation, and infrared spectrometry

    Science.gov (United States)

    Burkhardt, Mark R.; Brenton, Ronald W.; Kammer, James A.; Jha, Virenda K.; O'Mara-Lopez, Peggy G.; Woodworth, Mark T.

    1999-01-01

    Precision and accuracy are reported for the first time for the analysis of nonpurgeable suspended organic carbon by silver membrane filtration followed by wet chemical oxidation. A water sample is pressure filtered through a 0.45‐μm‐pore‐size, 47‐mm‐diameter silver membrane filter. The silver membrane filter then is cut into ribbons and placed in a flame‐sealable glass ampule. The organic material trapped on the membrane filter strips is acidified, purged with oxygen to remove inorganic carbonates and volatile organic compounds, and oxidized to carbon dioxide (CO2) using phosphoric acid and potassium persulfate in the sealed glass ampule. The resulting CO2 is measured by a nondispersive infrared CO2 detector. The amount of CO2 is proportional to the concentration of chemically oxidizable nonpurgeable organic carbon in the environmental water sample. The quantitation and method detection limit for routine analysis is 0.2 mg/L. The average percent recovery in five representative matrices was 97 ± 11%. The errors associated with sampling and sample preparation of nonpurgeable suspended organic carbon are also described.

  12. Structural characterization of alkaline and oxidative stressed degradation products of lurasidone using LC/ESI/QTOF/MS/MS.

    Science.gov (United States)

    Talluri, M V N Kumar; Dharavath, Shireesha; Kalariya, Pradipbhai D; Prasanth, B; Srinivas, R

    2015-02-01

    A selective, accurate, precise and robust stability indicating liquid chromatography assay method was developed for the monitoring of a novel antipsychotic drug, lurasidone, in the presence of its degradation products (DPs). Also, we investigated degradation behavior of the drug under various stressed conditions such as hydrolytic (acidic, basic and neutral), oxidation, photolytic and thermal. The drug was found to be degraded under base hydrolytic and oxidative conditions, while it was stable in acid and neutral hydrolytic, photolytic and thermal conditions. The method showed adequate separation of lurasidone and its DPs on Xterra C18 (150 mm × 4.6 mm i.d., 3.5 μm) column using 20 mM ammonium formate (pH 3.0): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. This method was extended to liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC/ESI/QTOF/MS/MS) for structural characterization of DPs. A total of five DPs were characterized by LC/ESI/QTOF/MS/MS studies. Most probable mechanisms for the formation of DPs were proposed. The developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization Guideline Q2 (R1). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Conditions for the formation of pure birnessite during the oxidation of Mn(II) cations in aqueous alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Boumaiza, Hella [Laboratoire de Chimie des Matériaux et Catalyse, Faculté des Sciences de Tunis, Université El Manar (Tunisia); Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME)-UMR 7564, CNRS-Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy (France); Département de Génie Biologique et Chimique, Institut National des Sciences Appliquées et de Technologies (INSAT), Université de Carthage, Tunis (Tunisia); Coustel, Romain [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME)-UMR 7564, CNRS-Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy (France); Medjahdi, Ghouti [Institut Jean Lamour, Centre de Compétences Rayons X et Spectroscopie (X-Gamma), UMR 7198 CNRS-Université de Lorraine (France); Ruby, Christian, E-mail: Christian.ruby@univ-lorraine.fr [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME)-UMR 7564, CNRS-Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy (France); and others

    2017-04-15

    Birnessite was synthetized through redox reaction by mixing MnO{sub 4}{sup -}, Mn{sup 2+} and OH{sup -} solutions. The Mn(VII): Mn(II) ratio of 0.33 was chosen and three methods were used consisting in a quick mixing under vigorous stirring of two of the three reagents and then on the dropwise addition of the third one. The obtained solids were characterized by XRD, FTIR and XPS spectroscopies. Their average oxidation states were determined from ICP and CEC measurements while their surface properties were investigated by XPS. This study provides an increased understanding of the importance of dissolved oxygen in the formation of birnessite and hausmannite and shows the ways to obtain pure birnessite. The role of counter-ion ie. Na{sup +} or K{sup +} was also examined. - Graphical abstract: Pathways of birnessite formation. - Highlights: • Pure birnessite is prepared through a redox reaction. • Hausmannite formation is prevented by controlling dissolved O2. • The employed counterion influences the purity of birnessite. • Initial Mn(OH){sub 2} is oxidized by both MnO{sub 4}{sup -} and dissolved O{sub 2}.

  14. Micro-arc oxidization of a novel Mg–1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Z.J.; Li, M.; Liu, Q.; Xu, X.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Cheng, Y., E-mail: chengyan@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Y.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Xi, T.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, S.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100871 (China)

    2014-02-15

    A newly-developed Mg–1Ca (wt%) alloy was treated by micro-arc oxidization (MAO) in KF-silicate- (Si coating), KF-phosphate- (P coating) and KF-silicate-phosphate (SiP coating) electrolytes. The microstructure, composition and corrosion resistance of the resultant MAO coatings were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffractometry (XRD). Electrochemical analysis and immersion test in Hanks’ solution and MTT assay for in-vitro toxicity against MG63 cells were subsequently carried out. Results showed that all the three MAO coatings contributed to the improvement of corrosion resistance and cytocompatibility of substrate; however, P coating outperformed the two others due to its specific microstructure and composition.

  15. Role of Ru(IlI) as an inhibitor in oxidation of lactose by (Cu(bipy)2)2+ in alkaline medium: spectrophotometric and kinetic studies

    International Nuclear Information System (INIS)

    Singh, Ashok Kumar; Singh, Manjula; Srivastava, Jaya; Rahmani, Shahla

    2013-01-01

    Kinetics of oxidation of lactose by (Cu(bipy) 2 ) 2+ in alkaline medium using Ru(III) as an inhibitor has been studied spectrophotometrically at 40 °C. The studies show that the rate of the reaction is zero order with respect to (Cu(bipy) 2 ) 2+ and first order with respect to (lactose). The order of reaction is found to be two at low concentrations of OH - (from 1.48×10 5 to 3.47×10 5 M) and less than two at its high concentrations (from 4.27×10 5 to 6.31×10 5 M). There is a substantial decrease in the pseudo-zero order rate constant with increase in the concentration of Ru(III) chloride, indicating the role of Ru(III) chloride as an inhibitor. Decrease in the rate with increase in dielectric constant of the medium is observed, while ionic strength of the medium and bipyridyl concentration has no influence on the rate. Based on kinetic data and spectrophotometric evidences, a suitable mechanism is proposed for the studied reaction. (author)

  16. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging.

  17. Commercial alkaline earth boroaluminosilicate glasses for sealing solid oxide cell stacks. Part I: Development of glass-ceramic microstructure and thermomechanical properties

    DEFF Research Database (Denmark)

    Agersted, Karsten; Balic-Zunic, Tonci

    2017-01-01

    was developed over ~1000 hours at 800°C, depends mainly on the formation of cristobalite and quartz as well as the presence of a residual glass phase. The glass ceramic sealant appears relatively stable over time, except for a slow transition of cristobalite to quartz, and can possibly show self......Sealing performance in solid oxide cell (SOC) stacks and the devitrification process of commercially available alkaline earth boroaluminosilicate glasses containing 48‐61 mol% SiO2, 18‐28 mol% CaO, 1‐7 mol% MgO, 7‐10 mol% Al2O3, 1‐11 mol% B2O3 plus minor amounts of Na2O, K2O, FeO, and TiO2 were...... investigated and quantified through analysis of phase assemblages as function of heat treatments above the glass transition temperatures using the electron microprobe and powder X‐ray diffraction. For two of these glasses devitrification behavior was compared to the devitrification behavior of similar glasses...

  18. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells

    Science.gov (United States)

    Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning

    2017-09-01

    Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.

  19. Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Robledo, A., E-mail: amanzor@ipn.mx [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Costa, Natália J. S. [Universidade de São Paulo, Instituto de Química (Brazil); Philippot, K. [CNRS, LCC, Laboratoire de Chimie de Coordination (France); Rossi, Liane M. [Universidade de São Paulo, Instituto de Química (Brazil); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico); Guerrero-Ortega, L. P. A. [UPALM, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas-IPN (Mexico); Ezquerra-Quiroga, S. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas (Mexico)

    2015-12-15

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd{sub 90}Ni{sub 10}, Pd{sub 50}Ni{sub 50}, Pd{sub 10}Ni{sub 90}, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd{sub 2}(dba){sub 3}, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod){sub 2}. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i–E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i–E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions’ interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  20. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    Science.gov (United States)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports

  1. Bubble-free ozone addition through ceramic membranes for wet-oxidative waste water treatment; Blasenfreier Ozoneintrag durch keramische Membranen zur nassoxidativen Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Janknecht, P.; Wilderer, P.A. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl und Pruefamt fuer Wasserguete- und Abfallwirtschaft

    1999-07-01

    A prerequisite for successful wet oxidation is very accurately tuned and carefully monitored process control. In the alternative, a decline in water quality is actually possible. In particular, earlier studies in the ozonification of landfill leachate encountered problems in reducing levels of AOX in the presence of halogenated hydrocarbons. Serious problems in process control may arise when ozone is conventionally added and forms bubbles in the presence of surface-active substances; this foam accumulates and is so persistent as to evade mechanical control. Since the formation of foam is directly due to gas bubbles carried in, bubble-free addition of ozone through a membrane may be a viable approach. (orig.) [German] Voraussetzung fuer den Erfolg einer Nassoxidation ist eine sehr genau eingestellte und sorgfaeltig ueberwachte Prozessfuehrung, da anderenfalls auch eine Verschlechterung der Wasserqualitaet eintreten kann; insbesondere haben sich hier bei frueheren Untersuchungen zur Ozonung von Deponiesickerwaessern Schwierigkeiten bei der Reduzierung des AOX-Wertes in Anwesenheit von halogenierten Kohlenwasserstoffen ergeben. Gravierende Schwierigkeiten in der Prozessfuehrung kann Schaum bereiten, der sich bei konventionellem Blaseneintrag des Ozons in Anwesenheit von oberflaechenaktiven Substanzen bildet, sich in der Anlage ansammelt und dabei so bestaendig ist, dass er auf mechanische Weise nicht zu kontrollieren ist. Da die Schaumbildung direkt auf die eingetragenen Gasblasen zurueckzufuehren ist, stellt der blasenfreie Eintrag von Ozon durch eine Membran einen moeglichen Loesungsansatz dar. (orig.)

  2. Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode

    International Nuclear Information System (INIS)

    Barros, Willyam R.P.; Steter, Juliana R.; Lanza, Marcos R.V.; Motheo, Artur J.

    2014-01-01

    Amaranth dye is used widely in the processing of paper, textiles, foods, cosmetics, beverages and medicines, and effluents contaminated with this compound are discharged daily into the environment. Recent studies have shown that azo dyes, especially those such as amaranth dye that have been classified as endocrine disruptors, may cause adverse effects to animal and human health. This paper describes the application of electrochemical oxidation (with a boron-doped diamond BDD thin-film anode) coupled with ultrasound sonolysis (20 kHz and 523 W cm −2 ) to the removal of amaranth dye from dilute alkaline solution. The electrochemical and sonoelectrochemical processes (ECh and SECh, respectively) were carried out at constant current density (10 to 50 mA cm −2 ) in a single compartment cylindrical cell. Sonolysis was virtually less useful for the decolorization and degradation of amaranth dye, whilst ECh and SECh were more effective in degrading the dye with almost complete removal (90 - 95%) attained after 90 min of experiment at an applied current density of 50 mA cm −2 . Degradation of the dye followed pseudo first-order kinetics in both processes, but the rate of reaction was faster with the SECh treatment confirming a synergistic effect between the cavitation process and the electrochemical system. Additionally, at low applied current densities (10 and 25 mA cm −2 ), SECh was considerably more effective than ECh for the amaranth dye mineralization. Although at 35 and 50 mA cm −2 , the two processes showed the respective removal of total organic carbon values: (i) 85% for the ECh and 90% for the SECh at 35 mA cm −2 ; (ii) 96% for the ECh and 98% for the SECh at 50 mA cm −2 . It is concluded that SECh presented the most favorable results for the decontamination of wastewaters containing azo dye compounds

  3. First-principles study of fission product (Xe, Cs, Sr) incorporation and segregation in alkaline earth metal oxides, HfO(2), and the MgO-HfO(2) interface.

    Science.gov (United States)

    Liu, Xiang-Yang; Uberuaga, Blas P; Sickafus, Kurt E

    2009-01-28

    In order to close the nuclear fuel cycle, advanced concepts for separating out fission products are necessary. One approach is to use a dispersion fuel form in which a fissile core is surrounded by an inert matrix that captures and immobilizes the fission products from the core. If this inert matrix can be easily separated from the fuel, via e.g. solution chemistry, the fission products can be separated from the fissile material. We examine a surrogate dispersion fuel composition, in which hafnia (HfO(2)) is a surrogate for the fissile core and alkaline earth metal oxides are used as the inert matrix. The questions of fission product incorporation in these oxides and possible segregation behavior at interfaces are considered. Density functional theory based calculations for fission product elements (Xe, Sr, and Cs) in these oxides are carried out. We find smaller incorporation energy in hafnia than in MgO for Cs and Sr, and Xe if variation of charge state is allowed. We also find that this trend is reversed or reduced for alkaline earth metal oxides with large cation sizes. Model interfacial calculations show a strong tendency of segregation from bulk MgO to MgO-HfO(2) interfaces.

  4. Conference: the wet catalytic oxidation, a technology for the removal of organic pollutants in industrial waters; Conference: l'oxydation voie humide catalytique, une technologie pour l'elimination des polluants organiques dans les eaux industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Besson, M. [Institut de recherches sur la catalyse - CNRS, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2004-07-01

    In this conference, it is taken stock on the use of catalysts in the wet oxidation process. Supported (TiO{sub 2}, ZrO{sub 2}....) heterogeneous metallic catalysts (Pt, Ru...) are particularly studied. It is shown that this type of catalysts can answer to the required characteristics: activity for the removal of organic matter, lack of active metal leaching in aqueous acid medium, no deactivation...Examples are given. (O.M.)

  5. Continuous wet oxidation pretreatment of lignocellulosic biomass with subsequent continuous ethanol production; Kontinuerlig vaadoxidationsforbehandling af lignocelluloseholdige biomasser med efterfoelgende kontinuerlig ethanolfremstilling

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K.; Torry-Smith, M.; Loeth, A.H.

    2001-07-01

    In this project the possibility of implementing a UASB-reactor for detoxification of the recirculation water is investigated. Bioethanol- effluent (BEE) made from wet-oxidized wheat straw (60 g-wheat straw/l-water) fermented with Saccharomyces cerevisiae and Thermoanaerobacter mathranii A3M4 is in this project used to simulate the effluent from a commercial bioethanol plant. To investigate the gas potential and conversion of inhibitors, BEE is investigated both in batch and in a laboratory scale UASB reactor. In batch tests the conversion of acetovanillon, 2-furan acid and 4-hydroxyacetophenon was investigated with the substances themselves, as single substrat, and by co-digestion with BEE. The experiments show that the conversion of the three substances together with BEE had a positive influence on the decomposition and the inhibition levels. Tests with conversion of BEE in a laboratory scale UASB-reactor showed that by loading up to 29 g-COD/l it was possible to obtain a COD-reduction at 80% (w/w). At the same time GC-analyses of vanillin acid, homo vanillin acid, aceton vanillon, syringon acid, acetosyringon, syringol, 4-hydroxybenzo acid, 4-hydroxbenzaldenhyde, 2-furan acid, and phenol showed that all these substances were converted in the UASB-reactor. Economical calculations carried out on the basis of the results from the experiments indicate that the implementation of a UASB-cleaning step for cleaning the bioethanol process water can be carried out with a economical profit, which among other means a short payback time on the investment. It is things concluded that the implementation of a UASB-cleaning step is a qualified method to detoxify process water for bioethanol production and thereby reduce the total production costs of the commercial bioethanol production based on lignocelluslose materials. The necessity of tests with repeated recirculations are indicated, because continuous reuse of the process water can result in up-concentration of any inhibitors

  6. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: Effect of H2O2 dosage and temperature

    International Nuclear Information System (INIS)

    Santos, A.; Yustos, P.; Rodriguez, S.; Simon, E.; Garcia-Ochoa, F.

    2007-01-01

    Catalytic wet oxidation (CWO) of a phenolic mixture containing phenol, o-cresol and p-cresol (500 mg/L on each pollutant) has been carried out using a commercial activated carbon (AC) as catalyst, placed in a continuous three-phase reactor. Total pressure was 16 bar and temperature was 127 deg. C. Pollutant conversion, mineralization, intermediate distribution, and toxicity were measured at the reactor outlet. Under these conditions no detoxification of the inlet effluent was found even at the highest catalyst weight (W) to liquid flow rate (Q L ) ratio used. On the other hand, some Fenton Runs (FR) have been carried out in a batch way using the same phenolic aqueous mixture previously cited. The concentration of Fe 2+ was set to 10 mg/L. The influence of the H 2 O 2 amount (between 10 and 100% of the stoichiometric dose) and temperature (30, 50, and 70 deg. C) on phenols conversion, mineralization, and detoxification have been analyzed. Phenols conversion was near unity at low hydrogen peroxide dosage but mineralization and detoxification achieved an asymptotic value at each temperature conditions. The integration of Fenton reagent as pretreatment of the CWO process remarkably improves the efficiency of the CWO reactor and allows to obtain detoxified effluents at mild temperature conditions and relatively low W/Q L values. For a given phenolic mixture a temperature range of 30-50 deg. C in the Fenton pretreatment with a H 2 O 2 dosage between 20 and 40% of the stoichiometric amount required can be proposed

  7. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater.

    Science.gov (United States)

    Suarez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan A; Fabregat, Azael; Stüber, Frank; Fortuny, Agustí; Font, Josep; Carrera, Julián

    2007-02-01

    This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.

  8. Synthesis of CoO/Reduced Graphene Oxide Composite as an Alternative Additive for the Nickel Electrode in Alkaline Secondary Batteries

    International Nuclear Information System (INIS)

    Fu, Gaoliang; Chang, Kun; Shangguan, Enbo; Tang, Hongwei; Li, Bao; Chang, Zhaorong; Yuan, Xiao-Zi; Wang, Haijiang

    2015-01-01

    Highlights: • CoO/RGO nanosheets with sandwiched structures were synthesized by hydrothermal method. • CoO/RGO composite can be as a good additive for Ni-MH battery. • Using CoO/RGO as the additive can greatly reduce the utilization of CoO in the commercial battery. • Particularly, the high rate capability of the electrode was enhanced significantly. - Abstract: A series of CoO/reduced graphene oxide (CoO/RGO) composites with different proportions are successfully synthesized via a hydrothermal method. As an additive for the nickel-based alkaline secondary battery cathode, the electrochemical performances of the proposed CoO/RGO composite are systematically investigated on its cyclic stability, rate capability, capacity recovery performance, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), in comparison with commercial CoO. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images show that the CoO nanoparticles are in-situ anchored on the surface of soft and flexible graphene sheets. Electrochemical results indicate that the CoO/RGO composites exhibite the highest performance when the weight ratio of CoO and RGO is 5:5. The optimized CoO/RGO composites as an additive for the nickel electrode not only can substantially reduce the CoO additive but also possess good electrochemical performances, especially for the high-rate capability. The discharge capacity of the nickel electrode with 5 wt% of CoO/RGO (5:5) addition deliver a high discharge capacity of 284.3, 264.6,235.4 and 208.6 mAh g −1 at 0.2, 1.0, 5.0 and 10.0 C, respectively. The capacity recovery rate at 0.2 C can reach 98.4%. CV and EIS test indicate that the incorporation of RGO can significantly enhance the reversible property, current density of cathodic peak, proton diffusion and conductivity of the nickel electrode.

  9. Carbon supports for methanol oxidation catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Samant, P.V.; Figueiredo, J.L. [Laboratorio de Catalise e Materiais, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade de Porto, Rua Dr Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M.; Romero, M.H. [Electroquimica de Materiais, UEQM, Departamento de Materiais e Tecnologias de Producao, INETI, Paco do Lumiar, 1649-038 Lisboa (Portugal); Fernandes, J.B. [Department of Chemistry, Goa University, Taleigao, Plateau, Goa 403206 (India)

    2005-10-10

    Highly mesoporous carbon was synthesized employing conventional sol-gel technique using resorcinol and formaldehyde. The porous carbon electrodes were characterized by X-ray powder diffraction, N{sub 2} adsorption isotherm, atomic absorption spectroscopy (AAS). Platinum was anchored on support by the incipient wetness method and reduced to its metallic form using sodium formate as a reducing agent. The electrocatalysis for methanol oxidation on carbon supported Pt in acid and alkaline solutions were investigated. It was found that the activity of Pt for methanol oxidation was higher in alkaline than in acid medium. High mesopore surface area of carbon can significantly increase the metal dispersion and affect particle size, which favoured the progress of the electrochemical processes occurring during methanol oxidation. (author)

  10. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.L.

