WorldWideScience

Sample records for alkaline pulping processes

  1. Alkaline pulping of some eucalypts from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  2. Increasing the lignin yield of the Alkaline Polyol Pulping process by treating black liquor with laccases of Myceliophthora thermophila.

    Science.gov (United States)

    Engel, Norman; Hundt, Martin; Schapals, Tino

    2016-03-01

    The Alkaline Polyol Pulping process separates cellulose from lignocellulosic biomass by dissolving lignin to a great extent. Due to the pulping conditions the dissolved lignin depolymerises and only 75% can be precipitated. To increase this amount, a 24 h reaction of laccases of Myceliophthora thermophila with lignin dissolved in black liquor of the AlkaPolP process was investigated. The influence of pH, temperature, enzyme concentration and partial oxygen pressure was examined in a batch stirred tank reactor using a Box-Behnken factorial design. Due to the enzymatic reaction the lignin polymerises which results in an enhanced lignin precipitation. The addition of a mediator improves the polymerisation but decreases the amount of precipitable lignin. The influence of the parameters on precipitation yield and molecular mass can sufficiently be described with a second-order model and optimum conditions can be assessed. FT-IR spectra of the obtained lignins revealed that its typical phenolic structure is preserved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Alkaline pulping with additives of date palm rachis and leaves from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Khider, T

    2005-01-01

    Soda-anthraquinone (soda-AQ), alkaline sulphite-anthraquinone (AS-AQ) and alkaline sulphite-anthraquinone-methanol (ASAM) pulping of date palm rachis and leaves from Sudan was carried under different conditions, and pulps with variable yields and mechanical properties were obtained. The date palm rachis gave best yields and mechanical properties with the AS-AQ or the ASAM process, while the leaves were best pulped with the soda method with low yield, but very good strength properties. Blending with 10% and 30% kenaf bark pulp was beneficial, especially for the AS-AQ pulps. Totally chlorine free (TCF) bleached rachis pulps were obtained of high brightness and strength properties suitable for use in writing and printing papers.

  4. ANTHRAQUINONE ADDITION IN THE ALKALINE PULPING OF Eucalyptus saligna

    Directory of Open Access Journals (Sweden)

    Lúcia Helena Jerônimo

    2009-10-01

    Full Text Available The present work evaluated different alkaline pulping conditions for Eucalyptus saligna wood. The objective was to evaluate the influence of the anthraquinone (AQ on the reduction of the total reduced sulfur (TRS in the aerial emissions, by reducing the sulfidity. The experiment consisted of 8 cooking with active alkali varying from  19 to 21%, sulfidity from  0 to 20% and anthraquinone from 0 to 0.1%, aiming to obtain  kappa numbers in the range 15.5±1.5. The H factor was used to control the relation time/temperature along cooking. The addition of anthraquinone increased the delignification rate allowing sulfidity reduction. The kraft/AQ pulping with sulfidities of 5 and 10% presented satisfactory results, making it possible the replacement of conventional kraft cooking, giving a reduction in process sulfidity without harms in pulping. In spite of a slightly lower performance, the soda/AQ cooking has potential to be used where the smell is a critical problem in the industrial operation.

  5. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.

    Science.gov (United States)

    Borrega, Marc; Tolonen, Lasse K; Bardot, Fanny; Testova, Lidia; Sixta, Herbert

    2013-05-01

    The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Alkaline hemp woody core pulping : impregnation characteristics, kinetic modelling and papermaking qualities

    NARCIS (Netherlands)

    Groot, de B.

    1998-01-01

    The aim of this thesis is to elucidate alkaline processing of hemp woody core, supporting the development and optimization of an efficient and non-polluting pulping process. This study has been a constituent of an integral programme to study fibre hemp.

    It is known that

  7. Effect of hot-water extraction on alkaline pulping of bagasse.

    Science.gov (United States)

    Lei, Yichao; Liu, Shijie; Li, Jiang; Sun, Runcang

    2010-01-01

    The effect of hot-water extraction on alkaline pulping was investigated. The properties of black liquor and pulp strength of bagasse were analyzed. The extraction was conducted at 160 degrees C for 30min where 13.2% of the mass was dissolved in the extraction liquor. Untreated bagasse and extracted bagasse were digested by soda and soda-AQ processes at 17% and 15.5% (with 0.1% AQ) alkali charge (NaOH). Cooking temperatures were 160 degrees C and 155 degrees C respectively. The pulp from extracted bagasse had a lower Kappa number and a higher viscosity compared to the pulp from the untreated bagasse. The black liquor from pulping extracted bagasse had a lower solid content, a lower viscosity and a lower silica content, but a higher heating value than that from pulping of untreated bagasse. Hot-water extraction resulted in a significant decrease in bleaching chemical consumption and the formation of chlorinated organics. Pulp strength properties such as the tensile index and the burst index were found to be lower, but the tear index, bulk, opacity and pulp freeness were found to be higher when hot-water extraction was applied. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Alkaline Pulping and Bleaching of Acacia auriculiformis Grown in Bangladesh

    OpenAIRE

    JAHAN, M. Sarwar; SABINA, Rowshan; RUBAIYAT, Arjumand

    2014-01-01

    The physical, chemical, and morphological characteristics of Acacia auriculiformis were evaluated in terms of its suitability for papermaking. The fiber length (1.1 mm) of A. auriculiformis in this study was within the range of tropical hardwoods. The lignin content in A. auriculiformis was 19.4% and a-cellulose 44.1%, which was within the range of other acacias, but that of extractives was higher. Soda, soda-AQ, and kraft processes were studied in pulping. Screened pulp yield was increased w...

  9. Potential application of alkaline pectinase from Bacillus subtilis SS in pulp and paper industry.

    Science.gov (United States)

    Ahlawat, Sonia; Mandhan, R P; Dhiman, Saurabh Sudha; Kumar, Rakesh; Sharma, Jitender

    2008-06-01

    Pectinase production from Bacillus subtilis SS was optimized under solid-state fermentation (5,943 U/g of dry bacterial bran). The pectinase produced was stable in neutral to alkaline pH range at 70 degrees C; therefore, the suitability of this pectinase in pulp and paper industry was investigated. The enzyme pretreatment process was optimized, and a pectinase dose of 5 IU/g of oven-dried pulp (10% consistency) at pH 9.5 temperature 70 degrees C after 150 min of treatment gave the best pretreatment to the pulp. An increase of 4.3% in brightness along with an increase of 14.8 and 65.3% in whiteness and fluorescence, respectively, whereas a 15% decrease in the yellowness of the pretreated pulp were observed. There was a 5.85% reduction in kappa number and 6.1% reduction in permanganate number along with a reduction in the chemical oxygen demand value. Significant characteristics showed by pectinase open new possibilities of application of this cellulase-free enzyme in the pulp and paper industry by reducing the negative environmental impact of chemicals apart from improving the properties of paper.

  10. STUDIES ON HIBISCUS CANNABINUS, HIBISCUS SABDARIFFA, AND CANNABINUS SATIVA PULP TO BE A SUBSTITUTE FOR SOFTWOOD PULP- PART 1: AS-AQ DELIGNIFICATION PROCESS

    OpenAIRE

    Dharm Dutt; J. S. Upadhyaya; C. H. Tyagi

    2010-01-01

    Hibiscus cannabinus, Hibiscus sabdariffa, and Cannabinus sativa, which are renewable non-woody fiber resources having characteristics similar to that of softwood (bast fibers), when used together with hardwood (core fibers), gave higher pulp yield with good mechanical strength properties when using an alkaline sulphite-anthraquinone (AS-AQ) pulping process rather than a conventional kraft pulping process and bleached more readily than kraft and soda pulps with a CEHH bleaching sequence. A com...

  11. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol.

    Science.gov (United States)

    Menezes, Evandro G T; do Carmo, Juliana R; Alves, José Guilherme L F; Menezes, Aline G T; Guimarães, Isabela C; Queiroz, Fabiana; Pimenta, Carlos J

    2014-01-01

    The use of lignocellulosic raw materials in bioethanol production has been intensively investigated in recent years. However, for efficient conversion to ethanol, many pretreatment steps are required prior to hydrolysis and fermentation. Coffee stands out as the most important agricultural product in Brazil and wastes such as pulp and coffee husk are generated during the wet and dry processing to obtain green grains, respectively. This work focused on the optimization of alkaline pretreatment of coffee pulp with the aim of making its use in the alcoholic fermentation. A central composite rotatable design was used with three independent variables: sodium hydroxide and calcium hydroxide concentrations and alkaline pretreatment time, totaling 17 experiments. After alkaline pretreatment the concentration of cellulose, hemicellulose, and lignin remaining in the material, the subsequent hydrolysis of the cellulose component and its fermentation of substrate were evaluated. The results indicated that pretreatment using 4% (w/v) sodium hydroxide solution, with no calcium hydroxide, and 25 min treatment time gave the best results (69.18% cellulose remaining, 44.15% hemicelluloses remaining, 25.19% lignin remaining, 38.13 g/L of reducing sugars, and 27.02 g/L of glucose) and produced 13.66 g/L of ethanol with a yield of 0.4 g ethanol/g glucose. © 2013 American Institute of Chemical Engineers.

  12. Cynara cardunculus L. alkaline pulps: alternatives fibres for paper and paperboard production.

    Science.gov (United States)

    Abrantes, S; Amaral, M E; Costa, A P; Duarte, A P

    2007-11-01

    The pulping of Cynara cardunculus L. (cardoon) was performed under conditions for kraft, kraft-AQ and soda-AQ processes. The best results in terms of delignification degree, expressed as kappa number, pulp viscosity and screened yield, were obtained for the kraft-AQ process with 0.20% of anthraquinone (AQ). The papermaking potential of the selected pulp was studied attending to biometric fibre characterisation, refining aptitude, optical and strength properties. All properties were compared against a Eucalyptus globulus pulp at different refining degrees. The cardoon pulp was also evaluated concerning its potential to board manufacture, alone and in mixtures with pine pulp, giving rise to promising results for liner manufacture.

  13. Application of Resin in Pulp Technique for Ion Exchange Separation of Uranium from Alkaline Leachate

    International Nuclear Information System (INIS)

    Sreenivas, T.; Rajan, K.C.; Chakravartty, J.K.

    2014-01-01

    Conclusions: • Resin-in-pulp technique was applied for purification and enrichment of uranium values from a finely ground uranium ore leach slurry of alkaline nature using strong base anion exchange resin (size 500 - 675μm). • The chemical composition of the solution phase of the alkaline leach slurry (pH 9.5) was consisting of about 40 g/L of total dissolved solutes (TDS) predominantly with Na 2 CO 3 and NaHCO 3 and minor levels of Na 2 SO 4 . The uranium content was only 730 mg/L and d50 of solids was 34μm. • Amongst the various commercially available resins studied PFA 4740 and 4783 having quaternary ammonium ion on polystyrene crosslink with divibyl benzez (DVB) gave best performance. The maximum loading capacity achieved in the RIP studies was about 60-65 g of U 3 O 8 /L of wet settled resin amounting to 98% of loading. This has necessitated 4 stages of counter-current extraction with overall contact time of 100 minutes at a resin to leach slurry volume ratio of about 1:50. Practically the entire uranium values loaded on the resin were eluted using NaCl. • The RIP process was found quite efficient for uranium bearing alkaline leach slurries.

  14. Apparatus for processing fibrous pulp material

    NARCIS (Netherlands)

    Dekker, J.C.; Bouma, H.; Mulder, F.B.M.

    2008-01-01

    The invention relates to an apparatus (1) for processing a flow of pulp comprising fibrous material, in particular pulp comprising cellulose fibres for making paper, said apparatus comprising a drum (2) having a rotational axis (R), an inlet end (3), an outlet end (4) and an inner surface, a

  15. Possible mechanism for anthraquinone species diffusion in alkaline pulping

    Science.gov (United States)

    X.-S. Chai; J. Samp; Q.X. Hou; S.-H Yoon; J.Y. Zhu

    2007-01-01

    An analysis of the effectiveness of anthraquinone (AQ) in kraft-AQ pulping in terms of its mechanism of transport has been conducted. Our previous work showed that caustic solutions of wood lignin can decrease the membrane exclusion for anthraquinones, i.e., the presence of wood lignin enhances the ability of AQ to pass through a membrane when a reducing agent is...

  16. ALKALINE WOOD PULPING WITH QUINONE PRESENCE AND ITS INFLUENCE ON QUALITY OF DESIRED PRODUCT USED FOR PACKING PRODUCTION

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2017-01-01

    Full Text Available Application of waste liquor at a rate of 25% that contains the used quinone and is applied as an additive has shown that qualitative characteristics of the obtained desired product do not differ from a product while using fresh quinone for pulping of cellulose-containing vegetable raw material. For this reason process of obtaining the desired product (cellulose or semicellulose becomes economically cost-efficient on the basis of calculation and with due account of ecology. While analyzing investigation results pertaining to production of wood pulp from vegetable raw material (sprucewood it is possible to point out the fact that qualitative characteristics of the desired product have been improved due to addition of quinone in the process of alkaline wood pulping (sulphate and sodic. A number of research publications have described a positive influence of additives on alkaline delignification of vegetable raw material. It subsequently improves the quality of the desired product: reduction of lignin content in the product; an output increase in cellulose and hemicellulose, α-cellulose in cellulose; upgrading of physical and mechanical indices. All the above-mentioned elements and components contribute to better quality of the manufactured packing products. In this case formation of hazardous sulfur-containing compounds is fully excluded.

  17. Effect of organosolv and soda pulping processes on the metals content of non-woody pulps.

    Science.gov (United States)

    González, M; Cantón, L; Rodríguez, A; Labidi, J

    2008-09-01

    In this work the effect of different pulping processes (ethyleneglycol, diethyleneglycol, ethanolamine and soda) of tow abounded raw materials (empty fruit bunches - EFB and rice straw) on the ash, silicates and metals (Fe, Zn, Cu, Pb, Mn, Ni and Cd) content of the obtained pulps have been studied. Results showed that pulps obtained by diethyleneglycol pulping process presented lower metals content (756 microg/g and 501 microg/g for EFB and rice straw pulp, respectively) than soda pulps (984 microg/g and 889 microg/g). Ethanolamine pulps presented values of holocellulose (74% and 77% for EFB and rice straw pulp, respectively), alpha-cellulose (74% and 69%), kappa number (18.7 and 18.5) and viscosity (612 and 90 6ml/g) similar to those of soda pulp, and lower lignin contents (11% and 12%).

  18. Comparative evaluation of alkaline phosphatase levels in dental pulp of diabetic and nondiabetic individuals

    Directory of Open Access Journals (Sweden)

    Pradeep Shetty

    2017-01-01

    Full Text Available Objective: The objective of this study was to evaluate changes in inflammatory components of alkaline phosphatase in dental pulp of patients with Type II diabetes mellitus and nondiabetic patients. Methodology: The study was carried out among 135 participants of the age group between 45 and 65 years, and participants were divided into three groups (n = 45 in each group – a control group, diabetic with good glycemic control, and diabetic with poor glycemic contro l. After clinical examination with Russell's Periodontal Index, teeth indicated for extraction were extracted, and dental pulp was extirpated. Levels of alkaline phosphatase were assessed by p-nitro-phenylphosphate-2-amino-2-methyl-1-propanol (IFCC and kinetic assay method. Results: Mean levels of the inflammatory component of alkaline phosphatase level were more in poorly controlled glycemic level group as compared to other two groups, and the difference between the groups was statistically significant (P < 0.001. Conclusion: Inflammatory mediators may have an impact on the pulpal treatment procedures. The results imply that diabetes is a critical factor that has profound effects upon oral tissues, resulting in expression of inflammatory mediators and modifications of structural components of dental pulp.

  19. Evaluation of alkaline deconstruction processes for Brazilian new generation of eucalypt clones

    OpenAIRE

    Borges Gomes, Fernando José; Colodette, Jorge Luiz; Milanez, Augusto; Río Andrade, José Carlos del; dos Santos Muguet, Marcelo Coelho; Ribas Batalha, Larisse Aparecida; Gomez Gouvêa, Adriana de Fátima

    2015-01-01

    Wood utilization for pulp and paper and biorefinery applications requires some kind of mechanical and/or physical–chemical pretreatment. Among the chemical treatments the alkaline ones are the most used worldwide, although acid and solvent treatments have also being used. This paper deals with eucalypt wood deconstruction with alkaline processes including soda-AQ, soda-AQ-O2, soda-O2, and kraft. The kraft process is largely used by the pulp industry and is evaluated here only to serve as a re...

  20. Alkaline peroxide treatment of ECF bleached softwood kraft pulps. Part 1. characterizing the effect of alkaline peroxide treatment on carboxyl groups of fibers

    Science.gov (United States)

    Zheng Dang; Thomas Elder; Arthur J. Ragauskas

    2007-01-01

    The influence of alkaline peroxide treatment has been characterized on elementally chlorine-free (ECF) bleached softwood (SW) kraft pulp. The results indicate that fiber charge increased with an increase in peroxide charge: a maximum fiber charge increment of 16.6% was obtained with 8.0% more peroxide charge on oven-dried (0.d.) pulp at 60.0°C. Two primary bleaching...

  1. Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping.

    Science.gov (United States)

    Santos, José I; Fillat, Úrsula; Martín-Sampedro, Raquel; Eugenio, María E; Negro, María J; Ballesteros, Ignacio; Rodríguez, Alejandro; Ibarra, David

    2017-12-01

    In modern lignocellulosic-based biorefineries, carbohydrates can be transformed into biofuels and pulp and paper, whereas lignin is burned to obtain energy. However, a part of lignin could be converted into value-added products including bio-based aromatic chemicals, as well as building blocks for materials. Then, a good knowledge of lignin is necessary to define its valorisation procedure. This study characterized different lignins from side-streams produced from olive tree pruning bioethanol production (lignins collected from steam explosion pretreatment with water or phosphoric acid as catalysts, followed by simultaneous saccharification and fermentation process) and alkaline pulping (lignins recovered from kraft and soda-AQ black liquors). Together with the chemical composition, the structure of lignins was investigated by FTIR, 13 C NMR, and 2D NMR. Bioethanol lignins had clearly distinct characteristics compared to pulping lignins; a certain number of side-chain linkages (mostly alkyl-aryl ether and resinol) accompanied with lower phenolic hydroxyls content. Bioethanol lignins also showed a significant amount of carbohydrates, mainly glucose and protein impurities. By contrast, pulping lignins revealed xylose together with a dramatical reduction of side-chains (some resinol linkages survive) and thereby higher phenol content, indicating rather severe lignin degradation during alkaline pulping processes. All lignins showed a predominance of syringyl units. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The caries process and its effect on the pulp

    DEFF Research Database (Denmark)

    Bjørndal, Lars

    2008-01-01

    The understanding of the caries process and its effect on the pulp is presented in the context that caries does develop in various rates of progression. Early in the caries process, the pulp reflects changes within lesion activity. Thus, the early pulp response is reversible. Later, the rate of c...

  3. Combination of mechanical, alkaline and enzymatic treatments to upgrade paper-grade pulp to dissolving pulp with high reactivity.

    Science.gov (United States)

    Duan, Chao; Verma, Saurabh Kumar; Li, Jianguo; Ma, Xiaojuan; Ni, Yonghao

    2016-01-01

    A modified process consisting of an initial mechanical refining (R) followed by a low-alkali (5.5% NaOH) cold caustic extraction (CCE) and finally an endoglucanase (EG) treatment (R-5.5%CCE-EG) was investigated for upgrading paper-grade pulp to dissolving pulp. Results showed that compared to the conventional process (9%CCE-EG), the modified process can decrease the alkali concentration (from 9% to 5.5%) to achieve a similar hemicelluloses removal while simultaneously enhancing the Fock reactivity (from 62.2% to 81.0%). The improved results were due to the fact that the mechanical refining resulted in favorable fiber morphological changes, including increased pore volume/size, water retention value and specific surface area. Consequently, the hemicelluloses removal was enhanced even under the subsequent low-alkali CCE condition. A synergic effect of refining, low alkali concentration and enzymatic activation was responsible for the higher reactivity of resulting dissolving pulp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of banana pulp and peel flour on physicochemical properties and in vitro starch digestibility of yellow alkaline noodles.

    Science.gov (United States)

    Ramli, Saifullah; Alkarkhi, Abbas F M; Shin Yong, Yeoh; Min-Tze, Liong; Easa, Azhar Mat

    2009-01-01

    The present study describes the utilization of banana--Cavendish (Musa acuminata L., cv cavendshii) and Dream (Musa acuminata colla. AAA, cv 'Berangan')--pulp and peel flours as functional ingredients in yellow alkaline noodles. Noodles were prepared by partial substitution of wheat flour with ripe banana pulp or peel flours. In most cases, the starch hydrolysis index, predicted glycaemic index (pGI) and physicochemical properties of cooked noodles were affected by banana flour addition. In general, the pGI values of cooked noodles were in the order; banana peel noodles < banana pulp noodles < control noodles. Since the peel flour was higher in total dietary fibre but lower in resistant starch contents than the pulp flour, the low pGI of banana peel noodles was mainly due to its high dietary fibre content. In conclusion, banana pulp and peel flour could be useful for controlling starch hydrolysis of yellow noodles, even though some physicochemical properties of the noodles were altered.

  5. Alkaline peroxide treatment of ECF bleached softwood kraft pulps: part 2. effect of increased fiber charge on refining, wet-end application, and hornification

    Science.gov (United States)

    Zheng Dang; Thomas Elder; Jeffery S. Hsieh; Arthur J. Ragauskas

    2007-01-01

    The effect of increased fiber charge on refining, cationic starch adsorption, and hornification was examined. Two pulps were investigated: (1) a softwood (SW) kraft pulp (KP) which was bleached elementally chlorine-free (ECF) and sewed as control; and (2) a control pulp treated with alkaline peroxide, which had a higher fiber charge. It was shown that increased fiber...

  6. The caries process and its effect on the pulp

    DEFF Research Database (Denmark)

    Bjørndal, Lars

    2008-01-01

    The understanding of the caries process and its effect on the pulp is presented in the context that caries does develop in various rates of progression. Early in the caries process, the pulp reflects changes within lesion activity. Thus, the early pulp response is reversible. Later, the rate...... of caries progression is reflected by the quality of the tertiary dentin. Slowly progressing lesions create tertiary dentin resembling normal tubular dentin. Rapidly progressing lesions lead to the production of a tubular dentin or complete absence of tertiary dentin, as well as pulp necrosis and apical...... transformed the treatment philosophy of deep carious lesions....

