WorldWideScience

Sample records for alkaline salt solution

  1. Solubility of pllutonium in alkaline salt solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Edwards, T.B.

    1993-01-01

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model

  2. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  3. Technetium recovery from high alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  4. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Ye Weimin; Zheng Zhenji; Chen Bao; Chen Yonggui

    2011-01-01

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  5. Regularities of radium coprecipitation with barium sulfate from salt solutions

    International Nuclear Information System (INIS)

    Kudryavskij, Yu.P.; Rakhimova, O.V.

    2007-01-01

    Coprecipitation of radium with barium sulfate from highly concentrated NaCl solutions is studied, including the effects of the initial solution composition, alkaline reagent (CaO, NaOH), supporting electrolyte (NaCl) concentration, and pH. The process is promoted by high NaCl concentration in the initial solution, which is due to structural transformation and change in the sorption activity of the BaSO 4 precipitate in salt solutions. The results obtained were applied to recovery of radium from process solutions during the development and introduction of improved procedure for disinfection and decontamination of waste yielded by chlorination of loparite concentrates [ru

  6. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  7. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... metalloid oxyanions. 721.4668 Section 721.4668 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  8. The aluminum chemistry and corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Klasky, Marc; Letellier, Bruce C.

    2009-01-01

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted

  9. Electromigration in molten salts and application to isotopic separation of alkaline and alkaline-earth elements

    International Nuclear Information System (INIS)

    Menes, F.

    1969-01-01

    The separation of the isotopes of the alkaline-earth elements has been studied using counter-current electromigration in molten bromides. The conditions under which the cathode operates as a bromine electrode for the highest possible currents have been examined. For the separation of calcium, it has been necessary to use a stable CaBr 2 - (CaBr 2 + KBr) 'chain'. In the case of barium and strontium, it was possible to employ the pure bromides. Enrichment factors of the order of 10 for 48 Ca and of the order of 1.5 for the rare isotopes of barium and strontium have been obtained. In the case of magnesium the method is slightly more difficult to apply because of material loss due to the relatively high vapour pressure of the salt requiring the use of electrolyte chains, MgBr 2 - CeBr 3 . A study has been made that has led to a larger-scale application of the method. These are essentially the inhibition of reversible operation of the cathode by traces of water, limiting the intensity which can be tolerated; evacuation of the heat produced by the Joule effect, in the absence of which the separation efficiency is reduced by thermal gradients; corrosion of the materials by molten salts at high temperature. Several cells capable of treating a few kilograms of substance have been put into operation; none of these has lasted long enough to produce a satisfactory enrichment. The method is thus limited actually to yields of the order of a few grams. (author) [fr

  10. Removal of radioruthenium from alkaline intermediate level radioactive waste solution : a laboratory investigation

    International Nuclear Information System (INIS)

    Samanta, S.K.; Theyyunni, T.K.

    1994-01-01

    Various methods were investigated in the laboratory for the removal of radioruthenium from alkaline intermediate level radioactive waste solutions of reprocessing plant origin. The methods included batch equilibration with different ion exchangers and sorbents, column testing and chemical precipitation. A column method using zinc-activated carbon mixture and a chemical precipitation method using ferrous salt along with sodium sulphite were found to be promising for plant scale application. (author). 10 refs., 3 figs., 7 tabs

  11. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Santaquiteria, C., E-mail: ruiz.cs@ietcc.csic.es [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain); Skibsted, J. [Instrument Centre for Solid-State NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Fernandez-Jimenez, A.; Palomo, A. [Eduardo Torroja Institute (CSIC), c/Serrano Galvache, n Degree-Sign 4, 28033 Madrid (Spain)

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  12. A Kirkwood-Buff derived force field for alkaline earth halide salts

    Science.gov (United States)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  13. Scorpion toxins prefer salt solutions

    Czech Academy of Sciences Publication Activity Database

    Nikouee, A.; Khabiri, Morteza; Cwiklik, Lukasz

    2015-01-01

    Roč. 21, č. 11 (2015), 287/1-287/14 ISSN 1610-2940 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 ; RVO:61388955 Keywords : ionic solutions * molecular dynamics * nonaqueous media * secondary structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.438, year: 2015

  14. Assimilation and Translocation of Dry Matter and Phosphorus in Rice Genotypes Affected by Salt-Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2016-06-01

    Full Text Available Salt-alkaline stress generally leads to soil compaction and fertility decline. It also restricts rice growth and phosphorus acquisition. In this pot experiment, two relatively salt-alkaline tolerant (Dongdao-4 and Changbai-9 and sensitive (Changbai-25 and Tongyu-315 rice genotypes were planted in sandy (control and salt-alkaline soil to evaluate the characteristics of dry matter and phosphorus assimilation and translocation in rice. The results showed that dry matter and phosphorus assimilation in rice greatly decreased under salt-alkaline stress as the plants grew. The translocation and contribution of dry matter and phosphorus to the grains also increased markedly; different performances were observed between genotypes under salt-alkaline stress. D4 and C9 showed higher dry matter translocation, translocation efficiency and contribution of dry matter assimilation to panicles than those of C25 and T315. These changes in D4 and C9 indexes occurred at low levels of salt-alkaline treatment. Higher phosphorus acquisition efficiency of D4 and C9 were also found under salt-alkaline conditions. Additionally, the phosphorus translocation significantly decreased in C25 and T315 in the stress treatment. In conclusion, the results indicated that salt-alkaline-tolerant rice genotypes may have stronger abilities to assimilate and transfer biomass and phosphorus than sensitive genotypes, especially in salt-alkaline conditions.

  15. Potentiodynamic characteristics of cadmium and silver in alkaline solutions

    International Nuclear Information System (INIS)

    Saidman, S.B.; Vilche, J.R.; Arvia, A.J.; Lopes Teijelo, M.

    1984-01-01

    The potentiodynamic and ellipsometric characteristics of cadmium and silver in alkaline solutions are studied. The phenomenology of both electrodes shows some common features which are interpreted in termo of a complex hydrated oxide anodic film structure resulting from simultaneous electrochemical and chemical reactions. The kinetics of film growth fits the predictions of nucleation and growth models. (C.L.B.) [pt

  16. Americium separations from high salt solutions

    International Nuclear Information System (INIS)

    Barr, Mary E.; Jarvinen, Gordon D.; Schulte, Louis D.; Stark, Peter C.; Chamberlin, Rebecca M.; Abney, Kent D.; Ricketts, Thomas E.; Valdez, Yvette E.; Bartsch, Richard A.

    2000-01-01

    Americium (III) exhibits an unexpectedly high affinity for anion-exchange material from the high-salt evaporator bottoms solutions--an effect which has not been duplicated using simple salt solutions. Similar behavior is observed for its lanthanide homologue, Nd(III), in complex evaporator bottoms surrogate solutions. There appears to be no single controlling factor--acid concentration, total nitrate concentration or solution ionic strength--which accounts for the approximately 2-fold increase in retention of the trivalent ions from complex solutions relative to simple solutions. Calculation of species activities (i.e., water, proton and nitrate) in such concentrated mixed salt solutions is difficult and of questionable accuracy, but it is likely that the answer to forcing formation of anionic nitrate complexes of americium lies in the relative activities of water and nitrate. From a practical viewpoint, the modest americium removal needs (ca. 50--75%) from nitric acid evaporator bottoms allow sufficient latitude for the use of non-optimized conditions such as running existing columns filled with older, well-used Reillex HPQ. Newer materials, such as HPQ-100 and the experimental bifunctional resins, which exhibit higher distribution coefficients, would allow for either increased Am removal or the use of smaller columns. It is also of interest that one of the experimental neutral-donor solid-support extractants, DHDECMP, exhibits a similarly high level of americium (total alpha) removal from EV bottoms and is much less sensitive to total acid content than commercially-available material

  17. An oxidant, detergent and salt stable alkaline protease from Bacillus ...

    African Journals Online (AJOL)

    A novel soil bacterium, Bacillus cereus SIU1 was earlier isolated from non-saline, slightly alkaline soil of Eastern Uttar Pradesh, India. The isolate B. cereus SIU1 was grown in modified glucose yeast extract (modified GYE) medium at pH 9.0 and 45°C. It produced maximum protease at 20 h incubation. The enzyme was ...

  18. Salt-specific effects in lysozyme solutions

    Directory of Open Access Journals (Sweden)

    T. Janc

    2016-03-01

    Full Text Available The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer and pH=4.6 (acetate buffer. We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally.

  19. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  20. Characterization of palm fibers modified with alkaline solution

    International Nuclear Information System (INIS)

    Sipiao, Bryan L.S.; Goulart, Shane A.G.; Mulinari, Daniella R.; Souza Junior, Fernando G. de

    2011-01-01

    This work had the objective of to study one inexpensive and effective technique that enables the application of natural fibers from the Australian Royal Palm as reinforcement in polymer composites. The fibers treated with alkaline solution were characterized by infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) and had their data compared with the fiber in nature. Data showed that the treatment made on fibers surface was effective. (author)

  1. Potentiometric titration curves of aluminium salt solutions and its ...

    African Journals Online (AJOL)

    Potentiometric titration curves of aluminium salt solutions and its species conversion ... of aluminium salt solutions under the moderate slow rate of base injection. ... silicate radical, and organic acid radical on the titration curves and its critical ...

  2. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  3. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  4. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    Science.gov (United States)

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  5. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  6. Investigation of aluminum gate CMP in a novel alkaline solution

    International Nuclear Information System (INIS)

    Feng Cuiyue; Liu Yuling; Sun Ming; Zhang Wenqian; Zhang Jin; Wang Shuai

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO 2 abrasive) contains 1 wt.% H 2 O 2 ,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H 2 O 2 , 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution. (paper)

  7. Salt tea consumption and esophageal cancer: a possible role of alkaline beverages in esophageal carcinogenesis.

    Science.gov (United States)

    Dar, Nazir Ahmad; Bhat, Gulzar Ahmad; Shah, Idrees Ayoub; Iqbal, Beenish; Rafiq, Rumaisa; Nabi, Sumaiya; Lone, Mohd Maqbool; Islami, Farhad; Boffetta, Paolo

    2015-03-15

    Salt tea is the most commonly used beverage in Kashmir, India, where esophageal squamous cell carcinoma (ESCC) is the most common cancer. Salt tea is brewed in a unique way in Kashmir, usually with addition of sodium bicarbonate, which makes salt tea alkaline. As little information about the association between salt tea drinking and ESCC was available, we conducted a large-scale case-control study to investigate this association in Kashmir. We recruited 703 histologically confirmed cases of ESCC and 1664 controls individually matched to cases for age, sex, and district of residence. Conditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs). Participants who consumed >1,250 ml day(-1) showed an increased risk of ESCC (OR = 2.60, 95% CIs = 1.68-4.02). Samovar (a special vessel for the beverage preparation) users (OR = 1.77, 95% CIs 1.25-2.50) and those who ate cereal paste with salt tea (OR = 2.14, 95% CIs = 1.55-2.94) or added bicarbonate sodium to salt tea (OR = 2.12, 95% CIs = 1.33-3.39) were at higher risk of ESCC than others. When analysis was limited to alkaline tea drinkers only, those who both consumed cereal paste with salt tea and used samovar vessel were at the highest risk (OR = 4.58, 95% CIs = 2.04-10.28). This study shows significant associations of salt tea drinking and some related habits with ESCC risk. © 2014 UICC.

  8. Determining the Contribution of Non-Carbonate Alkalinity from Intertidal Salt Marshes to Coastal Buffering Capacity

    Science.gov (United States)

    Anderson, L. B.; Gonneea, M. E.; Wang, A. Z.; Chu, S. N.

    2016-02-01

    Coastal ocean acidification varies with high magnitude and frequency due to both natural and anthropogenic factors, and levels of acidity in coastal waters have important consequences for environmental concerns such as local settlement of bivalve populations. Therefore, it is useful to fully evaluate measurements that increase understanding of coastal ocean acidification dynamics. This study focuses on the quantification and characterization of alkalinity, the ability of a specific water parcel to buffer against inputs of acidity. There has been limited research on the magnitude and composition of non-carbonate alkalinity (NCA) generated in coastal environments. Specifically, this study evaluates the contribution of NCA to total alkalinity (TA) in an intertidal salt marsh, assesses NCA dynamics within the marsh, and begins to determine composition of NCA. We demonstrated that it was possible to develop a CO2-free full titration system modeled after Cai et al. (1998) that produced reasonable values for TA and NCA. From initial use of this system, it was evident that NCA was a significant contributor to TA within the Sage Lot Pond salt marsh, and that NCA was dominated by organic/unknown alkalinity. Preliminary observations indicated that NCA variability in the marsh was directly proportional to water flux entering the tidal creek from Sage Lot Pond. The source of higher NCA concentrations in Sage Lot Pond was unknown, but may have been due to organic/unknown alkalinity generated in a different part of the marsh and exported to our specific tidal creek site. Preliminary assessment of NCA composition indicates an acid/base species with a pK value of 6.46. From evaluation of NCA magnitude and relation to water flux, it is reasonable to conclude that NCA generated within salt marshes may be a significant source of buffering capacity to the coastal ocean.

  9. Corrosion of silicon nitride in high temperature alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Liyan, E-mail: liyan.qiu@cnl.ca; Guzonas, Dave A.; Qian, Jing

    2016-08-01

    The corrosion of silicon nitride (Si{sub 3}N{sub 4}) in alkaline solutions was studied at temperatures from 60 to 300 °C. Si{sub 3}N{sub 4} experienced significant corrosion above 100 °C. The release rates of silicon and nitrogen follow zero order reaction kinetics and increase with increasing temperature. The molar ratio of dissolved silicon and nitrogen species in the high temperature solutions is the same as that in the solid phase (congruent dissolution). The activation energy for silicon and nitrogen release rates is 75 kJ/mol which agrees well with that of silica dissolution. At 300 °C, the release of aluminum is observed and follows first order reaction kinetics while other minor constituents including Ti and Y are highly enriched on the corrosion films due to the low solubility of their oxides.

  10. Adaptive resolution simulation of salt solutions

    International Nuclear Information System (INIS)

    Bevc, Staš; Praprotnik, Matej; Junghans, Christoph; Kremer, Kurt

    2013-01-01

    We present an adaptive resolution simulation of aqueous salt (NaCl) solutions at ambient conditions using the adaptive resolution scheme. Our multiscale approach concurrently couples the atomistic and coarse-grained models of the aqueous NaCl, where water molecules and ions change their resolution while moving from one resolution domain to the other. We employ standard extended simple point charge (SPC/E) and simple point charge (SPC) water models in combination with AMBER and GROMOS force fields for ion interactions in the atomistic domain. Electrostatics in our model are described by the generalized reaction field method. The effective interactions for water–water and water–ion interactions in the coarse-grained model are derived using structure-based coarse-graining approach while the Coulomb interactions between ions are appropriately screened. To ensure an even distribution of water molecules and ions across the simulation box we employ thermodynamic forces. We demonstrate that the equilibrium structural, e.g. radial distribution functions and density distributions of all the species, and dynamical properties are correctly reproduced by our adaptive resolution method. Our multiscale approach, which is general and can be used for any classical non-polarizable force-field and/or types of ions, will significantly speed up biomolecular simulation involving aqueous salt. (paper)

  11. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  12. Electro-oxidation of methanol on copper in alkaline solution

    International Nuclear Information System (INIS)

    Heli, H.; Jafarian, M.; Mahjani, M.G.; Gobal, F.

    2004-01-01

    The electro-oxidation of methanol on copper in alkaline solutions has been studied by the methods of cyclic voltammetry, quasi-steady state polarization and chronoamperometry. It has been found that in the course of an anodic potential sweep the electro-oxidation of methanol follows the formation of Cu III and is catalysed by this species through a mediated electron transfer mechanism. The reaction also continues in the early stages of the reversed cycle until it is stopped by the prohibitively negative potentials. The process is diffusion controlled and the current-time responses follow Cottrellian behavior. The rate constants, turnover frequency, anodic transfer coefficient and the apparent activation energy of the electro-oxidation reaction are reported

  13. Metal Oxide Decomposition In Hydrothermal Alkaline Sodium Phosphate Solutions

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Ziemniak

    2003-09-24

    Alkaline hydrothermal solutions of sodium orthophosphate (2.15 < Na/P < 2.75) are shown to decompose transition metal oxides into two families of sodium-metal ion-(hydroxy)phosphate compounds. Equilibria for these reactions are quantified by determining phosphate concentration-temperature thresholds for decomposition of five oxides in the series: Ti(IV), Cr(III), Fe(III, II), Ni(II) and Zn(II). By application of a computational chemistry method General Utility Lattice Program (GULP), it is demonstrated that the unique non-whole-number Na/P molar ratio of sodium ferric hydroxyphosphate is a consequence of its open-cage structure in which the H{sup +} and excess Na{sup +} ions are located.

  14. Comparative effects of neutral salt and alkaline salt stress on seed ...

    African Journals Online (AJOL)

    ajl user 4

    2012-04-27

    Apr 27, 2012 ... 0991-8583259. Abbreviations: AsA, Ascorbic acid; Car, carotenoids; CAT, ... the most critical stages in the life cycle of plants when ... 2008a). The mechanisms for adaptation of the halophyte to salt ..... Plant Soil, 39: 205-207.

  15. Extraction of lithium from neutral salt solutions with fluorinated β-diketones

    International Nuclear Information System (INIS)

    Seeley, F.G.; Baldwin, W.H.

    1976-01-01

    Lithium was selectively extracted from near-neutral aqueous solutions of alkali metal salts. The mechanism by which this was achieved involves the formation of the trioctylphosphine oxide adduct of a lithium chelate of a fluorinated β-diketone, which is then readily extractable into an organic diluent. High separation factors were obtained from sodium, potassium, rubidium, and cesium. The selectivity of the fluorinated β-diketones for lithium over the alkaline earths was found to be poor. A suggested general flowsheet for the recovery of lithium from a salt brine concentrate is included. (author)

  16. Extraction of lithium from neutral salt solutions with fluorinated. beta. -diketones

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, F.G.; Baldwin, W.H.

    1976-01-01

    Lithium was selectively extracted from near-neutral aqueous solutions of alkali metal salts. The mechanism by which this was achieved involves the formation of the trioctylphosphine oxide adduct of a lithium chelate of a fluorinated ..beta..-diketone, which is then readily extractable into an organic diluent. High separation factors were obtained from sodium, potassium, rubidium, and cesium. The selectivity of the fluorinated ..beta..-diketones for lithium over the alkaline earths was found to be poor. A suggested general flowsheet for the recovery of lithium from a salt brine concentrate is included.

  17. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.

    Science.gov (United States)

    Wang, Yongliang; Lv, Cuicui; Xiao, Li; Fu, Guoyan; Liu, Ya; Ye, Shufeng; Chen, Yunfa

    2018-02-02

    The alkaline leaching solution from arsenic-containing gold concentrate contains a large amount of arsenate ions, which should be removed because it is harmful to the production process and to the environment. In this study, conventional Fe (III) precipitation was used to remove arsenic from the leaching solution. The precipitation reaction was carried out at the normal temperature, and the effects of pH value and Fe/As ratio on the arsenic removal were investigated. The results show that the removal rate of arsenic is distinctive at different pH values, and the effect is best within the pH range of 5.25-5.96. The removal rate can be further increased by increasing the ratio of Fe/As. When the pH = 5.25-5.96 and Fe/As > 1.8, the arsenic in the solution can be reduced to below 5 mg/L. However, the crystallinity of ferric arsenate is poor, and the particle size is small, most of which is about 1 μm. The leaching toxicity test shows the leaching toxicity of precipitates gradually decreased by the increase of Fe/As. The precipitates can be stored safely as the ratio of Fe/As exceeded 2.5.

  18. Removal of alkaline-earth elements by a carbonate precipitation in a chloride molten salt

    International Nuclear Information System (INIS)

    Yung-Zun Cho; In-Tae Kim; Hee-Chui Yang; Hee-Chui Eun; Hwan-Seo Park; Eung-Ho Kim

    2007-01-01

    Separation of some alkaline-earth chlorides (Sr, Ba) was investigated by using carbonate injection method in LiCl-KCl eutectic and LiCl molten salts. The effects of the injected molar ratio of carbonate([K 2 (or Li 2 )CO 3 /Sr(or Ba)Cl 2 ]) and the temperature(450-750 deg.) on the conversion ratio of the Sr or Ba carbonate were determined. In addition, the form of the Sr and Ba carbonate resulting from the carbonation reaction with carbonates was identified via XRD and SEM-EDS analysis. In these experiments, the carbonate injection method can remove Sr and Ba chlorides effectively over 99% in both LiCl-KCl eutectic and LiCl molten salt conditions. When Sr and Ba were co-presented in the eutectic molten salt, they were carbonated in a form of Ba 0.5 Sr 0.3 CO 3 . And when Sr was present in LiCl molten salt, it was carbonated in the form of SrCO 3 . Carbonation ratio increased with a decreasing temperature and it was more favorable in the case of a K 2 CO 3 injection than that of Li 2 CO 3 . Based on this experiment, it is postulated that carbonate precipitation method has the potential for removing alkali-earth chlorides from LiCl-KCl eutectic and LiCl molten salts. (authors)

  19. Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions

    Science.gov (United States)

    Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.

    2018-05-01

    The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.

  20. Ion exchange removal of technetium from salt solutions

    International Nuclear Information System (INIS)

    Walker, D.D.

    1983-01-01

    Ion exchange methods for removing technetium from waste salt solutions have been investigated by the Savannah River Laboratory (SRL). These experiments have shown: Commercially available anion exchange resins show high selectivity and capacity for technetium. In column runs, 150 column volumes of salt solution were passed through an ion exchange column before 50% 99 Tc breakthrough was reached. The technetium can be eluted from the resin with nitric acid. Reducing resins (containing borohydride) work well in simple hydroxide solutions, but not in simulated salt solutions. A mercarbide resin showed a very high selectivity for Tc, but did not work well in column operation

  1. Process for recovering tungsten from alkaline leaching solution of tungsten ores

    International Nuclear Information System (INIS)

    Onozaki, S.; Nemoto, S.; Hazeyama, T.

    1976-01-01

    This invention relates to a process for recovering tungsten from an alkaline leaching solution of tungsten ores. This invention comprises adjusting the pH of an alkaline leaching solution which is obtained by lixiviating ore containing tungsten with an alkaline solution to 7--8 with acid to oxidize molybdic acid ions in the solution, adding a sulfide donor, then precipitating molybdenum sulfide compounds by adjusting the pH value of the solution to 2--3. Tungstic acid ions are recovered as calcium tungstate by the addition of a calcium ion donor after the molybdenum sulfide compounds are separated

  2. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  3. Permian salt dissolution, alkaline lake basins, and nuclear-waste storage, Southern High Plains, Texas and New Mexico

    International Nuclear Information System (INIS)

    Reeves, C.C. Jr.; Temple, J.M.

    1986-01-01

    Areas of Permian salt dissolution associated with 15 large alkaline lake basins on and adjacent to the Southern High Plains of west Texas and eastern New Mexico suggest formation of the basins by collapse of strata over the dissolution cavities. However, data from 6 other alkaline basins reveal no evidence of underlying salt dissolution. Thus, whether the basins were initiated by subsidence over the salt dissolution areas or whether the salt dissolution was caused by infiltration of overlying lake water is conjectural. However, the fact that the lacustrine fill in Mound Lake greatly exceeds the amount of salt dissolution and subsidence of overlying beds indicates that at least Mound Lake basin was antecedent to the salt dissolution. The association of topography, structure, and dissolution in areas well removed from zones of shallow burial emphasizes the susceptibility of Permian salt-bed dissolution throughout the west Texas-eastern New Mexico area. Such evidence, combined with previous studies documenting salt-bed dissolution in areas surrounding a proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, leads to serious questions about the rationale of using salt beds for nuclear-waste storage

  4. The degree of doubly charged cation binding in solutions of (co)polymers of 2-acrylamido-2-methylpropanesulfonic acid salts

    International Nuclear Information System (INIS)

    Kurenkov, V.F.; Kolesnikova, I.Yu.; Antonovich, O.A.

    2002-01-01

    The degree of binding the ions of the alkaline-earth metals (M = Mg, Ca, Sr, Ba) by the polysulfate anions in the aqueous solutions of the polymers of the 2-acrylamido-2-methylpropanesulfonic acid (N-AMS) salts and their binary copolymers with the acrylamide (AA) and N-vinylpyrrolidone (VP) is quantitatively evaluated through the Terayama and Wall viscosimetric method. It is established, that the degree of binding decreases in the Sr>Ca>Mg sequence for the N-AMS polymer salts and in the reverse sequence (Mg>Ca>Sr(Ba)) for the binary copolymers of the N-AMS salts with AA and VP [ru

  5. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Unknown

    various aqueous salt solutions have been carried out using total immersion test ... circuit potential, Icorr, Tafel slopes, corrosion rate, have been calculated by standard methods. ..... Rao B V S 1980 in Maintenance for reliability (Bombay: Media.

  6. A radiochemical study of gold electrodeposition kinetics in alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Poshkus, D.; Agafonovas, G.; Zhebrauskas, A.

    1995-01-01

    Kinetics of gold electrodeposition from alkaline cyanide solutions was investigated by the use of labelled gold 195 atoms. The absorption of cyanide containing species from alkaline cyanide and dicyanoaurate solutions on a gold electrode by the use of labelled carbon atoms was investigated. Polarization curves of anodic dissolution and cathodic deposition of gold in alkaline cyanide solutions were obtained. The values of standard potential, exchange current density, transfer coefficient and standard polarization rate were determined from polarization curves. The errors in current density caused by the nuclear disintegration statistics were evaluated. 28 refs., 1 tab., 4 figs

  7. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  8. A study on the structure of thorium salt solutions

    International Nuclear Information System (INIS)

    Magini, M.; Cabrini, A.; Di Bartolomeo, A.

    1975-01-01

    The structure of highly hydrolyzed thorium salt solutions has been investigated by large and small angle X-ray scattering techniques. The diffraction data obtained with large angle measurements show the presence in solution of microcrystalline particles with the thorium oxide structure. Particles larger than those were discovered by small angle measurements. A possible shape of these colloidal particles has been discussed

  9. Solution, thermal and optical properties of bis(pyridinium salt)s as ionic liquids

    International Nuclear Information System (INIS)

    Jo, Tae Soo; Koh, Jung Jae; Han, Haesook; Bhowmik, Pradip K.

    2013-01-01

    Bis(pyridinium salt)s containing different alkyl chain lengths and various organic counterions were prepared by the ring-transmutation reaction of bis(pyrylium tosylate) with aliphatic amines in dimethyl sulfoxide at 130–135 °C for 18 h and their tosylate counterions were exchanged to other anions such as triflimide, methyl orange, and dioctyl sulfosuccinate by the metathesis reaction in a common organic solvent. Their chemical structures were established by using 1 H, 19 F, and 13 C NMR spectra. The thermal properties of bis(pyridinium salt)s were studied by DSC and TGA measurements. Some of the dicationic salts provided low melting points below 100 °C and some of them displayed amorphous properties. Polarized optical microscopy studies revealed the crystal structures prior to melting temperatures in some cases. Their optical properties were examined by using UV–Vis and photoluminescent spectrometers; and they emitted blue light both in the solution and solid states regardless of their microstructures, counterions, and the polarity of organic solvents. However, most of these salts exhibited hypsochromic shifts in their emission peaks in the solid state when compared with those of their solution spectra. Due to unique properties of methyl orange anion as a pH indicator, two of the salts showed different color change in varying concentrations of triflic acid in common organic solvents, demonstrating their potential use as an acid sensor in methanol, acetonitrile and acetone. Highlights: ► Luminescent dicationic salts were synthesized by ring-transmutation and metathesis reactions. ► Thermal and optical properties of dicationic salts are affected by the size of anion structures. ► Due to the methyl orange counterions, some dicationic salts showed pH- sensing property

  10. Partitioning high-level waste from alkaline solution: A literature survey

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1993-05-01

    Most chemical partitioning procedures are designed for acidic feed solutions. However, the high-level waste solutions in the underground storage tanks at US Department of Energy defense production sites are alkaline. Effective partitioning procedures for alkaline solutions could decrease the need to acidify these solutions and to dissolve the solids in acid, which would simplify subsequent processing and decrease the generation of secondary waste. The author compiles candidate technologies from his review of the chemical literature, experience, and personal contacts. Several of these are recommended for evaluation

  11. Optical absorption of dilute solutions of metals in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Senatore, G.; Parrinello, M.; Tosi, M.P. (Trieste Univ. (Italy). Ist. di Fisica Teorica; Gruppo Nazionale di Struttura dell material del CNR, Trieste (Italy); International Centre for Theoretical Physics, Trieste (Italy))

    1978-12-23

    The theory of liquid structure for fluids of charged hard spheres is applied to an evaluation of the F-centre model for valence electrons in metal-molten salt solutions at high dilution. Minimization of the free energy yields the groundstate radius of the elctron bubble and hence the optical excitation energy in a Franck-Condon transition, the shift and broadening of the transition due to fluctuations in the bubble radius, the volume of mixing, and the activity of the salt in the solution.

  12. Technetium removal column flow testing with alkaline, high salt, radioactive tank waste

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Kurath, D.E.; Golcar, G.R.; Conradson, S.D.

    1996-01-01

    This report describes two bench-scale column tests conducted to demonstrate the removal of Tc-99 from actual alkaline high salt radioactive waste. The waste used as feed for these tests was obtained from the Hanford double shell tank AW-101, which contains double shell slurry feed (DSSF). The tank sample was diluted to approximately 5 M Na with water, and most of the Cs-137 was removed using crystalline silicotitanates. The tests were conducted with two small columns connected in series, containing, 10 mL of either a sorbent, ABEC 5000 (Eichrom Industries, Inc.), or an anion exchanger Reillex trademark-HPQ (Reilly Industries, Inc.). Both materials are selective for pertechnetate anion (TcO 4 - ). The process steps generally followed those expected in a full-scale process and included (1) resin conditioning, (2) loading, (3) caustic wash to remove residual feed and prevent the precipitation of Al(OH) 3 , and (4) elution. A small amount of Tc-99m tracer was added as ammonium pertechnetate to the feed and a portable GEA counter was used to closely monitor the process. Analyses of the Tc-99 in the waste was performed using ICP-MS with spot checks using radiochemical analysis. Technetium x-ray absorption spectroscopy (XAS) spectra of 6 samples were also collected to determine the prevalence of non-pertechnetate species [e.g. Tc(IV)

  13. Solidification of salt solutions on a horizontal surface

    International Nuclear Information System (INIS)

    Braga, S.L.; Viskanta, R.

    1990-01-01

    The freezing of water-salt solutions on a horizontal wall is investigated experimentally and theoretically. The growth of the solid-liquid region is observed for NaCl - H sub(2)O and N H sub(4)Cl - H sub(2)O systems under different temperature and concentration conditions. A unidirectional mathematical model is used to predict the solidification process. The transport of heat is by diffusion, and convection is absent. The mass diffusion is neglected and the growth of crystal is governed by the transport of heat. In all experiments, the solution salt concentration is smaller than the eutectic composition, and the wall temperature is higher than the eutectic temperature. The predicted temperature and salt concentration profiles, as well as the interface position, are compared with experimental data. (author)

  14. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    Science.gov (United States)

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  15. Ageing behaviour of unary hydroxides in trivalent metal salt solutions

    Indian Academy of Sciences (India)

    LDH)-like phases on ageing in solutions of Al or Cr salts. This reaction is similar to acid leaching and proceeds by a dissolution–reprecipitation mechanism offering a simple method of LDH synthesis, with implications for the accepted theories of ...

  16. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  17. 21 CFR 864.2875 - Balanced salt solutions or formulations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Balanced salt solutions or formulations. 864.2875 Section 864.2875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2875...

  18. Homemade sugar-salt solution for oral rehydration: knowledge of ...

    African Journals Online (AJOL)

    Up to 95% of these cases can be treated successfully with oral rehydration therapy. The aim of the study was to evaluate caregivers' knowledge of, attitudes to and use of homemade sugar and salt solution (SSS) in order to address the shortfalls. Differences between the knowledge, attitudes and practices in urban, rural and ...

  19. Corrosion processes of alloyed steels in salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung

    2018-02-15

    A summary is given of the corrosion experiments with alloyed Cr-Ni steels in salt solutions performed at Research Centre Karlsruhe (today KIT), Institute for Nuclear Waste Disposal (INE) in the period between 1980 and 2004. Alloyed steels show significantly lower general corrosion in comparison to carbon steels. However, especially in salt brines the protective Cr oxide layers on the surfaces of these steels are disturbed and localized corrosion takes place. Data on general corrosion rates, and findings of pitting, crevice and stress corrosion cracking are presented.

  20. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Naruse, Yuji; Yamaoka, Mitsuaki; Ohara, Atsushi; Ono, Kiyoshi; Kobayashi, Shigetada.

    1992-06-01

    Aqueous solution blanket using lithium salts such as LiNO 3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  1. Selective solvation extraction of gold from alkaline cyanide solution by alkyl phosphorus esters

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Wan, R.Y.; Mooiman, M.B.; Sibrell, P.L.

    1987-01-01

    Research efforts have shown that solvation extraction of gold from alkaline cyanide solution is possible by alkyl phosphorus esters. Both tributyl phosphate (TBP) and dibutyl butyl phosphonate (DBBP) appear to be effective extractants for gold and exhibit high loading capacities exceeding 30 gpl. Selective solvation extraction of gold from alkaline cyanide solution can be achieved with selectivity factors relative to other cyanoanions as high as 1000 under certain circumstances. Variables influencing the selectivity such as ionic strength, temperature, and extractant structure, are discussed in terms of the extraction chemistry, which seems to involve the solvation of a M dot, dot, dot Au(CN)2 ion pair.

  2. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of); Shakiba, Atefeh [Department of Material Science and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Vahdati-Khaki, Jalil; Zebarjad, Seyed Mojtaba [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of)

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reaction temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.

  3. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  4. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  5. Methylene blue adsorption of GMZ bentonite and the effect of hyper-alkaline solution erosion

    International Nuclear Information System (INIS)

    Chen Bao; Zhang Huixin; Zhu Chunming; Chen Ping

    2012-01-01

    The method of combining the halo method with the spectrometer method, was used to study on the Methylene blue (MB) adsorption of Gaomiaozi (GMZ) bentonite, which had been eroded by hyper-alkaline solution, to investigate the mechanism of the effect of hyper-alkaline pore water on the buffer/backfill properties of GMZ bentonite. Results present, method employed in this article is brief and feasible, and high accuracy; The total specific surface area calculated by the test of MB adsorption is more accurate than the method of ethylene glycol monomethyl ether (EGIVIE). The MB adsorption of samples, which had been eroded by hyper-alkaline solution, decreases with the increase of the concentration of hyper-alkaline solution, and the change law agrees with the variation of the mass percentage of montmorillonite in bentonite tested by X- Ray diffraction (XRD). Therefore, the erosion of hyper-alkaline pore water might dissolve montmorillonite, which is the effective composition of bentonite, and destroy the tetrahedron- octahedron-tetrahedron (T-O-T) structure of montmorillonite, then lead to the decrease of cation exchange capability and the specific surface area of montmorillonite, and the the macroscopic expressions are the decrease of MB adsorption, the swelling potential and the increase of permeability. (authors)

  6. Mass spectra of alkaline earth salts with a FAB source. Complexation with crown ethers

    International Nuclear Information System (INIS)

    Ulrich, J.

    1987-01-01

    With a liquid desorption FAB source it is possible to obtain alkaline earth metal ions complexed by a crown ether. Conditions for formation of these complexes ions are examined for selection of the complexing agent in function of cation size. Behaviour of alkaline and alkaline earth compounds are compared allowing the differentiation of ion extraction phenomena by liquid desorption ion source and solvent extraction [fr

  7. Photoionization of Sodium Salt Solutions in a Liquid Jet

    Energy Technology Data Exchange (ETDEWEB)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-06-05

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces.

  8. Photoionization of Sodium Salt Solutions in a Liquid Jet

    International Nuclear Information System (INIS)

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-01-01

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces

  9. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  10. Electrochemical Performance of Low-Carbon Steel in Alkaline Model Solutions Containing Hybrid Aggregates

    NARCIS (Netherlands)

    Koleva, D.A.; Hu, J.; De Wit, J.H.W.; Boshkov, N.; Radeva, T.; Milkova, V.; Van Breugel, K.

    2010-01-01

    This work reports on the electrochemical performance of low-carbon steel electrodes in model alkaline solutions in the presence of 4.9.10-4 g/l hybrid aggregates i.e. cement extract, containing PDADMAC (poly (diallyl, dimethyl ammonium chloride) / PAA (Poly (acrylic acid)/ PDADMAC over a CaO core.

  11. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    Science.gov (United States)

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  12. Novel package for inhibition of aluminium corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Abdel-Gaber, A.M.; Khamis, E.; Abo-Eldahab, H.; Adeel, Sh.

    2010-01-01

    Inhibition of aluminium corrosion in 2 M sodium hydroxide solution by a package composed of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and lupine seed extract has been investigated employing different electrochemical techniques and chemical gasometry measurements. Potentiodynamic polarization curve measurements showed that lupine seed extract controls both the anodic dissolution of aluminium and the hydrogen gas evolved at the cathodic sites of aluminium surface. Nyquist plots showed two capacitive semicircles in the high and low frequency regions separated by an inductive loop at intermediate frequencies. The inductive loop may be explained by the occurrence of adsorbed intermediates on the surface. A proposed equivalent circuit was used to analyse the impedance spectra for aluminium in NaOH solutions. The corrosion inhibition data have been analysed using different isotherms. The results showed excellent agreement between the kinetic-thermodynamic model and Flory-Huggins isotherm. Gasometry measurements showed that the Inhibitive effect of the surfactant increases at a composition around its critical micelle concentration (cmc). The presence of both the surfactant and lupine seed extract did not indicate synergistic action between them. The mode of adsorption of the surfactant molecules corresponding to their structure is also discussed.

  13. Novel package for inhibition of aluminium corrosion in alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M., E-mail: ashrafmoustafa@yahoo.com [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Khamis, E.; Abo-Eldahab, H.; Adeel, Sh. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2010-11-01

    Inhibition of aluminium corrosion in 2 M sodium hydroxide solution by a package composed of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and lupine seed extract has been investigated employing different electrochemical techniques and chemical gasometry measurements. Potentiodynamic polarization curve measurements showed that lupine seed extract controls both the anodic dissolution of aluminium and the hydrogen gas evolved at the cathodic sites of aluminium surface. Nyquist plots showed two capacitive semicircles in the high and low frequency regions separated by an inductive loop at intermediate frequencies. The inductive loop may be explained by the occurrence of adsorbed intermediates on the surface. A proposed equivalent circuit was used to analyse the impedance spectra for aluminium in NaOH solutions. The corrosion inhibition data have been analysed using different isotherms. The results showed excellent agreement between the kinetic-thermodynamic model and Flory-Huggins isotherm. Gasometry measurements showed that the Inhibitive effect of the surfactant increases at a composition around its critical micelle concentration (cmc). The presence of both the surfactant and lupine seed extract did not indicate synergistic action between them. The mode of adsorption of the surfactant molecules corresponding to their structure is also discussed.

  14. Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J., E-mail: brian.riley@pnnl.gov; Lepry, William C.; Crum, Jarrod V.

    2016-01-15

    Chlorosodalite has the general form of Na{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2} and this paper describes experiments conducted to synthesize sodalite with a solution-based approach to immobilize a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. The reactants used were the salt solution, NaAlO{sub 2}, and either Si(OC{sub 2}H{sub 5}){sub 4} or Ge(OC{sub 2}H{sub 5}){sub 4}. Additionally, seven different glass sintering aids (at loadings of 5 mass%) were evaluated as sintering aids for consolidating the as-made powders using a cold-press-and-sinter technique. This process of using alkoxide additives for the Group IV component can be used to produce large quantities of sodalite at near-room temperature as compared to a method where colloidal silica was used as the silica source. However, the small particle sizes inhibited densification during heat treatments.

  15. Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Arash Fattah-alhosseini

    2015-10-01

    Full Text Available The passivation behavior of AISI 430 ferritic stainless steel was investigated in concentrated alkaline solutions in relation to several test parameters, using electrochemical techniques. Increasing solution pH (varying from 11.5 to 14.0 leads to an increase in the corrosion rate of the alloy. Mott–Schottky analysis revealed that passive films formed on AISI 430 ferritic stainless steel behave as n-type semiconductor and the donor densities increased with pH. Electrochemical impedance spectroscopy (EIS results showed that the reciprocal capacitance of the passive film is directly proportional to its thickness, which decreases with pH increase. The results revealed that for this ferritic stainless steel in concentrated alkaline solutions, decreasing the solution pH offers better conditions for forming passive films with higher protection behavior, due to the growth of a much thicker and less defective film.

  16. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    International Nuclear Information System (INIS)

    Poirier, M.; Thomas Peters, T.; Fernando Fondeur, F.; Samuel Fink, S.

    2008-01-01

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached ∼10 psi while processing ∼1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and

  17. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 1. Permeability change of compacted bentonite immersed in alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko

    2010-01-01

    Permeability tests using the compacted bentonites and alkaline solutions were carried out to estimate of alteration behavior and the change of permeability during the alteration reaction. The permeability tests of the compacted bentonites were carried out at 23degC for one week after they were immersed in alkaline solution at 60degC for four weeks (immersing test). After permeability tests, the compacted bentonites were repeatedly tested as the same procedure (i.e. repetition of permeability test and immersing test) at 11 cycles. The compacted bentonites with initial dry density of 1.6 Mg/m 3 were reacted with the different type of the alkaline solutions (deionized water, NaOH (pH=12 and 14), KOH (pH=12 and 14) and Ca(OH) 2 (pH=12)) in each experiments. In the case of deionized water and alkaline solutions of pH12, the mineral compositions of altered bentonite were similar to original bentonite while the exchangeable cations of altered bentonites were changed. No changes of the mineralogical features of montmorillonite in altered bentonites (i.e. illitization, baideritization and increasing of layer charge) were observed in the case of deionized water, pH12-NaOH and pH12-Ca(OH) 2 . The montmorillonite was changed to the illite/smectite interstratified mineral containing about 40% illite like component during the reaction with pH12-KOH. In the case of alkaline solutions with pH14, the component minerals of bentonite (e.g. montmorillonite, quartz and clinoptilolite) were dissolved, consequently secondly minerals (e.g. analcime and phillipsite) were crystallized during experiments. Furthermore, the mineralogical features of montmorillonite were changed as illitization (pH14-KOH), beidellitization (pH14-NaOH and pH14-KOH) and increasing of layer charge (pH14-NaOH and pH14-KOH). No increasing of permeability were observed during the experiment using pH12-NaOH and pH12-Ca(OH) 2 as well as the case of deionized water. In the case of pH12-KOH, the permeability continually

  18. Volumetric determination of hydroxide, aluminate, and carbonate in alkaline solutions of nuclear waste

    International Nuclear Information System (INIS)

    Baumann, E.W.

    1975-06-01

    An integrated procedure was developed for determining OH - , Al(OH) 4 - , and CO 3 2- in alkaline nuclear waste. The free alkali, the hydroxide released when Al(OH) 3 is complexed with oxalate, and the precipitated BaCO 3 were determined by acidimetric titration. With a 50-μl sample, the relative standard deviations were 1 to 2 percent for nonradioactive test solutions and 2 to 5 percent for radioactive process solutions. (U.S.)

  19. Americium Separations from High-Salt Solutions Using Anion Exchange

    International Nuclear Information System (INIS)

    Barr, Mary E.; Jarvinen, Gordon D.; Stark, Peter C.; Chamberlin, Rebecca M.; Bartsch, Richard A.; Zhang, Z.Y.; Zhao, W.

    2001-01-01

    The aging of the US nuclear stockpile presents a number of challenges, including the increasing radioactivity of plutonium residues due to the ingrowth of 241 Am from the β-decay of 241 Pu. We investigated parameters that affect the sorption of Am onto anion-exchange resins from concentrated effluents derived from nitric acid processing of plutonium residues. These postevaporator wastes are nearly saturated solutions of acidic nitrate salts, and americium removal is complicated by physical factors, such as solution viscosity and particulates, as well as by the presence of large quantities of competing metals and acid. Single- and double-contact batch distribution coefficients for americium and neodymium from simple and complex surrogate solutions are presented. Varied parameters include the nitrate salt concentration and composition and the nitric acid concentration. We find that under these extremely concentrated conditions, Am(III) removal efficiencies can surpass 50% per contact. Distribution coefficients for both neodymium and americium are insensitive to solution acidity and appear to be driven primarily by low water activities of the solutions

  20. Conductometric investigation of salt-free solutions of polyriboguanylic acid

    International Nuclear Information System (INIS)

    Kozlov, A.G.; Davydova, O.V.; Kargov, S.I.

    1993-01-01

    Salt-free solutions of various ionic forms of polyriboguanylic acid (poly(G)) were studied by the methods of conductometry and spectroscopy of annular dichroism. The Manning approach was employed to calculate transport characteristics and structural parameters of poly(G) on the basis of spectra permit putting poly(G) salts in two groups: the first one comprising NH 4 + -, Rb + -, K + -, Na + -, the second one - Cs + -, and Li + -poly(G). The assumption is made that Li + and Cs + ions, bound with concrete groups of polyanion in a specific way, can promote formation of a stable structure different from the one observed in the presence of the first group counterions. 25 refs., 3 figs

  1. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    Science.gov (United States)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  2. Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets

    Science.gov (United States)

    Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun

    2018-01-01

    The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and

  3. Problems of evaluating isotope analysis of concentrated salt solutions in potash mines

    International Nuclear Information System (INIS)

    Schmiedl, H.D.

    1980-01-01

    Three problems of quantitative evaluation of analytic D and 18 O isotope data of concentrated salt solutions are discussed: (1) Consideration of the influence of admixtures of hydrated salts in determining meteoric or marine water fractions in a concentrated salt solution, (2) analytic accuracy and detection limits in determining meteoric water in salt solutions, and (3) processes of isotopic exchange with reservoir rock and sample matrix

  4. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Sayali; Ballal, Anand; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2013-11-15

    Highlights: • Deinococcus radiodurans was genetically engineered to overexpress alkaline phosphatase (PhoK). • Deino-PhoK bioprecipitated U efficiently over a wide range of input U concentration. • A maximal loading of 10.7 g U/g of biomass at 10 mM input U was observed. • Radioresistance and U precipitation by Deino-PhoK remained unaffected by γ radiation. • Immobilization of Deino-PhoK facilitated easy separation of precipitated U. -- Abstract: Bioremediation of uranium (U) from alkaline waste solutions remains inadequately explored. We engineered the phoK gene (encoding a novel alkaline phosphatase, PhoK) from Sphingomonas sp. for overexpression in the radioresistant bacterium Deinococcus radiodurans. The recombinant strain thus obtained (Deino-PhoK) exhibited remarkably high alkaline phosphatase activity as evidenced by zymographic and enzyme activity assays. Deino-PhoK cells could efficiently precipitate uranium over a wide range of input U concentrations. At low uranyl concentrations (1 mM), the strain precipitated >90% of uranium within 2 h while a high loading capacity of around 10.7 g U/g of dry weight of cells was achieved at 10 mM U concentration. Uranium bioprecipitation by Deino-PhoK cells was not affected in the presence of Cs and Sr, commonly present in intermediate and low level liquid radioactive waste, or after exposure to very high doses of ionizing radiation. Transmission electron micrographs revealed the extracellular nature of bioprecipitated U, while X-ray diffraction and fluorescence analysis identified the precipitated uranyl phosphate species as chernikovite. When immobilized into calcium alginate beads, Deino-PhoK cells efficiently removed uranium, which remained trapped in beads, thus accomplishing physical separation of precipitated uranyl phosphate from solutions. The data demonstrate superior ability of Deino-PhoK, over earlier reported strains, in removal of uranium from alkaline solutions and its potential use in

  5. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  6. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    International Nuclear Information System (INIS)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2013-01-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  7. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  8. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    International Nuclear Information System (INIS)

    Smith, F.; Hamm, Luther; Aleman, Sebastian; Michael, Johnston

    2008-01-01

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system

  9. Gamma radiolysis of alkaline aqueous solutions of neptunium and plutonium ions

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Gogolev, A.V.; Shilov, V.P.