    2008-01-01

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R + = Li + , Rb + , Cs + ) and alkaline-earth (R 2+ = Sr 2+ , Ba 2+ ) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R + and R 2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na + or Ca 2+ cations in the simplified glass by respectively (Li + , K + , Rb + , Cs + ) or (Mg 2+ , Sr 2+ , Ba 2+ ) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO 4 ) - entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  11. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yamin [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wei, Huangzhao; Zhao, Ying [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Sun, Wenjing [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Chenglin, E-mail: clsun@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-03-15

    Highlights: • The sludge derived carbon modified with 0 °C acid was used as catalyst in CWPO. • RSM was used to optimize CWPO reaction conditions of m-cresol for the first time. • The kinetic model was disclosed to be correlated with residue target concentration. • The proposed degradation pathways of m-cresol were well proven by DFT method. - Abstract: The sludge-derived carbon catalyst modified with 0 °C HNO{sub 3} solution was tested in catalytic wet peroxide oxidation of m-cresol (100 mg L{sup −1}) with systematical mathematical models and theoretical calculation for the first time. The reaction conditions were optimized by response surface methodology (RSM) as T = 60 °C, initial pH = 3.0, C{sub 0,H2O2(30%)} = 1.20 g L{sup −1} (lower than the stoichiometric amount of 1.80 g L{sup −1}) and C{sub cat} = 0.80 g L{sup −1}, with 96% of m-cresol and 47% of TOC converted after 16 min and 120 min of reaction, respectively, and ξ (mg TOC/g H{sub 2}O{sub 2} fed) = 83.6 mg/g. The end time of the first kinetic period in m-cresol model was disclosed to be correlated with the fixed residue m-cresol concentration of about 33%. Furthermore, the kinetic constants in models of TOC and H{sub 2}O{sub 2} exactly provide convincing proof of three-dimensional response surfaces analysis by RSM, which showed the influence of the interaction between organics and H{sub 2}O{sub 2} on effective H{sub 2}O{sub 2} utilization. The reaction intermediates over time were identified by gas chromatography–mass spectrometer based on kinetics analysis. Four degradation pathways for m-cresol were proposed, of which the possibility and feasibility were well proven by frontier molecule orbital theory and atomic charge distribution via density functional theory method.

  12. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions

  13. Enhanced methanol oxidation and oxygen reduction reactions on palladium-decorated FeCo@Fe/C core–shell nanocatalysts in alkaline medium

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2013-12-01

    Full Text Available Pt catalysts, (iii) reaction dynamics are best facilitated in alkaline media compared to the acidic media, (iv) alcohol cross-over from the anode to the cathode may be minimised since cell conductance is affected by the electro-osmotic drag..., importantly, tolerates the presence of alcohol in the cathode side should alcohol cross-over occur during cell operation. Pd-based core shell nanocatalysts are known to enhance ORR activities. Core–shell nanostructures represent efficient electro- catalysts...

  14. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  15. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  16. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Daanen, H.A.M.; Kappers, A.M.L.

    2011-01-01

    The sensation of wetness is well-known but barely investigated. There are no specific wetness receptors in the skin, but the sensation is mediated by temperature and pressure perception. In our study, we have measured discrimination thresholds for the haptic perception of wetness of three di erent

  17. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in

  18. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, A.; Caurant, D.; Majerus, O. [Laboratoire de Chimie de la Matiere Condensee de Paris (UMR 7574), Ecole Nationale Superieure de Chimie de Paris - ENSCP, ParisTech, Paris, 75005 (France); Charpentier, T. [CEA Saclay, Laboratoire de Structure et Dynamique par Resonance Magnetique, DSM/DRECAM/SCM - CEA CNRS URA 331, Gif-sur-Yvette, 91191 (France); Dussossoy, J.L. [Laboratoire d' Etude de Base sur les Verres, CEA Valrho, DEN/DTCD/SCDV/LEBV, Bagnols-sur-Ceze, 30207 (France)

    2008-07-01

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R{sup +} = Li{sup +}, Rb{sup +}, Cs{sup +}) and alkaline-earth (R{sup 2+} = Sr{sup 2+}, Ba{sup 2+}) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R{sup +} and R{sup 2+} cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na{sup +} or Ca{sup 2+} cations in the simplified glass by respectively (Li{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}) or (Mg{sup 2+}, Sr{sup 2+}, Ba{sup 2+}) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO{sub 4}){sup -} entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  19. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  20. Plasma electrolytic oxidation of A1050 aluminium alloy in homogeneous silicate-alkaline electrolytes with edta{sup 4−} complexes of Fe, Co, Ni, Cu, La and Ba under alternating polarization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rogov, A.B., E-mail: alex-lab@bk.ru [Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090 (Russian Federation); Scientific and Technical Centre “Pokrytie-A” (OOO), 15, Dzerzhinskogo Ave., Novosibirsk, 630015 (Russian Federation)

    2015-11-01

    This work is devoted to the synthesis of coatings containing a number of transition elements by plasma electrolytic oxidation (PEO) on aluminium A1050 alloy. The paper discusses PEO coatings obtained in silicate-alkaline electrolytes containing complexes of Fe, Co, Ni, Cu, La and Ba with ethylenediaminetetraacetic anion edta{sup 4−}. It is also focused on the chemical basis of the electrolyte components choice and their role in the process of PEO. Possible mechanism of coating formation process is also discussed. Alternating current mode (symmetrical sinusoidal current pulses, initial average current density - 100 mA cm{sup −2}) was used to produce the coatings. The PEO process was characterized by behaviours of the anodic and cathodic peak voltage curves. Coating surfaces and cross sections are studied by optical dark field microscopy and scanning electron microscopy, X-ray and energy dispersive analysis. - Highlights: • Alkaline homogeneous electrolyte with transition metal-edta{sup 4-} complexes. • Coatings contain Fe, Co, Ni, Cu, La, Ba elements in alumina-silica matrix. • Alternating symmetric sinusoidal current of 100 mA cm{sup −2} was applied. • Borax buffer solution and silicate passivating agent were used.

  1. EFFECTIVE ALKALINE PEROXIDE OXIDATION PRETREATMENT OF SHEA TREE SAWDUST FOR THE PRODUCTION OF BIOFUELS: KINETICS OF DELIGNIFICATION AND ENZYMATIC CONVERSION TO SUGAR AND SUBSEQUENT PRODUCTION OF ETHANOL BY FERMENTATION USING Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    A. O. Ayeni

    Full Text Available Abstract Shea tree sawdust delignification kinetic data during alkaline peroxide pretreatment were investigated at temperatures of 120 °C, 135 °C, and 150 °C. The activation energy during delignification was 76.4 kJ/mol and the Arrhenius constant was calculated as 8.4 x 106 per min. The reducing sugar yield for the treated to the untreated biomass was about 22-fold. Enzymatic hydrolysis conditions studied were; time (72 h and 96 h, substrate concentration (20, 30, 40, and 50 g/L, and enzyme loadings (10, 25, 40, 50 FPU/g dry biomass, which showed the optimum conditions of 96 h, 40 g/L, and 25 FPU/g dry biomass at 45 °C hydrolysis temperature. At the optimized enzymatic hydrolysis conditions, the reducing sugar yield was 416.32 mg equivalent glucose/g treated dry biomass. After 96 h fermentation of treated biomass, the ethanol obtained at 2% effective cellulose loading was 12.73 g/L. Alkaline peroxide oxidation pretreatment and subsequent enzymatic hydrolysis improved the ethanol yield of the biomass.

  2. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  3. Alkaline "Permanent" Paper.

    Science.gov (United States)

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  4. Calc-Alkaline Liquid Lines of Descent Produced Under Oxidizing Conditions: An Experimental and Petrologic Study of Basaltic Tephras from the Western Aleutians, AK

    Science.gov (United States)

    Waters, L. E.; Cottrell, E.; Kelley, K. A.; Coombs, M. L.

    2017-12-01

    Buldir, a volcano in the western Aleutian Arc, features eruptive products that form one of the most strongly calc-alkaline compositional trends observed in modern island arcs. Previous studies of Buldir and nearby submarine dredge samples suggest that Buldir's mineral phases and isotopic signatures may be introduced through mixing of two distinct magmas and/or melts, as no experimental study has been able to create a liquid line of descent (LLD) as calc-alkaline as Buldir's whole rock trend. To further test this hypothesis, we present new experimental results and petrographic analysis of tephras from the 2015 field season of the GeoPRISMS shared platform. Tephras (51.4-54.8 wt% SiO2) have a phenocryst assemblage of olivine + plagioclase + cpx + spinel ± hornblende (hbl). In natural samples, plagioclase comprises most of the crystal volume, followed by either olivine or hornblende. In samples that contain abundant hbl (Hbl Mg#=65-80), olivine and plagioclase span a range of compositions from Fo72-86 and An60-93, respectively. In samples without hbl, olivines are more forsteritic (Fo79-90), and plagioclase is less calcic (An65-83). Spinel is ubiquitous; with Cr- rich spinel inclusions in olivine and hbl, and magnetite in the groundmass. Our petrologic observations do not require magma mixing. To determine whether these observations could be consistent with the LLD of a single parental liquid, we conducted a series of phase equilibrium experiments at 100 MPa in a rapid-quench cold-seal (MHC) apparatus on the most primitive natural lava from Buldir (9.34 wt% MgO). Experiments were equilibrated in noble metal capsules pre-saturated with Fe, and buffered at Re-ReO2 under water-saturated conditions. Spinel [(Mg80, Fe2+20)(Fe3+52, Cr83, Al66)O4] is the liquidus phase, followed by olivine, then plagioclase, then cpx, and lastly, hbl. Once cpx and hbl saturate, spinel composition shifts to magnetite. Experimental run products demonstrate that all mineral phases observed in

  5. Effect of alkaline earth oxides on the physical and spectroscopic properties of Dy3+- doped Li2O-B2O3 glasses for white emitting material application

    Science.gov (United States)

    Shamshad, L.; Rooh, G.; Kirdsiri, K.; Srisittipokakun, N.; Damdee, B.; Kim, H. J.; Kaewkhao, J.

    2017-02-01

    Li2O-MO-B2O3:0.5Dy2O3 glasses mixed with four different alkaline earth modifier oxides MgO, CaO, SrO and BaO were synthesized by melt quench technique. Their physical properties like density, molar volume and refractive index were measured at room temperature and the effect of alkaline earth modifier oxides were studied. Also, optical absorption and photoluminescence spectra of these glasses have been acquired at room temperature. The Judd-Ofelt theory was effectively used to characterize these spectra and spectral intensities (ƒcal), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) and certain radiative properties have been determined. Radiative life-times (τR), branching ratios (βcal), and emission cross-sections (σp) and optical gain parameters (σp × τR) were calculated from the Judd-Ofelt intensity parameters and the variation in these parameters with the variation of glass matrix are discussed. Yellow/Blue (Y/B) ratio and chromacity color coordinates (x,y) are calculated from the emission spectra which indicates the white light generation from all the investigated samples. The correlated color temperature (CCT) for the studied glasses is found to be 4418 K. The fluorescence decay time (τexp) of the 4F9/2 level of Dy3+ has been measured from the decay profiles and compared with calculated lifetimes (τcal). Among all the studied glass matrices, the glass containing BaO exhibits high value of branching ratio, large emission cross-section and high optical gain parameter for 6F9/2 → 6H13 at 575 nm. The results indicates the suitability of all the studied glasses for laser action and white light generation.

  6. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    applications in the field of optical fibers, optoelectronic devices; radiation shields, surgical lasers and their glass ceramic counter parts have wide range of applications (Rajasree et al., 2011; Sharma et al., 2007, Limkitjaroenporn et al., 2010). Boric acid. (H3BO3) form stable glasses with alkaline earth oxides (R= MgO, CaO, ...

  7. Investigation on the reduction of the oxides of Pd and graphite in alkaline medium and the simultaneous evolution of oxygen reduction reaction and peroxide generation features

    International Nuclear Information System (INIS)

    Kar, Tathagata; Devivaraprasad, Ruttala; Bera, Bapi; Ramesh, Rahul; Neergat, Manoj

    2016-01-01

    Highlights: • Reduction of GO, PdO and parallel evolution of ORR is investigated in 0.1 M KOH. • The results are compared with those of carbon, graphite, c-RGO and Pd. • Peroxide generation and ORR activity increase with reduction of GO to e-RGO. • Peroxide generation decreases and ORR activity increases with reduction of PdO. • Carbon-based materials show peroxide yield of 40–75% as compared to ∼5% with Pd/C. - Abstract: Palladium oxide (PdO) and graphene oxide (GO) are subjected to electrochemical cycling in oxygen-saturated 0.1 M KOH electrolyte in the potential range (−1.2–0.2 V vs. Ag/AgCl (saturated KCl)) relevant to oxygen reduction reaction (ORR). Parallel to ORR, GO and PdO get gradually reduced to graphene and Pd, respectively. With cycling, the half-wave potential of ORR shifts positively with both the oxides. The simultaneous evolution of the peroxide oxidation current on the Pt ring electrode is investigated. On PdO that reduces to Pd, ORR proceeds by the four-electron reduction to OH − and the peroxide oxidation current on the ring electrode decreases with cycling. On the other hand, on GO that reduces to graphene, the ORR proceeds primarily by the two-electron reduction of oxygen and the peroxide oxidation current on the ring electrode increases with cycling. The voltammetric features stabilize with the reduction of the oxides. The ORR and the peroxide oxidation current on the ring electrode with electrochemically reduced GO (e-RGO), chemically reduced GO (c-RGO), carbon-black, and graphite are comparable and they are different from those of the Pd-based precious metal catalyst. The evolution of ORR polarization curves and the peroxide oxidation current on the ring electrode are explained on the basis of the removal of adsorbed-oxygenated species, oxides and by the hydrogen under potential deposition (H upd ) at lower potentials. The results are supported with Koutecky-Levich plots and the voltammograms.

  8. PREFACE: Dynamics of wetting Dynamics of wetting

    Science.gov (United States)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting

  9. Application of alkaline waterflooding to a high acidity crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Sayyouh, M.H. (King Sand Univ., Riyadh (SA). Petroleum Engineering Dept.); Abdel-Waly, A.; Osman, A. (Cairo Univ. (EG). Petroleum Engineering Dept.); Awara, A.Z. (Geisum Oil Company, Cairo (EG))

    The enhanced recovery of a high acidity crude oil (South Geisum crude) by alkaline solutions is studied. Acidity, interfacial tension, and contact angle, were investigated. Displacement tests were carried out to study the effect of alkaline slug concentration, slug size, oil alkali type, temperature and viscosity on recovery. The interfacial tension between crude oil and formation water decreases with increasing alkaline concentration until a minimum, after which it increases again. Contact angle measurements indicated oil-wetting conditions that increase by the addition of alkaline solutions. At the early stages of displacement, oil recovery increases with increasing alkaline concentration until a maximum at 4% by weight NaOH concentration. Also, at such early stages, an excessive increase in alkaline concentration results in lower oil recovery. On the other hand, after the injection of many pore volumes of water, oil recovery is almost the same regardless of the alkaline concentration. Oil recovery increases with increasing alkaline slug size until a maximum at 15% PV. Sodium hydroxide slugs produce more oil recovery than sodium carbonate slugs. Oil recovery increases with increasing temperature (from 25 to 55{sup 0}C) and decreasing oil viscosity.

  10. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  11. Kinetic study of the alkaline metals oxidation by dry oxygen; Etude cinetique de l'oxydation des metaux alcalins par l'oxygene sec

    Energy Technology Data Exchange (ETDEWEB)

    Touzain, Ph. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-15

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [French] L'oxydation du lithium, du sodium, du potassium, du rubidium, du cesium et des alliages sodium-potassium par l'oxygene sec est etudiee a diverses temperatures et a des pressions comprises entre 40 et 400 mmHg d'oxygene. On distingue trois processus d'oxydation differents (l'inflammation, l'ignition et la combustion lente) dont les domaines en fonction de la temperature sont precises. Les lois cinetiques d'oxydation lente, la nature des oxydes formes ainsi que les causes des colorations de ces oxydes sont determinees. Enfin les resultats obtenus sont interpretes theoriquement. (auteur)

  12. Secondary alkaline batteries

    Science.gov (United States)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  13. The electro-oxidation of the mixture of formaldehyde and 2-propanol on gold (100 and (111 single crystal planes in alkaline medium

    Directory of Open Access Journals (Sweden)

    BRANISLAV Z. NIKOLIC

    2000-12-01

    Full Text Available The effect of formaldehyde on the oxidation of 2-propanol and vice versa on gold single crystal planes (100 and 111 was studied. An activating effect in the reaction of the simultaneous oxidation of 2-propanol and formaldehyde was obtained on a gold (100 plane. In the case of a gold (111 electrode, the activation effect was not obtained. It was concluded that the adsorption of formaldehyde on the electrode surface prevents the adsorption of poisoning species formed during the electro-oxidation of 2-propanol on the Au(100 plane, while this is not the case on the Au(111 plane. The different behaviour is caused by the difference in the symmetry of the surface atoms of these two Au single-crystal planes.

  14. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  15. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  16. Two promising alkaline β-glucosidases isolated by functional metagenomics from agricultural soil, including one showing high tolerance towards harsh detergents, oxidants and glucose.

    Science.gov (United States)

    Biver, Sophie; Stroobants, Aurore; Portetelle, Daniel; Vandenbol, Micheline

    2014-03-01

    New β-glucosidase activities were identified by screening metagenomic libraries constructed with DNA isolated from the topsoil of a winter wheat field. Two of the corresponding proteins, displaying an unusual preference for alkaline conditions, were selected for purification by Ni-NTA chromatography. AS-Esc6, a 762-amino-acid enzyme belonging to glycoside hydrolase family 3, proved to be a mesophilic aryl-β-glucosidase with maximal activity around pH 8 and 40 °C. A similar pH optimum was found for AS-Esc10, a 475-amino-acid GH1-family enzyme, but this enzyme remained significantly active across a wider pH range and was also markedly more stable than AS-Esc6 at pH greater than 10. AS-Esc10 was found to degrade cellobiose and diverse aryl glycosides, with an optimal temperature of 60 °C and good stability up to 50 °C. Unlike AS-Esc6, which showed a classically low inhibitory constant for glucose (14 mM), AS-Esc10 showed enhanced activity in the presence of molar concentrations of glucose. AS-Esc10 was highly tolerant to hydrogen peroxide and also to sodium dodecyl sulfate, this being indicative of kinetic stability. This unique combination of properties makes AS-Esc10 a particularly promising candidate whose potential in biotechnological applications is worth exploring further.

  17. Anionic catalyst binders based on trimethylamine-quaternized poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline electrolyzers

    Czech Academy of Sciences Publication Activity Database

    Schauer, Jan; Hnát, J.; Brožová, Libuše; Žitka, Jan; Bouzek, K.

    2015-01-01

    Roč. 473, 1 January (2015), s. 267-273 ISSN 0376-7388 Institutional support: RVO:61389013 Keywords : poly(2,6-dimethyl-1,4-phenylene oxide) * bromination * trimethylamine Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.557, year: 2015

  18. Efficient visible-light photocatalytic oxidation of gaseous NO with graphitic carbon nitride (g–C{sub 3}N{sub 4}) activated by the alkaline hydrothermal treatment and mechanism analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Haoyu; Ou, Man [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094 (China); Nanjing AIREP Environmental Protection Technology Co., Ltd., Nanjing, Jiangsu 210091 (China); Zhong, Qin, E-mail: zq304@mail.njust.edu.cn [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094 (China); Nanjing AIREP Environmental Protection Technology Co., Ltd., Nanjing, Jiangsu 210091 (China); Zhang, Shule; Yu, Lemeng [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094 (China); Nanjing AIREP Environmental Protection Technology Co., Ltd., Nanjing, Jiangsu 210091 (China)

    2015-12-30

    Highlights: • Various porous g–C{sub 3}N{sub 4} samples were obtained by the alkaline hydrothermal treatment. • 0.12CN possesses the largest BET specific surface area and pore volume. • The NO conversion in the presence of 0.12CN reaches 40.4%. • Reasons for the enhanced PCO performance with treated g–C{sub 3}N{sub 4} was analyzed. • Further mechanism of the PCO of NO relevant with active species was investigated. - Abstract: In this paper, an enhanced visible-light photocatalytic oxidation (PCO) of NO (∼400 ppm) in the presence of the graphitic carbon nitride (g–C{sub 3}N{sub 4}) treated by the alkaline hydrothermal treatment is evaluated. Various g–C{sub 3}N{sub 4} samples were treated in different concentrations of NaOH solutions and the sample treated in 0.12 mol L{sup −1} of NaOH solution possesses the largest BET specific surface area as well as the optimal ability of the PCO of NO. UV–vis diffuse reflection spectra (DRS) and photoluminescence (PL) spectra were also conducted, and the highly improved photocatalytic performance is ascribed to the large specific surface area and high pore volume, which provides more adsorption and active sites, the wide visible-light adsorption edge and the narrow band gap, which is favorable for visible-light activation, as well as the decreased recombination rate of photo-generated electrons and holes, which could contribute to the production of active species. Fluorescence spectra and a trapping experiment were conducted to further the mechanism analysis of the PCO of NO, illustrating that superoxide radicals (·O{sub 2}{sup −}) play the dominant role among active species in the PCO of NO.