  7. Variaciones de la enzima fosfatasa alcalina en la pulpa dental Variations of alkaline phosphatase enzyme in the dental pulp

    Directory of Open Access Journals (Sweden)

    Zoraida Pons Pinillos

    2005-08-01

    in the caries process is important as a reaction to the calcium hydroxide that is constantly utilized in the teaching-health service network of the country. 50 monoradicular teeth with living pulp and with caries of second, third and fourth degree, and 50 sound teeth from patients of different ages were selected. The pulp of each tooth was extracted and impressions were made (3 per sample. One of them was processed to obtain morphological guidance and the other two to assess the activity of alkaline phosphatase. The cobalt calcium method and Gomori's alpha naphthol phosphate method were used to this end. As a result, it was proved that the pulp has a higher enzymatic activity in deep caries and that the age of the patient does not determine the increase or decrease of this activity.

  8. Synthesis of pulping processes with fiber loading methods for lightweight papers

    Science.gov (United States)

    John H. Klungness; Roland Gleisner; Masood Akhtar; Eric G. Horn; Mike Lentz

    2003-01-01

    Pulping technologies can be synthesized with fiber loading with simultaneous alkaline peroxide bleaching to produce lightweight high-opacity printing papers. We compared the results of recent experiments on combining oxalic acid pretreated wood chips used for thermomechanical pulp (TMP) with fiber loading and previous experiments on combining similar pulps treated with...

  9. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  10. Moulded Pulp Manufacturing: Overview and Prospects for the Process Technology

    DEFF Research Database (Denmark)

    Didone, Mattia; Saxena, Prateek; Meijer, Ellen Brilhuis

    2017-01-01

    . The goal of this paper is to give an overview of the main aspects involved in the manufacture of moulded pulp products. This includes a classification of moulded pulp products, historical and current applications, production processes, materials, mechanical properties and environmental sustainability....... Moreover, based on the latest research in the field, an innovative drying technique that utilizes concepts derived from impulse drying is presented, and the implementation of this process technology is discussed....

  11. Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives.

    Science.gov (United States)

    Nadif, A; Hunkeler, D; Käuper, P

    2002-08-01

    Sulfur-free lignin, obtained through the acid precipitation of black liquor from the soda pulping process, has been tested as water reducer in mortar. It has also been compared to existing commercial additives such as naphthalene sulfonates and lignosulfonates. The ash content and sugar content of these lignins are low in comparison to lignosulfonates, conferring on them higher purity. A procedure for small scale testing derived from the industrial norms SN-EN196 and ASTM (Designation C230-90) is presented. Specifically, all the sulfur-free lignins tested improved the flow of the mortar. Selected flax lignins performed better than lignosulfonates though still less than naphthalene sulfonates. Furthermore, certain hemp lignins gave comparable results to the lignosulfonates. Overall, the straw lignin prepared herein is comparable in performance to commercially available lignins, such as Organocell, Alcell and Curan 100. The plant from which the lignin was isolated, and the process of the pulp mill are the primary influences on the performance of the lignin.

  12. Electron treatment of wood pulp for the viscose process

    International Nuclear Information System (INIS)

    Stepanik, T.M.; Ewing, D.E.; Whitehouse, R.

    2000-01-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology. (author)

  13. Electron treatment of wood pulp for the viscose process

    Energy Technology Data Exchange (ETDEWEB)

    Stepanik, T.M. E-mail: stepanik@acsion.com; Ewing, D.E.; Whitehouse, R

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology. (author)

  14. Method of treating contaminated HEPA filter media in pulp process

    Science.gov (United States)

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  15. Processing Methods of Alkaline Hydrolysate from Rice Husk

    Directory of Open Access Journals (Sweden)

    Olga D. Arefieva

    2017-07-01

    Full Text Available This paper devoted to finding processing methods of alkaline hydrolysate produced from rice husk pre-extraction, and discusses alkaline hydrolysate processing schemed and disengagement of some products: amorphous silica of various quality, alkaline lignin, and water and alkaline extraction polysaccharides. Silica samples were characterized: crude (air-dried, burnt (no preliminary water treatment, washed in distilled water, and washed in distilled water and burnt. Waste water parameters upon the extraction of solids from alkaline hydrolysate dropped a few dozens or thousand times depending on the applied processing method. Color decreased a few thousand times, turbidity was virtually eliminated, chemical oxygen demanded about 20–136 times; polyphenols content might decrease 50% or be virtually eliminated. The most prospective scheme obtained the two following solid products from rice husk alkaline hydrolysate: amorphous silica and alkaline extraction polysaccharide. Chemical oxygen demand of the remaining waste water decreased about 140 times compared to the silica-free solution.

  16. A new pulping process for wheat straw to reduce problems with the discharge of black liquor.

    Science.gov (United States)

    Huang, Guolin; Shi, Jeffrey X; Langrish, Tim A G

    2007-11-01

    Aqueous ammonia mixed with caustic potash as wheat straw pulping liquor was investigated. The caustic potash did not only reduce the NH3 usage and cooking time, but also provided a potassium source as a fertilizer in the black liquor. Excess NH3 in the black liquor was recovered and reused by batch distillation with a 98% recovery rate of free NH3. The black liquor was further treated for reuse by coagulation under alkaline conditions. The effects of different flocculation conditions, such as the dosage of 10% aluminium polychloride, the dosage of 0.1% polyacrylamide, the reaction temperature and the pH of the black liquor on the flocculating process were studied. The supernatant was recycled as cooking liquor by adding extra NH4OH and KOH. The amount of delignification and the pulp yield for the process remained steady at 82-85% and 48-50%, respectively, when reusing the supernatant four times. The coagulated residues could be further processed as solid fertilizers. This study provided a new pulping process for wheat straw to reduce problems of discharge black liquor.

  17. Lipophilic extractives from several nonwoody lignocellulosic crops (flax, hemp, sisal, abaca) and their fate during alkaline pulping and TCF/ECF bleaching.

    Science.gov (United States)

    Marques, Gisela; del Río, José C; Gutiérrez, Ana

    2010-01-01

    The fate of lipophilic extractives from several nonwoody species (flax, hemp, sisal and abaca) used for the manufacturing of cellulose pulps, was studied during soda/anthraquinone (AQ) pulping and totally chorine free (TCF) and elemental chlorine free (ECF) bleaching. With this purpose, the lipophilic extracts from the raw materials and their unbleached and bleached industrial pulps, were analyzed by gas chromatography-mass spectrometry. Aldehydes, hydroxyfatty acids and esterified compounds such as ester waxes, sterol esters and alkylferulates strongly decreased after soda/AQ pulping while alkanes, alcohols, free sterols and sterol glycosides survived the cooking process. Among the lipophilic extractives that remained in the unbleached pulps, some amounts of free sterols were still present in the TCF pulps whereas they were practically absent in the ECF pulps. Sterol glycosides were also removed after both TCF and ECF bleaching. By contrast, saturated fatty acids, fatty alcohols and alkanes were still present in both bleached pulps.

  18. Anaerobic digestion of alkaline bleaching wastewater from a kraft pulp and paper mill using UASB technique.

    Science.gov (United States)

    Larsson, Madeleine; Truong, Xu-Bin; Björn, Annika; Ejlertsson, Jörgen; Bastviken, David; Svensson, Bo H; Karlsson, Anna

    2015-01-01

    Anaerobic digestion of alkaline kraft elemental chlorine-free bleaching wastewater in two mesophilic, lab-scale upflow anaerobic sludge bed reactors resulted in significantly higher biogas production (250±50 vs. 120±30 NmL g [Formula: see text]) and reduction of filtered total organic carbon (fTOC) (60±5 vs. 43±6%) for wastewater from processing of hardwood (HW) compared with softwood (SW). In all cases, the gas production was likely underestimated due to poor gas separation in the reactors. Despite changes in wastewater characteristics, a stable anaerobic process was maintained with hydraulic retention times (HRTs) between 7 and 14 h. Lowering the HRT (from 13.5 to 8.5 h) did not significantly affect the process, and the stable performance at 8.5 h leaves room for further decreases in HRT. The results show that this type of wastewater is suitable for a full-scale implementation, but the difference in methane potential between SW and HW is important to consider both regarding process dimensioning and biogas yield optimization.

  19. Levels of antioxidant enzymes and alkaline protease from pulp and peel of sunflower

    Directory of Open Access Journals (Sweden)

    Wesen Adel Mehdi

    2017-06-01

    Conclusions: The present study concluded that peel in sunflower are strong radical scavengers and can be considered as good sources of natural antioxidants for medicinal and commercial uses. Further analysis showed that protease activity was a significantly high in the pulp compared to the peel.

  20. A Comparison Between Alkali Peroxide and Activated Peroxide Processes in Bleaching Hardwoods Chemi-mechanical Pulp

    Directory of Open Access Journals (Sweden)

    Farhad Zeyni

    2013-06-01

    Full Text Available Unbleached chemi-mechanical pulp of 85% pulp yield and produced from hornbeam, beech and populus woods respectively by 3:1:1 ratio, was used for peroxide bleaching. Two bleaching systems, alkali peroxide (conventional bleaching and activated peroxide by TAED activator, were used for pulp bleaching. Bleaching treatments included different percentages of hydrogen peroxide and caustic soda consumption. In this research, the hydrogen peroxide consumption rate, pulp yield, process selectivity, bleached pulp brightness and bleaching effluent pollution load (COD were investigated. Results showed that, brightness values were increased by bleach chemicals charge rising, in both bleaching systems, but the increasing trend was downward. Also, pulp yield was decreased by increase of chemical charges, but residual peroxide was raised. The activated peroxide process compare to conventional process had lower efficiency and brightness improvement values of pulp were less than those of alkali peroxide process. But pulp yield and effluent pollution load was less by activated peroxide bleaching.

  1. Oil quality of passion fruit seeds subjected to a pulp-waste purification process

    Directory of Open Access Journals (Sweden)

    Suelen Alvarenga Regis

    2015-06-01

    Full Text Available Passion fruit seeds must be clean and dry before the extraction processing to obtain high-quality oil for edible and cosmetic purposes. This research studies the viability of a cleaning process of seeds by evaluating the oil quality. The research examined 2 maturation stages of the fruit and one purification process of the seeds, compared to the control. The oil quality was evaluated by fatty acid composition, acidity, peroxide value and oxidative stability. The pulp waste suffered a thermal treatment in an alkaline water solution at 60°C for 10min and was further purified in an experimental decanter. In the control treatment, the pulp waste was processed using only water at ambient conditions. The passion fruit seeds were totally cleaned by the thermal/chemical treatment, allowing a faster drying (less than 50% of the drying time of the seeds and a bit higher yield of oil extraction (proportionally around 7.7%, without changes in quality of the oil

  2. PROCESS FOR THE PRODUCTION OF DISSOLVING PULP FROM TREMA ORIENTALIS (NALITA) BY PREHYDROLYSIS KRAFT AND SODA-ETHYLENEDIAMINE (EDA) PROCESS

    OpenAIRE

    M. A. Quaiyyum; A. Noori; Labooni Ahsan; M. Sarwar Jahan

    2008-01-01

    This paper presents a preliminary study for the production of dissolving pulp from Trema orientalis (Nalita). Water prehydrolysis kraft and soda-ethylenediamine (EDA) pulping for the production of dissolving pulp from T. orientalis was investigated. Prehydrolysis at 150 and 170 oC did not produce pulp with high α-cellulose content when using the kraft process. But addition of 0.25 % H2SO4 in prehydrolysis liquor increased the purity of the pulp with the sacrifice of pulp yield and viscosity. ...

  3. Effect of shortening kraft pulping integrated with extended oxygen delignification on biorefinery process performance of eucalyptus.

    Science.gov (United States)

    Li, Jing; Zhang, Chunyun; Hu, Huichao; Chai, Xin-Sheng

    2016-02-01

    The aim of this work was to study the impact of shortening kraft pulping (KP) process integrated with extended oxygen delignification (OD) on the biorefinery process performance of eucalyptus. Data showed that using kraft pulps with high kappa number could improve the delignification efficiency of OD, reduce hexenuronic acid formation in kraft pulps. Pulp viscosity for a target kappa number of ∼10 was comparable to that obtained from conventional KP and OD process. The energy and alkali consumption in the integrated biorefinery process could be optimized when using a KP pulp with kappa number of ∼27. The process could minimize the overall methanol formation, but greater amounts of carbonate and oxalate were formed. The information from this study will be helpful to the future implementation of short-time KP integrated with extended OD process in actual pulp mill applications for biorefinery, aiming at further improvement in the biorefinery effectiveness of hardwood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. UV pretreatment of Alkaline Bleaching Wastewater from a Kraft Pulp and Paper Mill prior to Anaerobic Digestion in a Lab scale UASB Reactor

    OpenAIRE

    Karlsson, Marielle

    2013-01-01

    The effects of UV pretreatment on alkaline bleaching (EOP) wastewater from a kraft pulp and paper mill were investigated prior to anaerobic digestion (AD) in an upflow anaerobic sludge blanket (UASB) reactor. The aim was to enhance the methane production, increase the reduction of total organic carbon (TOC) and determine the best UV exposure time. The exposure time of 2.6 minutes partially degraded the organic material in the EOP wastewater since it generated higher biogas and methane product...

  5. Tropical Fruit Pulps: Processing, Product Standardization and Main Control Parameters for Quality Assurance

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Farias Silva

    2017-05-01

    Full Text Available ABSTRACT Fruit pulp is the most basic food product obtained from fresh fruit processing. Fruit pulps can be cold stored for long periods of time, but they also can be used to fabricate juices, ice creams, sweets, jellies and yogurts. The exploitation of tropical fruits has leveraged the entire Brazilian fruit pulp sector due mainly to the high acceptance of their organoleptic properties and remarkable nutritional facts. However, several works published in the last decades have pointed out unfavorable conditions regarding the consumption of tropical fruit pulps. This negative scenario has been associated with unsatisfactory physico-chemical and microbiological parameters of fruits pulps as outcomes of little knowledge and improper management within the fruit pulp industry. There are protocols for delineating specific identity and quality standards (IQSs and standardized good manufacturing practices (GMP for fruit pulps, which also embrace standard operating procedures (SOPs and hazard analysis and critical control points (HACCP, although this latter is not considered mandatory by the Brazilian legislation. Unfortunately, the lack of skilled labor, along with failures in complying established protocols have impaired quality of fruit pulps. It has been necessary to collect all information available with the aim to identify the most important hazards within fruit pulp processing lines. Standardizing methods and practices within the Brazilian fruit pulp industry would assurance high quality status to tropical fruit pulps and the commercial growth of this vegetal product towards international markets.

  6. Effects of ozone on kraft process pulp mill effluent

    International Nuclear Information System (INIS)

    Mohammed, A.; Smith, D.W.

    1992-01-01

    Effluent from a kraft process pulp mill was studied in a batch reactor for ozone doses between 50 and 200 mg O 3 /L to identify the suitability of ozone application locations in the treatment process and see the improvements in biotreatability of wastewaters from a kraft process pulp mill. Laboratory acclimatized seed were used for (Biochemical Oxygen Demand) BOD tests for ozonated and unozonated samples. The inhibitory effects were minimized by using optimum dilutions. The studies were divided into three major sections: characterization of mill effluent; ozone system calibration, and reactor design; and ozonation of mill effluent. Seed for BOD tests were acclimatized in batch units for primary, bleach and secondary effluents separately. The results were analyzed using the open-quote t close-quote test for paired experiments and an ANOVA table for statistical confirmation. Residuals were plotted to check the assumptions of constant variance and normal distribution. It was concluded that ozone is most effective for the removal of color and the increase of BOD in secondary effluent. 21 refs., 9 figs., 7 tabs

  7. Wound healing process of injured pulp tissues with emdogain gel.

    Science.gov (United States)

    Kaida, Hikaru; Hamachi, Takafumi; Anan, Hisashi; Maeda, Katsumasa

    2008-01-01

    This study aimed to investigate the wound healing process of injured pulp tissues with Emdogain gel (EMD). Pulpotomy was performed for the first molars of the mandibles in rats. EMD or Vitapex (VIT)-containing calcium hydroxide was applied to the exposed pulp tissues. The treated teeth were extracted after 7, 14, and 28 days and prepared for histologic examination. In the VIT-treated group, the number of interleukin-1 beta (IL-1 beta)-expressing macrophages initially increased, followed by that of transforming growth factor-beta1 (TGF-beta1)-expressing macrophages. The number of cells expressing bone morphogenetic proteins (BMPs) gradually increased with reparative dentin formation. Meanwhile, in the EMD-treated group, cells expressing IL-1 beta or TGF-beta1 were few. However, the number of BMP-expressing cells, partly macrophages, increased in the early phase, and large amounts of reparative dentin were observed. This study demonstrated that different healing processes existed for EMD and VIT. BMP-expressing macrophages might play important roles in reparative dentin formation.

  8. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    Science.gov (United States)

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825

  9. POM-assisted electrochemical delignification and bleaching of chemical pulp

    Science.gov (United States)

    Helene Laroche; Mohini Sain; Carl Houtman; Claude Daneault

    2001-01-01

    A polyoxometalate-catalyzed electrochemical process has shown good selectivity in delignifying pulp. This breakthrough in redox catalysis shows promise for the development of a new environmentally benign technology for pulp bleaching. The electrochemical process, applied with a mildly alkaline electrolyte solution containing trace amounts of a vanadium-based...

  10. Efficient energy conversion in the pulp and paper industry: application to a sulfite wood pulping process

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, F.

    2007-07-01

    This report measures the actions performed in 2006 and the actions planned for 2007 within the framework of the project Efficient Energy Conversion in the Pulp and Paper Industry. In addition to the data reconciliation models of the steam and condensate networks and of the process of Borregaard Schweiz AG, process models have been developed with the goal of defining the heat requirements of the process. The combination of utility system data reconciliation with the process models allows to considerably reduce the need for detailed process modelling and for on-site data collection and measurement. A systematic definition of the hot and cold streams in the process has been developed in order to compute the minimum energy requirement of the process. The process requirements have been defined using the dual representation concept where the energy requirement of the process unit operations are systematically analysed from their thermodynamic requirement and the way they are satisfied by the technology that implements the operation. Corresponding to the same energy requirement but realised with different temperature allows on one hand to define the exergy efficiency of the heat transfer system in each of the process unit operations and to identify possible energy savings by heat exchange in the system. The analysis has been completed by the definition of the possible energy recovery from waste streams. The minimum energy requirement of the process using the different requirement representation has been realised and the analysis of the energy savings opportunities is now under preparation. This new step will first concern the definition of the utility system integration and the systematic analysis of the energy savings opportunities followed by the techno-economic evaluation of the most profitable energy savings options in the process. The national and international collaborations constitute also an important part of this project. The project is done in close

  11. Process parameters affecting the delignification of eucalyptus kraft pulp with peroxyacetic acid

    OpenAIRE

    Chandranupap, P.; Chaivichit, P.; Chandranupap, P.

    2004-01-01

    Various process parameters affecting eucalyptus kraft pulp delignification with peroxyacetic acid were investigated. The results showed that pH was an important factor. The delignification rate increased with increasing pH to the value of 6. High delignification rate was obtained when the pulp was chelated with Na4-EDTA prior to the peroxyacetic acid stage. Therefore, delignification reaction rate depends on peroxyacid charge, temperature, pH and metal content of pulp.

  12. Enzyme processes for pulp and paper : a review of recent developments

    Science.gov (United States)

    William R. Kenealy; Thomas W. Jeffries

    2003-01-01

    The pulp and paper industry is applying new, ecologically sound technology in its manufacturing processes. Many interesting enzymatic applications have been proposed in the literature. Implemented technologies tend to change the existing industrial process as little as possible. Commercial applications include xylanases in prebleaching kraft pulps and various enzymes...

  13. Effect of Urea Addition on Soda Pulping of Oak Wood

    OpenAIRE

    Cho, Nam-Seok; Matsumoto, Yuji; Cho, Hee-Yeon; Shin, Soo-Jeong; Oga, Shoji

    2008-01-01

    Many studies have been conducted to find a sulfur-free additive for alkaline pulping liquors that would have an effect similar to that of sulfide in kraft pulping. Some reagents that partially fulfill this role have been found, but they are too expensive to be used in the quantities required to make them effective. As an alternative method to solve air pollution problem and difficulty of pulp bleaching of kraft pulping process, NaOH-Urea pulping was applied. The properties of NaOH-Urea pul...

  14. Environmental friendly alkaline sulfite anthra quinone-methonal (ASAM) pulping with Rumex crispus plant extract of woody materials.

    Science.gov (United States)

    Mertoglu-Elmas, Gulnur; Gunaydin, Keriman; Ozden, Oznur

    2012-09-01

    ASAM with Rumex crispus extract organosolv pulping was developed by using 1,5-dihydroxy-3-methoxy-7-methyl-anthraquinone from Rumex crispus root, instead of anthraquinone. ASAM was also produced as a control pulping. Both pulps were made by handsheets from fast growing P. deltoides clone (Samsun p. clone), Robinia pseudoacacia L. and Pinus pinaster grown in Turkey for wood fibrous raw materials. The mechanical consisting tensile, bursting and tear values and optical values of ASAM handsheets yellowness, brightness and whiteness were compared to ASAM with Rumex crispus L. extracted. It is concluded that ASAM with Rumex crispus extract pulping suits well in the manufacturing of special papers.

  15. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes

    Directory of Open Access Journals (Sweden)

    Miguel A. Hurtado

    2011-02-01

    Full Text Available This study evaluates the pre-treatment of cellulose from kenaf plant to yield sugar precursors for the production of ethanol or butanol for use as biofuel additives. In order to convert the crystalline cellulosic form to the amorphous form that can undergo enzymatic hydrolysis of the glycosidic bond to yield sugars, kenaf pulp samples were subjected to two different pre-treatment processes. In the acid pre-treatment, the pulp samples were treated with 37.5% hydrochloric acid in the presence of FeCl3 at 50 °C or 90 °C whereas in the alkaline method, the pulp samples were treated with 25% sodium hydroxide at room temperature and with 2% or 5% sodium hydroxide at 50 °C. Microwave-assisted NaOH-treatment of the cellulose was also investigated and demonstrated to be capable of producing high glucose yield without adverse environmental impact by circumventing the use of large amounts of concentrated acids i.e., 83–85% phosphoric acid employed in most digestion processes. The treated samples were digested with the cellulase enzyme from Trichoderma reesei. The amount of glucose produced was quantified using the QuantichromTM glucose bioassay for assessing the efficiency of glucose production for each of the treatment processes. The microwave-assisted alkaline pre-treatment processes conducted at 50 °C were found to be the most effective in the conversion of the crystalline cellulose to the amorphous form based on the significantly higher yields of sugar produced by enzymatic hydrolysis compared to the untreated sample.