    1998-01-01

    Full text: The paper is a brief review of data obtained by the authors from the study on redox reactions of neptunium and plutonium ions upon γ radiolysis of their aerated alkaline aqueous solutions. It includes the information on radiolytic reduction of Np(V), Np(VI) and Pu(VI) ions under various experimental conditions. It was found that the values of Np(VI) and Pu(VI) reduction yields do not depend on alkali concentration. The values considerably increase in the presence of some organic compounds (EDTA and formate were investigated). The formation of the Np(V) peroxo complex was observed in the γ radiolysis of alkaline aqueous solutions of Np(VI) and Np(V) in the presence of nitrate. The mechanism of radiolytic redox reactions of the ions is discussed in some detail

  10. Electrochemical investigation of mineral electrodes in phosphate-buffered alkaline solution

    Directory of Open Access Journals (Sweden)

    D Erdenechimeg

    2014-12-01

    Full Text Available Cyclic voltammetric methods have been applied to study the electrochemical behavior of the sulfide minerals in phosphate-buffered alkaline solution. The redox process of electrodes of sulfide ores was investigated using silicone-impregnated graphite electrode. The cathodic and anodic reaction products in alkaline solution were determined within the potential range of -2V to +2V (vs. Ag/AgCl. The several successive measurement cycles’ voltammograms leads to the appearance of a new anodic peak at E = 450mV, which is absent in the first cycle and curves, as well as other features that appear in cycling, can probably be explained by secondary electrochemical transformations of the products formed by the oxidation of the original pyrite at the interface between the electrode material.DOI: http://doi.dx.org/10.5564/mjc.v15i0.318 Mongolian Journal of Chemistry 15 (41, 2014, p33-35

  11. CO2 Capture from Flue Gas using Amino Acid Salt Solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    2009-01-01

    difficult. Amino acid salt solutions have emerged as an alternative to the alkanolamine solutions. A number of advantages make amino acid salt solutions attractive solvents for CO2 capture from flue gas. In the present study CO2 absorption in aqueous solutions of 0.5 M potassium glycinate and 0.5 M...

  12. Chemical perspectives on alkali and earth alkaline nitrate and nitrite salts for concentrated solar power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph G. [Sandia National Labsoratories, Livermore, CA (United States)

    2013-04-01

    Molten salts have been widely considered as the leading candidate heat transfer fluids (HTF) used in high temperature, concentrated solar power plants. Specifically, nitrate and nitrite based salts have been investigated as a HTF and even deployed in pilot plants generating up to 19.9 MW of electricity at operating temperatures above 500 C. New plant designs requiring higher operating temperatures for better efficiencies are pushing the stability limit of HTF. This paper presents an overview of the thermophysical properties of nitrate and nitrite salts and discusses thermodynamic and kinetic stability limitations as they relate to concentrated solar power generation. (orig.)

  13. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 2. Effect of type of alkaline solution on permeability of compacted bentonite-sand mixture

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2011-01-01

    Permeability tests were carried out using compacted bentonite-sand mixture with initial dry density of 1.55 Mg/m 3 and alkaline solutions at 50degC for about two years to estimate the alteration behavior and the change in the permeability. Bentonite-sand mixtures which contain bentonites of 15wt% were made using Na-bentonite or Ca-exchanged bentonite. 0.3M-NaOH solution with pH 13.3 and 5mM-Ca(OH) 2 solution with pH 12.0 were used to the permeability tests of Na-bentonite-sand mixture and of Ca-exchanged bentonite-sand mixture, respectively. In the case of the permeability test conducted using NaOH solution, montmorillonite and other associated minerals were dissolved, and consequently, the dry density and effective montmorillonite density of Na-bentonite-sand mixture were decreased. Furthermore, the mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Na-bentonite-sand mixture was increased 5.6 times by the end of permeability test as a result of above alteration. In the case of the permeability test conducted using Ca(OH) 2 solution, montmorillonite and other associated minerals were dissolved, and calcium silicate hydrate (C-S-H) was precipitated. Consequently, the dry density of Ca-exchanged bentonite-sand mixture was increased, while the effective montmorillonite density was decreased. The mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Ca-exchange bentonite-sand mixture was decreased by more than two orders of magnitude due to fill the pore of Ca-exchange bentonite-sand mixture by the precipitation of C-S-H. From above results, the type of alkaline solution affects the mineralogical alteration behavior of the compacted bentonite-sand mixture, and consequently, affects the changing trend of permeability. In conclusion, it is important not only to consider the dissolution of montmorillonite, but

  14. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  15. Comparative study of polypyrrole films electrosynthesized in alkaline and acid solutions

    International Nuclear Information System (INIS)

    Lehr, I.L.; Quinzani, O.V.; Saidman, S.B.

    2009-01-01

    The influence of the pH of electropolymerization solutions on the properties of polypyrrole films has been studied using potentiodynamic techniques and faradaic impedance spectroscopy. Scanning electron microscopy (SEM), IR and Raman spectroscopies, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were also used for products characterization. Results indicate that, contrary to what happen with the polymer electrogenerated in acid solutions, the films prepared in alkaline media are stable and present good electrochemical activity in basic solutions. Possible explanations for the observed differences are discussed and it is proposed that the pH of electropolymerization medium directly affects chains organization. Electrosynthesis in solutions of increased basicity results in a more compact and closed polymer structure.

  16. Evaluating Growth of Zeolites on Fly Ash in Hydro-Thermally Heated Low Alkaline Solution

    Science.gov (United States)

    Jha, Bhagwanjee; Singh, D. N.

    2017-12-01

    Fly ash has been well established materials for synthesis of zeolites, under hydrothermally heated aqueous NaOH solution. Efficacy of such technique is reported to be improved when high molarity of NaOH is used. Consequently, highly alkaline waste solution, as by-product, is generally disposed of in the surrounding, which may contaminate the environment. In this context, less alkaline NaOH solution may become a safer option, which has not been tried in the past as per the literature. With this in view, the present study demonstrates effectiveness of the 0.5 M NaOH solution and critically monitors transition on the fly ash after hydrothermal treatment. As an enhancement over previous researchers, such activation of the fly ash finally results in remarkable morphological and mineralogical growth on the bulk material (the residue), which comprises of new nano-sized crystals (the zeolites Na-P1 and natrolite), after 24 h of activation of the fly ash.

  17. Ion-exchange properties of cesium and strontium into zeolites from sodium salt solutions

    International Nuclear Information System (INIS)

    Kanno, Takuji; Hashimoto, Hiroyuki; Ohtani, Tozo.

    1978-01-01

    The ion-exchange properties of cesium and strontium into zeolite from sodium salt solution has been studied in zeolite A, zeolite X, zeolite Y, mordenite and clinoptilolite. The distribution of cesium into mordenite from about 1 -- 2 M sodium chloride and sodium hydroxide solutions is considerably larger than that into zeolite A. The distribution coefficient for 2 M solution of sodium salts was about 300. Therefore, the separation of cesium from sodium salt solution is possible by using mordenite. The distribution of strontium into zeolites form 1 -- 2 M solutions of sodium chloride and sodium nitrate were in the order of zeolite A>zeolite X>zeolite Y asymptoticaly equals mordenite. The distribution coefficient of 230 was obtained for 1 M solutions of sodium salts. The anion in solutions had no effect on the distribution of cesium and strontium into zeolite from sodium salt solution. (author)

  18. Radiation-induced reduction of ditetrazolium salt in aqueous solutions

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Chaychian, Mahnaz; Al-Sheikhly, Mohamad; McLaughlin, W.L.

    2002-01-01

    Color formation in aqueous solutions of the ditetrazolium salt blue tetrazolium (BT 2+ ) in the absence or presence of oxygen is a complex radiation chemical reaction. The final stable product is the poorly soluble diformazan violet to blue pigment having a broad spectral absorption band (λ max =552 nm). The reaction of BT 2+ with the hydrated electron proceeds by rapid reduction of BT 2+ followed by protonation at the nitrogen closest to the unsubstituted phenyl group, via the two intermediate tetrazolinyl radicals shared by the ditetrazole ring nitrogens. The effect of solution pH, N 2 O saturation, and the presence of the reducing agent dextrose are examined. The system serves as a radiochromic sensor and a dosimeter of ionizing radiations. Solutions of 5 mmol l -1 BT 2+ at pH 7.3 serve as dosimeters over an absorbed-dose range of approximately 0.2-6 kGy (dearated, with a range of 1-8 mmol l -1 dextrose) and of about 1-15 kGy (aerated, with 0.1 mol l -1 sodium formate and 5 mmol l -1 dextrose)

  19. Process for the recovery of alkali metal salts from aqueous solutions thereof

    International Nuclear Information System (INIS)

    Vitner, J.

    1984-01-01

    In an integrated process for the recovery of alkakli metal phenates and carboxylates from aqueous solutions thereof, the aqueous solution is spray dried and the drying gas stream is contacted with an aqueous alkali metal salt solution which dissolves the particles of the alkali metal salt that were entrained in the drying gas stream. The salt-free inert gas stream is then dried, heated, and returned to the spray dryer

  20. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiang; Wang, Lianqin; Shen, Pei Kang [The State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Cui, Guofeng [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Bianchini, Claudio [Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2010-03-01

    The mechanism of ethanol electrooxidation on a palladium electrode in alkaline solution (from 0.01 to 5 M NaOH) has been investigated by cyclic voltammetry and in situ Fourier transform infrared spectroelectrochemistry. The electrode performance has been found to depend on the pH of the fuel solution. The best performance was observed in 1 M NaOH solution (pH = 14), while the electrochemical activity decreased by either increasing or decreasing the NaOH concentration. In situ FTIR spectroscopic measurements showed the main oxidation product to be sodium acetate at NaOH concentrations higher than 0.5 M. The C-C bond cleavage of ethanol, put in evidence by the formation of CO{sub 2}, occurred at pH values {<=}13. In these conditions, however, the catalytic activity for ethanol oxidation was quite low. No CO formation was detected along the oxidation of ethanol by FTIR spectroscopy. (author)

  1. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution

    International Nuclear Information System (INIS)

    Wang Liping; Zhang Junyan; Gao Yan; Xue Qunji; Hu Litian; Xu Tao

    2006-01-01

    Effects of grain size reduction on the electrochemical corrosion behavior of nanocrystalline Ni produced by pulse electrodeposition were characterized using potentiodynamic polarization testing and electrochemical impedance spectroscopy; X-ray photoelectron spectroscopy were used to confirm the electrochemical measurements and the suggested mechanisms. The corrosion resistance of Ni coatings in alkaline solutions considerably increased as the grain size decreased from microcrystalline to nanocrystalline. The higher corrosion resistance of NC Ni may be due to the more rapid formation of continuous Ni(OH) 2 passive films compared with coarse-grained Ni coatings

  2. Cyclohexanone solvent extraction of 99TcO4 from alkaline nuclear waste solutions

    International Nuclear Information System (INIS)

    Schulz, W.W.

    1980-01-01

    Although the 99 Tc cyclohexanone solvent extraction process is still in the bench-scale development stage, the process appears well suited for engineering-scale removal of 99 Tc from alkaline Hanford waste solutions. The most pressing process development need is to resolve the phase disengaging problems encountered during water stripping operations. Stripping tests in pulse columns and/or centrifugal contactors are particularly needed to determine the magnitude of the phase disengaging problem in engineering-scale equipment and to find suitable remedies. 5 figures, 7 tables

  3. Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution

    International Nuclear Information System (INIS)

    Xu Weifeng; Liu Jinhe; Zhu Hongqiang

    2010-01-01

    The pitting corrosion of different positions (Top, Middle and Bottom) of weld nugget zone (WNZ) along thickness plate in friction stir welded 2219-O aluminum alloy in alkaline chloride solution was investigated by using open circuit potential, cyclic polarization, scanning electron microscopy and atomic force microscope. The results indicate that the material presents significant passivation, the top has highest corrosion potential, pitting potential and re-passivation potential compared with the bottom and base material. With the increase of traverse speed from 60 to 100 mm/min or rotary speed from 500 to 600 rpm, the corrosion resistance decreases.

  4. The effect of divalent salt in chondroitin sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30,RO-077125, POB-MG6, Magurele-Bucharest (Romania); Badita, C. R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Moldovan, L.; Craciunescu, O. [National Institute R& D for Biological Sciences, Splaiul Independenţei 296, sector 6, cod 060031, C.P. 17-16, Bucharest (Romania); Balasoiu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  5. The effect of divalent salt in chondroitin sulfate solutions

    Science.gov (United States)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  6. The effect of divalent salt in chondroitin sulfate solutions

    International Nuclear Information System (INIS)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-01-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca"2"+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca"2"+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl_2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  7. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    International Nuclear Information System (INIS)

    Lakshmanan, A.R.; Prasad, M.V.R.; Ponraju, D.; Krishnan, H.

    2004-01-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO 4 .7H 2 O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO 4 and Na 2 SO 4 as well as Mg(OH) 2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting

  8. Mechanism of pitting corrosion prevention by nitrite in carbon steel exposed to dilute salt solutions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Zapp, P.E.; Zee, J. van.

    1998-01-01

    'The overall goal of this project is to develop a fundamental understanding of the role of nitrite in preventing the breakdown of protective oxide(s) on carbon steel and the onset of pitting. Pitting corrosion of carbon steel exposed to dilute alkaline salt solutions can be induced by nitrate, sulfate, and chloride ions and is prevented by sufficient concentration of nitrite. A significant example of this material/electrolyte system is the storage and processing of DOE''s high-level radioactive liquid waste in carbon steel tanks. Added nitrite in the waste has a considerable downstream impact on the immobilization of the waste in a stable glass form. Waste tank integrity and glass production efficiency may benefit from the fundamental understanding of nitrite''s role in preventing pitting. This report summarizes progress after approximately six months of effort in this three-year EMSP project. Initial experimental and theoretical work has focused on the electrochemical behavior of carbon steel in simplified non-radioactive solutions that simulate complex dilute radioactive waste solutions. These solutions contain corrosion-inducing species such as nitrate and chloride and the corrosion-inhibiting nitrite at moderately alkaline pHs. The electrochemical behavior of interest here is that of the open-circuit potential of the steel specimen at equilibrium in the experimental electrolyte and the measures of the steel''s passivity and passivity breakdown.'

  9. Influence of complexing on physicochemical properties of polymer-salt solutions

    International Nuclear Information System (INIS)

    Ostroushko, A.A.; Yushkova, S.M.; Koridze, N.V.; Skobkoreva, N.V.; Zhuravleva, L.I.; Palitskaya, T.A.; Antropova, S.V.; Ostroushko, I.P.; AN SSSR, Moscow

    1993-01-01

    Using the methods of spectrophotometry, viscosimetry, conductometry the influence of salt-polymer complexing processes on physicochemical prperties of aqueous solutions of yttrium, barium, copper nitrates and formates with polyvinyl alcohol was studied. Change of dynamic viscosity, specific electric conductivity of solutions in the process of complexing was shown. Thermal effects of salt-polymer interaction were measured. It is shown that decrease of transition temperature of polymer to plastic state in films, temperature and effective activation energy of salt decomposition is also connected with complexing. Effective values of surface tension on the boundary with air are measured. Coefficients of cation diffusion in polymer-salt solutions are estimated

  10. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  11. Electrodeposition of white copper-tin alloys from alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Purwadaria, H.S.; Zainal Arifin Ahmad

    2007-01-01

    Electrodeposition of white copper-tin alloys (including with mir alloys) has been done onto planar mild steel substrates from alkaline cyanide solutions at 65 degree C. The chemical composition of the coating is influenced by plating bath composition and current density. White mir alloy can be produced from the test solution containing 10 g/l CuCN 2 ,45 g/l Na 2 SnO 3 , 25 g/l NaCN, and 12 g/l NaOH at current density about 5 mA/cm?2. The local compositions of the coating cross section were analyzed using EDX installed in a FESEM operated at an accelerating voltage of 20 kV. The phases formed during co-deposition process were identified using XRD at 25 mA current and 35 kV voltage. (Author)

  12. Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2009-01-01

    Full Text Available In recent years, considerable attention has been paid to various applications of Fe(VI due to its unique properties such as oxidizing power, selective reactivity, stability of the salt, and non-toxic decomposition by-products of ferric ion. In environmental remediation processes, Fe(VI has been proposed as green oxidant, coagulant, disinfectant, and antifoulant. Therefore, it is considered as a promising multi-purpose water treatment chemical. Fe(VI has also potential applications in electrochemical energy source, as 'green cathode'. The effectiveness of ferrate as a powerful oxidant in the entire pH range, and its use in environmental applications for the removal of wide range of contaminants has been well documented by several researchers. There is scientific evidence that ferrate can effectively remove arsenic, algae, viruses, pharmaceutical waste, and other toxic heavy metals. Although Fe(VI was first discovered in early eighteen century, detailed studies on physical and chemical properties of Fe(VI had to wait until efficient synthetic and analytical methods of Fe(VI were developed by Schreyer et al. in the 1950s. Actually, there have been developed three ways for the preparation of Fe(VI compounds : the wet oxidation of Fe(II and Fe(III compounds, the dry oxidation of the same, and the electrochemistry method, mainly based on the trans passive oxidation of iron. High purity ferrates Fe(VI can be generated when electrode of the pure iron metal or its alloys are anodized in concentrated alkaline solution. It is known that the efficiency of electrochemical process of Fe(VI production depends on many factors such as current density, composition of anode material, types of electrolyte etc. In this paper, the electrochemical synthesis of ferrate(VI solution by the anodic dissolution of iron and its alloys in concentrated water solution of NaOH and KOH is investigated. The process of transpassive dissolution of iron to ferrate(VI was studied by

  13. Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b.

    Science.gov (United States)

    Fang, Hui; Qin, Xiao-Yu; Zhang, Kai-Duan; Nie, Yong; Wu, Xiao-Lei

    2018-04-01

    The six- and seven-subunit Na + /H + antiporters (Mrp) are widely distributed in bacteria. They are reported to be integral for pH homeostasis in alkaliphilic bacteria when adapting to high pH environments. In this study, operons encoding for the six-subunit Na + /H + antiporters were found in the genomes of all studied Dietzia strains, which have different alkaline-resistant abilities. Disruption of the operon in the strain Dietzia sp. DQ12-45-1b which leads to declined growth in presence of hypersaline and alkaline conditions suggested that the six-subunit Na + /H + antiporter played an important role in hypersaline and alkaline resistance. Although the complexes DqMrp from DQ12-45-1b (strain with high alkaline resistance) and DaMrp from D. alimentaria 72 T (strain with low alkaline resistance) displayed Na + (Li + )/H + antiport activities, they functioned optimally at different pH levels (9.0 for DQ12-45-1b and 8.0 for 72 T ). While both antiporters functioned properly to protect Escherichia coli cells from salt shock, only the DqMrp-containing strain survived the high alkaline shock. Furthermore, real-time PCR results showed that the expression of mrpA and mrpD induced only immediately after DQ12-45-1b cells were subjected to the alkaline shock. These results suggested that the expression of DqMrp might be induced by a pH gradient across the cell membrane, and DqMrp mainly functioned at an early stage to respond to the alkaline shock.

  14. Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process

    International Nuclear Information System (INIS)

    Macanas, Jorge; Soler, Lluis; Candela, Angelica Maria; Munoz, Maria; Casado, Juan

    2011-01-01

    The research of alternative processes to obtain clean fuels has become a main issue because of the concerns related to the current energy system, both from economical and environmental points of view. Hydrogen storage and production methods are being investigated for stationary and portable applications. Up to now, a significant part of H 2 production on demand was thought to be fulfilled by using chemical hydrides, but recent studies have proved the limitations of this approach. Conversely, H 2 production based in the corrosion of light metals in water solutions is an interesting alternative. Among all of them, Al is probably the most adequate metal for energetic purposes due to its high electron density and oxidation potential. But concerning H 2 production from Al corrosion in water, a major issue remains unsolved: metal passivation due to the formation of Al(OH) 3 inhibits H 2 evolution. In this work we show the last results obtained for the generation of H 2 from water using Al powder using diverse alkaline solutions. It is confirmed that corrosion is not affected solely by the solution pH but also by the nature of the ionic species found in the aqueous medium. Moreover, we describe the AlHidrox process, which minimizes Al passivation under mild conditions by the addition of different inorganic salts as corrosion promoters, allowing 100% yields and flow rates up to 2.9 L/min per gram of Al. The feasibility of the process has been regarded in terms of stability (by conducting several successive runs) and self-initiation without an external heating. -- Highlights: → The AlHidrox process minimizes Al passivation by the addition of inorganic salts. → Al corrosion to produce H 2 greatly depends on the nature of the dissolved species. → The maximum flow achieved was 2.9 dm 3 H 2 min -1 .per gram of Al using Fe 2 (SO 4 ) 3 . → We found conditions to start up H 2 generation without external energy input.

  15. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Science.gov (United States)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  16. Ionic structure of solutions of alkali metals and molten salts

    International Nuclear Information System (INIS)

    Chabrier, G.; Senatore, G.; Tosi, M.P.

    1982-02-01

    Neutron diffraction patterns from K-KCl and Rb-RbBr liquid solutions at various compositions are examined in an ionic-mixture model which neglects screening and aggregation due to the metallic electrons. The main feature of the observed diffraction patterns for wave number k above roughly 1A -1 are accounted for by the model. The approach to the metal-rich end of the phase diagram is analyzed in detail from different viewpoints in the K-KCl system. Short-range correlations of the potassium ions are described in this region by a metallic radius deduced from properties of the pure liquid metal, but a simple expanded-metal model must be supplemented by the assumption that considerable disorder is introduced in its structure by the halogen ions. Features of short-range ordering in the salt-rich region that are implied by a shoulder on the high-k side of the main peak in the diffraction pattern are also commented upon. (author)

  17. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Aronu, Ugochukwu E.; Hartono, Ardi; Svendsen, Hallvard F.

    2012-01-01

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N 2 O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N 2 O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N 2 O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N 2 O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  18. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2

    International Nuclear Information System (INIS)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-01-01

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  19. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  20. CRIEPI's research results (2006-2011) and clarified future issues on alteration behavior of bentonite barrier by alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2013-01-01

    In radioactive waste disposal facilities, bentonite barrier would be altered by alkaline solutions which arise by leaching of cementitious materials. Consequently suitable properties of the bentonite barrier would be degraded for a long time period. In CRIEPI, the investigation on the alteration of the bentonite under alkaline conditions was started in 2006, and several CRIEPI reports have been published. Specifically, we have investigated the kinetics of montmorillonite dissolution, the mineralogical alteration of compacted bentonite (with high- and low-dry density) and the change of permeability of the compacted bentonite (with high- and low-dry density) during alteration under the alkaline conditions. Furthermore, stability of saponite, which has similar physical properties to the bentonite, under the alkaline conditions was also examined. In this report, we show the outline of those research results, and lay out the clarified future issues extracted from our results. Ten clarified future issues were divided three categories as follows: 1) the estimation of the alteration behavior of the bentonite by alkaline solutions, 2) the elucidation of the mechanism of physical properties (e.g., permeability, swelling properties and mechanistic properties) change of the compacted bentonites during alteration, and 3) the development of the model building and simulation technology concerning the change in physical properties during alteration under alkaline conditions. (author)

  1. Properties of altered soils by alkaline solution: contribution in the performance evaluation of repositories

    International Nuclear Information System (INIS)

    Calabria, Jaqueline Alves de Almeida

    2015-01-01

    evaluated samples (less than 20% after 10 days of equilibrium), being the best performance one, the nitosoil sample whose K_d values varied from 11.78 to 63.05 mL.g"-"1. In a subsequent step, the clay soil, was submitted to the alkaline solution interaction, in order to investigate possible alterations on the sorption properties and hydraulic conductivity of this soil. Using the sorption parameters, obtained from data fitted isotherms, the retardation factor, R, was estimated for the samples before and after the interaction. It was demonstrated that the alkaline alteration promotes damages to sorption properties of Cs, once the R became significantly smaller (about 1000 times) after the interaction. The hydraulic conductivity in turn increased slightly (3,91x10"-"8 cm.s"-"1 to 5,08 x 10"-"8 cm.s"-"1). It was concluded that these changes were due, mainly, to the dissolution of minerals present in the clay soil (kaolinite and quartz), associated with the incorporation of K and Ca from the alkaline solution, resulting, probably, in the formation of hydrated calcium silicate phases. Additionally, the effects of alkaline solution on the properties of a commercial bentonite were studied. Contrary to the clay soil, it was observed a gain in the sorption characteristics, with K_d (Cs) increasing from 760.05 mL.g"-"1to 1311.80 mL.g"-"1and Q_m_a_x from 36.32 mg.g"-"1to 52.13 mg.g"-"1, with the corresponding increase in the retardation coefficient, R. The dissolution of the clay minerals from the initial sample and the incorporation of Mg, K e Ca coming from the alkaline solution, generating smectite of different kinds, were considered as the main mineralogical changes responsible for the modifications in sorption parameters. The different behavior between the two evaluated samples, soil and bentonite, confirms that the nature and extension of changes observed, when mineral samples interact with alkaline solution, depend on the chemical/mineralogical composition of the solid material

  2. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking

    International Nuclear Information System (INIS)

    Chai Liyuan; Yu Xia; Yang Zhihui; Wang Yunyan; Okido, Masazumi

    2008-01-01

    Anodization is a useful technique for forming protective films on magnesium alloys and improves its corrosion resistance. Based on the alkaline electrolyte solution with primary oxysalt developed previously, the optimum secondary oxysalt was selected by comparing the anti-corrosion property of anodic film. The structure, component and surface morphology of anodic film and cross-section were analyzed using energy dispersion spectrometer (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion process was detected by electrochemical impedance spectroscopy (EIS). The results showed that secondary oxysalt addition resulted in different anodizing processes, sparking or non-sparking. Sodium silicate was the most favorable additive of electrolyte, in which anodic film with the strongest corrosion resistance was obtained. The effects of process parameters, such as silicate concentration, applied current density and temperature, were also investigated. High temperature did not improve anti-property of anodic film, while applying high current density resulted in more porous surface of film

  3. Another intermediate in the photochemistry and radiation chemistry of alkaline aqueous solutions

    International Nuclear Information System (INIS)

    Telser, T.; Schindewolf, U.

    1985-01-01

    By UV flash photolytic and pulse radiolytic experiments of aqueous alkaline solutions we confirm older experiments of Walker et al. and Hart et al., showing that the decay of hydrated electrons gives rise to another intermediate X which by light absorption revives hydrated electrons again. X is formed by a reaction of 1. order with respect to hydrated electrons, the rate of its formation increases with pH, and it decays by a second order process with a rate constant not exceeding 5 . 10 9 M -1 sec -1 , probably leading to hydrogen (e - ->X; 2X->H 2 ). X has maximum light absorption around 270 nm with an extinction coefficient of about 5000 M -1 cm -1 . We will not speculate about the nature of X. (orig.)

  4. Galvanic Corrosion between Alloy 690 and Magnetite in Alkaline Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2015-12-01

    Full Text Available The galvanic corrosion behavior of Alloy 690 coupled with magnetite has been investigated in an alkaline solution at 30 °C and 60 °C using a potentiodynamic polarization method and a zero resistance ammeter. The positive current values were recorded in the galvanic couple and the corrosion potential of Alloy 690 was relatively lower. These results indicate that Alloy 690 behaves as the anode of the pair. The galvanic coupling between Alloy 690 and magnetite increased the corrosion rate of Alloy 690. The temperature increase led to an increase in the extent of galvanic effect and a decrease in the stability of passive film. Galvanic effect between Alloy 690 and magnetite is proposed as an additional factor accelerating the corrosion rate of Alloy 690 steam generator tubing in secondary water.

  5. Effect of alkaline earth metal and magnesium cations on cadmium extraction from chloride solutions by tributyl phosphate

    International Nuclear Information System (INIS)

    Prokuev, V.A.; Belousov, E.A.

    1985-01-01

    At 298 K thermodynamic constants of cadmium (2) extraction from chloride solutions of magnesium, calcium, strontium and barium by tributyl phosphate are calculated. It is established, that logarithm of the thermodynamic extraction constant is in a linear dependence from the change in the cation hydration enthalpy in agqueous solution. It is shown, that activity coefficient of neutral complex CdVCl 2 differs from one, and it is the higher the more stable the complex is in alkaline earth metal chloride solutions

  6. Salt weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures

    Science.gov (United States)

    Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica

    2013-04-01

    weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.

  7. Solubility and speciation of actinides in salt solutions and migration experiments of intermediate level waste in salt formations

    International Nuclear Information System (INIS)

    1986-01-01

    A comprehensive study into the solubility of the actinides americium and plutonium in concentrated salt solutions, the release of radionuclides from various forms of conditioned ILW and the migration behaviour of these nuclides through geological material specific to the Gorleben site in Lower Saxony is described. A detailed investigation into the characterization of four highly concentrated salt solutions in terms of their pH, Eh, inorganic carbon contents and their densities is given and a series of experiments investigating the solubility of standard americium(III) and plutonium(IV) hydroxides in these solutions is described. Transuranic mobility studies for solutions derived from the standard hydroxides through salt and sand have shown the presence of at least two types of species present of widely differing mobility; one migrating with approximately the same velocity as the solvent front and the other strongly retarded. Actinide mobility data are presented and discussed for leachates derived from the simulated ILW in cement and data are also presented for the migration of the fission products in leachates derived from real waste solidified in cement and bitumen. Relatively high plutonium mobilities were observed in the case of the former and in the case of the real waste leachates, cesium was found to be the least retarded. The sorption of ruthenium was found to be largely associated with the insoluble residues of the natural rock salt rather than the halite itself. (orig./RB)

  8. The cathodic reduction of dioxygen on uranium oxide in dilute alkaline aqueous solution

    International Nuclear Information System (INIS)

    Hocking, W.H.; Betteridge, J.S.; Shoesmith, D.W.

    1991-09-01

    The cathodic reduction of dioxygen on uranium oxide in dilute alkaline aqueous solutions has been investigated within the context of a program to develop a comprehensive model to predict the behaviour of used CANDU (Canada Deuterium Uranium) nuclear fuel under disposal-vault conditions. Two different kinds of ceramic UO 2 were studied: reactor-grade CANDU fuel with normal p-type electrical conductivity and low-resistance material that exhibits n-type photoelectrochemical behaviour. The transport of electroactive species in solution was controlled by varying the rotation rate of rotating disc electrodes (RDE) and rotating ring-disc electrodes (RRDE). Steady-state polarization measurements were made using the current-interrupt method to compensate for the potential drop caused by ohmic resistance. Any release of peroxide to solution from the UO 2 (disc) surface could be monitored by oxidizing it at the Au ring of an RRDE. The existing theory for the cathodic 0 2 -reduction process as applied to RDE and RRDE experiments has been reviewed as a starting point for the interpretation of the results obtained in our work. (37 figs., 2 tabs., 170 refs.)

  9. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  10. A Study of Analytical Solution for the Special Dissolution Rate Model of Rock Salt

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-01-01

    Full Text Available By calculating the concentration distributions of rock salt solutions at the boundary layer, an ordinary differential equation for describing a special dissolution rate model of rock salt under the assumption of an instantaneous diffusion process was established to investigate the dissolution mechanism of rock salt under transient but stable conditions. The ordinary differential equation was then solved mathematically to give an analytical solution and related expressions for the dissolved radius and solution concentration. Thereafter, the analytical solution was fitted with transient dissolution test data of rock salt to provide the dissolution parameters at different flow rates, and the physical meaning of the analytical formula was also discussed. Finally, the influential factors of the analytical formula were investigated. There was approximately a linear relationship between the dissolution parameters and the flow rate. The effects of the dissolution area and initial volume of the solution on the dissolution rate equation of rock salt were computationally investigated. The results showed that the present analytical solution gives a good description of the dissolution mechanism of rock salt under some special conditions, which may provide a primary theoretical basis and an analytical way to investigate the dissolution characteristics of rock salt.

  11. Purification of alkaline solutions and wastes from actinides and technetium by coprecipitation with some carriers using the method of appearing reagents: Final Report

    International Nuclear Information System (INIS)

    Peretrukhin, V.F.; Silin, V.I.; Kareta, A.V.; Gelis, A.V.; Shilov, V.P.; German, K.E.; Firsova, E.V.; Maslennikov, A.G.; Trushina, V.E.

    1998-09-01

    The coprecipitation of transuranium elements (TRU) and technetium from alkaline solutions and from simulants of Hanford Site tank wastes has been studied in reducing and oxidizing conditions on uranium(IV,VI) hydroxocompounds, tetraalkylammonium perrhenate and perchlorate, and on hydroxides of Fe(III), Co(III), Mn(II), and Cr(III) using the method of appearing reagents (MAR). Coprecipitations in alkaline solution have been shown to give high decontamination factors (DF) at low content of carrier and in the presence of high salt concentrations. Uranium(IV) hydroxide in concentrations higher than 3 x 10 -3 M coprecipitates Pu and Cm in any oxidation state from 0.2 to 4 M NaOH with DFs of 110 to 1000 and Np and Tc with DFs of 51 to 176. Technetium (VII) coprecipitates with (5 to 8) x 10 -4 M tetrabutylammonium (TBA) perrhenate in 0.01 to 0.02 M TBA hydroxide from 0.5 to 1.5 M NaOH to give DFs of 150 to 200. Coprecipitations of Np and Pu with Co(OH) 3 , Fe(OH) 3 , Cr(OH) 3 , and Mn(OH) 2 obtained by the MAR from precursors in the range from pH 10.5 to 0.4 M NaOH give DFs from 80 to 400

  12. Addition and elimination kinetics in OH radical induced oxidation of phenol and cresols in acidic and alkaline solutions

    International Nuclear Information System (INIS)

    Roder, M.; Wojnarovits, L.; Foeldiak, G.; Emmi, S.S.; Beggiato, G.; D'Angelantonio, M.

    1999-01-01

    The rates of the two consecutive reactions, OH radical addition and H 2 O/OH - elimination, were studied by pulse radiolysis in highly acidic (pH=1.3-1.9) and alkaline (pH∼11) solutions, respectively, for phenol and for the three cresol isomers. The rate coefficient of the addition as measured by the build-up of phenoxyl radical absorbance and by a competitive method is the same (1.4±0.1)x10 10 mol -1 dm 3 s -1 both in acidic and alkaline solution. The rate coefficient of the H 2 O elimination in acidic solution is (1.6±0.2)x10 6 s -1 , whereas the coefficient of the OH - elimination in alkaline solutions is 6-8 times higher. The kinetics of the phenoxyl radical formation was described by the two-exponential equation of the consecutive reactions: the first exponential is related to the pseudo-first-order addition, while the second to the elimination reaction. No considerable structure dependence was found in the rate coefficients, indicating that the methyl substitutent in these highly acidic or alkaline solutions influences neither the addition nor the elimination rate

  13. Location of microseismic swarms induced by salt solution mining

    Science.gov (United States)

    Kinscher, J.; Bernard, P.; Contrucci, I.; Mangeney, A.; Piguet, J. P.; Bigarre, P.

    2015-01-01

    Ground failures, caving processes and collapses of large natural or man-made underground cavities can produce significant socio-economic damages and represent a serious risk envisaged by the mine managements and municipalities. In order to improve our understanding of the mechanisms governing such a geohazard and to test the potential of geophysical methods to prevent them, the development and collapse of a salt solution mining cavity was monitored in the Lorraine basin in northeastern France. During the experiment, a huge microseismic data set (˜50 000 event files) was recorded by a local microseismic network. 80 per cent of the data comprised unusual swarming sequences with complex clusters of superimposed microseismic events which could not be processed through standard automatic detection and location routines. Here, we present two probabilistic methods which provide a powerful tool to assess the spatio-temporal characteristics of these swarming sequences in an automatic manner. Both methods take advantage of strong attenuation effects and significantly polarized P-wave energies at higher frequencies (>100 Hz). The first location approach uses simple signal amplitude estimates for different frequency bands, and an attenuation model to constrain the hypocentre locations. The second approach was designed to identify significantly polarized P-wave energies and the associated polarization angles which provide very valuable information on the hypocentre location. Both methods are applied to a microseismic data set recorded during an important step of the development of the cavity, that is, before its collapse. From our results, systematic spatio-temporal epicentre migration trends are observed in the order of seconds to minutes and several tens of meters which are partially associated with cyclic behaviours. In addition, from spatio-temporal distribution of epicentre clusters we observed similar epicentre migration in the order of hours and days. All together, we

  14. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D.

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex trademark-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples

  15. Oxygen reduction at platinum nanoparticles supported on carbon cryogel in alkaline solution

    Directory of Open Access Journals (Sweden)

    N. R. ELEZOVIC

    2007-07-01

    Full Text Available The oxygen reduction reaction was investigated in 0.1 M NaOH solution, on a porous coated electrode formed of Pt particles supported on carbon cryogel. The Pt/C catalyst was characterized by the X-ray diffraction (XRD, transmission electron microscopy (TEM and cyclic voltammetry techniques. The results demonstrated a successful reduction of Pt to metallic form and homogenous Pt particle size distribution with a mean particle size of about 2.7 nm. The ORR kinetics was investigated by linear sweep polarization at a rotating disc electrode. The results showed the existence of two E – log j regions, usually referred to polycrystalline Pt in acid and alkaline solution. At low current densities (lcd, the Tafel slope was found to be close to –2.3RT/F, while at high current densities (hcd it was found to be close to –2×2.3RT/F. It is proposed that the main path in the ORR mechanism on Pt particles was the direct four-electron process, with the transfer of the first electron as the rate determining step. If the activities are expressed through the specific current densities, a small enhancement of the catalytic activity for Pt/C was observed compared to that of polycrystalline Pt. The effect of the Pt particle size on the electrocatalysis of oxygen reduction was ascribed to the predominant (111 facets of the platinum crystallites.

  16. Temperature effects on geotechnical and hydraulic properties of bentonite hydrated with inorganic salt solutions

    DEFF Research Database (Denmark)

    Rashid, H. M. A.; Kawamoto, K.; Saito, T.

    2015-01-01

    © 2015, International Journal of GEOMATE. This study investigated the combined effect of temperature and single-species salt solutions on geotechnical properties (swell index and liquid limit) and hydraulic conductivity of bentonite applying different cation types, concentrations, and temperatures...

  17. Tetraphenylborate Solubility in High Ionic Strength Salt Solutions

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Ginn, J.D.; Jurgensen, A.R.

    1998-04-01

    Solubility of sodium and potassium salts of the tetraphenylborate ion (TPB) in simulated Savannah River Site High Level Waste was investigated. Data generated from this study allow more accurate predictions of TPB solubility at the In-Tank Precipitation (ITP) facility. Because previous research showed large deviations in the observed solubility of TPB salts when compared with model predictions, additional data were generated to better understand the solubility of TPB in more complex systems of high ionic strength and those containing both potassium and sodium. These data allow evaluation of the ability of current models to accurately predict equilibrium TPB concentrations over the range of experimental conditions investigated in this study

  18. Establishing the potential dependent equilibrium oxide coverage on platinum in alkaline solution and its influence on the oxygen reduction

    DEFF Research Database (Denmark)

    Wiberg, Gustav; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Gustav K.H. Wiberg, Matthias Arenz The oxidation process of polycrystalline platinum subjected to alkaline solution is re-examined using a combination of cyclic voltammetry and potential hold techniques in Ar, H2 and O2 purged 0.1...

  19. Anomalous Protein-Protein Interactions in Multivalent Salt Solution

    Czech Academy of Sciences Publication Activity Database

    Pasquier, C.; Vazdar, M.; Forsman, J.; Jungwirth, Pavel; Lund, M.

    2017-01-01

    Roč. 121, č. 14 (2017), s. 3000-3006 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA16-01074S Institutional support: RVO:61388963 Keywords : Monte Carlo * molecular dynamics * membranes * proteins * multivalent salts Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  20. Recovery of uranium from the Syrian phosphate by solid-liquid method using alkaline solutions

    International Nuclear Information System (INIS)

    Shlewit, H.; Alibrahim, M.

    2007-01-01

    Uranium concentrations were analyzed in the Syrian phosphate deposits. Mean concentrations were found between 50 and 110 ppm. As a consequence, an average phosphate dressing of 22 kg/ha phosphate would charge the soil with 5-20 g/ha uranium when added as a mineral fertilizer. Fine grinding phosphate produced at the Syrian mines was used for uranium recovery by carbonate leaching. The formation of the soluble uranyl tricarbonate anion UO 2 (CO 3 ) 3 4- permits use of alkali solutions of sodium carbonate and sodium bicarbonate salts for the nearly selective dissolution of uranium from phosphate. Separation of iron, aluminum, titanium, etc., from the uranium during leaching was carried out. Formation of some small amounts of molybdates, vanadates, phosphates, aluminates, and some complexes metal was investigated. This process could be used before the manufacture of TSP fertilizer, and the final products would contain smaller uranium quantities. (author)

  1. CO2 Capture from Flue gas using Amino acid salt solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    to storage. Typical solvents for the process are based on aqueous solutions of alkanolamines, such as mono-ethanolamine (MEA), but their use implies economic disadvantages and environmental complications. Amino acid salt solutions have emerged as an alternative to the alkanolamines, partlybecause...... for measuring of CO2 solubility based on the semi-flow method. A validation study of CO2 solubility in aqueous solutions of MEA is presented. Chapter 5 focuses on the determination of the chemical compositions of the precipitations, which arise in the five amino acid salt solutions upon CO2 absorption...

  2. Alteration of non-metallic barriers and evolution of solution chemistry in salt formations in Germany

    International Nuclear Information System (INIS)

    Herbert, H.J.; Becker, D.; Hagemann, S.; Meyer, Th.; Noseck, U.; Rubel, A.; Mauke, R.; Wollrath, J.

    2005-01-01

    Different Engineered Barrier Systems (EBS) materials considered in Germany for the sealing of repositories in salt formations are presented. Their long term behaviour in terms of interactions with salt solutions is discussed and evaluated. The discussed EBS materials are crushed salt, self sealing salt backfill, bentonite and salt concrete. Whereas the knowledge concerning the geochemical, geomechanical, hydrological and thermal behavior of crushed salt and salt concrete is well advanced further research is needed for other EBS materials. The self healing salt backfill has also been investigated in depth recently. In order to fully qualify this material large scale in situ experiments are still needed. The present knowledge on compacted bentonites in a salt environment is not yet sufficient for reliable predictions of the long-term performance in salt formations. The sealing concept of the low- and intermediate-level Radioactive Waste Repository Morsleben (ERAM) in a former rock salt and potash mine is presented. This concept is based on cementitious materials, i.e. salt concrete. The geochemical stability of different salt concretes in contact with brines expected in ERAM is addressed. It is shown how the results from leaching experiments and geochemical modelling are used in the safety analyses and how the chemical boundary conditions prevailing in the EBS influence the development of the permeability of the sealing system and thus control the radionuclide release. As a result of modelling the behaviour of the seals in the safety assessment it is shown, that the seals are corroded within a time span of about 20 000 years. The influence of the uncertainty in the model parameters on the safety of the repository was assessed by a variation of the initial permeability of the seal. The maximum dose rate resulting from the radionuclide release from ERAM is nearly independent of the variation of the initial permeability within four orders of magnitude. (authors)

  3. Experiments on the effect of sphagnum on the pH of salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K T; Thompson, T G

    1936-01-01

    Addition of sphagnum to salt solutions produced marked increases in the concentrations of the hydrogen ions, as measured both electrometrically and colorimetrically. The greater the concentration of the salt solution, the greater the increase in hydrogen ion concentration upon the addition of sphagnum. With a given salt concentration, the hydrogen ion concentration increased with increase in quantity of sphagnum added. The divalent cations produced greater increases in the hydrogen concentration than the monovalent cations for equal weights of sphagnum. Divalent anions, while showing an increase in hydrogen ions, upon the addition of sphagnum were far less effective in increasing the hydrogen ion concentrations. Sphagnum may be a useful reagent for regulating the acidity of salt solutions for many types of scientific work. It seems probable that the adsorption of metallic and hydroxyl ions explains, at least in part, the acidity of the water of sphagnum bogs.

  4. Degradation of lead-based pigments by salt solutions

    Czech Academy of Sciences Publication Activity Database

    Kotulanová, Eva; Bezdička, Petr; Hradil, David; Hradilová, J.; Švarcová, Silvie; Grygar, Tomáš

    2009-01-01

    Roč. 10, č. 3 (2009), s. 367-378 ISSN 1296-2074 R&D Projects: GA ČR(CZ) GA203/07/1324; GA AV ČR KJB400320602 Institutional research plan: CEZ:AV0Z40320502 Keywords : X-ray microdiffraction * salts * red lead Subject RIV: CA - Inorganic Chemistry Impact factor: 1.505, year: 2009

  5. Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil

    Directory of Open Access Journals (Sweden)

    Jaqueline Alves de Almeida Calábria

    2017-11-01

    Full Text Available Abstract The preferred option for disposal of short-lived low and intermediate level radioactive wastes is a near surface disposal facility in which soil is one of the barriers that avoid radionuclide migration outside the controlled area. For construction of that kind of facility, concrete is widely used, and its interaction with water induces its degradation, resulting in a high pH solution. The alkaline solution may affect the near-field environment of radioactive waste repositories, including the soil, promoting mineralogical alterations that result in significant changes in key properties of materials, compromising their performance as safety components. In this study, a sample of a Brazilian Typic Rhodudult soil, previously investigated concerning its performance for Cs sorption, was subjected to interaction with the alkaline solution for 24 h and for 7, 14, and 28 days in order to evaluate the impact on its chemical, mineralogical, and sorption properties. X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDX, atomic absorption spectrometry (AAS, scanning electron microscopy (SEM, and electron microprobe analysis were performed before and after each alteration period. Results indicated dissolution of minerals, such as kaolinite and quartz, associated with incorporation of K and Ca from the alkaline solution, likely resulting in the formation of hydrated calcium silicate phases (CSH, which are expected to be worse sorbents for alkaline elements (e.g., Cs than the original minerals. The Kd values for Cs in the altered samples also decreased according to the alteration period, demonstrating that alkaline interaction effectively modifies the soil sorption properties for Cs.

  6. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction

    Science.gov (United States)

    Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj

    2017-12-01

    The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.

  7. Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution

    Directory of Open Access Journals (Sweden)

    Zhao Youcai

    2013-12-01

    Full Text Available Production of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 % were obtained.

  8. Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica.

    Science.gov (United States)

    Sun, Yong-Chang; Wen, Jia-Long; Xu, Feng; Sun, Run-Cang

    2011-05-01

    Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-D-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1→4)-linked d-xylopyranosyl residues, having ramifications of α-L-arabinofuranose and 4-O-methyl-D-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400°C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Effective Uranium (VI) Sorption from Alkaline Solutions Using Bi-Functionalized Silica-Coated Magnetic Nanoparticles

    International Nuclear Information System (INIS)

    Chen, X.; He, L.; Liu, B.; Tang, Y.