  19. Carbon supported Pd-Ni and Pd-Ru-Ni nanocatalysts for the alkaline direct ethanol fuel cell (DEFC)

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available alkaline anion exchange membranes (AAEMs) as the electrolyte which protects the electrodes from carbonate formation. Pd has proved to be a good electrocatalyst for ethanol oxidation in alkaline medium, showing higher activity and better steady...

  20. Alkaline phosphatase: an overview.

    Science.gov (United States)

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  1. Thermal stability and oxidizing properties of mixed alkaline earth-alkali molten carbonates: A focus on the lithium-sodium carbonate eutectic system with magnesium additions

    International Nuclear Information System (INIS)

    Frangini, Stefano; Scaccia, Silvera

    2013-01-01

    Highlights: • TG/DSC analysis was conducted on magnesium-containing eutectic Li/Na eutectic carbonates. • Magnesium influence on the oxygen solubility properties of carbonate was also experimentally determined at 600 °C and 650 °C. • A reproducible partial decarbonation process in premelting region caused formation of magnesium oxycarbonate-like phases. • The acidobase buffering action of magnesium oxycarbonate species could explain the high basic/oxidizing properties of such carbonate melts. • A general correlation between thermal instability in premelting region and basic/oxidizing melt properties was established. - Abstract: A comparative study on thermal behavior and oxygen solubility properties of eutectic 52/48 lithium/sodium carbonate salt containing minor additions of magnesium up to 10 mol% has been made in order to determine whether a general correlation between these two properties can be found or not. Consecutive TG/DSC heating/cooling thermal cycles carried out under alternating CO 2 and N 2 gas flows allowed to assign thermal events observed in the premelting region to a partial decarbonation process of the magnesium-alkali mixed carbonates. The observed decarbonation process at 460 °C is believed to come from initial stage of thermal decomposition of magnesium carbonate resulting in the metastable formation of magnesium oxycarbonate-like phases MgO·2MgCO 3 , in a similar manner as previously reported for lanthanum. Reversible formation and decomposition of the magnesium carbonate phase has been observed under a CO 2 gas atmosphere. The intensity of the decomposition process shows a maximum for a 3 mol% MgO addition that gives also the highest oxygen solubility, suggesting therefore that instability thermal analysis in the premelting region can be considered as providing an effective measure of the basicity/oxidizing properties of alkali carbonate melts with magnesium or, in more general terms, with cations that are strong modifiers of

  2. Wet impregnation of silver oxide on Lampung natural zeolite as an adsorbent to produce oxygen-enriched air using PSA technique

    Directory of Open Access Journals (Sweden)

    Dianty Adenia Gita

    2018-01-01

    Full Text Available High purity oxygen can be used for various things. Oxygen purification method to be applied on this research is the Pressure Swing Adsorption (PSA technique. The adsorbent that would be used is a natural zeolite, namely ZAL (Zeolite Alam Lampung. Natural zeolite has non-polar properties, so it will adsorb gas with high quadruple moment, which is nitrogen. The varied variable is the size of adsorbent and the concentration of H2SO4. The sizes are 18-35 mesh, 35-60 mesh, and 60-100 mesh. While the H2SO4 concentration are 1M, 2M and 3M. Size of ZAL, and the concentration of sulfuric acid (H2SO4 were varied to get the optimum value. The adsorbent will be activated in aqua demine, H2SO4, NaOH, and through a calcination process. The purpose of this pre-treatment was to remove the impurities and to increase the specific surface area of zeolite. Moreover, ZAL will also be modified by wet impregnation technique using AgNO3 solution with 1%-wt loading nominal. The morphology, composition, and crystal phase were characterized by BET, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX. The result of the adsorption process was analyzed by using GC (Gas Chromatograph. ZAL 35-60 mesh 1M showed the best performance on adsorbing nitrogen, with its lowest peak at 60356 μV. The result of this research suggested that ZAL itself has the main role on adsorbing nitrogen, while AgxO did not give any significant effect

  3. Advanced alkaline water electrolysis

    International Nuclear Information System (INIS)

    Marini, Stefania; Salvi, Paolo; Nelli, Paolo; Pesenti, Rachele; Villa, Marco; Berrettoni, Mario; Zangari, Giovanni; Kiros, Yohannes

    2012-01-01

    A short review on the fundamental and technological issues relevant to water electrolysis in alkaline and proton exchange membrane (PEM) devices is given. Due to price and limited availability of the platinum group metal (PGM) catalysts they currently employ, PEM electrolyzers have scant possibilities of being employed in large-scale hydrogen production. The importance and recent advancements in the development of catalysts without PGMs are poised to benefit more the field of alkaline electrolysis rather than that of PEM devices. This paper presents our original data which demonstrate that an advanced alkaline electrolyzer with performances rivaling those of PEM electrolyzers can be made without PGM and with catalysts of high stability and durability. Studies on the advantages/limitations of electrolyzers with different architectures do show how a judicious application of pressure differentials in a recirculating electrolyte scheme helps reduce mass transport limitations, increasing efficiency and power density.

  4. Evaluatie Wet openbare manifestaties

    NARCIS (Netherlands)

    Roorda, Berend; Brouwer, Jan; Schilder, A.E.

    2015-01-01

    Het rapport betreft een uitgebreide evaluatie van de Wet openbare manifestaties (Wom) in opdracht van het Ministerie van Binnenlandse Zaken en Koninkrijksrelaties. Op grond van onderzoek naar de parlementaire geschiedenis van de Wom, de literatuur, de jurisprudentie, gesprekken met beleidsadviseurs

  5. Enuresis (Bed-Wetting)

    Science.gov (United States)

    ... Symptoms of enuresis Enuresis is when an older child (age 7 or older) wets the bed at night ... feel guilt and embarrassment. It’s true that your child should take responsibility for bedwetting. He or she could do this ...

  6. Extraction of uranium from alkaline medium by organic extractants

    International Nuclear Information System (INIS)

    El - nadi, Y.A.M.

    1996-01-01

    A recent possible route for treatment of small amounts of neutron irradiated uranium from alkaline medium was addressed. This have some advantages related to the isolation of many troublesome fission products which forms insoluble carbonates or hydroxides upon alkaline carbonate dissolution of uranium oxide. In alkaline solution containing sodium carbonate and hydroxide, hexavalent uranium is expected to be dissolved in solution whereby most of the fission products transition elements exemplified by zirconium and niobium as well as trivalent lanthanides and actinides will be precipitated. Therefore, in this medium the solution will contain mainly alkali and alkaline earth metal such as Cs + and Sr 2+ and anionic fission products such as pertechnetates and antimonates, Which can be easily separted from uranium. Therefore, The present thesis is directed to investigate the following; 1 - solubility of uranium oxide in alkaline medium consists of sodium carbonate and sodium hydroxide in presence of oxidizing agent. 2 - Extraction of uranium from the aforementioned alkaline medium by immiscible organic diluent containing different amine extractants. 3 - Extraction behaviour of uranium by the macroporous anion exchanger, amberlite IRA - 410, from alkaline solution

  7. Wet-Chemical Synthesis of 3D Stacked Thin Film Metal-Oxides for All-Solid-State Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Evert Jonathan van den Ham

    2017-09-01

    Full Text Available By ultrasonic spray deposition of precursors, conformal deposition on 3D surfaces of tungsten oxide (WO3 negative electrode and amorphous lithium lanthanum titanium oxide (LLT solid-electrolyte has been achieved as well as an all-solid-state half-cell. Electrochemical activity was achieved of the WO3 layers, annealed at temperatures of 500 °C. Galvanostatic measurements show a volumetric capacity (415 mAh·cm−3 of the deposited electrode material. In addition, electrochemical activity was shown for half-cells, created by coating WO3 with LLT as the solid-state electrolyte. The electron blocking properties of the LLT solid-electrolyte was shown by ferrocene reduction. 3D depositions were done on various micro-sized Si template structures, showing fully covering coatings of both WO3 and LLT. Finally, the thermal budget required for WO3 layer deposition was minimized, which enabled attaining active WO3 on 3D TiN/Si micro-cylinders. A 2.6-fold capacity increase for the 3D-structured WO3 was shown, with the same current density per coated area.

  8. Comparative Batch and Column Evaluation of Thermal and Wet ...

    African Journals Online (AJOL)

    batch adsorption experiments and continous flow (fixed bed) column experiment to study the mechanism of dye removal by the commercial ... compared with those obtained for thermal regeneration method (qmax = 61.73mgg-1) and wet oxidative method (qmax .... Carbon hardness was determined using a wet attrition test ...

  9. Effect of ozone on ruthenium species in alkaline medium. Pt. II. Oxidation of pentahydroxo nitrosyl ruthenate(II) ion RuNO(OH)52-

    International Nuclear Information System (INIS)

    Floquet, S.; Eysseric, C.

    2006-01-01

    Oxidation of the nitrosyl ruthenium complex RuNO(OH) 5 2- has been carried out in sodium hydroxide solutions in contact with a gas flow containing ozone. The RuNO(OH) 5 2- complex is converted successively into ruthenate and perruthenate ions. An empirical kinetic rate law for the first step has been determined and was shown to depend on concentrations of (i) the ruthenium complex, (ii) the hydroxide ions and (iii) ozone concentration in the gas flow. The second step of the reaction, corresponding to the perruthenate ion formation, shows a complex mechanism and four competing reactions have been proposed to represent it. The influences on the second step kinetics of several parameters such as ozone or hydroxide concentrations or the conditions of the gas-liquid exchange area are also qualitatively discussed. (orig.)

  10. Effect of ozone on ruthenium species in alkaline medium. Pt. II. Oxidation of pentahydroxo nitrosyl ruthenate(II) ion RuNO(OH){sub 5}{sup 2-}

    Energy Technology Data Exchange (ETDEWEB)

    Floquet, S. [Commissariat a l' Energie Atomique (CEA/Valrho), Bagnols-sur-Ceze (France); Inst. Lavoisier, IREM UMR 8637, Univ. de Versailles Saint-Quentin, Versailles (France); Eysseric, C. [Commissariat a l' Energie Atomique (CEA/Valrho), Bagnols-sur-Ceze (France)

    2006-07-01

    Oxidation of the nitrosyl ruthenium complex RuNO(OH){sub 5}{sup 2-} has been carried out in sodium hydroxide solutions in contact with a gas flow containing ozone. The RuNO(OH){sub 5}{sup 2-} complex is converted successively into ruthenate and perruthenate ions. An empirical kinetic rate law for the first step has been determined and was shown to depend on concentrations of (i) the ruthenium complex, (ii) the hydroxide ions and (iii) ozone concentration in the gas flow. The second step of the reaction, corresponding to the perruthenate ion formation, shows a complex mechanism and four competing reactions have been proposed to represent it. The influences on the second step kinetics of several parameters such as ozone or hydroxide concentrations or the conditions of the gas-liquid exchange area are also qualitatively discussed. (orig.)

  11. [Advances of alkaline amylase production and applications].

    Science.gov (United States)

    Yang, Haiquan; Liu, Long; Li, Jianghua; Du, Guocheng; Chen, Jian

    2012-04-01

    Alkaline amylase is one of alkaline enzymes with optimum pH in the alkaline range, and it could keep stability and efficiently hydrolyze starch under alkaline conditions. Alkaline amylase finds wide applications in textile, detergent, pharmaceutical, food and other fields. Alkaline amylases could be produced by alkaliphilic microorganisms. In this work, the advances of alkaline amylase production and applications were reviewed.

  12. Modification of Semiconductor Surfaces through Si-N Linkages by Wet-Chemistry Approaches and Modular Functionalization of Zinc Oxide Surfaces for Chemical Protection of Material Morphology

    Science.gov (United States)

    Gao, Fei

    Semiconductor substrates are widely used in many applications. Multiple practical uses involving these materials require the ability to tune their physical and chemical properties to adjust those to a specific application. In recent years, surface and interface reactions have affected dramatically device fabrication and material design. Novel surface functionalization techniques with diverse chemical approaches make the desired physical, thermal, electrical, and mechanical properties attainable. Meanwhile, the modified surface can serve as one of the most important key steps for further assembly process in order to make novel devices and materials. In the following chapters, novel chemical approaches to the functionalization of silicon and zinc oxide substrates will be reviewed and discussed. The specific functionalities including amines, azides, and alkynes on surfaces of different materials will be applied to address subsequent attachment of large molecules and assembly processes. This research is aimed to develop new strategies for manipulating the surface properties of semiconductor materials in a controlled way. The findings of these investigations will be relevant for future applications in molecular and nanoelectronics, sensing, and solar energy conversion. The ultimate goals of the projects are: 1) Preparation of an oxygen-and carbon-free silicon surface based exclusively on Si-N linkages for further modification protocols.. This project involves designing the surface reaction of hydrazine on chlorine-terminated silicon surface, introduction of additional functional group through dehydrohalogenation condensation reaction and direct covalent attachment of C60. 2) Demonstrating alternative method to anchor carbon nanotubes to solid substrates directly through the carbon cage.. This project targets surface modification of silicon and gold substrates with amine-terminated organic monolayers and the covalent attachment of nonfunctionalized and carboxylic acid

  13. Synthesis, characterization and catalytic performance of ZnO-CeO2 nanoparticles in wet oxidation of wastewater containing chlorinated compounds

    Science.gov (United States)

    Anushree; Kumar, S.; Sharma, C.

    2017-11-01

    Here we report the catalytic property of ZnO-CeO2 nanoparticles towards oxidative degradation of organic pollutants present in industrial wastewater. The catalysts were prepared by co-precipitation method without using any surfactant. The physicochemical properties of catalysts were studied by XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX techniques. The characterization results confirmed the formation of porous ZnO-CeO2 nanocatalysts with high surface area, pore volume and oxygen vacancies. ZnO-CeO2 nanocatalysts exhibited appreciable efficiency in CWAO of industrial wastewater under mild conditions. The Ce40Zn60 catalyst was found to be most efficient with 72% color, 64% chemical oxygen demand (COD) and 63% total organic carbon (TOC) removal. Efficient removal of chlorophenolics (CHPs, 59%) and adsorbable organic halides (AOX, 54%) indicated the feasibility of using ZnO-CeO2 nanocatalysts in degradation of non-biodegradable and toxic chlorinated compounds.

  14. Structural and optical studies of Er3+-doped alkali/alkaline oxide containing zinc boro-aluminosilicate glasses for 1.5 μm optical amplifier applications

    Science.gov (United States)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Lira, A.; Caldiño, U.; Meza-Rocha, A. N.; Falcony, C.; Kityk, I. V.; Taufiq-Yap, Y. H.; Halimah, M. K.; Mahdi, M. A.

    2017-07-01

    In the present work, we report on the optical spectral properties of Er3+-doped zinc boro-aluminosilicate glasses with an addition of 10 mol % alkali/alkaline modifier regarding the fabrication of new optical materials for optical amplifiers. A total of 10 glasses were prepared using melt-quenching technique with the compositions (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10Li2O - xEr2O3 and (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10MgO - xEr2O3 (x = 0.1, 0.25, 0.5, 1.0, and 2.0 mol %). We confirm the amorphous-like structure for all the prepared glasses using X-ray diffraction (XRD). To study the functional groups of the glass composition after the melt-quenching process, Raman spectroscopy was used, and various structural units such as triangular and tetrahedral-borates (BO3 and BO4) have been identified. All the samples were characterized using optical absorption for UV, visible and NIR regions. Judd-Ofelt (JO) intensity parameters (Ωλ, λ = 2, 4 and 6) were calculated from the optical absorption spectra of two glasses LiEr 2.0 and MgEr 2.0 (doped with 2 mol % of Er3+). JO parameters for LiEr 2.0 and MgEr 2.0 glasses follow the trend as Ω6>Ω2>Ω4. Using Judd-Ofelt intensity parameters, we obtained radiative probability A (S-1), branching ratios (β), radiative decay lifetimes τrad (μs) of emissions from excited Er+3 ions in LiEr 2.0 and MgEr 2.0 to all lower levels. Quantum efficiency (η) of 4I13/2 and 4S3/2 levels for LiEr 2.0 and MgEr 2.0 with and without 4D7/2 level was calculated using the radiative decay lifetimes τrad. (μs) and measured lifetimes τexp. (μs). We measured the visible photoluminescence under 377 nm excitation for both LiEr and MgEr glass series within the region 390-580 nm. Three bands were observed in the visible region at 407 nm, 530 nm, and 554 nm, as a result of 2H9/2 → 4I15/2, 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions, respectively. Decay lifetimes for emissions at 407 nm, 530 nm, and 554 nm were measured and they show

  15. IR and Raman spectroscopic studies of sol–gel derived alkaline ...

    Indian Academy of Sciences (India)

    The extent of network depolymerization in the porous glass is higher at the same content of alkaline earth oxide compared to the bulk glass. ... ral properties. Silicate glasses that contain calcium and phos- phorus are known to ... guration of silica glasses modified by alkaline earth oxides. (MgO, CaO) prepared by the sol–gel ...

  16. Optical properties of alkaline earth borate glasses | Rao ...

    African Journals Online (AJOL)

    Borate glasses containing fixed concentrations of heavy metal oxides (MO= ZnO, PbO, TeO2, Bi2O3) and alkaline earth oxides (R= Mg, Ca, Sr, Ba) are prepared by melt quenching technique. The optical band gap values are estimated from the optical absorption spectra using absorption spectrum fitting (ASF) method.

  17. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  18. Vicissitudes of oxidative stress biomarkers in the estuarine crab Scylla serrata with reference to dry and wet weather conditions in Ennore estuary, Tamil Nadu, India.

    Science.gov (United States)

    Ragunathan, M G

    2017-03-15

    The primary objective of this study was to understand the impact of monsoon and summer seasons on the Polychlorinated Biphenyls (PCB's) and petroleum hydrocarbon compounds (PHC's) load in Ennore estuary and how the physiological response of estuarine Scylla serrata inhabiting in this estuary changed with reference to antioxidant defense. Seasonal levels of PCB's and PHC's were assessed in the water along with their bioaccumulation in gills, hemolymph, hepatopancreas and ovary of S. serrata. Concentration of PCB's and PHC's in water and their bioaccumulation was found to be higher in summer season when compared to monsoon season. Enzymic antioxidant assays [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione-S-transferase (GST)]; non-enzymic antioxidant assays [glutathione (GSH), vitamin C, vitamin E] and macromolecular alterations [membrane lipid peroxidation (LPO), and DNA Damage (strand breaks)] were assessed in the gills, hemolymph and hepatopancreas of S. serrata. There was a significant (p<0.05) upregulation in lipid peroxidation activity and DNA damage activity collected during the summer season when compared to the pre- and post-monsoon seasons. On the contrary, the enzymic and non-enzymic antioxidants exhibited significant (p<0.05) down regulation in the gills, hemolymph, hepatopancreas and ovary of S. serrata. Oxidative stress biomarkers represented a significant (p<0.05) maximum in gills when compared to hemolymph and hepatopancreas of S. serrata. Present study provided scientific evidences of how the antioxidant defense status of S. serrata responded to PCB's and PAH's stress with reference to seasonal vicissitudes, which indirectly represented the environmental health conditions of the estuary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Wet storage integrity update

    International Nuclear Information System (INIS)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables

  20. Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign

    Science.gov (United States)

    Pacifico, Federica; Delon, Claire; Jambert, Corinne; Durand, Pierre; Morris, Eleanor; Evans, Mat J.; Lohou, Fabienne; Derrien, Solène; Donnou, Venance H. E.; Houeto, Arnaud V.; Reinares Martinez, Irene; Brilouet, Pierre-Etienne

    2018-03-01

    It is important to correctly simulate biogenic fluxes from soil in atmospheric chemistry models at a local and regional scale to study air pollution and climate in an area of the world, West Africa, that has been subject to a strong increase in anthropogenic emissions due to a massive growth in population and urbanization. Anthropogenic pollutants are transported inland and northward from the mega cities located on the coast, where the reaction with biogenic emissions may lead to enhanced ozone production outside urban areas, as well as secondary organic aerosols formation, with detrimental effects on humans, animals, natural vegetation and crops. Here we present field measurements of soil fluxes of nitric oxide (NO) and ammonia (NH3) observed over four different land cover types, i.e. bare soil, grassland, maize field and forest, at an inland rural site in Benin, West Africa, during the DACCIWA field campaign in June and July 2016. We observe NO fluxes up to 48.05 ngN m-2 s-1. NO fluxes averaged over all land cover types are 4.79 ± 5.59 ngN m-2 s-1, maximum soil emissions of NO are recorded over bare soil. NH3 is dominated by deposition for all land cover types. NH3 fluxes range between -6.59 and 4.96 ngN m-2 s-1. NH3 fluxes averaged over all land cover types are -0.91 ± 1.27 ngN m-2 s-1 and maximum NH3 deposition is measured over bare soil. The observations show high spatial variability even for the same soil type, same day and same meteorological conditions. We compare point daily average measurements of NO emissions recorded during the field campaign with those simulated by GEOS-Chem (Goddard Earth Observing System Chemistry Model) for the same site and find good agreement. In an attempt to quantify NO emissions at the regional and national scale, we also provide a tentative estimate of total NO emissions for the entire country of Benin for the month of July using two distinct methods: upscaling point measurements and using the

  1. Proteomic effects of wet cupping (Al-hijamah).

    Science.gov (United States)

    Almaiman, Amer A

    2018-01-01

    Wet cupping (Al-hijamah) is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient's skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted.