  16. Evaluation of bleachability on pine and eucalyptus kraft pulps

    Directory of Open Access Journals (Sweden)

    Marcela Freitas Andrade

    2013-09-01

    Full Text Available In recent decades, the pulp industry has been changing and improving its manufacturing processes in order to enhance production capacity, product quality and environmental performance. The aim of this study was to evaluate the bleachability effect on the efficient washing and alkaline leaching in eucalyptus and pine Kraft pulps using three different bleaching sequences: AD(EPD, A/D(EPDP and DHT(EPDP. This study was carried out in two stages. In the first part, the optimum conditions for pulp bleaching in order to achieve a brightness of 90% ISO were established. The second step was a comparative study between the pulps that received alkaline leaching and efficient washing with reference pulp (without treatment. The brightness, viscosity, kappa number and HexA in pulp were analyzed. The three sequences studied reached the desired brightness, but the sequence AD(EPD produced a lower reagent consumption for the same brightness. In the three sequences studied, the efficient washing of the pulp after oxygen delignification has contributed significantly to the removal of dissolved organic and inorganic materials in the pulp and the alkaline leaching decreased significantly the pulp kappa number due to a higher pulp delignification and bleachability.

  17. Future CO2 removal from pulp mills - Process integration consequences

    International Nuclear Information System (INIS)

    Hektor, Erik; Berntsson, Thore

    2007-01-01

    Earlier work has shown that capturing the CO 2 from flue gases in the recovery boiler at a pulp mill can be a cost-effective way of reducing mill CO 2 emissions. However, the CO 2 capture cost is very dependent on the fuel price. In this paper, the potential for reducing the need for external fuel and thereby the possibility to reduce the cost for capturing the CO 2 are investigated. The reduction is achieved by using thermal process integration. In alternative 1, the mill processes are integrated and a steam surplus made available for CO 2 capture, but still there is a need for external fuel. In alternative 2, the integration is taken one step further, the reboiler is fed with MP steam, and the heat of absorption from the absorption unit is used for generation of LP steam needed at the mill. The avoidance costs are in both cases lower than before the process integration. The avoidance cost in alternative 1 varies between 25.4 and 30.7 EUR/tonne CO 2 depending on the energy market parameters. For alternative 2, the cost varies between 22.5 and 27.2 EUR/tonne CO 2 . With tough CO 2 reduction targets and correspondingly high CO 2 emission costs, the annual earnings can be substantial, 18.6 MEUR with alternative 1 and 21.2 MEUR with alternative 2

  18. Effect of freezing and processing technologies on the antioxidant capacity of fruit pulp and jelly

    Directory of Open Access Journals (Sweden)

    Cristine Maso Jeusti Bof

    2012-02-01

    Full Text Available The effect of freezing and processing technology on the antioxidant capacity of grape (Vitis vinifera, apple (Malus domestica, strawberry (Fragaria x Anassa, pear (Pyrus communis L., guava (Psidium guajava L., and fig (Ficus carica L. was evaluated for 90 days. Under a storage temperature of -15 º C, there was no significant difference in the antioxidant capacity of grape and fig pulp, and a higher antioxidant capacity was found for guava pulp (27 µmol/g. While the technological processing did not affect the antioxidant capacity of pear and apple jellies, all other jellies studied showed a reduced antioxidant capacity. The processing reduced the antioxidant capacity of grapes in 45%. Among the fruit products, the highest antioxidant activities were found for guava pulp and jelly (27 and 25 µmol/g, respectively, followed by grape pulp (22 µmol/g.

  19. Report on achievements in fiscal 1998. Demonstrative research of an alkali recovery process in the non-wood pulp paper manufacturing industry; 1998 nendo himokuzai pulp seishi sangyo arukari kaishu process ni kakawaru jissho kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This project is intended of performing demonstrative research jointly with China on a system to efficiently extract, condense, and combust black liquor in a non-wood pulp paper manufacturing plant in China to recover alkaline solution and heat energy, and to contribute to proliferation of the system. Specifically, an alkali recovery plant is built in Cangshan Paper Making Plant in Shandong Province to verify conservation in energy and reduction environmental load. This fiscal year has performed (1) component researches and related technology investigations, and (2) device design and fabrication. For Item 1, the extractor adopted the spiral net type, and the condensation device adopted the falling film evaporator of full-can plate type. For the silica removing agent, data were acquired on reduction of silica in the black liquor and effect of reducing the black liquor viscosity. Basic design requirements were established for an alkali recovery process for a pulp production plant of 75 t/d. Regarding Item 2, prepared were the material and heat balance tables for the black liquor extractor and the black liquor condenser, process flow diagrams (PFD), device specifications, a meter list, and a summary utility consumption list, and confirmed them with the Chinese side. For the black liquor combustion device and the caustification device, PFD and device list prepared by the Chinese side were acquired to start the basic design. (NEDO)

  20. Redução de aminoácidos em polpas de bacuri (Platonia insignis Mart, cupuaçu (Theobroma grandiflorum Willd ex-Spreng Schum e murici (Byrsonima crassifolia L. processado (aquecido e alcalinizado Amino acids reduction in processed (heated and alkalinized pulps of bacuri (Platonia insignis Mart, cupuaçu (Theobroma grandiflorum Willd ex-Spreng Schum and murici (Byrsonima crassifolia L.

    Directory of Open Access Journals (Sweden)

    Alexandre Porte

    2010-09-01

    C, with stirring and refluxing or without heating. Glucose, fructose, sucrose and pH values also were obtained in the pulps without heating. All nutrients were analised by HPLC. The pHs were: 3.2, 3.6 and 3.35 in the bacuri, cupuaçu and murici pulps, respectively. Sucrose (38.34% and 36.93% was the major carbohydrate while fructose (8.93% and 12.63% and glucose (9.03% and 11.65% shown similar percentages in the cupuaçu and bacuri pulps. Murici pulp was almost free of sucrose (0.57%, but not of fructose (11.51% or glucose (11.39%. In the pulps without heating the major amino acids were: glutamic acid (46.6 mg/kg, aspartic acid (28.8 mg/kg and arginine (25.3 mg/kg in the bacuri pulp; aspartic acid (56.3 mg/kg, glutamic acid (44.0 mg/kg and alanine (24.2 mg/kg in the cupuaçu pulp; proline (73.5 mg/kg, glutamic acid (23.7 mg/kg and aspartic acid (23.5 mg/kg in the murici pulp. The heating of the 3 pulps decresead the concentration of all amino acids. The medium strongly alkaline (pH 12 produced more degradation of the amino acids than others pHs. Lysine was more sensible to the heating than others amino acids in pH 12.

  1. Integrating black liquor gasification with pulping - Process simulation, economics and potential benefits

    Science.gov (United States)

    Lindstrom, Erik Vilhelm Mathias

    Gasification of black liquor could drastically increase the flexibility and improve the profit potential of a mature industry. The completed work was focused on research around the economics and benefits of its implementation, utilizing laboratory pulping experiments and process simulation. The separation of sodium and sulfur achieved through gasification of recovered black liquor, can be utilized in processes like modified continuous cooking, split sulfidity and green liquor pretreatment pulping, and polysulfide-anthraquinone pulping, to improve pulp yield and properties. Laboratory pulping protocols have been developed for these modified pulping technologies and different process options evaluated. The process simulation work around BLG has led to the development of a WinGEMS module for the low temperature MTCI steam reforming process, and case studies comparing a simulated conventional kraft process to different process options built around the implementation of a BLG unit operation into the kraft recovery cycle. Pulp yield increases of 1-3% points with improved product quality, and the potential for capital and operating cost savings relative to the conventional kraft process have been demonstrated. Process simulation work has shown that the net variable operating cost for a pulping process using BLGCC is highly dependent on the cost of lime kiln fuel and the selling price of green power to the grid. Under the assumptions taken in the performed case study, the BLGCC process combined with split sulfidity or PSAQ pulping operations had net variable operating cost 2-4% greater than the kraft reference. The influence of the sales price of power to the grid is the most significant cost factor. If a sales price increase to 6 ¢/KWh for green power could be achieved, cost savings of about $40/ODtP could be realized in all investigated BLG processes. Other alternatives to improve the process economics around BLG would be to modify or eliminate the lime kiln unit

  2. High-risk biodegradable waste processing by alkaline hydrolysis.

    Science.gov (United States)

    Kalambura, Sanja; Voća, Neven; Krička, Tajana; Sindrak, Zoran; Spehar, Ana; Kalambura, Dejan

    2011-09-01

    Biodegradable waste is by definition degraded by other living organisms. Every day, meat industry produces large amounts of a specific type of biodegradable waste called slaughterhouse waste. Traditionally in Europe, this waste is recycled in rendering plants which produce meat and bone meal and fat. However, feeding animals with meat and bone meal has been banned since the outbreaks of bovine spongiform encephalopathy (BSE). In consequence, new slaughterhouse waste processing technologies have been developed, and animal wastes have now been used for energy production. Certain parts of this waste, such as brains and spinal cord, are deemed high-risk substances, because they may be infected with prions. Their treatment is therefore possible only in strictly controlled conditions. One of the methods which seems to bear acceptable health risk is alkaline hydrolysis. This paper presents the results of an alkaline hydrolysis efficiency study. It also proposes reuse of the obtained material as organic fertiliser, as is suggested by the analytical comparison between meat and bone meal and hydrolysate.

  3. Fermentation Process of Cocoa Based on Optimum Condition of Pulp PectinDepolymerization by Endogenous Pectolityc Enzymes

    OpenAIRE

    Ganda-Putra, G.P; Wrasiati, L.P; Wartini, N.M

    2010-01-01

    Pulp degradation during cocoa fermentation can be carried out by depolymerization process of pulp pectin using endogenous pectolytic enzymes at optimum condition. The objectives of this research were to study the effect of fermentation process based on optimum condition in terms of temperature and pH of pulp pectin depolymerization using endogenous pectolytic enzymes polygalakturonase (PG) and pectin metyl esterase (PME) and fermentation period in cocoa processing on quality characteristics o...

  4. Dynamic simulation of the carbon-in-pulp and carbon-in-leach processes

    Directory of Open Access Journals (Sweden)

    L. R. P. de Andrade Lima

    2007-12-01

    Full Text Available Carbon-in-leach and carbon-in-pulp are continuous processes that use activated carbon in a cascade of large agitated tanks, which have been widely used to recover or concentrate precious metals in gold extraction plants. In the carbon-in-pulp process adsorption occurs after the leaching cascade section of the plant, and in the carbon-in-leach process leaching and adsorption occur simultaneously. In both processes the activated carbon is moved from one tank to another in countercurrent with the ore pulp until the recovery of the loaded carbon in the first tank. This paper presents a dynamic model that describes, with minor changes, the carbon-in-leach, the carbon-in-pulp, and the gold leaching processes. The model is numerically solved and calibrated with experimental data from a plant and used to perform a study of the effect of the activated carbon transfer strategy on the performance of the adsorption section of the plant. Based on the calculated values of the gold loss in the liquid and of the gold recovered in the loaded activated carbon that leaves the circuit, the results indicate that strategies in which a significant amount of activated carbon is held in the first tank and the contact time between the carbon and the pulp is longer are the best carbon transfer strategies for these processes.

  5. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    Science.gov (United States)

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Science.gov (United States)

    2010-07-01

    ... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of this... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL...

  7. Cocoa pulp in beer production: Applicability and fermentative process performance.

    Directory of Open Access Journals (Sweden)

    Cassiane da Silva Oliveira Nunes

    Full Text Available This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52, belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil, and a commercial strain of ale yeast (Safale S-04 Belgium were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.

  8. Cocoa pulp in beer production: Applicability and fermentative process performance

    Science.gov (United States)

    de Carvalho, Giovani Brandão Mafra; da Silva, Gervásio Paulo

    2017-01-01

    This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis. PMID:28419110

  9. Cocoa pulp in beer production: Applicability and fermentative process performance.

    Science.gov (United States)

    Nunes, Cassiane da Silva Oliveira; de Carvalho, Giovani Brandão Mafra; da Silva, Marília Lordêlo Cardoso; da Silva, Gervásio Paulo; Machado, Bruna Aparecida Souza; Uetanabaro, Ana Paula Trovatti

    2017-01-01

    This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.

  10. Radiation -adsorption treatment of pesticides by using wood pulp and bagasse pulp

    International Nuclear Information System (INIS)

    Abd El-Aal, S.E.; Sokker, S.S.; Dessooki, A.M.

    2005-01-01

    Alkaline pulping of pulp wood and bagasse using sodium hydroxide resulted in the reduction of lignin from the wood and bagasse fibers and consequently increase adsorption of the pesticide pollutants to these fibers. Three different types of pesticides were used in this study namely, metalaxyl, dicloran and arelon. which were irradiated at a dose of 4 kGy before adsorption treatment.The results show that moderate adsorption was observed for all pesticides when adsorption was carried out without alkaline pulping and irradiation. This is due to the presence of lignin which retard the adsorption process. Batch sorption experiments at different pH values (3, 7, 9) for the retention of these pesticides by pulp wood and pulp bagasse fibers indicated that sorption is governed by the interaction of the ionized form of these compounds with the polyhydroxyl structure of cellulose. The study shows that alkaline pulping of pulpwood and bagasse improves its ability towards adsorption of the radiation degraded pesticide molecules

  11. Effect of process parameters on the dryness of molded pulp products

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido

    2016-01-01

    Molded pulp products are made from cellulose fibers dispersed in water then formed, drained and dried. As in the conventional papermaking process, the most energ yintensive operation (including time) is drying. To gain a better understanding of the process parameters involved and to investigate...

  12. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments......The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid. residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from...

  13. Papermaking Properties of Carpinus betulus with kraft, Soda and Soda-Urea Pulping Processes

    Directory of Open Access Journals (Sweden)

    Rasoul Darstan

    2013-06-01

    Full Text Available This research was carried out in order to comparatively investigate the hornbeam kraft, soda and soda-urea papermaking properties. The selected treatment in kraft process had an average yield of 44.43% and kappa number of 23.75. In soda process the selected treatment had an average yield of 38.75% and kappa number of 19.28. In soda-urea process, the selected treatments had an average yield of 39.85, 40.1, 40.5, 39.8 and 40.61 and kappa number of 21.21, 22.33, 22.66, 25.28 and 26.85. After refining the selected pulp to reach the freeness of 400±25 ml CSF, 60 g/m2 handsheets were made and physical, mechanical and optical properties were measured. Results showed that kraft pulps had higher yield and better refinability than soda and soda-urea pulps. Papers made from kraft process had higher strength properties than those made of soda and soda-urea process. With addition of urea, yield and kappa number of pulps increased. The highest improvement in tensile index, breaking length and tear index was achieved with addition of 3% urea and the highest improvement in burst index was achieved with adding 4% urea. Results of brightness measurements showed that papers from kraft and soda processes had the lowest and highest brightness degree respectively. With the addition of urea, brightness of papers decreased.

  14. The pulping of esparto grass by sodium monosulfite

    OpenAIRE

    Akchiche, Omar; Messaoud, Boureghda

    2007-01-01

    Traditionally, the esparto's limbs, in the manufacturing process of the cellulosic pulps, are delignified according to the process chlorinates alkaline which alternate the action of caustic's soda and chlorine; the reason is that these sheets cannot be free from the silica which they contain that only in strongly alkaline medium. In spite of the relative simplicity of implementation of this process, it does not remain free from grievance about it: low yield, an excessive consumption of bleach...

  15. Effects of washing method on the bagasse pulping characteristics by Sulfur Dioxide- Ethanol-Water (SEW process

    Directory of Open Access Journals (Sweden)

    aliasghar tatari

    2017-02-01

    Full Text Available SO2-ethanol-water (SEW pulping can be considered a hybrid between solvent and acid sulfite pulping processes. Recently this process in order to separation the principal components (cellulose, hemicelluloses and lignin have been considered. The main objective of this study was to investigate the effects of washing method on the bagasse pulping characteristics by acidic fractionation of Sulfur Dioxide- Ethanol-Water (SEW. Variables included two washing pulp methods (water and 40 v/v% ethanol-water solutions, pulping duration (30-100 min., and temperature (120 and 135 OC. Then, pulps were washed twice with 40% v/v ethanol-water at 60°C (L: W 2 L kg-1 and with deionized water at room temperature (L: W 20 L kg-1. The results showed that the final yield pulp due to lignin greater solubility in 40 v/v % ethanol-water compared to conventional systems (washing by water decreased that the diminishing returns are statistically significant at the 1% level. Pulping result at 120 and 135 °C at different time period showed that increase in the pulping duration, kappa number is reduced.

  16. Processes determining the marine alkalinity and carbonate saturation distributions

    OpenAIRE

    B. R. Carter; J. R. Toggweiler; R. M. Key; J. L. Sarmiento

    2014-01-01

    We introduce a composite tracer, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* also highlights riverine alkalinity plumes that are due to dissolved calcium carbonate from land. We estimate the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near ri...

  17. Know your fibers : process and properties, or, a material science approach to designing pulp molded products

    Science.gov (United States)

    John F. Hunt

    1998-01-01

    The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.

  18. Optimization of process parameters for foam-mat drying of papaya pulp.

    Science.gov (United States)

    Kandasamy, Palani; Varadharaju, N; Kalemullah, S; Maladhi, D

    2014-10-01

    Experiments were carried out to optimize the process parameters for production of papaya powder using foam-mat drying. Papaya pulp was foamed by incorporating methyl cellulose (0.25, 0.5, 0.75 and 1 %, w/w), glycerol-mono-stearate (1, 2, 3 and 4 %, w/w) and egg white (5, 10, 15 and 20 %, w/w) as foaming agents. The maximum stable foam formation was 72, 90 and 125% at 0.75 % methyl cellulose, 3 % glycerol-mono-stearate and 15 % egg white respectively with 9°Brix pulp and whipping time of 20 min. The foamed pulp was dried at air temperature of 60, 65 and 70 °C with foam thickness of 2, 4, 6, 8 and 10 mm in a batch type cabinet dryer. The drying time required for foamed papaya pulp was lower than non-foamed pulp at all selected temperatures. Biochemical analysis results showed a significant reduction in ascorbic acid, β-carotene and total sugars in the foamed papaya dried product at higher foam thickness (6, 8 and 10 mm) and temperature (65 and 70 °C due to destruction at higher drying temperature and increasing time. There was no significant change in other biochemical constituents such as pH and acidity. The organoleptic and sensory evaluation of the quality attributes of papaya powder obtained from the pulp of 9°Brix added with 3 % glycerol-mono-stearate, whipped for 20 min and dried with a foam thickness of 4 mm at a temperature of 60 °C was found to be optimum to produce the foam-mat dried papaya powder.

  19. Grouping eucalyptus species in kraft pulp process for cost reduction

    Directory of Open Access Journals (Sweden)

    Apiwan Pichayadecha

    2014-12-01

    Full Text Available The objective of this research is to study the level of the important factors that can decrease total cost of pulp production. First of all, experts and experienced users identify the factors that affect the total production cost by applying the principle of 4M 1E cause and effect diagram. Then the primary factors were chosen based on 80% of their significance and tested by hypothesis for two population means. It was found that at the 95% confidence level the significant factors that have effects on the total production cost are amount of Effective alkali in white liquor and Kappa number. However, the proportion of easy delignification according to Eucalyptus species is considered as a significant factor based on various studies. Box-Behnken experiment is designed with respect to 3 mentioned factors and 3 levels of each factor. The response surface method (RSM is employed to determine the non-linear relation between the total cost as the response and the proportion of easy delignification, amount of Effective alkali in white liquor and Kappa number. To minimize the total cost, the optimal values of each factor are 75% of easy delignification, 112 grams per liter of Effective alkali in white liquor and 13.5 of kappa number. Under this optimal condition, the average total cost per ton of Eucalyptus is 13,393.91 Baht which is significantly less than the total cost of 15,517.06 Baht per ton before improvement.

  20. Overview of the government/industry workshop on opportunities for new materials in pulp and paper processing

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.K.; Fowler, R.A.

    1994-05-01

    This report presents a synopsis of the presentations made at the two-day workshop conducted in Portland, Oregon, on August 12 and 13, 1993, for the Advanced Industrial Concepts division (AICD) of the US Department of Energy (DOE) Office of Industrial Technologies (OIT) and DOE national laboratory representatives from the pulp and paper industry. The information from the presentations is supplemented by additional statistics, as appropriate. The workshop objectives were (1) to develop a strategy and framework for collaboration between the pulp and paper industries and DOE`s national laboratories, (2) to identify major challenges to pulp and paper industry modernization, and (3) to identify research objectives for DOE national laboratories to improve materials and process technology in pulp and paper mills. Prior to the workshop, participants had the opportunity to tour paper mills and gain familiarity with pulp and paper processing methods. During the workshop, research needs for materials and processing that were identified at earlier AICD workshops were reviewed. Major problems of the pulp and paper industry were addressed, and ways in which DOE national laboratories are interacting with other industries to foster innovation and solve problems were presented. As a result of this and other workshops, a Pulp Paper Mill of the future strategy is being developed to address challenges identified in these proceedings. Continued efforts are expected by AICD to match candidate materials and processes from DOE national laboratories with the technology needs of pulp and paper mills.

  1. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments...

  2. Co-extrusion of food grains-banana pulp for nutritious snacks: optimization of process variables.

    Science.gov (United States)

    Mridula, D; Sethi, Swati; Tushir, Surya; Bhadwal, Sheetal; Gupta, R K; Nanda, S K

    2017-08-01

    Present study was undertaken to optimize the process conditions for development of food grains (maize, defatted soy flour, sesame seed)-banana based nutritious expanded snacks using extrusion processing. Experiments were designed using Box-Behnken design with banana pulp (8-24 g), screw speed (300-350 rpm) and feed moisture (14-16% w.b.). Seven responses viz. expansion ratio (ER), bulk density (BD), water absorption index (WAI), protein, minerals, iron and sensory acceptability were considered for optimizing independent parameters. ER, BD, WAI, protein content, total minerals, iron content, and overall acceptability ranged 2.69-3.36, 153.43-238.83 kg/m 3 , 4.56-4.88 g/g, 15.19-15.52%, 2.06-2.27%, 4.39-4.67 mg/100 g (w.b.) and 6.76-7.36, respectively. ER was significantly affected by all three process variables while BD was influenced by banana pulp and screw speed only. Studied process variables did not affected colour quality except 'a' value with banana pulp and screw speed. Banana pulp had positive correlation with water solubility index, total minerals and iron content and negative with WAI, protein and overall acceptability. Based upon multiple response analysis, optimized conditions were 8 g banana pulp, 350 rpm screw speed and 14% feed moisture indicating the protein, calorie, iron content and overall sensory acceptability in sample as 15.46%, 401 kcal/100 g, 4.48 mg/100 g and 7.6 respectively.