    2015-01-01

    High temperature gas reactor is one of generation IV reactors that can adapt the future energy market, of which the preparation of fuel elements will produce a large amount of radioactive wastewater with uranium and high-level ammonia. Sorption treatment is one of the most important method to recover uranium from wastewater. However, there are few report on uranium sorbent that can directly be applied in wastewater with ammonia. Therefore, the development of a sorbent that can recover uranium in basic environment will greatly decrease the cost of fuel element production and the risk of radioactive pollution. In this work, ammonium-phosphonate-bifunctionalized silica-coated magnetic nanoparticles has been developed for effective sorption of uranium from alkaline media, which are not only advantaged in the uranium separation from liquid phase, but also with satisfactory adsorption rate, amount and reusability. The as-prepared sorbent is found to show a maximum uranium sorption capacity of 70.7 mg/g and a fast equilibrium time of 2 h at pH 9.5 under room temperature. Compared with the mono-functionalized (phosphonate alone and ammonium alone) particles, the combination of the bi-functionalized groups gives rise to an excellent ability to remove uranium from basic environment. The sorbent can be used as a promising solid phase candidate for highly-efficient removal of uranium from basic solution. (author)

  10. Study of the Eosin-Y/PAMAM interactions in alkaline aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Arbeloa, Ernesto M., E-mail: earbeloa@exa.unrc.edu.ar [Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Previtali, Carlos M. [Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Bertolotti, Sonia G., E-mail: sbertolotti@exa.unrc.edu.ar [Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-04-15

    The interactions between the xanthene dye Eosin-Y (Eos) and amino-terminated PAMAM dendrimers of low generations (G0–G3) were studied in alkaline water solution. The effect of concentration and generation of the dendrimer on the photophysics of Eos was evaluated by means of absorption and fluorescence spectroscopies. The observed spectral changes were ascribed to the association dye/dendrimer. From these data, the Eos/PAMAM binding constants (K{sub bind}) were determined, which strongly increased with the size of the dendrimer. Stationary fluorescence anisotropy and time-resolved single photon counting were also used to characterize the association process. The restriction in the rotational diffusion of the Eos increased as a function of the concentration and generation of PAMAM, as determined by anisotropy measurements. Biexponential fluorescence decays were obtained in the presence of G3, and the respective lifetimes were ascribed to free and bound Eos species. These results correlate with K{sub bind} values and suggest the formation of host/guest system with larger dendrimers. Therefore, this environmentally-friendly dye/dendrimer system would be appropriate for potential applications in fields such as drugs delivery and photopolymerization.

  11. Study of the Eosin-Y/PAMAM interactions in alkaline aqueous solution

    International Nuclear Information System (INIS)

    Arbeloa, Ernesto M.; Previtali, Carlos M.; Bertolotti, Sonia G.

    2016-01-01

    The interactions between the xanthene dye Eosin-Y (Eos) and amino-terminated PAMAM dendrimers of low generations (G0–G3) were studied in alkaline water solution. The effect of concentration and generation of the dendrimer on the photophysics of Eos was evaluated by means of absorption and fluorescence spectroscopies. The observed spectral changes were ascribed to the association dye/dendrimer. From these data, the Eos/PAMAM binding constants (K bind ) were determined, which strongly increased with the size of the dendrimer. Stationary fluorescence anisotropy and time-resolved single photon counting were also used to characterize the association process. The restriction in the rotational diffusion of the Eos increased as a function of the concentration and generation of PAMAM, as determined by anisotropy measurements. Biexponential fluorescence decays were obtained in the presence of G3, and the respective lifetimes were ascribed to free and bound Eos species. These results correlate with K bind values and suggest the formation of host/guest system with larger dendrimers. Therefore, this environmentally-friendly dye/dendrimer system would be appropriate for potential applications in fields such as drugs delivery and photopolymerization.

  12. Effect of Alkaline Solution with Varying Mix Proportion on Geopolymer Mortar

    Science.gov (United States)

    Karuppuchamy, K.; Ananthkumar, M.; Raghavapriya, S. M.

    2018-02-01

    Cement production is attributed by emission of carbon dioxide which causes severe environmental impacts. This has led to the invention of special construction materials which can replace cement. On the other hand, these construction materials (like Fly ash, Metakaolin) also need to be inexpensive and should possess all the characteristics of cementitious materials. In this project, the effect of geopolymerization on the properties of the end product were studied with varying distillation of NaOH solution (10M, 12M and 15M) for different mix proportion (1:1, 1:2 and 1:3). Curing was done for 1 day at a temperature of 60°C and 80°C respectively. The densities, compressive strength, alkalinity, co-efficient of absorption were determined. As a result, the experiments showed the effect of factors such as mix proportion, curing temperature and curing day on the physical and mechanical properties such as mix proportion of the geopolymer concrete. Results of NaOH concentration of 12M concentration cured for 24 hours at 80°C and 60°C showed better mechanical performance than the rest of the concentrations.

  13. Thermophysical property characterization of aqueous amino acid salt solution containing serine

    International Nuclear Information System (INIS)

    Navarro, Shanille S.; Leron, Rhoda B.; Soriano, Allan N.; Li, Meng-Hui

    2014-01-01

    Highlights: • Thermophysical properties of aqueous potassium and sodium salt solutions of serine were studied. • Density, viscosity, refractive index and electrolytic conductivity of the solution were measured. • The concentrations of amino acid salt ranges from x 1 = 0.009 to 0.07. • The temperature range studied was (298.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: Thermophysical property characterization of aqueous potassium and sodium salt solutions containing serine was conducted in this study; specifically the system’s density, refractive index, electrical conductivity, and viscosity. Measurements were obtained over a temperature range of (298.15 to 343.15) K and at normal atmospheric pressure. Composition range from x 1 = 0.009 to 0.07 for aqueous potassium and sodium salt solutions containing serine was used. The sensitivity of the system’s thermophysical properties on temperature and composition variation were discussed and correlated based on the equations proposed for room temperature ionic liquids. The density, viscosity, and refractive index measurements of the aqueous systems were found to decrease as the temperature increases at fixed concentration and the values increase as the salt concentration increases (water composition decreases) at fixed temperature. Whereas, a different trend was observed for the electrical conductivity data; at fixed concentration, the conductivity values increase as the temperature increases and at fixed temperature, its value generally increases as the salt concentration increases but only to a certain level (specific concentration) wherein the conductivity of the solution starts to decrease when the concentration of the salt is further increased. Calculation results show that the applied models were satisfactory in representing the measured properties in the aqueous amino acid salt solution containing serine

  14. Enzymatic methods for the determination of pollution in seawater using salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius

    International Nuclear Information System (INIS)

    Menzorova, Natalie I.; Seitkalieva, Alexandra V.; Rasskazov, Valery A.

    2014-01-01

    Highlights: • Alkaline phosphatase from eggs of the sea urchin (StAP) proved to be active in seawater. • Activity of StAP is inhibited by very low concentrations of heavy metal. • A test to assess sea and fresh water quality has been developed basing on StAP. • For the first time a salt resistant alkaline phosphatase has been found in eukaryote. - Abstract: A new salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius (StAP) has been shown to have a unique property to hydrolyze substrate in seawater without loss of enzymatic activity. The enzyme has pH optimum at 8.0–8.5. Model experiments showed various concentrations of copper, zinc, cadmium and lead added to seawater or a standard buffer mixture to inhibit completely the enzyme activity at the concentrations of 15–150 μg/l. StAP sensitivity to the presence in seawater of metals, pesticides, detergents and oil products appears to be considerably less. Samples of seawater taken from aquatic areas of the Troitsy Bay of the Peter the Great Bay, Japan Sea have been shown to inhibit the enzyme activity; the same was shown for the samples of fresh waters. The phosphatase inhibition assay developed proved to be highly sensitive, technically easy-to use allowing to test a great number of samples

  15. Certain laws governing the influence of high molecular polymer additives on specific electrical conductivity and viscosity of zincate alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrenko, V.Ye.; Toropetsera, T.N.; Zubov, M.S.

    1983-01-01

    A study was made of the influence of polymer additives of different nature: polyelectrolyte, copolymer of ethylene with maleic anhydride, polymethacrylic acid and nonpolyectrolyte copolymer of vinyl alcohol with vinyleneglycol and polyvinyleneglycol on specific electrical conductance and viscosity of the zincate alkaline solution. It is indicated that with an increase in the content of additives, the specific conductance of the solution diminishes according to a linear law, while the viscosity rises. The additives of polyelectrolyte nature reduce more strongly the specific conductance and increase the viscosity than the nonpolyelectrolyte additives. From a comparison of the data on specific conductance and viscosity the following conclusion is drawn: the more the polymer ''structures'' the zincate alkaline solution, the more strongly it reduces its specific electrical conductance.

  16. Calculation of solubility of salts in binary aqueous solutions

    International Nuclear Information System (INIS)

    Kolker, A.R.

    1990-01-01

    The possibility of theoretical calculation of solubility of some salts of the MX-type, where M - Na, K, Cs; X - F-I, as well as CsNO 3 and others forming no crystal hydrates in the solid phase, and the azeotropic composition in the water-HNO 3 system is studied. The calculational results of solubility are shown to depend very much on the values accepted for the standard free energies of component formation, melting heats and crystallization and on the difference in heat capacity of the melt and the solid phase

  17. Length scale dependence of the dynamic properties of hyaluronic acid solutions in the presence of salt.

    Science.gov (United States)

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-02

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.

  18. Thickening agent for flood water in secondary recovery of oil and for other aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Roth, H H

    1966-04-14

    Alkenyl-aromatic polymer sulfonates are good thickeners for some aqueous solutions, but addition of salts to such solutions reduces the desirable viscosity. High-molecular, water-soluble alkenyl-aromatic polymers which carry sulfonic acid or sulfonate groups substituted at the aromatic nuclei yield thickened solutions (e.g., for waterflooding) which are not influenced by the presence of water-soluble salts. Such polymers are derivatives of polyvinyltoluene, alone or in combination with about 5% acrylonitrile. It was also found that such thickening agents are less adsorbed on the rock matrix in a waterflood formation. (1 claim)

  19. Adaptive resolution simulation of an atomistic DNA molecule in MARTINI salt solution

    NARCIS (Netherlands)

    Zavadlav, J.; Podgornik, R.; Melo, M.n.; Marrink, S.j.; Praprotnik, M.

    2016-01-01

    We present a dual-resolution model of a deoxyribonucleic acid (DNA) molecule in a bathing solution, where we concurrently couple atomistic bundled water and ions with the coarse-grained MAR- TINI model of the solvent. We use our fine-grained salt solution model as a solvent in the inner shell

  20. The reactivity of the electron formed in the radiolysis of aerated alkaline aqueous solutions containing tetracycline hydrochloride, at 77 Ksup(+)

    International Nuclear Information System (INIS)

    Guedes, S.M.L.; Vasconcellos, M.B.A.

    1986-01-01

    The radiolysis of tetracycline hydrochloride dissolved in aerated alkaline aqueous solutions containing 0.1, 0.5 and 1M NaOH at 77 K, followed by ESR is reported. The rate constants for the reactions between the electron and physical or chemical traps which are present in these solutions are calculated. The reactivity of electrons that are formed in the radiolysis of water decreases in the following proportions: physical traps: chemical traps: molecules of water (4.8x10sup(14) : 6.5x10sup(8) : 1.0). The electrons react preferentially with the solute instead of the solvent. (author)

  1. Meat batter production in an extended vane pump-grinder injecting curing salt solutions to reduce energy requirements: variation of curing salt amount injected with the solution.

    Science.gov (United States)

    Irmscher, Stefan B; Terjung, Eva-Maria; Gibis, Monika; Herrmann, Kurt; Kohlus, Reinhard; Weiss, Jochen

    2017-01-01

    The integration of a nozzle in an extended vane pump-grinder system may enable the continuous injection of curing salt solutions during meat batter production. The purpose of this work was to examine the influence of the curing salt amount injected with the solution (0-100%) on protein solubilisation, water-binding, structure, colour and texture of emulsion-type sausages. The amount of myofibrillar protein solubilised during homogenisation varied slightly from 33 to 36 g kg -1 . Reddening was not noticeably impacted by the later addition of nitrite. L * ranged from 66.9 ± 0.3 to 67.8 ± 0.3, a * from 10.9 ± 0.1 to 11.2 ± 0.1 and b * from 7.7 ± 0.1 to 8.0 ± 0.1. Although softer sausages were produced when only water was injected, firmness increased with increasing curing salt amount injected and was similar to the control when the full amount of salt was used. The substitution of two-thirds of ice with a liquid brine may enable energy savings due to reduced power consumptions of the extended vane pump-grinder system by up to 23%. The injection of curing salt solutions is feasible without affecting structure and colour negatively. This constitutes a first step towards of an 'ice-free' meat batter production allowing for substantial energy savings due to lower comminution work. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Roughness comparison of heat cured type of acrylic resin in disinfectant solution immersion (Immersion in a solution of alkaline peroxide and 75% Celery extract (Apium graveolens L

    Directory of Open Access Journals (Sweden)

    Dewi Puspitasari

    2016-08-01

    Full Text Available Acrylic resin denture base has the properties absorbing that affecting physical and mechanical properties. One of the physical properties of acrylic resin is surface roughness. The aim of the study was to find out the roughness effect on heat cured acrylic that was immersed in alkaline peroxide and 75% celery (Apium graveoens L extract as a disinfectant solution. The study was a true experimental and posttest with control group designed with a rectangular shape size 65 x 10 x 3.3 mm based on the ISO standard 1567, six samples were used for alkaline peroxide, celery extract 75% and aquadest group for 5 and 15 days. A Surface Roughness Tester was used for the surface roughness changes observation. The statistical test used One-way ANOVA and post hoc Bonferroni. The results of this study showed the value of roughness on 5 days for alkaline peroxide (1.51 µm is greater than celery extract (0.36µm and aquadest (0.30 µm. The soaking for 15 days in alkaline peroxide (1.52 µm is greater than 75% celery extracts (0.38 µm and aquadest (0.34 µm. Alkaline peroxide caused higher roughness value of heat cured acrylic resin than 75% celery extract.

  3. Anion bridges drive salting out of a simple amphiphile from aqueous solution

    International Nuclear Information System (INIS)

    Bowron, D.T.; Finney, J.L.

    2002-01-01

    Neutron diffraction with isotope substitution has been used to determine the structural changes that occur on the addition of a simple salting-out agent to a dilute aqueous alcohol solution. The striking results obtained demonstrate a relatively simple process occurs in which interamphiphile anionic salt bridges are formed between the polar groups of the alcohol molecules. These ion bridges drive an increase in the exposure of the alcohol molecule nonpolar surface to the solvent water and hence point the way to their eventual salting out by the hydrophobic effect

  4. Extraction process of U from its ores using solutions of alkaline earth carbonates and bicarbonates in presence of carbon dioxide

    International Nuclear Information System (INIS)

    Floreancig, Antoine; Schuffenecker, Robert.

    1976-01-01

    A process is described for extracting uranium from its ores, either directly in the ore deposit or after such ore bodies have been taken from the ground, comprising an oxidation-leaching stage followed by a recovery stage. The characteristic of this process is that in the leaching process, carbonate and bicarbonate solutions of an alkaline-earth metal are used under a pressure of carbon dioxide between zero and 60 bars and at a temperature of zero to 100 0 C [fr

  5. Effectiveness of the squeezing out and final squeezing out of petroleum of an increased viscosity by alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Begnazarov, T.

    1979-01-01

    The remaining petroleum in the flooded zone is determined by the ratio of viscosity forces to the forces of the surface tension, which are expressed by the coefficient Ka. With this, for each kind of porous medium, there exists a natural cricial value Ka. For the purpose of studying the effect of the given parameters on the value of the remaining petroleum, experiments were carried out on artificial specimens. In the tests, using petroleum of the Mishkin deposit, the surface tension on the boundary of the petroleum with the distilled water and alkaline solutions were respectively equal to 37.1 and 1.33 dynes per centimeter. The experiments showed, that the squeezing out of the petroleum with water or alkaline solutions leads to similar results. This means, that the composite parameter Ka does not affect the value of the remaining petroleum saturation. The effectiveness of the final squeezing out of the petroleum of increased viscosity was also studied. These experiments were carried out in two variations of the injection of the squeezed out agent: in the first variation, the petroleum was squeezed out with water in the first stage, and in the second stage it was squeezed out by an alkaline solution, and in the subsequent stages, a change in the squeezing out agent took place. By finishing the first stage, the attained values of the coefficients of the squeezing out were practically similar (0.72). In the second stage, the final squeezing out of the petroleum with a solution of alkaline, provided a major effect.

  6. A first-principles study of half-metallic ferromagnetism in binary alkaline-earth nitrides with rock-salt structure

    International Nuclear Information System (INIS)

    Gao, G.Y.; Yao, K.L.; Liu, Z.L.; Zhang, J.; Min, Y.; Fan, S.W.

    2008-01-01

    In this Letter, using the first-principles full-potential linearized augmented plane-wave (FP-LAPW) method, we extend the electronic structure and magnetism studies on zinc-blende structure of II-V compounds MX (M=Ca,Sr,Ba; X=N,P,As) [M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73 (2006) 024404] to the rock-salt structure. It is found that, in the nine compounds, only alkaline-earth nitrides CaN, SrN and BaN exhibit ferromagnetic half-metallic character with a magnetic moment of 1.00μ B per formula unit. Furthermore, compared with the zinc-blende structure of CaN, SrN and BaN, the rock-salt structure has lower energy, which makes them more promising candidates of possible growth of half-metallic films on suitable substrates

  7. Spectroscopic Characterization of HAN-Based Liquid Gun Propellants and Nitrate Salt Solutions

    Science.gov (United States)

    1989-01-15

    spectra were recorded of bubbles of a concentrated aqueous nitrate solution, mineral oil, and an aqueous surfactant solution. Polymethacrylic acid ...FTIR spectra of droplets of a concentrated aqueous nitrate salt based solution (LGP1845), of solid particles cf polymethacrylic acid packing IO, 3... polymethacrylic acid low density packing foam cut to a 3x4 mnn rectangle was levitated with a low acoustic power. The sample was easily I positioned in the

  8. On the attenuation of X-rays and gamma-rays for aqueous solutions of salts

    CERN Document Server

    Teli, M T

    1998-01-01

    Disparities in the linear attenuation coefficients of X-rays and gamma rays for aqueous solutions of soluble salts arising from the nonequality of volume of the solution with the sum of volumes of its components are analysed and the mixture rule is reformulated. The disparities are illustrated for NaCl solution for concentrations c=0 to 1 gm/cm sup 3 which indicates that the mixture rule of Teli et al. works well within generally acceptable limits.

  9. Amino acid salt solutions as solvents in CO2 capture from flue gas

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Thomsen, Kaj; Stenby, Erling Halfdan

    New solvents based on the salts of amino acids have emerged as an alternative to the alkanolamine solutions, for the chemical absorption of CO2 from flue gas. But only few studies on amino acids as CO2 capturing agents have been performed so far. One of the interesting features of amino acid salt...... solutions is their ability to form solid precipitates upon the absorption of CO2. The occurrence of crystallization offers the possibility of increasing the CO2 loading capacity of the solvent. However, precipitation can also have negative effect on the CO2 capture process. The chemical nature of the solid...... of glycine, taurine, and lysine, while in the case of proline, and glutamic acid, the precipitate was found to be bicarbonate. These results give an important contribution to further understanding the potential of amino acid salt solutions in CO2 capture from flue gas....

  10. ELECTRODIALYSIS IN THE CONVERSION STEP OF THE CONCENTRATED SALT SOLUTIONS IN THE PROCESS OF BATTERY SCRAP

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2014-01-01

    Full Text Available Summary. The concentrated sodium sulfate solution is formed during the processing of waste battery scrap. A promising way to further treatment of the concentrated salt solution could be the conversion of these salts into acid and bases by electrodialysis, that can be reused in the same technical process cycle. For carrying out the process of conversion of salts into the corresponding acid and base several cells schemes with different combinations of cation, anion and bipolar membranes are used. At this article a comparative analysis of these cells is carried out. In the cells there were used the membranes МC-40, МА-41 and МB-2I. Acid and base solutions with higher concentration may be obtained during the process of electrodialysis in the circulation mode, when a predetermined amount of salt in the closed loop is run through a set of membranes to obtain the desired concentration of the product. The disadvantages of this method are the high cost of buffer tanks and the need to work with small volumes of treated solutions. In industrial applications it is advisable to use continuous electrodialysis with bipolar membranes, since this configuration allows to increase the number of repeating sections, which is necessary to reduce the energy costs. The increase of the removal rate of salts can be achieved by increasing the process steps, and to produce a more concentrated products after the conversion step can be applied electrodialysis-concentrator or evaporator.

  11. Mechanisms of combined effects of salt and alkaline stresses on seed germination and seedlings of melilotus officials (fabaceae) in northeast of china

    International Nuclear Information System (INIS)

    VU, T. S.; Zhang, D.; Xiao, W.; Chi, C.; Xing, Y.; Fu, D.; Yuan, Z.

    2015-01-01

    In line with the salt-alkalinized soils found in the northeast of China, the conditions were simulated to investigate the mechanisms associated with this combination of stresses on Melilotus officinalis. The effects of salinity (NaCl: 0-300mM) in combination with alkali (pH: 7.1-9.8) on the seed germination and seedlings of M. officinalis were investigated. The results showed that germination was not inhibited completely by the salt-alkali conditions tested. The recovery germinations were significant higher than the control or had no significant differences with the control under the conditions of NaCl less than 200mM and pH=9.0, suggesting that non-germinated seeds may have a strategy to get through and resist the stress during germination stage. For the seedling growth, M. officinalis was capable of surviving at high pH (pH=9.8) and the salinity (NaCl=200mM) (seedling survival rate: 84.77 ± 8.62 percentage). The characteristic feature for combined salt-alkali stresses is the reciprocal enhancement between salt and alkali stresses. The combined action of salinity and pH should be considered when evaluating the effects of salt-alkali stresses. Correlation and regression analyses showed that salinity was the dominant stress factor, while pH was a secondary factor. From the physiological and ecological parameters, we suggested that M. officinalis is a salt-alkali tolerant species which can be used in vegetative restoration of saline soils in the northeast of China. (author)

  12. Analysis of alloys and salt solutions by 'beta'-ray back-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bahadur, A; Maji, K D; Kumar, R [National Metallurgical Lab., Jamshedpur (India)

    1975-07-01

    This investigation reports the results of a study undertaken to assess the suitability of using the GM counter for measuring the intensity of ..beta..-backscattered radiation to determine the chemical composition of binary solid alloys, and aqueous salt solutions containing a metallic radical. The results indicate that the technique is not suitable for the determination of the composition of binary alloys since the error is in the range of 1.2 to 2.3 wt-% metal. The technique can be conveniently adapted for aqueous salt solutions where the maximum error is approximately 0.2 wt-% metal for metallic elements with atomic number greater than 20.

  13. Dynamic flow method to study the CO2 loading capacity of amino acid salt solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    Due to a number of advantages amino acid salt solutions have emerged as alternatives to the alkanolamine solvents for the chemical absorption of CO2 from flue gas. The use of amino acids in CO2 capture is a bio-mimetic process, as it is similar to CO2 binding by proteins in the blood......, such as hemoglobin. Amino acid salt solutions have the same amine functionality as alkanolamines, and are thus expected to behave similar towards CO2 in flue gas. Despite rising interest, few studies have been performed so far on amino acids as CO2 absorbents....

  14. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    International Nuclear Information System (INIS)

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO 3 , quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite

  15. Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents

    Directory of Open Access Journals (Sweden)

    Ratajczak Tomasz

    2017-01-01

    Full Text Available Flotation data on copper-bearing shale in aqueous solutions of inorganic electrolytes (NaCl, Na2SO4, KPF6, NH4Cl and organic reagents (ethylamine, propylamine as frothers were presented and discussed. The relationships between shale flotation, surface tension of aqueous solution and foam height during bubbling with air in the flotation system were presented. It has been found that flotation of shale in the presence of inorganic salts the yield was directly proportional to the surface tension of the aqueous solution of salt and inversely proportional to the height of the foam. On the other hand, for organic reagents solutions (short chain amines, a reverse effect has been observed in relation to the inorganic compounds studied, that is the yield of copper-bearing shale flotation and the foam height were inversely proportional to the surface tension of the amine solution.

  16. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Science.gov (United States)

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  17. Estimation of free acid content in lanthanide salt solution used for pH-potentiometric determination of their stability constants with organic ligands

    International Nuclear Information System (INIS)

    Zheltvaj, I.I.; Tishchenko, M.A.

    1985-01-01

    To improve the pH-potentiometric method for determining complex stability constants the possibility of alkalimetric titration of a free acid in the lanthanide perchlorate solution after binding metal ions by disodium salt of ethylene-diamine-tetraacetic acid is studied. The stability constants were determined from the difference between the total acid content after complexon addition and doubled metal cation content in the solution which has been preliminarily determined by the complexonometric method. It is shown that the alkaline (NaOH) equivalent quantities spent for free acid titration either in the absence or presence of the complexon is different. With increase of free acid content in the solution the difference in determinations with complexon and without it is somewhat reduced. Thus, the use of complexon contributes to a higher accuracy in determining the free acid, and in the first place in case of minor contents

  18. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt

    Directory of Open Access Journals (Sweden)

    Palash Sanphui

    2014-03-01

    Full Text Available Acemetacin (ACM is a non-steroidal anti-inflammatory drug (NSAID, which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM, isonicotinamide (INA, and picolinamide (PAM], caprolactam (CPR, p-aminobenzoic acid (PABA, and piperazine (PPZ. The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable

  19. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt.

    Science.gov (United States)

    Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir

    2014-03-01

    Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N-H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid-carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior

  20. On salting in effect of the second group metal rhodanides on aqueous-amine solutions

    International Nuclear Information System (INIS)

    Krupatkin, I.L.; Ostrovskaya, E.M.; Vorob'eva, L.D.; Kamyshnikova, G.V.

    1978-01-01

    The ''salting in'' effect of rhodanides of Group 2 metals (magnesium, calcium, strontium, barium) on aqueous-amine solutions (water-aniline, and water-o-toluidine systems) is studied. The solubility in these systems has been determined by the isothermal method at 25 deg C. Compositions of the co-existing liquid phases have been determined by refractometry. The phase diagrams of water-aniline-rhodanide of magnesium, calcium and strontium systems have the same qualitative view. These rhodanides ''salt in'' the water-aniline system so strongly that the systems are completely homogenized. According to the decreasing homogenization effect on the water-aniline and water-o-toluidine systems the salts may be arranged into the following series Mg(NCS) 2 >Ca(NCS) 2 >Sr(NCS) 2 >Ba(NCS) 2 . The ''salting in'. effect is weaker in the water-o-toluidine system rather than in the water-aniline one

  1. Investigation on the co-precipitation of transuranium elements from alkaline solutions by the method of appearing reagents

    International Nuclear Information System (INIS)

    Krot, N.; Shilov, V.; Bessonov, A.; Budantseva, N.; Charushnikova, I.; Perminov, V.; Astafurova, L.

    1996-06-01

    Highly alkaline radioactive waste solutions originating from production of plutonium for military purposes are stored in underground tanks at the U.S. Department of Energy Hanford Site. The purification of alkaline solutions from neptunium and plutonium is important in the treatment and disposal of these wastes. This report describes scoping tests with sodium hydroxide solutions, where precipitation techniques were investigated to perform the separation. Hydroxides of iron (III), manganese (II), cobalt (II, III), and chromium (III); manganese (IV) oxide, and sodium uranate were investigated as carriers. The report describes the optimum conditions that were identified to precipitate these carriers homogeneously throughout the solution by reductive, hydrolytic, or catalytic decomposition of alkali-soluble precursor compounds by a technique called the Method of Appearing Reagents. The coprecipitation of pentavalent and hexavalent neptunium and plutonium was investigated for the candidate agents under optimum conditions and is described in this report along with the following results. Plutonium coprecipitated well with all tested materials except manganese (IV) oxide. Neptunium only coprecipitated well with uranate. The report presents a hypothesis to explain these behaviors. Further tests with more complex solution matrices must be performed

  2. Investigation on the co-precipitation of transuranium elements from alkaline solutions by the method of appearing reagents

    Energy Technology Data Exchange (ETDEWEB)

    Krot, N.; Shilov, V.; Bessonov, A.; Budantseva, N.; Charushnikova, I.; Perminov, V.; Astafurova, L. [Russian Academy of Science (Russian Federation). Inst. of Physical Chemistry

    1996-06-06

    Highly alkaline radioactive waste solutions originating from production of plutonium for military purposes are stored in underground tanks at the U.S. Department of Energy Hanford Site. The purification of alkaline solutions from neptunium and plutonium is important in the treatment and disposal of these wastes. This report describes scoping tests with sodium hydroxide solutions, where precipitation techniques were investigated to perform the separation. Hydroxides of iron (III), manganese (II), cobalt (II, III), and chromium (III); manganese (IV) oxide, and sodium uranate were investigated as carriers. The report describes the optimum conditions that were identified to precipitate these carriers homogeneously throughout the solution by reductive, hydrolytic, or catalytic decomposition of alkali-soluble precursor compounds by a technique called the Method of Appearing Reagents. The coprecipitation of pentavalent and hexavalent neptunium and plutonium was investigated for the candidate agents under optimum conditions and is described in this report along with the following results. Plutonium coprecipitated well with all tested materials except manganese (IV) oxide. Neptunium only coprecipitated well with uranate. The report presents a hypothesis to explain these behaviors. Further tests with more complex solution matrices must be performed.

  3. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  4. Pulse radiolysis for the study of lead salt solutions

    International Nuclear Information System (INIS)

    Breitenkamp, M.

    1976-01-01

    The Pb + ions are produced from Pb 2 + in lead perchlorate solutions by reduction with hydrated electrons, and the absorption spectrum of this ion has been measured together with a time differential observation in the micro- and millisecond range of the disparation of these ions from the solution in the presence of different substances. For these studies the method of pulsed radiolysis has been applied, detecting the short lifed intermediate reaction products by optical absorption and electric conductivity measurements. First an attempt has been made to produce the Pb + ions also by reduction of Pb 2 + with H-atoms. If Pb + and H is produced simultaneously in an aqueous solution the reaction Pb + + H -> PbH + can occur. The absorption spectrum of the short lifed species PbH + has been studied together with the second order evanescence. In addition Pb 2 + has been reduced by i-propanol radicals at high Pb 2 + concentrations. The second order evanescence has been observed and the rate constant of the reaction 2Pb + -> Pb + Pb 2 + has been measured. The Pb 2 + ions can also be reduced by CO 2- radicals, which are formed in the presence of formiate. The observations can be interpreted by the assumption of the primary reaction Pb 2 + + CO 2- -> PbCO 2+ . the spectrum of the product PbCO 2+ has been measured. A second order reaction of PbCO 2+ is observed with a resulting unstable particle of the structure Pb 2 CO 2 2 + . Finally the oxidation of Pb + by the OH-radical and by hydrogen peroxide has been studied. (orig./HK) [de

  5. Radiolytic dimerization of tyrosine in alkaline solutions of poly-L-tyrosine, glycyl-L-tyrosine and tyrosine

    International Nuclear Information System (INIS)

    Boguta, G.; Dancewicz, A.M.

    1982-01-01

    Blue fluorescence characteristic of dityrosine appeared in γ-irradiated solutions of tyrosine, glycyl-L-tyrosine or polytyrosine (MW 110,000). The intensity of fluorescence was used for the determination of the dityrosine concentration in hydrolysed samples. The radiation-induced formation of dityrosine depended on pH and on the presence of oxygen during radiolysis carried out with a total dose of the order of 1000 Gy. The presence of oxygen in the system suppressed the formation of dityrosine in solution at low or neutral pH but had no effect on this process in alkaline solutions. Except for the radiolysis of air-saturated poly-L-tyrosine solutions, where G(Dityrosine) = 0.35, the yields of dityrosine at high pH were lower than the yields obtained during radiolysis at low pH and in the absence of oxygen. (author)

  6. Investigation into formation of nanoparticles of tetravalent neptunium in slightly alkaline aqueous solution

    International Nuclear Information System (INIS)

    Husar, Richard

    2015-01-01

    Considering the worldwide growing discharge of minor actinides and the current need for geological disposal facilities for radioactive waste, this work provides a contribution to the safety case concerning Np transport if it would be released from deep repository sites and moving from alkaline cement conditions (near-field) to more neutral environmental conditions (far-field). The reducing conditions in a nuclear waste repository render neptunium tetravalent, which is assumed to be immobile in aqueous environment due to the low solubility solution of Np(IV). For tetravalent actinide nuclides, the most significant transport should occur via colloidal particles. This work demonstrates the formation of intrinsic neptunium dioxide nanocrystals and amorphous Np(IV) silica colloids under environmentally relevant conditions. The dissociation of the initial soluble Np(IV) complex (i.e. [Np(IV)(CO 3 ) 5 ] 6- ) induces the intrinsic formation of nanocrystalline NpO 2 in the solution phase. The resulting irregularly shaped nanocrystals with an average size of 4 nm exhibit a face-centered cubic (fcc), fluorite-type structure (space group Fm anti 3m). The NCs tend to agglomerate under ambient conditions due to the weakly charged hydrodynamic surface at neutral pH (zetapotential ζ ∝0 mV). The formation of micron-sized agglomerates, composed of nanocrystals of 2-5 nm in size, and the subsequent precipitation cause immobilization of the major amount of Np(IV) in the Np carbonate system. Agglomeration of NpO 2 nanocrystals in dependence on time was indicated by PCS and UV-vis absorption spectroscopy with the changes of baseline characteristics and absorption maximum at 742 nm. Hitherto, unknown polynuclear species as intermediate species of NpO 2 nanocrystal formation were isolated from solution and observed by HR-TEM. These polynuclear Np species appear as dimers, trimers and hexanuclear compounds in analogy with those reported for other actinides. Intrinsic formation of NpO 2

  7. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  8. The potential/pH diagram of silver in aqueous ammonium salt solution

    NARCIS (Netherlands)

    Sluyters, J.H.; Wijnen, M.D.; Hul, H.J. van den

    1961-01-01

    The potential/pH diagram of silver in aqueous ammonium salt solution at 25°C has been calculated and verified experimentally. Calculations were carried out on the basis of the standard potential of the silver/silver-ion couple, the dissociation constants of the silver mono- and di-ammonia

  9. Molecular dynamics study of charged dendrimers in salt-free solution : effect of counterions

    NARCIS (Netherlands)

    Gurtovenko, A.A.; Lyulin, S.V.; Karttunen, M.E.J.; Vattulainen, I.

    2006-01-01

    Polyamidoamine dendrimers, being protonated under physiological conditions, represent a promising class of nonviral, nanosized vectors for drug and gene delivery. We performed extensive molecular dynamics simulations of a generic model dendrimer in a salt-free solution with dendrimer’s terminal

  10. Effect of temperature and salting-out agents on the sorption of nitrophenols from aqueous solutions

    Directory of Open Access Journals (Sweden)

    E. V. Churilina

    2013-01-01

    Full Text Available Sorption of nitrophenols from aqueous media by сrosslinked N-vinylpyrrolidone-based polymer in static conditions are studied depending on the pH of the solution and the nature of the nitrophenols. It has been established that a temperature and the introduction of salting-out agents influence on the sorption of nitrophenols.

  11. Sodium concentration in home made salt – sugar – solution (sss ...

    African Journals Online (AJOL)

    In a cohort of 210 young mothers, selected through cluster sampling technique from Ogida health district of Egor Local Government Area of Edo State, the electrolyte concentration of prepared salt-sugar-solutions (SSS) were evaluated. This was predicated on the need to determine the effects of introduction of various ...

  12. Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents

    OpenAIRE

    Ratajczak Tomasz

    2017-01-01

    Flotation data on copper-bearing shale in aqueous solutions of inorganic electrolytes (NaCl, Na2SO4, KPF6, NH4Cl) and organic reagents (ethylamine, propylamine) as frothers were presented and discussed. The relationships between shale flotation, surface tension of aqueous solution and foam height during bubbling with air in the flotation system were presented. It has been found that flotation of shale in the presence of inorganic salts the yield was directly proportional to the surface tensio...

  13. Development of a mathematical model of a packed column for benzene removal from salt solutions

    International Nuclear Information System (INIS)

    Georgeton, G.K.

    1989-01-01

    A mathematical model of a packed column was developed to describe the removal of benzene from radioactive salt solutions at the Savannah River Site. The model was developed from existing, generalized mass transfer correlations for randomly dumped packing, and the correlations were adapted for structured packing. Thermophysical data specific to the solutions of interest were incorporated into the model. Verification of the code was completed using operating data from stripping columns at other locations

  14. Small Column Ion Exchange Analysis for Removal of Cesium from SRS Low Curie Salt Solutions Using Crystalline Silicotitanate (CST) Resin

    International Nuclear Information System (INIS)

    ALEMAN, SEBASTIAN

    2004-01-01

    Savannah River Technology Center (SRTC) researchers modeled ion exchange removal of cesium from dissolved salt waste solutions. The results assist in evaluating proposed configurations for an ion exchange process to remove residual cesium from low curie waste streams. A process for polishing (i.e., removing small amounts) of cesium may prove useful should supernate draining fail to meet the Low Curie Salt (LCS) target limit of 0.1 Ci of Cs-137 per gallon of salt solution. Cesium loading isotherms and column breakthrough curves for Low Curie dissolved salt solutions were computed to provide performance predictions for various column designs

  15. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  16. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    Science.gov (United States)

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  17. Influence of ionic strength and OH(-) ion concentration on the Cu(II) complex formation with EDTA in alkaline solutions.

    Science.gov (United States)

    Norkus, E; Vaskelis, A; Zakaite, I

    1996-03-01

    D.c. polarographic data show that the complex formation of copper ions with EDTA depends markedly on the ionic strength of the solution at pH 8-10. This is primarily associated with the dependence of the fourth deprotonization constant of EDTA on the solution ionic strength: when it increases from 0.4 to 3.4, the pK(a4) value decreases from 9.5 to 8.2. According to polarographic and spectrophotometric data the degree of Cu(II) complexation increases at pH>10 due to transformation of the complex CuY(2-) to the more stable CuY(OH)(3-) (Y(4-), a fully deprotonized anion of EDTA), but it decreases with increase in alkalinity in a highly alkaline solution (pH>13.5). The latter result could be explained by the decrease in the EDTA anion activity. The calculated values of the activity coefficient are lower than 0.05 at pH>14.

  18. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  19. Preliminary evaluation of solution-mining intrusion into a salt-dome repository

    International Nuclear Information System (INIS)

    1981-06-01

    This report is the product of the work of an ONWI task force to evaluate inadvertant human intrusion into a salt dome repository by solution mining. It summarizes the work in the following areas: a general review of the levels of defense that could reduce both the likelihood and potential consequences of human intrusion into a salt dome repository; evaluation of a hypothetical intrusion scenario and its consequences; recommendation for further studies. The conclusions of this task force report can be summarized as follows: (1) it is not possible at present to establish with certainty that solution mining is credible as a human-intrusion event. The likelihood of such an intrusion will depend on the effectiveness of the preventive measures; (2) an example analysis based on the realistic approach is presented in this report; it concluded that the radiological consequences are strongly dependent upon the mode of radionuclide release from the waste form, time after emplacement, package design, impurities in the host salt, the amount of a repository intercepted, the solution mining cavity form, the length of time over which solution mining occurs, the proportion of contaminated salt source for human consumption compared to other sources, and the method of salt purification for culinary purposes; (3) worst case scenarios done by other studies suggest considerable potential for exposures to man while preliminary evaluations of more realistic cases suggest significantly reduced potential consequences. Mathematical model applications to process systems, guided by more advanced assumptions about human intrusion into geomedia, will shed more light on the potential for concerns and the degree to which mitigative measures will be required

  20. Sealing of Anodised Aluminium Alloys with Rare Earth Metal Salt Solutions

    OpenAIRE

    Mansfield, C.; Chen, F.; Breslin, Carmel B.; Dull, D.

    1998-01-01

    Boric‐sulfuric acid anodized (BSAA) aluminum alloys have been sealed in hot solutions of cerium or yttrium salts. For comparison, sealing has also been performed in the presently used dilute chromate solution, boiling water, and a cold nickel fluoride solution. The corrosion resistance of the sealed BSAA Al alloys Al 2024, Al 6061, and Al 7075 has been evaluated by recording impedance spectra during exposure in 0.5 N NaCl for 7 days. Shorter or longer exposure times have also been used depend...

  1. Contribution to the study of uranyl salts in butyl phosphate solutions

    International Nuclear Information System (INIS)

    Coulon, A.

    1965-06-01

    A spectroscopic study in the normal infrared region and involving the following associations: tri-alkyl phosphates (tri-butyl, tri-ethyl, tri-methyl), uranyl salts (nitrate, chloride, acetate) has confirmed the existence of an interaction between the phosphoryl group and the uranium atom, as shown by a movement of absorption band for the valency P = 0 from ∼ 1270 cm -1 to ∼ 1180 cm -1 . A study of the preparation, analysis and spectroscopy of the solids obtained by the precipitation of uranyl salts by acid butyl phosphates has been carried out. By infrared spectrophotometry it has been shown that the tri-butyl and di-butyl phosphates are associated in non-polar diluents even before the uranium is introduced. The extraction of uranyl salts from acid aqueous solutions by a diluted mixture of tri-butyl and di-butyl phosphates proceeds by different mechanisms according to the nature of the ion (nitrate or chloride). (author) [fr

  2. Ion clustering in aqueous salt solutions near the liquid/vapor interface

    Directory of Open Access Journals (Sweden)

    J.D. Smith

    2016-03-01

    Full Text Available Molecular dynamics simulations of aqueous NaCl, KCl, NaI, and KI solutions are used to study the effects of salts on the properties of the liquid/vapor interface. The simulations use the models which include both charge transfer and polarization effects. Pairing and the formation of larger ion clusters occurs both in the bulk and surface region, with a decreased tendency to form larger clusters near the interface. An analysis of the roughness of the surface reveals that the chloride salts, which have less tendency to be near the surface, have a roughness that is less than pure water, while the iodide salts, which have a greater surface affinity, have a larger roughness. This suggests that ions away from the surface and ions near the surface affect the interface in opposite ways.

  3. Mössbauer spectroscopic studies of frozen aqueous solutions of Fe3+ salts

    DEFF Research Database (Denmark)

    Mørup, Steen; Knudsen, J. E.; Nielsen, M. K.

    1976-01-01

    Frozen aqueous solutions (FAS) of Fe3+ salts have been investigated by use of Mössbauer spectroscopy in order to study the conditions for formation of glasses. A general discussion of spin–spin relaxation in glasses is given, and we discuss how changes in the spin–spin relaxation time can...... be attributed to changes in the average separation between the iron ions. In the FeCl3–H2O system, it was found that homogeneous glasses are easily formed when the salt concentration is larger than 3.5 moles FeCl3 per 100 moles H2O. In more dilute samples, ice crystallizes during cooling, while the salt...

  4. Bentonite reactivity in alkaline solutions: results of the Cyprus natural analogue project (CNAP)

    International Nuclear Information System (INIS)

    Alexander, W.R.; Milodowski, A.E.; Pitty, A.F.; Hardie, S.M.L.; Korkeakoski, P.; Norris, S.; Puigdomenech, I.; Sellin, P.; Rigas, M.

    2012-01-01

    Document available in extended abstract form only. Bentonite is one of the most safety-critical components of the engineered barrier system in the disposal concepts developed for many types of radioactive waste. Bentonite is used due to its favourable properties (including plasticity, swelling capacity, colloid filtration, low hydraulic conductivity, high retardation of key radionuclides) and its stability in relevant geological environments. However, bentonite is unstable under alkaline conditions and, due to the fact that cementitious materials react with groundwater to produce initial leachates with pH >13 (later falling to around pH 12.5), this has driven recent interest in low alkali cements, because the pH of the leachate is somewhat lower than standard OPC (Ordinary Portland Cement), lying around pH 10-11. It is hoped that this lower pH will reduce bentonite reaction, so allowing the use of low alkali cements in close proximity with bentonite. Assuring the long-term stability of bentonite in contact with such alkaline fluids under conditions representative of a deep geological repository requires complementary laboratory, modelling and in situ studies. In particular, to build a robust safety case, it is important to have supporting natural analogue data to confirm understanding - and validate models - of the likely long-term performance of bentonite. As a result of a review of the available literature and recent geological investigations by the authors, several sites in Cyprus were selected as particularly promising for this purpose. All alkaline groundwaters studied so far in Cyprus originate from ophiolite host rocks which are wide-spread across the island. The alkaline pH values (generally between pH 10 and 11, but a maximum of 12 has been observed) reported in the groundwaters are a product of the serpentinization of the ophiolites. The presence of bentonite and other clay-rich rocks in close proximity to the natural alkaline groundwaters permits the

  5. The salting-out of molibdoferrats(II from aqueous solutions by the organic solvents

    Directory of Open Access Journals (Sweden)

    Mykola V. Nikolenko

    2016-12-01

    Full Text Available The aim of this work was to develop a method for producing of molybdoferrate(II precipitates by salting-out them from aqueous solutions by means of organic solvents. Dependence of the composition of molybdoferrate(II precipitates on the pH of the reaction solutions was studied. Experiments on salting-out of molybdoferrate(II with various organic solvents were carried out. As a result it was found that the best reagent for the molybdoferrate(II salting-out is acetone. By its use, lowest quantity of the ammonium sulfate impurities was obtained. It is also of importance that by using of acetone the process of regeneration by distillation of the reaction solutions is characterized by the lowest energy consumption. A functional relationship between the solubility of molybdoferrates(II and dielectric constant of the medium was established. By increasing the dielectric constant of the solvent solubility of molybdoferrates(II rapidly increases. The linearized dependence ln(lnS–ln(1/e was proposed to predict the solubility of molybdoferrates(II in various aqueous-organic solutions.

  6. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    International Nuclear Information System (INIS)

    Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" data-affiliation=" (Dipartimento di Ingegneria Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" >Lassinantti Gualtieri, Magdalena; Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" data-affiliation=" (Dipartimento di Ingegneria Enzo Ferrari, Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy))" >Romagnoli, Marcello; Pollastri, Simone; Gualtieri, Alessandro F.

    2015-01-01

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed

  7. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Romagnoli, Marcello [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Pollastri, Simone; Gualtieri, Alessandro F. [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, Via S. Eufemia 19I, I-41121 Modena (Italy)

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  8. Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution

    Science.gov (United States)

    Mufundirwa, Albert; Harrington, George F.; Smid, Břetislav; Cunning, Benjamin V.; Sasaki, Kazunari; Lyth, Stephen M.

    2018-01-01

    Due to the high cost and limited availability of platinum, the development of non-platinum-group metals (non-PGM) catalysts is of paramount importance. A promising alternative to Pt are Fe-N-C-based materials. Here we present the synthesis, characterization and electrochemistry of a template-free nitrogen-doped carbon foam, impregnated with iron. This low-cost and gram-scale method results in materials with micron-scale pore size and large surface area (1600 m2g-1). When applied as an oxygen reduction reaction (ORR) electrocatalyst in alkaline solution, the Fe-N-C foams display extremely high initial activity, slightly out-performing commercially available non-PGM catalysts (NCP-2000, Pajarito Powder). The load-cycle durability in alkaline solution is investigated, and the performance steadily degrades over 60,000 potential cycles, whilst the commercial catalyst is remarkably stable. The post-operation catalyst microstructure is elucidated by transmission electron microscopy (TEM), to provide insight into the degradation processes. The resulting images suggest that potential cycling leads to leaching of atomically dispersed Fe-N2/4 sites in all the catalysts, whereas encapsulated iron nanoparticles are protected.