  2. Reactive wetting by liquid sodium on thin Au platin

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Hamada, Hirotsugu

    2014-01-01

    For practical use of an under-sodium viewer, the behavior of sodium wetting is investigated by modeling the reactive and non-reactive wetting of metallic-plated steels by liquid sodium to simulate sodium wetting. The non-reactive wetting simulation results showed good agreement with Tanner's law, in which the time dependencies of the droplet radius and contact angle are expressed as R N ∝ t 1/10 and θ∝ t -3/10 , respectively; therefore, the model was considered suitable for the simulation. To simulate reactive wetting, the model of fluid flow induced by the interfacial reaction was incorporated into the simulation of non-reactive wetting. The reactive wetting simulation results, such as the behavior of the precursor liquid film and central droplet, showed good agreement with sodium wetting experiments using thin Au plating at 250°C. An important result of the reactive wetting simulation is that the gradient of the reaction energy at the interface appeared on the new interface around the triple line, and that fluid flow was induced. This interfacial reactivity during sodium wetting of thin Au plating was enhanced by the reaction of sodium and nickel oxide through pinholes in the plating. (author)

  3. Conditioning alkaline coolant radioactive waste from research reactor BR-10

    International Nuclear Information System (INIS)

    Vladimir, Smykov; Mikhail, Kononyuk; Kirill, Butov

    2014-01-01

    In the Institute for Physics and Power Engineering (Russia) has developed and was successfully demonstrated a technology of solid-phase oxidation of alkaline metal by slag from the copper-smelting industry. Neutralization of alkaline metal in the solid-phase oxidation process occurs in a single phase. The solid-phase oxidation process does not result in the generation of hydrogen. The product of alkaline metal radioactive waste processing is solid mineral-like sinter of reaction products, contained inside a steel reaction container, which is immediately shipped for dry storage in a solid radioactive waste storage facility. The presence of a mercury admixture in the research reactor BR-10 (BR-10) reactor alkaline metals radioactive waste makes conditioning of that waste considerably more complicated. Laboratory research demonstrated that mercury could be effectively removed from alkaline metal by pushing the Na-K alloy through chips of metallic magnesium in elevated temperatures. For neutralization of non-drainable sodium residues and admixtures in individual equipment (cold traps, pipe lines, tanks) of the research reactor BR-10 has developed a method for neutralization of non-drainable residues of alkaline liquid metal coolants with a gaseous sub oxide of nitrogen, which is characterized by absence of hydrogen generation, improving the safety of the technology. Currently, the reactor building is undergoing installation of the experimental-industrial plant 'Magma', the purpose of which is processing of accumulated alkaline metals radioactive waste. In according with concept of 'experimental polygon for testing the decommissioning technologies of the BN series of reactors' based on the BR-10 installation, it would appear sensible to start the development of the installation for conditioning by solid-phase oxidation of up to 1000 liters of radioactive waste per loading. (author)

  4. Wetting of real surfaces

    CERN Document Server

    Bormashenko, Edward Yu

    2013-01-01

    The problem of wetting and drop dynamics on various surfaces is very interesting from both the scientificas well as thepractical viewpoint, and subject of intense research.The results are scattered across papers in journals, sothis workwill meet the need for a unifying, comprehensive work.

  5. WetVegEurope

    NARCIS (Netherlands)

    Landucci, Flavia; Řezníčková, Marcela; Šumberová, Kateřina; Hennekens, S.M.; Schaminée, J.H.J.

    2015-01-01

    WetVegEurope is a research project (http://www.sci.muni.cz/botany/vegsci/wetveg) whose goal is to provide a synthesized formalized classification of the aquatic and marsh vegetation across Europe at the level of phytosociological associations. In order to achieve the project objective, a

  6. Wet Deposition Flux of Reactive Organic Carbon

    Science.gov (United States)

    Safieddine, S.; Heald, C. L.

    2016-12-01

    Reactive organic carbon (ROC) is the sum of non-methane volatile organic compounds (NMVOCs) and primary and secondary organic aerosols (OA). ROC plays a key role in driving the chemistry of the atmosphere, affecting the hydroxyl radical concentrations, methane lifetime, ozone formation, heterogeneous chemical reactions, and cloud formation, thereby impacting human health and climate. Uncertainties on the lifecycle of ROC in the atmosphere remain large. In part this can be attributed to the large uncertainties associated with the wet deposition fluxes. Little is known about the global magnitude of wet deposition as a sink of both gas and particle phase organic carbon, making this an important area for research and sensitivity testing in order to better understand the global ROC budget. In this study, we simulate the wet deposition fluxes of the reactive organic carbon of the troposphere using a global chemistry transport model, GEOS-Chem. We start by showing the current modeled global distribution of ROC wet deposition fluxes and investigate the sensitivity of these fluxes to variability in Henry's law solubility constants and spatial resolution. The average carbon oxidation state (OSc) is a useful metric that depicts the degree of oxidation of atmospheric reactive carbon. Here, we present for the first time the simulated gas and particle phase OSc of the global troposphere. We compare the OSc in the wet deposited reactive carbon flux and the dry deposited reactive carbon flux to the OSc of atmospheric ROC to gain insight into the degree of oxidation in deposited material and, more generally, the aging of organic material in the troposphere.

  7. Effect of Alkaline Water on the Lipid Profile in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Z. Salemi

    2015-08-01

    Full Text Available Backgrounds: Alkaline water could be prepared through both electro-chemical and natural ways and previous studies have shown that alkaline water scavenges oxygen radicals in cell culture. It’s expected that alkaline water has positive and preventive effects on diseases related to stress oxidative like atherosclerosis and cardiovascular disease. In recent study, we showed the effects of alkaline water on serum lipid profile in wistar rats. Materials and Methods: In this study 32 male wistar rats weighing 250-200 g were used. Rats divided randomly into four groups, namely control group, alkaline group 1, alkaline group 2 by adding sodium bicarbonate, and acidic group by adding acetic acid to their drinking water. After 32 weeks, blood samples were obtained and lipid profile was measured in all groups, the data was analyzed with SPSS statistical software. Results: Relay on obtained results, cholesterol and triglyceride concentrations in alkaline water group1 and 2 to control group and LDL concentrations in alkaline water group1 have been reduced significantly (p<0.5. While LDL concentration in alkaline water group2 and HDL concentrations in alkaline water group1 and 2 to control group have not significant changes. Conclusion: Results of this study declare that daily administration of alkaline water can improve serum lipid profile and maybe reduced risk of oxidative stress diseases.

  8. Wetting 101 degrees.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2009-12-15

    We review our 2006-2009 publications on wetting and superhydrophobicity in a manner designed to serve as a useful primer for those who would like to use the concepts of this field. We demonstrate that the 1D (three-phase, solid/liquid/vapor) contact line perspective is simpler, more intuitive, more useful, and more consistent with facts than the disproved but widely held-to-be-correct 2D view. We give an explanation of what we believe to be the reason that the existing theoretical understanding is wrong and argue that the teaching of surface science over the last century has led generations of students and scientists to a misunderstanding of the wetting of solids by liquids. We review our analyses of the phenomena of contact angle hysteresis, the lotus effect, and perfect hydrophobicity and suggest that needlessly complex theoretical understandings, incorrect models, and ill-defined terminology are not useful and can be destructive.

  9. Thermodynamic properties of alkaline earth metal oxides

    International Nuclear Information System (INIS)

    Chekhovskoj, V.Ya.; Irgashov, Kh.

    1990-01-01

    Analysis of the known experimental data on enthalpy and heat capacity of CaO, SrO, BaO and RaO above 300 K is performed. New results of experimental study: enthalpy and heat capacity in solid and liquid states of BaO up to 2500 K, SrO up to 3000 K, CaO - up to 3100 K, as well as melting points, melting heats and entropies, heat capacity of melts and formation energy of anion and cation vacancy pair are presented. For Ra evaluations of temperature, melting heat and entropy, melt heat capacity, Debye point and formation energy of anion and cation vacancy pairs are made. On the basis of high-temperature data on enthalpy and low-temperature literature data on heat capacity the tables of thermodynamic functions in the range of 0-2500 K for BaO, 0-1300 K for SrO and 0-3128 K for CaO are calculated

  10. Alkaline earth metal catalysts for asymmetric reactions.

    Science.gov (United States)

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  11. Wetting of porous solids.

    Science.gov (United States)

    Patkar, Saket; Chaudhuri, Parag

    2013-09-01

    This paper presents a simple, three stage method to simulate the mechanics of wetting of porous solid objects, like sponges and cloth, when they interact with a fluid. In the first stage, we model the absorption of fluid by the object when it comes in contact with the fluid. In the second stage, we model the transport of absorbed fluid inside the object, due to diffusion, as a flow in a deforming, unstructured mesh. The fluid diffuses within the object depending on saturation of its various parts and other body forces. Finally, in the third stage, oversaturated parts of the object shed extra fluid by dripping. The simulation model is motivated by the physics of imbibition of fluids into porous solids in the presence of gravity. It is phenomenologically capable of simulating wicking and imbibition, dripping, surface flows over wet media, material weakening, and volume expansion due to wetting. The model is inherently mass conserving and works for both thin 2D objects like cloth and for 3D volumetric objects like sponges. It is also designed to be computationally efficient and can be easily added to existing cloth, soft body, and fluid simulation pipelines.

  12. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  13. The wetting transition in water

    Science.gov (United States)

    Friedman, Serah Ruth

    This work addresses both the design and experimental procedure for finding the wetting transition in water on a variety of solid surfaces. When a liquid drop is placed onto a solid surface it will either completely spread out or form a finite contact angle between 0 and 180 degrees. When a drop spreads, forming a film across the surface, this is called complete wetting. If a drop forms a finite contact angle with the surface, this is called partial wetting. A wetting transition is a surface phase transition from partial to complete wetting. This work is the first to experimentally measure the wetting transition in water on a solid surface. The temperature at which the wetting transition occurs is called the wetting temperature. The wetting temperature for solid-liquid-vapor systems can be theoretically predicted using both molecular dynamics simulations and density functional theory. Density functional theory predicts, with reasonable accuracy, the wetting temperature of "simple" non-polar liquids on a solid surface. The accuracy of density functional theory in predicting wetting temperature has yet to be experimentally tested on more complex polar liquids, and more specifically on water. In this work, we set out to measure the wetting transition in water on a variety of surfaces, namely: Graphite, Sapphire, Quartz, Mica, Gold, Silicon and Hexagonal Boron Nitride.

  14. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  15. Analysis and Optimization of Oxidized Heterolayers

    National Research Council Canada - National Science Library

    Weber, Eicke

    1998-01-01

    .... A systematic study of the fundamental properties of the wet thermal oxides is being performed, including the dependence on oxide processing parameters, hydrogen and other dopant concentrations...

  16. Wet-dog shake

    Science.gov (United States)

    Dickerson, Andrew; Mills, Zack; Hu, David

    2010-11-01

    The drying of wet fur is a critical to mammalian heat regulation. We investigate experimentally the ability of hirsute animals to rapidly oscillate their bodies to shed water droplets, nature's analogy to the spin cycle of a washing machine. High-speed videography and fur-particle tracking is employed to determine the angular position of the animal's shoulder skin as a function of time. We determine conditions for drop ejection by considering the balance of surface tension and centripetal forces on drops adhering to the animal. Particular attention is paid to rationalizing the relationship between animal size and oscillation frequency required to self-dry.

  17. Optical wet steam monitor

    Science.gov (United States)

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  18. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  19. PREFACE: Wetting: introductory note

    Science.gov (United States)

    Herminghaus, S.

    2005-03-01

    The discovery of wetting as a topic of physical science dates back two hundred years, to one of the many achievements of the eminent British scholar Thomas Young. He suggested a simple equation relating the contact angle between a liquid surface and a solid substrate to the interfacial tensions involved [1], γlg cos θ = γsg - γsl (1) In modern terms, γ denotes the excess free energy per unit area of the interface indicated by its indices, with l, g and s corresponding to the liquid, gas and solid, respectively [2]. After that, wetting seems to have been largely ignored by physicists for a long time. The discovery by Gabriel Lippmann that θ may be tuned over a wide range by electrochemical means [3], and some important papers about modifications of equation~(1) due to substrate inhomogeneities [4,5] are among the rare exceptions. This changed completely during the seventies, when condensed matter physics had become enthusiastic about critical phenomena, and was vividly inspired by the development of the renormalization group by Kenneth Wilson [6]. This had solved the long standing problem of how to treat fluctuations, and to understand the universal values of bulk critical exponents. By inspection of the critical exponents of the quantities involved in equation~(1), John W Cahn discovered what he called critical point wetting: for any liquid, there should be a well-defined transition to complete wetting (i.e., θ = 0) as the critical point of the liquid is approached along the coexistence curve [7]. His paper inspired an enormous amount of further work, and may be legitimately viewed as the entrance of wetting into the realm of modern physics. Most of the publications directly following Cahn's work were theoretical papers which elaborated on wetting in relation to critical phenomena. A vast amount of interesting, and in part quite unexpected, ramifications were discovered, such as the breakdown of universality in thin film systems [8]. Simultaneously, a number

  20. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  1. Potentiodynamic characteristics of cadmium and silver in alkaline solutions

    International Nuclear Information System (INIS)

    Saidman, S.B.; Vilche, J.R.; Arvia, A.J.; Lopes Teijelo, M.

    1984-01-01

    The potentiodynamic and ellipsometric characteristics of cadmium and silver in alkaline solutions are studied. The phenomenology of both electrodes shows some common features which are interpreted in termo of a complex hydrated oxide anodic film structure resulting from simultaneous electrochemical and chemical reactions. The kinetics of film growth fits the predictions of nucleation and growth models. (C.L.B.) [pt

  2. Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core–shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2015-04-01

    Full Text Available Half-cell reactions and alkaline direct ethylene glycol and glycerol fuel cells (DEGFC and DGFC) have been studied on Pd-based ternary core–shell (FeCo@Fe@Pd) nanocatalyst using multi-walled carbon nanotubes bearing carboxylic (MWCNT...

  3. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1993-01-01

    Experimental results exploring gravity-driven wetting from instability in a pre-wetted, rough-walled analog fractures such as those at Yucca Mountain are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  4. Carbon Dioxide Removal and Conversion to Ocean Alkalinity: Why and How

    Science.gov (United States)

    Rau, G. H.

    2014-12-01

    Drastic reduction in anthropogenic CO2 emissions is the most obvious way to stabilize atmospheric CO2. However, there is growing risk that effective emissions reduction policies and technologies will not engage soon enough to avoid significant CO2-induced climate and ocean acidification impacts. This realization has lead to increased interest (e.g., IPCC AR5, 2014; NRC/NAS, 2014) in the possibility of pro-actively increasing CO2 removal (CDR) from the atmosphere above the 55% of our emissions that are already removed from air by natural land and ocean processes. While a variety of biotic, abiotic, and hybrid CDR methods have been proposed, those involving geochemistry have much to recommend them. These methods employ the same geochemical reactions that naturally and effectively remove excess planetary CO2 and neutralize ocean acidity on geologic time scales. These reactions proceed when the hydrosphere, acidified by excess air CO2, contacts and reacts with carbonate and silicate minerals (>90% of the Earth's crust), producing dissolved bicarbonates and carbonates, i.e., ocean alkalinity. This alkalinity is eventually removed and the excess carbon stored via carbonate precipitation. So while the importance and global effectiveness of such reactions are not in question, it remains to be seen if this very slow, natural CDR could be safely and cost-effectively accelerated to help manage air CO2 levels on human rather than geologic time scales. Various terrestrial and marine, geochemistry-based CDR methods will be reviewed including: 1) the addition of minerals to soils and the ocean, 2) removal of CO2 from waste streams, esp. from biomass energy, via wet mineral contacting, and 3) the production and use of mineral derivatives, e.g. oxides or hydroxides, as CDR agents. The additional potential environmental benefits (e.g., reversal of ocean carbonate saturation loss) and impacts (e.g., increased mineral extraction), as well as potential economics will also be discussed.

  5. Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk

    International Nuclear Information System (INIS)

    Zhang, Shuping; Chen, Tao; Xiong, Yuanquan; Dong, Qing

    2017-01-01

    Highlights: • Wet torrefaction of rice husk prior to pyrolysis was applied. • Wet torrefaction has the dual advantages of dry torrefaction and demineralisation. • Wet torrefaction at the mild reaction condition promoted the production of bio-oil. • Biochar produced can be used as the feedstock for preparation of nanosilica. - Abstract: Wet torrefaction in the temperature range from 150 to 240 °C for 60 min was applied on rice husk sample prior to pyrolysis process in this work. Its effects on the physicochemical properties and pyrolysis product properties were evaluated. The analysis results of physicochemical properties of raw and pretreated samples indicated that wet torrefaction not only improved the fuel characteristics but also removed a large amount of alkali and alkaline earth metal species with the dual advantages of dry torrefaction and demineralisation. On the basis of pyrolysis experiment results, it was found that wet torrefaction at the mild reaction condition had a positive impact on bio-oil production, but more severe wet torrefaction condition was not reasonable. The highest relative content of levoglucosan (57.2%) was obtained from pyrolysis of rice husk sample after wet torrefaction at 210 °C, which was about 6.2 times higher than that of raw rice husk. The results of biochar analysis suggested that biochar produced from sample after wet torrefaction and pyrolysis seems not a desirable solid fuel, it can be used as the feedstock for preparation of nanosilica.

  6. Effect of alkaline cleaning and activation on aluminum alloy 7075-T6

    International Nuclear Information System (INIS)

    Joshi, Simon; Fahrenholtz, William G.; O'Keefe, Matthew J.

    2011-01-01

    The effect of alkaline cleaning and activation on the composition and thickness of the oxide layer on aluminum alloy 7075-T6 was studied. E-pH diagrams were developed to predict the effect of alkaline cleaning and activation solutions on the stability of the oxide surface layers. The thickness of the native oxide layer was determined to be ∼30 nm by Auger electron spectroscopy depth profiling analysis. The outer ∼20 nm was rich in magnesium while the remaining ∼10 nm was rich in aluminum. Cleaning in a 9.1 pH alkaline solution was found to remove the magnesium-rich layer and leave behind an aluminum-rich oxide layer ∼10 nm thick. Activation in alkaline solutions of NaOH (pH > 12.9) or Na 2 CO 3 (pH > 11.5) produced an oxide that was ∼20 to 60 nm thick and rich in magnesium. Alkaline cleaning and activation altered the oxide composition and thickness making it possible for deposition of thicker cerium-based conversion coatings (∼100 to 250 nm) compared to only alkaline cleaning (∼30 nm), with application of one spray cycle of deposition solution.

  7. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  8. Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2009-01-01

    Full Text Available In recent years, considerable attention has been paid to various applications of Fe(VI due to its unique properties such as oxidizing power, selective reactivity, stability of the salt, and non-toxic decomposition by-products of ferric ion. In environmental remediation processes, Fe(VI has been proposed as green oxidant, coagulant, disinfectant, and antifoulant. Therefore, it is considered as a promising multi-purpose water treatment chemical. Fe(VI has also potential applications in electrochemical energy source, as 'green cathode'. The effectiveness of ferrate as a powerful oxidant in the entire pH range, and its use in environmental applications for the removal of wide range of contaminants has been well documented by several researchers. There is scientific evidence that ferrate can effectively remove arsenic, algae, viruses, pharmaceutical waste, and other toxic heavy metals. Although Fe(VI was first discovered in early eighteen century, detailed studies on physical and chemical properties of Fe(VI had to wait until efficient synthetic and analytical methods of Fe(VI were developed by Schreyer et al. in the 1950s. Actually, there have been developed three ways for the preparation of Fe(VI compounds : the wet oxidation of Fe(II and Fe(III compounds, the dry oxidation of the same, and the electrochemistry method, mainly based on the trans passive oxidation of iron. High purity ferrates Fe(VI can be generated when electrode of the pure iron metal or its alloys are anodized in concentrated alkaline solution. It is known that the efficiency of electrochemical process of Fe(VI production depends on many factors such as current density, composition of anode material, types of electrolyte etc. In this paper, the electrochemical synthesis of ferrate(VI solution by the anodic dissolution of iron and its alloys in concentrated water solution of NaOH and KOH is investigated. The process of transpassive dissolution of iron to ferrate(VI was studied by

  9. Wet flue gas desulphurization and new fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kiil, S.; Dam-Johansen, K.; Michelsen, M.L.