  3. Process for purification of waste water produced by a Kraft process pulp and paper mill

    Science.gov (United States)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  4. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry.

    Science.gov (United States)

    Biglari, Hamed; Afsharnia, Mojtaba; Alipour, Vali; Khosravi, Rasoul; Sharafi, Kiomars; Mahvi, Amir Hossein

    2017-02-01

    Phenol and its derivatives are the major environmental pollutants discharged from paper and pulp industries into water bodies. All these compounds and chlorinated phenolic compounds in particular are very toxic to fauna and flora, even at relatively low concentration. This study aimed to investigate the removal rate of phenolic compounds from the effluent of pulp and paper industries using a combination of ozonation and photocatalytic processes. Firstly, a certain volume from the effluent of paper and pulp industries containing certain phenol concentrations was obtained and fed into a prefabricated reactor at laboratory scale. Then, the combined and separate effects of zinc oxide dosage (ZnO), ozone flow rate (O 3 ), and pH under ultra violet radiation for 30 min were evaluated. The concentration of phenolic compounds and the produced ozone gas flow rate were measured by a spectrophotometry and iodometric method, respectively. The results showed that the phenolic removal rate increased at acidic PHs compared with alkaline PHs; it was also decreased with the increase in ZnO dosages. Furthermore, the highest phenolic compound's removal rate was 99% at the optimal condition (pH 5, ZnO dosage of 0.1 g L -1 at the 30 min with UV-C illumination of 125 W). Finally, Daphnia toxicity test showed that treated effluent was safe and met the standards to the extent that it can be discharged into the receiving waters. Graphical abstract ᅟ.

  5. Kinetics of pulp mill effluent treatment by ozone-based processes

    International Nuclear Information System (INIS)

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-01-01

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  6. Kinetics of pulp mill effluent treatment by ozone-based processes.

    Science.gov (United States)

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-09-15

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  7. Fermentation Process of Cocoa Based on Optimum Condition of Pulp PectinDepolymerization by Endogenous Pectolityc Enzymes

    Directory of Open Access Journals (Sweden)

    G.P. Ganda-Putra

    2010-08-01

    Full Text Available Pulp degradation during cocoa fermentation can be carried out by depolymerization process of pulp pectin using endogenous pectolytic enzymes at optimum condition. The objectives of this research were to study the effect of fermentation process based on optimum condition in terms of temperature and pH of pulp pectin depolymerization using endogenous pectolytic enzymes polygalakturonase (PG and pectin metyl esterase (PME and fermentation period in cocoa processing on quality characteristics of cocoa beans produced and to study the role of those fermentation process in reducing fermentation time to produce cocoa beans with standard quality. This research used split plot design, with treatments of process condition of cocoa fermentation as main plot and fermentation period as split plot. Treatment of process condition of cocoa fermentation consisted of optimum condition for pulp pectin depolymerization by PGs (temperature 47.5OC; initial pulp pH 4.6; optimum condition of depolymerization on sequence depolymerization by PGs (temperature 48.5OC; initial pulp pH 8.0 during 1 day; last temperature 47.5OC; initial pulp pH 4.6 during 6 days, and natural fermentation process a control. While treatment of fermentation period consisted of 0, 1, 2, 3, 4, 5, 6 and 7 days. Evaluation of fermentation period was carried out based on pursuant to criteria of unfermented beans content and fermentation index. The results showed that process condition and fermentation time of cocoa affected quality characteristic of cocoa beans produced. Period of cocoa fermentation process based on optimum condition for pulp pectin depolymerization using endogenous pectolytic enzymes was 2 days shorter compared to natural fermentation. Cocoa beans quality of grade I and II were obtained from fermentation time of 4 and 2 days, respectively, using fermentation process based on optimum condition of pulp pectin depolymerization using endogenous pectolytic enzymes, whereas 6 and 4 days

  8. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology.

    Science.gov (United States)

    Singh, Gursharan; Ahuja, Naveen; Batish, Mona; Capalash, Neena; Sharma, Prince

    2008-11-01

    An alkalophilic laccase from gamma-proteobacterium JB was applied to wheat straw-rich soda pulp to check its bleaching potential by using response surface methodology based on central composite design. The design was employed by selecting laccase units, ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) concentration and pH as model factors. The results of second order factorial design experiments showed that all three independent variables had significant effect on brightness and kappa number of laccase-treated pulp. Optimum conditions for biobleaching of pulp with laccase preparation (specific activity, 65 nkat mg(-1) protein) were 20 nkat g(-1) of pulp, 2mM ABTS and pH 8.0 which enhanced brightness by 5.89% and reduced kappa number by 21.1% within 4h of incubation at 55 degrees C, without further alkaline extraction of pulp. Tear index (8%) and burst index (18%) also improved for laccase-treated pulp as compared to control raw pulp. Treatment of chemically (CEH1H2) bleached pulp with laccase showed significant effect on release of chromophores, hydrophobic and reducing compounds. Laccase-prebleaching of raw pulp reduced the use of hypochlorite by 10% to achieve brightness of resultant hand sheets similar to the fully chemically bleached pulp.

  9. Changes in composition, antioxidant content, and antioxidant capacity of coffee pulp during the ensiling process

    Directory of Open Access Journals (Sweden)

    Teodulo Salinas Rios

    2014-09-01

    Full Text Available The objective of the present study was to determine the nutritive value, the presence of antioxidant compounds, and the antioxidant capacity of coffee pulp ensiled or non-ensiled. Dry matter (DM, crude protein (CP, ash, acid detergent fiber (ADF, neutral detergent fiber (NDF, and lignin, as well as the antioxidant compounds present in coffee pulp and their antioxidant capacity, were determined. A completely randomized design was used. Data were analyzed by analysis of variance. Ensiling of coffee pulp increased the CP content from 98.6 to 111.6 g kg−1 DM, NDF from 414.6 to 519.5 g kg−1 DM, ADF from 383.9 to 439.3 g kg−1 DM, and lignin from 122.9 to 133.6 g kg−1 DM. Caffeine decreased from 5.72 to 5.02 mg g−1 DM. Three antioxidant compounds were detected. Caffeic acid decreased due to ensiling (16.49 vs 14.69 mg g−1 DM. Gallic acid (2.88 vs 2.58 mg g−1 DM and chlorogenic acid (62.12 vs 56.00 mg g−1 DM did not differ, and there was similar antioxidant capacity of non-ensiled (215.66 µmol trolox g−1 DM and ensiled coffee pulp (206.59 µmol trolox g−1 DM. Despite the decrease in the caffeic acid content due to the ensiling process, it is possible to use either ensiled or non-ensiled coffee pulp for animal feeding because of its high antioxidant capacity.

  10. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps.

    Science.gov (United States)

    Sánchez, Rafael; Espinosa, Eduardo; Domínguez-Robles, Juan; Loaiza, Javier Mauricio; Rodríguez, Alejandro

    2016-11-01

    Wheat straw was cooked under different pulping processes: Soda (100°C, 7% NaOH, 150min), Kraft (170°C, 16% alkalinity, 25% sulfidity, 40min) and Organosolv (210°C, 60% ethanol, 60min). Once the pulps were obtained, lignocellulose nanofibers (LCNF) were isolated by mechanical process and TEMPO-mediated oxidation followed by a high pressure homogenization. After pulping process, the different pulps were characterized and its chemical composition was determined. The pulps characterization indicates that the Soda process is the process that, despite producing less delignification, retains much of the hemicelluloses in the pulp, being this content a key factor in the nanofibrillation process. Regarding the LCNF obtained by mechanical process, those nanofibers isolated from Organosolv wheat pulp (OWP) and Kraft wheat pulp (KWP) show low values for nanofibrillation yield, specific surface area and greater diameter. However, those nanofibers isolated from Soda wheat pulp (SWP) reach much higher values for these parameters and presents a diameter of 14nm, smaller than those obtained by TEMPO-mediated oxidation from OWP. Smaller diameters are generally obtained in TEMPO-oxidized LCNF. This work concludes that the lignin content does not affect greatly to obtain LCNF as does the hemicellulose content, so it is accurate to use a soft pulping process. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Pulping and paper properties of Palmyra palm fruit fibers

    Directory of Open Access Journals (Sweden)

    Waranyou Sridach

    2010-05-01

    Full Text Available Palmyra palm fruit fibers have the properties to be used as an alternative raw material of cellulosic pulps for papermaking.Acid and alkali pulping were investigated by using nitric acid and caustic soda on a laboratory scale, with the purpose of producing printing or writing grade pulp. The chemical composition of fiber strands from palmyra palm fruits were examined, such as holocellulose, cellulose, pentosan, lignin and extractives. The yields of acid and soda pulps were below 40%. The main physical and mechanical properties of hand sheets produced from acid and soda processes were evaluated on 80 g/m2 test sheets as functions of the following parameters: tensile index, tear index, and brightness. The mechanical properties of soda pulps were developed by twin-roll press while it was not necessary to fibrillate acidic pulps through the beating step. The soda pulp sheets presented a lower brightness than that of acidic pulp sheets. The mechanicaland physical properties of the acidic and alkaline pulps verified that they were of an acceptable quality for papermaking.

  12. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  13. Integrating the processes of a Kraft pulp and paper mill and its supply chain

    International Nuclear Information System (INIS)

    Mesfun, Sennai; Toffolo, Andrea

    2015-01-01

    Highlights: • A process integration model that establishes material stream connections among typical Nordic forest industries is developed. • Potential benefit of the operating the different industries in one site is studied using pinch analysis. • Different scenarios considered to assess impact of prioritization on how to utilize excess biomass. • Results indicate large potential for improved biomass resource utilization. - Abstract: This paper investigates the possibility of combining different forest industries (a pulp and paper mill, its supply chain, and a wood-pellet plant) into an integrated industrial site in which they share a common heat and power utility. Advanced process integration and optimization techniques are used to study the site from both material and energy viewpoints. An existing pulp and paper mill is used as the site core plant and its pulp and paper production rates are kept fixed as they are in reality, while the other material flow links among the plants are based on the current industrial situation in Sweden. Different scenarios are evaluated in order to reflect the two main objectives that can be pursued (increased electricity production or biomass resource saving) and the two technologies that can be considered for the shared CHP system (boilers and product gas fired gas turbines). The corresponding non-integrated (standalone) configurations are compared to these scenarios to quantify the potential benefits of the integration. Investment opportunity is also calculated for the considered scenarios as an indicator of the economic convenience

  14. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2007-01-01

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H 2 O 2 /Fe 2+ ), UV, UV/H 2 O 2 , photo-Fenton (UV/H 2 O 2 /Fe 2+ ), ozonation and peroxone (ozone/H 2 O 2 ) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H 2 O 2 /Fe 2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used

  15. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    Science.gov (United States)

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Processing pineapple pulp into dietary fibre supplement | Ackom ...

    African Journals Online (AJOL)

    Several tonnes of conventionally consumed dietary fibre-containing fruit components are discarded as wastes in the processing of fruits into fruit juices, resulting in the loss of food nutrients and the increased ... The proximate composition and the functional properties of the raw material and final product were determined.

  17. Experimental data developed to support the selection of a treatment process for West Valley alkaline supernatant

    International Nuclear Information System (INIS)

    Bray, L.A.; Holton, L.K.; Myers, T.R.; Richardson, G.M.; Wise, B.M.

    1984-01-01

    At the request of West Valley Nuclear Services Co., Inc., the Pacific Northwest Laboratory (PNL) has studied alternative treatment processes for the alkaline PUREX waste presently being stored in Tank 8D2 at West Valley, New York. Five tasks were completed during FY 1983: (1) simulation and characterization of the alkaline supernatant and sludge from the tank. The radiochemical and chemical distributions between the aqueous and solid phase were determined, and the efficiency of washing sludge with water to remove ions such as Na + and SO 4 2- was investigated; (2) evaluation of a sodium tetraphenylboron (Na-TPB) precipitation process to recover cesium (Cs) and a sodium titanate (Na-TiA) sorption process to recover strontium (Sr) and plutonium (Pu) from the West Valley Alkaline supernatant. These processes were previously developed and tested at the US Department of Energy's Savannah River Plant; (3) evaluation of an organic cation-exchange resin (Duolite CS-100) to recover Cs and Pu from the alkaline supernatant followed by an organic macroreticular cation exchange resin (Amberlite IRC-718) to recover Sr; (4) evaluation of an inorganic ion exchanger (Linde Ionsiv IE-95) to recover Cs, Sr, and Pu from the alkaline supernatant; and (5) evaluation of Dowex-1,X8 organic anion exchange resin to recover technetium (Tc) from alkaline supernatant. The findings of these tasks are reported. 21 references, 36 figures, 34 tables

  18. The life cycle assessment of cellulose pulp from waste cotton via the SaXcell™ process.

    Science.gov (United States)

    Oelerich, Jens; Bijleveld, Marijn; Bouwhuis, Gerrit H.; Brinks, Ger J.

    2017-10-01

    Recycling of cotton waste into high value products is a longstanding goal in textile research. The SaXcellTM process provides a chemical recycling route towards virgin fibres. In this study a Life cycle assessment (LCA) is conducted to measure the impact of the chemical recycling of cotton waste on the environment. Pure cotton waste and cotton containing 10 % of polyester are elaborated. The results show that chemical recycling via the SaXcellTM process can have a lower impact on climate change and other impact category than comparable pulping technologies.

  19. Formulating poultry processing sanitizers from alkaline salts of fatty acids

    Science.gov (United States)

    Though some poultry processing operations remove microorganisms from carcasses; other processing operations cause cross-contamination that spreads microorganisms between carcasses, processing water, and processing equipment. One method used by commercial poultry processors to reduce microbial contam...

  20. Study of the delignification of hardwood chips in a pulping process for sugar production.

    Science.gov (United States)

    Llano, Tamara; Rueda, Cristina; Quijorna, Natalia; Blanco, Alain; Coz, Alberto

    2012-12-31

    Spent sulphite liquor is a lignocellulosic residue obtained in the acid sulphite pulping process after the digestion of hardwood chips, and composed mainly by lignosulphonates and hemicelluloses. The aim of this work is to study the main process variables at different digestion conditions: maximum temperature, heating rate, and total SO₂ content, which affect the delignification process of hardwood chips to obtain dissolving pulp and to increase the total amount of fermentable sugars and lignosulphonates presented in this lignocellulosic waste. The best results are 210.5 g/L of lignosulphonates and 47.26 g/L of total monosaccharides obtained at higher temperatures of 1.058T and 1.072T, low heating rates of 0.334R and 0.285R, and total SO₂ content of 6.20%. Furthermore, concentrate-acid hydrolysis of the liquor with sulphuric acid was performed in order to study the evolution of the sugar content and the release of the inhibitors. Temperature, acid concentration, acid/liquor ratio and time were modified, showing that acid/liquid ratio is the most influential variable. Although increase in the content of sugars in neither case, a notable furfural and acetic acid concentration decrease is registered, 97.88% and 36.57% respectively, at 20 °C, 60% (w/w) sulphuric acid and acid/sample ratio of 1/0.1 (v/v). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Identification of yeasts Isolated from processed and frozen cocoa (Theobroma cacao pulp for wine production

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Trindade

    1999-01-01

    Full Text Available The alternative use of cocoa (Theobroma cacao for wine production was tested. The pulp samples, obtained from Formosa farm, Itacaré, Brazil, were diluted, homogenized and inoculated on Sabouraud dextrose agar medium (SDA and incubated at 28º C for 5-8 days. Selected colonies were tested for the ability to ferment cocoa pulp and divided into fermentative, non-fermentative and weak/late fermentative species. Isolates characterized as fermentative were further tested in a small-scale wine production plant and identified. Species from the genus Brettanomyces constituted the main fermentative yeasts, with the exception of two Kloeckera apis samples. The final wine product was normally pale or clear, making clarification unnecessary, and with a sweet or dry pleasant flavor. The predominance of Brettanomyces species in cocoa pulp indicated its ecological importance in this environment and pointed to an active role of Brettanomyces in the deterioration process of the processed cocoa pulp.O uso alternativo de cacau (Theobroma cacao para produção de vinho foi testado. A polpa de cacau foi obtida da Fazenda Formosa, Itacaré, Brasil. As amostras de polpa foram diluídas, homogeneizadas e inoculadas em meio de Sabouraud dextrose e incubadas a 28°C por 5-8 dias. Colônias selecionadas foram testadas quanto à habilidade de fermentar a polpa de cacau e divididas em fermentadoras, não-fermentadoras e fermentadoras lentas. As amostras fermentadoras foram identificadas e testadas para produção de vinho de cacau em escala piloto. A maioria das amostras fermentadoras pertencem ao gênero Brettanomyces, com exceção de duas amostras de Kloeckera apis. O vinho obtido apresentou coloração fraca e clara, tornando a clarificação desnecessária, além de sabor doce e agradável. A predominância de espécies de Brettanomyces na polpa de cacau poderia indicar sua importância ecológica neste ambiente e sugere uma participação ativa dessas leveduras nos

  2. Comparative analysis of thermal-assisted high pressure and thermally processed mango pulp: Influence of processing, packaging, and storage.

    Science.gov (United States)

    Kaushik, Neelima; Rao, P Srinivasa; Mishra, H N

    2018-01-01

    Storage stability and shelf-life of mango pulp packed in three different packaging films and processed using an optimized thermal-assisted high pressure processing treatment 'HPP' (600 MPa/52 ℃/10 min) was analyzed during refrigerated (5 ℃) and accelerated (37 ℃) storage and compared with the conventional thermal treatment 'TT' (0.1 MPa/95 ℃/15 min). After processing, HPP resulted in relatively lower total color difference (3.5), retained higher ascorbic acid (95%), total phenolics (106%), total flavonoids content (118%) in mango pulp compared to TT, with values of 5.0, 62, 83, 73%, respectively. However, HPP led to ∼50% enzymes inactivation (pectin methylesterase, polyphenol oxidase, peroxidase) in comparison to >90% obtained during TT. Both HPP and TT resulted in > 5 log 10 units reduction of the studied microorganisms to give a safe product. In contrast to the refrigerated storage, quality changes under accelerated conditions were found to be considerably rapid and dependent on packaging material irrespective of the method of processing. Shelf-life under refrigeration was limited by microbial growth and sensory quality; whereas, browning restricted the shelf-life during accelerated storage. HPP in aluminum-based retort pouch was adjudged superior processing -packaging combination for maximizing the shelf-life of mango pulp to 120 and 58 days during refrigerated and accelerated storage, respectively. In comparison, TT led to higher quality changes upon processing than HPP and resulted in shelf-life of 110 and 58 days under the same packaging and storage conditions, respectively.

  3. Quality evaluation of dissolving pulp fabricated from banana plant stem and its potential for biorefinery.

    Science.gov (United States)

    Das, Atanu Kumar; Nakagawa-Izumi, Akiko; Ohi, Hiroshi

    2016-08-20

    The study was conducted to evaluate the quality of dissolving pulp of Musa sapientum L. (banana) plant stem and its potential for biorefinery. Introduction of pre-hydrolysis prior to any alkaline pulping process helps to reduce the content of hemicellulose and consequently produce acceptably high content of cellulose pulp. Water pre-hydrolysis was done at 150°C for 90min. The amount of lignin, xylan and glucan in the extracted pre-hydrolysis liquor (PHL) was 1.6, 4.9 and 1.6%, respectively. Pulping of pre-extracted chips was done following soda-AQ, alkaline sulfite and kraft process. The ratio of chip to liquor was 1:7 for both pre-hydrolysis and pulping. The kraft pulping process with 20% active alkali and 25% sulfidity at 150°C for 90min showed the best result. The lowest kappa number was 26.2 with a considerable pulp yield of 32.7%. The pulp was bleached by acidic NaClO2 and the consistency was 10% based on air-dried pulp. The lowest amount of 7% NaClO2 was used for the bleaching sequence of D0ED1ED2. After D0ED1ED2 bleaching, the pulp showed that α-cellulose, brightness and ash were 91.9, 77.9 and 1.6% respectively. The viscosity was 19.9cP. Hence, there is a possibility to use banana plant stem as a raw material for dissolving grade pulp and other bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Selection of a reference process for treatment of the West Valley alkaline waste

    International Nuclear Information System (INIS)

    Holton, L.K.; Wise, B.M.; Bray, L.A.; Pope, J.M.; Carl, D.E.

    1984-08-01

    As part of the West Valley Demonstration Project (WVDP) the alkaline PUREX supernatant stored in Tank 8D2 will be partially decontaminated by the removal of radiocesium. Four processes for removal of radiocesium from the alkaline supernatant were studied through experimentation and engineering analysis to identify a reference approach for the WVDP. These processes included the use of a zeolite inorganic ion-exchanger (Linde Ionsiv IE-95), an organic ion exchange resin (Duolite CS-100), and two precipitation processes; one using sodium tetraphenylboron (NaTPB) and the other using phosphotungstic acid (PTA). Based upon process performance, safety and environmental considerations, process and equipment complexity and impacts to the waste vitrification system, the zeolite ion-exchange process has been selected by West Valley Nuclear Services, Inc., as the reference supernatant treatment process for the WVDP. This paper will summarize the technical basis for the selection of the zeolite ion-exchange process. 4 figures, 2 tables

  5. A new alternative use for coffee pulp from semi-dry process to β-glucosidase production by Bacillus subtilis.

    Science.gov (United States)

    Dias, M; Melo, M M; Schwan, R F; Silva, C F

    2015-12-01

    Coffee is among the most preferred nonalcoholic drinks, and its consumption is distributed globally. During the coffee fruiting process, however, a large amount of waste is generated in the form of pulp, mucilage, husks, and water waste. The pulp and mucilage have the chemical composition to support the growth of micro-organisms and the production of value-added product. The aim was testify pulp coffee can be considered as carbon and inductor source for β-glucosidase by Bacillus subtilis CCMA 0087. The response surface methodology (RSM) based on a central composite rotatable design (CCRD) was employed for this optimization. The methodology used in the optimization process was validated by testing the best conditions obtained and comparing them with the values predicted by the model. The highest β-glucosidase production (22·59 UI ml(-1) ) was reached in 24 h of culturing at coffee pulp concentration of 36·8 g l(-1) , temperature of 36·6°C, and pH of 3·64. Countries whose economy is based on agricultural activities generate a great deal of liquid and solid waste. Thus, it is important to develop new alternatives for using this waste rather than disposing it in the environment. The production of enzymes, and particularly cellulase, is one such alternative. In this study, we proposed to produce β-glucosidase production from pulp coffee extract using a Bacillus subtilis strain. © 2015 The Society for Applied Microbiology.