  9. EFFECTS OF INORGANIC SALT SOLUTION ON SOME PROPERTIES OF COMPACTED CLAY LINERS

    Directory of Open Access Journals (Sweden)

    KHALID R. MAHMOOD AL-JANABI

    2017-12-01

    Full Text Available Processed and natural clays are widely used to create impermeable liners in solid waste disposal landfills. The engineering properties of clay liners can be significantly affected by the leachate from the waste mass. In this study, the effect of inorganic salt solutions will be investigated. These solutions used at different concentrations. Two type of inorganic salt MnSO4 and FeCl3 are used at different concentration 2%,5%, 10%. Clay used in this study was the CL- clay (kaolinite. The results show that the consistency limits and unconfined compressive strength increased as the concentration of salts increased. While the permeability tends to decrease as salt concentration increased. Also, the compression index decreases as the concentration increased from 2% to 5%. The swelling index tends to increase slightly as the concentration of MnSO4 increased, while its decrease as the concentration of FeCl3. In this paper, it is aimed to investigate the performance of compacted clay liner exposed to the certain chemicals generated by the leachate and their effects on the geotechnical properties of compacted clay liner such consistency limits, permeability coefficient, compressibility characteristics and unconfined compressive strength.

  10. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rashvand avei, M. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Jafarian, M., E-mail: mjafarian@kntu.ac.ir [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Moghanni Bavil Olyaei, H. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-8516, Tehran (Iran, Islamic Republic of); Hosseini, S.M. [Jahad Organization – Science and Technology Center, Tehran (Iran, Islamic Republic of); Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2013-12-16

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm{sup −2}. • High inhibitor efficiency about 97% for AA6060.

  11. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    International Nuclear Information System (INIS)

    Rashvand avei, M.; Jafarian, M.; Moghanni Bavil Olyaei, H.; Gobal, F.; Hosseini, S.M.; Mahjani, M.G.

    2013-01-01

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm −2 . • High inhibitor efficiency about 97% for AA6060

  12. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1997-04-01

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  13. Characterization of swollen structure of high-density polyelectrolyte brushes in salt solution by neutron reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Motoyasu; Takahara, Atsushi [Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Terayama, Yuki [Graduate School of Engineering, Kyushu University (Japan); Hino, Masahiro [Reactor Research Institute, Kyoto University (Japan); Ishihara, Kazuhiko, E-mail: takahara@cstf.kyushu-u.ac.j [Graduate School of Engineering, University of Tokyo (Japan)

    2009-08-01

    Zwitterionic and cationic polyelectrolyte brushes on quartz substrate were prepared by surface-initiated atom transfer radical polymerization of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (METAC), respectively. The effects of ionic strength on brush structure and surface properties of densely grafted polyelectrolyte brushes were analysed by neutron reflectivity (NR) measurements. NR at poly(METAC)/D{sub 2}O and poly(MPC)/D{sub 2}O interface revealed that the grafted polymer chains were fairly extended from the substrate surface, while the thickness reduction of poly(METAC) brush was observed in 5.6 M NaCl/D{sub 2}O solution due to the screening of the repulsive interaction between polycations by hydrated salt ions. Interestingly, no structural change was observed in poly(MPC) brush even in a salt solution probably due to the unique interaction properties of phosphorylcholine units.

  14. Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane

    International Nuclear Information System (INIS)

    Villaluenga, J.P.G.; Barragan, V.M.; Seoane, B.; Ruiz-Bauza, C.

    2006-01-01

    The sorption of water-methanol mixtures containing a dissolved chloride salt in a Nafion 117 membrane, and their transport through the membrane under the driving force of a pressure gradient, have been studied. Both type of experiments was performed by using five different salts: lithium chloride, sodium chloride, cesium chloride, magnesium chloride and calcium chloride. It was observed that both the permeation flow through the membrane and the membrane swelling increase significantly with the methanol content of the solutions. These facts are attributed to the increase in wet membrane porosity, which brings about the increase of the mobility of solvents in the membrane, besides the increase of the mobility of the polymer pendant chains. In contrast, the influence of the type of electrolyte on the membrane porosity and permeability is not very important, with the exception of the CsCl solutions, which is probably due to the small hydration ability of the Cs + ion

  15. The interaction of Np(V), Pu(VI) and Tc(VII) with metal in alkaline solutions

    International Nuclear Information System (INIS)

    Silin, V.I.; Kareta, A.V.

    1998-01-01

    The interaction of Np(V), Pu(VI) and Tc(VII) with metal reductants Zn, Cr, Sn and their alloys was investigated in 0.5-4 mol l -1 NaOH solutions in static and dynamic conditions (by filtration of solutions through the column filled with grains of metal). In this paper, it was found that the reduction and succeeding precipitation hydroxides of these elements, on the surface of metal grains from 0.5 to 4 mol l -1 NaOH solutions, gives a decontamination factor (DF) from 1.1 to 67. The best result was achieved for Pu (DF=67) on Cr grains after 2.5 h contact at 60 C with 0.5 mol l -1 NaOH solution containing Pu(VI). Increasing the NaOH concentration, and the addition of chromate ions and complex-forming agents to alkaline solution results in a decrease of the decontamination factor (DF). A better result for Np sorption from 1 mol l -1 NaOH solutions was achieved after longer contact, than for Pu, with Cr and Zn grains. The maximum DF=8.9 was achieved for Tc on a column with Zn grains after filtration with a 3.5 mol l -1 NaOH solution containing Tc(VII). Washing out of Np and Pu, sorbed on the Cr grain surfaces, was achieved using an acid solution (1 mol l -1 HNO 3 ). The technetium was desorbed from metal surface by 10% H 2 O 2 solution. (orig.)

  16. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  17. Crystallization of DNA fragments from water-salt solutions, containing 2-methylpentane-2,3-diol.

    Science.gov (United States)

    Osica, V D; Sukharevsky, B Y; Vasilchenko, V N; Verkin, B I; Polyvtsev, O F

    1976-09-01

    Fragments of calf thymus DNA have been crystallized by precipitation from water-salt solutions, containing 2-methylpentane-2,3-diol (MPD). DNA crystals usually take the form either of spherulites up to 100 mu in diameter or of needles with the length up to 50 mu. No irreversible denaturation of DNA occurs during the crystallization process. X-ray diffraction from dense slurries of DNA crystals yields crystalline powder patterns.

  18. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    Science.gov (United States)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  19. Titanium Nitride Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline Solution

    KAUST Repository

    Ohnishi, R.; Katayama, M.; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, J.; Domen, K.

    2013-01-01

    Monodispersed TiN nanoparticles with a narrow size distribution (7–23 nm) were synthesized using mesoporous graphitic (mpg)-C3N4 templates with different pore sizes. The nano-materials were examined as electrocatalysts for oxygen reduction reaction (ORR) in alkaline media. The TiN nanoparticles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 sorption, transmission electron microscopy (TEM), and C-H-N elemental analysis. The ORR current increased as the TiN particle size decreased, and hence the surface area of TiN nanoparticles reactive to ORR increased. Rotating ring disk electrode (RRDE) measurements revealed that the ORR on TiN surfaces proceeded mainly via a two-electron pathway, producing H2O2 as the main product. Mechanistic aspects of ORR on TiN surfaces are discussed.

  20. Titanium Nitride Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline Solution

    KAUST Repository

    Ohnishi, R.

    2013-03-12

    Monodispersed TiN nanoparticles with a narrow size distribution (7–23 nm) were synthesized using mesoporous graphitic (mpg)-C3N4 templates with different pore sizes. The nano-materials were examined as electrocatalysts for oxygen reduction reaction (ORR) in alkaline media. The TiN nanoparticles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 sorption, transmission electron microscopy (TEM), and C-H-N elemental analysis. The ORR current increased as the TiN particle size decreased, and hence the surface area of TiN nanoparticles reactive to ORR increased. Rotating ring disk electrode (RRDE) measurements revealed that the ORR on TiN surfaces proceeded mainly via a two-electron pathway, producing H2O2 as the main product. Mechanistic aspects of ORR on TiN surfaces are discussed.

  1. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution

    Science.gov (United States)

    Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang

    2011-12-01

    A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.

  2. Lignocellulosic Composites Prepared Utilizing Aqueous Alkaline/Urea Solutions with Cold Temperatures

    Directory of Open Access Journals (Sweden)

    Brent Tisserat

    2018-01-01

    Full Text Available Lignocellulosic composites (LCs were fabricated by partially dissolving cotton to create a matrix that was reinforced with osage orange wood (OOW particles and/or blue agave fibers (AF. LCs were composed of 15–35% cotton matrix and 65–85% OWW/AF reinforcement. The matrix was produced by soaking cotton wool in a cold aqueous alkaline/urea solvent and was stirred for 15 minutes at 350 rpm to create a viscous gel. The gel was then reinforced with lignocellulosic components, mixed, and then pressed into a panel mold. LC panels were soaked in water to remove the aqueous solvent and then oven dried to obtain the final LC product. Several factors involved in the preparation of these LCs were examined including reaction temperatures (−5 to −15°C, matrix concentration (15–35% cotton, aqueous solvent volume (45–105 ml/panel, and the effectiveness of employing various aqueous solvent formulations. The mechanical properties of LCs were determined and reported. Conversion of the cotton into a suitable viscous gel was critical in order to obtain LCs that exhibited high mechanical properties. LCs with the highest mechanical properties were obtained when the cotton wools were subjected to a 4.6% LiOH/15% urea solvent at −12.5°C using an aqueous solvent volume of 60 ml/panel. Cotton wool subjected to excessive cold alkaline solvents volumes resulted in irreversible cellulose breakdown and a resultant LC that exhibited poor mechanical properties.

  3. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  4. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds

    OpenAIRE

    Okuda, Tetsuji; Baes, Aloysius U.; Nishijima, Wataru; Okada, Mitsumasa

    2001-01-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC into tap water formed insoluble matters. The formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each m...

  5. Effects of aging on PuO{sub 2} . xH{sub 2}O particle size in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2013-08-01

    Between 1944 and 1989, 54.5 metric tons of the United States' weapons-grade plutonium and an additional 12.9 metric tons of fuels-grade plutonium were produced in and separated from irradiated uranium metal fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 g/L (or {proportional_to} 0.0002 wt. %) in the {proportional_to} 200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g., iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of hydrated plutonium oxide, PuO{sub 2} . xH{sub 2}O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium, precipitated in the alkaline tank waste by neutralization from acid solution, probably entered as 2-5-nm PuO{sub 2} . xH{sub 2}O, crystallite particles that, because of the low concentration of the neutral Pu(IV) dissolved species and opposition from radiolytic processes, grow from that point at exceedingly slow rates. (orig.)

  6. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    International Nuclear Information System (INIS)

    Worthington, R.E.; Magdics, A.

    1987-01-01

    A process is described for stripping uranium for a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate or hydroxide thereby stripping uranium from the organic extractant into the stripping solution. The resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle

  7. Adding salt to a surfactant solution: Linear rheological response of the resulting morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Gaudino, Danila; Pasquino, Rossana, E-mail: r.pasquino@unina.it; Grizzuti, Nino [DICMaPI, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2015-11-15

    The micellar system composed of Cetylpyridinium Chloride-Sodium Salicylate (CPyCl-NaSal) in brine aqueous solutions has been studied by systematically changing the salt concentration, in order to investigate the rheology of the arising morphologies. In particular, the zero-shear viscosity and the linear viscoelastic response have been measured as a function of the NaSal concentration (with [CPyCl] = 100 mM). The Newtonian viscosity shows a nonmonotonic dependence upon concentration, passing through a maximum at NaSal/CPyCl ≈ 0.6, and eventually dropping at higher salt concentrations. The progressive addition of salt determines first a transition from a Newtonian to a purely Maxwell-like behavior as the length of the micelles significantly increases. Beyond the peak viscosity, the viscoelastic data show two distinct features. On the one hand, the main relaxation time of the system strongly decreases, while the plateau modulus remains essentially constant. Calculations based on the rheological data show that, as the binding salt concentration increases, there is a decrease in micelles breaking rate and a decrease in their average length. On the other hand, in the same concentration region, a low-frequency elastic plateau is measured. Such a plateau is considered as the signature of a tenuous, but persistent branched network, whose existence is confirmed by cryo-transmission electron microscopy images.

  8. Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution

    DEFF Research Database (Denmark)

    Shi, Zhenguo; Geiker, Mette Rica; Lothenbach, Barbara

    2017-01-01

    Thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and thermodynamic modelling have been used to obtain Friedel's salt profiles for saturated mortar cylinders exposed to a 2.8 M NaCl solution. Comparison of the measured Friedel's salt profiles with the total chloride profiles...

  9. Recent studies of uranium and plutonium chemistry in alkaline radioactive waste solutions

    International Nuclear Information System (INIS)

    King, William D.; Wilmarth, William R.; Hobbs, David T.; Edwards, Thomas B.

    2008-01-01

    Solubility studies of uranium and plutonium in a caustic, radioactive Savannah River Site tank waste solution revealed the existence of uranium supersaturation in the as-received sample. Comparison of the results to predictions generated from previously published models for solubility in these waste types revealed that the U model poorly predicts solubility while Pu model predictions are quite consistent with experimental observations. Separate studies using simulated Savannah River Site evaporator feed solution revealed that the known formation of sodium aluminosilicate solids in waste evaporators can promote rapid precipitation of uranium from supersaturated solutions

  10. Corrosion of carbon steel in saturated high-level waste salt solutions

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    High level waste stored as crystallized salts is to be removed from carbon steel tanks by water dissolution. Dissolution of the saltcake must be performed in a manner which will not impact the integrity of the tank. Corrosion testing was performed to determine the amount of corrosion inhibitor that must be added to the dissolution water in order to ensure that the salt solution formed would not induce corrosion degradation of the tank materials. The corrosion testing performed included controlled potential slow strain rate, coupon immersion, and potentiodynamic polarization tests. These tests were utilized to investigate the susceptibility of the cooling coil material to stress corrosion cracking in the anticipated environments. No evidence of SCC was observed in any of the tests. Based on these results, the recommended corrosion requirements were that the temperature of the salt solution be less than 50 degrees C and that the minimum hydroxide concentration be 0.4 molar. It was also recommended that the hydroxide concentration not stay below 0.4 molar for longer than 45 days

  11. Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Liu, Xinmin; Cao, Changqing; Guo, Qingjie [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-08-01

    Low cost transition metal catalysts with high performance are attractive for the development of on-board hydrogen generation systems by catalytic hydrolysis of sodium borohydride (NaBH{sub 4}) in fuel cell fields. In this study, hydrogen production from alkaline NaBH{sub 4} via hydrolysis process over carbon-supported cobalt catalysts was studied. The catalytic activity of the supported cobalt catalyst was found to be highly dependent on the calcination temperatures. The hydrogen generation rate increases with calcination temperatures in the range of 200-400 C, but a high calcination temperature above 500 C led to markedly decreased activity. X-ray diffraction patterns reveal that the catalysts experience phase transition from amorphous Co-B to crystalline cobalt hydroxide with increase in calcination temperatures. The reaction performance is also dependent on the concentration of NaBH{sub 4}, and the hydrogen generation rate increases for lower NaBH{sub 4} concentrations and decreases after reaching a maximum at 10 wt.% of NaBH{sub 4}. (author)

  12. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    International Nuclear Information System (INIS)

    Kobayashi, Kazuya; Liang, Yunfeng; Matsuoka, Toshifumi; Sakka, Tetsuo

    2014-01-01

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules

  13. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  14. Improved hydrogen generation from alkaline NaBH{sub 4} solution using cobalt catalysts supported on modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Guo, Qingjie; Yue, Xuehai [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-12-15

    Hydrogen production from alkaline sodium borohydride (NaBH{sub 4}) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO{sub 3}. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO{sub 3} oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability. (author)

  15. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    Science.gov (United States)

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    International Nuclear Information System (INIS)

    Ning Li; Camassa, R.; Ecke, R.E.

    1995-01-01

    The authors report on the physical separation of dilute solutions using centrifugal techniques. They use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. They verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. The authors show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. They also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, they have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies the authors show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. The authors consider technical issues in the design of such a separation system

  17. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    International Nuclear Information System (INIS)

    Li Ning; Camassa, Roberto; Ecke, Robert E.; Venneri, Francesco

    1995-01-01

    We report on the physical separation of dilute solutions using centrifugal techniques. We use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. We verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. We show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. We also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, we have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies we show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. We consider technical issues in the design of such a separation system

  18. Influence of water and salt solutions on UVB irradiation of normal skin and psoriasis

    International Nuclear Information System (INIS)

    Boer, J.; Schothorst, A.A.; Boom, B.; Suurmond, D.; Hermans, J.

    1982-01-01

    The influence of tap-water (TW) and salt solutions on the minimal erythema dose (MED) was investigated for normal human skin and uninvolved skin of psoriasis patients. MED (UVB) determinations on the forearm revealed that: (1) the MED definitely decreases whenever the arm is immersed in TW or NaCl solutions with a low concentration (4%) prior to UVB exposure, whereas almost saturated NaCl solution (26%), as well as locum Dead Sea water (LDSW), do not produce a change in the MED, and (2) the decrease in MED obtained by wetting the skin with TW was no longer present when the skin was allowed to dry for 20 min. A decrease in water uptake by skin (in vivo) and by callus (in vitro) was found as the salt concentration of the external solution increased. It is proposed that water taken up by the skin plays an important role in the sensitivity of the skin to UVB exposure. Bathing in TW or 4% NaCl prior to UVB exposure offered a slight to moderate improvement in psoriasis over UVB irradiation alone. Finally, it was shown that there is no obvious difference in clearance of the psoriatic skin between a bath in TW, 4% NaCl, or LDSW prior to UVB exposure. (orig.)

  19. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    Ning Li; Camassa, R.; Ecke, R.E. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    The authors report on the physical separation of dilute solutions using centrifugal techniques. They use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. They verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. The authors show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. They also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, they have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies the authors show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. The authors consider technical issues in the design of such a separation system.

  20. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing, E-mail: xuebinghu2010@gmail.com [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Yu, Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Wang, Yongqing; Zhou, Jianer [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Song, Lixin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China)

    2015-02-28

    Graphical abstract: By adding an alkaline (NaOH or KOH) solution, the unprecipitated nano graphene oxide undergoes fast aggregation from the residual strong-acid filtrate of the modified Hummers method and forms the stable floccules when the pH value of the filtrate is about 1.7. The acid–base interaction with the surface functional groups of the carbon layers plays a role in the aggregation of the unprecipitated nano graphene oxide. - Highlights: • The novel and high-efficient method for separating graphene oxide was showed. • Graphene oxide undergoes aggregation and forms the floccules when pH value is ∼1.7. • The acid–base interaction plays a role in the aggregation of graphene oxide. - Abstract: In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid–base interaction with the surface functional groups of the carbon layers.

  1. Crystallization of inorganic salts from aqueous solutions in a microwave field

    International Nuclear Information System (INIS)

    Kochetkov, S. E.; Kuznetsov, V. A.; Lyashenko, A. V.; Bakshutov, V. S.

    2006-01-01

    The crystallization of some inorganic salts (KH 2 PO 4 , NaCl, Sr(NO 3 ) 2 , KNO 2 , Ca(OH) 2 ) by the thermal-gradient (with decreasing temperature) and solvent-evaporation methods using microwave heating of solutions is investigated. It is established that the growth rates of single crystals in a microwave field are an order of magnitude higher than obtained in other known techniques at comparable crystallization temperatures and supersaturations. For example, the growth rate of prismatic faces {100} of KH 2 PO 4 crystals is as high as 11 mm/day at supersaturations of ∼1.2%. The results obtained are discussed in the context of the effect of microwave radiation on the adsorption surface layers of crystals. Fine-grained phases of the salts under study are obtained by evaporation of the solvent

  2. Corrosion of Cu-xZn alloys in slightly alkaline chloride solutions studied by stripping voltammetry and microanalysis.

    Science.gov (United States)

    Milosev, I; Minović, A

    2001-01-01

    The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.

  3. Analysis of the dynamic behavior of porous nickel electrodes in alkaline solutions

    International Nuclear Information System (INIS)

    Real, Silvia G; Visintin, Arnaldo; Castro, Elida B

    2004-01-01

    The nickel electrode is important for its electrocatalytic properties, when it is used in water electrolysis, and for use as a positive terminal in alkaline nickel-cadmium, nickel-iron, nickel-zinc, nickel-hydrogen and nickel-metal hydride batteries. Since there are many factors related to the functioning of these batteries that have still not been clarified, such as the memory effect associated with the change in structure of the nickel hydroxide and the phenomenon of 'battery sudden death', that produce serious problems mostly in spaces uses, this work discusses the dynamic behavior of the porous nickel hydroxide electrode. This electrode possesses outstanding properties such as high power density, good cyclability and elevated specific energy, which make it unique for the above-mentioned applications. The electrochemical storage of energy in this electrode is based on the reversible characteristics of nickel hydroxide/oxhydroxide redox coupling. The reversibility of the process is an important factor in battery materials. In the case of the Ni oxide, during the electrode discharge H + is inserted and this process inverts during the charging. This work presents the results obtained with the use of impedance spectroscopy for different discharge states of the electrode material in order to correlate its electrochemical properties according to the development of physical chemical models. These models include the charging and discharging processes, the process of proton diffusion in the solid and the porous nature of the material. Knowledge about the functioning of the electrode material is obtained by adjusting the experimental data according to the model and the parametric identification to determine values associated with such variables as area of active material, diffusion coefficient of the H + , conductivity of the solid as a function of the discharge state and kinetic constants of the charge transfer process (CW)

  4. Study of the electroreduction of nitrate on copper in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Reyter, David [INRS Energie, Materiaux et Telecommunications, 1650 bd. Lionel Boulet, Varennes, Qc (Canada); Departement de Chimie, Universite du Quebec a Montreal, CP 8888, Montreal, Qc (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, CP 8888, Montreal, Qc (Canada); Roue, Lionel [INRS Energie, Materiaux et Telecommunications, 1650 bd. Lionel Boulet, Varennes, Qc (Canada)

    2008-08-20

    The electrocatalytic activity of a Cu electrode for the electroreduction of nitrate in alkaline medium was investigated by linear sweep voltammetry at stationary and rotating disc electrodes. Nitrate-reduction products generated upon prolonged electrolyses at different potentials were quantified. In addition, adsorption phenomena associated with the nitrate electroreduction process were characterized by electrochemical quartz crystal microbalance (EQCM) experiments. This data revealed that nitrate electroreduction process strongly depends on the applied potential. Firstly, at ca. -0.9 V vs. Hg/HgO, the electroreduction of adsorbed nitrate anions to nitrite anions was identified as the rate-determining step of the nitrate electroreduction process. Between -0.9 and -1.1 V, nitrite is reduced to hydroxylamine. However, during long-term electrolyses, hydroxylamine is not detected and presumably because it is rapidly reduced to ammonia. At potential more negative than -1.1 V, nitrite is reduced to ammonia. At ca. -1.45 V, i.e. just before the hydrogen evolution reaction, the abrupt decrease of the cathodic current is due to the electrode poisoning by adsorbed hydrogen. In addition, during the first minutes of nitrate electrolysis, a decrease of the copper electrode activity was observed at the three investigated potentials (-0.9, -1.1 and -1.4 V). From polarization and EQCM measurements, this deactivation was attributed to the adsorption of nitrate-reduction products, blocking the electrode surface and slowing down the nitrate electroreduction rate. However, it was demonstrated that the Cu electrode can be reactivated by the periodic application of a square wave potential pulse at -0.5 V, which causes the desorption of poisoning species. (author)

  5. Extraction of lanthanide(III) nitrates from water-salt solutions with n.-octanol

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Kudrova, A.V.; Valueva, O.V.; Pyartman, A.K.

    2004-01-01

    Extraction of lanthanide(III) nitrates (Ln=La-Nd, Sm-Gd) from aqueous-salt solutions at 298.15 K was studied using solution of n.-octanol, its concentration 6.31 mol/l. It was ascertained that at Ln(NO 3 ) 3 concentration in aqueous phase below 0.6 mol/l, there is actually no extraction. At higher concentrations of nitrates in aqueous phase the content of lanthanides(III) in organic phase increases in the series La-Gd. Isotherms of extraction were ascertained, its phase equilibria being described mathematically. It is shown that extraction of lanthanide(III) nitrates with n.-octanol should be realized from concentrated aqueous solutions [ru

  6. Synthesis of C60(OH)18-20 in aqueous alkaline solution under O2-atmosphere

    International Nuclear Information System (INIS)

    Alves, Gustavo Catao; Ladeira, Luiz Orlando; Righi, Ariete; Krambrock, Klaus; Pinheiro, Mauricio Veloso B.; Calado, Hallen Daniel; Gil, Rossimiriam Pereira de Freitas

    2006-01-01

    In this work we report on an alternative synthesis of water-soluble fullerenes known as fullerols, aiming for biomedical applications. The synthesis is based on a process in which polyethylene glycol (PEG400) is used as phase-transfer catalyst between fullerene/benzene and aqueous NaOH solutions. The polyhydroxylation of the fullerenes occurs in the NaOH solution under a continuous flow of O 2 to enhance the reaction yield. The resulting compound was characterized with infrared spectroscopy, nuclear magnetic resonance, thermo-gravimetric analysis and optical absorption. The formation of C 60 (OH) 18-20 in high yields was confirmed. (author)

  7. Recovery of uranium from alkaline ore (Tummalapalle) leach solution using novel precipitating method

    International Nuclear Information System (INIS)

    Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.; Chakravartty, J.K.

    2014-01-01

    The aim of present study is recovery of uranium from such ore leach solution containing 2 O 7 at pH ∼12.5. The average particle size of the MgU 2 O 7 particles was 20 micron and overall uranium recovery was 97%. The composition of final precipitate was characterized using XRD and surface morphology was studied using SEM

  8. Coloring Rate of Phenolphthalein by Reaction with Alkaline Solution Observed by Liquid-Droplet Collision.

    Science.gov (United States)

    Takano, Yuuka; Kikkawa, Shigenori; Suzuki, Tomoko; Kohno, Jun-ya

    2015-06-11

    Many important chemical reactions are induced by mixing two solutions. This paper presents a new way to measure rates of rapid chemical reactions induced by mixing two reactant solutions using a liquid-droplet collision. The coloring reaction of phenolphthalein (H2PP) by a reaction with NaOH is investigated kinetically. Liquid droplets of H2PP/ethanol and NaOH/H2O solutions are made to collide, which induces a reaction that transforms H2PP into a deprotonated form (PP(2-)). The concentration of PP(2-) is evaluated from the RGB values of pixels in the colored droplet images, and is measured as a function of the elapsed time from the collision. The obtained rate constant is (2.2 ± 0.7) × 10(3) M(-1) s(-1), which is the rate constant for the rate-determining step of the coloring reaction of H2PP. This method was shown to be applicable to determine rate constants of rapid chemical reactions between two solutions.

  9. Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration

    Directory of Open Access Journals (Sweden)

    Jefferson Luiz de Aguiar Paes

    2014-10-01

    Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

  10. Coprecipitation of trace amounts of 137Cs and 85Sr with [Na(18-Crown-6]BPh4 from neutral and alkaline solutions

    International Nuclear Information System (INIS)

    Kulyukhin, S.A.; Konovalova, N.A.; Rumer, I.A.; Kamenskaya, A.N.; Mikheev, N.B.

    2005-01-01

    Coprecipitation of 137 Cs and 85 Sr with [Na(18-crown-6]BPh 4 solid phase from aqueous, aqueous-ethanolic, and alkaline solutions is studied. 137 C s and 85 Sr co-crystallize with [Na(18-crown-6]BPh 4 from aqueous and aqueous-ethanolic solutions. The cocrystallization coefficients D of 137 Cs and 85 Sr from aqueous solutions are 2.6 ± 0.5 and 3.3 ± 0.3, respectively. For aqueous-ethanolic solutions, the corresponding values are 4.4 ± 0.5 and 3.4 ± 0.4. In the alkaline solutions (0.1 and 1 M NaOH), 54-74% of 137 Cs and 37-51% of 85 Sr pass into the [Na(18-crown-6)]BPh 4 solid phase, depending on the crown ether concentration in the system [ru

  11. Extreme ductile deformation of fine-grained salt by coupled solution-precipitation creep and microcracking: Microstructural evidence from perennial Zechstein sequence (Neuhof salt mine, Germany)

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Desbois, G.; Schwedt, A.; Lexa, O.; Urai, J. L.

    2012-01-01

    Roč. 37, April (2012), s. 89-104 ISSN 0191-8141 R&D Projects: GA ČR GA14-15632S Institutional support: RVO:67985530 Keywords : rock salt * solution-precipitation creep * microcracking * Griffith crack * fluid inclusion trails Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.285, year: 2012

  12. Patterned forests of vertically-aligned multiwalled carbon nanotubes using metal salt catalyst solutions.

    Science.gov (United States)

    Garrett, David J; Flavel, Benjamin S; Baronian, Keith H R; Downard, Alison J

    2013-01-01

    A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.

  13. Formation of ammonia complexes of alkaline earth elements in aqueous solutions

    International Nuclear Information System (INIS)

    Padar, T.G.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.

    1990-01-01

    Coefficients of ammonia distribution between aqueous solutions of calcium, strontium, barium and ammonium perchlorate mixtures at ionic strength - 0.50; 1.0 and 1.5 at 298.2 K and ammonia concentrations 0.2-10 mol/dm 3 are measured. Formation of ammonia complexes of M(NH 3 ) n 2+ composition is shown. Logarithms of stepped stability constants for solutions with zero ionic strength for Ca 2+ are: -0.13; -0.25; -0.52 and -0.77, where n=1-4; for Sr 2+ : -0.04; -0.42 and -0.70, where n=1-3 and for Ba 2+ : -0.11; -0.50 and 0.76, where n=1-3

  14. On the radiolysis of concentrated alkaline and calcium-nitrate solutions

    International Nuclear Information System (INIS)

    Kiwi, J.T.; Daniels, M.

    1978-01-01

    Previous studies have shown that more nitrite is produced than can reasonably be accounted for by an indirect radiolysis mechanism based on the radical products of radiolysed water. Further results on the relative roles of indirect effect and direct effect (a chemical transformation in the solute due to its energy absorption) are presented. Major products are nitrite, peroxide and oxygen and yields can be accounted for using the electron fraction model. (author)

  15. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  16. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Chiku, Masanobu; Tomita, Shoji; Higuchi, Eiji; Inoue, Hiroshi

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  17. Determination of contents of carbonate and hydrogen carbonate in solutions for alkaline leading of uranium ores

    International Nuclear Information System (INIS)

    Radil, V.

    1988-01-01

    The new analytical method is based on the determination of the molar ratio carbonate - hydrogen carbonate using the measured concentration of hydrogen ions, the determination of the dissociation constant of carbonic acid for different values of ionic strength. The concentration of hydrogen ions was measured with a Metrohm 632 pH meter with the use of a combined glass electrode. The content of total carbonate carbon was determined coulometrically and the uranium content was determined by extraction with tributyl phosphate and by spectrometry of the complex of uranyl ions with Arsenazo III. Model solutions were used for the experiments which contained a high concentration of sulfate ions, thiosulfate ions, uranium and various proportions of carbonate and hydrogen carbonate. The composition of the individual samples of the extraction solutions are tabulated. The calibration was made of the glass combined electrode at different ionic strength, the values determined of dissociation constants of carbonic acid for different ionic strength. The mathematical procedure is described for the calculation of molar concentrations of carbonate and hudrogen carbonate and the results are presented of the analysis of model solutions. (E.S.). 5 tabs., 1 fig., 5 refs

  18. Spectroscopic and DFT Study of RhIII Chloro Complex Transformation in Alkaline Solutions.

    Science.gov (United States)

    Vasilchenko, Danila B; Berdyugin, Semen N; Korenev, Sergey V; O'Kennedy, Sean; Gerber, Wilhelmus J

    2017-09-05

    The hydrolysis of [RhCl 6 ] 3- in NaOH-water solutions was studied by spectrophotometric methods. The reaction proceeds via successive substitution of chloride with hydroxide to quantitatively form [Rh(OH) 6 ] 3- . Ligand substitution kinetics was studied in an aqueous 0.434-1.085 M NaOH matrix in the temperature range 5.5-15.3 °C. Transformation of [RhCl 6 ] 3- into [RhCl 5 (OH)] 3- was found to be the rate-determining step with activation parameters of ΔH † = 105 ± 4 kJ mol -1 and ΔS † = 59 ± 10 J K -1 mol -1 . The coordinated hydroxo ligand(s) induces rapid ligand substitution to form [Rh(OH) 6 ] 3- . By simulating ligand substitution as a dissociative mechanism, using density functional theory (DFT), we can now explain the relatively fast and slow kinetics of chloride substitution in basic and acidic matrices, respectively. Moreover, the DFT calculated activation energies corroborated experimental data that the kinetic stereochemical sequence of [RhCl 6 ] 3- hydrolysis in an acidic solution proceeds as [RhCl 6 ] 3- → [RhCl 5 (H 2 O)] 2- → cis-[RhCl 4 (H 2 O) 2 ] - . However, DFT calculations predict in a basic solution the trans route of substitution [RhCl 6 ] 3- → [RhCl 5 (OH)] 3- → trans-[RhCl 4 (OH) 2 ] 3- is kinetically favored.

  19. Effect of Hofmeister series salts on Absorptivity of aqueous solutions on Sodium polyacrylate

    Science.gov (United States)

    Korrapati, Swathi; Pullela, Phani Kumar; Vijayalakshmi, U.

    2017-11-01

    Sodium polyacrylate (SPA) is a popular super absorbent commonly used in children diapers, sanitary pads, adult diapers etc. The use of SPA is in force from past 30 years and the newer applications like as food preservant are evolving. SPA is recently discovered by our group for improvement of sensitivity of colorimetric agents. Though the discovery of improvement in sensitivity is phenomenal, the mechanism still remains a puzzle. A typical assay reagent contains colorimetric/fluorescent reagents, buffers, salts, stabilizers etc. These chemicals are known to influence the water absorptivity of SPA. If we were to perform chemical/biochemical assays on SPA absorbed reagents effect of salts and other excipients on colorimetric/fluorescence compounds absorbed on SPA is very important. The hofmeister series are standard for studying effect of salts on permeability, stability, aggregation, fluorescence quenching etc. We recently studied affect of urea, sodium chloride, ammonium sulfate, guanidine thiocayanate on fluorescence characteristics of fluorescence compounds and noted that except urea all other reagents have resulted in fluorescence quenching and urea had an opposite effect and increased the fluorescence intensity. This result was attributed to the different water structure around fluorescent in urea solution versus other chaotropic agents.

  20. Theoretical Study on the Extraction of Alkaline Earth Salts by 18-Crown-6: Roles of Counterions, Solvent Types and Extraction Temperatures

    Directory of Open Access Journals (Sweden)

    Saprizal Hadisaputra

    2014-07-01

    Full Text Available The roles of counterions, solvent types and extraction temperatures on the selectivity of 18-crown-6 (L toward alkaline earth salts MX2 (M = Ca, Sr, Ba; X = Cl-, NO3- have been studied by density functional method at B3LYP level of theory in gas and solvent phase. In gas phase, the chloride anion Cl- is the preference counterion than nitrate anion NO3-. This result is confirmed by the interaction energies, the second order interaction energies, charge transfers, energy difference between HOMO-LUMO and electrostatic potential maps. The presence of solvent reversed the gas phase trend. It is found that NO3- is the preference counterion in solvent phase. The calculated free energies demonstrate that the solvent types strongly change the strength of the complex formation. The free energies are exothermic in polar solvent while for the non polar solvent the free energies are endothermic. As the temperature changes the free energies also vary where the higher the temperatures the lower the free energy values. The calculated free energies are correlated well with the experimental stability constants. This theoretical study would have a strong contribution in planning the experimental conditions in terms of the preference counterions, solvent types and optimum extraction temperatures.

  1. Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution

    International Nuclear Information System (INIS)

    Wang, Dapeng; Gao, Lixin; Zhang, Daquan; Yang, Dong; Wang, Hongxia; Lin, Tong

    2016-01-01

    The corrosion inhibition of L-cysteine on AA5052 aluminium alloy in 4 mol/L NaOH solution was investigated by hydrogen gas evolution experiment, polarisation curve, galvanostatic discharge, electrochemical impedance spectroscopy measurements and quantum chemical calculations. The adsorption of L-cysteine on aluminium alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarisation curves indicated that L-cysteine acted as a cathodic inhibitor to inhibit cathodic reaction. The inhibition mechanism was dominated by the geometric covering effect. The galvanostatic discharge shows that the additives restrain the hydrogen evolution and increase the anodic utilization rate. Quantum chemical calculations indicated that L-cysteine molecules mainly interacted with on the carboxyl groups on the aluminium alloy surface. A strong hybridization occurred between the s-orbital and p-orbital of reactive sites in the L-cysteine molecule and the sp-orbital of Aluminium. - Highlights: • L-cysteine was used as corrosion inhibitor for Al alloy in alkaline solution. • Adsorption of L-cysteine on Al alloy surface obeyed the amended Langmuir's isotherm. • L-cysteine molecules interacted with the carboxyl groups on the Al alloy surface. • A strong orbital hybridization occurred between the reactive sites in L-cysteine and Al.

  2. Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng; Gao, Lixin [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Daquan, E-mail: zhangdaquan@shiep.edu.cn [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Yang, Dong [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Wang, Hongxia; Lin, Tong [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia)

    2016-02-01

    The corrosion inhibition of L-cysteine on AA5052 aluminium alloy in 4 mol/L NaOH solution was investigated by hydrogen gas evolution experiment, polarisation curve, galvanostatic discharge, electrochemical impedance spectroscopy measurements and quantum chemical calculations. The adsorption of L-cysteine on aluminium alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarisation curves indicated that L-cysteine acted as a cathodic inhibitor to inhibit cathodic reaction. The inhibition mechanism was dominated by the geometric covering effect. The galvanostatic discharge shows that the additives restrain the hydrogen evolution and increase the anodic utilization rate. Quantum chemical calculations indicated that L-cysteine molecules mainly interacted with on the carboxyl groups on the aluminium alloy surface. A strong hybridization occurred between the s-orbital and p-orbital of reactive sites in the L-cysteine molecule and the sp-orbital of Aluminium. - Highlights: • L-cysteine was used as corrosion inhibitor for Al alloy in alkaline solution. • Adsorption of L-cysteine on Al alloy surface obeyed the amended Langmuir's isotherm. • L-cysteine molecules interacted with the carboxyl groups on the Al alloy surface. • A strong orbital hybridization occurred between the reactive sites in L-cysteine and Al.

  3. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    Science.gov (United States)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  4. The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2006-01-01

    Vapour pressures of water over saturated solutions of cesium chloride, cesium bromide, cesium nitrate, cesium sulfate, cesium formate, and cesium oxalate were determined as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vapourization. Molar enthalpies of solution of cesium chloride, Δ sol H m (T = 295.73 K; m = 0.0622 mol . kg -1 ) = (17.83 ± 0.50) kJ . mol -1 ; cesium bromide, Δ sol H m (T = 293.99 K; m = 0.0238 mol . kg -1 ) = (26.91 ± 0.59) kJ . mol -1 ; cesium nitrate, Δ sol H m (T = 294.68 K; m = 0.0258 mol . kg -1 ) = (37.1 ± 2.3) kJ . mol -1 ; cesium sulfate, Δ sol H m (T = 296.43 K; m = 0.0284 mol . kg -1 ) (16.94 ± 0.43) kJ . mol -1 ; cesium formate, Δ sol H m (T = 295.64 K; m = 0.0283 mol . kg -1 ) = (11.10 ± 0.26) kJ . mol -1 and Δ sol H m (T = 292.64 K; m = 0.0577 mol . kg -1 ) = (11.56 ± 0.56) kJ . mol -1 ; and cesium oxalate, Δ sol H m (T = 291.34 K; m = 0.0143 mol . kg -1 ) = (22.07 ± 0.16) kJ . mol -1 were determined calorimetrically. The purity of the chemicals was generally greater than 0.99 mass fraction, except for HCOOCs and (COOCs) 2 where purities were approximately 0.95 and 0.97 mass fraction, respectively. The uncertainties are one standard deviations

  5. Oxidation of D-glucose and D-fructose with oxygen in aqueous, alkaline solutions. III. Kinetic approach to the product distribution

    NARCIS (Netherlands)

    de Wilt, H.G.J.; Kuster, Ben

    1972-01-01

    Based on a previously reported, integral reaction-scheme for the homogeneous oxidation of -glucose and -fructose with oxygen in aqueous, alkaline solutions, a kinetic model covering the product distribution has been developed. The model consists of a repeated set of reactions with constant rate

  6. Investigation of the passive behaviour of AZ31B alloy in alkaline solutions

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2014-06-01

    Full Text Available In this work, the passivity of AZ31B alloy in NaOH solutions was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and Mott–Schottky analysis. Potentiodynamic polarization results indicated that decreasing NaOH concentration leads to decrease the corrosion rate of this alloy. EIS results showed that the reciprocal capacitance (1/C of the passive film is directly proportional to its thickness which increases with decreasing NaOH concentration. Therefore, it is clear that dilute NaOH solutions offer better conditions for forming the passive films with higher protection behaviour, due to the growth of a much thicker and less defective films. The Mott–Schottky analysis revealed that the passive films displayed n-type semiconductive characteristics, where the oxygen vacancies and interstitials (over the cation vacancies preponderated. Also, Mott–Schottky results showed that the donor densities evaluated from Mott–Schottky plots are in the range of 1020 cm−3 and decreased with decreasing NaOH concentration.

  7. Electrochemiluminescence of fluorescein in alkaline solution at a polycrystalline gold electrode

    International Nuclear Information System (INIS)

    Shi Mingjuan; Cui Hua

    2007-01-01

    The electrochemiluminescence (ECL) behavior of fluorescein at a polycrystalline gold electrode was studied under conventional cyclic voltammetric conditions. Five ECL peaks were observed at 0.94 (ECL-1), 1.51 (ECL-2), 1.34 (ECL-3), -0.06 (ECL-4), -0.73 to -1.11 V (ECL-5, a broad weak wave) (vs. SCE), respectively, on the curve of ECL intensity versus potential. These ECL peaks were found to depend on the pH of the solution, supporting electrolyte, potential scan ranges and directions. The emitter of ECL peaks was identified as fluorescein or eosin Y produced on the electrode by analyzing the ECL spectra and fluorescence spectra. The mechanisms for ECL peaks have been proposed due to the reactions of fluorescein and the electro-oxidation product of fluorescein with various oxygen-containing species in the solution or electrogenerated at different applied potentials such as O 2 , O 2 .- , HO 2 - , and BrO - . Singlet molecular oxygen was generated during the reactions and transferred its energy to the ECL emitter such as fluorescein or eosin Y, emitting light

  8. Electrochemical Study of Modified Glassy Carbon Electrode with Carboxyphenyl Diazonium Salt in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mariem BOUROUROU

    2014-05-01

    Full Text Available The covalent grafting of carboxyphenyl functionalities to planar carbon substrates by reaction with 2-carboxybenezenediazonium salt has been studied in aqueous acid solution. The surface was characterized, before and after the functionnalization process, by cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry (LSV in order to control and to prove the formation of a coating on the carbon surface. The results indicate the presence of substituted phenyl groups on the investigated surface. Electrochemical impedance measurements show that the slowing down of the electron transfer kinetics was more evident by increasing the number of cycles resulting to higher DEp and RCT parameters. Besides, the effect of the pH on the electron transfer processes of the Fe(CN63-/4- at the modified electrode is studied. By changing the solution pH the terminal group’s charge state would vary, based on which the surface pKa value is estimated.

  9. THERMODYNAMIC PROPERTIES OF NONAQUEOUS SINGLE SALT SOLUTIONS USING THE Q-ELECTROLATTICE EQUATION OF STATE

    Directory of Open Access Journals (Sweden)

    A. Zuber

    2015-09-01

    Full Text Available AbstractThe correlation of thermodynamic properties of nonaqueous electrolyte solutions is relevant to design and operation of many chemical processes, as in fertilizer production and the pharmaceutical industry. In this work, the Q-electrolattice equation of state (EOS is used to model vapor pressure, mean ionic activity coefficient, osmotic coefficient, and liquid density of sixteen methanol and ten ethanol solutions containing single strong 1:1 and 2:1 salts. The Q-electrolattice comprises the lattice-based Mattedi-Tavares-Castier (MTC EOS, the Born term and the explicit MSA term. The model requires two adjustable parameters per ion, namely the ionic diameter and the solvent-ion interaction energy. Predictions of osmotic coefficient at 298.15 K and liquid density at different temperatures are also presented.

  10. Pseudomacrocyclic effect in extraction processes of metal salts by polyethers from nitric acid solutions

    International Nuclear Information System (INIS)

    Yakshin, V.V.; Vilkova, O.M.; Kotlyar, S.A.; Kamalov, G.L.

    1997-01-01

    Comparison of macrocyclic (ME) and pseudmacrocyclic effects (PME), originating by conduct of the metal salt extraction processes (Cs, Sr, In, Zr, Cd, etc) from nitric acid solutions through linear and cyclic polyethers, containing 5 or 6 atoms of ether oxygen and having close molecular masses (290-360), is carried out. It is shown that ordinary ethers practically do not extract the studied metals from nitric acid solutions. By transfer from linear polyethers to their macrocyclic analogs the ME impact is expressed clearly enough: the separation coefficient value grows by tens and hundred times. At the some time the PME role in the extraction processes of metal nitrates through crown-ethers with alkyl and groups is expressed less clearly

  11. Are nanoscale ion aggregates present in aqueous solutions of guanidinium salts?

    Science.gov (United States)

    Hunger, Johannes; Niedermayer, Stefan; Buchner, Richard; Hefter, Glenn

    2010-11-04

    A detailed investigation using broadband dielectric relaxation spectroscopy (DRS) has been made of the aqueous solutions of guanidinium chloride and carbonate, GdmCl(aq) and Gdm₂CO₃(aq), at 25 °C. The spectra indicate that Gdm(+) ions, C(NH₂)₃(+), do not bind strongly to water nor are they hydrophobically hydrated; rather they appear to have a most unusual ability to dissolve in water without altering its dynamics. Although DRS is particularly sensitive to the presence of ion pairs, only weak ion pairing was detected in Gdm₂CO₃(aq) solutions and none at all in GdmCl(aq). Surprisingly, no evidence was found for the existence of the higher order homo- and heteroionic nanoscale aggregates that have been identified in recent years by Mason and co-workers using molecular dynamics simulations and neutron diffraction. Possible reasons for this discrepancy are discussed. The present DR spectra and other solution properties of GdmCl(aq) and Gdm₂CO₃(aq), such as apparent molar volumes and electrical conductivities, are shown to have strong similarities to those of the corresponding Na+ salts. However, such solutions also differ remarkably from their Na(+) analogues (and all other simple electrolytes in aqueous solution) in that their average water relaxation times correlate strongly with their bulk viscosities. The biological implications of the present results are briefly discussed.

  12. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    Science.gov (United States)

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution

    Science.gov (United States)

    Sindt, Julien O.; Alexander, Andrew J.; Camp, Philip J.

    2017-12-01

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  14. Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution.

    Science.gov (United States)

    Sindt, Julien O; Alexander, Andrew J; Camp, Philip J

    2017-12-07

    The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.

  15. Potential and problems of an aqueous lithium salt solution blanket for NET

    International Nuclear Information System (INIS)

    Kuechle, M.; Bojarsky, E.; Dorner, S.; Fischer, U.; Reimann, J.; Reiser, H.