    1998-04-01

    This thesis describes experimental and theoretical investigations of wet flue gas desulphurization (FGD). A review of the current knowledge of the various rate determining steps in wet FDG plants is presented. The mechanism underlying the rate of dissolution of finely grained limestone particles was examined in a laboratory batch apparatus using acid titration. Three Danish limestones of different origin were tested. A transient, mass transport controlled, mathematical model was developed to describe the dissolution process. Model predictions were found to be qualitatively in good agreement with experimental data. Empirical correlations for the dimensionless mass transfer coefficients in a pilot plant (falling-film column) were determined. The presence of inert particles in the liquid phase was found to decrease the rate of gas phase mass transport with up to 15%, though the effect could not be correlated. A detailed model for a wet FGD pilot plant, based on the falling film principle, was developed. All important rate determining steps, absorption of SO{sub 2}, oxidation of HSO{sub 3}{sup -}, dissolution of limestone, and crystallisation of gypsum were included. Model predictions were compared to experimental data such as gas phase concentration profiles of SO{sub 2}, slurry pH-profiles, solids contents of slurry, liquid phase concentrations, and residual limestone in the gypsum. The possibility of co-firing straw and coal was investigated in a full-scale power plant. No effects on the overall performance of the wet FGD plant were observed, though laboratory experiments with fine dust and fly ash from the full-scale experiments showed a decrease in limestone reactivity. (EG) EFP-95. 45 refs.; Also ph.d. thesis of Soeren Kiil

  10. Wetting morphologies on chemically nanopatterned surfaces

    Science.gov (United States)

    Checco, Antonio; Gang, Oleg; Ocko, Benjamin M.

    2007-03-01

    We study the wetting of simple, volatile liquids on model chemical nanopatterns created using Local Oxidation Nanolithography. This technique makes use of a biased, metallic AFM tip to locally oxidize the methyl-terminations of a self-assembled monolayer (octadecylthrichlorosilane) into carboxylic acid termination[1]. With this method we have realized parallel, 50 to 500 nm wide, wettable stripes (carboxylic) embedded into a non-wettable (methyl) surface. Several organic (polar, non-polar), volatile liquids have been condensed onto the wettable stripes and the resulting droplet morphologies have been studied in-situ by using an environmental AFM. We show that close to saturation and for droplet thickness less than 10 nm long-range forces are relevant to the nanoliquid shape. These results are well described by Density Functional Theory assuming dispersive molecular interactions. In addition, we explore the dynamics of condensation/evaporation of the liquid nanodrops.

  11. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways

    International Nuclear Information System (INIS)

    Liang, Chenju; Lin, Ya-Ting; Shiu, Jia-Wei

    2016-01-01

    Highlights: • Alkaline ascorbic acid (a.k.a. vitamin C) is capable of reductively degrading NB. • The pH above the pK a2 of ascorbic acid increases reductive electron transfer to NB. • The rate equation for the reactions between NB and AA is determined. • NSB, AZOXY, and AZO are identified as intermediates and aniline as a final product. • Alkaline pH is essential for AA remediation of NB contaminated soils. - Abstract: Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO 2 − ) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pK a2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r = ((0.89 ± 0.11) × 10 −4 mM 1−(a + b) h −1 ) × [NB] a = 1.35 ± 0.10 [AA] b = 0.89 ± 0.01 . The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application.

  12. Synergistic degradation of konjac glucomannan by alkaline and thermal method.

    Science.gov (United States)

    Jin, Weiping; Mei, Ting; Wang, Yuntao; Xu, Wei; Li, Jing; Zhou, Bin; Li, Bin

    2014-01-01

    The application of konjac glucomannan (KGM) in the food industry is always limited by its high viscosity. Hereby, low-viscosity KGM was prepared by alkaline-thermal degradation method. This process was demonstrated by the changes of average molecular weight and a kinetic model was developed. The results revealed that high alkalinity and high temperature had a synergetic effect on degradation. The structure of hydrolysates was evaluated by periodate oxidation and their fluidly properties were researched by rheology measurements. The degradation was divided into two regimes. The rate of the first regime (within 1h) is higher than that of the second one (last 1h). It is found that alkaline hydrolysis and deacetylation have a synergistic effect on the degradation under high alkalinity (pH 9.2) and low temperature condition (25 °C). Finally, rheology parameters showed alkaline-thermal degradation is a promising way that can be applied in practice to degrade KGM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Alkaline galvanic cells

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, M.

    1993-06-01

    A battery is described having an anode, a cathode and an electrolyte with the anode having zinc or a zinc alloy as an active anodic material, the cathode having a metal oxide or hydroxide as an active cathodic material, and the electrolyte comprising a solution of a first salt formed by the reaction of one or more acids selected from the group consisting of boric acid, phosphoric acid and arsenic acid with an alkali or earth alkali hydroxide present in an amount to produce a stoichiometric, excess of said hydroxide to said acid in the range of 2.5 to 11.0 equivalents per liter, and a solution of a second salt which is a soluble alkali or earth alkali fluoride in an amount corresponding to a concentration range of 0.01 to 1.0 equivalents per liter of total solution.

  14. Alkaline lixiviation of uranium in granitic pegmatite

    International Nuclear Information System (INIS)

    Jambor, S.

    1980-06-01

    The work described herein concerns the determination of the experimental optimum conditions for the alkaline lixiviation of uranium based on the following parameters: time, pH, temperature, density and grane size. The samples were obtained from the Supamo complex, near the Currupia river in the Piar District of the Bolivar State in Venezuela. They have a granitic composition and graphitic texture. The uranium was found in them as a secondary oxidized mineral of green-yellow colour localized in fractures fissures, intergranular spaces and also in the mica as. Secondary uranitite. The lixiviation process was carried out using Na 2 CO 3 /NaHCO 3 buffer solution and for 100 gr. samples the best values for an efficient process were found by using 170 mesh grane size and 500 ml of pH buffer at 70 0 C for a 24 hour time period. (author)

  15. Proteomic effects of wet cupping (Al-hijamah

    Directory of Open Access Journals (Sweden)

    Amer A. Almaiman

    2018-01-01

    Full Text Available Wet cupping (Al-hijamah is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient’s skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted.

  16. 2nd Generation Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Yde, Lars; Kjartansdóttir, Cecilia Kristin; Allebrod, Frank

    This report provides the results of the 2nd Generation Alkaline Electrolysis project which was initiated in 2008. The project has been conducted from 2009-2012 by a consortium comprising Århus University Business and Social Science – Centre for Energy Technologies (CET (former HIRC)), Technical...

  17. Zinc electrode in alkaline electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  18. Wetting of water on graphene nanopowders of different thicknesses

    KAUST Repository

    Bera, Bijoyendra

    2018-04-12

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. “Liquid marble” tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated “wetting transparency” of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  19. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    cyanide- plating bath for copper has been developed using alkaline trisodium citrate and triethanolamine solutions5. The present investigation presents cyclic voltammetric studies on the electrochemical behaviour of alkaline copper complexes, ...

  1. Wetting of Water on Graphene

    KAUST Repository

    Bera, Bijoyendra

    2016-11-28

    The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions between a single atomic layer of graphene and water are so weak that graphene is superhydrophobic. The observations are confirmed in an independent experiment on graphene-coated water droplets that shows that it is impossible to make liquid \\'marbles\\' with molecularly thin graphene.

  2. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Doye, I.; Duchesne, J. [University of Laval, Quebec City, PQ (Canada)

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  3. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    Science.gov (United States)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51

  4. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    Science.gov (United States)

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  5. Mass-spectrometric investigation of thermal dissociation of alkaline earth metal monophosphates

    International Nuclear Information System (INIS)

    Lopatin, S.I.; Semenov, G.A.

    1989-01-01

    By the Knudsen effusion method with mass-spectrometric analysis of vapour phase, processes of thermal dissociation of Mg, Ca, Sr and Ba monophosphates have been studied. It is shown that vapour composition over alkaline-earth metal monophoshates depends on the compsition of condensed phase and volatility of alkaline-earth metal oxides. Dependences of partial pressures of vapour components on the temperature and duration of the experiment are given

  6. New data on the age and nature of the Khan-Bogd alkaline granites, Mongolia

    Science.gov (United States)

    Gerdes, A.; Kogarko, L. N.; Vladykin, N. V.

    2017-11-01

    New age dating (291 Ma) was obtained for one of the largest alkaline granite massifs in the world, the Khan-Bogd Massif (Mongolia). For the first time, apart from zircon, other zirconium silicates, elpidite and armstrongite, have been analyzed. Our determinations showed the highly depleted nature of the mantle sources of granites with ɛNd = 12. All the studied Zr-silicates demonstrate positive Eu anomalies in the REE patterns, which indicate a low oxidation potential during alkaline granite formation.

  7. Some specificities of wetting by cyanobiphenyl liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Delabre, U; Richard, C; Cazabat, A M, E-mail: cazabat@lps.ens.f [Laboratoire de Physique Statistique, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS, 24 rue Lhomond, 75231 Paris Cedex 05 (France)

    2009-11-18

    The present paper provides an up to date restatement of the wetting behaviour of the series of cyanobiphenyl liquid crystals (LCs) on usual substrates, i.e. oxidized silicon wafers, water and glycerol, at both the macroscopic and microscopic scale, in the nematic range of temperature. We show that on water the systems are close to a wetting transition, especially 5CB and 7CB. In that case, the wetting behaviour is controlled by the presence of impurities. On a mesoscopic scale, we observe for all our (thin LC film-substrate) systems an identical, complex, but well defined general scenario, not accounted for by the available models. In the last part, we present a study on line tension which results from the specific organization of LCs at the edge of the nematic film. We report preliminary results on two-dimensional film coalescence where this line tension plays a major role.

  8. Effect of Methanethiol on Product Formation in a Biological Sulfide Oxidition process at Natron-alkaline Conditions

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Fortuny-Picornell, M.; Janssen, A.J.H.

    2009-01-01

    The effects of methanethiol (MT) on biological sulfide oxidation were studied in a continuously operated bioreactor, in which chemolithoautotrophic bacteria belonging to the genus Thioalkalivibrio convert hydrogen sulfide (H2S) at natron-alkaline conditions. Previous bioreactor experiments have

  9. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Carrington, O.F.; Pyrih, R.Z.; Rickard, R.S.

    1981-01-01

    Improvement in the process for recovering uranium from wetprocess phosphoric acid solution derived from the acidulation of uraniferous phosphate ores by the use of two ion exchange liquidliquid solvent extraction circuits in which in the first circuit (A) the uranium is reduced to the uranous form; (B) the uranous uranium is recovered by liquid-liquid solvent extraction using a mixture of mono- and di-(Alkyl-phenyl) esters of orthophosphoric acid as the ion exchange agent; and (C) the uranium oxidatively stripped from the agent with phosphoric acid containing an oxidizing agent to convert uranous to uranyl ions, and in the second circuit (D) recovering the uranyl uranium from the strip solution by liquid-liquid solvent extraction using di(2ethylhexyl)phosphoric acid in the presence of trioctylphosphine oxide as a synergist; (E) scrubbing the uranium loaded agent with water; (F) stripping the loaded agent with ammonium carbonate, and (G) calcining the formed ammonium uranyl carbonate to uranium oxide, the improvement comprising: (1) removing the organics from the raffinate of step (B) before recycling the raffinate to the wet-process plant, and returning the recovered organics to the circuit to substantially maintain the required balance between the mono and disubstituted esters; (2) using hydogren peroxide as the oxidizing agent in step (C); (3) using an alkali metal carbonate as the stripping agent in step (F) following by acidification of the strip solution with sulfuric acid; (4) using some of the acidified strip solution as the scrubbing agent in step (E) to remove phosphorus and other impurities; and (5) regenerating the alkali metal loaded agent from step (F) before recycling it to the second circuit

  10. Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Eileen Hao Yu

    2010-08-01

    Full Text Available Direct alkaline alcohol fuel cells (DAAFCs have attracted increasing interest over the past decade because of their favourable reaction kinetics in alkaline media, higher energy densities achievable and the easy handling of the liquid fuels. In this review, principles and mechanisms of DAAFCs in alcohol oxidation and oxygen reduction are discussed. Despite the high energy densities available during the oxidation of polycarbon alcohols they are difficult to oxidise. Apart from methanol, the complete oxidation of other polycarbon alcohols to CO2 has not been achieved with current catalysts. Different types of catalysts, from conventional precious metal catalyst of Pt and Pt alloys to other lower cost Pd, Au and Ag metal catalysts are compared. Non precious metal catalysts, and lanthanum, strontium oxides and perovskite-type oxides are also discussed. Membranes like the ones used as polymer electrolytes and developed for DAAFCs are reviewed. Unlike conventional proton exchange membrane fuel cells, anion exchange membranes are used in present DAAFCs. Fuel cell performance with DAAFCs using different alcohols, catalysts and membranes, as well as operating parameters are summarised. In order to improve the power output of the DAAFCs, further developments in catalysts, membrane materials and fuel cell systems are essential.

  11. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    Energy Technology Data Exchange (ETDEWEB)

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  12. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  13. Development of Integrated TiO2 on Carburized Si Nanowires as a Catalyst/Support Structure for Alkaline Fuel Cells

    Science.gov (United States)

    Lemke, Adam J.

    Due to a combination of environmental and economic motivations, there is a strong impetus to transition away from fossil fuels towards renewable sources of energy. Critical to achieving this goal will be technologies that allow for the storage and transmission of energy derived from renewable sources. Hydrogen fuel cells may play a significant role in making this a reality, allowing for the use of hydrogen as a non-carbon based fuel, in particular for vehicle applications. Hydrogen fuel cells directly convert chemical energy into electrical energy, with only water vapor and heat as waste products. There are challenges facing fuel cell technology that inhibit its wider implementation. One of the most significant of these is the cost of the platinum that is typically used in fuel cells to catalyze the oxygen reduction reaction (ORR), which is the bottleneck reaction in hydrogen fuel cells. The rarity and expense of platinum significantly add to the cost of fuel cells, thus reducing their economic viability. Therefore there is much interest in developing catalysts from alternative materials with a lower cost. A second, and related issue facing fuel cells is the degradation over time of the support structure that puts the catalyst into electrical connection with the external load. The carbon structure that currently serves as the standard catalyst support degrades over time under the harsh operating conditions of the cell, leading to catalyst agglomeration and reducing the lifetime of the cell. It is therefore desirable to develop support structures that will be more stable, while still providing electrical conductivity. The following presents original research pertaining to the development of catalyst/support materials making use of non-noble metal oxides synthesized by means of wet chemical methods. Metal oxides such as manganese oxide and titanium oxide are capable of serving as support materials and (in the case of alkaline fuel cells) even as catalysts. Wet

  14. Does Surface Roughness Amplify Wetting?

    Czech Academy of Sciences Publication Activity Database

    Malijevský, Alexandr

    2014-01-01

    Roč. 141, č. 18 (2014), s. 184703 ISSN 0021-9606 R&D Projects: GA ČR GA13-09914S Institutional support: RVO:67985858 Keywords : density functional theory * wetting * roughness Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.952, year: 2014

  15. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction; Oxidação eletroquímica do etanol utilizando eletrocatalisadores PtRh/C em meio alcalino e sintetizados via borohidreto de sódio e redução por álcool

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Eric Hossein

    2017-07-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H{sub 2}PtCl{sub 6}3•6H{sub 2}0 and (RhNO{sub 3}){sub 3}, the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  16. Converting SDAP into gypsum in a wet limestone scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Fogh, F. [Faelleskemikerne, Elsamprojekt A/S, Fredericia (Denmark)

    1996-12-01

    The ELSAM power pool has an installed electrical capacity of approx. 5 GW{sub e}, mainly firing import coal. The major base load units are equipped with desulphurization units and three different desulphurization technologies are used: the wet limestone gypsum process, the spray dry absorption process and a sulphuric acid process. Gypsum and sulphuric acid are commercialized, whereas it has been difficult to utilize the spray dry absorption product (SDAP). The main constituents of SDAP are calcium sulphide, calcium chloride, hydrated lime and impurities mainly originating from fly ash. Sulphide can be oxidized into sulphate in acidic solution - the reaction is utilized in the wet limestone gypsum process - and the possibility of using any spare capacity in the wet limestone gypsum units to oxidize the sulphide content of SDAP into sulphate and produce usable gypsum has been investigated in the laboratory and in a 400 MW{sub e} equivalent wet limestone unit. The limestone inhibition effect of the addition of SDAP is currently being studied in the laboratory in order to determine the effect of different SDAP types (plant/coal sources) on limestone reactivity before further long-term full-scale tests are performed and permanent use of the process planned. (EG)

  17. Manganese zinc ferrite nanoparticles as efficient catalysts for wet ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/jcsc/127/03/0537-0546. Keywords. Spinel ferrites; catalytic activity; wet peroxide oxidation; 4-chlorophenol; water treatment. Abstract. Manganese substituted zinc nanoparticles, MnxZn1−xFe2O4 (x = 0.0, 0.25, 0.5, 0.75, 1.0) prepared by sol gel method were found to be efficient catalysts for ...

  18. Characterization and Electrocatalytic Properties of Titanium-Based Ru0.3Co0.7−xCex Mixed Oxide Electrodes for Oxygen Evolution in Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Hongjun Wu

    2011-01-01

    Full Text Available Ti-supported RuO2-Co3O4-CeO2 (Ru0.3Co0.7−xCex oxide, 0≤x≤0.7 electrodes were prepared by sol-gel process. The phase structure, surface morphology, and microstructure of the oxide layer were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Electrocatalytic activity and oxygen evolution reaction (OER kinetics on these electrodes in 1.0 mol⋅dm−3 KOH solution were studied by recording open-circuit potential, cyclic voltammetry, and polarisation curves. The results showed that the appropriate content of CeO2 could reduce the grain size and increase active surface area. The electrocatalytic activity shows a strong dependence on the CeO2 content in the film. Catalytic performance of mixed oxide electrodes with 40 mol % CeO2 was the best, with the greatest voltammetric charge, 86.23 mC⋅cm−2, and the smallest apparent activation energy for OER at 0.60 V was 22.76 kJ⋅mol−1.

  19. Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: rates of reaction with atmospheric oxidants, air-water partitioning, and wet/dry deposition lifetimes.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya; Friesen, Ken J

    2009-08-01

    A quantitative structure-activity model has been validated for estimating congener specific gas-phase hydroxyl radical reaction rates for perfluoroalkyl sulfonic acids (PFSAs), carboxylic acids (PFCAs), aldehydes (PFAls) and dihydrates, fluorotelomer olefins (FTOls), alcohols (FTOHs), aldehydes (FTAls), and acids (FTAcs), and sulfonamides (SAs), sulfonamidoethanols (SEs), and sulfonamido carboxylic acids (SAAs), and their alkylated derivatives based on calculated semi-empirical PM6 method ionization potentials. Corresponding gas-phase reaction rates with nitrate radicals and ozone have also been estimated using the computationally derived ionization potentials. Henry's law constants for these classes of perfluorinated compounds also appear to be reasonably approximated by the SPARC software program, thereby allowing estimation of wet and dry atmospheric deposition rates. Both congener specific gas-phase atmospheric and air-water interface fractionation of these compounds is expected, complicating current source apportionment perspectives and necessitating integration of such differential partitioning influences into future multimedia models. The findings will allow development and refinement of more accurate and detailed local through global scale atmospheric models for the atmospheric fate of perfluoroalkyl compounds.

  20. Selective Oxidation of 1,2-Propanediol to Carboxylic Acids Catalyzed by Copper Nanoparticles.

    Science.gov (United States)

    Xue, Wuping; Yin, Hengbo; Lu, Zhipeng; Wang, Aili; Liu, Shuxin; Shen, Lingqin

    2018-05-01

    Copper nanoparticles with different particle sizes were prepared by a wet chemical reduction method in the presence of organic modifiers, such as citric acid (CA), hexadecyl trimethyl ammonium bromide, Tween-80 (Tween), and polyethylene glycol 6000. Selective oxidation of sustainable 1,2-propanediol with O2 to high-valued lactic, formic, and acetic acids catalyzed by the copper nanoparticles in an alkaline medium was investigated. The small-sized CuCA nanoparticles with the average particle size of 15.2 nm favored the formation of acetic and formic acids while the CuTween nanoparticles with the average particle size of 26.9 nm were beneficial to the formation of lactic acid. The size effect of copper nanoparticles on the catalytic oxidation of 1,2-propanediol to the carboxylic acids was obvious.