  6. Removal of COD and color loads in bleached kraft pulp effluents by bottom ashes from boilers.

    Science.gov (United States)

    Van Tran, A

    2008-07-01

    The effectiveness of the bottom ashes from biomass and coal-fired boilers in removing chemical oxygen demand (COD) and colorloads in effluents of a kraft pulp bleachery plant is investigated. The effluents tested are those of the sulfuric acid treatment (A stage) of a hardwood kraft pulp, and of the first acidic (chlorine or chlorine dioxide) and second alkaline (extraction) stages in the chlorine and elemental chlorine-free (ECF) bleaching lines of hardwood and softwood kraft pulps. The coal-fired boiler's bottom ashes are unable to remove either COD or color load in the bleached kraft pulp effluents. However, the bottom ashes of the biomass boiler are effective in removing COD and color loads of the acidic and alkaline effluents irrespective of the bleaching process or wood species. In particular, these ashes increase the pH of all the effluents examined.

  7. High-Risk Biodegradable Waste Processing by Alkaline Hydrolysis

    OpenAIRE

    Kalambura, Sanja; Voća, Neven; Krička, Tajana; Šindrak, Zoran; Špehar, Ana; Kalambura, Dejan

    2011-01-01

    Biodegradable waste is by defi nition degraded by other living organisms. Every day, meat industry produces large amounts of a specifi c type of biodegradable waste called slaughterhouse waste. Traditionally in Europe, this waste is recycled in rendering plants which produce meat and bone meal and fat. However, feeding animals with meat and bone meal has been banned since the outbreaks of bovine spongiform encephalopathy (BSE). In consequence, new slaughterhouse waste processing technologies ...

  8. Study on Effectiveness of Processed and Unprocessed Black Liquor pulps in improving the properties of PPC mortar, Concrete and SCC

    Science.gov (United States)

    Ananthkumar, M.; Sathyan, Dhanya; Prabha, B.

    2018-02-01

    The cost of construction materials is increasing day by day because of high demand, scarcity of raw materials and high price of energy. From the view point of energy saving and over consumption of resources, the use of alternative constituents in construction materials is now a global concern. From this, the extensive research and development works towards exploring new ingredients are required for producing sustainable and environment friendly construction materials. Bagasse pulp liquor is one such material that can be used as a chemical admixture which is obtained as a by-product of paper manufacturing process. Around 5 million tons of bagasse pulp is obtained throughout the world each year. since the material is a waste product from paper industry, this can be changed as a admixture by its effective use in concrete. In the present investigation black pulp liquor is added to fresh concrete in different dosages, the concrete is then tested for workability, compressive strength, flexural, split tensile strength and setting time. From results it is shown that 1% replacement of water with black pulp liquor increases the fresh properties of the concrete, 2% replacement of water with black pulp liquor increases the mechanical properties of the concrete and acts as a set retarder.

  9. Investigation of pulping and paper making potential of weeds

    Directory of Open Access Journals (Sweden)

    omid Ghaffarzadeh Mollabashi

    2017-08-01

    Full Text Available Increasing use of wood products accompanying with resource constraint has revealed the importance of nonwood based material. In this study, pulping and papermaking potential of three varieties of weeds including Xanthium spinosum, Carthamus tinctorius and Cyperus papyrus have been considered. At first, chemical components of the samples i.e. cellulose, lignin and extractives have been measured following TAPPI standard test methods. Afterwards, pulping process based as soda and Kraft has been carried out and the pulp properties i.e. screen yield and reject, kappa number, caliper, bust index, tear index, brightness have been considered. According to the results, the amount cellulose, lignin and extractives have been measured for the Xanthium spinosum %38.15, %13.5 and 4.72, respectively. Theses parameters have been estimated about %38.25, %10.3 and % 2.95 for Carthamus tinctorius and %38.8, %19.2 and 4.4 in case of papyrus. The yield of soda and Kraft pulp of the papyrus was more than Xanthium spinosum and Carthamus tinctorius. Among all treatments, the highest screen yield related to soda pulping of Cyperus papyrus by %39.8 which has been obtained by 175 centigrade as a maximum temperature, L/W: 6/1, active alkaline: %30 and 90 minutes as the time at temperature. The lowest and highest amounts of the tear index were related to soda pulp sample of the Carthamus tinctorius and Kraft pulp sample of Xanthium spinosum by 2.49 and 8.1, respectively. In addition, the lowest and highest amounts of the bursting index were related to soda pulp sample of the Cyperus papyrus and Kraft pulp sample of Xanthium spinosum by 0.61and 2.48, respectively. Meanwhile, soda pulp sample of the Cyperus papyrus showed the highest amount of brightness with %45 ISO.

  10. Environmental Assessment of Enzyme Assisted Processing in Pulp and Paper Industry

    DEFF Research Database (Denmark)

    Skals, Peter B; Krabek, Anders; Nielsen, Per Henning

    2008-01-01

    The pulp and paper (P&P) industry is traditionally known to be a large contributor to environmental pollution due its large consumptions of energy and chemicals. Enzymatic processing, however, offers potential opportunities for changing the industry towards more environmentally friendly...... and efficient operations compared to the conventional methods. The aims of the present study has been to investigate whether the enzyme technology is a more environmentally sound alternative than the conventional ways of producing paper. The study addresses five enzyme applications by quantitative means...... improvements that can be achieved by application of enzymatic solutions in the P&P industry are  promising. To get a greater penetration of enzymatic solutions in the market and to harvest the environmental advantages of biotechnological inventions, it is recommended that enzymatic solutions should be given...

  11. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.

    Science.gov (United States)

    Chen, Zhiwen; Hu, Thomas Q; Jang, Ho Fan; Grant, Edward

    2016-12-01

    The hemicellulose composition of a pulp significantly affects its chemical and physical properties and thus represents an important process control variable. However, complicated steps of sample preparation make standard methods for the carbohydrate analysis of pulp samples, such as high performance liquid chromatography (HPLC), expensive and time-consuming. In contrast, pulp analysis by attenuated total internal reflection Fourier transform infrared spectroscopy (ATR FT-IR) requires little sample preparation. Here we show that ATR FT-IR with discrete wavelet transform (DWT) and standard normal variate (SNV) spectral preprocessing offers a convenient means for the qualitative and quantitative analysis of hemicelluloses in bleached kraft pulp and alkaline treated kraft pulp. The pulp samples investigated include bleached softwood kraft pulps, bleached hardwood kraft pulps, and their mixtures, as obtained from Canadian industry mills or blended in a lab, and bleached kraft pulp samples treated with 0-6% NaOH solutions. In the principal component analysis (PCA) of these spectra, we find the potential both to differentiate all pulps on the basis of hemicellulose compositions and to distinguish bleached hardwood pulps by species. Partial least squares (PLS) multivariate analysis gives a 0.442 wt% root mean square errors of prediction (RMSEP) for the prediction of xylan content and 0.233 wt% RMSEP for the prediction of mannan content. These data all support the idea that ATR FT-IR has a great potential to rapidly and accurately predict the content of xylan and mannan for bleached kraft pulps (softwood, hardwood, and their mixtures) in industry. However, the prediction of xylan and mannan concentrations presented a difficulty for pulp samples with modified cellulose crystalline structure. © The Author(s) 2016.

  12. China’s High-yield Pulp Sector and Its Carbon Dioxide Emission: Considering the Saved Standing Wood as an Increase of Carbon Storage

    OpenAIRE

    Yanhong Gao; Jing Shen; Qun Li

    2014-01-01

    The production of high-yield pulp in China has increased significantly in recent years. The well-known advantages of this type of pulp include low production cost, high opacity, and good paper formation. In the context of state-of-the-art technologies, China’s high-yield pulping, which is dominated by the PRC-APMP (preconditioning refiner chemical treatment-alkaline peroxide mechanical pulping) process, has a much higher energy input but a significantly lower wood consumption in comparison wi...

  13. Antioxidant and Carbohydrate-Hydrolysing Enzymes Potential of Sechium edule (Jacq.) Swartz (Cucurbitaceae) Peel, Leaves and Pulp Fresh and Processed.

    Science.gov (United States)

    Loizzo, Monica Rosa; Bonesi, Marco; Menichini, Francesco; Tenuta, Maria Concetta; Leporini, Mariarosaria; Tundis, Rosa

    2016-12-01

    Sechum edule peel, leaves and pulp were investigated for their chemical composition (total phenol, flavonoid, carotenoid and vitamin C content), and for antioxidant activity and carbohydrate-hydrolysing enzymes (α-amylase and α-glucosidase) inhibition. In order to evaluate the incidence of cooking process on retention of healthy phytochemicals, the pulp was subjected to different treatments (grill roasting, domestic oven baking, microwave cooking, blanching and steaming). Cooking processes reduced the total phenol content (58.5 mg/g extract for fresh pulp vs 26.3 and 29.3 mg/g extract for roasted and steamed samples, respectively). Pulp was found to be the most active in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) (IC 50 of 0.1 mg/mL), whereas peel showed the highest activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) test (IC 50 of 0.4 mg/mL). Moreover, peel exhibited the highest inhibitory activity against α-amylase with an IC 50 of 0.2 mg/mL, except for steamed cooking process, which drastically influenced the bioactivity against both enzymes.

  14. Development of impact water-jet for washing away of solid sludge of pulp sediments in depository-reservoirs for following processing of radioactive wastes

    International Nuclear Information System (INIS)

    Istomin, V.L.; Sergeev, N.N.

    2005-01-01

    Impact water-jet for washing away of solid sludge of pulp sediments in depository-reservoirs for following processing of radioactive wastes are developed. Tests show efficiency and reliability of impact water-jet construction. Results of the tests show that there is a possibility to use impact water-jet for washing out of radioactive pulps in depository-reservoirs [ru

  15. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2017-05-01

    Full Text Available In this research, appearance quality and decay resistance of polylactic acid (PLA based green composites made from monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (B S bagasse pulp, unbleached soda (UN S bagasse pulp (UN S bagasse pulp and raw bagasse fibers (B were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor on the neat PLA and composites with natural fibers during 30 and 60 days were studied. It is found that when the bagasse fibers were incorporated into composites matrix, percentage weight reduction and stiffness of samples have been increased. Also, the rate of loss mentioned of the composites made from bagasse pulp fibers were superior to the relevant raw bagase fibers. This can be explained by the removal of non-cellulosic components such as lignin and hemicelluloses from the fibers by pulping process. Also, the results indicates the inferior of surface qualities of fabricated composites regarding to neat PLA. Depending on the fiber type, different reductions of the surface qualities were attained. However, the degree of color change of the composites with any type of bagasse pulp fibers were lower compared with composite with raw bagasse fiber. Finally, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability.

  16. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.

    Science.gov (United States)

    Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan

    2017-02-01

    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.

  17. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites

    Science.gov (United States)

    Iwamoto, S.; Nakagaito, A. N.; Yano, H.

    2007-11-01

    Pulp fibers were fibrillated uniformly into nano-sized fibers using a grinder with a specially designed set of grinding disks. To investigate the effect of the fibrillation through the grinder on the physical properties of the composites, dissolved pulp fibers were subjected to various passes through the grinder, and the resulting fibrillated pulp fibers were used to make fibrillated pulp fibers/acrylic resin composites. Scanning electron microscopy observations showed that at above five passes, the structure of the fibrillated pulp fibers did not change significantly. The light transmittances of the composites were increased to 80% up to five passes through the grinder, and did not change after further passes. However, the tensile test and thermal expansion analysis indicated that a degradation of the fibrillated pulp occurred during the grinding treatment. To evaluate the fiber degradation, the degree of crystallinity and degree of polymerization of cellulose were measured. Both decreased as the number of passes through the grinder increased. In addition, to reduce the thermal expansion of composites, the fibrillated pulp fibers were additionally treated by sulfuric acid. The thermal expansion of composites was decreased, because the amorphous region of cellulose was removed.

  18. The cost of alkaline solutions in ambulatory hemodialysis: an analysis about wasteful from the processes control.

    Science.gov (United States)

    de Moraes Junior, Celso Souza; de Mendonça, Ricardo Rodrigues Silveira; Hatem, Raquel Oliveira Rocha de Freitas; Souza, André Luiz Sampaio; Chaves, Adriana Rodrigues; Bastos, Marcus Gomes; Colugnati, Fernando Antônio Basile

    2014-01-01

    There are few studies about costs of inputs used in hemodialysis and among these expenditures, the compounds that make up the dialysate are one of the values considered as representative of this therapy. However, there aren't costs studies that guiding solutions. The objective of this article is discuss whether there is wasteful of alkaline solutions in ambulatory hemodialysis and hence the possibility of reduction in cost from the standardization process simulation of establishment of dialysate flow in periods between shifts in hemodialysis outpatients. Starting from an observational analytic, a simulation was performed twenty case scenarios, which ten cases established by standardizing processes control on the dialysate flow in recession. The combination of data was performed using as a basis the prices of three suppliers of alkali liquid or powder. It was observed among the scenarios with standardized processes, ranging between 7.7% and 33.3% savings in the alkaline solution cost (powder or liquid), by reducing waste. It is possible to restrain the wasteful use of alkaline solutions, both powder and liquid. Consequently, its cost from the patterning on reducing the flow of dialysate during the intervals between shifts observed in the outpatient hemodialysis. However, these results are conditional upon the commitment of health professionals, mainly to supervision exercise and control of activities in quality function deployment.

  19. Air pollution control in kraft pulp mills.

    Science.gov (United States)

    Bhatia, S P; de Souza, T L; Azarniouch, M K; Prahacs, S

    1978-02-01

    A patented gas scrubbing process, whereby the emissions of malodorous reduced sulphur compounds are effectively and economically reduced, is described. Stack gases are scrubbed with an alkaline suspension of activated carbon. Reduced sulphur compounds as well as sulphur oxides are converted to sodium salts which are subsequently recovered and utilized for pulping. The process also reduces particulate emissions. It does not produce subsequent waste disposal problems and has little or, in some cases, zero net cost, on account of the simultaneous recovery of heat and chemicals. Furthermore, the paper also reviews some innovations made in gas chromatography techniques, for the measurement of trace quantities of sulphur compounds present in kraft mill emissions.

  20. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission.

    Science.gov (United States)

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2015-08-01

    Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2016-12-01

    Full Text Available In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene on physical-mechanical properties of low density polyethylene (LDPE composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (BS bagasse pulp, unbleached soda (UNS bagasse pulp and raw bagasse fibers (B were prepared. Then, composites with 30wt.% fiber content were manufactured by twin-screw extrusion followed by compression molding processing. The mechanical and physical properties of these composites were analyzed and compared. Results revealed that the chemical pulping dissolved a fraction of lignin and hemicelluloses so that the linkage potential and aspect ratio of bagasse fibers was improved and consequently, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability. The best overall properties were achieved with MEA and AS/AQ fibers. Addition of 5% (wt/wt of coupling agent MAPE resulted in a significant enhancement in the tensile strength, tensile modulus and impact strength in line with the improvement of the fiber-matrix interfacial adhesion making more effective the transfer of stress from the matrix to the rigid reinforcement.

  2. Chapter 6: Prehydrolysis Pulping with Fermentation Coproducts

    Science.gov (United States)

    T.H. Wegner; C.J. Houtman; A.W. Rudie; B.L. Illman; P.J. Ince; E.M. Bilek; T.W. Jeffries

    2013-01-01

    Although the term “integrateed biorefinery” is new, the concept has long been familiar to the pulp and paper industry, where processes include biomass boilers providing combined heat and power, and byproducts of pulping include turpentine, fatty acids and resin acids. In the dominant kraft (or sulfate) pulping process, dissolved lignin and chemicals from the pulp...

  3. Paper Pulp Panoply.

    Science.gov (United States)

    Marque, Margo E.

    1999-01-01

    Explains that creating paper-pulp bowls is designed to acquaint students with the beginning vocabulary and finger dexterity needed to sculpt clay. Describes the process of making paper-pulp bowls and identifies important vocabulary words. Provides directions for making paper bowl forms and lists the materials. (CMK)

  4. Process optimization of biogas energy production from cow dung with alkali pre-treated coffee pulp.

    Science.gov (United States)

    Selvankumar, T; Sudhakar, C; Govindaraju, M; Selvam, K; Aroulmoji, V; Sivakumar, N; Govarthanan, M

    2017-08-01

    Biogas production from cow dung with co-substrate agricultural waste is one of the most demanding technologies for generating energy in a sustainable approach considering eco-friendly. In the present study, coffee pulp (CP) was pre-treated with 1% NaOH and combined with various proportions of cow dung (CD) to explore its biogas producing potentiality. The optimization of the process was studied using Response surface methodology. Statistics based on 3-D plots were generated to evaluate the changes in the response surface and to understand the relationship between the biogas yield and other parameters. The highest methane production (144 mL/kg) was achieved after 90 h of incubation with 1:3 of CP and CD at 40 °C. Gas chromatography analyzes the chemical compositions of the generated biogas and its post combustion emissions. The chemical composition of the substrates before digestion and after fermentation (biogas spent sludge) were measured in terms of fiber content and the values were noted as, total solids (0.53%), ash content (9.2%), volatile fatty acid (100 mg/L), organic carbon (46%) and a total carbohydrate (179 mg/g). The results of the optimization of biogas production presented in this work found to have significance with the process parameters. The outcome of the study has supported the fact of conventional combustion technology that has to be upgraded to prevent these hazardous emissions into the atmosphere.

  5. The effect of citrus pulp type on pectinase production in solid-state fermentation: Process evaluation and optimization by Taguchi design of experimental (DOE methodology

    Directory of Open Access Journals (Sweden)

    Masumeh Anvari

    2014-12-01

    Full Text Available Pectinase is an important enzyme that finds application in many food processing industries and solid state fermentation (SSF is an attractive technology for enzyme production. In this work, design of experimental (DOE methodology using Taguchi orthogonal array (OA was applied to evaluate the influence of five factors (different levels of citrus pulp, initial pH of the medium, C/N ratio, type of solid substrate and citrus pulp on the pectinase production by Aspergillus niger under solid-state fermentation. The results showed that citrus pulp concentration, type of solid substrate and citrus pulp were found to be the most effective factor for promoting enzyme production and the supplementation of the medium with citrus pulp caused a 23% increase in the pectinase production when compared with the basal medium. The study shows that the Taguchi's method is suitable to optimize the experiments for the production of pectinase (R2 = 0.946.

  6. Comparative pulping of sunflower stalks

    Directory of Open Access Journals (Sweden)

    Valerii Barbash

    2016-03-01

    Full Text Available The procedure of holocellulose content determination in non-wood plant raw materials was developed. The strength properties of pulp obtained from sunflower stalks by neutral-sulphite, soda, alkaline sulphite-anthraquinone-ethanol and peracetic methods of delignification were studied. Methodology of comparison of plant materials delignification methods using new lignin-carbohydrate diagram was proposed. It was shown, that the alkaline sulphite-anthraquinone-ethanol method of pulping is characterized by the highest delignification degree and is the most efficient among the studied methods

  7. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    Science.gov (United States)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  8. Behavior of ellagitannins, gallic acid, and ellagic acid under alkaline conditions

    Science.gov (United States)

    Richard W. Hemingway; W.E. Hillis

    1971-01-01

    Examination of the rates of hydrolysis of different ellagitannins under conditions comparable with cold soda and alkaline-groundwood pulping processes showed that some ellagitannins are notably resistant to hydrolysis. The rate of hydrolysis was dependent upon the pH and tempemture of the solution and particularly upon the structure of the compound. Decarboxylation of...

  9. Increased delignification rate of Dendrocalamus strictus (Roxburgh nees by Schizophyllum commune Fr.; Fr. to reduce chemical consumption during pulping process

    Directory of Open Access Journals (Sweden)

    Vipin Kumar Saini

    2013-08-01

    Full Text Available Pulp and paper industry is traditionally known to be a large contributor to environmental pollution due its largeconsumption of energy and chemicals. To reduce the chemical consumption, rate of delignification was increased bySchizophyllum commune in destructured sample of Dendrocalamus stictus, which was destructured by Impressafiner (compression-cum dewatering process. The extent of delignification was determined and comparison was made between thenon-destructured and destructured samples. The influence of physical parameters like incubation time, moisture level, media,media concentration, pH and temperature were also examined during the study. It was found that rate of delignification wassignificantly 6.43% more in destructured sample than non-destructured sample. Kraft pulping of treated destructured sampleshows 2.59 point reduction in kappa number than untreated non-destructured sample. Thus this paper provides an insight ofthe delignification extent in Dendrocalamus strictus after mechanical operation at varying physical parameters.

  10. Evaluating the cooking process for obtaining hard candy from araza (Eugenia stipitata) pulp

    OpenAIRE

    Eduardo Rodríguez Sandoval; Patricia Bastidas Garzón

    2010-01-01

    This work was aimed at preparing hard candy from arazá (a fruit tree from the Amazon rainforest) using a sugar solution consis- ting of glucose syrup and invert sugar; this was cooked with fruit pulp to concentrate it. Temperature, time, soluble solids and vis- cosity were measured when cooking the mixture. Heat transfer was studied in an agitated steam jacketed kettle using the expe- rimental data. The best arazá hard candy formulation consisted of 15% fruit pulp, 2% pectin regarding the ...

  11. Thermal Processing Alters the Chemical Quality and Sensory Characteristics of Sweetsop (Annona squamosa L.) and Soursop (Annona muricata L.) Pulp and Nectar.