    1987-07-01

    The report describes design studies on a water cooled in-vessel shield blanket for NET and its modification into an aqueous lithium salt blanket. The shield blankets are exchangable against breeding blankets and fulfill their shielding and heat removal functions. Emphasis is on simplicity and reliability. The water cooled shield is a large steel container in the shape of the blanket segment which is filled by water and containes a grid structure of poloidally arranged steel plates. The water flows several times in poloidal direction through the channels formed by the steel plates and is thereby heated up from 40degC to 70degC. When the water is replaced by an aqueous lithium salt solution the shield can be converted into a tritium breeding blanket without any design modification or invessel component replacement. When compared with other concepts this blanket has the advantage that the solution can replace water cooling also in the divertor and in segments dedicated to plasma heating and diagnostics, what increases the coverage considerably. Extensive three-dimensional neutronics calculations were done which, together with literature studies on candidate materials, corrosion, and tritium recovery led to a first assessment of the concept. There is an indication that no major corrosion problems are to be expected in the low temperature region envisaged. Tritium recovery capital costs were estimated to be in the 20 MECU to 50 MECU range and tritium breeding ratio is comparable to the best breeding blanket. (orig./GG) [de

  16. Changes in mechanical properties and morphology of elastomer coatings after immersion in salt solutions

    Science.gov (United States)

    Terán Arce, Fernando; Avci, Recep; Beech, Iwona; Cooksey, Keith; Wigglesworth-Cooksey, Barbara

    2004-03-01

    RTV11 (^TM GE Silicones) and Intersleek (^TM International Paints) are two elastomers of considerable significance to the navy and maritime industry for their application as fouling release coatings. Both materials are composed of polymeric matrices with embedded filler particles, which provide increased strength and durability to the elastomer. Using Atomic force microscopy (AFM), surface and bulk analysis techniques, we have found surface regions with microelastic properties, which correlate with the locations of filler particles inside the coatings. These particles are able to undergo elastic displacements of hundreds of nm inside the polymeric matrix during compression by the AFM tip. While elastic properties of Intersleek remain largely unchanged after immersion in salt solutions, roughening, embrittlement and stiffening occurs in RTV11 coatings depending on the amount of curing agent and humidity used during preparation and curing, respectively. Interestingly, such transformations are absent after immersion in pure water. In particle free regions, elastic moduli of RTV11 take values of 2 - 3 MPa before immersion in salt solutions. After immersion, those values increase 5 - 10 times.

  17. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    Science.gov (United States)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  18. Oxygen reduction at electrodeposited ZnO layers in alkaline solution

    International Nuclear Information System (INIS)

    Prestat, M.; Vucko, F.; Lescop, B.; Rioual, S.; Peltier, F.; Thierry, D.

    2016-01-01

    Zinc oxide (ZnO) layers were electrodeposited from an aqueous nitrate bath at 62 °C on copper substrates. At −0.9 V (vs. saturated calomel reference electrode), the growth rate is 600 nm min −1 . In the early stages of the deposition, the layers are porous. At longer deposition times, the surface becomes dense and rough. The wurtzite crystalline structure is confirmed by XRD measurements and the chemical composition of the ZnO surface was assessed by EDX and XPS. The oxygen reduction reaction (ORR) was investigated at room temperature in a 10 −3 M KOH solution with KCl as supporting electrolyte. The ORR onset potential is found to be much larger than that of platinum taken as reference electrocatalyst. Rotating ring-disk electrode experiments evidence a negligible production of hydrogen peroxide as intermediate product of the reaction. The latter follows thus a direct four-electron pathway at pH ∼11.

  19. Formation and stabilization of anionic metal complexes in concentrated aqueous quaternary ammonium salt solutions

    International Nuclear Information System (INIS)

    Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-01-01

    Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl 4 - , which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO 4 - by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures

  20. Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution

    Science.gov (United States)

    Li, Shengyi; Church, Benjamin C.

    2018-05-01

    The corrosion mechanisms and kinetics of AA1085 in Li2SO4 and LiNO3 aqueous rechargeable lithium-ion battery electrolytes were investigated at pH 11 using chronoamperometry. The corrosion kinetics of AA1085 is controlled by the electrolyte concentration level and the anodic potentials. AA1085 is susceptible to crystallographic pitting corrosion in Li2SO4 electrolytes. The rates of pit nucleation and pit growth both decreased at higher Li2SO4 concentrations or at lower anodic potentials. AA1085 passivates against pitting corrosion in LiNO3 electrolytes due to the formation of a thick, uniform corrosion product layer. The growth rate of the passive film was slightly enhanced by increasing the electrolyte concentration and anodic potentials. X-ray photoelectron spectroscopy spectra showed the formation of a thin sulfate-incorporated passive film on the electrode, which comprises Al2(SO)418H2O, Al(OH)SO4 and Al(OH)3, before the occurrence of pitting growth in 2 M Li2SO4 electrolyte. The thick corrosion product layer formed in 5 M LiNO3 electrolyte was composed of Al(OH)3 and AlOOH. Raman spectroscopy on deionized water, LiOH solution, Li2SO4 and LiNO3 electrolytes depicted changes of solution structure with increasing electrolyte concentration. The influence of extrinsic and intrinsic factors on the corrosion kinetics of AA1085 in Li2SO4 and LiNO3 electrolytes at pH 11 are discussed in detail.

  1. Uranium dissolution in hyper-alkaline TMA-OH solutions: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Cachoir, C.; Salah, S.; Mennecart, T.; Lemmens, K. [Belgian Research Nuclear Centre - SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2016-07-01

    Leaching experiments were performed with depleted UO{sub 2} powders in tetramethylammonium solutions (TMA-OH) at pH 13.5 and 12.5, and at different UO{sub 2} surface area to volume of solution (SA/V) ratio's to determine the solubility and the dissolution kinetics of UO{sub 2} at high pH in absence of cations dominating cementitious waters (Ca, Na, K). The solubility of UO{sub 2} increased from pH 12.5 to 13.5 and by increasing the SA/V ratio up to 100 m{sup -1}. However, no known U secondary-phases were predicted by geochemical calculations to control the measured U-concentrations. We interpreted the UO{sub 2} dissolution process as a 2-step process. For all experiments, we observe a fast initial rate, hydroxo promoted and likely surface controlled. Afterwards the rate is apparently negative at low SA/V over time while it is positive at higher SA/V ratio's. The former is interpreted to be related to a sorption process, while the latter reveals a continuous residual dissolution process. No solubility enhancing effect of U-colloids was observed in the TMA-OH media. However, there is much less uranium colloid formation in TMA-OH tests with low Ca (Na, K) concentration than in previous tests with higher Ca (Na, K) concentrations. This suggests that the colloid formation is promoted by alkali and/or alkali-earth elements.

  2. Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution

    International Nuclear Information System (INIS)

    Abbas, Syed Asad; Iqbal, Muhammad Ibrahim; Kim, Seong-Hoon; Jung, Kwang-Deog

    2017-01-01

    Highlights: • Urchin-like Ni is prepared in solvothermal reaction. • Urchin-like Ni is formed via Ni(OH) 2 aggregates in ethanol and oleylamine. • Exchange current density of urchin-like Ni is 0.191 mA cm −2 . • Urchin-like Ni exceeds the catalytic performance of commercial Pt/C in HER. - Abstract: Ni nanoparticles with different morphologies were synthesized for hydrogen evolution reaction (HER) in alkaline solution. Here, Ni(acac) 2 was converted into Ni metal nanoparticles in solvothermal reactions with simple alcohols and oleylamine (OAm). The morphology of the resulting Ni nanoparticles was dependent mainly on the OAm/Ni molar ratio in alcohol solvent. Aggregates of spherical Ni nanoparticles (NiEt-OAm1) were observed at the OAm/Ni molar ratio of 1.0, whereas two echinoid Ni nanoparticles (NiEt-OAm4 and NiEt-OAm6) could be prepared in ethanol at the OAm/Ni molar ratios of 4.0 and 6.0. Ni(OH) 2 formed in ethanol during a reaction time of 5 h was then reduced into echinoid Ni nanoparticles after 8 h. Echinoid Ni nanoparticles were formed by atomic addition on the tops of the multipod Ni particles formed via Ni(OH) 2 /NiO aggregates. Webbed feet-like particles (NiIPA-OAm4) with plate edges were also observed in isopropanol under the same reaction conditions. The catalytic activities of the prepared Ni nanoparticles for the hydrogen evolution reaction were evaluated in alkaline solution. The NiEt-OAm4 with urchin-like morphology was much more active than the NiIPA-OAm4 with webbed feet-like morphology. The exchange current density of Ni catalysts was increased with increasing the OAm/Ni molar ratio. The NiEt-OAm6 exhibited an exchange current of 0.191 mA cm −2 and the NiEt-OAm4 exceeded electrocatalytic performance of a commercial Pt catalysts (40% Pt on Vulcan XC 72) in a stability test for 100 kiloseconds at −1.5 V (vs. Hg/HgO) in 1.0 M NaOH due to its high stability.

  3. Determining the Enthalpy of Vaporization of Salt Solutions Using the Cooling Effect of a Bubble Column Evaporator

    Science.gov (United States)

    Fan, Chao; Pashley, Richard M.

    2016-01-01

    The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…

  4. Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Tobias, D. J.

    2001-01-01

    Roč. 105, č. 43 (2001), s. 10468-10472 ISSN 1089-5647 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : air-solution interface * salt solutions * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.379, year: 2001

  5. The anodic dissolution of SIMFUEL (UO2) in slightly alkaline sodium carbonate/bicarbonate solutions

    International Nuclear Information System (INIS)

    Keech, P.G.; Goldik, J.S.; Qin, Z.; Shoesmith, D.W.

    2011-01-01

    The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the U VI corrosion product, [UO 2 ] 2+ . As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO 2 ) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (U IV → U V → U VI ). At low potentials (≤250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a U VI O 2 CO 3 surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer.

  6. Copper and brass aged at open circuit potential in slightly alkaline solutions

    International Nuclear Information System (INIS)

    Procaccini, R.; Vazquez, M.; Cere, S.

    2009-01-01

    Surface oxide films were grown on 99.99% copper and brass (copper-zinc alloy, Cu77Zn21Al2) in 0.1 mol L -1 borax solution at open circuit potential and were characterized using various experimental techniques. The composition of the passive films formed in situ on the different materials was studied using differential reflectance spectroscopy. The thickness of the oxide layers on copper and brass was compared by chronopotentiometric curves and potentiodynamic reductions. The electrical properties of each oxide were analyzed by means of electrochemical impedance spectroscopy. Their influence on the oxygen reduction reaction was also investigated using voltammetry hydrodynamic tools such as the rotating disk electrode. The results show that the incorporation of Zn to Cu in brass changes the composition and the thickness of the surface film. The films grown on brass tend to be thicker but less resistive and Zn compounds incorporate to the film. This is supported by results from reflectance and impedance spectroscopy. The kinetics of oxygen reduction is strongly inhibited on oxidized electrodes, particularly in the case of brass. The global number of exchanged electrons remains close to four and seems to be independent of the presence of surface oxides.

  7. Investigation on synergism of composite additives for zinc corrosion inhibition in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hebing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China); Huang Qiming; Liang Man; Lv Dongsheng; Xu Mengqing; Li Hong [Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China); Li Weishan, E-mail: liwsh@scnu.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China)

    2011-07-15

    Highlights: {yields} An kind of environmentally benign organic composite additives is used firstly. {yields} The corrosion of zinc is inhibited used the organic compound as additive. {yields} The rate performance of the battery used the organic compound as additive is improved. {yields} The synergism of composite additives for zinc corrosion inhibition is investigated. - Abstract: The synergism of imidazole (IMZ) and poly(ethylene glycol) 600 (PEG) for zinc corrosion inhibition in 3 mol L{sup -1} KOH solution was investigated using a combination of electrochemical and gravimetric methods, and the surface morphology of the zinc was observed by scanning electron microscopy. It is found that there is a synergistic effect between IMZ and PEG for the zinc corrosion inhibition. The difference in molecular structure, ring for IMZ and chain for PEG, and in binding atoms with zinc, nitrogen in IMZ and oxygen in PEG, contributes to this synergistic effect. IMZ inhibits zinc corrosion by mainly depressing the anodic reaction, whereas PEG by depressing the cathodic reaction. The storage performance of the zinc-manganese dioxide batteries using IMZ and/or PEG as inhibitors was determined by discharge test, with a comparison of the battery using mercury as the inhibitor. The battery containing 0.05% IMZ + 0.05% PEG exhibits better performance than the mercury-containing battery, especially when discharged at high rate.

  8. Assessment of drug salt release from solutions, suspensions and in situ suspensions using a rotating dialysis cell

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla; Liljefors, Tommy

    2003-01-01

    buffer is used as release media. Generally, the initial release of the drug salt from in situ suspensions occurred faster as compared to conventional suspensions, probably due to incomplete precipitation of the drug salt, and hence formation of supersaturated solutions where the rate of release......A rotating dialysis cell consisting of a small (10 ml) and a large compartment (1000 ml) was used to study the release of drug salt (bupivacaine 9-anthracene carboxylate) from (i). solutions, (ii). suspensions and (iii). in situ formed suspensions. Initial release experiments from suspensions...... indicated that the release of drug salt in deionized water was predominantly limited by the diffusion across the membrane whereas it is essentially dissolution rate controlled in 0.05 M phosphate buffer (pH 7.40). Thus, the in vitro model appears to have a potential in formulation screening when phosphate...

  9. Anodic dissolution of UO2 in slightly alkaline sodium perchlorate solutions

    International Nuclear Information System (INIS)

    Sunder, S.; Strandlund, L.K.; Shoesmith, D.W.

    1996-04-01

    The anodic dissolution of UO 2 has been studied in aqueous sodium perchlorate solutions at pH ∼ 9.5. Under potentiostatic conditions two distinct regions of oxidation/dissolution behaviour were observed. In the potential (E) range 0.100 V A , Q C respectively) obtained by integration of the anodic current-time plots (Q A ) and cathodic potential scans to reduce accumulated oxidized surface films (Q C ), it was shown that > ∼ 90% of the anodic oxidation current went to produce these films. For E > ∼ 0.350 V, steady-state currents were obtained and measurements of Q A and Q C showed the majority of the current went to produce soluble species. The film blocking anodic dissolution appeared to be either UO 2.27 or, more probably, UO 3 .2H 2 O located primarily at grain boundaries. It is proposed that, at the higher potentials, rapid oxidation and dissolution followed by the hydrolysis of dissolved uranyl species leads to the development of acidic conditions in the grain boundaries. At these lower pH values the UO 3 .2H 2 O is soluble and therefore does not accumulate. Alternatively, if this oxide has been formed by prior oxidation at a lower potential, the formation of protons on oxidizing at E > ∼ 0.350V causes its redissolution, allowing the current to rise to a steady-state value. On the basis of Tafel slopes, an attempt was made to demonstrate that the observed behaviour was consistent with dissolution under acidic conditions. This analysis was only partially successful. (author) 34 refs. 11 figs

  10. Neptunium sorption and co-precipitation of strontium in simulated DWPF salt solution

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Orebaugh, E.G.; King, C.M.

    1988-01-01

    Batch experiments performed using crushed slag saltstone (∼40 mesh) removed >80% of 237 Np from simulated Defense Waste Processing Facility (DWPF) salt solution. The concentration of 237 Np (110 pCi/ml) used was 1000x greater than levels in actual DWPF solutions. Neptunium-239 was used as a tracer and was formed by neutron activation of uranyl nitrate. Results showed that small amounts of crushed saltstone (as little as 0.05 grams), removed >80% of neptunium from 15 ml of simulated DWPF solution after several hours equilibration. The neptunium is sorbed on insoluble carbonates formed in and on the saltstone matrix. Further testing showed that addition of 0.01 and 0.10 ml of 1 molar Ca +2 (ie. Ca (NO 3 ) 2 , CaCl 2 ) into 15 ml of simulated DWPF solution yielded a white carbonate precipitate which also removed >80% of the neptunium after 1 hour equilibration. Further experiments were performed to determine the effectiveness of this procedure to co-precipitate strontium

  11. Long term corrosion behavior of the WAK-HLW glass in salt solutions

    International Nuclear Information System (INIS)

    Luckscheiter, B.; Nesovic, M.

    1998-01-01

    The corrosion behavior of the HLW glass GP WAK1 containing simulated HLW oxides from the WAK reprocessing plant in Karlsruhe is investigated in long-term corrosion experiments at high S/V ratios in two reference brines at 110 and 190 C. In case of the MgCl 2 -rich solution the leachate becomes increasingly acid with reaction time up to a final pH of about 3.5 at 190 C. In the NaCl-rich solution the pH rises to about 8.5 after one year of reaction. The release of soluble elements in MgCl 2 solution, under Si-saturated conditions, is proportional to the surface area of the sample and the release increases at 190 C according to a t 1/2 rate law. This time dependence may be an indication of diffusion controlled matrix dissolution. However, at 110 C the release of the mobile elements cannot be described by a t 1/2 rate law as the time exponents are much lower than 0.5. This difference in corrosion behavior may be explained by the higher pH of about 5 at 110 C. In case of NaCl solution under alkaline conditions, the release of soluble elements is not proportional to the surface area of the sample and it increases with time exponents much lower than 0.5. After one year of reaction at 190 C a sharp increase of the release values of some elements was observed. This increase might be explained by the high pH of the solution attained after one year. The corrosion mechanism in NaCl solution, as well as in MgCl 2 solution at 110 C, has not yet been explained. By corrosion experiments in water at constant pH values between 2 and 10, it could be shown that the time exponents of the release of Li and B decrease with increasing pH of the solution. This result can explain qualitatively the differences found in the corrosion behavior of the glass under the various conditions

  12. Correlation of high-temperature stability of alpha-chymotrypsin with 'salting-in' properties of solution.

    Science.gov (United States)

    Levitsky VYu; Panova, A A; Mozhaev, V V

    1994-01-15

    A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.

  13. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.F. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: Guohf@hit.edu.cn; An, M.Z. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: mzan@hit.edu.cn; Huo, H.B. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xu, S. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wu, L.J. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-09-15

    Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg{sub 2}SiO{sub 4} and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg{sub 2}SiO{sub 4} was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.

  14. Extraction of Zinc and Manganese from Alkaline and Zinc-Carbon Spent Batteries by Citric-Sulphuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Francesco Ferella

    2010-01-01

    Full Text Available The paper is focused on the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. Metals are extracted by sulphuric acid leaching in the presence of citric acid as reducing agent. Leaching tests are carried out according to a 24 full factorial design, and empirical equations for Mn and Zn extraction yields are determined from experimental data as a function of pulp density, sulphuric acid concentration, temperature, and citric acid concentration. The highest values experimentally observed for extraction yields were 97% of manganese and 100% of zinc, under the following operating conditions: temperature 40∘C, pulp density 20%, sulphuric acid concentration 1.8 M, and citric acid 40 g L-1. A second series of leaching tests is also performed to derive other empirical models to predict zinc and manganese extraction. Precipitation tests, aimed both at investigating precipitation of zinc during leaching and at evaluating recovery options of zinc and manganese, show that a quantitative precipitation of zinc can be reached but a coprecipitation of nearly 30% of manganese also takes place. The achieved results allow to propose a battery recycling process based on a countercurrent reducing leaching by citric acid in sulphuric solution.

  15. In situ surface X-ray diffraction study of ultrathin epitaxial Co films on Au(111) in alkaline solution

    International Nuclear Information System (INIS)

    Reikowski, Finn; Maroun, Fouad; Di, Nan; Allongue, Philippe; Ruge, Martin; Stettner, Jochim; Magnussen, Olaf M.

    2016-01-01

    The oxidation behavior of ultrathin electrodeposited Co films on Au(111) in alkaline electrolyte was studied using in situ surface X-ray scattering techniques employing synchrotron radiation and complementary optical reflectivity and electrochemical measurements. The films are formed at pH 4 and consist of (001)-oriented hcp Co crystallites that are several nm high, a few ten nm in diameter, and remain largely unchanged after electrolyte exchange to pH 12 solution. In the pre-oxidation peak only minor changes were observed in the diffraction studies, excluding the formation of Co(OH)_2 layers. In the potential regime of Co hydroxide formation a rapid reduction of the amount of Co is observed, while the characteristic height of the islands decreases only slightly. On longer times scales, growth of 3D crystals of Co(OH)_2 occurs as well as irreversible Co dissolution into the electrolyte is found. On the basis of the structural observations oxidation of the Co film is proposed to proceed via fast formation of an ultrathin passivating layer, followed by nucleation and growth of 3D hydroxide crystals at the grain boundaries in the Co deposit.

  16. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    Science.gov (United States)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  17. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    Science.gov (United States)

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  19. Results for the Fourth Quarter Calendar Year 2015 Tank 50H Salt Solution Sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-11

    In this memorandum, the chemical and radionuclide contaminant results from the Fourth Quarter Calendar Year 2015 (CY15) sample of Tank 50H salt solution are presented in tabulated form. The Fourth Quarter CY15 Tank 50H samples were obtained on October 29, 2015 and received at Savannah River National Laboratory (SRNL) on October 30, 2015. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Fourth Quarter Calendar Year 2015 (CY15) sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan.

  20. Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution.

    Science.gov (United States)

    Okuda, T; Baes, A U; Nishijima, W; Okada, M

    2001-02-01

    It is known that M. oleifera contains a natural coagulant in the seeds. In our previous research, the method using salt water to extract the active coagulation component from M. oleifera seeds was developed and compared with the conventional method using water. In this research, the active coagulation component was purified from a NaCl solution crude extract of Moringa oleifera seeds. The active component was isolated and purified from the crude extract through a sequence of steps that included salting-out by dialysis, removal of lipids and carbohydrates by homogenization with acetone, and anion exchange. Specific coagulation activity of the active material increased up to 34 times more than the crude extract after the ion exchange. The active component was not the same as that of water extract. The molecular weight was about 3000 Da. The Lowry method and the phenol-sulfuric acid method indicated that the active component was neither protein nor polysaccharide. The optimum pH of the purified active component for coagulation of turbidity was pH 8 and above. Different from the conventional water extracts, the active component can be used for waters with low turbidity without increase in the dissolved organic carbon concentration.

  1. Removal of Cr(III ions from salt solution by nanofiltration: experimental and modelling analysis

    Directory of Open Access Journals (Sweden)

    Kowalik-Klimczak Anna

    2016-09-01

    Full Text Available The aim of this study was experimental and modelling analysis of the nanofiltration process used for the removal of chromium(III ions from salt solution characterized by low pH. The experimental results were interpreted with Donnan and Steric Partitioning Pore (DSP model based on the extended Nernst-Planck equation. In this model, one of the main parameters, describing retention of ions by the membrane, is pore dielectric constant. In this work, it was identified for various process pressures and feed compositions. The obtained results showed the satisfactory agreement between the experimental and modelling data. It means that the DSP model may be helpful for the monitoring of nanofiltration process applied for treatment of chromium tannery wastewater.

  2. Comparison of salt solution and air drying methods for moisture fixation in highly porous building materials

    DEFF Research Database (Denmark)

    Antonov, Yovko Ivanov; Jensen, Rasmus Lund; Møldrup, Per

    2017-01-01

    In recent years, research has identified some bio-based, porous building materials as good or excellent regulators of moisture in buildings. The ability of a material to absorb, release and store moisture is described by vapour sorption isotherms. It is necessary input to simulations of indoor...... building materials by a standardized testing method, using saturated salt solutions. Furthermore, results from the standard method are compared to values of moisture content for the same materials, obtained by air-drying at different relative humidity. This is done with the aim to compare the findings from...... the two methods with respect to time and repeatability of the results. Derived isotherms are further used as direct input in the building simulation software BSim, which is capable of predicting indoor environment parameters by solving coupled, transient heat and moisture transport equations using finite...

  3. The preparation of magnetite from iron(III) and iron(II) salt solutions

    International Nuclear Information System (INIS)

    Segal, D.L.

    1980-10-01

    Methods are described for the preparation of magnetite from iron(III) and iron(II) salt solutions at temperatures between 295 to 373 K. The effect of the reagent concentration, a chelating agent and different alkali-metal cations on the formation of magnetite has been investigated. The magnetite samples have been examined by X-ray diffraction, transmission electron microscopy, adsorption of nitrogen, emission spectroscopy, X-ray photoelectron spectroscopy and by determination of the point of zero charge. A review of previous work on the preparation of magnetite in an aqueous environment is also included. This work is relevant to the corrosion processes which can occur in the water coolant circuits of nuclear reactors. (author)

  4. Micro-Arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt

    International Nuclear Information System (INIS)

    Ragalevicius, Rimas; Stalnionis, Giedrius; Niaura, Gediminas; Jagminas, Arunas

    2008-01-01

    A comparative study was performed on the behavior of titanium electrode in a sulfuric acid solution with and without Ti +3 during micro-arc oxidation under the constant current density control regime. The composition and microstructure of the obtained micro-arc films were analyzed using scanning electron microscopy, glancing-angle X-ray diffractometry, Raman and energy-dispersive X-ray spectroscopies. We have shown that addition of a Ti +3 salt extends the region of current densities (j a ) can be used for micro-arc oxidation of Ti and results in an obvious change of sparking behavior from extensive, large and long-played sparks to numerous, small and short sparks. As a consequence, the titania films formed in the Ti +3 -containing solutions are relatively thick, more uniform, composed of almost pure crystalline anatase and rutile phases of TiO 2 , and contain a network of evenly distributed small pores. It has also been shown that these films are promising for applications in catalysis, sensors and optoelectronics. The Raman spectra indicate that an increase in the electrolysis time of titanium in the Ti +3 -containing solution leads to the increase in rutile content, as expected

  5. Additional disinfection with a modified salt solution in a root canal model.

    Science.gov (United States)

    van der Waal, Suzette V; Oonk, Charlotte A M; Nieman, Selma H; Wesselink, Paul R; de Soet, Johannes J; Crielaard, Wim

    2015-10-01

    The aim of this study is to investigate the disinfecting properties of a modified salt solution (MSS) and calcium hydroxide (Ca(OH)2) in a non-direct-contact ex-vivo model. Seventy-four single-canal roots infected with Enterococcus faecalis were treated with 1% sodium hypochlorite (NaOCl) irrigation or with NaOCl irrigation with subsequent dressing with MSS or Ca(OH)2. After removal of the dressings, the roots were filled with bacterial growth medium and incubated for seven days to enable the surviving bacteria to repopulate the root canal lumen. Growth was determined by sampling the root canals with paper points before treatment (S1), after treatment (S2) and incubation after treatment (S3). The colony forming units were counted at S1 and S2. At S3, growth was determined as no/yes regrowth. The Kruskal-Wallis, McNemar and χ(2) test were used for statistical analyses. At S2, in the NaOCl group, growth was found in 5 of 19 root canals. After the removal of MSS or Ca(OH)2 bacteria were retrieved from one root canal in both groups. At S3, repopulation of the root canals had occurred in 14 of 19 roots after sole NaOCl irrigation, 6 of 20 roots after MSS-dressing and in 14 of 20 roots after Ca(OH)2-dressing. MSS was more effective in preventing regrowth than Ca(OH)2 (P=0.009). The modified salt solution prevented regrowth in roots which indicates that it can eliminate persistent bacteria. Dressing the root canals with Ca(OH)2 did not provide additional disinfection after NaOCl irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket

    International Nuclear Information System (INIS)

    Spannagel, G.; Gierszewski, P.

    1991-01-01

    At the Karlsruhe Nuclear Research Center (KfK) a flexible tool is being developed to simulate the dynamics of tritium inventories. This tool can be applied to any tritium handling system, especially to the fuel cycle components of future nuclear fusion devices. This instrument of simulation will be validated in equipment to be operated at the Karlsruhe Tritium Laboratory. In this study tritium inventories in a NET/ITER type fuel cycle involving a lithium salt solution blanket are investigated. The salt solution blanket serves as an example because it offers technological properties which are attractive in modeling the process; the example does not impair the general validity of the tool. Usually, the operation strategy of complex structures will deteriorate due to failures of the subsystems involved. These failures together with the reduced availability ensuing from them will be simulated. The example of this study is restricted to reduced availabilities of two subsystems, namely the reactor and the tritium recovery system. For these subsystems the influence of statistically varying intervals of operation is considered. Strategies we selected which are representative of expected modes of operation. In the design of a fuel cycle, care will be taken that prescribed availabilities of the subsystems can be achieved; however, the description of reactor operation is a complex task since operation breaks down into several campaigns for which rules have been specified which enable determination of whether a campaign has been successful and can be stopped. Thus, it is difficult to predict the overall behavior prior to a simulation which includes stochastic elements. Using the example mentioned above the capabilities of the tool will be illustrated; besides the presentation of results of inventory simulation, the applicability of these data will be discussed. (orig.)

  7. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    Science.gov (United States)

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  8. Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress

    International Nuclear Information System (INIS)

    Waheed, M.A.; Shakir, S.K.; Rehman, S.U.; Khan, M.D.

    2016-01-01

    Among abiotic stresses, salinity is an important factor reducing crop yield. Plant-derived smoke solutions have been used as growth promoters since last two decades. The present study was conducted to investigate the effect of Cymbopogon jwaracusa smoke extracts (1:100 and 1:400) on physiological and biochemical aspects of maize (Zea mays L.) under salt stress (100, 150, 200 and 250 mM). Results showed that seed germination percentage was improved up to 93% with smoke as compared to control (70%), while seedling vigor in term of root and shoot fresh weights and dry weights were also significantly increased in seeds primed with smoke extracts. Similarly, in case of alleviating solutions, there occurred a significant alleviation in the adverse effects of salt solutions when mixed smoke in all studied end points. Application of smoke solution has also increased the level of K+ and Ca+2 while reduced the level of Na+ content in maize. In addition, the levels of photosynthetic pigments, total nitrogen and protein contents were also alleviated with the application of smoke as compared to salt. There occurred an increase in the activities of Anti-oxidant in response of salt stress but overcome with the smoke application. It can be concluded that plant-derived smoke solution has the potential to alleviate the phytotoxic effects of saline condition and can increased the productivity in plants. (author)

  9. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China); Li, Y.L.; Zhao, H.L.; Liang, H. [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Liu, B., E-mail: boliu@henu.edu.cn [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Pan, S., E-mail: span@dlut.edu.cn [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Porous film has been prepared by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution. Black-Right-Pointing-Pointer The mechanism relies on the electrostatic screening effect of the cations in salt solution. Black-Right-Pointing-Pointer The factors influencing the size and area of the pores were investigated. - Abstract: Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  10. Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Ma, Yanjiao; Wang, Hui; Feng, Hanqing; Ji, Shan; Mao, Xuefeng; Wang, Rongfang

    2014-01-01

    Graphical abstract: Three-dimentional Fe, N-doped carbon foams prepared by two steps exhibited comparable catalytic activity for oxygen reduction reaction to commercial Pt/C due to the unique structure and the synergistic effect of Fe and N atoms. - Highlights: • Three-dimensional Fe, N-doped carbon foam (3D-CF) were prepared. • 3D-CF exhibits comparable catalytic activity to Pt/C for oxygen reduction reaction. • The enhanced activity of 3D-CF results of its unique structure. - Abstract: Three-dimensional (3D) Fe, N-doped carbon foams (3D-CF) as efficient cathode catalysts for the oxygen reduction reaction (ORR) in alkaline solution are reported. The 3D-CF exhibit interconnected hierarchical pore structure. In addition, Fe, N-doped carbon without porous strucuture (Fe-N-C) and 3D N-doped carbon without Fe (3D-CF’) are prepared to verify the electrocatalytic activity of 3D-CF. The electrocatalytic performance of as-prepared 3D-CF for ORR shows that the onset potential on 3D-CF electrode positively shifts about 41 mV than those of 3D-CF’ and Fe-N-C respectively. In addition, the onset potential on 3D-CF electrode for ORR is about 27 mV more negative than that on commercial Pt/C electrode. 3D-CF also show better methanol tolerance and durability than commercial Pt/C catalyst. These results show that to synthesize 3D hierarchical pores with high specific surface area is an efficient way to improve the ORR performance

  11. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.

    Science.gov (United States)

    Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason

    2017-02-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

  12. Spectrophotometric determination of copper in alkaline solutions and evaluation of some hydroxy-substituted 1,10-phenanthrolines as chromogenic reagents.

    Science.gov (United States)

    Dunbar, W E; Schilt, A A

    1972-09-01

    Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide.

  13. Stability of interbed for salt cavern gas storage in solution mining considering cusp displacement catastrophe theory

    Directory of Open Access Journals (Sweden)

    Le Yu

    2015-03-01

    Full Text Available Cusp displacement catastrophe theory can be introduced to propose a new method about instability failure of the interbed for gas storage cavern in bedded salt in solution mining. We can calculate initial fracture drawing pace of this interbed to obtain 2D and 3D gas storage shapes at this time. Moreover, Stability evaluation of strength reduction finite element method (FEM based on this catastrophe theory can used to evaluate this interbed stability after initial fracture. A specific example is simulated to obtain the influence of the interbed depth, cavern internal pressure, and cavern building time on stability safety factor (SSF. The results indicate: the value of SSF will be lower with the increase of cavern building time in solution mining and the increase of interbed depth and also this value remains a rise with the increase of cavern internal pressure Especially, we can conclude that the second-fracture of the interbed may take place when this pressure is lower than 6 MPa or after 6 days later of the interbed after initial fracture. According to above analysis, some effective measures, namely elevating the tube up to the top of the interbed, or changing the circulation of in-and-out lines, can be introduced to avoid the negative effects when the second-fracture of the interbed may occur.

  14. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  15. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds.

    Science.gov (United States)

    Okuda, T; Baes, A U; Nishijima, W; Okada, M

    2001-03-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC tap water formed insoluble matters. This formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each molecule of the active coagulation component in MOC-SC-PC and form a net-like structure. The coagulation mechanism of MOC-SC-PC seemed to be an enmeshment of Kaolin by the insoluble matters with the net-like structure. In case of Ca2+ ion (bivalent cations), at least 0.2 mM was necessary for coagulation at 0.3 mgC l-1 dose of MOC-SC-PC. Other coagulation mechanisms like compression of double layer, interparticle bridging or charge neutralization were not responsible for the coagulation by MOC-SC-PC.

  16. The Influence of Mg(II and Ca(II Ions on Rutin Autoxidation in Weakly Alkaline Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Živanović Slavoljub C.

    2016-09-01

    Full Text Available Rutin (quercetin-3-O-rutinoside is one of the most abundant bioflavonoids with various biological and pharmacological activities. Considering the ubiquitous presence of Mg(II and Ca(II ions in biological systems we decided to investigate their influence on the autoxidation of rutin in weakly alkaline aqueous solutions. Changes in UV-Vis spectra recorded during the rutin autoxidation in aqueous solution at pH 8.4 revealed that this process was very slow in the absence of metal ions. The presence of Mg(II and, especially Ca(II ion, increased the transformation rate of rutin. UV-Vis spectra recorded after prolonged autoxidation indicated the formation of humic acidlike products in the presence of Mg(II and Ca(II ions. Four new compounds formed during the initial stage of rutin autoxidation in the presence of Mg(II and Ca(II ions were detected by HPLCDAD. Based on the analysis of their DAD UV-Vis spectra and comparison of their retention times with the retention time value for rutin, we concluded that the initial rutin transformation products were formed by the water addition on double bond in ring C and hydroxylation of ring B. A very small decrease of the initial rutin concentration (4% was observed by HPLC-DAD in the absence of metal ions for the period of 90 minutes. However, rutin concentration decrease was much larger in the presence of Mg(II and Ca(II ions (14% and 24%, respectively. The more pronounced effect of Ca(II ion on the rutin autoxidation may be explained by the stronger binding of Mg(II ion to rutin and thus greater stabilizing effect on reaction intermediates caused by its higher ionic potential (charge/ionic radius ratio in comparison to Ca(II ion. The results of this study may contribute to the better understanding of interactions of Mg(II and Ca(II ions with natural phenolic antioxidants which are important for their various biological activities.

  17. Chemical equilibrium of hydrogen and aqueous solutions of 1 : 1 bicarbonate and formate salts with a common cation

    NARCIS (Netherlands)

    Engel, D.C.; Versteeg, G.F.; Swaaij, W.P.M. van

    1997-01-01

    The chemical equilibrium of hydrogen and aqueous solutions of 1:1 bicarbonate and formate salts with a common cation has been investigated in an intensively stirred batch reactor: MHCO3(aq) + H2(aq) ↔ MOOCH(aq) + H2O(l) This was accomplished for the sodium (M = Na), potassium (M = K) and ammonium (M

  18. Saturated salt solution method: a useful cadaver embalming for surgical skills training.

    Science.gov (United States)

    Hayashi, Shogo; Homma, Hiroshi; Naito, Munekazu; Oda, Jun; Nishiyama, Takahisa; Kawamoto, Atsuo; Kawata, Shinichi; Sato, Norio; Fukuhara, Tomomi; Taguchi, Hirokazu; Mashiko, Kazuki; Azuhata, Takeo; Ito, Masayuki; Kawai, Kentaro; Suzuki, Tomoya; Nishizawa, Yuji; Araki, Jun; Matsuno, Naoto; Shirai, Takayuki; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Fukui, Hidekimi; Ohseto, Kiyoshige; Yukioka, Tetsuo; Itoh, Masahiro

    2014-12-01

    This article evaluates the suitability of cadavers embalmed by the saturated salt solution (SSS) method for surgical skills training (SST). SST courses using cadavers have been performed to advance a surgeon's techniques without any risk to patients. One important factor for improving SST is the suitability of specimens, which depends on the embalming method. In addition, the infectious risk and cost involved in using cadavers are problems that need to be solved. Six cadavers were embalmed by 3 methods: formalin solution, Thiel solution (TS), and SSS methods. Bacterial and fungal culture tests and measurement of ranges of motion were conducted for each cadaver. Fourteen surgeons evaluated the 3 embalming methods and 9 SST instructors (7 trauma surgeons and 2 orthopedists) operated the cadavers by 21 procedures. In addition, ultrasonography, central venous catheterization, and incision with cauterization followed by autosuture stapling were performed in some cadavers. The SSS method had a sufficient antibiotic effect and produced cadavers with flexible joints and a high tissue quality suitable for SST. The surgeons evaluated the cadavers embalmed by the SSS method to be highly equal to those embalmed by the TS method. Ultrasound images were clear in the cadavers embalmed by both the methods. Central venous catheterization could be performed in a cadaver embalmed by the SSS method and then be affirmed by x-ray. Lungs and intestines could be incised with cauterization and autosuture stapling in the cadavers embalmed by TS and SSS methods. Cadavers embalmed by the SSS method are sufficiently useful for SST. This method is simple, carries a low infectious risk, and is relatively of low cost, enabling a wider use of cadavers for SST.

  19. Distribution behavior of uranium, neptunium, rare-earth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiCl-KCl eutectic salt and liquid cadmium or bismuth

    International Nuclear Information System (INIS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-01-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCl eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system. (orig.)

  20. Influence of complexing on physicochemical properties of polymer-salt solutions. Vliyanie kompleksoobrazovaniya na fiziko-khimicheskie svojstva polimerno-solevykh rastvorov

    Energy Technology Data Exchange (ETDEWEB)

    Ostroushko, A A; Yushkova, S M; Koridze, N V; Skobkoreva, N V; Zhuravleva, L I; Palitskaya, T A; Antropova, S V; Ostroushko, I P [Ural' skij Gosudarstvennyj Univ., Sverdlovsk (Russian Federation) AN SSSR, Moscow (Russian Federation). Inst. Obshchej i Neorganicheskoj Khimii

    1993-06-01

    Using the methods of spectrophotometry, viscosimetry, conductometry the influence of salt-polymer complexing processes on physicochemical prperties of aqueous solutions of yttrium, barium, copper nitrates and formates with polyvinyl alcohol was studied. Change of dynamic viscosity, specific electric conductivity of solutions in the process of complexing was shown. Thermal effects of salt-polymer interaction were measured. It is shown that decrease of transition temperature of polymer to plastic state in films, temperature and effective activation energy of salt decomposition is also connected with complexing. Effective values of surface tension on the boundary with air are measured. Coefficients of cation diffusion in polymer-salt solutions are estimated.

  1. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  2. Diclofenac Salts, VIII. Effect of the Counterions on the Permeation through Porcine Membrane from Aqueous Saturated Solutions

    Science.gov (United States)

    Fini, Adamo; Bassini, Glenda; Monastero, Annamaria; Cavallari, Cristina

    2012-01-01

    The following bases: monoethylamine (EtA), diethylamine (DEtA), triethylamine (TEtA), monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), pyrrolidine (Py), piperidine (Pp), morpholine (M), piperazine (Pz) and their N-2-hydroxyethyl (HE) analogs were employed to prepare 14 diclofenac salts. The salts were re-crystallized from water in order to obtain forms that are stable in the presence of water. Vertical Franz-type cells with a diffusional surface area of 9.62 cm2 were used to study the permeation of these diclofenac salts from their saturated solutions through an internal pig ear membrane. The receptor compartments of the cells contained 100 mL of phosphate buffer (pH 7.4); a saturated solution (5 mL) of each salt was placed in the donor compartment, thermostated at 37 °C. Aliquots were withdrawn at predetermined time intervals over 8 h and then immediately analyzed by HPLC. Fluxes were determined by plotting the permeated amount, normalized for the membrane surface area versus time. Permeation coefficients were obtained dividing the flux values J by the concentration of the releasing phase—that is, water solubility of each salt. Experimental results show that fluxes could be measured when diclofenac salts with aliphatic amines are released from a saturated aqueous solution. Different chemical species (acid, anion, ion pairs) contribute to permeation of the anti-inflammatory agent even though ion-pairs could be hypothesized to operate to a greater extent. Permeation coefficients were found higher when the counterion contains a ring; while hydroxy groups alone do not appear to play an important role, the ring could sustain permeation, disrupting the organized domains of the membrane. PMID:24300300

  3. Characterization of the deviation to the ideality of concentrated actinide and lanthanide salt solutions: contribution of the Bimsa theory

    International Nuclear Information System (INIS)

    Ruas, A.

    2006-03-01

    The aim of this work is to describe the mean stoichiometric activity coefficients, osmotic coefficients or water activities of aqueous actinide nitrate salt solutions up to high concentration. These sets of data are required for a better control of the equilibria occurring in liquid-liquid extraction processes. Experimental acquisition of these thermodynamic properties, in the case of some actinide nitrates, is possible and was conducted before.But, many actinide salt solutions cannot be experimentally handled up to high concentration because of unstable oxidation state or very high radioactivity. As a consequence, a suitable predictive theory is necessary for the description of these nitrate salt solutions (such as Am (NO 3 ) 3 , Cm (NO 3 ) 3 ). The BIMSA ('Binding Mean Spherical Approximation') was chosen for this purpose. This theory, unlike other methods, uses a set of microscopic parameters that have some physical meaning, for the description of macroscopic thermodynamic properties (osmotic coefficients, activity coefficients).The following manuscript is divided by 4 chapters, corresponding to 4 articles accepted in the scientific journal 'Journal of Physical Chemistry'. Chapter 1 first reviews the basic thermodynamic concepts before describing the issues involved in acquiring actinides binary data. An approach based on the thermodynamic concept of simple solutions, the notion of fictive binary data, is described. Within this approach, the activity coefficient of an aqueous phase constituent depends on two parameters: the water activity of the system and total concentration of dissolved constituents. As a first application, new fictive binary data of uranyl nitrate are proposed from measurements on the ternary system UO 2 (NO 3 ) 2 /HNO 3 /H 2 O.Chapter 2 gives the main principles of the BIMSA theory. It shows also preliminary promising results obtained when modeling lanthanide(III) salt properties. Then, in chapter 3, two predictive capabilities of the theory

  4. On the capacity to the complexing of alkaline earth metal and magnesium chromates

    International Nuclear Information System (INIS)

    Orekhov, O.L.

    1978-01-01

    Considered is the capacity to the complexing of magnesium chromates and alkaline earth metal chromates with ammonium chromates in aqueous solutions. It has been established that the complexing of alkaline earth metal and magnesium chromates is effected by a nature of initial salts as well as their solubilities and the presence of crystallization water. Capacity of magnesium ions and alkaline rare earth metals to the complexing decreases in a series of Mg-Ca-Sr-Ba. Ca complexes exceed magnesium derivatives in respect of stability

  5. Electrochemically formed passive layers on titanium - preparation and biocompatibility assessment in Hank's balanced salt solution

    International Nuclear Information System (INIS)

    Zhao, B.; Jerkiewicz, G.

    2006-01-01

    Uniform and crack-free passive layers on Ti are prepared using AC voltage in 7.5 wt.% aq. NH 4 ·BF 4 at 25 o C. The passive layers possess coloration (wide spectrum of colors) that depends on the experimental conditions. The biocompatibility of such prepared passive layers is evaluated using corrosion science and analytical techniques. Their corrosion behavior, Ti-ion release, surface roughness, and wettability in Hank's Balanced Salt Solution (HBSS) at 37 o C are the main focus of this work. Open-circuit potential and polarization measurements demonstrate that the corrosion potential (E corr ) of the passive layers becomes more positive than that of the untreated Ti. The value of E corr increases as we increase the AC voltage (VAC). Their corrosion rate (CR) is lower than that of the untreated Ti, and they reduced the Ti-ion release level from 230 to 15 ppb. An increase in the AC voltage frequency (f) leads to a slightly higher level of the Ti-ion release (∼50 ppb). Surface profilometry, optical microscopy, and scanning electron microscopy (SEM) analyses show that prolonged exposure of the passive layers to HBSS results in changes to their surface topography. The passive layers prepared by the application of AC voltage are rougher and more hydrophilic than the untreated Ti. Our methodology of preparing biocompatible passive layers on Ti might be applied as a new surface treatment procedure for Ti implants. (author)

  6. Development of a method to determine the total C-14 content in saturated salt solutions

    International Nuclear Information System (INIS)

    Lucks, C.; Prautsch, C.

    2016-01-01

    This two-step method described here for the determination of the total carbon-14 content in saturated salt solutions is divided in the analysis of the carbon-14 in the evaporable and the non-evaporable fraction. After driving off the inorganic carbon by acidification, the volatile carbon compounds and volatile decomposition products follow with rising temperature inside the sample vessel in a mild stream of oxygen to a tube furnace equipped with CuO catalyst for oxidizing the carbon compounds to CO 2 at a temperature of 800 C. Water is condensed out with an intensive condenser and the released CO 2 is absorbed in a wash bottle filled with sodium hydroxide. Similarly, an aliquot of the evaporation residue is put in the first zone of the tube furnace during the second step of the analysis. After heating the catalyst in the second zone of the furnace to 800 C the residue is heated stepwise to 800 C. By proceeding in this way, the non-volatile compounds are decomposed or oxidised in the oxygen stream and finally completely oxidized by the aid of the catalyst. The released CO 2 is again absorbed in another wash bottle. The carbonate of each fraction is then precipitated as BaCO 3 separately. Finally, the precipitate is washed, dried, finely grounded and covered with toluene scintillation cocktail for measurement in a LSC. The detection limit is about 0,2 Bq/l for a sample volume of 250 ml.

  7. Experimental study of natural convection melting of ice in salt solutions

    International Nuclear Information System (INIS)

    Fang, L.J.; Cheung, F.B.; Linehan, J.H.; Pedersen, D.R.

    1984-01-01

    The solid-liquid interface morphology and the micro-physical process near the moving phase boundary during natural convection melting of a horizontal layer of ice by an overlying pool of salt solution were studied experimentally. A cathetometer which amplifies the interface region was used to measure the ice melting rate. Also measured were the temperature transients of the liquid pool. Within the temperature and the density ratio ranges explored, the ice melting rate was found to be very sensitive to the ratio of pool-to-ice melt density but independent of pool-to-ice temperature difference. By varying the density ratio, three different flow regimes and morphologies of the solid-liquid interface were observed, with melt streamers emanating from the crests of the wavy interface into the pool in all three cases. The measured wavelengths (spacing) between the streamers for four different pairs of materials were correlated with the density ratio and found to agree favorably with the predictions of Taylor instability theory

  8. G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions

    KAUST Repository

    Sun, Dan; Call, Douglas; Wang, Aijie; Cheng, Shaoan; Logan, Bruce E.