  1. Electrochemical Behavior of Sulfur in Aqueous Alkaline Solutions

    Science.gov (United States)

    Mamyrbekova, Aigul; Mamitova, A. D.; Mamyrbekova, Aizhan

    2018-03-01

    The kinetics and mechanism of the electrode oxidation-reduction of sulfur on an electrically conductive sulfur-graphite electrode in an alkaline solution was studied by the potentiodynamic method. To examine the mechanism of electrode processes occurring during AC polarization on a sulfur-graphite electrode, the cyclic polarization in both directions and anodic polarization curves were recorded. The kinetic parameters: charge transfer coefficients (α), diffusion coefficients ( D), heterogeneous rate constants of electrode process ( k s), and effective activation energies of the process ( E a) were calculated from the results of polarization measurements. An analysis of the results and calculated kinetic parameters of electrode processes showed that discharge ionization of sulfur in alkaline solutions occurs as a sequence of two stages and is a quasireversible process.

  2. Catechol-Cation Synergy in Wet Adhesive Materials

    Science.gov (United States)

    Maier, Gregory Peter

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is impaired by high salt, pH, and hydration. However, mussels have evolved effective strategies for wet adhesion despite these impediments. Inspection of mussel foot proteins (Mfps) provides insights into adhesive adaptations. Catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues are present in high mole percent in the interfacial Mfps. The siderophore cyclic trichrysobactin also contains high mole percent of catechol and lysine and serves as a simplified mimic of Mfps. This work is focused on use of Mfp-mimetic siderophores and synthetic siderophore analogs as model systems for dissecting the chemical and physical interactions that enable wet adhesion. Variation in number and identity of functional groups appended to the synthetic siderophore analogs allows identification of the specific contributions of those functional groups to wet adhesion. Both catechol and amine functional groups are critical to strong wet adhesion. The primary amine of lysine and catechol cooperatively displace interfacial hydration and bind to the underlying substrate. Variation in the amine identity as well as the amine to catechol ratio within siderophore analogs also has a significant impact on wet adhesive performance. Catechol undergoes a pH-dependent autoxidation in which higher pH leads to faster oxidation by dioxygen. This oxidation abolishes all adhesion of Mfps to mica by pH 7.5, yet many applications of synthetic wet adhesives require adhesion at physiological or oceanic pH. A better understanding of catechol redox chemistry is critical to the design of wet adhesives. To this end, the pH-dependent autoxidation of catechol and substituted catechols was investigated and results are consistent with a mechanism in which O2 oxidizes both the mono-deprotonated and di-deprotonated catechol. A linear Hammett correlation for the pH-independent second order rate constants for catechol

  3. Kinetic effects in dynamic wetting

    Science.gov (United States)

    Sprittles, James

    2017-11-01

    The maximum speed at which a liquid can wet a solid is limited by the need to displace gas lubrication films in front of the moving contact line. The characteristic height of these films is often comparable to the mean free path in the gas so that hydrodynamic models do not adequately describe the flow physics. In this talk, I will develop a model which incorporates kinetic effects in the gas, via the Boltzmann equation, and can predict experimentally-observed increases in the maximum speed of wetting when (a) the liquid's viscosity is varied, (b) the ambient gas pressure is reduced or (c) the meniscus is confined. This work was supported by the Leverhulme Trust (Research Project Grant) and the Engineering & Physical Sciences Research Council (Grant EP/N016602/1).

  4. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  5. Formative Assessment Probes: Wet Jeans

    Science.gov (United States)

    Keeley, Page

    2015-01-01

    Picture a wet towel or a puddle of water on a hot, sunny day. An hour later, the towel is dry and the puddle no longer exists. What happened to the water? Where did it go? These are questions that reveal myriad interesting student ideas about evaporation and the water cycle--ideas that provide teachers with a treasure trove of data they can use to…

  6. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    International Nuclear Information System (INIS)

    Clark-Deaborg, David

    2001-01-01

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am--the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting their solubility and sorption behavior in tanks, determining whether chemical separations are needed for waste treatment, and designing separations processes. Baseline washing of tank sludges with NaOH solutions is being proposed to reduce the volume of HLW. Alkaline pretreatment of HLW will be needed to remove aluminum [as NaAl(OH) 4 ] because it significantly reduces the HLW volume; however, aluminate [Al(OH) 4 - ] enhances actinide solubility via an unknown mechanism. Thus, alkaline wash residues may require an additional treatment to remove actinides. The results of this research will determine the nature TRU (Np, Pu, Am) speciation with aluminate anions under alkaline, oxidizing tank-like conditions. Specific issues to be addressed include solubility of these actinides, speciation in aluminate-containing alkaline supernatants, the role of actinide redox states on solubility, and partitioning between supernatant and solid phases, including colloids. Studies will include thermodynamics, kinetics, spectroscopy, electrochemistry, etc. It is already known, for example, that certain high valent forms of NF and Pu are very soluble under alkaline conditions due to the formation of anionic hydroxo complexes, AnO 2 (OH) 4 2- and AnO 2 (OH) 5 3- . The presence of aluminate ions causes the actinide solubilities to increase, although the exact species have only been determined during this program. We are continuing to characterize high-valent TRU elements bound to oxo, water, OH - , under waste-like and sludge washing conditions. These conditions are in the range of 1-3 M excess hydroxide, ∼0.2 M carbonate, ∼0.5 M aluminate, for a total sodium of 2-4 mols/kg. Molecular structure-specific probes

  7. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chenju, E-mail: cliang@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University 250, Kuo-kuang Road, Taichung 402, Taiwan (China); Lin, Ya-Ting [Department of Environmental Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 320, Taiwan (China); Shiu, Jia-Wei [Department of Environmental Engineering, National Chung Hsing University 250, Kuo-kuang Road, Taichung 402, Taiwan (China)

    2016-01-25

    Highlights: • Alkaline ascorbic acid (a.k.a. vitamin C) is capable of reductively degrading NB. • The pH above the pK{sub a2} of ascorbic acid increases reductive electron transfer to NB. • The rate equation for the reactions between NB and AA is determined. • NSB, AZOXY, and AZO are identified as intermediates and aniline as a final product. • Alkaline pH is essential for AA remediation of NB contaminated soils. - Abstract: Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO{sub 2}{sup −}) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pK{sub a2} of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r = ((0.89 ± 0.11) × 10{sup −4} mM{sup 1−(a} {sup +} {sup b)} h{sup −1}) × [NB]{sup a} {sup =} {sup 1.35} {sup ±} {sup 0.10}[AA]{sup b} {sup =} {sup 0.89} {sup ±} {sup 0.01}. The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application.

  8. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  9. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    In this work, wet ball milling method is used in order to improve hydrogen sorption behaviour due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH{sub 2} microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH{sub 2} powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH{sub 2} powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH{sub 2} powder, the grain size of wet ball milled MgH{sub 2} powder is larger than that of dry ball milled MgH{sub 2} powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH{sub 2} powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH{sub 2} powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb{sub 2}O{sub 5} catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH{sub 2} powder, the particle size and specific surface area of the MgH{sub 2} powder with catalysts are similar to the previous ones, while the grain size of the MgH{sub 2} with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled Mg

  10. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of pH and additives on aqueous wetting films stabilized by a triblock copolymer

    NARCIS (Netherlands)

    Eliseeva, O.V.; Besseling, N.A.M.; Koopal, L.K.; Stuart, M.A.C.

    2007-01-01

    Effects of pH and additives (NaCl, Na2SO4, NaSCN and urea) on the adsorption of an ABA triblock copolymer (F127) with polyethylene oxide as the A blocks and polypropylene oxide as the B blocks, at the interfaces of wetting films, on film drainage and on the interaction forces in these films are

  12. A wet-chemical approach to perovskite and fluorite-type nanoceramics: synthesis and processing

    NARCIS (Netherlands)

    Veldhuis, Sjoerd

    2015-01-01

    In thesis the low-temperature, wet-chemical approach to various functional inorganic oxide materials is described. The main focus of this research is to control the material’s synthesis from liquid precursor to metal oxide powder or thin film; while understanding its formation mechanism. In

  13. 1 - Aromatization of n-hexane and natural gasoline over ZSM-5 zeolite, 2- Wet catalytic oxidation of phenol on fixed bed of active carbon; 1 - Aromatisation de n-hexane et d'essence sur zeolithe ZSM-5, 2 - Oxydation catalytique en voie humide du phenol sur charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Suwanprasop, S.

    2005-04-15

    I - The production of aromatic hydrocarbons from n-hexane and natural gasoline over Pd loaded ZSM-5 zeolite in a tubular reactor was achieved under the suitable conditions at 400 deg. C, and 0.4 ml/min reactant feeding rate, employing ZSM-5 (0.5% Pd content) as a catalyst. Under these conditions, n-hexane and natural gasoline conversions were found to be 99.7% and 94.3%, respectively (with respective aromatic selectivity of 92.3% and 92.6%). II - Wet catalytic air oxidation of phenol over a commercial active carbon was studied in a three phase fixed bed reactor under mild temperature and oxygen partial pressure. Exit phenol concentration, COD, and intermediates were analysed. Oxidation of phenol was significantly improved when increasing operating temperature, oxygen partial pressure, and liquid space time, while up or down flow modes had only marginal effect. A complete model involving intrinsic kinetics and all mass transfer limitations gave convenient reactor simulation. (author)

  14. Histochemistry of placental alkaline phosphatase in preeclampsia

    OpenAIRE

    Shevade, Sapna Prashant; Arole, Vasanti; Paranjape, Vaishali Mohan; Bharambe, Vaishaly Kishore

    2016-01-01

    Objectives: Placental alkaline phosphatase (PALP) is synthesized in placenta and increases with gestational age. Alkaline phosphatase supports pregnancy and could play an essential role in nutrient supply and growth of the fetus. Preeclampsia is a systemic disorder which affects 5 to 7 percent of women worldwide and is a major cause for maternal and neonatal morbidity and mortality. As it has a major role in fetal growth, nutrition and defense mechanism study of alkaline phosphatase enzymatic...

  15. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry

    DEFF Research Database (Denmark)

    Hansen, Rikke Ruth; Nielsen, Daniel Aagren; Schramm, Andreas

    2009-01-01

    oxidizing bacteria were undetectable and methane oxidizing bacteria were only sparsely present in the "Wet" treatment. A change to anoxia did not affect the CH4 emission indicating the virtual absence of aerobic methane oxidation in the investigated 2-months old crusts. However, an increase in N2O emission......Liquid manure (slurry) storages are sources of gases such as ammonia (NH3) and methane (CH4). Danish slurry storages are required to be covered to reduce NH3 emissions and often a floating crust of straw is applied. This study investigated whether physical properties of the crust or crust...... microbiology had an effect on the emission of the potent greenhouse gases CH4 and nitrous oxide (N2O) when crust moisture was manipulated ("Dry", "Moderate", and "Wet"). The dry crust had the deepest oxygen penetration (45 mm as compared to 20 mm in the Wet treatment) as measured with microsensors, the highest...

  16. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  17. Study of wet blasting of components in nuclear power stations

    International Nuclear Information System (INIS)

    Hall, J.

    1999-12-01

    This report looks at the method of wet blasting radioactive components in nuclear power stations. The wet blaster uses pearl shaped glass beads with the dimensions of 150-250 μm mixed with water as blasting media. The improved design, providing outer operator's positions with proper radiation protection and more efficient blasting equipment has resulted in a lesser dose taken by the operators. The main reason to decontaminate components in nuclear power plants is to enable service on these components. On components like valves, pump shafts, pipes etc. oxides form and bind radiation. These components are normally situated at some distance from the reactor core and will mainly suffer from radiation from so called activation products. When a component is to be decontaminated it can be decontaminated to a radioactive level where it will be declassified. This report has found levels ranging from 150-1000 Bq/kg allowing declassification of radioactive materials. This difference is found between different countries and different organisations. The report also looks at the levels of waste generated using wet blasting. This is done by tracking the contamination to determine where it collects. It is either collected in the water treatment plant or collected in the blasting media. At Barsebaeck the waste levels, from de-contaminating nearly 800 components in one year, results in a waste volume of about 0,250 m 3 . This waste consists of low and medium level waste and will cost about 3 600 EURO to store. The conclusions of the report are that wet blasting is an indispensable way to treat contaminated components in modern nuclear power plants. The wet blasting equipment can be improved by using a robot enabling the operators to remotely treat components from the outer operator's positions. There they will benefit from better radiation protection thus further reduce their taken dose. The wet blasting equipment could also be used to better control the levels of radioactivity on

  18. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    .... The subject low cost alkaline electrochemical capacitor designs are based upon titanium nitride electrodes which exhibit 125 mF/sq cm surface capacitance density and remarkable electrochemical...

  19. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Ye Weimin; Zheng Zhenji; Chen Bao; Chen Yonggui

    2011-01-01

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  20. Alkaline and alkaline earth metal phosphate halides and phosphors

    Science.gov (United States)

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  1. Computer simulation studies of ternary uranate phases with alkali and alkaline-earth metals: Pt. 1

    International Nuclear Information System (INIS)

    Ball, R.G.J.

    1992-01-01

    Solid-state computer simulation techniques have been used to study the alkali and alkaline-earth metal MUO 3 uranate phases. These compounds display an interesting gradation in their structures which, it is shown, is accompanied by a variation in their intrinsic defect chemistry. For example, in the alkali-metal series, LiUO 3 adopts the lithium niobate structure and lithium Frenkel disorder dominates whereas KUO 3 and RbUO 3 adopt regular perovskite structures with Schottky defects being dominant. For the alkaline-earth metal compounds, both the calculations and experiment show that only SrUO 3 and BaUO 3 are stable with respect to the binary oxides. Both of these phases adopt the GdFeO 3 distorted perovskite structure and both have anti-site defects as the dominant intrinsic disorder. The tendency for anti-site disorder is also seen in the oxidation behaviour of these compounds. The calculations suggest that the oxidation will occur through the formation of a secondary UO 2 fluorite phase by the movement of alkaline-earth ions onto uranium sites, leaving behind M vacancies. The calculated energies for such oxidation processes are particularly favourable. The solution of alkaline-earth oxide, M 11 O, in M 11 UO 3 is shown to occur via a mechanism in which the M 11 ions substitute onto both the M 11 and U sublattices. (author)

  2. WET SOLIDS FLOW ENHANCEMENT; SEMIANNUAL

    International Nuclear Information System (INIS)

    Hugo S. Caram; Natalie Foster

    1997-01-01

    The objective was to visualize the flow of granular materials in flat bottomed silo. This was done by for dry materials introducing mustard seeds and poppy seeds as tracer particles and imaging them using Nuclear Magnetic Resonance. The region sampled was a cylinder 25 mm in diameter and 40 mm in length. Eight slices containing 128*128 to 256*256 pixels were generated for each image. The size of the silo was limited by the size of the high resolution NMR imager available. Cross-sections of 150mm flat bottomed silos, with the tracer layers immobilized by a gel, showed similar qualitative patterns for both dry and wet granular solids

  3. Alkaline azide mutagenicity in cowpea

    International Nuclear Information System (INIS)

    Mahna, S.K.; Bhargava, Anubha; Mohan, Lalit

    1990-01-01

    Sodium azide is known as a potent mutagen in cereals and legumes. It is very effective in acidic medium in barley. Here an attempt is made to measure the effectiveness of sodium azide in alkaline medium (pH 7.4) on cowpea (Vigna unguiculata (L.) Walp., variety FS-68). Seeds pre-soaked in distilled water for 5 hours were treated with different concentrations (10 -6 , 10 -5 , 10 -4 and 10 -3 M) of sodium azide (NaN 3 ) for 4 hours at 28± 2 deg. C. Bottles were intermittently shaken, then the seeds were thoroughly washed in running tap water and subsequently planted in pots. The treatment caused significant biological damage such as reduction in seed germination, length of root and shoot, number of nodules and pods per plant and morphological leaf variations. Morphological, as well as chlorophyll mutants, were detected in M 2

  4. Mechanistic studies of the alkaline degradation of cellulose in cement

    International Nuclear Information System (INIS)

    Greenfield, B.F.; Robertson, G.P.; Spindler, M.W.; Harrison, W.N.; Somers, P.J.

    1993-07-01

    The alkaline degradation of cellulose-based materials under conditions simulating those of a deep underground radioactive waste repository has been investigated. A number of key degradation products, of which 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid) is the most important, have been synthesised, and the solubilities of their plutonium complexes have been determined. Analysis of leachates of anaerobically degraded cellulose has shown concentrations of organic acids which are broadly consistent with the enhanced plutonium solubilities found in these leachates. Reaction mechanisms have been identified that can lead to isosaccharinic acid production by non-oxidative transformations, which may be catalysed by some divalent cations. (Author)

  5. Acidic minespoil reclamation with alkaline biosolids

    International Nuclear Information System (INIS)

    Drill, C.; Lindsay, B.J.; Logan, T.L.

    1998-01-01

    The effectiveness of an alkaline stabilized biosolids product, N-Viro Soil (NVS), was studied at a wild animal preserve in Cumberland, OH. The preserve occupies land that was strip mined for high-sulfur coal. While most of the land has been conventionally reclaimed, several highly acidic hot spots remain. Two of these hot spots were studied through concurrent field, greenhouse, and laboratory projects. In April 1995, NVS was applied at rates ranging from 0--960 mt/ha (wet wt.) to plots at the two sites. The plots were seeded using a standard reclamation mix and soil samples were analyzed for chemical characteristics before and after application and also in 1996 and 1997. Soil pH increased from 3.5 to about 11 in the amended plots and soil EC values increased from 21.0 mmho/cm to a maximum of 6.0 mmho/cm in the amended plots immediately after application. Soil Cu and Zn concentrations also increased in the NVS amended plots, but this did not affect plant germination or growth. By the summer of 1996, soil pH values had decreased to 7.3--8.7 and EC values decreased to 0.34--1.36 mmho/cm to the amended plots. Soil samples were collected in September 1995 for physical analyses. N-Viro Soil improved the moisture retention and water conductivity properties of the spoil. The plots were monitored for growth during the summer of 1995 and plant biomass and soil samples were taken in 1996 and 1997 for trace element and nutrient analysis. NVS did not significantly increase trace element concentrations in the biomass. The addition of NVS to acid mine spoil improves the chemical and physical properties of the spoil material thus aiding vegetative establishment and growth. NVS improves the chemical nature of the spoil by increasing pH and providing micro and macronutrients and improves the physical properties of the spoil with the addition of organic matter

  6. Increased liver alkaline phosphatase and aminotransferase ...

    African Journals Online (AJOL)

    The effect of daily, oral administration of ethanolic extract of Khaya senegalensis stem bark (2mg/kg body weight) for 18days on the alkaline phosphatase, aspartate and alanine aminotransferase activities of rat liver and serum were investigated. Compared with the control, the activities of liver alkaline phosphatase (ALP), ...

  7. Alkaline Phosphatases From Camel Small Intestine | Fahmy ...

    African Journals Online (AJOL)

    Camel intestinal alkaline phosphatase have been purified and characterized. The purification was carried out by chromatography on DEAE-cellulose. Five intestinal alkaline phosphatase isoenzymes (IAP1 to IAP5) were obtained. IAP2 and IAP5 with the highest activity levels were purified to homogeneity by Sephacryl ...

  8. Handbook of Indigenous Foods Involving Alkaline Fermentation

    NARCIS (Netherlands)

    Sarkar, P.K.; Nout, M.J.R.

    2014-01-01

    This book details the basic approaches of alkaline fermentation, provides a brief history, and offers an overview of the subject. The book discusses the diversity of indigenous fermented foods involving an alkaline reaction, as well as the taxonomy, ecology, physiology, and genetics of predominant

  9. Elucidating the mysteries of wetting.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Edmund Blackburn, III (,; ); Bourdon, Christopher Jay; Grillet, Anne Mary; Sackinger, Philip A.; Grest, Gary Stephen; Emerson, John Allen; Ash, Benjamin Jesse; Heine, David R.; Brooks, Carlton, F.; Gorby, Allen D.

    2005-11-01

    Nearly every manufacturing and many technologies central to Sandia's business involve physical processes controlled by interfacial wetting. Interfacial forces, e.g. conjoining/disjoining pressure, electrostatics, and capillary condensation, are ubiquitous and can surpass and even dominate bulk inertial or viscous effects on a continuum level. Moreover, the statics and dynamics of three-phase contact lines exhibit a wide range of complex behavior, such as contact angle hysteresis due to surface roughness, surface reaction, or compositional heterogeneities. These thermodynamically and kinetically driven interactions are essential to the development of new materials and processes. A detailed understanding was developed for the factors controlling wettability in multicomponent systems from computational modeling tools, and experimental diagnostics for systems, and processes dominated by interfacial effects. Wettability probed by dynamic advancing and receding contact angle measurements, ellipsometry, and direct determination of the capillary and disjoining forces. Molecular scale experiments determined the relationships between the fundamental interactions between molecular species and with the substrate. Atomistic simulations studied the equilibrium concentration profiles near the solid and vapor interfaces and tested the basic assumptions used in the continuum approaches. These simulations provide guidance in developing constitutive equations, which more accurately take into account the effects of surface induced phase separation and concentration gradients near the three-phase contact line. The development of these accurate models for dynamic multicomponent wetting allows improvement in science based engineering of manufacturing processes previously developed through costly trial and error by varying material formulation and geometry modification.