    Science.gov (United States)

    Baskaran, Revathy; Ravi, Ramasamy; Rajarathnam, Somasundaram

    2016-01-01

    The objective of this study was to investigate the effect of thermal processing on the chemical quality and sensory characteristics of Annona squamosa L. and Annona muricata L. fruit pulps and nectar. The fruit pulps were pasteurized at 85 °C for 20 min and nectar prepared as per Food Safety and Standards Authority of India (FSSAI) specifications. The chemical composition of fresh and heated pulps of A. squamosa and A. muricata showed that compared to fresh, the chemical profile and sensory profile changed in heated samples and nectar. The free and bound phenolics of A. squamosa increased in heated pulp (127.61 to 217.22 mg/100 g and 150.34 to 239.74 mg/100 g, respectively), while in A. muricata, free phenolics increased very marginally from 31.73 to 33.74 mg/100 g and bound phenolics decreased from 111.11 to 86.91 mg/100 g. This increase in phenolic content may be attributed to the perception of bitterness and astringency in A. squamosa pulp on heating. In electronic tongue studies, principal component analysis (PCA) confirmed that the fresh and heated pulps had different scores, as indicated by sensory analysis using qualitative descriptive analysis (QDA). E-tongue analysis of samples discriminated the volatile compounds released from the heated A. squamosa and A. muricata fruit pulps and nectar in their respective PCA plots by forming different clusters. © 2015 Institute of Food Technologists®

  12. United States paper, paperboard, and market pulp capacity trends by process and location, 1970-2000

    Science.gov (United States)

    Peter J. Ince; Xiaolei Li; Mo Zhou; Joseph Buongiorno; Mary Reuter

    This report presents a relational database with estimates of annual production capacity for all mill locations in the United States where paper, paperboard, or market pulp were produced from 1970 to 2000. Data for more than 500 separate mill locations are included in the database, with annual capacity data for each year from 1970 to 2000 (more than 17, 000 individual...

  13. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    Science.gov (United States)

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration.

    Science.gov (United States)

    Niu, Zhirui; Zou, Yikan; Xin, Baoping; Chen, Shi; Liu, Changhao; Li, Yuping

    2014-08-01

    Release of Co and Li from spent lithium ion batteries (LIBs) by bioleaching has attracted growing attentions. However, the pulp density was only 1% or lower, meaning that a huge quantity of media was required for bioleaching. In this work, bioleaching behavior of the spent LIBs at pulp densities ranging from 1% to 4% was investigated and process controls to improve bioleaching performance at pulp density of 2% were explored. The results showed that the pulp density exerted a considerable influence on leaching performance of Co and Li. The bioleaching efficiency decreased respectively from 52% to 10% for Co and from 80% to 37% for Li when pulp density rose from 1% to 4%. However, the maximum extraction efficiency of 89% for Li and 72% for Co was obtained at pulp density of 2% by process controls. Bioleaching of the spent LIBs has much greater potential to occur than traditional chemical leaching based on thermodynamics analysis. The product layer diffusion model described best bioleaching behavior of Co and Li. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluating chemical-, mechanical-, and bio-pulping processes and their sustainability characterization using life cycle assessment

    Science.gov (United States)

    Tapas K. Das; Carl Houtman

    2004-01-01

    Pulp and paper manufacturing constitutes one of the largest industry segments in the United States in term of water and energy usage and total discharges to the environment. More than many other industries, however, this industry plays an important role in sustainable development because its chief raw material— wood fiber—is renewable. This industry provides an example...

  16. Alkaline hydrolysis process for treatment and disposal of Purex solvent waste

    International Nuclear Information System (INIS)

    Srinivas, C.; Venkatesh, K.A.; Wattal, P.K.; Theyyunni, T.K.; Kartha, P.K.S.; Tripathi, S.C.

    1994-01-01

    Treatment of spent Purex solvent (30% TBP-70% n-dodecane mixture) from reprocessing plants by alkaline hydrolysis process was investigated using inactive 30% TBP solvent as well as actual radioactive spent solvent. Complete conversion of TBP to water-soluble reaction products was achieved in 7 hours reaction time at 130 deg C using 50%(w/v) NaOH solution at NaOH to TBP mole ratio of 3:2. Addition of water to the product mixture resulted in the complete separation of diluent containing less than 2 and 8 Bg./ml. of α and β activity respectively. Silica gel and alumina were found effective for purification of the separated diluent. Aqueous phase containing most of the original radioactivity was found compatible with cement matrix for further conditioning and disposal. (author). 17 refs., 10 tabs., 1 fig

  17. Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: chemical-physical properties and human pulp cells response.

    Science.gov (United States)

    Gandolfi, M G; Spagnuolo, G; Siboni, F; Procino, A; Rivieccio, V; Pelliccioni, G A; Prati, C; Rengo, S

    2015-11-01

    The aim was to test the properties of experimental calcium silicate/calcium phosphate biphasic cements with hydraulic properties designed for vital pulp therapy as direct pulp cap and pulpotomy. CaSi-αTCP and CaSi-DCDP were tested for ion-releasing ability, solubility, water sorption, porosity, ability to nucleate calcium phosphates, and odontoblastic differentiation—alkaline phosphatase (ALP) and osteocalcin (OCN) upregulation—of primary human dental pulp cells (HDPCs). The materials showed high Ca and OH release, high open pore volume and apparent porosity, and a pronounced ability to nucleate calcium phosphates on their surface. HDPCs treated with CaSi-αTCP showed a strong upregulation of ALP and OCN genes, namely a tenfold increase for OCN and a threefold increase for ALP compared to the control cells. Conversely, CaSi-DCDP induced a pronounced OCN gene upregulation but had no effect on ALP gene regulation. Both cements showed high biointeractivity (release of Ca and OH ions) correlated with their marked ability to nucleate calcium phosphates. CaSi-αTCP cement proved to be a potent inducer of ALP and OCN genes as characteristic markers of mineralization processes normally poorly expressed by HDPCs. Calcium silicate/calcium phosphate cements appear to be attractive new materials for vital pulp therapy as they may provide odontogenic/dentinogenic chemical signals for pulp regeneration and healing, and dentin formation in regenerative endodontics.

  18. Laccase for biobleaching of eucalypt kraft pulp by means of a modified industrial bleaching sequence.

    Science.gov (United States)

    Moldes, D; Vidal, T

    2012-01-01

    Biobleaching of kraft pulp is a possible application of laccase, but it has not been described in detail for complete industrial bleaching sequences yet. Therefore, in this work, the biobleaching of Eucalyptus globulus kraft pulp was performed using a modified industrial totally chlorine-free sequence. The modification consisted in the substitution of an enzymatic delignification stage, based on the application of laccase from Trametes villosa, for the first alkaline extraction one. The enzymatic stage was performed with several synthetic and natural mediators, namely 1-hydroxybenzotriazole (HBT), violuric acid (VA), methyl syringate, and syringaldehyde. Several pulp properties were analyzed after each stage of the bleaching process--kappa number, ISO brightness, viscosity, and optical properties of CIEL*a*b* system. The new biobleaching sequence improved the pulp properties, in comparison to the conventional bleaching sequence, if HBT or VA was used as mediators. VA was selected as the best mediator of those tested and the effect of its concentration in the enzymatic stage was subsequently studied. Reducing the initial concentration by 30%, the same pulp quality was obtained, but if the reduction attained 60%, an important decrease in pulp integrity was detected. The modified bleaching sequence could improve the bleached pulp properties (kappa number 10%, ISO brightness 1%, and viscosity 5%) in comparison to the mill sequence. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  19. A novel role for Twist-1 in pulp homeostasis.

    Science.gov (United States)

    Galler, K M; Yasue, A; Cavender, A C; Bialek, P; Karsenty, G; D'Souza, R N

    2007-10-01

    The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/-) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.

  20. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Combining enzymatic esterification with conventional alkaline transesterification in an integrated biodiesel process.

    Science.gov (United States)

    Brask, Jesper; Damstrup, Marianne Linde; Nielsen, Per Munk; Holm, Hans Christian; Maes, Jeroen; De Greyt, Wim

    2011-04-01

    An integrated biodiesel process that combines enzymatic esterification and alkaline transesterification is suggested. With focus on the enzymatic step, the paper provides proof of concept and suggestions for further process development. Hence, palm fatty acid distillate (PFAD) has been enzymatically converted to fatty acid methyl esters in a two-step process using the immobilized lipase Novozym 435 in packed-bed columns. With only a small excess of methanol, the first reaction stage could reduce the free fatty acid (FFA) content from 85% to 5%. After removal of water by simple phase separation, it was possible to lower the FFA content to 2.5% in a second reaction stage. Both reaction stages are relatively fast with suggested reaction times of 15 min in column 1 (productivity 10 kg/kg/h) and 30 min in column 2 (productivity 5 kg/kg/h), resulting in 15% FFA after column 1 and 5% FFA after column 2. A lifetime study indicated that approximately 3,500 kg PFAD/kg Novozym 435 can be treated in the first reaction stage before the enzyme has become fully inactivated. With further optimization, the enzymatic process could be a real alternative to today's sulfuric acid catalyzed process.

  2. Process of defect formation in alkaline halogenides contaminated with Eu2+ induced by non ionizing radiation

    International Nuclear Information System (INIS)

    Pedroza M, M.; Melendrez, R.; Barboza F, M.; Castaneda, B.

    2004-01-01

    The creation of defects in polluted alkaline halogenides with divalent impurities exposed to ionizing radiation is explained by means of the creation of auto trapped excitons (STE), which can be formed by means of the excitement of the halogen ion or through the trapping of electrons in centers V K taken place during the process of ionization of the halogen ion. The luminescent recombination of the exciton auto trapped produces a characteristic exciton luminescence and the recombination non radiative causes the formation of the Frenkel type defects, even of centers F - H. Experimentally has been demonstrated that the same type of glasses, exposed to radiation non ionizing of the type UV of around 230 nm, they produce defects similar Frenkel. The situation is interesting all time that photons of 230 nm (5.3 eV) they cannot create excitons directly since they are in an energy level of approximately 2.4 inferior eV to the necessary energy for the production of the same ones. In order to investigating the type of process of creation of defects with UV light energy below the energy of the band prohibited in polluted alkaline halogenides with Eu 2+ , mainly looking for experimental information that allows to explain the creation of defects taken place by the radiation non ionizing, one carries out the present work. It was found that, independently of the energy of the radiation used for the excitement, the emission comes from the transition 4f 6 5d(t 2g )-4f 7 ( 8 S 7/2 ) of the ion Eu 2+ characterized by a wide band centered in 420 nm and an additional component in 460 nm of possibly intrinsic origin. It was determined that so much the F centers and F z participate in the thermoluminescent processes and of optically stimulated luminescence, achieving to identify those peaks of Tl strictly associated to the F centers (peak in 470 K for the KCl: Eu 2+ ) and F z (peak in 370 K). Also, by means of a process of selective photo stimulation evidence was obtained that the F

  3. Influence of process conditions on the physicochemical properties of jussara pulp (Euterpe edulis powder produced by spray drying

    Directory of Open Access Journals (Sweden)

    Audirene Amorim Santana

    2017-11-01

    Full Text Available Abstract The objective of this work was to optimize the spray drying of jussara pulp using mixtures of modified starch (MS with whey protein concentrate (WPC or soy protein isolate (SPI as the carrier agents. Two central composite rotatable designs were used to evaluate the effect of the independent variables of inlet air temperature (140 °C to 200 °C, carrier agent concentration - CAC (0.5 to 2 g carrier agent/g jussara pulp solids and the proportions of MS:WPC or MS:SPI (5 to 30 g WPC or SPI/100 g carrier agent on the following responses for powders formulated with MS:WPC and MS:SPI, respectively: moisture content (0.3% to 1.4% and 0.6% to 1.2%, solubility (78.0% to 92.9% and 78.9% to 83.8%, retention of total anthocyanins (49.2% to 82.9% and 34.1% to 96.9%, encapsulation efficiency (98.5% to 99.7% and 98.5% to 99.5%, hue angle (9.1 to 44.0 and 3.7 to 42.6, chroma (10.0 to 15.3 and 9.2 to 14.3 and process yield (33.2% to 55.5% and 49.9% to 78.5%. The inlet air temperature 170 °C, CAC of 1.25 and 2 g/g jussara pulp solids and proportion of MS:WPC or MS:SPI of 17.5 and 30 g/100 g were recommended as the selected conditions.

  4. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    Science.gov (United States)

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  5. Method of increasing efficiency of uranium sorption from acid pulp

    International Nuclear Information System (INIS)

    Parobek, P.; Hinterholzinger, O.; Baloun, S.; Homolka, V.; Vanek, J.; Vebr, Z.

    1989-01-01

    Acid pulp containing uranium is adjusted to pH 2.5 to 4 with alkaline agents, such as alkaline pulp, lime milk, finely ground limestone or soda, or a combination thereof. The treated pulp is put into contact with an ion exchanger whose pH has been adjuste to a range of 2.5 to 4. Partial pulp neutralization causes the hydrolysis of the iron present and an overall reduction in salt contents and a significant increase in the ion exchanger sorptio capacity and thus the overall sorption efficiency. The quality o the eluate and of the uranium concentrate improves. (B.S.)

  6. Thermoluminescent and optical processes in alkaline halogenides dosemeters contaminated with Europium

    International Nuclear Information System (INIS)

    Barboza F, M.; Melendrez, R.; Castaneda, B.; Pedroza M, M.; Chernov, V.; Perez S, R.; Aceves, R.

    2000-01-01

    Recent research results are presented about the properties of the optical processes of photo transferred thermoluminescence (TLFT), optical whitening (BO), thermoluminescence induced by light (TLL) and its effect in the thermoluminescent curve (Tl) produced by ionizing and non-ionizing radiation. The systematic analysis of all these processes, acquires a singular importance due that actually the alkaline halogenide crystals are object of intense investigations which analyse their potential applications as detectors and radiation dosemeters through stimulated optical luminescence techniques or thermoluminescence. The obtained data show that the Tl curve of material with this nature can be enormously affected by exposure of phosphorus to the environmental light or UV. This is in part due to liberation processes of charge bearers are shouted and makes a subsequent trapping in less temperature traps; at the same time that induce changes in the intensity of determined Tl bands. Additionally, also it is observed that mentioned phenomena are related as with wavelength of incident light as of the illumination time. Finally, the obtained information allows to conclude that although the illumination effect is extremely complex, it is associated and can be explained mainly with phenomena that implicate the electrons excitation trapped in form of F centers and trapping mechanisms or radioactive and non-radioactive recombination. (Author)

  7. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    OpenAIRE

    maryam allahdadi; sahab Hedjazi; mahdi jonoobi; Ali abdolkhani; laya Jamalirad

    2017-01-01

    In this research, appearance quality and decay resistance of polylactic acid (PLA) based green composites made from monoethanolamine (MEA) bagasse pulp, alkaline sulfite-anthraquinone (AS) bagasse pulp, bleached soda (B S) bagasse pulp, unbleached soda (UN S) bagasse pulp (UN S) bagasse pulp and raw bagasse fibers (B) were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor) on the neat PLA and composites with natural fibers duri...

  8. Hydrothermal decomposition of industrial jarosite in alkaline media: The rate determining step of the process kinetics

    Directory of Open Access Journals (Sweden)

    González-Ibarra A.A.

    2016-01-01

    Full Text Available This work examines the role of NaOH and Ca(OH2 on the hydrothermal decomposition of industrial jarosite deposited by a Mexican company in a tailings dam. The industrial jarosite is mainly composed by natrojarosite and contains 150 g Ag/t, showing a narrow particle size distribution, as revealed by XRD, fire assay, SEM-EDS and laser-diffraction analysis. The effect of the pH, when using NaOH or Ca(OH2 as alkalinizing agent was studied by carrying out decomposition experiments at different pH values and 60°C in a homogeneous size particle system (pH = 8, 9, 10 and 11 and in a heterogeneous size particle system (pH = 11. Also, the kinetic study of the process and the controlling step of the decomposition reaction when NaOH and Ca(OH2 are used was determined by fitting the data obtained to the shrinking core model for spherical particles of constant size. These results, supported by chemical (EDS, morphological (SEM and mapping of elements (EDS analysis of a partially reacted jarosite particle allowed to conclude that when NaOH is used, the process kinetics is controlled by the chemical reaction and when Ca(OH2 is used, the rate determining step is changed to a diffusion control through a layer of solid products.

  9. Alkaline-sulphate activation processes of a Spanish blast furnace slag

    Directory of Open Access Journals (Sweden)

    Fernández Jiménez, A.

    1996-03-01

    Full Text Available Alkaline-sulphate activation processes of a Spanish granulated blast furnace slag (Avilés, Ensidesa have been studied. Activator solutions used were: deionized water (as reference solution, Ca(OH2 (3,5∙10-3N, NaOH (1N, Na2CO3 (2N, CaSO4∙2H2O (3,0∙10-3N at 25ºC. The influence of the nature of alkaline or sulphate solution cation on slag activation process was verified. Sodium solutions decrease the induction period while calcium solutions increase it. Slag reaction degree was also determined, likewise the nature of the different reaction products formed as a function of the activator solution nature.

    Se han estudiado los procesos de activación alcalinosulfáticos de una escoria granulada de alto horno española (Avilés, Ensidesa. Las disoluciones activantes utilizadas fueron: H2O desionizada (como disolución de referencia, Ca(OH2 (3,5∙10-3N, NaOH (1N, Na2CO3 (2N, CaSO4∙2H2O (3,0∙10-3N a 25ºC. Se ha comprobado la influencia de la naturaleza del catión de la disolución alcalina o sulfática sobre el proceso de activación de la escoria. Las disoluciones sódicas disminuyen el período de inducción, mientras que las disoluciones cálcicas lo incrementan. También se determinó el grado de reacción de la escoria, así como la naturaleza de los distintos productos de reacción formados, en función de la naturaleza de la disolución activante.

  10. Extraction process of U from its ores using solutions of alkaline earth carbonates and bicarbonates in presence of carbon dioxide

    International Nuclear Information System (INIS)

    Floreancig, Antoine; Schuffenecker, Robert.

    1976-01-01

    A process is described for extracting uranium from its ores, either directly in the ore deposit or after such ore bodies have been taken from the ground, comprising an oxidation-leaching stage followed by a recovery stage. The characteristic of this process is that in the leaching process, carbonate and bicarbonate solutions of an alkaline-earth metal are used under a pressure of carbon dioxide between zero and 60 bars and at a temperature of zero to 100 0 C [fr

  11. Biotechnological applications of pectinases in textile processing and bioscouring of cotton fibers

    OpenAIRE

    Mojsov, Kiro

    2012-01-01

    This work represents a review of applications of alkaline pectinases in textile processing and bioscouring of cotton fibers, the nature of pectin and pectic supstances, and production of alkaline pectinases from various microorganisms. Over the years alkaline pectinases have been used in several industrial processes, such as textile and plant fiber processing, paper and pulp industry, oil extraction, coffee and tea fermentations,poultry feed and treatment of industrial wastewater containing p...

  12. Processes determining the marine alkalinity and calcium carbonate saturation state distributions

    OpenAIRE

    Carter, B. R.; Toggweiler, J. R.; Key, R. M.; Sarmiento, J. L.

    2014-01-01

    We introduce a composite tracer for the marine system, Alk*, that has a global distribution primarily determined by CaCO3 precipitation and dissolution. Alk* is also affected by riverine alkalinity from dissolved terrestrial carbonate minerals. We estimate that the Arctic receives approximately twice the riverine alkalinity per unit area as the Atlantic, and 8 times that of the other oceans. Riverine inputs broadly elevate Alk* in the Arctic surface and particularly near riv...

  13. CD44 is involved in mineralization of dental pulp cells.

    Science.gov (United States)

    Chen, Kuan-Liang; Huang, Yu-Yuan; Lung, Jrhau; Yeh, Ying-Yi; Yuan, Kuo

    2013-03-01

    CD44 is a transmembrane glycoprotein with various biological functions. Histologic studies have shown that CD44 is strongly expressed in odontoblasts at the appositional stage of tooth development. We investigated whether CD44 is involved in the mineralization of dental pulp cells. Ten human third molars with incomplete root formation were collected and processed for immunohistochemistry of CD44. Dental pulp cells isolated from another 5 human third molars were assayed for their viability, alkaline phosphatase activity, and alizarin red staining in vitro after silencing stably their expression of CD44 by using the short hairpin RNA technique. The CD44 knockdown cells were cultured on a collagen sponge and transplanted subcutaneously into the dorsal surfaces of immunocompromised mice. After 6 weeks, the subcutaneous tissues were processed for alizarin red staining and immunohistochemistry of human specific antigen. The dental pulp cells transduced with control short hairpin RNA were used as the control in all assays. CD44 is expressed in odontogenic cells with active mineral deposition during tooth development. Odontoblasts in the root ends of immature teeth express a stronger CD44 signal compared with those in the crown portion. When CD44 expression was stably suppressed in dental pulp cells, their mineralization activities were substantially decreased in both in vitro and in vivo assays. CD44 may play a crucial role in the initial mineralization of tooth-associated structures. However, further studies are required to clarify the underlying mechanisms. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Aging of in vitro pulp illustrates change of inflammation and dentinogenesis.

    Science.gov (United States)

    Lee, Young-Hee; Kim, Go-Eun; Cho, Hye-Jin; Yu, Mi-Kyoung; Bhattarai, Govinda; Lee, Nan-Hee; Yi, Ho-Keun

    2013-03-01

    Dental pulp functions include pulp cell activity involvement in dentin formation. In this study we investigated the age-related changes in dental pulp cells that may influence pulp cell activity for restoring pulp function. Human dental pulp cells (HDPCs) were serially subcultured until spontaneously arrested. Altered expression of chronic inflammatory molecules and age-related molecules were determined by Western blotting. Odontogenic functions impaired by senescence were assayed by Western blotting, reverse transcriptase polymerase chain reaction, alkaline phosphatase activity, and alizarin red S staining. To understand the mechanism of aging process by stress-induced premature senescence (SIPS), the cells were treated with H(2)O(2). Replicative senescence and SIPS were also compared. Replicative senescence of HDPCs was characterized by senescence-associated β-galactosidase activity and reactive oxygen species formation. These cells exhibited altered expression of chronic inflammatory molecules such as intracellular adhesion molecule-1, vascular cell adhesion molecule-1, peroxisome proliferator activated receptor-gamma, and heme oxygenase-1 and age-related molecules such as p53, p21, phosphorylated-extracellular signal-regulated kinase, and c-myb. SIPS cell results were similar to replicative senescence. Furthermore, HDPCs decreased odontogenic markers such as dentin sialophosphoprotein and dentin matrix-1 and osteogenic markers such as bone morphogenetic protein-2 and -7, runt-related transcription factor-2, osteopontin, alkaline phosphatase activity, and mineralized nodule formation by replicative senescence and SIPS. This study suggests that development of aging-related molecules in pulp cells offers understanding of cellular mechanisms and biological events responsible for tooth preservation and maintenance strategies for healthy teeth across the life span. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Biomechanical pulping : a mill-scale evaluation

    Science.gov (United States)

    Masood. Akhtar; Gary M. Scott; Ross E. Swaney; Mike J. Lentz; Eric G. Horn; Marguerite S. Sykes; Gary C. Myers

    1999-01-01

    Mechanical pulping process is electrical energy intensive and results in low paper strength. Biomechanical pulping, defined as the fungal treatment of lignocellulosic materials prior to mechanical pulping, has shown at least 30% savings in electrical energy consumption, and significant improvements in paper strength properties compared to the control at a laboratory...