    2014-01-01

    © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.

  9. G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions

    KAUST Repository

    Sun, Dan

    2014-07-16

    © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.

  10. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts.

    Science.gov (United States)

    Parvez, Khaled; Wu, Zhong-Shuai; Li, Rongjin; Liu, Xianjie; Graf, Robert; Feng, Xinliang; Müllen, Klaus

    2014-04-23

    Mass production of high-quality graphene sheets is essential for their practical application in electronics, optoelectronics, composite materials, and energy-storage devices. Here we report a prompt electrochemical exfoliation of graphene sheets into aqueous solutions of different inorganic salts ((NH4)2SO4, Na2SO4, K2SO4, etc.). Exfoliation in these electrolytes leads to graphene with a high yield (>85%, ≤3 layers), large lateral size (up to 44 μm), low oxidation degree (a C/O ratio of 17.2), and a remarkable hole mobility of 310 cm(2) V(-1) s(-1). Further, highly conductive graphene films (11 Ω sq(-1)) are readily fabricated on an A4-size paper by applying brush painting of a concentrated graphene ink (10 mg mL(-1), in N,N'-dimethylformamide). All-solid-state flexible supercapacitors manufactured on the basis of such graphene films deliver a high area capacitance of 11.3 mF cm(-2) and an excellent rate capability of 5000 mV s(-1). The described electrochemical exfoliation shows great promise for the industrial-scale synthesis of high-quality graphene for numerous advanced applications.

  11. Rate of Post-traumatic Endophthalmitis with or without Injection of Balanced Salt Solution

    Directory of Open Access Journals (Sweden)

    Nasrin Rafati

    2013-01-01

    Full Text Available Purpose: In a study complementing a previous multicenter randomized clinical trial on prophylactic injection of intraocular antibiotics during primary repair of penetrating eye injuries (PEIs, we sought to determine whether needle entrance and injection of balanced salt solution (BSS, per se, could increase the rate of acute post-traumatic bacterial endophthalmitis (APBE. Methods: Patients randomized to the BSS injection arm (n=167 of the Traumatic Endophthalmitis Trial, and eligible patients who had refused enrollment and received no intraocular injections during primary repair (n=111 were compared for the development of APBE. Results: APBE occurred in 8 of 167 (4.8% eyes in the BSS group and in 5 of 111 (4.5% eyes in the non-injection group (P=0.91. Retained intraocular foreign bodies were present in 46 eyes including 25 (15% eyes in the BSS injection group and 21 (18.9% eyes in the non-injection group (P=0.38. Logistic regression analysis showed no significant difference between BSS injected and non-injected eyes in terms of APBE (P=0.69. However, the presence of intraocular foreign bodies was strongly associated with the risk of endophthalmitis (P<0.001, OR=14.1, 95% CI: 4.1-48.5. Conclusion: Needle entrance and intraocular injection of BSS during primary repair of PEIs does not increase the risk of APBE.

  12. SANS from Salt-Free Aqueous Solutions of Hydrophilic and Highly Charged Star-Branched Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    François Boué

    2016-06-01

    Full Text Available Scattering functions of sodium sulfonated polystyrene (NaPSS star-branched polyelectrolytes with high sulfonation degrees were measured from their salt-free aqueous solutions, using the Small Angle Neutron Scattering (SANS technique. Whatever the concentration c, they display two maxima. The first, of abscissa q1*, is related to a position order between star cores and scales as q1* ∝ c1/3. The second, of abscissa q2*, is also observed in the scattering function of a semi-dilute solution of NaPSS linear polyelectrolytes. In the dilute regime (c < c*, non-overlapping stars, peak abscissa does not depend on concentration c and is just an intramolecular characteristic associated with the electrostatic repulsion between arms of the same star. In the semi-dilute regime, due to the star interpenetration, the scattering function – through the peak position, reflects repulsion between arms of the same star or of different stars. The c threshold between these distinct c-dependencies of q2* in the dilute and semi-dilute regimes is estimated as c*. Just as simple is the measurement of the geometrical radius R of the star obtained from the q1* value at c* through the relation 2R = 2π/q1*. By considering NaPSS stars of the same functionality with different degrees of polymerization per arm Na, we find R scaling linearly with Na, suggesting an elongated average conformation of the arms. This is in agreement with theoretical predictions and simulations. Meanwhile the value of q2* measured in the dilute regime does not allow any inhomogeneous counterion distribution inside the stars to be revealed.

  13. Self-assembly of micelles in organic solutions of lecithin and bile salt: Mesoscale computer simulation

    Science.gov (United States)

    Markina, A.; Ivanov, V.; Komarov, P.; Khokhlov, A.; Tung, S.-H.

    2016-11-01

    We propose a coarse-grained model for studying the effects of adding bile salt to lecithin organosols by means of computer simulation. This model allows us to reveal the mechanisms of experimentally observed increasing of viscosity upon increasing the bile salt concentration. We show that increasing the bile salt to lecithin molar ratio induces the growth of elongated micelles of ellipsoidal and cylindrical shape due to incorporation of disklike bile salt molecules. These wormlike micelles can entangle into transient network displaying perceptible viscoelastic properties.

  14. Fundamental Properties of Salts

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  15. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  16. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions

    International Nuclear Information System (INIS)

    Duie, P.; Dirian, G.

    1962-01-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between 40 Ca and 46 Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH) 2 ; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H 2 bubbles. (authors) [fr

  17. Investigation of complexing in solutions of salt mixture In(NO3)3-NaVO3

    International Nuclear Information System (INIS)

    Nakhodnova, A.N.; Listratenko, I.V.

    1987-01-01

    Spectrophotometry, conductometry and pH-metry are used to investigate properties and composition of the solid phases of isomolar series of In(NO 3 ) 3 -NaVO 3 salt mixture solutions and series of solutions having constant concentration of one of the components and varied of the other. Results of investigation are presented. It is stated that in the investigated solution series in weakly acid media HPA with the ratios [In 3+ ]:[V 5+ ] being equal to 11:1, 6:1, and 1:9, are formed. Composition of the complexes is mainly defined by the ratio of the components in In(NO 3 ) 3 and NaVO 3 salt mixture solutions and the medium acidity. Compounds of Na 2 OxIn 2 O 3 x2.5V 2 O 5 x8.5H 2 O and Cs 2 OxIn 2 O 3 x6V 2 O 5 x6.5H 2 O empirical formulae are separated. Results of IR spectroscopy, derivatography and X-ray phase analysis of the corresponding salts are presented

  18. Investigation of complexing in solutions of salt mixture In(NO/sub 3/)/sub 3/-NaVO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Nakhodnova, A N; Listratenko, I V

    1987-05-01

    Spectrophotometry, conductometry and pH-metry are used to investigate properties and composition of the solid phases of isomolar series of In(NO/sub 3/)/sub 3/-NaVO/sub 3/ salt mixture solutions and series of solutions having constant concentration of one of the components and varied of the other. Results of investigation are presented. It is stated that in the investigated solution series in weakly acid media HPA with the ratios (In/sup 3+/):(V/sup 5+/) being equal to 11:1, 6:1, and 1:9, are formed. Composition of the complexes is mainly defined by the ratio of the components in In(NO/sub 3/)/sub 3/ and NaVO/sub 3/ salt mixture solutions and the medium acidity. Compounds of Na/sub 2/OxIn/sub 2/O/sub 3/x2.5V/sub 2/O/sub 5/x8.5H/sub 2/O and Cs/sub 2/OxIn/sub 2/O/sub 3/x6V/sub 2/O/sub 5/x6.5H/sub 2/O empirical formulae are separated. Results of IR spectroscopy, derivatography and X-ray phase analysis of the corresponding salts are presented.

  19. Effect of temperature on solvation behaviour of diclofenac sodium salt in aqueous glycine and L-proline solutions

    International Nuclear Information System (INIS)

    Ryshetti, Suresh; Gardas, Ramesh L; Tangeda, Savitha Jyostna

    2015-01-01

    Highlights: • Solvation behaviour of diclofenac drug studied in aqueous solutions. • Density and speed of sound of drug in aq. glycine and L-proline are measured. • Hydrophobic nature of diclofenac sodium salt is studied. • Effect of temperature on solvation of diclofenac sodium salt is analysed. - Abstract: Apparent molar volume (V 2,ϕ ) and apparent molar isentropic compressibility (K s,2,ϕ ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg −1 in (0.01, 0.03 and 0.05) mol · kg −1 aqueous glycine and L-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V 2,ϕ and K s,2,ϕ . These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/L-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions

  20. The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions

    Science.gov (United States)

    Nguyen, Mary; Rick, Steven W.

    2018-06-01

    The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.

  1. Fiber degradability of sugar cane bagasse treated by alkaline solutions, through the “in situ” nylon bag technique

    Directory of Open Access Journals (Sweden)

    Sérgio Carlo Franco Morgulis

    1996-09-01

    treated bagasse (A was higher than in B or C treatments; degradability of B was higher than in C at 72h and 96h of incubation time. NDF degradability at 48 hour incubation time showed the following results: A = 74.0%; B = 41.6% and C = 35.7%. In conclusion, alkaline (NaOH and wood ash treated sugar cane bagasse improves ruminal degradability, and NaOH is better than wood ash.

  2. Glyoxal and methylglyoxal Setschenow salting constants in sulfate, nitrate, and chloride solutions

    DEFF Research Database (Denmark)

    Waxman, Eleanor M.; Elm, Jonas; Kurtén, Theo

    2015-01-01

    Knowledge about Setschenow salting constants, KS, the exponential dependence of Henry's Law coefficients on salt concentration, is of particular importance to predict secondary organic aerosol (SOA) formation from soluble species in atmospheric waters with high salt concentrations, such as aerosols....... We have measured KS of glyoxal and methylglyoxal for the atmospherically relevant salts (NH4)2SO4, NH4NO3, NaNO3, and NaCl and find that glyoxal consistently "salts-in" (KS of -0.16, -0.06, -0.065, -0.1 molality(-1), respectively) while methylglyoxal "salts-out" (KS of +0.16, +0.075, +0.02, +0.......06 molality(-1)). We show that KS values for different salts are additive and present an equation for use in atmospheric models. Additionally, we have performed a series of quantum chemical calculations to determine the interactions between glyoxal/methylglyoxal monohydrate with Cl(-), NO3(-), SO4(2-), Na...

  3. Results For The Third Quarter Calendar Year 2016 Tank 50H Salt Solution Sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-13

    In this memorandum, the chemical and radionuclide contaminant results from the Third Quarter Calendar Year 2016 (CY16) sample of Tank 50H salt solution are presented in tabulated form. The Third Quarter CY16 Tank 50H samples (a 200 mL sample obtained 6” below the surface (HTF-5-16-63) and a 1 L sample obtained 66” from the tank bottom (HTF-50-16-64)) were obtained on July 14, 2016 and received at Savannah River National Laboratory (SRNL) on the same day. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours, and the samples were pulled immediately after pump shut down. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Third Quarter CY16 sampling of Tank 50H were requested by Savannah River Remediation (SRR) personnel and details of the testing are presented in the SRNL TTQAP.

  4. Results for the first quarter calendar year 2017 tank 50H salt solution sample

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-04-12

    In this memorandum, the chemical and radionuclide contaminant results from the First Quarter Calendar Year 2017 (CY17) sample of Tank 50H salt solution are presented in tabulated form. The First Quarter CY17 Tank 50H samples [a 200 mL sample obtained 6” below the surface (HTF-50-17-7) and a 1 L sample obtained 66” from the tank bottom (HTF-50-17-8)] were obtained on January 15, 2017 and received at Savannah River National Laboratory (SRNL) on January 16, 2017. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours and the samples were pulled immediately after pump shut down. All volatile organic analysis (VOA) and semi-volatile organic analysis (SVOA) were performed on the surface sample and all other analyses were performed on the variable depth sample. The information from this characterization will be used by Savannah River Remediation (SRR) for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. The chemical and radionuclide contaminant results from the characterization of the First Quarter CY17 sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan (TTQAP). This memorandum is part of Deliverable 2 from SRR request. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the TTQAP for the Tank 50H saltstone task.

  5. Effectiveness of EDTA and Modified Salt Solution to Detach and Kill Cells from Enterococcus faecalis Biofilm.

    Science.gov (United States)

    de Almeida, Josiane; Hoogenkamp, Michel; Felippe, Wilson T; Crielaard, Wim; van der Waal, Suzette V

    2016-02-01

    Disruption of the matrix of endodontic biofilms will aid in their removal from a root canal. Therefore, the aim of this study was to investigate the efficacy of EDTA and a modified salt solution (MSS) to detach bacteria from biofilms. Forty-eight-hour-old Enterococcus faecalis biofilms were grown on glass coverslips and then treated for 1 hour by immersion in 17% EDTA or MSS. Phosphate-buffered saline served as a negative control. Then, residual biofilm cells on the substrate and the detached cells in the supernatant were collected. Viability was verified by the colony-forming unit (CFU) counting method. Propidium monoazide (PMA) treatment in conjunction with quantitative polymerase chain reaction (qPCR) was also performed to detect the presence of E. faecalis 16S ribonucleic RNA genes. Data were analyzed using 1-way analysis of variance and Tukey or Kruskal-Wallis and Dunn tests. The Pearson R test evaluated the correlation between results from CFU and PMA (α = 5%). qPCR showed that EDTA detached 99% of biofilm cells, and MSS detached 94% of biofilm cells (both P < .001). In contrast to EDTA, MSS was highly antimicrobial. The treatment promoted an ample log 7 reduction of the attached cells (P < .001), and almost no live cells were detected in the supernatant (P < .001). Positive correlations between CFU and qPCR with PMA were observed (r = 0.959 and r = 0.729). EDTA detached cells in biofilms with a minor antimicrobial effect. Besides a great antimicrobial effect, MSS also detached biofilm cells. These dispersals of biofilms give insights into new endodontic biofilm removal strategies. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated

  7. Aluminum anode for aluminum-air battery - Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution

    Science.gov (United States)

    Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu

    2017-07-01

    Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.

  8. Synthesis of nanometer metallic powders or its oxides by γ-ray reduction of salts aqueous solution

    International Nuclear Information System (INIS)

    Zhang Manwei; Zhu Yingjie; Qian Yitai; Chen Zuyao

    1995-01-01

    The nanocrystal powders of pure Ag, Cu, Ni, Pt, Au, Pd, Cd, Sn, Pb and Co were obtained by γ-radiation reduction of their salt aqueons solution. The average particle sizes of them are 5-45 nm respectively. the factors affecting the particle size and the formation and growth of the nanocrystal particles into single crystal are illustrated and discussed. the pure nanocrystal Cu 2 O powders were also successfully prepared. The mechanism of its formation is discussed. (author)

  9. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    Science.gov (United States)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  10. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  11. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  12. Radioactive waste and special waste disposal in salt domes - phoney waste management solutions

    International Nuclear Information System (INIS)

    Grimmel, E.

    1990-01-01

    The paper tries to make aware of the fact that an indefinite safe disposal of anthropogeneous wastes in underground repositories is impossible. Suspicion is raised that the Gorleben-Rambow salt dome has never been studied for its suitability as a repository, but that it was simply taken for granted. Safety analyses are meant only to conceal uncertainty. It is demanded to immediately opt out of the ultimate disposal technique for radioactive and special wastes in salt caverns. (DG) [de

  13. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Science.gov (United States)

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  14. Quenching of acridine orange fluorescence by salts in aqueous solutions: Effects of aggregation and charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Amado, A.M. [Departamento de Física, FFCLRP, USP (Brazil); Ramos, A.P. [Departamento de Química, FFCLRP, USP (Brazil); Silva, E.R. [Departamento de Física, FFCLRP, USP (Brazil); Borissevitch, I.E., E-mail: iouribor@usp.br [Departamento de Física, FFCLRP, USP (Brazil)

    2016-10-15

    Acridine orange (AO) is widely applied in biology and medicine as a fluorescence probe, an intracellular pH indicator, and a photosensitizer in photodynamic therapy due to its adequate spectroscopic characteristics and high affinity to biological structures. Being introduced in an organism, AO is dispersed in blood plasma characterized by high ionic strength (ca. 0.36 M in humans). We have investigated the effect of ionic strength upon AO spectral characteristics and fluorescence quenching. The effect of pH on these characteristics was also tested. Salts quench AO fluorescence, the quenching constant (k{sub q}) increasing with the AO concentration. Salts stimulate AO aggregation, the process depending weakly on the salt origin. On the other hand, k{sub q} does depend on the salt anion origin, increasing as the anion oxidation potential decreases, and is virtually independent of the cation origin. This means that at least two different mechanisms of the AO fluorescence quenching by salts exist: fluorescence intensity decrease due to AO aggregation and quenching by partial electron transfer from salt anion to AO molecule in its singlet excited state (the exciplex formation).

  15. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  16. Green Chemicals from d-glucose : Systematic Studies on Catalytic Effects of Inorganic Salts on the Chemo-Selectivity and Yield in Aqueous Solutions

    NARCIS (Netherlands)

    Rasrendra, C. B.; Makertihartha, I. G. B. N.; Adisasmito, S.; Heeres, H. J.

    The use of inorganic salts as catalysts for the reactions of d-glucose in aqueous solutions in a batch reactor is reported. The type of salt and effect of reaction time were examined in detail at a fixed salt (5 mM) and d-glucose concentration (0.1 M) and at a temperature of 140 A degrees C. Al(III)

  17. A solution for cesium removal from high-salinity acidic or alkaline liquid waste: The crown calix[4]arenes

    International Nuclear Information System (INIS)

    Dozol, J.F.; Simon, N.; Lamare, V.; Rouquette, H.; Eymard, S.; Tournois, B.; Marc, D. de; Macias, R.M.

    1999-01-01

    Calix[4]arenes monocrown or biscrown, blocked in 1,3 alternative cone conformation, display an exceptional efficiency for cesium extraction, even from very acid or alkaline media. Moreover, they possess an important selectivity for cesium over sodium that makes possible the extraction of cesium from media containing high sodium nitrate loadings. Another advantage, since the extraction of cesium is reversible, is that the stripping of cesium can be carried out in deionized water, a property which leads to very high concentration factors. 79 refs., 10 figs., 6 tabs

  18. Determination of the osmotic second virial coefficient and the demerization of beta-lactoglobulin in aqueous solutions with added salt at the isoelectric point

    NARCIS (Netherlands)

    Schaink, H.M.; Smit, J.A.M.

    2000-01-01

    Aqueous solutions of β-lactoglobulin (at the isoelectric point pH=5.18) have been studied by membrane osmometry. The osmotic second virial coefficient as well as the monomer–dimer equilibrium of β-lactoglobulin have been found to depend significantly on the salt concentration. At low salt

  19. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    International Nuclear Information System (INIS)

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-01

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB 6 , SrB 6 , BaB 6 and the ternary hexaborides Ca x Sr 1−x B 6 , Ca x Ba 1−x B 6 , Sr x Ba 1−x B 6 (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB 6 (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials

  20. Effect of Sn4+ Additives on the Microstructure and Corrosion Resistance of Anodic Coating Formed on AZ31 Magnesium Alloy in Alkaline Solution

    Science.gov (United States)

    Salman, S. A.; Kuroda, K.; Saito, N.; Okido, M.

    Magnesium is the lightest structural metal with high specific strength and good mechanical properties. However, poor corrosion resistance limits its widespread use in many applications. Magnesium is usually treated with Chromate conversion coatings. However, due to changing environmental regulations and pollution prevention requirements, a significant push exists to find new, alternative for poisonous Cr6+. Therefore, we aim to improve corrosion resistance of anodic coatings on AZ31 alloys using low cost non-chromate electrolyte. Anodizing was carried out in alkaline solutions with tin additives. The effect of tin additives on the coating film was characterized by SEM and XRD. The corrosion resistance was evaluated using anodic and cathodic polarizations and electrochemical impedance spectroscopy (EIS). Corrosion resistance property was improved with tin additives and the best anti-corrosion property was obtained with addition of 0.03 M Na2SnO3.3H2O to anodizing solution.

  1. Coprecipitation of 137Cs and 85Sr microquantities with complex compound [M(18-crown-6)]BPH4 (M=Na+, Cs+) from neutral and alkaline solutions

    International Nuclear Information System (INIS)

    Konovalova, N.A.; Rumer, I.A.; Kulyukhin, S.A.

    2009-01-01

    The paper reports the possibility of joint separation of 137 Cs and 85 Sr from neutral and alkaline aqueous solutions by their coprecipitation with the solid phase of complex compounds [M(18-crown-6)]BPh 4 (M=Na + , Cs + ), as well as to study the coprecipitation of 137 Cs and 85 Sr with the solid phase CsBPh 4 . It is found that complex compounds [M(18-crown-6)]BPh 4 (M=Na + , Cs + ) increased the degree of 85 Sr separation from solutions virtually two- to threefold vs. CsBPh 4 . Chloride and nitrate were found to have hardly any impact on the coprecipitation of 137 Cs and 85 Sr with [M(18-crown-6)]BPh 4 (M = Na + , Cs + ). (orig.)

  2. Corrosion studies on type AISI 316L stainless steel and other materials in lithium-salt solutions

    International Nuclear Information System (INIS)

    Zheng, J.H.; Bogaerts, W.F.; Agema, K.; Phlippo, K.; Bruggeman, A.; Lorenzetto, P.; Embrechts, M.J.

    1991-01-01

    A possible concept for the blanket for next generation fusion devices is the lithium salt blanket, where lithium salt is dissolved in an aqueous coolant in order to provide for tritium. Type AISI 316L stainless steel has been considered as a structural material for such a blanket for NET (Next European Torus), and a systematic study of the corrosion behaviour of 316L stainless steel has been carried out in a number of lithium salt solutions. The experiments include cyclic potentiodynamic polarization measurement, crevice corrosion fatigue and stress corrosion cracking (SCC) tests. This paper presents a part of novel corrosion results concerning the compatibility of 316L steel and a series of other materials relevant to a fusion blanket environment. No major uniform corrosion problem has been observed, but localized corrosion, particularly corrosion fatigue and SCC, of 316L stainless steel have been found so far in a lithium hydroxide solution under some specific potential conditions. The critical electrochemical potential zones for SCC have been identified in the present study. (orig.)

  3. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    Science.gov (United States)

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  4. Distributions of 14 elements on 63 absorbers from three simulant solutions (acid-dissolved sludge, acidified supernate, and alkaline supernate) for Hanford HLW Tank 102-SY

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1994-08-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 63 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste (HLW). These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with three solutions prepared to simulate acid-dissolved sludge (pH 0.6), acidified supernate (pH 3.5), and alkaline supernate (pH 13.9) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington. To these simulants we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of more than 2500 element/absorber/solution combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. Because we measured the sorption of many different elements, the tabulated results indicate those elements most likely to interfere with the sorption of elements of greater interest. On the basis of nearly 7500 measured distribution coefficients, we determined that many of these absorbers appear suitable for processing HLW. This study supersedes the previous version of LA-12654, in which results attributed to a solution identified as an alkaline supernate simulant were misleading because that solution contained insufficient hydroxide

  5. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides

    International Nuclear Information System (INIS)

    Freire, L.; Carmezim, M.J.; Ferreira, M.G.S.; Montemor, M.F.

    2011-01-01

    Highlights: → The passivation and passivation breakdown of AISI 304 in alkaline solutions with different pH was studied. → The electrochemical behaviour and the corrosion resistance in chloride environments were evaluated using d.c. potentiodynamic polarization and electrochemical impedance spectroscopy. → The results were modelled using a hierarchically distributed circuit and revealed a more susceptible surface at pH 9. → The passive film characterization was carried out by SEM and EDS analysis, revealing the existence of MnS inclusions and the increase of Cr/Fe ratio in the attacked areas, preferably the vicinity of those inclusions. - Abstract: Nowadays, stainless steel reinforcements appear as an effective solution to increase the durability of reinforced concrete structures exposed to very aggressive environments. AISI 304 is widely used for this purpose. Although the improved durability of reinforcing AISI 304, when compared to carbon steel, there is a high probability of pitting susceptibility in the presence of chlorides. Thus, the present work aims at studying the passivation and passivation breakdown of AISI 304 in alkaline solutions of different pH (pH from 13 to 9), simulating the interstitial concrete electrolyte. These solutions were contaminated with different concentrations of chloride ions (3% and 10%, as NaCl). The electrochemical behaviour was evaluated by d.c. potentiodynamic polarization and by electrochemical impedance spectroscopy (EIS). The morphological features and the changes observed in the surface composition were evaluated by Scanning Electron Microscopy (SEM) together with EDS chemical analysis. The results evidence that pH plays an important role in the evolution of the film resistance and charge transfer processes. Moreover, the effect is highly dependent upon the chloride content and immersion time.

  6. Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.

    Science.gov (United States)

    Al-Gousous, J; Penning, M; Langguth, P

    2015-04-30

    The purpose of this investigation was to study the effect of using different salts of shellac on the disintegration properties of shellac-based enteric coatings. In the last two decades, shellac has been increasingly used as an aqueous solution for enteric coating purposes, with the ammonium salt being the form typically used. Little investigation has been performed on using other salts, and therefore, this was the focus of our work. Enteric coatings, based on different shellac salts (ammonium, sodium, potassium and composite ammonium-sodium), were applied onto soft gelatin capsules. Disintegration testing of the coated soft gelatin capsules showed that alkali metal salts promote faster disintegration than ammonium salts. In order to determine the causes behind these differences, the solubility, thermal and spectroscopic properties of films cast from the different salts were investigated. The results show that films cast from ammonium-based salts of shellac are, unlike those cast from alkali metal-based salts, water-insoluble. Spectroscopic evidence suggests that this might be due to partial salt dissociation resulting in loss of ammonium as ammonia and reduced degree of shellac ionization during drying. In addition, oxidation of shellac aldehyde groups of the ammonium-based shellac salts could also play a role. And possible higher extent of shellac hydrolysis during the preparation of alkali metal salts might also be a factor. Therefore, the nature of the shellac salt used in the preparation of shellac-based aqueous coating solutions is a significant formulation factor affecting product performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of salt solutions on the radiosensitivity of mammalian cells as a function of the state of adhesion and the water structure

    Energy Technology Data Exchange (ETDEWEB)

    Moggach, P G; Lepock, J R; Kruuv, J [Waterloo Univ., Ontario (Canada). Dept. of Physics

    1979-11-01

    The radiation isodose survival curve of attached Chinese hamster (V79) cells, subjected to a wide concentration range of salt or sucrose solutions, was characterized by two maxima separated by a minimum. Cells were radioprotected at the maxima (high and low hypertonic salt concentrations) while they were radiosensitized at the minimum (intermediate hypertonic salt concentrations). Both cations and anions could alter the cellular radiosensitivity above and beyond the (osmotic) effect observed for cells treated with sucrose solutions. However, the basic curve shape, except in the case of sulphate salts, remained the same. When these experiments were repeated with single cells in suspension, the isodose survival curve was quite different in that high salt concentrations did not protect cells in suspension unlike the case with attached cells. The curve shape was also altered in that the second maximum was absent with many salt solutions. When multicellular spheroids were used for these experiments, the data resembled those for single cell suspensions rather than for attached cells. The radiation survival data for cells in suspension in salt solutions correlated with water proton spin lattice relaxation time (T/sub 1/) and, in hypo- and iso-tonic solutions, with cell volume.

  8. On the appearance of vorticity and gradient shear bands in wormlike micellar solutions of different CPCl/salt systems

    Energy Technology Data Exchange (ETDEWEB)

    Mütze, Annekathrin, E-mail: muetzea@ethz.ch; Heunemann, Peggy; Fischer, Peter [ETH Zürich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)

    2014-11-01

    Wormlike micellar salt/surfactant solutions (X-salicylate, cetylpyridinium chloride) are studied with respect to the applied shear stress, concentration, temperature, and composition of the counterions (X = lithium, sodium, potassium, magnesium, and calcium) of the salicylate salt solute to determine vorticity and gradient shear bands. A combination of rheological measurements, laser technique, video analysis, and rheo-small-angle neutron scattering allow for a detailed exploration of number and types of shear bands. Typical flow curves of the solutions show Newtonian, shear-thinning, and shear-thickening flow behavior. In the shear-thickening regime, the solutions show vorticity and gradient shear bands simultaneously, in which vorticity shear bands dominate the visual effect, while gradient shear bands always coexist and predominate the rheological response. It is shown that gradient shear bands change their phases (turbid, clear) with the same frequency as the shear rate oscillates, whereas vorticity shear bands change their phases with half the frequency of the shear rate. Furthermore, we show that with increasing molecular mass of the counterions the number of gradient shear bands increases, while the number of vorticity shear bands remains constant. The variation of temperature, shear stress, concentration, and counterions results in a predictable change in the rheological behavior and therefore allows adjustment of the number of vorticity shear bands in the shear band regime.

  9. Modification of thermal sensitivity of Chinese hamster cells by exposure to solutions of monovalent and divalent cationic salts

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Azzam, E.I.; Vadasz, J.

    1984-06-01

    Chinese hamster V79 cells were heated in culture medium or in 0.155-mol.dm -3 solutions of LiCl, NaCl, KCl, MgCl 2 , CaCl 2 and BaCl 2 . The presence of any one of these ionic solutions during heating increased the thermal sensitivity of the cells. The order of increased thermal sensitivity was KCl > LiCl > NaCl for the monovalent salts and BaCl 2 > MgCl 2 > CaCl 2 for the divalent cation salts. The addition of glucose to LiCl or NaCl solutions did not reduce the thermal sensitization caused by these solutions. When cells were sensitized by LiCl or NaCl treatment, a change in pH from 7.2 to 6.6 did not further increase thermal sensitivity. These data show that nutrient and ionic factors and their interplay are involved in cellular thermal sensitivity

  10. Potentiometric titration of uranium reduced by chromic salts in chloridic solutions; Titulacao potenciometrica de uranio reduzido por sais cromosos em solucoes cloridricas

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, C M.C.; Bastos, E T.R.

    1986-06-01

    The utilization of chromic salts for reducing the uranium (VI) from chloridic solutions, for potentiometric dosage is described. This method is used in the range of 0,002 to 1,0 M of uranium. (C.G.C.).

  11. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gnanaprakash, G. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mahadevan, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kalyanasundaram, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Philip, John [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: philip@igcar.gov.in; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-05-15

    We report the effect of initial pH and temperature of iron salt solutions on formation of magnetite (Fe{sub 3}O{sub 4}) nanoparticles during co-precipitation. We synthesized nanoparticles by keeping the initial pH at 0.7, 1.5, 3.0, 4.7, 5.7, 6.7 for two different temperatures of 30 and 60 deg. C. When the initial pH (prior to alkali addition) of the salt solution was below 5, the nanoparticles formed were 100% spinel iron oxide. Average size of the magnetite particles increases with initial pH until ferrihydrite is formed at a pH of 3 and the size remains the same till 4.7 pH. The percentage of goethite formed along with non-stoichiometric magnetite was 35 and 78%, respectively, when the initial pH of the solution was 5.7 and 6.7. As the reaction temperature was increased to 60 deg. C, maintaining a pH of 6.7, the amount of goethite increased from 78 to 100%. These results show that the initial pH and temperature of the ferrous and ferric salt solution before initiation of the precipitation reaction are critical parameters controlling the composition and size of nanoparticles formed. We characterize the samples using X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results of the present work provide the right conditions to synthesis pure magnetite nanoparticles, without goethite impurities, through co-precipitation technique for ferrofluid applications.

  12. Conductometric investigation of salt-free solutions of polyriboguanylic acid. Issledovanie bessolevykh rastvorov poliriboguanilovoj kisloty metodom konduktometrii

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A G; Davydova, O V; Kargov, S I [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul' tet

    1993-08-01

    Salt-free solutions of various ionic forms of polyriboguanylic acid (poly(G)) were studied by the methods of conductometry and spectroscopy of annular dichroism. The Manning approach was employed to calculate transport characteristics and structural parameters of poly(G) on the basis of spectra permit putting poly(G) salts in two groups: the first one comprising NH[sub 4][sup +]-, Rb[sup +]-, K[sup +]-, Na[sup +]-, the second one - Cs[sup +]-, and Li[sup +]-poly(G). The assumption is made that Li[sup +] and Cs[sup +] ions, bound with concrete groups of polyanion in a specific way, can promote formation of a stable structure different from the one observed in the presence of the first group counterions. 25 refs., 3 figs.

  13. Can mothers safely prepare labon-gur salt-sugar solution after demonstration in a diarrhoeal hospital?

    DEFF Research Database (Denmark)

    Islam, M A; Kofoed, Poul-Erik; Begum, S

    1992-01-01

    Home-based salt-sugar solution (SSS) prepared with labon (locally produced sea salt) and gur (unrefined brown sugar) has been recommended as a cheap, locally available and a simple tool to prevent and treat diarrhoeal dehydration. Preparation of labon-gur SSS is demonstrated to the patients...... and the attendants at ICDDR, Bangladesh. To evaluate performances, 150 mothers were asked to measure labon and gur by finger pinch and first method and 100 mothers measured half a seer of water to prepare labon-gur SSS, shortly after the demonstration sessions. 4.0% of the samples exceeded the upper safety limit...... this knowledge. Our study suggests that demonstration of home-based SSS in a diarrhoeal hospital may positively affect health education and that health personnel should actively participate in increasing health awareness....

  14. Structural analysis of salt cavities formed by solution mining: I. Method of analysis and preliminary results for spherical cavities

    International Nuclear Information System (INIS)

    Fossum, A.F.

    1976-01-01

    The primary objective of this effort is an analysis of the structural stability of cavities formed by solution mining in salt domes. In particular, the effects of depth (i.e. initial state of in situ stress), shape, volume (i.e. physical dimensions of the cavity), and sequence of salt excavation/fluid evacuation on the timewise structural stability of a cavity are of interest. It is anticipated that an assessment can be made of the interrelation between depth, cavern size, and cavern shape or of the practical limits therewith. In general, the cavity shape is assumed to be axisymmetric and the salt is assumed to exhibit nonlinear creep behavior. The primary emphasis is placed on the methodology of the finite element analysis, and the results of preliminary calculations for a spherically shaped cavity. It is common practice for engineers to apply elasticity theory to the behavior of rock in order to obtain near field stresses and displacements around an underground excavation in an effort to assess structural stability. Rock masses, particularly at depth, may be subjected to a rather complex state of initial stress, and may be nonhomogeneous and anisotropic. If one also includes complex geometrical excavation shape, the use of analytical techniques as an analysis tool is practically impossible. Thus, it is almost a necessity that approximate solution techniques be employed. In this regard, the finite element method is ideal as it can handle complex geometries and nonlinear material behavior with relative ease. An unusual feature of the present study is the incorporation into the finite element code of a procedure for handling the gradual creation or excavation of an underground cavity. During the excavation sequence, the salt is permitted to exhibit nonlinear stress-strain-time dependence. The bulk of this report will be devoted to a description of the analysis procedures, together with a preliminary calculation for a spherically shaped cavity

  15. Estimation of effect of inorganic salts on state of melts and carbamide solutions

    International Nuclear Information System (INIS)

    Dymnikov, N.S.; Yakunin, N.A.; Baranov, A.V.; Moryganov, A.P.

    1995-01-01

    The character of coordination in the systems carbamide-LiCl and carbamide-CaCl 2 has been shown on the basis of IR spectroscopy data. Interrelation between complexing in the melt carbamide-inorganic salt and thermal resistance of amide compound has been ascertained. 3 refs.; 3 figs

  16. History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method.

    Science.gov (United States)

    Hayashi, Shogo; Naito, Munekazu; Kawata, Shinichi; Qu, Ning; Hatayama, Naoyuki; Hirai, Shuichi; Itoh, Masahiro

    2016-01-01

    Traditionally, surgical training meant on-the-job training with live patients in an operating room. However, due to advancing surgical techniques, such as minimally invasive surgery, and increasing safety demands during procedures, human cadavers have been used for surgical training. When considering the use of human cadavers for surgical training, one of the most important factors is their preservation. In this review, we summarize four preservation methods: fresh-frozen cadaver, formalin, Thiel's, and saturated salt solution methods. Fresh-frozen cadaver is currently the model that is closest to reality, but it also presents myriad problems, including the requirement of freezers for storage, limited work time because of rapid putrefaction, and risk of infection. Formalin is still used ubiquitously due to its low cost and wide availability, but it is not ideal because formaldehyde has an adverse health effect and formalin-embalmed cadavers do not exhibit many of the qualities of living organs. Thiel's method results in soft and flexible cadavers with almost natural colors, and Thiel-embalmed cadavers have been appraised widely in various medical disciplines. However, Thiel's method is relatively expensive and technically complicated. In addition, Thiel-embalmed cadavers have a limited dissection time. The saturated salt solution method is simple, carries a low risk of infection, and is relatively low cost. Although more research is needed, this method seems to be sufficiently useful for surgical training and has noteworthy features that expand the capability of clinical training. The saturated salt solution method will contribute to a wider use of cadavers for surgical training.

  17. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between ∼ 20 and 400 0 C. The hydrolysis of Mg 2+ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25 0 C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate

  18. Comparative Study of the Preparation of Reducing Sugars Hydrolyzed from High-Lignin Lignocellulose Pretreated with Ionic Liquid, Alkaline Solution and Their Combination

    Directory of Open Access Journals (Sweden)

    Hanny F. Sangian

    2015-05-01

    Full Text Available The ionicliquid [MMIM][DMP] was synthesized from the reactants methyl imidazole [MIM] and trimethylphosphate [TMP] and verified using 1HNMR and FTIR. Coconut coir dust was pretreated with a 1% alkaline solution.Its crystalline structure increased significantly due to the dissolution of lignin and hemicelluloses under alkaline conditions, exposing the cellulose. After NaOH and IL were employed, the XRD showed that peak (002 decreased significantly and peak (101 almost vanished. This significant decrease in crystallinity was related to the alteration of the substrate from the cellulose I structure to the cellulose II structure. The pretreated substrates were hydrolyzed to convert them to reducing sugars by pure cellulase and xylanase,and the reaction was conducted at 60°C, pH 3, for 12 or 48 hours. The yields of sugar hydrolyzed from untreated and NaOH-pretreated substrates were 0.07 and 0.12 g sugar/g lignocellulose, respectively. Pretreatment with IL or the combination of NaOH+IL resulted in yields of reducing sugars of 0.11 and 0.13 g/g, respectively. These findings showed that IL pretreatment of the high-lignin lignocellulose is a new prospect for the economical manufacture of reducing sugars and bioethanol in the coming years.

  19. Experimental determination of Henry's law constants of difluoromethane (HFC-32 and the salting-out effects in aqueous salt solutions relevant to seawater

    Directory of Open Access Journals (Sweden)

    S. Kutsuna

    2017-06-01

    Full Text Available Gas-to-water equilibrium coefficients, KeqS (in M atm−1, of difluoromethane (CH2F2, a hydrofluorocarbon refrigerant (HFC-32, in aqueous salt solutions relevant to seawater were determined over a temperature (T range from 276 to 313 K and a salinity (S range up to 51 ‰ by means of an inert-gas stripping method. From the van't Hoff equation, the KeqS value in water, which corresponds to the Henry's law constant (KH, at 298 K was determined to be 0.065 M atm−1. The salinity dependence of KeqS (the salting-out effect, ln(KH∕KeqS, did not obey the Sechenov equation but was proportional to S0. 5. Overall, the KeqS(T value was expressed by ln(KeqS(T  =  −49.71 + (77.70 − 0.134  ×  S0. 5  ×  (100∕T + 19.14  ×  ln(T∕100. By using this equation in a lower-tropospheric semi-hemisphere (30–90 °S of the Advanced Global Atmospheric Gases Experiment (AGAGE 12-box model, we estimated that 1 to 4 % of the atmospheric burden of CH2F2 resided in the ocean mixed layer and that this percentage was at least 4 % in the winter; dissolution of CH2F2 in the ocean may partially influence estimates of CH2F2 emissions from long-term observational data of atmospheric CH2F2 concentrations.

  20. Many-electron electrochemical processes. Reactions in molten salts, room-temperature ionic liquids and ionic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Andriiko, Aleksandr A. [National Technical Univ. Ukraine, Kyiv (Ukraine). Kyiv Polytechnic Inst.; Andriyko, Yuriy O. [CEST Centre of Electrochemical Surface Technology, Wiener Neustadt (Austria); Nauer, Gerhard E. [Vienna Univ. (Austria). Inst. of Physical Chemistry

    2013-02-01

    The authors provide a unified concept for understanding multi-electron processes in electrochemical systems such as molten salts, ionic liquids, or ionic solutions. A major advantage of this concept is its independence of assumptions like one-step many-electron transfers or 'discrete' discharge of complex species. This book contains the following main topics: 1. Many-electron electrochemical systems: Concepts and definitions. 2. Many-electron systems at equilibrium. 3. Phenomenology of electrochemical kinetics. 4. Electrode film systems: experimental evidences. 5. Dynamics of a non-equilibrium electrochemical system. 6. Electrochemistry of Ti(IV) in ionic liquids.

  1. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    OpenAIRE

    Moia, Davide; Giovannitti, Alexander; Szumska, Anna A.; Schnurr, Martin; Rezasoltani, Elham; Maria, Iuliana P.; Barnes, Piers R. F.; McCulloch, Iain; Nelson, Jenny

    2017-01-01

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient t...

  2. Alkaline earth metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The beryllium ion has a relatively small ionic radius. As a consequence of this small size, its hydrolysis reactions begin to occur at a relatively low pH. To determine the stability and solubility constants, however, the Gibbs energy of the beryllium ion is required. In aqueous solution calcium, like the other alkaline earth metals, only exists as a divalent cation. The size of the alkaline earth cations increases with increasing atomic number, and the calcium ion is bigger than the magnesium ion. The hydrolysis of barium(II) is weaker than that of strontium(II) and also occurs in quite alkaline pH solutions, and similarly, only the species barium hydroxide has been detected. There is only a single experimental study on the hydrolysis of radium. As with the stability constant trend, it would be expected that the enthalpy of radium would be lower than that of barium due to the larger ionic radius.

  3. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    Science.gov (United States)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  4. Properties of altered soils by alkaline solution: contribution in the performance evaluation of repositories; Propriedades de solos alterados por solucao alcalina: contribuicao na avaliacao de desempenho de repositorios

    Energy Technology Data Exchange (ETDEWEB)

    Calabria, Jaqueline Alves de Almeida

    2015-07-01

    very low for all evaluated samples (less than 20% after 10 days of equilibrium), being the best performance one, the nitosoil sample whose K{sub d} values varied from 11.78 to 63.05 mL.g{sup -1}. In a subsequent step, the clay soil, was submitted to the alkaline solution interaction, in order to investigate possible alterations on the sorption properties and hydraulic conductivity of this soil. Using the sorption parameters, obtained from data fitted isotherms, the retardation factor, R, was estimated for the samples before and after the interaction. It was demonstrated that the alkaline alteration promotes damages to sorption properties of Cs, once the R became significantly smaller (about 1000 times) after the interaction. The hydraulic conductivity in turn increased slightly (3,91x10{sup -8} cm.s{sup -1} to 5,08 x 10{sup -8} cm.s{sup -1}). It was concluded that these changes were due, mainly, to the dissolution of minerals present in the clay soil (kaolinite and quartz), associated with the incorporation of K and Ca from the alkaline solution, resulting, probably, in the formation of hydrated calcium silicate phases. Additionally, the effects of alkaline solution on the properties of a commercial bentonite were studied. Contrary to the clay soil, it was observed a gain in the sorption characteristics, with K{sub d} (Cs) increasing from 760.05 mL.g{sup -1}to 1311.80 mL.g{sup -1}and Q{sub max} from 36.32 mg.g{sup -1}to 52.13 mg.g{sup -1}, with the corresponding increase in the retardation coefficient, R. The dissolution of the clay minerals from the initial sample and the incorporation of Mg, K e Ca coming from the alkaline solution, generating smectite of different kinds, were considered as the main mineralogical changes responsible for the modifications in sorption parameters. The different behavior between the two evaluated samples, soil and bentonite, confirms that the nature and extension of changes observed, when mineral samples interact with alkaline solution

  5. Mode of corrosion monitoring by electrochemical measurements in alkaline water solutions at 310 degC using a new type of industrial probes with high radiation stability

    International Nuclear Information System (INIS)

    Beran, J.

    1977-01-01

    Application of the linear polarization method to Zr-alloys and low-alloy steel was successfully verified by autoclave tests in alkaline water solutions, pH=10.3 max. The new type of industrial probes for electrochemical measurements worked 5500 hours at temperatures within 250 and 310 degC. Contrary to usual practice, the corrosion rate was evaluated applying the criterion T/Rsub(p) instead of criterion 1/Rsub(p). A single calibration curve T/Rsub(p) versus corrosion rate, which is independent of test temperature, was introduced in this way. The probes, developed by SKODA-Works, Nuclear Power Construction Division for electrochemical measurements in nuclear reactor environment, do not contain organic compounds (for sealing, insulation etc.) in order to prevent radiation damage. (author)

  6. Contribution to the study of uranyl salts in butyl phosphate solutions; Contribution a l'etude des solutions de sels d'uranyle dans les phosphates butyliques

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-06-01

    A spectroscopic study in the normal infrared region and involving the following associations: tri-alkyl phosphates (tri-butyl, tri-ethyl, tri-methyl), uranyl salts (nitrate, chloride, acetate) has confirmed the existence of an interaction between the phosphoryl group and the uranium atom, as shown by a movement of absorption band for the valency P = 0 from {approx} 1270 cm{sup -1} to {approx} 1180 cm{sup -1}. A study of the preparation, analysis and spectroscopy of the solids obtained by the precipitation of uranyl salts by acid butyl phosphates has been carried out. By infrared spectrophotometry it has been shown that the tri-butyl and di-butyl phosphates are associated in non-polar diluents even before the uranium is introduced. The extraction of uranyl salts from acid aqueous solutions by a diluted mixture of tri-butyl and di-butyl phosphates proceeds by different mechanisms according to the nature of the ion (nitrate or chloride). (author) [French] Une etude spectroscopique dans l'infrarouge moyen portant sur les associations: - phosphates trialcoyliques (tributylique - triethylique - trimethylique) - sels d'uranyle (nitrate, chlorure, acetate) a confirme l'existence d'une interaction entre le groupement phosphoryle et l'atome d'uranium, se manifestant par un deplacement de la bande d'absorption de la vibration de valence P = 0 de {approx} 1270 cm{sup -1} a {approx} 1180 cm{sup -1}. Une etude preparative, analytique et spectroscopique des solides obtenus par precipitation de sels d'uranyle par les phosphates butyliques acides a ete effectuee. La spectrophotomerie infrarouge met en evidence l'association, anterieure a toute introduction d'uranium, des phosphates tributylique et dibutylique dans des diluants non polaires. L'extraction de sels d'uranyle, d'une solution aqueuse acide par un melange dilue de phosphates tributylique et dibutylique, s'effectue suivant des processus differents a la nature de l'anion (nitrate ou chlorure). (auteur)

  7. The effect of high pH alkaline solutions on the mineral stability of the Boom Clay - Batch experiments at 60 deg. C

    International Nuclear Information System (INIS)

    Honty, M.; De Craen, M.; Wang, L.; Madejova, J.; Czimerova, A.; Pentrak, M.; Stricek, I.; Van Geet, M.