  10. The origin of life in alkaline hydrothermal vents

    Science.gov (United States)

    Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.

    2016-12-01

    The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in

  11. Reactivities of some aldoses towards iodine in alkaline

    International Nuclear Information System (INIS)

    Azmat, R.; Nizami, S.S.

    2005-01-01

    The kinetics studies of oxidation of some reducing sugars by aqueous alkaline solution of iodine investigated. Results demonstrated that iodine in the presence of alkali converted into hypoiodous acid which was effective oxidizing species. Reaction between iodine and sugars was slowest reaction. The rate of oxidation of sugars was affected by change in pH of the medium and maximum at pH 11.4 where the concentration of hypoiodous acid was maximum which oxidized the sugars into respective acids. The rate of oxidation followed first order kinetics with respect to substrate and obeyed zero order kinetics with that of iodine. Change in ionic strength of the medium showed no effect on the rate of oxidation indicating that reaction occurred between molecular species and there was no ionic species present in the rate determining step. Reaction was affected by the change in temperature and value of energy of activation corresponding to glucose, galactose, D-mannose and L-arabinose were 10.16 kj/mol, 12.17 kj/mol, 14.00 kj/mol and 20.22 kj/mol respectively. (author)

  12. Evaluation of chemical stability, thermal expansion coefficient, and electrical properties of solid state and wet-chemical synthesized Y and Mn-codoped CeO2 for solid oxide fuel cells

    Science.gov (United States)

    Handal, Hala T.; Thangadurai, Venkataraman

    2013-12-01

    Chemical stability and high electrical conductivity under the operating conditions of solid oxide fuel cell (SOFC) are considered as the momentum for innovating solid electrolytes and electrodes. In this paper, we report synthesis, structure, chemical stability and electrical conductivity of novel co-doped Ce0.9-xY0.1MnxO2-δ (x = 0-15 mol%) (CYMO). X-ray diffraction of Mn and Y-doped CeO2 shows the formation of fluorite-type structure with a space group Fm-3m. A few weak peaks corresponding to a tetragonal Mn3O4 phase has been detected in some samples. Solubility of Mn in ceria is explained by considering the influence of the ionic radius, the crystal structure and its electronic structure. Thermal analysis shows dissimilarity between the reduction behavior of Ce0.9Mn0.1O2-δ and Ce0.9-xY0.1MnxO2-δ. Ce0.8Y0.1Mn0.1O2-δ exhibited the highest conductivity of ∼6 × 10-2 S cm-1 and 0.15 S cm-1 at 700 °C in air and H2, respectively. Surface studies have confirmed the formation of S species upon exposure to 30 ppm H2S in H2 and a mechanism for S poisoning is presented.

  13. A silica/fly ash-based technology for controlling pyrite oxidation. Semi-annual, March 1, 1996 - August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evangelou, V.P. [USDOE Pittsburgh Energy Technology Center, PA (United States)

    1996-12-31

    The overall objective is to develop methodologies by which metasilicate or fly ash may produce an effective coating on pyrite surfaces for inhibiting pyrite oxidation. During the past six months, the investigators produced wet chemistry evidence demonstrating that pyrite-HCO{sub 3} complexes promote pyrite oxidation. This is an important finding for their over all strategy in controlling pyrite oxidation because it suggests that pyrite microencapsulation is important in order to control oxidation in near cirumneutral pH environments produced by addition of alkaline material, e.g., fly ash. In their previous studies, the investigators reported that pyrite microencapsulation could be carried out by reacting pyrite with a pH buffered solution and in the presence of metasilicate. The coating formed on the surface of pyrite appeared to be an amorphous iron-oxide-silicate material which inhibited pyrite oxidation. During this past six months, the investigators evaluated: the molecular mechanisms of silicate adsorption by iron oxide; the effects of silicate on the bulk and surface properties of iron oxides; and the effect of silicate on metal-cation adsorption properties by iron oxides.

  14. Recovery of silver from used X-ray film using alkaline protease from ...

    African Journals Online (AJOL)

    Jane Erike-Etchie

    2016-06-29

    Jun 29, 2016 ... Silver oxidation is followed by electrolysis or chemical treatment of the gelatin layers of X-ray films. All .... Gupta R, Beg K, Lorenz P (2002). Bacterial Alkaline Protease: Molecular approaches and industrial application. Appl. Micro. Biotechnol. 59:15-32. Kumaran E, Mahalakshmipriya A, Rajan S (2013).

  15. A Kinetic Insight into the Activation of n -Octane with Alkaline-Earth ...

    African Journals Online (AJOL)

    Alkaline-earth metal hydroxyapatites are prepared by the co-precipitation method and characterized using XRD, ICP,NH3-TPD, SEM-EDX, TEM and N2 physisorption analysis. The metal present in the hydroxyapatite influences the acidity of the catalyst. Oxidative dehydrogenation reactions carried out in a continuous flow ...

  16. Alkaline Phosphatase: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/alkalinephosphatase.html Alkaline Phosphatase To use the sharing features on this page, please enable JavaScript. What is an Alkaline Phosphatase Test? An alkaline phosphatase (ALP) test measures ...

  17. Atmospheric corrosion of copper under wet/dry cyclic conditions

    Energy Technology Data Exchange (ETDEWEB)

    EL-Mahdy, Gamal A. [Department of Metallurgical System Engineering, Yonsei University, 134-Shinchon-dong, Seodaemun-Ku, Seoul, 120-749 (Korea, Republic of)

    2005-06-01

    The polarization resistance of copper subjected to NaCl and an ammonium sulfate solution under wet/dry cycling conditions was monitored using an EIS impedance technique. The copper samples were exposed to 1 h of immersion using different solutions of pH, temperature and surface orientation and 7 h of drying. The copper plates corroded more substantially on the skyward side than those for a ground ward side. The degree of protection copper oxide provides decrease in an acidic medium (pH 4) more than in a neutral medium (pH 7). The corrosion rate of copper increases rapidly during the initial stages of exposure then decreases slowly and eventually attains the steady state during the last stages of exposure. The corrosion products were analyzed using X-ray diffraction. The corrosion mechanism for copper studied under wet/dry cyclic conditions was found to proceed under the dissolution-precipitation mechanism.

  18. Photochemical organonitrate formation in wet aerosols

    Science.gov (United States)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  19. Multisystemic functions of alkaline phosphatases.

    Science.gov (United States)

    Buchet, René; Millán, José Luis; Magne, David

    2013-01-01

    Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid

  20. Kinetics and mechanism of oxidation of chloramphenicol by 1 ...

    Indian Academy of Sciences (India)

    Unknown

    hydrolysis in strong acidic and alkaline media at elevated temperature.1 Oxidative method of assay of ... Kinetics of oxidation of CAP by CBT in alkaline medium has been studied in our laboratory and the reaction is ... solutions of substrate, HClO4, NaClO4 and water (to maintain a constant volume) were measured and.

  1. Drop splashing is independent of substrate wetting

    Science.gov (United States)

    Latka, Andrzej; Boelens, Arnout M. P.; Nagel, Sidney R.; de Pablo, Juan J.

    2018-02-01

    A liquid drop impacting a dry solid surface with sufficient kinetic energy will splash, breaking apart into numerous secondary droplets. This phenomenon shows many similarities to forced wetting, including the entrainment of air at the contact line. Because of these similarities and the fact that forced wetting has been shown to depend on the wetting properties of the surface, existing theories predict splashing to depend on wetting properties as well. However, using high-speed interference imaging, we observe that at high capillary numbers wetting properties have no effect on splashing for various liquid-surface combinations. Additionally, by fully resolving the Navier-Stokes equations at length and time scales inaccessible to experiments, we find that the shape and motion of the air-liquid interface at the contact line/edge of the droplet are independent of wettability. We use these findings to evaluate existing theories and to compare splashing with forced wetting.

  2. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  3. Wet motor geroter fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Wiernicki, M.V.

    1987-05-05

    This patent describes a wet motor gerotor fuel pump for pumping fuel from a fuel source to an internal combustion which consists of: gerotor pump means comprising an inner pump gear, an outer pump gear, and second tang means located on one of the inner and outer pump gears. The second tang means further extends in a second radial direction radially offset from the first radial direction and forms a driving connection with the first tang means such that the fuel pump pumps fuel from the fuel source into the narrow conduit inlet chamber, through the gerotor pump means past the electric motor means into the outlet housing means substantially along the flow axis to the internal combustion engine.

  4. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  5. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders

    Czech Academy of Sciences Publication Activity Database

    Chanda, D.; Hnát, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2015-01-01

    Roč. 285, 1 July (2015), s. 217-226 ISSN 0378-7753 Institutional support: RVO:61389013 Keywords : alkaline water electrolysis * spinel oxides * polymer binder Subject RIV: CG - Electrochemistry Impact factor: 6.333, year: 2015

  7. Alkaline Peroxide Delignification of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [Biosciences; Katahira, Rui [National; Donohoe, Bryon S. [Biosciences; Black, Brenna A. [National; Pattathil, Sivakumar [Complex; Stringer, Jack M. [National; Beckham, Gregg T. [National

    2017-05-30

    Selective biomass fractionation into carbohydrates and lignin is a key challenge in the conversion of lignocellulosic biomass to fuels and chemicals. In the present study, alkaline hydrogen peroxide (AHP) pretreatment was investigated to fractionate lignin from polysaccharides in corn stover (CS), with a particular emphasis on the fate of the lignin for subsequent valorization. The influence of peroxide loading on delignification during AHP pretreatment was examined over the range of 30-500 mg H2O2/g dry CS at 50 degrees C for 3 h. Mass balances were conducted on the solid and liquid fractions generated after pretreatment for each of the three primary components, lignin, hemicellulose, and cellulose. AHP pretreatment at 250 mg H2O2/g dry CS resulted in the pretreated solids with more than 80% delignification consequently enriching the carbohydrate fraction to >90%. Two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy of the AHP pretreated residue shows that, under high peroxide loadings (>250 mg H2O2/g dry CS), most of the side chain structures were oxidized and the aryl-ether bonds in lignin were partially cleaved, resulting in significant delignification of the pretreated residues. Gel permeation chromatography (GPC) analysis shows that AHP pretreatment effectively depolymerizes CS lignin into low molecular weight (LMW) lignin fragments in the aqueous fraction. Imaging of AHP pretreated residues shows a more granular texture and a clear lamellar pattern in secondary walls, indicative of layers of varying lignin removal or relocalization. Enzymatic hydrolysis of this pretreated residue at 20 mg/g of glucan resulted in 90% and 80% yields of glucose and xylose, respectively, after 120 h. Overall, AHP pretreatment is able to selectively remove more than 80% of the lignin from biomass in a form that has potential for downstream valorization processes and enriches the solid pulp into a highly digestible material.

  8. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  9. Alkaline rocks and the occurrence of uranium

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Toens, P.D.

    1980-10-01

    Many alkaline complexes contain uranium and other minerals in low concentrations and are regarded as constituting valuable potential reserves. Certain complex metallurgical problems, however, remain to be solved. Alkaline rocks occur in a number of forms and environments and it is noted that they are generated during periods of geological quiescence emplaced mainly in stable aseismic areas. Many occur along the extensions of oceanic transform faults beneath the continental crust and the application of this concept to areas not currently known to host alkaline complexes may prove useful in identifying potential target areas for prospecting operations [af

  10. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

    Science.gov (United States)

    McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F.; Herkenhoff, K.; Gellert, Ralf; Stockstill, K.R.; Tornabene, L.L.; Squyres, S. W.; Crisp, J.A.; Christensen, P.R.; McCoy, T.J.; Mittlefehldt, D. W.; Schmidt, M.

    2006-01-01

    Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater. Copyright 2006 by the American Geophysical Union.

  11. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells.

    Science.gov (United States)

    D'Alessandro, Angelo; Reisz, Julie A; Culp-Hill, Rachel; Korsten, Herbert; van Bruggen, Robin; de Korte, Dirk

    2018-04-06

    Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases. © 2018 AABB.

  12. On performance capabilities of alkaline anolyte in wastewater management

    International Nuclear Information System (INIS)

    Shimkevich, Alexander

    2014-01-01

    A concept for electric converting a saline wastewater into basic solution (pH > 7) with a positive RedOx potential (alkaline anolyte) is considered. Such the medium can be obtained in situ at flowing wastewater via a special electrochemical cell with strongly polarized cathode (generating hydroxide anions) and quasi-equilibrium anode which intensively discharges hydroxide ions to hydroxyl radicals into the wastewater. The radicals will oxidize anions of strong acid and convert them into weak-acid micro precipitates in the flowing basic solution. These renewable nano-sorbents will uninterruptedly co-precipitate radioactive contamination from wastewater and be agglomerated as corrosion by-products in the felt-like anode. The consideration of liquid water as a chemical compound with a wide band gap shows that the anolyte (as a hyper-stoichiometric water, H 2 O 1+|x| ) is a simple and effective tool for varying physical and chemical properties of the aqueous solution due to forced changing its RedOx potential as one needs. This potential as Fermi level in the band gap of liquid water is the most convenient parameter for monitoring and managing the electrochemical potential of the aqueous medium. Its hyper-stoichiometric state is realized when Fermi level is shifted to the top of a valence band. This electro-oxidized state as the alkaline anolyte is characterized by an acceptor level, OH/OH - , partially occupied by electrons. Then, the hydroxyl radical (OH • ) as the strongest oxidizer will oxidize intensively the metal anode and renew its surface for great removal of radio-nuclides from the wastewater due to their large specific area of renewable surface of hydroxide absorber on the felt-like anode. (author)

  13. Actinide-aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David C.; Krot, Nikolai N.

    2000-01-01

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting their solubility and sorption behavior in tanks, determining whether chemical separations are needed for waste treatment, and designing separations processes. Baseline washing of tank sludges with NaOH solutions is being proposed to reduce the volume of HLW. Alkaline pretreatment of HLW will be needed to remove aluminum [as NaAl(OH)4] because it significantly reduces the HLW volume; however, the aluminate ion [Al(OH)4 -] enhances actinide solubility via an unknown mechanism. Thus, alkaline wash residues may require an additional treatment to remove actinides. The results of this research will determine the nature TRU (U, Np, Pu, Am) speciation with aluminate anions under alkaline, oxidizing tank-like conditions. Specific issues to be addressed include solubility of these actinides, speciation in aluminate-containing alkaline supernatants, the role of actinide redox states on solubility, and partitioning between supernatant and solid phases, including colloids. Studies will include thermodynamics, kinetics, spectroscopy, electrochemistry, and surface science. We have already determined, for example, that certain high valent forms of Np and Pu are very soluble under alkaline conditions due to the formation of anionic hydroxo complexes, AnO2(OH)4 2- and AnO2(OH)5 3-. The presence of aluminate ions causes the actinide solubilities to increase, although the exact species are not known. We are currently characterizing the high valent TRU elements bound to oxo, water, OH-, and Al(OH)4 -, ligands under waste-like conditions. These waste-like conditions are in the range of 1-3 M excess hydroxide, ∼0.2 M carbonate, ∼0.5 M aluminate, for a total sodium of 2-4 M. Molecular structure-specific probes

  14. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    Kaasa, B.; Oestvold, T.

    1996-01-01

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  15. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    .... With energy density in excess of 300 mJ/cc and the potential to exceed a power density of 100 W/cc, the alkaline electrochemical capacitor represents a significant advancement in technology for high power energy storage.

  16. Alkaline Electrochemical Capacitor and Electrode Fabrication

    National Research Council Canada - National Science Library

    Finello, D

    1999-01-01

    Highly capacitive (high surface area) electrodes that are electrochemically stable in strong alkaline electrolyte will form the basis for a new generation of electrical and electrochemical energy storage and conversion devices...

  17. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Qualitative Carbohydrate Analysis using Alkaline Potassium Ferricyanide. Sangeeta Pandita Saral Baweja. Classroom Volume 21 Issue 3 March 2016 pp 285-288 ...

  18. Non-polluting treatment of alkaline uranium effluents contaning SO42- ions

    International Nuclear Information System (INIS)

    Berger, Bernard.

    1978-01-01

    New non-polluting process for treating uranium effluents from the alkaline digestion of an uranium ore containing sulfur, which makes it possible, on the one hand, to extract uranium and SO 4 2- contained in these effluents allowing the recycling of the sole alkaline carbonates and/or bicarbonates involved, towards the digestion of the ore and on the other hand the separation of the mixture uranium and SO 4 2- ions extracted simultaneously to obtain relatively pure uranium in oxide form [fr

  19. Toxicity of alkalinity to Hyalella azteca

    Science.gov (United States)

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  20. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  1. Condition of research reactor spent nuclear fuels in wet storage

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Maksimkin, O.P.

    2004-01-01

    Full text: The condition of spent nuclear fuel (SNF) in wet storage at ten Soviet-designed research reactors has been assessed in the light of international experience in order to identify any associated safety issues. These reactors use Al-clad UO 2 -Al or U-Al alloy dispersion fuels of ≥20% enrichment that were fabricated in Russia; the reactors have been in operation since 1955-70. Although originally sent for reprocessing, much of the SNF generated over the last 25-30 years has been stored in fuel storage pools (FSPs) of variable water quality. The external condition of wet-stored SNF assemblies from the reactors surveyed varied from significant failure due to galvanic corrosion that was driven by poor water quality, through gradual pitting caused by slightly impure water, to a stable condition of no observable change in the oxidized Al alloy surface of the irradiated fuel. SNF stability in wet storage seems to depend on three factors: Al being the sole metal in the FSP (to avoid galvanic action); good water chemistry to suppress attack of the oxide layer by aggressive ions like Cl - , and gentle handling to limit physical damage to the oxide layer. If one of these factors is not satisfied, SNF degradation will take place; if more than one factor is not satisfied, failure of the Al cladding may occur. In general, however, even SNF failure in wet storage does not appear to raise significant safety concerns. A possible exception is where galvanic corrosion combined with poor water quality has caused massive fuel failure, as at the RA reactor in Belgrade. A potential safety problem was identified at reactors where unalloyed Al liners had been used in the FSPs. Unlike SNF that develops a protective oxide layer in-reactor, these Al liners were unprotected and prone to significant corrosion during an ill-defined early period of poor water quality. The risk of losing water from FSPs due to liner failure should be evaluated for all research reactors. Where the risk

  2. Characteristics of wet work in nurses

    NARCIS (Netherlands)

    Jungbauer, FHW; Steenstra, FB; Groothoff, JW; Coenraads, PJ

    Background objectives: Nursing is known for its high prevalence of hand dermatitis, mainly caused by the intense exposure to wet work in nursing activities. We aimed to study the characteristics of wet work exposure in nursing. Method: Trained observers monitored the duration and frequency of

  3. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  4. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  5. Ovine wet carcass syndrome of unknown aetiology

    African Journals Online (AJOL)

    A condition of unknown aetiology, known as 'the wet sheep carcass syndrome' has led to the loss of about ... aetiology. Introduction. Wet sheep carcasses were seen with increasing frequency at abattoirs from January 1981. ... the holding pens, and transport stress. In the high incidence area (see Figure 1), feeding systems.

  6. Curvature controlled wetting in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Mikheev, Lev V.

    1995-01-01

    . As the radius of the substrate r0→∞, the leading effect of the curvature is adding the Laplace pressure ΠL∝r0-1 to the pressure balance in the film. At temperatures and pressures under which the wetting is complete in planar geometry, Laplace pressure suppresses divergence of the mean thickness of the wetting...

  7. Hybrid Alkaline Cements: Bentonite-Opc Binders

    Directory of Open Access Journals (Sweden)

    Ines Garcia-Lodeiro

    2018-03-01

    Full Text Available Moderately alkaline activators can be used to formulate cementitious binders with a high Supplemetary Cementitious Materials (SCMs and a low portland cement content (hybrid alkaline cements. This study aimed to prepare hybrid alkaline cements containing large percentages of dehydroxylated bentonite (BT and small Portland cement (OPC fractions, with 5% Na2SO4 as a solid alkaline activator. The hydration kinetics of the pastes hydrated in water in the presence and absence of the solid activator were assessed by isothermal conduction calorimetry, whilst the reaction products were characterised with X-Ray Powder Diffraction (XRD and Fourier-transform Infrared Spectroscopy (FTIR. The presence of the alkaline activator hastened OPC and BT/OPC hydration: more heat of hydration was released, favouring greater initial bentonite reactivity. The portlandite forming during cement hydration reacted readily with the Na2SO4, raising medium alkalinity and enhancing bentonite dissolution and with it reaction product precipitation (primarily (N,C-A-S-H-like gels that co-exist with C-S-H- or C-A-S-H-like gels. The presence of sulfate ions favoured the formation of AFm-like phases. Preceding aspects accelerated the hydration reactions, with the formation of more reaction product and matrix densification. As a result, the 28 days Na2SO4 activated systems developed greater mechanical strength than the water-hydrated systems, with the 60% BT/40% OPC blends exhibiting higher compressive strength than the 100% OPC pastes.