  16. Analysis of activated carbon, as used in the carbon-in-pulp process, for gold and eight other constituents

    International Nuclear Information System (INIS)

    Balaes, G.E.E.; Dixon, K.; Russell, G.M.; Wall, G.J.

    1982-01-01

    Methods involving atomic-absorption spectrophotometry (AAS), X-ray fluorescence (XRF) spectrometry, and the use of a direct-reading spectrometer - optical emission spectrometry using inductively coupled plasma (OES-ICP), are considered for the determination of nine constituents (silver, gold, copper, cobalt, nickel, iron, zinc, calcium, and silicon) that are adsorbed onto activated carbon during the carbon-in-pulp (CIP) process. Analyses of three reference samples are reported, and the statistical significance of the mean values are evaluated in relation to the relative standard deviations of the method. Limits of determination and times of analysis are compared, and it is concluded that OES-ICP and XRF offer the best means for the multi-element analysis. However, if the analysis of gold alone is required, the times of analysis and results for all three methods are comparable [af

  17. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains.

    Science.gov (United States)

    Garcia, Estefânia F; Luciano, Winnie A; Xavier, Danilo E; da Costa, Whyara C A; de Sousa Oliveira, Kleber; Franco, Octávio L; de Morais Júnior, Marcos A; Lucena, Brígida T L; Picão, Renata C; Magnani, Marciane; Saarela, Maria; de Souza, Evandro L

    2016-01-01

    This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains.

  18. Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains

    Directory of Open Access Journals (Sweden)

    Estefânia Garcia

    2016-08-01

    Full Text Available This study aimed to identify lactic acid bacteria (LAB in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L. and Fragaria vesca L. pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS and 16S rRNA gene sequence (16S rRNA analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86% and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49 and L. fermentum 111 were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30 and 1.00% did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains.

  19. 77 FR 55698 - National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry

    Science.gov (United States)

    2012-09-11

    ... for kraft, soda and semi-chemical pulping vent gases; sulfite pulping processes; and bleaching systems... vents, pulping process condensates) at chemical, mechanical, secondary fiber and non- wood pulp mills... chemical recovery processes at kraft, soda, sulfite and stand-alone semi- chemical pulp mills was...

  20. Technology Prospecting on Enzymes for the Pulp and Paper Industry

    Directory of Open Access Journals (Sweden)

    Braz Jose Demuner

    2011-09-01

    Full Text Available The use of enzymes in the pulp and paper industry was introduced in the 1986. However, their use has been relatively minor. This prospective study aims at enhancing the understanding of the most important advances regarding the use of enzymes in this industry and to identify the future trends of this technology. Information gathered from the Web of Science shows a growing number of papers published on this topic indicating an increased interest in this issue. A study on patents also displayed a high number documents related to this technology. Cellulase, xylanase, laccase and lipase are the most important enzymes that can be used in the pulp and paper processes. Furthermore, the key objectives of enzymes development have been in the bleaching boosting with xylanases and fiber modification with cellulases. The current and future trends on the development of enzymes are focused on increasing their thermostability and their alkalinity strength.

  1. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    Science.gov (United States)

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The production of glucose from corn stalk using hydrothermal process with pre-treatment ultrasound assisted alkaline

    Science.gov (United States)

    Yolanda, Dora; Prasutiyo, Indry; Trisanti, P. N.; Sumarno

    2015-12-01

    The production of glucose from corn stalk by using subcritical hydrothermal technology is studied in this work. Ultrasound-assisted alkaline delignification methods are used as pre-treatment. The corn stalk powder were pretreated with ultrasound-assisted alkaline (NaOH 2% w/w, solid to liquid ratio 1:22 w/v) at room temperature and 30 minutes. After pre-treatment, solid residue and liquid fractions are separated by filtration. Pretreated solids are further submitted to hydrothermal process for glucose production. Hydrothermal process was carried out at 100 Bar and 120°C in various times. The solid product was characterized by SEM and XRD. And liquid product was analysis using DNS method to determine percentage of glucose. From XRD analysis showed that crystallinity of material was lower than delignification product.

  3. Infrared spectroscopy as alternative to wet chemical analysis to characterize Eucalyptus globulus pulps and predict their ethanol yield for a simultaneous saccharification and fermentation process.

    Science.gov (United States)

    Castillo, Rosario Del P; Baeza, Jaime; Rubilar, Joselyn; Rivera, Alvaro; Freer, Juanita

    2012-12-01

    Bioethanol can be obtained from wood by simultaneous enzymatic saccharification and fermentation step (SSF). However, for enzymatic process to be effective, a pretreatment is needed to break the wood structure and to remove lignin to expose the carbohydrates components. Evaluation of these processes requires characterization of the materials generated in the different stages. The traditional analytical methods of wood, pretreated materials (pulps), monosaccharides in the hydrolyzated pulps, and ethanol involve laborious and destructive methodologies. This, together with the high cost of enzymes and the possibility to obtain low ethanol yields from some pulps, makes it suitable to have rapid, nondestructive, less expensive, and quantitative methods to monitoring the processes to obtain ethanol from wood. In this work, infrared spectroscopy (IR) accompanied with multivariate analysis is used to characterize chemically organosolv pretreated Eucalyptus globulus pulps (glucans, lignin, and hemicellulosic sugars), as well as to predict the ethanol yield after a SSF process. Mid (4,000-400 cm(-1)) and near-infrared (12,500-4,000 cm(-1)) spectra of pulps were used in order to obtain calibration models through of partial least squares regression (PLS). The obtained multivariate models were validated by cross validation and by external validation. Mid-infrared (mid-IR)/NIR PLS models to quantify ethanol concentration were also compared with a mathematical approach to predict ethanol yield estimated from the chemical composition of the pulps determined by wet chemical methods (discrete chemical data). Results show the high ability of the infrared spectra in both regions, mid-IR and NIR, to calibrate and predict the ethanol yield and the chemical components of pulps, with low values of standard calibration and validation errors (root mean square error of calibration, root mean square error of validation (RMSEV), and root mean square error of prediction), high correlation

  4. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    OpenAIRE

    maryam allahdadi; sahab hejazi; mahdi jonoobi; ali abdolkhani; laya jamalirad

    2016-01-01

    In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene) on physical-mechanical properties of low density polyethylene (LDPE) composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA) bagasse pulp, alkaline sulfite-anthraquinone (AS) bagasse pulp, bleached soda ...

  5. Low Temperature Soda-Oxygen Pulping of Bagasse

    OpenAIRE

    Fengxia Yue; Ke-Li Chen; Fachuang Lu

    2016-01-01

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum coo...

  6. Bactericidal activity of alkaline salts of fatty acids towards bacteria associated with poultry processing

    Science.gov (United States)

    Antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids were determined using the agar diffusion assay. A 0.5M concentration of each fatty acid (FA) was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric aci...

  7. RE-UTILIZATION OF INORGANIC SOLID WASTE (LIME MUD AS FOREST ROAD STABILIZER FROM THE CHEMICAL RECOVERY PROCESS IN KRAFT PULP MILL

    Directory of Open Access Journals (Sweden)

    Habip Eroğlu

    2005-04-01

    Full Text Available Waste handling is a concern in all pulp and paper mills. Best available techniques for reducing waste is to minimize the generation of solid waste and/or reuse these materials, wherever practicable. One of the most important solid wastes is lime mud which is generated from the kraft pulping in its chemical recovery process. This paper explores the composition of lime mud resulting from the chemical recovery unite of kraft pulp mill and investigation of this waste for re-using beneficially on sub grade and pavement of forest road as a alternative disposal method. Lime mud obtained from the re-causticising process in SEKA pulp mill that utilizes wheat straw and reed as the principal raw material was supplied with % 47 water content and its chemical and physical characterisations was performed according to standard methods. Dried waste to environmental condition was mixed with certain amount to composite cement for using on pavement and sandy clay, loamy clay and clay soils for enriching forest road sub grade properties. In order to investigate the lime mud addition on pavement and sub grade properties necessary physical tests were performed. As a consequence this study reveals that while waste of lime mud causes environmental and economical problem with conventional disposal techniques and/or abandoning to environment, this waste can be used as good stabilisation materials on forest road sub-grade and pavement without any environmental problem.

  8. Methanol-based pulping of Eucalyptus globulus

    Energy Technology Data Exchange (ETDEWEB)

    Gilarranz, M.A.; Oliet, M.; Rodriguez, F.; Tijero, J. [Universidad Complutense de Madrid, Madrid (Spain). Dept. de Ingenieria Quimica

    1999-06-01

    The dissolution of wood components using organosolv pulping was discussed. Solvents such as ethanol and methanol can provide more efficient utilization of the lignocellulosic feedstock, ease of bleachability, and lower capital production costs compared to the kraft process. In this study, the autocatalyzed pulping of Eucalyptus globulus wood in a methanol-water media was examined. The influence of pulping temperature, pulping time and methanol concentration on pulp properties were determined by a surface response method. One of the advantages of using methanol pulping of hardwoods compared to ethanol pulping is the low boiling point of methanol which makes its recovery easy from pulping black liquor by distillation. The price of methanol is also very low compared to other solvents. The optimum pulping conditions were found to be a cooking temperature of 185 degrees C, a cooking time of 110 minutes and a methanol concentration of 50 per cent. These conditions yielded a pulp with a low kappa number and a viscosity value of 110 mL/g. When ethanol pulping was used under the same conditions, the resulting pulp had a higher kappa number and a lower viscosity. 27 refs., 2 tabs., 8 figs.

  9. Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate.

    Science.gov (United States)

    Campos, Juacyara Carbonelli; Moura, Denise; Costa, Ana Paula; Yokoyama, Lidia; Araujo, Fabiana Valeria da Fonseca; Cammarota, Magali Christe; Cardillo, Luigi

    2013-01-01

    The objective of this research was to evaluate the air stripping technology for the removal of ammonia from landfill leachates. In this process, pH, temperature, airflow rate and operation time were investigated. Furthermore, the relationship between the leachate alkalinity and the ammonia removal efficiency during the process was studied. The leachate used in the tests was generated in the Gramacho Municipal Solid Waste Landfill (Rio de Janeiro State, Brazil). The best results were obtained with a temperature of 60(o)C, and they were independent of the pH value for 7 h of operation (the ammonia nitrogen removal was greater than 95%). A strong influence of the leachate alkalinity on the ammonia nitrogen removal was observed; as the alkalinity decreased, the ammonia concentration also decreased because of prior CO2 removal, which increased the pH and consequently favored the NH3 stripping. The air flow rate, in the values evaluated (73, 96 and 120 L air.h(-1).L(-1) of leachate), did not influence the results.

  10. Process, mechanism and impacts of scale formation in alkaline flooding by a variable porosity and permeability model

    Science.gov (United States)

    Zhang, Zhen; Li, Jiachun

    2016-06-01

    In spite of the role of alkali in enhancing oil recovery (EOR), the formation of precipitation during alkaline-surfactant-polymer (ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand, remarkable variation of stratum parameters, e.g., pore radius, porosity, and permeability due to scale formation considerably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mechanisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chemical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silica-based reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding. Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reservoir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4 well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkali with a weak base is preferable in ASP flooding by tradeoff strategy.

  11. Enzymatic solubilization of a pectinaceous dietary fiber fraction from potato pulp: Optimization of the fiber extraction process

    DEFF Research Database (Denmark)

    Meyer, Anne S.; Dam, Birgitte P; Lærke, Helle N.

    2009-01-01

    Upgrading of potato pulp, a byproduct stream from industrial manufacture of potato starch, is important for the continued economic competitiveness of the potato starch industry. The major part of potato pulp consists of the tuber plant cell wall material which is particularly rich in galactan...... branched rhamnogalacturonan I type pectin. In the work reported here, the release of high-molecular weight pectinaceous dietary fiber polysaccharides from starch free potato pulp was accomplished by use of a multicomponent pectinase preparation from Aspergillus aculeatus (Viscozyme® L). The enzyme reaction...... conditions for the solubilization were optimized via a surface response design to be addition of 0.27% Viscozyme® L by weight of potato pulp substrate dry matter, 1 h treatment at pH 3.5, 62.5 °C. Analysis of the molecular size and monomer composition of the enzymatically released fibers showed...

  12. Novel Extraction Process Of Rare Earth Elements From NdFeB Powders Via Alkaline Treatment

    Directory of Open Access Journals (Sweden)

    Chung K.W.

    2015-06-01

    Full Text Available The alkaline treatment of NdFeB powders in NaOH solution at various equivalent amounts of NaOH at 100°C was performed. The resultant powders were then leached in 0.5M H2SO4 solution at 25°C for 2 minutes. At 5 equivalents of NaOH, neodymium in NdFeB powders was partially transformed to neodymium hydroxide. The transformation of neodymium to neodymium hydroxide actually occurred at 10 equivalents of NaOH and was facilitated by increasing the equivalent of NaOH from 10 to 30. In addition, iron was partially transformed to magnetite during the alkaline treatment, which was also promoted at a higher equivalent of NaOH. The leaching yield of neodymium from alkaline-treated powders was increased with an increasing equivalent of NaOH up to 10; however, it slightly decreased with the equivalent NaOH of over 10. The leaching yield of iron was inversely proportional to that of rare earth elements. NdFeB powders treated at 10 equivalents of NaOH showed a maximum leaching yield of neodymium and dysprosium of 91.6% and 94.6%, respectively, and the lowest leaching yield of iron of 24.2%, resulting in the highest selective leaching efficiency of 69.4%.

  13. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  14. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)], E-mail: elin.svensson@chalmers.se; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives.

  15. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty. A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, doi:10.1016/j.enpol.2008.10.023] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives. (author)

  16. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    International Nuclear Information System (INIS)

    Svensson, Elin; Berntsson, Thore; Stroemberg, Ann-Brith

    2009-01-01

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO 2 emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO 2 emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives

  17. Process integration study of a kraft pulp mill converted to an ethanol production plant – part B: Techno-economic analysis

    International Nuclear Information System (INIS)

    Fornell, Rickard; Berntsson, Thore; Åsblad, Anders

    2012-01-01

    In a previous study by the authors, energy efficiency measures in a conceptual kraft pulp mill converted to a lignocellulosic ethanol plant were investigated. The results suggested a number of different process designs which would give a substantial improvement in steam economy in the ethanol plant, compared to the original design. In the present study the different process designs are evaluated from an economic point-of-view, in order to determine if energy efficiency measures and increasing by-product sales decrease the production cost of ethanol from this specific process, or if the increased costs related to the implementation of these measures overshadow the benefits from increased by-product sales. The different energy efficiency measures are compared with less capital demanding alternatives (i.e. including low or no energy efficiency improvements) in order to assess the economic benefits of different strategies when converting a kraft pulp mill to ethanol production. The study indicates the economic importance of considering energy efficiency measures when repurposing a kraft pulp mill to an ethanol plant. It is also shown that, within the context of this study, a larger investment in measures will give better economic results than less capital demanding alternatives (with less improvement in energy efficiency). From an economic and energy efficiency viewpoint many of the suggested process designs will give approximately similar results, therefore the process design should be made based on other criteria (e.g. low complexity, low maintenance). - Highlights: ► Conversion of a kraft pulp mill to ethanol production. ► Heat integration of distillation/evaporation in a lignocellulosic ethanol plant. ► Energy efficiency measures lead to lower ethanol production cost. ► If capital costs and raw material prices are low the production cost could be as low as 365 €/m 3 EtOH.

  18. Alkaline "Permanent" Paper.

    Science.gov (United States)

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  19. Process design and economics of a flexible ethanol-butanol plant annexed to a eucalyptus kraft pulp mill.

    Science.gov (United States)

    Pereira, Guilherme C Q; Braz, Danilo S; Hamaguchi, Marcelo; Ezeji, Thaddeus C; Maciel Filho, Rubens; Mariano, Adriano P

    2018-02-01

    This work proposes a strategy, from a process design standpoint, for pulp companies to enter the Brazilian ethanol market. The flexible plant converts eucalyptus-derived glucose to either ethanol or butanol (according to market conditions) and xylose only to butanol production. Depending on the biomass pretreatment technology, Monte Carlo simulations showed that the Net Present Value (NPV) of the flexible plant increases by 20-28% in relation to an ethanol-dedicated plant. Whereas the lower costs of the steam explosion technology turns the investment more attractive (NPV = 184 MMUSD; IRR = 29%), the organosolv technology provides better flexibility to the plant. This work also shows that excessive power consumption is a hurdle in the development of flash fermentation technology chosen for the flexible plant. These results indicate that conventional batch fermentation is preferable if the enzymatic hydrolysis step operates with solids loading up to 20 wt%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fourier transform infrared imaging and microscopy studies of Pinus radiata pulps regarding the simultaneous saccharification and fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rosario del P., E-mail: rosariocastillo@udec.cl [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Biotechnology Center, University of Concepcion, Concepcion (Chile); Araya, Juan [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Biotechnology Center, University of Concepcion, Concepcion (Chile); Troncoso, Eduardo [Consorcio Bioenercel S.A, University of Concepcion, Concepcion (Chile); Vinet, Silenne; Freer, Juanita [Biotechnology Center, University of Concepcion, Concepcion (Chile); Faculty of Chemical Sciences, University of Concepcion, Concepcion (Chile)

    2015-03-25

    The distribution and chemical patterns of lignocellulosic components at microscopic scale and their effect on the simultaneous saccharification and fermentation process (SSF) in the production of bioethanol from Pinus radiata pulps were analyzed by the application of diverse microscopical techniques, including scanning electronic microscopy (SEM), confocal laser scanning microscopy (CLSM) and attenuated total reflectance (ATR) – Fourier transform infrared microspectroscopy. This last technique was accompanied with multivariate methods, including principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS) to evaluate the distribution patterns and to generate pure spectra of the lignocellulosic components of fibers. The results indicate that the information obtained by the techniques is complementary (ultrastructure, confocality and chemical characterization) and that the distribution of components affects the SSF yield, identifying lignin coalescence droplets as a characteristic factor to increase the SSF yield. Therefore, multivariate analysis of the infrared spectra enabled the in situ identification of the cellulose, lignin and lignin-carbohydrates arrangements. These techniques could be used to investigate the lignocellulosic components distribution and consequently their recalcitrance in many applications where minimal sample manipulation and microscale chemical information is required.

  1. Fourier transform infrared imaging and microscopy studies of Pinus radiata pulps regarding the simultaneous saccharification and fermentation process

    International Nuclear Information System (INIS)

    Castillo, Rosario del P.; Araya, Juan; Troncoso, Eduardo; Vinet, Silenne; Freer, Juanita

    2015-01-01

    The distribution and chemical patterns of lignocellulosic components at microscopic scale and their effect on the simultaneous saccharification and fermentation process (SSF) in the production of bioethanol from Pinus radiata pulps were analyzed by the application of diverse microscopical techniques, including scanning electronic microscopy (SEM), confocal laser scanning microscopy (CLSM) and attenuated total reflectance (ATR) – Fourier transform infrared microspectroscopy. This last technique was accompanied with multivariate methods, including principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS) to evaluate the distribution patterns and to generate pure spectra of the lignocellulosic components of fibers. The results indicate that the information obtained by the techniques is complementary (ultrastructure, confocality and chemical characterization) and that the distribution of components affects the SSF yield, identifying lignin coalescence droplets as a characteristic factor to increase the SSF yield. Therefore, multivariate analysis of the infrared spectra enabled the in situ identification of the cellulose, lignin and lignin-carbohydrates arrangements. These techniques could be used to investigate the lignocellulosic components distribution and consequently their recalcitrance in many applications where minimal sample manipulation and microscale chemical information is required

  2. Biodegradation of pulp and paper mill effluent by co-culturing ascomycetous fungi in repeated batch process.

    Science.gov (United States)

    Rajwar, Deepika; Paliwal, Rashmi; Rai, J P N

    2017-08-31

    The competence of novel fungal consortium, consisting of Nigrospora sp. LDF00204 (accession no. KP732542) and Curvularia lunata LDF21 (accession no. KU664593), was investigated for the treatment of pulp and paper mill effluent. Fungal consortium exhibited enhanced biomass production under optimized medium conditions, i.e., glucose as carbon (C), sodium nitrate as nitrogen (N), C/N 1.5:0.5, pH 5, temperature 30 °C, and agitation 140 rpm, and significantly reduced biochemical oxygen demand (85.6%), chemical oxygen demand (80%), color (82.3%), and lignin concentration (76.1%) under catalytic enzyme activity; however, unutilized ligninolytic enzymes, such as laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP), were observed to be 13.5, 11.4, and 9.4 U/ml after the third cycle of effluent treatment in repeated batch process. Scanning electron microscopy (SEM) of fungal consortium revealed their compatibility through intermingled hyphae and spores, while the FTIR spectra confirmed the alteration of functional groups ensuring structural changes during the effluent treatment. Gas chromatography/mass spectroscopy (GC-MS) analysis showed the reduction of complex compounds and development of numerous low-molecular-weight metabolites, such as 1-3-dimethyl benzene, 2-chloro-3-methyl butane, pentadecanoic acid, and 1-2-benzene dicarboxylic acid, during the treatment, demonstrating the massive potential of the novel fungal consortium to degrade recalcitrant industrial pollutants.