    2010-01-01

    Boom Clay is currently viewed as a reference host formation for studies on deep geological disposal of radioactive waste in Belgium. The interactions between bulk rock Boom Clay and 0.1 M KOH, 0.1 M NaOH, 0.1 M Ca(OH) 2 , young cement water and evolved cement water solutions, ranging in pH from 12.5 to 13.2, were examined as static batch experiments at 60 deg. C to simulate alkaline plume perturbations, which are expected to occur in the repository due to the presence of concrete. Both liquids and solids were investigated at specific times between 90 and 510 days in order to control the elemental budget and to search for potential mineralogical alterations. Also, the clay fraction was separated from the whole-rock Boom Clay at the end of each run and characterized for its mineralogical composition. Thereby, the importance of the mineral matrix to buffer the alkaline attack and the role of organic matter to protect clay minerals were also addressed. The results indicate that the degree of geochemical perturbation in Boom Clay is dependent on the initial pH of the applied solution together with the nature of the major cation in the reactant fluids. The higher the initial pH of the media, the stronger its interaction with Boom Clay. No major non-clay mineralogical alteration of the Boom Clay was detected, but dissolution of kaolinite, smectite and illite occurred within the studied experimental conditions. The dissolution of clays is accompanied by the decrease in the layer charge, followed by a decrease in the cation-exchange capacity. The highest TOC values coincide with the highest total elemental concentrations in the leachates, and correspondingly, the highest dissolution degree. However, no quantitative link could be established between the degree of organic matter decomposition and clay dissolution.

  8. Limitations of amorphous content quantification by isothermal calorimetry using saturated salt solutions to control relative humidity: alternative methods.

    Science.gov (United States)

    Khalef, Nawel; Pinal, Rodolfo; Bakri, Aziz

    2010-04-01

    Despite the high sensitivity of isothermal calorimetry (IC), reported measurements of amorphous content by this technique show significant variability even for the same compound. An investigation into the reasons behind such variability is presented using amorphous lactose and salbutamol sulfate as model compounds. An analysis was carried out on the heat evolved as a result of the exchange of water vapor between the solid sample during crystallization and the saline solution reservoir. The use of saturated salt solutions as means of control of the vapor pressure of water within sealed ampoules bears inherent limitations that lead in turn to the variability associated with the IC technique. We present an alternative IC method, based on an open cell configuration that effectively addresses the limitations encountered with the sealed ampoule system. The proposed approach yields an integral whose value is proportional to the amorphous content in the sample, thus enabling reliable and consistent quantifications. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  9. Water Uptake By Mars Salt Analogs: An Investigation Of Stable Aqueous Solutions On Mars Using Raman Microscopy

    Science.gov (United States)

    Nuding, D.; Gough, R. V.; Jorgensen, S. K.; Tolbert, M. A.

    2013-12-01

    To understand the formation of briny aqueous solutions on Mars, a salt analog was developed to closely match the individual cation and anion concentrations as reported by the Wet Chemistry Laboratory aboard the Phoenix Lander. ';Instant Mars' is a salt analog developed to fully encompass the correct concentrations of magnesium, calcium, potassium, sodium, perchlorate, chloride, and sulfate ions. Using environmental Raman microscopy, we have studied the water uptake by the Instant Mars analog as a function of temperature and relative humidity. Water uptake was monitored using Raman spectroscopy in combination with optical microscopy. A MicroJet droplet generator was used to generate 30 μm diameter particles that were deposited onto a quartz disc. The particles undergo visual transformations as the relative humidity (RH) is increased and the presence of water uptake is confirmed by Raman spectroscopy. At -30° C, water uptake begins at ~ 35% RH as humidity is increased. The water uptake is marked by the growth of a sulfate peak at 990 cm-1, an indicator that sulfate has undergone a phase transition into an aqueous state. As the RH continues to increase, the peak in the O-H region (~3500 cm-1) broadens as more liquid water accumulates in the particles. The Instant Mars particles achieve complete deliquescence at 68% RH, indicated both visually and with Raman spectroscopy. The gradual water uptake observed suggests that deliquescence of the Instant Mars particles is not an immediate process, but that it occurs in steps marked by the deliquescence of the individual salts. Perhaps of even more significance is the tendency for the Instant Mars particles to remain aqueous at low humidity as RH is decreased. Raman spectra indicate that liquid water is present as low as 2% RH at -30° C. Ongoing work will examine the phase of Instant Mars particles under simulated Martian surface and subsurface conditions to gain insight into the possibility for aqueous solutions on Mars

  10. Electrical resistivities and solvation enthalpies for solutions of salts in liquid alkali metals

    International Nuclear Information System (INIS)

    Hubberstey, P.; Dadd, A.T.

    1982-01-01

    An empirical correlation is shown to exist between the resistivity coefficients drho/dc for solutes in liquid alkali metals and the corresponding solvation enthalpies Usub(solvn) of the neutral gaseous solute species. Qualitative arguments based on an electrostatic solvation model in which the negative solute atom is surrounded by a solvation sphere of positive solvent ion cores are used to show that both parameters are dependent on the charge density of the solute atom and hence on the extent of charge transfer from solvent to solute. Thus as the charge density of the solute increases, the solvation enthalpy increases regularly and the resistivity coefficients pass through a maximum to give the observed approximately parabolic drho/dc versus Usub(solvn) relationship. (Auth.)

  11. Simulation of NaCl and KCl mass transfer during salting of Prato cheese in brine with agitation: a numerical solution

    Directory of Open Access Journals (Sweden)

    E. Bona

    2007-09-01

    Full Text Available The association of dietary NaCl with arterial hypertension has led to a reduction in the levels of this salt in cheeses. For salting, KCl has been used as a partial substitute for NaCl, which cannot be completely substituted without affecting product acceptability. In this study a sensorially adequate saline solution (NaCl/KCl was simultaneously diffused during salting of Prato cheese in brine with agitation. The simultaneous multicomponent diffusion during the process was modeled with Fick’s second generalized law. The system of partial differential equations formed was solved by the finite element method (FEM. In the experimental data concentration the deviation for NaCl was of 7.3% and for KCl of 5.4%, both of which were considered acceptable. The simulation of salt diffusion will allow control and modulation of salt content in Prato cheese, permitting the prediction of final content from initial conditions.

  12. Electrocatalytic activity and stability of Ag-MnOx/C composites toward oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Wu, Qiumei; Jiang, Luhua; Qi, Luting; Yuan, Lizhi; Wang, Erdong; Sun, Gongquan

    2014-01-01

    Ag-MnO x /C composites were prepared using AgNO 3 and KMnO 4 as the precursors and Vulcan XC-72 as the support. The physical properties of the Ag-MnO x /C composites were investigated via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The activity and the stability of the series of Ag-MnO x /C composites toward the oxygen reduction reaction (ORR) in alkaline media were investigated through the electrochemical techniques. The results show that the main species MnO 2 and Ag 2 O in the fresh sample convert into Mn 3 O 4 and Ag(0), respectively, after the heat treatment in N 2 at 300 °C (Ag-MnO x /C-300). The Ag-MnO x /C-300 sample shows the highest activity toward the ORR, with the half-wave potential of the ORR shifting negatively only 0.035 V compared to that on the commercial 40 wt. % Pt/C (JM). The electron transfer number during the ORR on the Ag-MnO x /C composite increases with the value close to four after the heat treatment at 300 °C, which is mainly attributed to the formation of Ag(0), rather than Mn 3 O 4 . The heat treatment brings about a better catalytic stability of the composite, and no obviously negative shift takes place for the half-wave potential of the ORR on the Ag-MnO x /C-300 composite after 1000 cycles accelerated aging test. The maximum power density of the zinc-air battery with the Ag-MnO x /C-300 air electrode reaches up to 130 mW cm −2 , higher than those based on the Pd/C and Pt/C cathode catalysts, which shows that the Ag-MnO x /C-300 composite is a promising candidate as the catalyst for the air electrode

  13. Potentiometric titration curves of aluminium salt solutions and its species conversion in the hydrolysis-polymerization course

    Directory of Open Access Journals (Sweden)

    Chenyi Wang

    2008-12-01

    Full Text Available A new concept of critical point is expounded by analysing the potentiometric titration curves of aluminium salt solutions under the moderate slow rate of base injection. The critical point is defined as the characteristic spot of the Al3+ salt solutions potentiometric titration curve, which is related to the experiment conditions. In addition, the changes of critical points reflect the influence of experiment conditions on the course of the hydrolysis-polymerization and the conversion of hydroxyl polynuclear aluminum species. According to the OH/Al mole ratio, the Al species can be divided into four regions quantitatively by three characteristic points on the titration curves: Part I, Al3+/Ala region, consist chiefly of Al3+ and mononuclear Al; Part II, the small/middle polynuclear Al region, including Al2-Al12; Part III, the large-size polynuclear aluminum region, consistent with predominantly Al13-Al54 and a little sol/gel Al(OH3; Part IV, the dissolving region of sol/gel Alc, only Al(OH 3 (aq or am and Al(OH4- species, which set up a base to study on the hydrolysis-polymerization of Al3+. At the same time, significant effects of total aluminum concentration, temperature, halide ion, silicate radical, and organic acid radical on the titration curves and its critical points were observed. Given the three critical points which demarcating the aluminum forms, we carry out a through investigation into the fundamental regulations of these factors’ influence, and offer a fresh train of thought to study the hydrolysis-polymerization of Al3+ in soil solutions.

  14. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn; Cusick, Roland D.; Kim, Younggy; Logan, Bruce E.

    2012-01-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown

  15. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions.

    Science.gov (United States)

    Hildebrand, Viet; Laschewsky, André; Zehm, Daniel

    2014-01-01

    A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.

  16. Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of State

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios; Thomsen, Kaj

    2013-01-01

    The static permittivity is the most important physical property for thermodynamic models that account for the electrostatic interactions between ions. The measured static permittivity in mixtures containing electrolytes is reduced due to kinetic depolarization and reorientation of the dipoles...... methodology for obtaining the static permittivity over wide ranges of temperatures, pressures, and compositions for use within an equation of state for mixed solvents containing salts. The static permittivity is calculated from a new extension of the framework developed by Onsager, Kirkwood, and Fröhlich...... to associating mixtures. Wertheim’s association model as formulated in the statistical associating fluid theory is used to account for hydrogen-bonding molecules and ion–solvent association. Finally, we compare the Debye–Hückel Helmholtz energy obtained using an empirical model with the new physical model...

  17. Physicochemical investigation of reactions of some basic cadmium salts formation in aqueous solutions

    International Nuclear Information System (INIS)

    Gyunner, Eh.A.; Mel'nichenko, L.M.; Yakhkind, N.D.; Vel'mozhnyj, I.S.; Pevzner, N.S.

    1980-01-01

    By the methods of physicochemical analysis (the method of residual concentrations, refractometry), the composition of slightly soluble products of interaction in the five systems of the Cd(CHsub(3)COO)sub(2)-Msub(z)X-NaOH-Hsub(2)O type (Msub(z)X - NaF, KClO 3 , KBrO 3 , NaHCOO, Na 2 S 2 O 3 ) has been detemined. It has been established that in systems with NaF, NaHCOO and Na 2 S 2 O 3 , cadmium hydroxide formation is preceded by deposition of the basic salts Cd(OH)F, Cd(OH)HCOO, and Cd 4 (OH) 6 S 2 O 3 . In systems with KClO 3 and KBrO 3 the only interaction slightly soluble product is Cd(OH) 2

  18. Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T = 120° C, P = 210 kg/cm2

    Science.gov (United States)

    Zielinski, Robert A.

    1979-01-01

    Well-characterized samples of rhyolitic obsidian, perlite and felsite from a single lava flow are leached of U by alkaline oxidizing solutions under open-system conditions. Pressure, temperature, flow rate and solution composition are held constant in order to evaluate the relative importance of differences in surface area and crystallinity. Under the experimental conditions U removal from crushed glassy samples proceeds by a mechanism of glass dissolution in which U and silica are dissolved in approximately equal weight fractions. The rate of U removal from crushed glassy samples increases with decreasing average grain size (surface area). Initial rapid loss of a small component (≈ 2.5%) of the total U from crushed felsite. followed by much slower U loss, reflects variable rates of attack of numerous uranium sites. The fractions of U removed during the experiment ranged from 3.2% (felsite) to 27% (perlite). An empirical method for evaluating the relative rate of U loss from contemporaneous volcanic rocks is presented which incorporates leaching results and rock permeability data.

  19. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution.

    Science.gov (United States)

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400°C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200°C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlpfarrer, Philipp, E-mail: philipp-johannes.stuhlpfarrer@stud.unileoben.ac.at; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    Highlights: • Removal of plastics. • Enrichment of In, Ga and Ge. • Low temperature. • No dioxines. - Abstract: The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400 °C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200 °C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones.

  1. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution

    International Nuclear Information System (INIS)

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-01-01

    Highlights: • Removal of plastics. • Enrichment of In, Ga and Ge. • Low temperature. • No dioxines. - Abstract: The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400 °C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200 °C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones.

  2. Effect of hydrogen charging on the stability of SAE 10B22 steel surface in alkaline solutions

    International Nuclear Information System (INIS)

    Modiano, S.; Carreno, J.A.; Fugivara, C.S.; Benedetti, A.V.; Mattos, O.R.

    2005-01-01

    The influence of hydrogen charging into a quenched and tempered boron steel membrane electrode (SAE 10B22) was studied using borate buffer (pH 8.4) and NaOH solutions (pH 12.7), with or without the addition of 0.01 M EDTA. At the hydrogen input side, hydrogen charging influenced cyclic voltammograms increasing the anodic charge of iron(II) hydroxide formation, and decreasing the donor density of passive films. These results suggest that the hydrogen ingress caused instability of metallic surface, increasing the surface area activity

  3. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    Science.gov (United States)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  4. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Qian Xin, E-mail: qx3023@nimte.ac.cn [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang Xuefei; Ouyang Qin; Chen Yousi; Yan Qing [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment. Black-Right-Pointing-Pointer The concentration of oxygen and nitrogen on the fiber surface increased after surface treatment. Black-Right-Pointing-Pointer The intensity of oxidative reaction varied with the change of ammonium-salt solutions. Black-Right-Pointing-Pointer The higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative reaction happened. - Abstract: The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH{sub 4}HCO{sub 3}, (NH{sub 4}){sub 2}CO{sub 3} and (NH{sub 4}){sub 3}PO{sub 4} were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6 nm for untreated fibers to 13.5 nm for treated fibers in (NH{sub 4}){sub 3}PO{sub 4} electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH{sub 4}){sub 3}PO{sub 4} electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative

  5. Enhancement of radiation-induced base release from nucleosides in alkaline solution: essential role of the O.- radical

    International Nuclear Information System (INIS)

    Scholes, M.L.; Schuchmann, M.N.; Sonntag, C. von

    1992-01-01

    The effect of pH on base release in the γ-radiolysis of N 2 O-saturated solutions of a number of nucleosides (including uridine, 3-methyluridine, 2', 3' -O-isopropylidene-uridine, and adenosine) has been investigated. For all these nucleosides, independent of the base or sugar moiety, base release is very low at pH below 10 (G∼(0.3-0.7) x 10 -7 mol J -1 ), but increases drastically to G∼(3-4) x 10 -7 mol J -1 at pH ≥ 13. It is concluded that the increase in base release at high pH is caused by the increasing participation of O .- , which, unlike . OH, attacks the nucleosides preferentially at their sugar moieties, and is not due to an OH - -induced radical transfer from the base to the sugar moiety. (author)

  6. Experimental study of evaporation of horizontal films of water–salt solutions

    Directory of Open Access Journals (Sweden)

    Elistratov S.L.

    2015-01-01

    Full Text Available The present studies were carried out for the horizontal films (thin layers of water and water solutions of NaCl, CaCl2, LiCl, and LiBr with different solubility characteristics, as well as with specific features of formation and decay of water hydrates. Required volume of solution Vo of given weight concentration ξo, preliminary heated to the working surface temperature, was put in one step on the horizontal bottom of the bowl, heated to working temperature tCT, by means of volume batchers Thermo Scientific. After evaporation completion, the final mass of solution and form of their residue were registered. At the final stage of evaporation formation of NaCl crystals and water hydrates of CaCl2 · 2H2O, LiCl · H2O, and LiBr · 2H2O occurred.

  7. Analysis of the corrosion of carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Kassner, T.F.

    1988-04-01

    An analysis of literature data on the corrosion of carbon steels in anoxic brines and acid chloride solutions was performed, and the results were used to assess the expected life of high-level nuclear waste package containers in a salt repository environment. The corrosion rate of carbon steels in moderately acidic aqueous chloride environments obeys an Arrhenius dependence on temperature and a (pH 2 ) -1/2 dependence on hydrogen partial pressure. The cathodic reduction of water to produce hydrogen is the rate-controlling step in the corrosion process. An expression for the corrosion rate incorporating these two dependencies was used to estimate the corrosion life of several proposed waste package configurations. 42 refs., 11 figs., 2 tabs

  8. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  9. Simulating Osmotic Equilibria: A New Tool for Calculating Activity Coefficients in Concentrated Aqueous Salt Solutions.

    Science.gov (United States)

    Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François

    2017-10-19

    Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.

  10. Ion Pairing in Aqueous Lithium Salt Solutions with Monovalent and Divalent Counter-Anions

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Mason, Philip E.; Jungwirth, Pavel

    2013-01-01

    Roč. 117, č. 46 (2013), s. 11766-11773 ISSN 1089-5639 R&D Projects: GA MŠk LH12001 Grant - others:MŠMT(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : lithium * aqueous solution * neutron scattering * molecular dynamics * polarizability Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.775, year: 2013

  11. Physicochemical investigation of reactions of some basic cadmium salts formation in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gyunner, E A; Mel' nichenko, L M; Yakhkind, N D; Vel' mozhnyi, I S; Pevzner, N S [Simferopol' skij Gosudarstvennyj Univ. (Ukrainian SSR)

    1980-04-01

    By the methods of physicochemical analysis (the method of residual concentrations, refractometry), the composition of slightly soluble products of interaction in the five systems of the Cd(CHsub(3)COO)sub(2)-Msub(z)X-NaOH-Hsub(2)O type (Msub(z)X - NaF, KClO/sub 3/, KBrO/sub 3/, NaHCOO, Na/sub 2/S/sub 2/O/sub 3/) has been detemined. It has been established that in systems with NaF, NaHCOO and Na/sub 2/S/sub 2/O/sub 3/, cadmium hydroxide formation is preceded by deposition of the basic salts Cd(OH)F, Cd(OH)HCOO, and Cd/sub 4/(OH)/sub 6/S/sub 2/O/sub 3/. In systems with KClO/sub 3/ and KBrO/sub 3/ the only interaction slightly soluble product is Cd(OH)/sub 2/.

  12. Elaboration and test of the method of separation of alkaline metals ions with tin phosphate

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Chernyak, A.S.; Kostromina, O.N.; Kachur, N.Ya.; Shpeyzer, B.G.

    1986-01-01

    Present work is devoted to elaboration and test of the method of separation of alkaline metals ions with tin phosphate. Thus, the isotherms of sorption of lithium, sodium, potassium, rubidium and cesium ions with amorphous tin phosphate depending on their concentration, ph of solution, sorbent quantity are obtained. The parameters of extraction of potassium microquantities from sodium salts are defined. Ultra pure sodium chloride, sodium iodide, sodium sulphate, sodium nitrate, sodium nitrite, sodium phosphate are synthesized.

  13. A time effect in the early stages of a surface oxidation of a Pt(111 plane in alkaline solution

    Directory of Open Access Journals (Sweden)

    J. D. LOVIC

    2001-12-01

    Full Text Available A time effect in the early stages of surface oxidation of a Pt(111 plane in 0.1 M NaOH solution was studied by examining the reduction parts of the j/E profile recorded after holding the potential for various times at several values at the end of anodic-going sweeps. The processes associated with the two peaks, which appear in the anodic part of the voltammogram, are assigned to the early stages of a surface oxidation. Two OHad states are suggested based on the existence of reversibly or weakly bound OHad species and irreversibly or strongly bound OHad species. The reversibly bound OHad species are involved in the “normal” structure of the butterfly peak, while the irreversibly adsorbed OHad species can be obtained only by the slow diffusion of a part of the initially electrosorbed OH species from sites with low to sites with higher binding energies. The irreversibly reduced OHad species cannot be completely removed from the surface causing, therefore, some permanent transformation of the initial state of the surface. This kind of species was not detected in the area of the second oxidation peak. The phenomena observed in the reduction part of the j/E profile induced by a time effect in the second peak could be associated with a place-exchange mechanism between oxygen containing species, whatever they are, and the platinum surface.

  14. The anodic dissolution of SIMFUEL (UO{sub 2}) in slightly alkaline sodium carbonate/bicarbonate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Keech, P.G.; Goldik, J.S.; Qin, Z. [Department of Chemistry, University of Western Ontario, 1151 Richmond St, London ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.ca [Department of Chemistry, University of Western Ontario, 1151 Richmond St, London ON, N6A 5B7 (Canada)

    2011-09-30

    The corrosion of nuclear fuel under waste disposal conditions is likely to be influenced by the bicarbonate/carbonate content of the groundwater since it increases the solubility of the U{sup VI} corrosion product, [UO{sub 2}]{sup 2+}. As one of the half reactions involved in the corrosion process, the anodic dissolution of SIMFUEL (UO{sub 2}) has been studied in bicarbonate/carbonate solutions (pH 9.8) using voltammetric and potentiostatic techniques and electrochemical impedance spectroscopy. The reaction proceeds by two consecutive one electron transfer reactions (U{sup IV} {yields} U{sup V} {yields} U{sup VI}). At low potentials ({<=}250 mV (vs. SCE) the rate of the first electron transfer reaction is rate determining irrespective of the total carbonate concentration. At potentials >250 mV (vs. SCE) the formation of a U{sup VI}O{sub 2}CO{sub 3} surface layer begins to inhibit the dissolution rate and the current becomes independent of potential indicating rate control by the chemical dissolution of this layer.

  15. Response surface methodology for production, characterization and application of solvent, salt and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA 2017.

    Science.gov (United States)

    Abdel Wahab, Walaa A; Ahmed, Samia A

    2018-04-17

    Isolated strain Aspergillus niger WA 2017 was selected as potential protease producer and was identified on the basis of 18S rDNA gene homology. Optimization of protease production conditions was performed using statistical methodology. The most significant factors were identified by Plackett-Burman design (PB) and were optimized by central composite design (CCD). The enzyme production was increased by 3.6-fold with statistically optimized medium when compared to the basal medium. Based on the protease activity, 25-50% ethanol fraction exhibited the highest specific activity. The partially purified enzyme showed its highest activity (4.7-fold) after 10 min incubation at pH 10.0 and 60 °C. The enzyme was stable over a wide range of pH (7-11) and salt concentration (up to 20%). Kinetic parameters Michaelis constant (K m ) and maximum velocity (V max ) were calculated at varying casein concentrations. Additionally, thermal stability of the enzyme was substantially improved by NaCl. The enzyme showed excellent stability and compatibility in presence of organic solvents and detergents retaining 115.3 and 114.5% of its activity in presence of ethanol and Tide, respectively at 40 °C for 1 h. The results revealed that the produced enzyme was able to recover silver from used X-ray film under optimized condition using statistical methodology (CCD). Copyright © 2017. Published by Elsevier B.V.

  16. Influence of pH, temperature, and concentration on stabilization of aqueous hornet silk solution and fabrication of salt-free materials.

    Science.gov (United States)

    Kameda, Tsunenori

    2015-01-01

    We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations. © 2014 Wiley Periodicals, Inc.

  17. Interaction of titanium and zirconium hydroxides with aqueous solutions of lead(2) salts

    International Nuclear Information System (INIS)

    Savenko, V.G.; Sakharov, V.V.; Nurgalieva, A.A.; Petrov, K.I.

    1980-01-01

    The mixed phases, characterized by the Pb : Zr 4 ratio are synthesized during the process of geterophase interaction of zirconium hydroxide with solutions of lead nitrate and acetate. The process of the mixed phases thermolysis on the base of amorphous zirconium hydroxides is investigated by the methods of DTA, X-ray phase analysis and IR spectroscopy. The metastable phases are formed during the thermolysis process

  18. Analysis of Hanford Cast Stone Supplemental LAW using Composition Adjusted SRS Tank 50 Salt Solution

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ramsey, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-04-25

    Vitrification is the primary disposition path for Low Activity Waste (LAW) at the Department of Energy (DOE) Hanford Site. A cementitious waste form is one of the alternatives being considered for the supplemental immobilization of the LAW that will not be treated by the primary vitrification facility. Washington River Protection Solutions (WRPS) has been directed to generate and collect data on cementitious or pozzolanic waste forms such as Cast Stone.

  19. Iodometric determination of decahydrodecaborate (2-) salts in aqueous solutions and nickel plating electrolytes

    International Nuclear Information System (INIS)

    Egorova, N.V.; Svitsyn, R.A.

    1991-01-01

    A method for decahydrodecaborate (2-) anion determination in aqueous solutions and in electrolyte of nickel plating in the range of concentrations 0.002-100 mass % was described. The method is based on the interaction of the compound analyzed with iodine in the presence of acetic acid in the process of heating and subsequent titration of iodine excess by sodium thiosulfate. Relative error of the determination is 1 %

  20. OSMOTIC DEHYDRATION KINETICS OF GUAVAS IN MALTOSE SOLUTIONS WITH CALCIUM SALT*

    Directory of Open Access Journals (Sweden)

    S. DI S. MASTRANTONIO

    2009-03-01

    Full Text Available

    The osmotic dehydration kinetics of guavas in maltose solutions at 40 and 60ºBrix, with addition of 0, 0.6 and 1.2% of calcium lactate was studied in this paper and the final product quality was evaluated. The experiments were carried out up to 60 hours and samples were taken for analysis at different times to evaluate guavas weight reduction, water loss and sugar gain and to characterize the product according to its texture and color. After 24 hours of process the mass transfer of water and sugar between the osmotic solution and the fruit was negligible, showing that process equilibrium was reached. The increase of sugar concentration in the osmotic solution showed strong influence on the dehydration process, increasing the water loss and reducing sugar gain. The presence of calcium ions in the osmotic solution also influenced the kinetics of mass transfer and showed a strong influence on fruit texture. Higher values of stress and strain at failure were obtained when calcium lactate was employed. The effect of the different osmotic treatments on the color parameters was also investigated and significant changes were observed in the values of chroma C* and hue H* due to sugar concentration and calcium addition.

    KEYWORDS: Osmotic dehydration; kinetics; guava; maltose; calcium lactate.

  1. Mechanism of Pitting Corrosion Prevention by Nitrite in Carbon Steel Exposed to Dilute Salt Solutions

    International Nuclear Information System (INIS)

    Zapp, Philip E.; Zee, John W. van

    2002-01-01

    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during waste removal for permanent disposition and waste tank closure to ensure that the tanks are maintained safely. The results of the research provide the insight necessary to develop solutions that prevent further degradation

  2. Complexation of Polyelectrolytes with Hydrophobic Drug Molecules in Salt-Free Solution: Theory and Simulations.

    Science.gov (United States)

    Lei, Qun-Li; Hadinoto, Kunn; Ni, Ran

    2017-04-18

    The delivery and dissolution of poorly soluble drugs is challenging in the pharmaceutical industry. One way to significantly improve the delivery efficiency is to incorporate these hydrophobic small molecules into a colloidal polyelectrolyes(PE)-drug complex in their ionized states. Despite its huge application value, the general mechanism of PE collapse and complex formation in this system has not been well understood. In this work, by combining a mean-field theory with extensive molecular simulations, we unveil the phase behaviors of the system under dilute and salt-free conditions. We find that the complexation is a first-order-like phase transition triggered by the hydrophobic attraction between the drug molecules. Importantly, the valence ratio between the drug molecule and PE monomer plays a crucial role in determining the stability and morphology of the complex. Moreover, the sign of the zeta potential and the net charge of the complex are found to be inverted as the hydrophobicity of the drug molecules increases. Both theory and simulation indicate that the complexation point and complex morphology and the electrostatic properties of the complex have a weak dependence on chain length. Finally, the dynamics aspect of PE-drug complexation is also explored, and it is found that the complex can be trapped into a nonequilibrium glasslike state when the hydropobicity of the drug molecule is too strong. Our work gives a clear physical picture behind the PE-drug complexation phenomenon and provides guidelines to fabricate the colloidal PE-drug complex with the desired physical characteristics.

  3. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-07-08

    This report is a collection of summary articles on FY 2000 studies of slurry transport and salt-well pumping related to Hanford tank waste transfers. These studies are concerned with the stability (steady, uninterrupted flow) of tank waste transfers, a subset of the Department of Energy (DOE) Tanks Focus Area Tank (TFA) Waste Chemistry effort. This work is a collaborative effort of AEA Technology plc, the Diagnostic Instrumentation and Analysis Laboratory at Mississippi State University (DIAL-MSU), the Hemispheric Center for Environmental Technology at Florida International University (HCET-FIU), Numatec Hanford Corporation (NHC), and the Oak Ridge National Laboratory (ORNL). The purpose of this report is to provide, in a single document, an overview of these studies to help the reader identify contacts and resources for obtaining more detailed information and to help promote useful interchanges between researchers and users. Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  4. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching.

    Science.gov (United States)

    Xie, Yan; Lan, Xiao-Rong; Bao, Rui-Ying; Lei, Yang; Cao, Zhi-Qiang; Yang, Ming-Bo; Yang, Wei; Wang, Yun-Bing

    2018-09-01

    Biodegradable stereocomplex crystallite polylactide (SC-PLA) porous scaffolds with well-defined pore structures, high heat resistance, mechanical strength, and solvent resistance together with good biocompatibility, were obtained through solution casting of mixed poly(l-lactide) and poly(d-lactide) solution and subsequent leaching of sodium chloride particles. The pore structure of the SC-PLA scaffolds can be perfectly maintained after a high-pressure sterilization treatment at 121 °C, owing to the extensive formation of stereocomplex crystallites in the scaffolds. In vivo pilot study demonstrates that the fibroblasts of rats can infiltrate into the SC-PLA scaffolds well through the open pores. Degradation tests in phosphate-buffered saline solution reveal that the structure of SC-PLA scaffolds was quite stable due to the enhanced hydrolysis-resistance and improved mechanical properties of the scaffolds. These results reveal that SC-PLA scaffolds with good biocompatibility are potentially to be used as implanted biomaterials for the regeneration and restoration of tissues or organs. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. OSMOTIC COEFFICIENTS, SOLUBILITIES, AND DELIQUESCENCE RELATIONS IN MIXED AQUEOUS SALT SOLUTIONS AT ELEVATED TEMPERATURE

    International Nuclear Information System (INIS)

    M.S. Gruszkiewicz; D.A. Palmer

    2006-01-01

    While thermodynamic properties of pure aqueous electrolytes are relatively well known at ambient temperature, there are far fewer data for binary systems extending to elevated temperatures and high concentrations. There is no general theoretically sound basis for prediction of the temperature dependence of ionic activities, and consequently temperature extrapolations based on ambient temperature data and empirical equations are uncertain and require empirical verification. Thermodynamic properties of mixed brines in a wide range of concentrations would enhance the understanding and precise modeling of the effects of deliquescence of initially dry solids in humid air in geological environments and in modeling the composition of waters during heating, cooling, evaporation or condensation processes. These conditions are of interest in the analysis of waters on metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada. The results obtained in this project will be useful for modeling the long-term evolution of the chemical environment, and this in turn is useful for the analysis of the corrosion of waste packages. In particular, there are few reliable experimental data available on the relationship between relative humidity and composition that reveals the eutonic points of the mixtures and the mixture deliquescence RH. The deliquescence RH for multicomponent mixtures is lower than that of pure component or binary solutions, but is not easy to predict quantitatively since the solutions are highly nonideal. In this work we used the ORNL low-temperature and high-temperature isopiestic facilities, capable of precise measurements of vapor pressure between ambient temperature and 250 C for determination of not only osmotic coefficients, but also solubilities and deliquescence points of aqueous mixed solutions in a range of temperatures. In addition to standard solutions of CaCl 2 , LiCl, and NaCl used as references, precise direct

  6. Behavior of technetium in alkaline solution: Identification of non-pertechnetate species in high-level nuclear waste tanks at the Hanford reservation

    International Nuclear Information System (INIS)

    Lukens, Wayne W. Jr.; Shuh, David K.; Schroeder, Norman C.; Ashley, Kenneth R.

    2003-01-01

    Technetium is a long-lived (99Tc: 213,000 year half-life) fission product found in nuclear waste and is one of the important isotopes of environmental concern. The known chemistry of technetium suggests that it should be found as pertechnetate, TcO4-, in the extremely basic environment of the nuclear waste tanks at the Hanford site. However, other chemical forms of technetium are present in significant amounts in certain tanks, and these non-pertechnetate species complicate the treatment of the waste. The only spectroscopic characterization of these non-pertechnetate species is a series of X-ray absorption near edge structure (XANES) spectra of actual tank waste. To better understand the behavior of technetium under these conditions, we have investigated the reduction of pertechnetate in highly alkaline solution in the presence of compounds found in high-level waste. These results and the X-ray absorption fine structure (XAFS) spectra of these species are compared to the chemical behavior and XANES spectra of the actual non-pertechnetate species. The identity of the nonpertechnetate species is surprising

  7. Anodic oxidation of ammonia in alkaline solutions at Pt/Pt electrodes. Hakkin denkyokujo ni okeru enkisei ammonia yoeki no anodo sanka

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Ryoichiro; Katsuta, Masahiro; Matsumoto, Tamotsu; Kobayashi, Yoshikazu; Asami, Yusaku; Hirano, Katsuhiko (Shibaura Inst. of Tech., Tokyo (Japan))

    1989-01-05

    Anodic oxidation of ammonia in alkaline solutions on Pt/Pt electrode, in which NH {sub 3} is oxidized producing N {sub 2}, is a promising reaction in application to a fuel cell and water treatment. In this study, the relations between electrode potential and adsorbed intermediates, reaction process were elucidated by potentiodynamic method and potential step method. In measurement, a transient memory device and a microprocessor were connected to an electrolysis device as a new method, then measurement of electric potential and current and integral calculation were perfromed at high speed. Active sites of electrode were covered by Pt NH {sub x}. Faradic current corresponds to the N {sub 2} evolution was shown markedly by anodic scanning. The relation between electrode potential and reaction process was revealed by potential step method. It is found that Pt-NH {sub 2} is the active intermediate for the N {sub 2} evolution, and when current shows maximum, its coverage is nearly 0.5. 15 refs., 7 figs.

  8. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  9. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    Science.gov (United States)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-04-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.

  10. The anodic dissolution of zinc and zinc alloys in alkaline solution. II. Al and Zn partial dissolution from 5% Al–Zn coatings

    International Nuclear Information System (INIS)

    Vu, T.N.; Mokaddem, M.; Volovitch, P.; Ogle, K.

    2012-01-01

    Graphical abstract: - Abstract: The polarization behavior of a 5 wt% Al–Zn steel coating (Galfan™) has been investigated in alkaline solution using atomic emission spectroelectrochemistry (AESEC). The instantaneous Zn and Al dissolution rates were measured as a function of time during a linear scan and potential step transients. The formation rate of insoluble oxides was determined from the difference between the convoluted total current and the sum of the elemental dissolution currents. It was found that, over a wide potential range, the zinc and aluminum partial currents behaved in a similar way to pure zinc and pure aluminum independently. However, during the period in which zinc was active, aluminum dissolution was inhibited. This is attributed to the inhibitive effect of the first and/or the second states of zinc oxide that are formed during the active potential domain. The third form of zinc oxide, observed at higher potential and responsible for the passivation of zinc dissolution, does not have a measurable effect on the Al dissolution rate.

  11. Structure and reactivity of thiazolium azo dyes: UV-visible, resonance Raman, NMR, and computational studies of the reaction mechanism in alkaline solution.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Moore, John N

    2013-03-07

    UV-visible absorption, resonance Raman, and (1)H NMR spectroscopy, allied with density functional theory (DFT) calculations, have been used to study the structure, bonding, and alkaline hydrolysis mechanism of the cationic thiazloium azo dye, 2-[2-[4-(diethylamino)phenyl]diazenyl]-3-methyl-thiazolium (1a), along with a series of six related dyes with different 4-dialkylamino groups and/or other phenyl ring substituents (2a-c, 3a-c) and the related isothiazolium azo dye, 5-[2-[4-(dimethylamino)phenyl]diazenyl]-2-methyl-isothiazolium (4). These diazahemicyanine dyes are calculated to have a similar low-energy structure that is cis, trans at the (iso)thiazolium-azo group, and for which the calculated Raman spectra provide a good match with the experimental data; the calculations on these structures are used to assign and discuss the transitions giving rise to the experimental spectra, and to consider the bonding and its variation between the dyes. UV-visible, Raman, and NMR spectra recorded from minutes to several weeks after raising the pH of an aqueous solution of 1a to ca. 11.5 show that the dominant initial step in the reaction is loss of diethylamine to produce a quinonimine (ca. hours), with subsequent reactions occurring on longer time scales (ca. days to weeks); kinetic analyses give a rate constant of 2.6 × 10(-2) dm(3) mol(-1) s(-1) for reaction of 1a with OH(-). UV-visible spectra recorded on raising the pH of the other dyes in solution show similar changes that are attributed to the same general reaction mechanism, but with different rate constants for which the dependence on structure is discussed.

  12. Precipitation of uranium oxide by reduction in alkaline solution; Precipitation d'oxyde d'uranium par reduction en milieu alcalin

    Energy Technology Data Exchange (ETDEWEB)

    Pottier, P; Claus, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    In the first part of the report the authors study the reaction mechanism for this reduction which makes it possible to precipitate a hydrated uranium oxide from alkaline uranyl carbonate solutions. The research into the effects of different variables on numerous cycles are then summarized. Optical, X-ray and thermogravimetric examinations then make it possible to predict the properties of this oxide. In the second part the authors carry out calculations for the continuous operation of single cells and cells in series. These calculations give the data required for the construction of 2 cells having capacities of 0.3 and 10 litres. Results obtained from the continuous operation of this latter cell lead to certain conclusions concerning the applicability of this method to the hydrometallurgy of uranium. (authors) [French] Dans une premiere partie, les auteurs etudient le mecanisme de reaction de cette reduction qui permet la precipitation d'un oxyde d'uranium hydrate dans les solutions d'uranyle-carbonates alcalins. Les etudes de diverses variables sur de nombreux cycles sont ensuite resumees. Puis des examens optiques, aux rayons X et par thermogravimetrie, permettent de proposer une hypothese sur les proprietes de l'oxyde obtenu. Dans la deuxieme partie, les auteurs developpent un calcul prevoyant la marche continue de cellules uniques et en cascades. De ces calculs on tire les elements permettant la realisation de deux cellules de 0,3 et 10 litres. Des resultats de marche continue sur cette derniere cellule, on peut conclure a l'applicabilite de cette methode a l'hydrometallurgie de l'uranium. (auteurs)

  13. Nd:YAG laser associated with metal salts solutions in the treatment of dentinal hypersensitivity

    International Nuclear Information System (INIS)

    Glauche, Carlos Eugenio Correia

    2001-01-01

    The objective of this study was to observe the ultrastructural changes caused by the radiation of Nd:YAG laser on the tooth tissue and determine qualitatively the presence of Sn ++ , Sr ++ and F - , inside the dentin, being it irradiated or not. Ten molar teeth recently extracted were cut into 2 mm discs. The samples were soaked in a EDTA solution at 17% for 2 minutes and divided into five groups. Group I: the samples were irradiated with Nd:YAG laser (1,5 W, 100 mJ, 15 Hz, 150 μs and 125 J/cm 2 ) and after that, a treatment with an SnF 2 aqueous solution at 10% for 30 minutes. Group II: the samples got laser irradiation with the same parameters and then a treatment with an SrCl 2 solution at 10% as a toothpaste (Sensodyne TM ) for 30 minutes. Group III: the samples just got a treatment with a SnF 2 aqueous solution at 10% for 30 minutes. Group IV: the samples just got a treatment with a SrCl 2 toothpaste (Sensodyne TM ) for 30 minutes. Group V: samples that just got laser irradiation in the parameters above mentioned. Then, all samples were prepared for scanning electronic microscopy (SEM) and the samples of groups I, II, III and IV for energy dispersive X-ray microanalysis (EDX). The ultrastructure aspect of the dentin showed the surface totally altered by the irradiation. Pits and whitish globules were found amidst an heterogenous and rough structure, due to the melting and resolidification of the dental structure. Craters were also observed. Carbonization areas were absent. Ions Sn ++ were found at a depth of 250 μm in the samples of group I (Nd:YAG + SnF 2 ), whereas in the samples of group III, Sn ++ were not found deeper than 100 μm. Sr ++ could be detected at least at 500 μm in the inner dentin in the samples of group II (Nd:YAG + SrCl 2 ). However, Sn ++ were not found at 50 μm in group IV samples. Ions F - were just found in the irradiated samples of group I. According to the study results we observed that through ultrastructural changes, caused by

  14. Determination of Stoichiometry of Solutes in Molten Salt Solvents by Correlations of Relative Raman Band Intensities

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Berg, Rolf W.

    1999-01-01

    ); (2) Nb2O5 + nS(2)O(7)(2-) (1) --> Y2n- (1); (3) MoO3 + nS(2)O(7)(2-) (1) --> Z(2n)- (1). It is shown that the solute complex species formed in the studied reactions have, respectively, the following stoichiometries: (1) n = 2, (VO)(2)O(SO4)(4)(4-); (2) n = 3, NbO(SO4)(3)(3-); (3) n = 1, MoO(SO4)(2)(2-)....

  15. Comparative ion insertion study into a nanostructured vanadium oxide in aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.; Ren, S. L.; Zukowski, J.; Pomeroy, M.; Soghomonian, V., E-mail: soghomon@vt.edu [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-07-07

    We present a comparative study for the electrochemical insertion of different cations into a nanostructured vanadium oxide material. The oxide is hydrothemally synthesized and electrically characterized by variable temperature measurements. The electrochemical reactions are performed in aqueous chloride solutions of lithium, sodium, potassium, and ammonium, and the electrochemical behavior of various cycles are correlated with visual changes in the vanadium oxide nanosheets as observed by scanning electron microscopy. We note an increase in the specific charge per cycle in the cases of sodium and ammonium ions only, correlated with minimal physical changes to the nanosheets. The differing behavior of the various ions has implications for their use in electrical energy storage applications.

  16. Unusual Salt and pH Induced Changes in Polyethylenimine Solutions.

    Directory of Open Access Journals (Sweden)

    Kimberly A Curtis

    Full Text Available Linear PEI is a cationic polymer commonly used for complexing DNA into nanoparticles for cell-transfection and gene-therapy applications. The polymer has closely-spaced amines with weak-base protonation capacity, and a hydrophobic backbone that is kept unaggregated by intra-chain repulsion. As a result, in solution PEI exhibits multiple buffering mechanisms, and polyelectrolyte states that shift between aggregated and free forms. We studied the interplay between the aggregation and protonation behavior of 2.5 kDa linear PEI by pH probing, vapor pressure osmometry, dynamic light scattering, and ninhydrin assay. Our results indicate that: At neutral pH, the PEI chains are associated and the addition of NaCl initially reduces and then increases the extent of association.The aggregate form is uncollapsed and co-exists with the free chains.PEI buffering occurs due to continuous or discontinuous charging between stalled states.Ninhydrin assay tracks the number of unprotonated amines in PEI.The size of PEI-DNA complexes is not significantly affected by the free vs. aggregated state of the PEI polymer. Despite its simple chemical structure, linear PEI displays intricate solution dynamics, which can be harnessed for environment-sensitive biomaterials and for overcoming current challenges with DNA delivery.

  17. Heat Transfer from Optically Excited Gold Nanostructures into Water, Sugar, and Salt Solutions

    Science.gov (United States)

    Green, Andrew J.

    coherence length associated with the liquid-liquid transition. The second topic will measure the change in heat dissipation with respect to solute adhesion onto the nanoheater. A small amount of aqueous solute molecules (1 solute molecule in 550 water molecules) dramatically increases the heat dissipation from a nanoparticle into the surrounding liquid. This result is consistent with a thermal conductance that is limited by an interface interaction where minority aqueous components significantly alter the surface properties and heat transport through the interface. The increase in heat dissipation can be used to make an extremely sensitive molecular detector that can be scaled to give single molecule detection without amplification or utilizing fluorescence labels.

  18. Chemical concentration of a new natural spontaneously fissionable nuclide from solutions with low salt background

    International Nuclear Information System (INIS)

    Korotkin, Yu.S.; Ter-Akop'yan, G.M.; Popeko, A.G.; Drobina, T.P.; Zhuravleva, E.L.

    1982-01-01

    The results of experiments on further concentration of a new natural spontaneously fissionable nuclide, the concentrates of which form the Cheleken geothermal brines have been obtained, are presented. The conclusions are drown about the chemical nature of a new spontaneously fissionable nuclide. It is a chalcophile element which copreipitates with sulphides of copper, lead, arsenic and mercury from weakly acid solutions. The behaviour of the new nuclide in sulphide systems in many respects is similar to the behaviour of polonium, astatine and probably of bismuth. The most probable stable valence of the new nuclide varies from +1 up to +3. The data available on the chemical behaviour of the new nuclide as well as the analysis over contamination by spontaneously fissionable isotopes permit to state that the new natural spontaneously fissionable nuclide does not relate to the known isotopes

  19. Development, survival and reproduction of Podisus nigrispinus (Dallas, 1851 (Heteroptera: Pentatomidae with salt and amino acids solutions supplementary diet

    Directory of Open Access Journals (Sweden)

    Simone Patrícia Carneiro Freitas

    2006-05-01

    Full Text Available This study presents the effect of a supplementary diet with amino acids and sodium chloride solutions in addition to prey on the development, survival and reproduction of the predator Podisus nigrispinus (Heteroptera, Pentatomidae. Both solutions showed deleterious effects on nymph survival, adult weight, female longevity, number of egg masses, eggs per female, eggs per egg mass and nymphs per female besides egg viability of P. nigrispinus when compared with diet with water and prey. When compared with plant supplements in the diet the use of amino acids and salt solutions for mass rearing of P. nigrispinus was inferior.O presente estudo mostra o efeito da suplementação alimentar com soluções de aminoácidos e salina (NaCl no desenvolvimento, sobrevivência e reprodução de Podisus nigrispinus (Dallas (Heteroptera: Pentatomidae. Ambas soluções causaram efeito deletério na sobrevivência ninfal, peso dos adultos, longevidade das fêmeas e nos números de posturas, de ovos/fêmea, de ovos/postura e de ninfas, bem como na viabilidade dos ovos de P. nigrispinus quando comparado com estes insetos que além de presa receberam água. Estes resultados são discutidos em comparação com o efeito positivo que a suplementação alimentar com plantas tem sido relatada para esses predadores e sugerem que o uso de plantas é melhor que a substituição por solução de aminoácidos em sistemas de criação em laboratório desses predadores.

  20. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  1. The diffusion behaviour of hydrogen in a low alloyed carbon steel with respect to the deformation level and to the passivation process in alkaline solutions

    International Nuclear Information System (INIS)

    Juilfs, G.G.