  8. Characterization and quantification of biochar alkalinity.

    Science.gov (United States)

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK a organic structural (0.03-0.34 meq g -1 ), other organic (0-0.92 meq g -1 ), carbonate (0.02-1.5 meq g -1 ), and other inorganic (0-0.26 meq g -1 ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Lithium wetting of stainless steel for plasma facing components

    Science.gov (United States)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2014-10-01

    Ensuring continuous wetting of a solid container by the liquid metal is a critical issue in the design of liquid metal plasma facing components foreseen for NSTX-U and FNSF. Ultrathin wetting layers may form on metallic surfaces under ultrahigh vacuum (UHV) conditions if material reservoirs are present from which spreading and wetting can start. The combined scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and ion beam etching capabilities of a Scanning Auger Microprobe (SAM) have been used to study the spreading of lithium films on stainless steel substrates. A small (mm-scale) amount of metallic lithium was applied to a stainless steel surface in an argon glove box and transferred to the SAM. Native impurities on the stainless steel and lithium surfaces were removed by Ar+ ion sputtering. Elemental mapping of Li and Li-O showed that surface diffusion of Li had taken place at room temperature, well below the 181°C Li melting temperature. The influence of temperature and surface oxidation on the rate of Li spreading on stainless steel will be reported. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  10. Mercury removal in utility wet scrubber using a chelating agent

    Science.gov (United States)

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  11. Calcium phosphate bioceramics prepared from wet chemically precipitated powders

    Directory of Open Access Journals (Sweden)

    Kristine Salma

    2010-03-01

    Full Text Available In this work calcium phosphates were synthesized by modified wet chemical precipitation route. Contrary to the conventional chemical precipitation route calcium hydroxide was homogenized with planetary mill. Milling calcium oxide and water in planetary ball mill as a first step of synthesis provides a highly dispersed calcium hydroxide suspension. The aim of this work was to study the influence of main processing parameters of wet chemical precipitation synthesis product and to control the morphology, phase and functional group composition and, consequently, thermal stability and microstructure of calcium phosphate bioceramics after thermal treatment. The results showed that it is possible to obtain calcium phosphates with different and reproducible phase compositions after thermal processing (hydroxyapatite [HAp], β-tricalcium phosphate [β-TCP] and HAp/β-TCP by modified wet-chemical precipitation route. The β-TCP phase content in sintered bioceramics samples is found to be highly dependent on the changes in technological parameters and it can be controlled with ending pH, synthesis temperature and thermal treatment. Pure, crystalline and highly thermally stable (up to 1300°C HAp bioceramics with homogenous grainy microstructure, grain size up to 200–250 nm and high open porosity can be successfully obtained by powder synthesized at elevated synthesis temperature of 70°C and stabilizing ending pH at 9.

  12. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  13. Improved electrodes and gas impurity investigations on alkaline electrolysers

    DEFF Research Database (Denmark)

    Reissner, R.; Schiller, G.; Knoeri, T.

    Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved.......Alkaline water electrolysis for hydrogenproduction is a well-established techniquebut some technological issues regarding thecoupling of alkaline water electrolysis andRenewable Energy Sources (RES) remain tobe improved....

  14. Characterization of wet precipitation by X-ray diffraction (XRD) and scanning electron microscopy (SEM) in the metropolitan area of Porto Alegre, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Montanari Migliavacca, Daniela [Instituto de Biociencias, Programa de Pos-Graduacao em Ecologia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil); Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler, RS. Rua Carlos Chagas 55/802, 90030-020 Porto Alegre, RS (Brazil); Calesso Teixeira, Elba, E-mail: gerpro.pesquisa@fepam.rs.gov.br [Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler, RS. Rua Carlos Chagas 55/802, 90030-020 Porto Alegre, RS (Brazil); Gervasoni, Fernanda; Vieira Conceicao, Rommulo [Instituto de Geociencias, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil); Raya Rodriguez, Maria Teresa [Instituto de Biociencias, Programa de Pos-Graduacao em Ecologia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil)

    2009-11-15

    The purpose of this study is to assess the composition of wet precipitation in three sites of the metropolitan area of Porto Alegre. Besides the variables usually considered, such as pH, conductivity, major ions (Cl{sup -}, NO{sub 3}{sup -}, F{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, K{sup +}, Mg{sup 2+}, NH{sub 4}{sup +} and Ca{sup 2+}) and metallic elements (Cd, Co, Cr, Cu, Fe, Mn and Ni), the suspended matter was examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), with energy dispersive system (EDS), for better identification of possible anthropogenic material in this wet precipitation. Results showed an alkaline pH in the samples analyzed and higher concentrations for Na{sup +}, Cl{sup -} and SO{sub 4}{sup 2-}. The acidification and neutralization potential between anions (SO{sub 4}{sup 2-} + NO{sub 3}{sup -}) and cations (Ca{sup 2+} + Mg{sup 2+} + K{sup +} + NH{sub 4}{sup +}) showed a good correlation (0.922). The metallic elements with highest values were Zn, Fe and Mn. Results of XRD identified the presence of some minerals such as quartz, feldspar, mica, clay, carbonates and sulfates. In samples analyzed with SEM, we detected pyroxene, biotite, amphibole and oxides. Cluster analysis (CA) was applied to the data matrix to identify potential pollution sources of metals (natural or anthropogenic) and the association with minerals found in the analysis of SEM.

  15. Comparative investigation on the effect of alkaline earth oxides on ...

    Indian Academy of Sciences (India)

    Unknown

    bands due to electronic transition from 2Eg → 2T2g energy level in an octahedral coordination of Cu2+ ion. ... due to its d–d spin allowed ligand field transition whereas. Cr6+ (3d0) produces lemon yellow colour due to ... analytical reagent grade sodium carbonate, calcium car- bonate, strontium carbonate and barium ...

  16. Destructive Adsorption of Carbon Tetrachloride on Alkaline Earth Metal Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Mestl, Gerhard; Rosynek, Michael P.; Krawietz, Thomas R.; Haw, James F.; Lunsford, Jack H.

    1998-01-01

    The destructive adsorption of CCl4 on MgO, CaO, SrO, and BaO has been studied as a function of the reaction temperature and the amount of CCl4 injected. The reaction was followed using in situ Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 13 C

  17. Positronium hydride defects in thermochemically reduced alkaline-Earth oxides

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1997-01-01

    Thermochemical reduction of both hydrogen-doped MgO and CaO single crystals results in large concentrations of hydride (H - ) ions. In MgO crystals, positron lifetime and Doppler broadening experiments show that positrons are trapped at H - centers forming positronium hydride molecules [e + - H - ]. A value of 640 ps is obtained for the lifetime of the PsH states located in an anion vacancy In MgO positrons are also trapped at H 2- sites at low temperatures. The H 2- ions were induced in the crystals by blue light illumination. The formation of PsH states in CaO could not be conclusively established. (orig.)

  18. Technical Efficiency of Wet Season Melon Farming

    Directory of Open Access Journals (Sweden)

    Ananti Yekti

    2017-03-01

    Full Text Available Melon is one of high-value horticulture commodity which is cultivated widely in Kulon Progo regency. The nature of agricultural products is heavily dependent on the season, so it causes the prices of agricultural products always fluctuated every time. In wet season the price of agricultural products tends to be more expensive. Melon cultivation in wet season provide an opportunity to earn higher profits than in the dry season. The price of agricultural products tends to be more expensive in wet season, thus melon cultivation in wet season prospectively generate high profits. In order to achieve high profitability, melon farming has to be done efficiently. Objective of this study was to 1 determined the factors that influence melon production in wet season 2 measured technical efficiency of melon farming and 3 identified the factors that influanced technical efficiency. Data collected during April – June 2014. Location determined by multistage cluster sampling. 45 samples of farmers who cultivated melon during wet season obtained based on quota sampling technique. Technical efficiency was measured using Cobb-Douglas Stochastic Frontier. The result reveals that 1 land use, quantity of seed, K fertilizer contributed significantly increasing melon production, while N fertilizer decreased melon production significantly 2 technical efficiency indeces ranged from 0.40 to 0.99, with a mean of  0.77; 3 farmer’s experience gave significant influence to technical efficiency of melon farming in wet season.

  19. Characteristics of wet work in nurses.

    Science.gov (United States)

    Jungbauer, F H W; Steenstra, F B; Groothoff, J W; Coenraads, P J

    2005-04-01

    Nursing is known for its high prevalence of hand dermatitis, mainly caused by the intense exposure to wet work in nursing activities. We aimed to study the characteristics of wet work exposure in nursing. Trained observers monitored the duration and frequency of different wet work activities in 45 randomly chosen nurses from different wards during a morning shift, using a method of continuous observation based on labour-observation techniques. Wet work in intensive care units accounted for 24% of the overall morning shift duration, with a frequency of 49 incidents. This was 16% in dialysis wards, with a frequency of 30 incidents, and 9% on regular wards, with a frequency of 39 incidents. The wet work activities had short mean duration cycles. The mean duration of occlusion by gloves was 3.1 min on regular wards and 6.7 min in intensive care units. The characteristics of wet work in nurses differed substantially, depending on the ward. According to the German regulation TRGS 531, our observations classify nursing as a wet work occupation, due to the frequency of wet work rather than its duration. The mean duration of occlusion in our observations was short, which makes an occlusion-induced irritating effect doubtful. Reduction in wet work exposure in nursing on regular wards could focus on the reduction of the frequency of hand-washing and patient-washing. We suggest increasing the use of gloves for patient washing. Although this will increase exposure to occlusion from gloves, it may reduce the frequency of exposure to water and soap by about a quarter.

  20. How to determine wet-snow instability

    Science.gov (United States)

    Reiweger, Ingrid; Mitterer, Christoph

    2017-04-01

    Processes leading to wet-snow instability are very complex and highly non-linear in time and space. Infiltrating water changes wet-snow strength and other mechanical properties. A high liquid water content presumably favors fracture propagation, which consequently has an influence on the formation of wet slab avalanches. The weakening of snow due to liquid water within the snowpack might be gradual (melt event) or sudden (rain-on-snow event). There are several feedback mechanisms between liquid water and snow stratigraphy, making the weakening process complex. We used modelled stability indices to determine periods with high wet-snow instability. These indices were either based on energy and mass balances indicating critical amounts of water within the snowpack or on simple hydro-mechanical relationships. In addition to the modelled indices, preliminary field studies investigated the fracture initiation and fracture propagation propensity within wet snowpacks. We therefore performed Rutschblock and propagation saw tests in faceted weak layers with different volumetric liquid water contents. Results of simulations and field experiments showed that a critical amount of liquid water combined with a pre-critical snow stratigraphy were relevant for wet-snow instability. The critical amount of water was assumed to drive both failure initiation and fracture propagation. The simulated indices and observed stability tests indicated a high wet-snow instability when the volumetric liquid water content within faceted weak layers exceeded 3. Within our propagation saw test measurements crack propagation propensity even slightly decreased at very low liquid water contents compared to completely dry conditions, presumably due to capillary forces. For liquid water contents higher than 3-4%, however, crack propagation propensity strongly increased, which we assume was due to the weakening of bonds between grains within the increasingly wet weak snow layer. Our results could be used

  1. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  2. Spacecraft Water Regeneration by Catalytic Wet Air Oxidation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop advanced catalysts for a volatile removal assembly used to purify spacecraft water. The innovation of the proposed...

  3. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin.The highest ethanol yield obtained was 67% after fermenting the whole slurry...... produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen...

  4. wet oxidation of maleic acid by a pumice supported copper

    African Journals Online (AJOL)

    Mgina

    Results indicate that up to 80% degradation of maleic acid could be achieved in the ... Keywords: Supported Cu (II) Schiff base, maleic acid degradation, pumice .... as mixtures with KBr. X-ray Fluorescence. (XRF) analysis was also conducted at. Brown University, USA to determine the chemical composition of the pumice.

  5. Catalytic wet peroxide oxidation of formic acid in wastewater with ...

    African Journals Online (AJOL)

    2016-07-03

    Jul 3, 2016 ... total reflectance Fourier transform infrared (ATR FTIR) spectra ... ATR FTIR. Hydrogen peroxide decomposition test with the naturally- occurring iron ore added as catalyst. Hydrogen peroxide reaction mixtures of different concentrations ..... la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a.

  6. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    Science.gov (United States)

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa.

  7. Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren

    2012-01-01

    Wet flue gas desulphurization (FGD) plants with forced oxidation, installed at coal and oil fired power plants for removal of SO2(g), must produce gypsum of high quality. However, quality issues such as an excessive moisture content, due to poor gypsum dewatering properties, may occur from time...

  8. Single crystal Fe elements patterned by one-step selective chemical wet etching

    NARCIS (Netherlands)

    Sun, Li; Wong, P.K.J.; Niu, Daxin; Zou, Xiao; Zhai, Ya; Wu, Jing; Xu, Yongbing; Zhai, Hongru

    2010-01-01

    A technique has been developed to pattern single crystal ultrathin Fe films by selective chemical wet etching of the Au capping layer and then simultaneous oxidization of the ferromagnetic Fe layer underneath. The focused magneto-optical Kerr effect and ferromagnetic resonance measurements

  9. Viscosity of Molten Alkaline-Earth Fluorides

    Science.gov (United States)

    Takeda, Osamu; Hoshino, Yosuke; Anbo, Yusuke; Yanagase, Kei-ichi; Aono, Masahiro; Sato, Yuzuru

    2015-04-01

    The viscosities of molten alkaline-earth fluorides were measured using the oscillating crucible method, which is especially suitable for measuring molten salts with low viscosity. The results showed a good Arrhenius linearity over a wide temperature range. The measured viscosities and activation energies increased in the following order: . Judging by the charge density, the viscosity of alkaline-earth fluorides should increase from molten to . However, the results indicate a different tendency, which may be explained by a Coulomb force that is very strong. The low viscosity of can be attributed to a decreased cohesive force, due to a partial loss of the Coulomb force caused by a higher charge density of the material. The viscosities were also compared to those of molten alkali fluorides and alkaline-earth chlorides. The viscosities of molten alkaline-earth fluorides were higher than those of molten alkali fluorides and alkaline-earth chlorides. The viscosity determined in this study was compared to literature values and showed a reasonable value in the relatively low-viscosity region.

  10. Effect of root canal filling materials containing calcium hydroxide on the alkalinity of root dentin.

    Science.gov (United States)

    Staehle, H J; Spiess, V; Heinecke, A; Müller, H P

    1995-08-01

    The effect of root canal filling pastes containing calcium oxide resp. calcium hydroxide on the alkalinity of extracted human teeth was investigated using a colour indicator (cresol red). An aqueous suspension of calcium hydroxide (Pulpdent), which is normally used for temporary root canal filling, most consistently produced alkalinity. Removal of the smear layer following instrumentation of the root canal led to increased proportion of alkaline-positive spots in dentinal locations distant from the canal. A clearly smaller effect was found with a calcium salicylate cement (Sealapex) and an oil-paste (Gangraena Merz), both of which are available for definite root canal fillings. Following removal of the smear layer, these hard-setting preparations caused moderate alkalinity in dentin adjacent to the canal but no effect was observed in locations more distant from the canal. Neither at locations adjacent to nor distant from the root canal was alkalinity found when another calcium salicylate cement (Apexit) was used. Apparently the release of hydroxyl ions into root dentin from calcium hydroxide containing root canal filling materials is not solely influenced by the absolute amount of calcium hydroxide, but also depends on other ingredients which variably inhibit the release of these ions.

  11. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    Science.gov (United States)

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The viability of MCM-41 as separator in secondary alkaline cells

    Science.gov (United States)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

  13. Electrocatalysis in alkaline media: Mechanistic studies of fuel cell reactions on well-defined model catalysts

    Science.gov (United States)

    Spendelow, Jacob S.

    Scanning tunneling microscopy and electrochemical techniques have been used to study several electrocatalytic reactions occurring on Pt(111) and Pt(111)/Ru surfaces in alkaline media. The reactions chosen, CO oxidation, methanol oxidation, and oxygen reduction, are relevant to direct methanol fuel cells (DMFCs). Each is relatively slow, and therefore requires high loading of precious metal catalysts to achieve sufficient fuel cell power density. The focus of these studies has been on determining mechanisms and limiting factors in each reaction. Special attention has been given to the role of adsorbed Ru and the role of Pt defects in enhancing catalytic activity. All defects were found to be more active than terraces for CO oxidation on Pt(111) in alkaline media at DMFC-relevant potentials. Step-typed defects enhance methanol dehydrogenation, but kink-type defects are inactive for this reaction. All defects are inactive for oxygen reduction. These observations can be explained in terms of the local geometric and electronic structure at defects. Adsorbate-adsorbate repulsions, with resultant effects on activation barriers, control the rates of CO oxidation, as well as methanol oxidation. In the case of CO, coverage-dependent CO-CO repulsions and OH-OH repulsions on defects both enhance kinetics. In the case of methanol, repulsive interactions with CO decrease the rate of methanol dehydrogenation, thus giving rise to the CO poisoning effect. Ru was found to promote both methanol dehydrogenation and CO oxidation on adjacent Pt sites. Ru enhances methanol dehydrogenation through two distinct ligand effects: it increases the intrinsic dehydrogenation activity of adjacent Pt sites, and it causes CO to diffuse away from these active sites, decreasing the CO poisoning effect. A Ru ligand effect also enhances CO oxidation by weakening the Pt-CO bond. Ru supplies adsorbed OH for bifunctional CO oxidation, but since Pt defects can also supply OH in alkaline media, the Ru

  14. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    International Nuclear Information System (INIS)

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO 3 ·2H 2 O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions

  15. Late Cretaceous alkaline complexes, southeastern Brazil: Paleomagnetism and geochronology

    Science.gov (United States)

    Montes-Lauar, C. R.; Pacca, I. G.; Melfi, A. J.; Kawashita, K.

    1995-09-01

    Late Cretaceous alkaline rocks from Poços de Caldas, Itatiaia, Passa Quatro and São Sebastião Island were studied with the main purpose of improving the South American apparent polar wander path (APWP). Rb sbnd Sr age determinations for Passa Quatro and alkaline stocks from São Sebastião Island are around 70 and 81 Ma respectively. The magnetic carriers in the rocks studied were maghemite and highly oxidized titanomagnetites. The paleomagnetic poles obtained in this work are 320.1°E, 83.2°S ( N = 47, A95 = 2.7°, KSC = 2609.8) for Poços de Caldas, 360.0°E, 79.5°S ( N = 18, A95 = 5.7°, KSC = 607.4) for Passa Quatro and Itatiaia, and 331.9°E, 79.4°S ( N = 18, A95 = 4.9°, KSC = 862.4) for São Sebastião Island (the ISLAND set).

  16. On the crystal chemistry of alkaline earth- and rare earth-oxocobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Buschbaum, Hanskarl [Institut fuer Anorganische Chemie, Christian-Alberts-Universitaet Kiel (Germany)

    2013-12-15

    A review on the crystal chemistry of oxocobaltates of alkaline earth and rare earth metals is presented according to the formula of the compounds, based on increasing metal and oxygen content. The well-known structures of perowskites and K{sub 2}NiF{sub 4}-type compounds and their higher homologues have been ignored and cross-referred to older publications. Cobalt shows mainly the oxidation states Co{sup 2+} and Co{sup 3+}. In many cases it exhibits integer valences like Co{sup 2.28+}, Co{sup 2.5+}, Co{sup 2.54+}, Co{sup 2.8+}, Co{sup 3.5}, and Co{sup 3.6+}, referred in the ICSD database. The dominant coordination polyhedra are CoO{sub 4}-tetrahedra and CoO{sub 6}-oktahedra. In two cases a trigonal prismatic CoO{sub 6}-coordination is observed. Composition, crystal structure, and oxidation state of cobalt often depend on the preparation conditions. In contrast to the alkaline oxides, the alkaline earth and rare earth oxides used for preparations are less reactive. Therefore the necessary reaction temperatures are much higher. In these cases single crystals for X-ray investigation were prepared by plasma-burner and CO{sub 2}-LASER techniques. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Structure of Wet Specimens in Electron Microscopy

    Science.gov (United States)

    Parsons, D. F.

    1974-01-01

    Discussed are past work and recent advances in the use of electron microscopes for viewing structures immersed in gas and liquid. Improved environmental chambers make it possible to examine wet specimens easily. (Author/RH)

  18. 7 CFR 51.897 - Wet.

    Science.gov (United States)

    2010-01-01

    ... the grapes are wet from moisture from crushed, leaking, or decayed berries or from rain. Grapes which are moist from dew or other moisture condensation such as that resulting from removing grapes from a...

  19. ROE Wet Nitrate Deposition 2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet nitrate deposition in kilograms per hectare from 2011 to 2013. Summary data in this indicator were provided by EPA’s...

  20. ROE Wet Nitrate Deposition 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet nitrate deposition in kilograms per hectare from 1989 to 1991. Summary data in this indicator were provided by EPA’s...