    2001-01-01

    The diffusion behaviour of hydrogen in a low alloyed carbon steel with respect to the deformation level and to the passivation process in alkaline solutions. The influence of plastic strain on the diffusion behaviour of hydrogen in a low alloyed structural steel (FeE 690T) was investigated using the electrochemical permeation technique. The plastic deformation was introduced either by cold rolling or by tensile straining. Specially prepared C(T)-specimen enabled the direct determination of the diffusion coefficient in the highly deformed region ahead of a blunting crack. It was shown, that the apparent diffusion coefficient depends on the plastic strain and on the overall hydrogen concentration, whereas the maximum hydrogen flux remained almost unchanged. These observations are interpreted in terms of variations in the dislocation density, which act as 'sinks' for the diffusable hydrogen atoms. The results are compared with model calculations, that describe the hydrogen transport as a function of the trap density. The comparison of the numerical simulation and the experimental data shows a good agreement over the whole range of plastic strain levels, leading to a trap density of 6.1.10 19 /d 3 . Together with the results of a previous study on the fracture toughness of FeE 690T in the presence of hydrogen the permeation data obtained in this work suggest that the observed influence of deformation rates on the fracture mechanism can be attributed to the reduced mobility of hydrogen atoms in the plastic zone. The assumption that the hydrogen transport during monotonic straining is controlled by diffusion was confirmed by investigations concerning the formation of surface films. Using a potentiodynamic method (cyclovoltammetry) a characterisation of the surface reactions involved in permeation experiments was performed. It was shown that the nature of the passive layers forming on the surface depends on the applied potential, affecting mainly the hydrogen absorption

  2. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  3. Viability of human periodontal ligament fibroblasts in milk, Hank's balanced salt solution and coconut water as storage media.

    Science.gov (United States)

    Souza, B D M; Lückemeyer, D D; Reyes-Carmona, J F; Felippe, W T; Simões, C M O; Felippe, M C S

    2011-02-01

    To evaluate the effectiveness of various storage media at 5 °C for maintaining the viability of human periodontal ligament fibroblasts (PDLF). Plates with PDLF were soaked in recently prepared Hank's balanced salt solution (HBSS), skimmed milk, whole milk, Save-A-Tooth(®) system's HBSS (Save), natural coconut water, industrialized coconut water or tap water (negative control) at 5 °C for 3, 6, 24, 48, 72, 96 and 120 h. Minimum essential medium (MEM) at 37 °C served as the positive control. PDL cell viability was determined by MTT assay. Data were statistically analysed by Kruskal-Wallis test complemented by the Scheffé test (α=5%). The greatest number of viable cells was observed for MEM. Skimmed and whole milk, followed by natural coconut water and HBSS, were the most effective media in maintaining cell viability (Pmilk had the greatest capacity to maintain PDLF viability when compared with natural coconut water, HBSS, Save, industrialized coconut water and tap water. © 2010 International Endodontic Journal.

  4. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide

    2017-11-28

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient transport of electronic charge via the conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  5. Influence of alkaline (PH 8.3-12.0) and saline solutions on chemical, mineralogical and physical properties of two different bentonites - batch experiments at 25 deg. C

    International Nuclear Information System (INIS)

    Heikola, Tiina; Vuorinen, Ulla; Kumpulainen, Sirpa; Kiviranta, Leena; Korkeakoski, Petri

    2012-01-01

    Document available in extended abstract form only. Construction of a spent fuel repository deep in the bedrock will need supporting structures using cement materials. A part of them can be removed before closure but still it is estimated that about 1000 tonnes will remain in the host rock. Degradation of cementitious materials produces leachates of high pH. If such an alkaline plume reaches the bentonite buffer, it may induce mineralogical and chemical changes in bentonite over long term, and further affect the safety functions of the buffer. Laboratory experiments were done with the objective to gain data of possible alterations in mineralogical, chemical and physical properties of bentonites contacted with high-pH saline solutions. Two untreated, high grade, Na- and Ca-bentonites, were used in batch experiments, which were carried out in an anaerobic glove-box at 25±1 deg. C for 554 days. Each bentonite sample (20 g) was leached with approximately 3.8 L of leaching solution, which equals 190 mL/g of bentonite. The bentonites were leached with three types of simulated cement waters (pH 9.7, 11.3 and 12.0) and one saline groundwater simulate (pH 8.3) as a reference. The leaching solutions were 0.3 M, and contained NaCl and CaCl 2 , and trace amounts of SiO 2 , K, Br, Mg and SO 4 . Dissolved oxygen and carbon dioxide were removed from leaching solutions before mixing of bentonite in PC bottles. The samples were placed on a platform shaker in order to allow better contact between bentonite and the leaching solution. The evolution of pH in the samples was followed by measuring the pH-value of each sample in the solution phase approximately twice a week and the solution was renewed when values of two to three consecutive measurements did not change. On average, the leaching solution was renewed once a month. For each renewal of the leaching solution the phases were separated, the reacted solution withdrawn, and the chemical composition analysed. Before analysis the

  6. Determination of technological parameters for activation of resistant raw materials in solution of alkali and sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Sestager Aknazarov

    2012-03-01

    Full Text Available In the process, studied the factors affecting the degree of opening of hard mineral. The optimal regimes of activation of arsenopyrite in alkaline solutions, salt with the addition of pyrolusite and sodium hypochlorite. The optimum concentration of the reactants in aqueous solution, providing maximum possible transferring the sulfur to soluble compounds and the binding of arsenic in the state of difficultly.

  7. Obtainment of Hg-free Mn/Zn solutions from spent alkaline batteries; Obtencion de soluciones de Mn/Zn libres de Hg provenientes de pilas alcalinas gastadas

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nicolas, L.; Espinosa-Ramirez, I. [Instituto Politecnico Nacional, UPALM, Mexico, D.F. (Mexico)]. E-mail: lepeni@hotmail.com; Aguilar, M. [Instituto de Fisica, UNAM, Mexico, D.F. (Mexico); Palacios-Beas, E. [Instituto Politecnico Nacional, UPALM, Mexico, D.F. (Mexico)

    2009-09-15

    As in many other countries, the excessive consumption of alkaline batteries in Mexico has generated highly contaminating wastes, with heavy metal contents such as Mn, Zn, Fe, Hg, Cu and Ni, among others. This has caused a large degree of environmental degradation with repercussions for the health of living beings. Because there are no regulations regarding the disposal of spent batteries, they are thrown out with the rest of the domestic wastes or directly into nature, ending up in open-air landfills or containers where they are incinerated, thereby contaminating the planet's environment, soil and springs. The present work studies the obtainment of solutions of Hg-free Mn and Zn (Mn/Zn {>=} 1) from spent alkaline batteries for use in synthesis of (Mn,Zn)Fe{sub 2}O{sub 4} ferrite by a wet method. The effect is analyzed of the dissolution medium (H{sub 2}SO{sub 4}/H{sub 2}O{sub 2}, HCl and HCl/NO{sub 3}) temperature and time on the percentage of dissolution of the metals present in the electrode material, characterized by atomic absorption (AA) spectroscopy and x-ray diffraction (XRD). The results of the investigation indicate that the best dissolution conditions are MD=H{sub 2}SO{sub 4}/H{sub 2}O{sub 2}, T=50 degrees Celsius and t =30 min, where 94.1 and 90.7 % (w/w) of Mn and Zn are obtained, respectively, with Mn/Zn = 1.51. The mercury content was determined to be 3.91%, higher than that stated by the battery specifications, which is recovered by dissolving with HCl/HNO{sub 3} in the residual solid. [Spanish] En Mexico como en muchos otros paises, el consumo excesivo de pilas alcalinas ha generado desechos altamente contaminantes, con contenidos de metales pesados como Mn, Zn, Fe, Hg, Cu y Ni entre otros, que han provocado un gran deterioro en el medio ambiente repercutiendo en la salud de los seres vivos. Dado que no se tiene una regulacion en cuanto a la disposicion de pilas gastadas, estas se desechan con el resto de las residuos domesticos o directamente

  8. Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions. Formation of Na-Np(V)-OH solid phases at 22 C

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Vladimir G. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Fellhauer, David; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Altmaier, Marcus [Karlsruhe Institute of Technology (Germany). Inst. for Nuclear Waste Disposal; Kalmykov, Stepan N. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-03-01

    The solubility of Np(V) was investigated at T=22±2 C in alkaline NaCl solutions of different ionic strength (0.1-5.0 M). The solid phases controlling the solubility at different -log{sub 10} m{sub H{sup +}}(pH{sub m}) and NaCl concentration were characterized by XRD, quantitative chemical analysis, SEM-EDS and XAFS (both XANES and EXAFS). Aqueous phases in equilibrium with Np(V) solids were investigated for selected samples within 8.9≤pH{sub m}≤10.3 by UV-vis/NIR absorption spectroscopy. In 0.1 M NaCl, the experimental solubility of the initial greenish NpO{sub 2}OH(am) solid phase is in good agreement with previous results obtained in NaClO{sub 4} solutions, and is consistent with model calculations for fresh NpO{sub 2}OH(am) using the thermodynamic data selection in NEA-TDB. Below pH{sub m}∝11.5 and for all NaCl concentrations studied, Np concentration in equilibrium with the solid phase remained constant during the timeframe of this study (∝2 years). This observation is in contrast to the aging of the initial NpO{sub 2}OH(am) into a more crystalline modification with the same stoichiometry, NpO{sub 2}OH(am, aged), as reported in previous studies for concentrated NaClO{sub 4} and NaCl. Instead, the greenish NpO{sub 2}OH(am) transforms into a white solid phase in those systems with [NaCl]≥1.0 M and pH{sub m}≥11.5, and into two different pinkish phases above pH{sub m}∝13.2. The solid phase transformation is accompanied by a drop in Np solubility of 0.5-2 log{sub 10}-units (depending upon NaCl concentration). XANES analyses of green, white and pink phases confirm the predominance of Np(V) in all cases. Quantitative chemical analysis shows the incorporation of Na{sup +} in the original NpO{sub 2}OH(am) material, with Na:Np ≤ 0.3 for the greenish solids and 0.8 ≤ Na:Np ≤ 1.6 for the white and pinkish phases. XRD data confirms the amorphous character of the greenish phase, whereas white and pink solids show well-defined but discrepant XRD patterns

  9. ICP-MS nebulizer performance for analysis of SRS high salt simulated radioactive waste tank solutions (number-sign 3053)

    International Nuclear Information System (INIS)

    Jones, V.D.

    1997-01-01

    High Level Radioactive Waste Tanks at the Savannah River Site are high in salt content. The cross-flow nebulizer provided the most stable signal for all salt matrices with the smallest signal loss/suppression due to this matrix. The DIN exhibited a serious lack of tolerance for TDS; possibly due to physical de-tuning of the nebulizer efficiency

  10. Comparison of Descemet stripping under continuous air flow, manual air injection and balanced salt solution for DMEK: a pilot study.

    Science.gov (United States)

    Gabbay, I E; Bahar, I; Nahum, Y; Livny, E

    2017-08-01

    Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p air in the AC contributes to better visualization and an efficient surgery.

  11. Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Davis, J.R.

    1994-01-01

    This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concluded that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions

  12. The distribution of soluble radionuclide-relevant trace elements between salt minerals and saline solutions; Die Verteilung loeslicher Radionuklid-relevanter Spurenelemente zwischen Salzmineralen und salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Ina

    2015-07-16

    The research platform ENTRIA (Disposal options for radioactive residues Interdisciplinary analyses and development of evaluation principles) includes the sub-project ''Final disposal in deep geological formations without any arrangements for retrieval''. This approach considers rock salt (beside clay and granite) as host rock formation for disposal of heat-producing long-live waste. Most rock salt formations contain Mg-rich brines derived from highly evolved sea water evaporation processes now included in the rock salt mass. If such brines get access to metal-canister corrosion will allow release of soluble nuclides to the brine. In this scenario, it cannot be excluded that contaminated brines leave the deep seated disposal area and move along geological or technical migration pathways towards the rock salt/cap rock contact. The temperature of the brine will drop from near 80 C to 25 or 30 C. The deceasing temperature of the brine causes precipitation of magnesian chloride and sulfate phase in equilibrium with the brine. In order to understand the salt precipitation and the retention mechanism of dissolved trace elements experiments have been set up which allow formation of sylvite, carnallite, kainite, and hydrous Mg-sulphates under controlled conditions. The retention capacity of crystallizing salt minerals based occurring in magnesian brine solutions at decreasing temperature within a salt dome is best measured as the distribution coefficient D. This concept assumes incorporation of trace elements into the lattice of salt minerals. The distribution coefficients of the trace elements, Rb, Cs, Co, Ni, Zn, Li and B between sylvite, carnallite, kainite, and MgSO{sub 4} phases have been determined at experimental temperatures of 25, 35, 55 and 83 C. The results clearly indicate the following range of distribution coefficients (D): Sylvite D > 1 Rb and Br, D < 1 Co, Ni, Zn, Li and B, Carnallite D > 1 Rb and Cs, D < 1 Co, Ni, Zn, Li and B, Kainite D

  13. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  14. Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Sasaki, Yusuke; Saito, Takamitsu; Sun, Yang-Kook; Yashiro, Hitoshi

    2009-01-01

    Passivation behavior of type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF 6 salt was studied using electrochemical polarization, X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (ToF-SIMS). Cathodic polarization to 0 V vs. Li/Li + resulted in most but not complete reduction of the air-formed film from oxides to metal on the stainless steel, as confirmed by XPS. For complete elimination of the air-formed film, the surface of the stainless steel was scratched under anodic polarization conditions. At 3 V vs. Li/Li + where an anodic current peak appeared, only an indistinct layer was recognized on the newly scratched surface, according to ToF-SIMS analysis. Above 4 V vs. Li/Li + , substantial passive films were formed, which were composed of oxides and fluorides of iron and chromium. The origin of oxide was due to water contained in the non-aqueous alkyl carbonate solution, and that of fluorides were the result of the decomposition of electrolytic salt, LiPF 6 , especially at higher potential. The resultant passive films were stable in the non-aqueous alkyl carbonate solution containing LiPF 6 salt.

  15. Thermodynamic study of aqueous solutions of polyelectrolytes of low and medium charge density without added salt by direct measurement of osmotic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Miklos, E-mail: miklosnagy@chem.elte.h [Institute of Chemistry, Department of Physical Chemistry, Laboratory for Colloid and Supermolecular Structures, L. Eoetvoes University, P.O. Box 32 H-1518 Budapest 112 (Hungary)

    2010-03-15

    A special block osmometer has been constructed and applied to a systematic study of poly (vinyl alcohol and vinyl sulphate ester) (PVS) sodium salts in dilute and moderately concentrated salt free aqueous solutions. In order to avoid surely ionic contamination all parts of the equipment that can contact with the polyelectrolyte solutions were made of different kinds of plastics and glass. The pressure range spans from (50 to 1.3 . 10{sup 5}) Pa. The measuring system was found to be appropriate for determination of the molar mass of water soluble polymers, too. Above a certain analytical density of dissociable groups (ADDG) an ion size dependent transition was observed on the reduced osmotic pressure vs. concentration curves. The analysis of the osmotic pressure data has clearly revealed that the dependence of the degree of dissociation on ADDG calculated at zero polyelectrolyte concentration contradicts to 'ion condensation' theory. With increasing polyelectrolyte concentration the degree of dissociation decreased rather steeply but at very low concentrations sharp maximums appeared due either to the change in conformation of these charged macromolecules, or formation of dynamic clusters induced by salting out of neutral parts of the macromolecules by the ionized groups. The applicability of the scaling concept as well as the many possible ways of characterization of non-ideality of polyelectrolyte solutions will be discussed in detail.

  16. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  17. Influence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage.

    Science.gov (United States)

    Liato, Viacheslav; Hammami, Riadh; Aïder, Mohammed

    2017-06-01

    The aim of this work was to study the potential of diluted electro-activated solutions of weak organic acid salts (potassium acetate, potassium citrate and calcium lactate) to extend the shelf life of blueberries during post-harvest storage. The sanitizing capacity of these solutions was studied against pathogenic bacteria Listeria monocytogenes and E. coli O157:H7 as well as phytopathogenic fungi A. alternata, F. oxysporum and B. cinerea. The results showed that a 5-min treatment of inoculated blueberries with electro-activated solutions resulted in a 4 log CFU/g reduction in Listeria monocytogenes for all solutions. For E. coli O157:H7, the electro-activated potassium acetate and potassium citrate solutions achieved a decrease of 3.5 log CFU/g after 5 min of berry washing. The most important fungus reduction was found when blueberries were washed with an electro-activated solution of potassium acetate and a NaOCl solution. After 5 min of blueberry washing with an electro-activated potassium acetate solution, a very high reduction effect was observed for A. alternata, F. oxysporum and B. cinerea, which showed survival levels of only 2.2 ± 0.16, 0.34 ± 0.15 and 0.21 ± 0.16 log CFU/g, respectively. Regarding the effect of the washing on the organoleptic quality of blueberries, the obtained results showed no negative effect on the product color or textural profile. Finally, this work suggests that washing with electro-activated solutions of weak organic acid salts can be used to enhance the shelf-life of blueberries during post-harvest storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Anditalea andensis ANESC-ST--An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions.

    Directory of Open Access Journals (Sweden)

    Wei Shi

    Full Text Available A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T, which is capable of generating bioelectricity in alkaline-saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0-11.0 and also under high salt condition (up to 4 wt% NaCl. Electrical output was further demonstrated in microbial fuel cells (MFCs with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline-saline conditions points towards a solution for bioelectricity recovery from alkaline-saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH.

  19. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    Science.gov (United States)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  20. Effect of Alkaline Stress on Some Morphophysiologic Characteristics of Two Varieties of Safflower (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    Sh Bemany Golnabadi

    2016-12-01

    Full Text Available Introduction Safflower (Carthamus tinctorius L. is an important oilseed crop grown throughout the semiarid regions in many parts of the world. It has been cultivated for its oil and flowers and as a meal. Alkaline stress is caused by alkaline salts such as Na2CO3 or NaHCO3 in the soil. Alkaline stress, is widespread environmental constraint affecting crop productivity ,which can inhibit absorption of inorganic anions such as Cl–, NO3– and H2PO4–, greatly affect the selective absorption of K+-Na+, and break the ionic balance. However, under alkali stress, accumulation of compatible solutes, such as betaine, proline and soluble sugar into the vacuole are considered as the basic strategies for plant re-established cellular homeostasis. Some reports have clearly demonstrated that alkaline salts (NaHCO3 and Na2CO3 are more destructive to plants than neutral salts (NaCl and Na2SO4. Moreover, the salt-alkali stress can directly damage plant growth, alter the availability of nutrients and disrupt the balance of ions and mineral nutrition. The objective of this study was to investigate the effects of alkaline stress on growth and some physiological characteristics of safflower. Materials and Methods This study was conducted in a greenhouse in Vali-e-Asr University of Rafsanjan as factorial arrangement in completely randomized design with three replications. Experimental factors included alkaline stress in 7 levels (0, 10, 20, 30 , 40, 50 and 60 mM and two varieties of safflower (Sofeh and 411. Seeds were planted in pots filled with perlite and cocopite (1:1. The pots were irrigated with a nutrient solution with half strength Hoagland's solution. After the fourth true leaves appeared, alkaline stress in the pot was created by adding NaHCO3, to half strength Hoagland’s solution. Control plants were only irrigated with half strength Hoagland’s solution. Plants were harvested after 40 days of seed sowing. After forty days, shoot and root height

  1. Influence of Proton and Salt Concentration on the Chromonic Liquid Crystal Phase Diagram of Disodium Cromoglycate Solutions: Prospects and Limitations of a Host for DNA Nanostructures.

    Science.gov (United States)

    Zhang, Bingru; Kitzerow, Heinz-S

    2016-03-31

    Lyotropic chromonic liquid crystals have recently been suggested for use as a self-organized host for dispersing and aligning self-organized DNA origami nanostructures. However, an appropriate pH value and a suitable cation concentration are necessary to stabilize such nanostructures and to avoid unfolding of the DNA. The present study shows that the nematic and columnar liquid crystal phases appearing in aqueous solutions of disodium cromoglycate are robust against the replacement of deionized water by a neutral or alkaline buffer solution. However, disodium cromoglycate precipitates when an acidic buffer is used or when the concentration of magnesium cations exceeds a critical concentration of about 0.6-0.7 mmol/L.

  2. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.L.

    2008-01-01

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R + = Li + , Rb + , Cs + ) and alkaline-earth (R 2+ = Sr 2+ , Ba 2+ ) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R + and R 2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na + or Ca 2+ cations in the simplified glass by respectively (Li + , K + , Rb + , Cs + ) or (Mg 2+ , Sr 2+ , Ba 2+ ) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO 4 ) - entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  3. Electrochemical transformations of oxygen and the defect structure of solid solutions on the basis of alkaline earth metal ortho-vanadates

    International Nuclear Information System (INIS)

    Khodos, M.Ya.; Belysheva, G.M.; Brajnina, Kh.Z.

    1986-01-01

    Effect of iso- and heterovalent substitution in the structure of alkaline earth metal ortho-vanadates and synthesis conditions, simulating the definite type of their crystal lattice disordering, on the character of potentiodynamic anodic-cathodic curves has been investigated by the method of cyclic voltammetry. Correlation between signals observed and the defect structure of oxide compounds is refined. Oxygen chemisorption is shown to be determined by concentration of nonequilibrium oxygen vacancies, which formation is accompanied by appearance of quasi-free electrons

  4. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Golabiazar, Roonak; Shekaari, Hemayat

    2010-01-01

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) and tri-sodium citrate (Na 3 Cit) are taken. The apparent molar volume of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have negative values. The effects of temperature and the addition of Na 3 Cit and [C 4 mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na 3 Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of entropy and enthalpy are the driving forces

  5. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.i [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Golabiazar, Roonak [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2010-04-15

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) and tri-sodium citrate (Na{sub 3}Cit) are taken. The apparent molar volume of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have negative values. The effects of temperature and the addition of Na{sub 3}Cit and [C{sub 4}mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na{sub 3}Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of

  6. The Innovative Structure Solution for Preventing Salt Intrusion and Retaining Freshwater In Mekong Delta VietNam

    NARCIS (Netherlands)

    Hong, S.T.; Vrijling, J.K.; Stive, M.J.F.

    2013-01-01

    In the Mekong Delta Vietnam, the construction of sluices with the purpose of retaining fresh water and preventing salt water intrusion potentially plays a very important role. However, the structures constructed in small rivers according to local or traditional technology revealed many disadvantages

  7. Integrated membrane distillation-crystallization: process design and cost estimations for seawater treatment and fluxes of single salt solutions

    NARCIS (Netherlands)

    Creusen, R.J.M.; Medevoort, J. van; Roelands, C.P.M.; Renesse van Duivenbode, J.A.D. van; Hanemaaijer, J.H.; Leerdam, R.C. van

    2013-01-01

    The goal of this research is to design an integrated membrane distillation-crystallization (MDC) process for desalination of seawater with pure water and dry salts as the only products. The process is based on a combination of membrane distillation (MD) and osmotic distillation (OD) steps with

  8. Process for using a saturated salt hydrate solution as a heat storing material in a latent heat storage device. Anvendelse av en mettet salthydratloesning som varme-lagringsmateriale i et latent varmemagasin

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1984-06-12

    Disclosed is a process for preparing a salt composition having a phase transition heat greater than the heat capacity of water at a corresponding temperature, for charging a latent heat storage device. The process comprises the steps of providing an acid component of the salt hydrate; providing a base component of the salt hydrate, wherein at least one of the acid or base components comprises a liquid; and mixing the acid component and the base component together to cause a neutralization reaction. The acid and base components are mixed in a ratio and in respective concentrations to produce a salt hydrate solution saturated at the desired phase transition point. The claims concern the use of saturated salt hydrate solution with a certain phase transition heat produced in a particular way.

  9. A Revisit to the Corrosion Inhibition of Aluminum in Aqueous Alkaline Solutions by Water-Soluble Alginates and Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat Hassan

    2013-01-01

    Full Text Available The corrosion behavior of aluminum (Al in alkaline media in presence of some natural polymer inhibitors has been reinvestigated. The inhibition action of the tested inhibitors was found to obey both Langmuir and Freundlich isotherms models. The inhibition efficiency was found to increase with increasing the inhibitors concentration and decrease with increasing the temperature, suggesting physical adsorption mechanism. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated, and a suitable corrosion mechanism consistent with the kinetic results obtained is suggested and discussed.

  10. Correlation between the Increasing Conductivity of Aqueous Solutions of Cation Chlorides with Time and the “Salting-Out” Properties of the Cations

    Directory of Open Access Journals (Sweden)

    Nada Verdel

    2016-02-01

    Full Text Available The time-dependent role of cations was investigated by ageing four different aqueous solutions of cation chlorides. A linear correlation was found between the cations’ Setchenov coefficient for the salting-out of benzene and the increase in the conductivity with time. The conductivity of the structure-breaking cations or the chaotropes increased more significantly with time than the conductivity of the kosmotropes. Since larger water clusters accelerate the proton or hydroxyl hopping mechanism, we propose that the structuring of the hydration shells of the chaotropes might be spontaneously enhanced over time.

  11. Br2 production from the heterogeneous reaction of gas-phase OH with aqueous salt solutions: Impacts of acidity, halide concentration, and organic surfactants.

    Science.gov (United States)

    Frinak, Elizabeth K; Abbatt, Jonathan P D

    2006-09-07

    This study reports the first laboratory measurement of gas-phase Br2 production from the reaction between gas-phase hydroxyl radicals and aqueous salt solutions. Experiments were conducted at 269 K in a rotating wetted-wall flow tube coupled to a chemical-ionization mass spectrometer for analysis of gas-phase components. From both pure NaBr solutions and mixed NaCl/NaBr solutions, the amount of Br2 released was found to increase with increasing acidity, whereas it was found to vary little with increasing concentration of bromide ions in the sample. For mixed NaCl/NaBr solutions, Br2 was formed preferentially over Cl2 unless the Br- levels in the solution were significantly depleted by OH oxidation, at which point Cl2 formation was observed. Presence of a surfactant in solution, sodium dodecyl sulfate, significantly suppressed the formation of Br2; this is the first indication that an organic surfactant can affect the rate of interfacial mass transfer of OH to an aqueous surface. The OH-mediated oxidation of bromide may serve as a source of active bromine in the troposphere and contribute to the subsequent destruction of ozone that proceeds in marine-influenced regions of the troposphere.

  12. Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamole, L-cysteine and glutathione

    International Nuclear Information System (INIS)

    Dong, Yajuan; Su, Ming; Chen, Peiyun; Sun, Hanwen

    2015-01-01

    Aqueous solutions of carbon dots (C-dots) were prepared by microwave-assisted thermal carbonization of poly(ethylene glycol). They were investigated by transmission electron microscopy, absorption and fluorescence spectra. It is shown that diperiodato-nicklate(IV), a strong oxidant, induces the chemiluminescence (CL) of C-dots in strongly alkaline solution without use of an additional reagent. A mechanism for this reaction is suggested. It is also found that the CL of the system is quenched by paracetamole, L-cysteine and glutathione. Under the optimized conditions, the calibration plot is linear with a correlation coefficient (r) of >0.995. The limits of detection are 90, 8, and 60 µg L -1 for paracetamole, L-cysteine, and glutathione, respectively. Spiked urine and serum samples were analyzed and gave recoveries in the range from 84.38 to 116.0 %, with an RSD of 1.2–2.7 %. (author)

  13. Review of applicable technology: solution mining of caverns in salt domes to serve as repositories for radioactive wastes

    International Nuclear Information System (INIS)

    1976-01-01

    There is an abundance of salt domes in the Gulf Coastal region. Advances in leaching technology and cavern shape control make it possible to build large caverns with configurations approaching teardrops, cylinders, and spheres. Fenix and Scisson has designed and constructed several dozen caverns in sizes up to three million barrels (16.8 million cubic feet). It is now within current technological bounds to evacuate the brine left in the cavern following construction, dehumidify the cavern atmosphere and supply conditioned cavern ventilation. The state-of-the-art in drilling large diameter holes has advanced to the point that it is now possible to drill 120-in. holes as deep as 6,000 ft and 144-in. holes to lesser depths. Additional research is needed in the area of cavern stability. Cavern shrinkage rates are known to increase with depth because of lower salt strengths at higher pressures and temperatures

  14. Multiscale Modeling of the Effects of Salt and Perfume Raw Materials on the Rheological Properties of Commercial Threadlike Micellar Solutions.

    Science.gov (United States)

    Tang, Xueming; Zou, Weizhong; Koenig, Peter H; McConaughy, Shawn D; Weaver, Mike R; Eike, David M; Schmidt, Michael J; Larson, Ronald G

    2017-03-23

    We link micellar structures to their rheological properties for two surfactant body-wash formulations at various concentrations of salts and perfume raw materials (PRMs) using molecular simulations and micellar-scale modeling, as well as traditional surfactant packing arguments. The two body washes, namely, BW-1EO and BW-3EO, are composed of sodium lauryl ethylene glycol ether sulfate (SLEnS, where n is the average number of ethylene glycol repeat units), cocamidopropyl betaine (CAPB), ACCORD (which is a mixture of six PRMs), and NaCl salt. BW-3EO is an SLE3S-based body wash, whereas BW-1EO is an SLE1S-based body wash. Additional PRMs are also added into the body washes. The effects of temperature, salt, and added PRMs on micellar lengths, breakage times, end-cap free energies, and other properties are obtained from fits of the rheological data to predictions of the "Pointer Algorithm" [ Zou , W. ; Larson , R.G. J. Rheol. 2014 , 58 , 1 - 41 ], which is a simulation method based on the Cates model of micellar dynamics. Changes in these micellar properties are interpreted using the Israelachvili surfactant packing argument. From coarse-grained molecular simulations, we infer how salt modifies the micellar properties by changing the packing between the surfactant head groups, with the micellar radius remaining nearly constant. PRMs do so by partitioning to different locations within the micelles according to their octanol/water partition coefficient P OW and chemical structures, adjusting the packing of the head and/or tail groups, and by changing the micelle radius, in the case of a large hydrophobic PRM. We find that relatively hydrophilic PRMs with log P OW 4, are isolated deep inside the micelle, separating from the tails and swelling the radius of the micelle, leading to shorter micelles and much lower viscosities, leading eventually to swollen-droplet micelles.

  15. Modification of the Selectivity Properties of Tubular Ceramic Membranes after Alkaline Treatment

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié

    2017-11-01

    Full Text Available This work focuses on the selectivity modification of ceramic membranes after a mild alkaline treatment. Filtration of pure salt-water solutions was carried out with commercial titania membranes before and after the treatment. After treatment, the rejection of NaF significantly decreased, while the rejection of NaCl and NaBr increased. Additionally, NaI and Na2SO4 remained close to zero. Pore size and electrical charge being almost unchanged, only significant modifications in the dielectric effects can explain this modification of selectivity. Therefore, the surface chemistry and the interaction (nature and magnitude with the solvent and with the species present in the solution appear to be modified by the alkaline treatment. This trend is also illustrated by discussing the electric and the dielectric properties that were numerically identified before and after treatment. The alkaline treatment significantly decreased the apparent dielectric constant of NaCl-water solution in the pore, highlighting the rejection of sodium chloride. Contrariwise, the modification of the surface chemistry increased the apparent dielectric constant of NaF-water solution by promoting fluoride transmission.

  16. Evaluation of who oral rehydration solution (ORS) and salt tablets in resuscitating adult patients with burns covering more than 15% of total body surface area (TBSA).

    Science.gov (United States)

    Moghazy, A M; Adly, O A; Elbadawy, M A; Hashem, R E

    2016-03-31

    Intra-venous (IV) burn resuscitation is effective; nevertheless it has its disadvantages. WHO Oral Rehydration Solution (ORS) has shown high effectiveness in treating dehydration. WHO-ORS, with salt supplement, seems to be suitable for burn resuscitation, where IV resuscitation is not available, feasible or possible. The objective of the study was to evaluate acute phase efficacy and safety, as well as limitations and complications of burn resuscitation using WHO-ORS and salt tablets. This randomized controlled clinical trial was conducted in the Burn Unit, Suez Canal University Hospital, Ismailia, Egypt. The study group was given WHO-ORS (15% of body weight/day) with one salt tablet (5gm) per liter according to Sørensen's formula. The control group was given IV fluids according to the Parkland formula. Patients' vital signs and urine output were monitored for 72 hours after starting resuscitation. Both groups were comparable regarding age, sex, and percentage, etiology and degree of burns. For all assessed parameters, there were no major significant differences between the study group (10 cases) and control group (20 cases). Even where there was a significant difference, apart from blood pressure in the first hour of the first day, the study group never crossed safe limits for pulse, systolic blood pressure, urine output, respiratory rate and conscious level. WHO-ORS with 5gm salt tablets, given according to Sørenson's formula, is a safe and efficient alternative for IV resuscitation. It could even be a substitute, particularly in low resource settings and fire disasters.

  17. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  18. Cytotoxicity, interaction with dentine and efficacy on multispecies biofilms of a modified salt solution intended for endodontic disinfection in a new in vitro biofilm model.

    Science.gov (United States)

    van der Waal, S V; Scheres, N; de Soet, J J; Wesselink, P R; Crielaard, W

    2015-02-01

    To investigate the cytotoxicity of a modified salt solution (MSS) and evaluate the antimicrobial properties of MSS on in vitro biofilm models. In a metabolic assay, fibroblasts derived from periodontal ligaments (PDL) of human extracted teeth were cultured and challenged with MSS or controls. Then, in active attachment biofilm models, the efficacy of MSS in the presence of dentine powder and in eliminating mature biofilms was investigated. In the dentine assay, a biofilm of Enterococcus faecalis was employed. For the final assay, microorganisms were retrieved from infected root canals and cultured to produce biofilms. After the treatments with MSS or the controls, the biofilms were collected, serially diluted and plated. The colony-forming units were counted. One-way anova was used to analyse the differences between the groups. A P 0.05). In endodontic biofilms, the culturable bacteria were equally reduced by MSS, 2% chlorhexidine (CHX) or 2% sodium hypochlorite (NaOCl) (P > 0.05). Modified salt solution is noncytotoxic in vitro and has good antimicrobial properties equal to CHX and NaOCl. Although the results are promising, ex vivo and in vivo studies are needed before its use as an interappointment root canal dressing can be considered. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Influence of the Composition of the Hank’s Balanced Salt Solution on the Corrosion Behavior of AZ31 and AZ61 Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Jakub Tkacz

    2017-11-01

    Full Text Available The electrochemical corrosion characteristics of AZ31 and AZ61 magnesium alloys were analyzed in terms of potentiodynamic tests and electrochemical impedance spectroscopy. The influence of the solution composition and material surface finish was examined also through the analysis of corrosion products created on the samples’ surface after electrochemical measurements in terms of scanning electron microscopy using energy-dispersive spectroscopy. Obtained data revealed the differences in the response of the magnesium alloys to enriched Hank’s Balanced Salt Solution—HBSS+ (with Mg2+ and Ca2+ ions and Hank’s Balanced Salt Solution—HBSS (without Mg2+ and Ca2+ ions. Both examined alloys exhibited better corrosion resistance from the thermodynamic and kinetic point of view in the enriched HBSS+. AZ61 magnesium alloy reached higher values of polarization resistance than AZ31 magnesium alloy in both the used corrosion solutions. Phosphate-based corrosion products were characteristic for the AZ31 and AZ61 alloys tested in the HBSS (without Mg2+ and Ca2+ ions. The combination of phosphate-based corrosion products and clusters of MgO and Mg(OH2 was typical for the surface of samples tested in the enriched HBSS+ (with Mg2+ and Ca2+ ions. Pitting corrosion attack was observed only in the case of enriched HBSS+.

  20. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Science.gov (United States)

    de Oliveira, Henrique Bortolaz; Wypych, Fernando

    2016-11-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.

  1. Structure and thermodynamics of nonideal solutions of colloidal particles. Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjøberg, B.; Mortensen, K.

    1997-01-01

    Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles......-shaped potential which is spherically oriented around the particles. The combination of SANS and statistical thermodynamics also allows a determination of the nonideal part of the chemical potential and the activity coefficient of HSA. As expected the activity coefficient deviates strongly from the value one...

  2. Concentration dependence of the partial volume, viscosity, and electric conductivity of solutions of lithium salts in aliphatic alcohols

    International Nuclear Information System (INIS)

    Eliseeva, O.V.; Golubev, V.V.

    2003-01-01

    Concentration dependence of partial volumes, electric conductivity and viscosity of lithium nitrate and chloride solutions in methanol, propanol, isopropanol, butanol, isobutanol, pentanol and isopentanol at 298.15 K were studied by the methods of densimetry, conductometry and viscosimetry. Structural specific features of the solutions studied are discussed on the basis of the calculated volumetric characteristics of the substance dissolved and solvent [ru

  3. (Surfactant + polymer) interaction parameter studied by (liquid + liquid) equilibrium data of quaternary aqueous solution containing surfactant, polymer, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2009-02-15

    (Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {l_brace}M{sub W} = (1000, 6000, and 35,000) g . mol{sup -1}{r_brace} have been determined experimentally at T = 313.15 K. Furthermore, the Flory-Huggins theory with two electrostatic terms (Debye-Hueckel and Pitzer-Debye-Hueckel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory-Huggins theory has been obtained. Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed.

  4. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Yifan Dai

    2018-01-01

    Full Text Available A cuprous oxide (Cu2O thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV measurement. An X-ray photoelectron spectroscopy (XPS study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum, interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated.

  5. Finite elements-based 2D theoretical analysis of the effect of IEX membrane thickness and salt solution residence time on the ion transport within a salinity gradient power reverse electrodialysis half cell pair

    OpenAIRE

    Etienne, Brauns

    2013-01-01

    Reverse electrodialysis electrical power generation is based on the transport of salt ions through ion conductive membranes. The ion flux, equivalent to an electric current, results from a salinity gradient, induced by two salt solutions at significantly different concentrations. Such equivalent electric current in combination with the corresponding electrochemical potential difference across the membrane, equivalent to an electric potential, results in a battery equivalency. While having a c...

  6. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    International Nuclear Information System (INIS)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando

    2016-01-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO 4 2− /g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO 4 2− /g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  7. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    2016-11-15

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  8. Desorption of 137Cs from Cetraria islandica (L. Ach. using solutions of acids and their salts mixtures

    Directory of Open Access Journals (Sweden)

    ANA A. ČUČULOVIĆ

    2009-06-01

    Full Text Available The desorption of 137Cs from Cetraria islandica (L. Ach. lichen was investigated using the solutions: A H2SO4–HNO3–K2SO4, B H2SO4–HNO3–Na2SO4 and C H2SO4–HNO3– (NH42SO4–(NH4NO3 at pH 2.00, 2.58, 2.87, 3.28 and 3.75, similar to acid rain. After five consecutive desorptions using solutions A, B and C, from 44.0 % (solution B, pH 3.75 to 68.8 % (solution C, pH 3.28 of 137Cs had been desorbed from the lichen. In all cases, the most successful 137Cs desorption was the first one. In the presence of K+ (solution A the total amount of desorbed 137Cs did not depend on the pH of the solution and this was confirmed by the analogous reactions of Cs+ and K+, due to their similar ionic radii. The dependencies of the non-desorbed content of 137Cs on the number of desorptions gave curves indicating that at least two types of sorption occur. One of them can be dominant if suitable desorbants are used. The results indicate lichens as secondary sources of environment pollution with 137Cs.

  9. Mechanism of groundwater inrush hazard caused by solution mining in a multilayered rock-salt-mining area: a case study in Tongbai, China

    Science.gov (United States)

    Zeng, Bin; Shi, Tingting; Chen, Zhihua; Xiang, Liu; Xiang, Shaopeng; Yang, Muyi

    2018-01-01

    The solution mining of salt mineral resources may contaminate groundwater and lead to water inrush out of the ground due to brine leakage. Through the example of a serious groundwater inrush hazard in a large salt-mining area in Tongbai County, China, this study mainly aims to analyse the source and channel of the inrushing water. The mining area has three different types of ore beds including trona (trisodium hydrogendicarbonate dihydrate, also sodium sesquicarbonate dihydrate, with the formula Na2CO3 × NaHCO3 × 2H2O, it is a non-marine evaporite mineral), glauber (sodium sulfate, it is the inorganic compound with the formula Na2SO4 as well as several related hydrates) and gypsum (a soft sulfate mineral composed of calcium sulfate dihydrate, with chemical formula CaSO4 × 2H2O). Based on characterisation of the geological and hydrogeological conditions, the hydrochemical data of the groundwater at different points and depths were used to analyse the pollution source and the pollutant component from single or mixed brine by using physical-chemical reaction principle analysis and hydrogeochemical simulation method. Finally, a possible brine leakage connecting the channel to the ground was discussed from both the geological and artificial perspectives. The results reveal that the brine from the trona mine is the major pollution source; there is a NW-SE fissure zone controlled by the geological structure that provides the main channels through which brine can flow into the aquifer around the water inrush regions, with a large number of waste gypsum exploration boreholes channelling the polluted groundwater inrush out of the ground. This research can be a valuable reference for avoiding and assessing groundwater inrush hazards in similar rock-salt-mining areas, which is advantageous for both groundwater quality protection and public health.

  10. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions; Etude physico-chimique de la separation des isotopes du calcium par echange chimique entre amalgame et solution saline

    Energy Technology Data Exchange (ETDEWEB)

    Duie, P; Dirian, G [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between {sup 40}Ca and {sup 46}Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH){sub 2}; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H{sub 2} bubbles. (authors) [French] On a fait une etude preliminaire, pour des systemes amalgame de calcium - solution aqueuse ou organique de sels de calcium, des principaux parametres pouvant intervenir dans l'application d'un procede d'echange a l'enrichissement isotopique du calcium: facteur de separation, cinetique de l'echange, cinetique de la decomposition de l'amalgame. Les facteurs de separation {sup 40}Ca-{sup 46}Ca sont de l'ordre de 1,02. L'echange est assez lent pour les solutions aqueuses, extremement lent pour les solutions organiques. La decomposition de l'amalgame est pratiquement inexistante avec les solutions dans le dimethyl- formamide, appreciable pour les solutions alcooliques, rapide pour les solutions aqueuses d'halogenures; elle est normalement lente pour les solutions aqueuses de formiate et surtout de chaux, mais la decomposition est en general acceleree par une reaction parasite entre l'amalgame et l'eau a l'etat vapeur, reaction que l'on n'evite dans des conditions tres particulieres. (auteurs)

  11. Effects of Interfacial Reaction on the Radial Displacement of Oil by Alkaline Solutions Effets des réactions interfaciales sur le déplacement radial de l'huile par les solutions alcalines

    Directory of Open Access Journals (Sweden)

    Nasr-El-Din H. A.

    2006-11-01

    Full Text Available Caustic flooding is frequently used to recover acidic oils in secondary and tertiary recovery modes. This study examines the secondary recovery of an acidic oil by alkaline solutions in a water-wet porous medium using a radial geometry. A model porous medium consisting of sintered glass beads sandwiched between two glass plates was employed to visualize the displacement process. The medium was originally saturated with the oil phase, namely paraffin oil (non-reacting system or paraffin oil doped with 1 wt% linoleic acid (reacting system. The effects of the injection flow rate and the NaOH concentration in the aqueous phase on the displacement pattern were studied experimentally. The volumetric oil recovery at the breakthrough condition was also measured. Dynamic interfacial tension (IFT measurements for the reacting system were measured in a spinning drop tensiometer. A drastic drop in the IFT occurred as a result of the chemical reaction at the interface between the linoleic acid in the oil phase and the NaOH in the aqueous phase. It was also found that the IFT behavior with respect to time was a function of NaOH concentration with a maximum interfacial activity (minimum IFT occurring at 0. 1 w% NaOH. Displacement runs showed a significant change in the displacement patterns during secondary recovery for the reacting system compared with those for the non-reacting one. A significant drop in the breakthrough recovery was obtained for the reacting systems, especially at high injection flow rates. The breakthrough recovery of the reacting system was found to be a function of NaOH concentration in the aqueous phase, with a minimum recovery at NaOH concentration of 0. 1 wt%. On a souvent recours à la submersion par des produits alcalins pour récupérer les acides gras dans les modes secondaire et tertiaire. Dans cette étude, on examine la récupération secondaire d'un acide gras par des solutions alcalines dans un milieu poreux imprégné d

  12. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  13. Free Energies by Thermodynamic Integration Relative to an Exact Solution, Used to Find the Handedness-Switching Salt Concentration for DNA.

    Science.gov (United States)

    Berryman, Joshua T; Schilling, Tanja

    2013-01-08

    Sets of free energy differences are useful for finding the equilibria of chemical reactions, while absolute free energies have little physical meaning. However finding the relative free energy between two macrostates by subtraction of their absolute free energies is a valuable strategy in certain important cases. We present calculations of absolute free energies of biomolecules, using a combination of the well-known Einstein molecule method (for treating the solute) with a conceptually related method of recent genesis for computing free energies of liquids (to treat the solvent and counterions). The approach is based on thermodynamic integration from a detailed atomistic model to one which is simplified but analytically solvable, thereby giving the absolute free energy as that of the tractable model plus a correction term found numerically. An example calculation giving the free energy with respect to salt concentration for the B- and Z-isomers of all-atom duplex DNA in explicit solvent and counterions is presented. The coexistence salt concentration is found with unprecedented accuracy.

  14. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  15. Determination of pKa constants of hypericin in aqueous solution of the anti-allergic hydrotropic drug Cromolyn disodium salt

    Science.gov (United States)

    Keša, Peter; Antalík, Marián

    2017-05-01

    In this work we established three from altogether six proton dissociation constants (pKa) of hydroxyl groups of hypericin in its monomeric form. The monomeric state of hypericin (5.0 × 10-6 mol·L-1) in aqueous solution was stabilised by the presence of hydrotropic drug Cromolyn disodium salt (6.0 × 10-2 mol·L-1). Data show that one acid-base transition occurs with the pKa of 7.8 and the other two are characterised by the apparent single pKa of 11.5. The spectral changes of hypericin above pH 13 indicate that the last two hydroxyls are deporotonized at this high pH values.

  16. The extraction of lanthanides and americium by benzyldiakylamines and benzyltrialkylammonium nitrates from the nitrate solutions; structure and aggregation of their salts

    International Nuclear Information System (INIS)

    Jedinakova, V.; Zilkova, J.; Dvorak, Z.; Vojtiskova, M.

    1982-01-01

    Benzyldialkylamine and benzyltrialkylammonium nitrates were used for the extraction of lanthanides and americium from aqueous nitrate solutions. The dependence of the extraction performance for Ln(III) and Am(III) on the concentration of nitric acid, the kind and concentration of salting-out agents in the aqueous phase, and the kind of solvent were investigated. The extraction of Am(III) is compared with the extraction of lanthanides. The difference in distribution coefficients for lanthanides and americium can be utilized for the separation of lanthanides and americium. Using vapor phase osmometry and cryoscopy the association of these compounds was measured at 5.5deg, 25deg and 37deg C, allowing rough estimates of ΔH and ΔS for the formation of the aggregates, monomers in the case of benzyldiethylamine, benzyldibutylamine, benzyldihexylamine and benzyldioctylamine, tetramers for the benzyldibutylamine nitrate and tetramers for benzyldimethyldodecylammonium nitrate. (author)

  17. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    Science.gov (United States)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  18. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    Science.gov (United States)

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  19. Photoactive TiO2 prepared by homogenous precipitation of aqueos solution of Ti4+ salt with urea

    Czech Academy of Sciences Publication Activity Database

    Šubrt, Jan; Bakardjieva, Snejana; Hostomský, Jiří; Jirkovský, Jaromír; Maguela, L. A. P.; Hálová, Jaroslava

    2003-01-01

    Roč. 12, č. 3 (2003), s. 423-428 ISSN 1453-7672 R&D Projects: GA ČR GA203/02/0983 Institutional research plan: CEZ:AV0Z4040901; CEZ:AV0Z4032918 Keywords : homogenous precipitation * aqueous solutions Subject RIV: CA - Inorganic Chemistry

  20. Behavioral and neural responses of toads to salt solutions correlate with basolateral membrane potential of epidermal cells of the skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Baula, Victor; Tuttle, Wendy

    2007-01-01

    Dehydrated toads initiated water absorption response (WR) behavior and absorbed water from dilute NaCl solutions. With 200-250 mM NaCl, WR behavior and water absorption were both suppressed. With 200-250 mM Na-gluconate, WR initiation was significantly greater than with NaCl but water loss was gr...