  3. Biobleaching of paper pulp with xylanase produced byTrichoderma asperellum.

    Science.gov (United States)

    Sridevi, A; Ramanjaneyulu, G; Suvarnalatha Devi, P

    2017-08-01

    This study is aimed at assessing the biobleaching activity of fungal xylanase on paper pulp isolated from Tirumala forest, Eastern Ghats of India. Of the 98 fungal isolates obtained after initial screening, eight isolates were selected and one potential strain was further cultivated under submerged fermentation for production of xylanase. The biobleaching efficiency on waste paper pulp and paper industry effluent was tested with crude enzyme. Xylanolytic activity by the chosen organism in submerged fermentation reached the maximum (981.1 U ml -1 ) on the 5th day of incubation. Molecular characterisation of the isolate led to its identification as Trichoderma asperellum which exhibited the production of enzyme even at alkaline pH of the culture medium. Xylanase pretreatment of paper pulp had shown reduction in the Kappa number by 4.2 points and increased brightness by 4.0 points. FTIR and SEM studies revealed loosening of pulp fibres after enzyme treatment. In conclusion, xylanase of Trichoderma asperellum was effective as a pulp biobleaching agent and the process is economical as well as eco-friendly.

  4. Low Temperature Soda-Oxygen Pulping of Bagasse.

    Science.gov (United States)

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  5. Low Temperature Soda-Oxygen Pulping of Bagasse

    Directory of Open Access Journals (Sweden)

    Fengxia Yue

    2016-01-01

    Full Text Available Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm3/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115–125 °C, this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  6. Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: influence on extractive contents, pulping process parameters, paper quality and effluent toxicity.

    Science.gov (United States)

    van Beek, Teris A; Kuster, Bram; Claassen, Frank W; Tienvieri, Taisto; Bertaud, Frédérique; Lenon, Gilles; Petit-Conil, Michel; Sierra-Alvarez, Reyes

    2007-01-01

    Lipophilic low molar-mass constituents in wood chips for the paper industry result in low quality pulp, pitch deposition, and effluent toxicity. New biotechnological solutions such as fungal pre-treatment of wood chips can reduce pitch problems. This laboratory-scale study focuses on the potential and limitations of a fungal bio-treatment of Norway spruce chips with the white-rot fungus Trametes versicolor. Different fungal treatment conditions were compared. A 4-week fungal treatment reduced the concentration of resin acids and triglycerides by 40% and 100%, respectively, but neither lowered the energy requirements of the TMP process nor significantly affected the morphological fiber characteristics and the physical pulp properties. The pre-treatment led to slightly poorer optical properties. The Trametes versicolor fungal treatment contributed to a less toxic effluent and improved the biodegradability. A treatment of 2-3 weeks appears optimal.

  7. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties.

    Science.gov (United States)

    Spence, Kelley L; Venditti, Richard A; Habibi, Youssef; Rojas, Orlando J; Pawlak, Joel J

    2010-08-01

    Films of microfibrillated celluloses (MFCs) from pulps of different yields, containing varying amounts of extractives, lignin, and hemicelluloses, were produced by combining refining and high-pressure homogenization techniques. MFC films were produced using a casting-evaporation technique and the physical and mechanical properties (including density, roughness, fold endurance and tensile properties) were determined. Homogenization of bleached and unbleached Kraft pulps gave rise to highly individualized MFCs, but not for thermo-mechanical pulp (TMP). The resulting MFC films had a roughness equivalent to the surface upon which the films were cast. Interestingly, after homogenization, the presence of lignin significantly increased film toughness, tensile index, and elastic modulus. The hornification of fibers through a drying and rewetting cycle prior to refining and homogenization did not produce any significant effect compared to films from never-dried fibers, indicating that MFC films can potentially be made from low-cost recycled cellulosic materials. (c) 2010 Elsevier Ltd. All rights reserved.

  8. The Kraft Pulp And Paper Properties of Sweet Sorghum Bagasse (Sorghum bicolor L Moench

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2015-05-01

    Full Text Available This study investigated the potency of sweet sorghum (Sorghum bicolor bagasse as raw material for pulp and paper using kraft pulping. The effects of alkali and sulfidity loading on kraft pulp and paper properties were also investigated. The pulping condition of the kraft pulp consisted of three levels of alkali loading (17, 19 and 22% and sulfidity loading (20, 22 and 24%. The maximum cooking temperature was 170°C for 4 h with a liquid to wood ratio of 10:1. Kraft pulping of this Numbu bagasse produced good pulp indicated by high screen yield and delignification selectivity with a low Kappa number (< 10. The unbleached pulp sheet produced a superior brightness level and a high burst index. The increase of active alkali loading tended to produce a negative effect on the pulp yield, Kappa number and paper sheet properties. Therefore, it is suggested to use a lower active alkaline concentration.

  9. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  10. [Vital pulp therapy of damaged dental pulp].

    Science.gov (United States)

    Xuedong, Zhou; Dingming, Huang; Jianguo, Liu; Zhengwei, Huang; Xin, Wei; Deqin, Yang; Jin, Zhao; Liming, Chen; Lin, Zhu; Yanhong, Li; Jiyao, Li

    2017-08-01

    The development of an expert consensus on vital pulp therapy can provide practical guidance for the improvement of pulp damage care in China. Dental pulp disease is a major type of illness that adversely affects human oral health. Pulp capping and pulpotomy are currently the main methods for vital pulp therapy. Along with the development of minimal invasion cosmetic dentistry, using different treatment technologies and materials reasonably, preserving healthy tooth tissue, and extending tooth save time have become urgent problems that call for immediate solution in dental clinics. This paper summarizes the experiences and knowledge of endodontic experts. We develop a clinical path of vital pulp therapy for clinical work by utilizing the nature, approach, and degree of pulp damage as references, defense and self-repairing ability of pulp as guidance, and modern technologies of diagnosis and treatment as means.

  11. Effect of alkaline pH-shift processing on in vitro gastrointestinal digestion of herring (Clupea harengus) fillets.

    Science.gov (United States)

    Marmon, Sofia K; Undeland, Ingrid

    2013-05-01

    The effect of alkaline pH-shift processing on herring (Clupea harengus) protein oxidation, salt solubility and digestibility, has been evaluated. For the latter, herring mince and pH-shift produced herring protein isolate, both raw and heat-treated, were digested using a static gastrointestinal in vitro model. The pH-shift process resulted in drastically lowered protein salt solubility and increased lipid oxidation while protein carbonyl formation was unaffected. Yet, no significant differences in the degree of hydrolysis (DH) were observed between mince and isolates after completed gastrointestinal digestion, something which was confirmed by a similar release of proteinaceous material pH-shift processing had limited quantitative influence on the gastrointestinal digestibility of herring proteins despite its negative effects on protein salt solubility and lipid oxidation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A Strongly Calc-alkaline Suite in the Midst of the Tholeiitic Columbia River Basalt Province: Implications for Generating the Calc-alkaline Trend Without Subduction Processes

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2012-12-01

    The mid-Miocene lavas of the Strawberry Volcanics (SV), distributed over 3,400 km2 in NE Oregon, comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The volcanic suite is mainly composed of calc-alkaline (CA) basaltic andesite and andesite, yet tholeiitic (TH) lavas of basalt to andesite occur as well. The SV lies in the heart of nearly coeval flood basalts of the Columbia River province of the Pacific Northwest. The unique combination of strongly CA rocks of the SV in a non-subduction setting provide an excellent opportunity to study controls on inducing CA evolution in the midst of a TH province and independent of processes taking places at an active subduction zone. New 40Ar/39Ar ages indicate CA basaltic andesites to andesites of the SV erupted at least from 14.78±0.13 Ma to 12.44±0.12 Ma demonstrating that CA magmatism of the SV was ongoing during the eruptions of the tholeiitic Wanapum Basalt member of the Columbia River Basalt Group (CRBG). This range will likely be extended to even older ages in the future because existent age dates did not include samples from near the base of the SV. Thickness of intermediate lavas flows of the SV range from 15 m to as thin as 2 m and lavas are characterized by mostly phenocryst poor lithologies. When phenocrysts are abundant they are very small suggesting growth late during eruption. Single lava flow sections can include on the order of 30 conformable flows, testifying to a vigorous eruption history. The thickest andesitic sections are located in the glacially carved mountains of the Strawberry Mountain Wilderness (i.e. Strawberry Mountain, High Lake, and Slide Lake) where several vent complexes are exposed, which are delineated by dikes and plugs with finely interlocking plutonic textures, cross-cutting SV lava flows. Dikes generally strike NW-SE. Subtle variations in major and trace element compositions exist between TH and CA lavas of the SV. The CA lavas of the SV are

  13. Relationship between pulp structure breakdown and nutritional value of papaya (Carica papaya) and strawberry (Fragaria x ananassa) nectars using alternative thermal and non-thermal processing techniques.

    Science.gov (United States)

    Swada, Jeffrey G; Keeley, Christopher J; Ghane, Mohammad A; Engeseth, Nicki J

    2016-05-01

    Papaya and strawberry contain a wide array of nutrients that contribute to human health; however, availability of these fruits is limited due to their short shelf lives and seasonal nature. In this study, the effect of alternative techniques including ultra high temperature (UHT, 20-135 °C, 1-3 s) and irradiation (0-10 kGy) on carotenoid concentration, antioxidant capacity and changes to pulp structure using transmission electron microscopy were determined for papaya and strawberry nectars. UHT had moderate effects on antioxidant capacity, but the greatest overall release of carotenoids from the pulp matrix (34.2%, 6.26%, 8.31%; β-cryptoxanthin, β-carotene, and lycopene, respectively). Irradiation resulted in the greatest increase in antioxidant capacity [19.22 to 24.32 µmol Trolox equivalents kg(-1) (papaya), 190.51 to 287.68 µmol Trolox equivalents kg(-1) (strawberry)], with moderate effects on carotenoid concentration. This research demonstrates that decreases in nutrient value and antioxidant capacity can result from processing, but that regeneration of these losses can be seen corresponding to the apparent breakdown of pulp structure. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Processes controlling the variations of pH, alkalinity, and CO2 partial pressure in the porewater of coal ash disposal site.

    Science.gov (United States)

    Kim, Kangjoo; Kim, Seok-Hwi; Park, Sung-Min; Kim, Jinsam; Choi, Mansik

    2010-09-15

    Alkalinity, pH, and pCO2 are generally regarded as the most important parameters affecting trace element leaching from coal ashes. However, little is known about how those parameters are actually regulated in the field condition. This study investigated the processes controlling those parameters by observing undisturbed porewater chemistry in a closed ash disposal site. The site is now covered with 30-50 cm thick soils according to the management scheme suggested by the Waste Management Law of Korea and our results show the important role of soil cover regulating those parameters in the shallow porewater. Without the soil cover, the shallow porewater shows low pCO2 and alkalinity, and highly alkaline pH. In contrast, the porewater shows much higher alkalinity and near neutral pH range when the site was covered with the low permeability soils. This difference was caused by the CO2 supply condition changes associated with the changes in infiltration rate. The geochemical modeling shows that the calcite precipitations induced by porewater aging, dolomitization, and weathering of solid phases are the main processes controlling alkalinity, pH, and pCO2 in the deep saline porewaters. The weathering of coal ash plays the most important role decreasing the alkalinity in the deep porewater. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Integrated dynamic model of the alkaline delignification process of Lignocellulosic biomass

    International Nuclear Information System (INIS)

    Fuertez, John; Ruiz, Angela; Alvarez, Hernan; Molina, Alejandro

    2011-01-01

    Although in the public literature there are several studies that describe models of alkaline delignification, they were originally developed for the paper industry, and do not include the effects of important operating variables such as temperature, hydroxide-ion concentration, solid to liquid weight ratio, particle size, biomass composition (hemi cellulose, lignin fraction) and mixing. This lack of detailed models of the pretreatment stages prompted the current study that describes a model which includes the variables listed above and provides an important tool for predicting the degree of lignin removal in lignocellulosic materials such as sugar cane bagasse (Saccharum officinarum L). The model considers kinetic expressions available in the literature. The kinetic parameters were determined by fitting the model to experimental data obtained for that purpose in our lab. The experimental matrix considered eighteen, 24-h isothermal experiments in which bulk and residual delignification stages were observed to occur in a parallel manner. Carbohydrate removal and hydroxide consumption were related to lignin removal by effective stoichiometric coefficients that were calculated by fitting the experimental data. A mixing compartment network model that represented mixing inside the reactor was included into a temporal superstructure based on the similarity between plug flow reactors and ideal batch reactors to model a non-ideally mixed batch reactor. The kinetic model was validated with data obtained in this study.

  16. COD removal from pulp and paper effluents by Advanced Oxidation Processes (AOP); COD:n vaehentaeminen aop-menetelmaellae metsaeteollisuuden jaetevesistae - EKY 04

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, K.; Wikberg, H. [Kemira Chemicals Oy, Vaasa (Finland)

    1998-12-31

    The aim of this project is to develop a process where COD from pulp and paper industry can be removed by an AOP process. AOP is a process utilizing the oxidation power of the hydroxyl radical, which can be produced in many different ways. Compared to evaporation and membrane techniques, the benefits of this process are lack of condense, concentrate and sludge. It is a very simple process, based on adjusting the COD removal by means of hydrogen peroxide dosage. The study focuses on using heterogeneous catalyst together with hydrogen peroxide to produce hydroxyl radicals in order to remove COD at low temperatures (< 100 deg C) and normal pressures. The project started by screening catalysts able to perform this task in laboratory scale. Later on pilot scale equipment will be constructed for use in pulp and paper mill trials. The project will be carried out during 1997-1999. The study started by screening the possibilities of different catalysts together with hydrogen peroxide to remove phenols from a model water. Sofar, about hundred catalysts have been screened. These tests show that many of the heterogeneous catalysts are working, but most of them have actually dissolved in the water and `translated` to homogenous catalysts. This means that they cannot be used in this project. A few catalysts have been found to meet the targets for synthetic phenol waters. Next step will be to test these catalysts on actual water samples from pulp and paper mills, and after that a pilot and full-scale trial will be planned. In these trials we will find out which mill streams are possible to treat, and the cost/performances of a system totally based on the catalyst in use. Also, measurements of catalyst leaching and clogging will be made during these tests. The last test series is planned to be a full-scale trial. (orig.)

  17. Acetosolv pulping of Eucalyptus globulus wood. Pt. 1. The effect of operational variables on pulp yield, pulp lignin content and pulp potential glucose content

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G. [Dept. of Chemical Engineering, Univ. of Santiago de Compostela (Spain); Antorrena, G. [Dept. of Chemical Engineering, Univ. of Santiago de Compostela (Spain); Gonzalez, J. [Dept. of Chemical Engineering, Univ. of Santiago de Compostela (Spain)

    1995-07-01

    The HCl-catalysed delignification of Eucalyptus globulus wood by aqueous acetic acid was optimized in accordance with an incomplete 3x3x3 factorial design with HCl concentration (0-0.05%), temperature (120-160 C) and reaction time (1-4 h) as independent variables and pulp yield, pulp lignin content and pulp potential glucose content as dependent variables. Empirical equations derived from the results satisfactorily predict the influence of the independent variables on these characteristics of the delignification process and the delignified pulps. (orig.)

  18. Eucalyptus kraft pulp production: Thermogravimetry monitoring

    International Nuclear Information System (INIS)

    Barneto, Agustin G.; Vila, Carlos; Ariza, Jose

    2011-01-01

    Highlights: → Thermogravimetric analysis can be used to monitor the pulping process in a pulp mill. → ECF bleaching process affects the crystalline cellulose volatilization. → The fibre size has an influence on composition and thermal behavior of pulp. - Abstract: Under oxidative environment the thermal degradation of lignocellulosic materials like wood or pulp is sensitive to slight composition changes. For this, in order to complement the chemical and X-ray diffraction results, thermogravimetric analyses (TGA) were used to monitor pulp production in a modern pulp mill. Runs were carried out on crude, oxygen delignified and bleached pulps from three eucalyptus woods from different species and geographical origins. Moreover, with the modeling of thermogravimetric data, it was possible to obtain an approximate composition of samples which includes crystalline and amorphous cellulose. TGA results show that pulping has an intensive effect on bulk lignin and hemicellulose, but it has limited influence on the removal of these substances when they are linked to cellulose microfibril. The stages of oxygen delignification and bleaching, based in chlorine dioxide and hydrogen peroxide, increase the crystalline cellulose volatilization rate. These changes are compatible with a more crystalline microfibril. The influence of the fibre size on pulp composition, crystallinity and thermal degradation behavior was observed.

  19. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp.

    Science.gov (United States)

    Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa

    2015-11-01

    This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®

  20. OPTIMIZATION OF SODA PULPING PROCESS OF LIGNO-CELLULOSIC RESIDUES OF LEMON AND SOFIA GRASSES PRODUCED AFTER STEAM DISTILLATION

    OpenAIRE

    Harjeet Kaur; Dharm Dutt; C. H. Tyagi

    2011-01-01

    Sofia (Cymbopogon martini), and lemon (Cymbopogon flexuosus) grasses, are exclusively cultivated for extraction of important lemongrass and palma rosa oils. Lignocellulosic residue (LCR) of sofia and lemon grasses left after steam distillation can successfully be used for the production of chemical grade pulp. Steam distillation mitigates the problem of mass transfer, and facilitates the faster penetration of cooking liquor by leaching out a part of extraneous components. Sofia grass produces...

  1. Development of a combined piezoresistive pressure and temperature sensor using a chemical protective coating for Kraft pulp digester process monitoring

    Science.gov (United States)

    Mohammadi, Abdolreza R.; Bennington, Chad P. J.; Chiao, Mu

    2011-01-01

    We have developed an integrated piezoresistive pressure and temperature sensor for multiphase chemical reactors, primarily Kraft pulp digesters (pH 13.5, temperatures up to 175 °C, reaching a local maximum of 180 °C and pressures up to 2 MPa). The absolute piezoresistive pressure sensor consisted of a large square silicon diaphragm (1000 × 1000 µm2) and high resistance piezoresistors (10 000 Ω). A 4500 Ω buried piezoresistive wire was patterned on the silicon chip to form a piezoresistive temperature sensor which was used for pressure sensor compensation and temperature measurement. A 4 µm thick Parylene HT® coating, a chemically resistant epoxy and a silicone conformal coating were deposited to passivate the pressure sensor against the caustic environment in Kraft digesters. The sensors were characterized up to 2 MPa and 180 °C in an environment chamber. A maximum thermal error of ±0.72% full-scale output (FSO), an average sensitivity of 0.116 mV (V kPa)-1 and a power consumption of 0.3 mW were measured in the pressure sensor. The sensors' resistances were measured before and after test in a Kraft pulping cycle and showed no change in their values. SEM pictures and topographical surfaces were also analyzed before and after pulp liquor exposure and showed no observable changes.

  2. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    Science.gov (United States)

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cellulose pulp produced from bulrush fiber

    Directory of Open Access Journals (Sweden)

    Vania Karine Dick Wille

    Full Text Available ABSTRACT: Brazil continues to use wood as the principal raw material source for the pulp industry; although, non-wood fibers have been revealed to be a competent substitute to produce paper with different and exceptional properties. Keeping this in focus, this study aimed to assess potential of Schoenoplectus californicus fibers (C. A. Mey. Soják, commonly identified as bulrush or reed, in cellulosic pulp generation, as an alternative fiber source for the pulp and paper industry. On analyzing the chemical composition of reed fibers, extractives of lignin, carbohydrates, uronic acids and minerals were reported. Physico-chemical characteristics of reed-based cellulosic pulp were estimated including viscosity, hexenuronic acids, etc., as well as anatomical features of length, width, etc. From the chemical analyses of the reed the presence of high concentrations of extractives and silica was clear, making them unfit as raw material for cellulosic pulp production. Pulp kraft pulping process produced brown pulps low in viscosity (34.5m Pa.s and hexenuronic acid content. Reed is thus classifiable as short-fiber source for pulp and paper industries.

  4. Comparative study of percentage yield of pulp from various Nigerian ...

    African Journals Online (AJOL)

    Comparative study of percentage yield of pulp from various Nigerian wood species using the kraft process. ... African Journal of Environmental Science and Technology ... The infra red analysis of the pulp obtained from the various wood species confirmed the chemical integrity of the pulps obtained from all the hard wood ...

  5. Comparison of various pulping characteristic of Fraxinus angustifolia ...

    African Journals Online (AJOL)

    This study was carried out in order to investigate the suitability of ash (Fraxinus angustifolia Vahl.), a native tree (species) in Turkey, for pulp and paper making. Four pulping methods, which included NSSC, cold soda, kraft and kraft + anthraquinone pulping processes, were used for this study. The test materials were ...

  6. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    OpenAIRE

    Jun, Soo-Kyung; Lee, Jung-Hwan; Lee, Hae-Hyoung

    2017-01-01

    The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive? [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal? [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) a...

  7. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif

    International Nuclear Information System (INIS)

    Buil gutierrez, B.; Garcia Sanz, S.; Lago San Jose, M.; Arranz Yague, E.; Auque Sanz, L.

    2002-01-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  8. Exogenous nitric oxide stimulates the odontogenic differentiation of rat dental pulp stem cells.

    Science.gov (United States)

    Sonoda, Soichiro; Mei, Yu-Feng; Atsuta, Ikiru; Danjo, Atsushi; Yamaza, Haruyoshi; Hama, Shion; Nishida, Kento; Tang, Ronghao; Kyumoto-Nakamura, Yukari; Uehara, Norihisa; Kukita, Toshio; Nishimura, Fusanori; Yamaza, Takayoshi

    2018-02-21

    Nitric oxide (NO) is thought to play a pivotal regulatory role in dental pulp tissues under both physiological and pathological conditions. However, little is known about the NO functions in dental pulp stem cells (DPSCs). We examined the direct actions of a spontaneous NO gas-releasing donor, NOC-18, on the odontogenic capacity of rat DPSCs (rDPSCs). In the presence of NOC-18, rDPSCs were transformed into odontoblast-like cells with long cytoplasmic processes and a polarized nucleus. NOC-18 treatment increased alkaline phosphatase activity and enhanced dentin-like mineralized tissue formation and the expression levels of several odontoblast-specific genes, such as runt related factor 2, dentin matrix protein 1 and dentin sialophosphoprotein, in rDPSCs. In contrast, carboxy-PTIO, a NO scavenger, completely suppressed the odontogenic capacity of rDPSCs. This NO-promoted odontogenic differentiation was activated by tumor necrosis factor-NF-κB axis in rDPSCs. Further in vivo study demonstrated that NOC-18-application in a tooth cavity accelerated tertiary dentin formation, which was associated with early nitrotyrosine expression in the dental pulp tissues beneath the cavity. Taken together, the present findings indicate that exogenous NO directly induces the odontogenic capacity of rDPSCs, suggesting that NO donors might offer a novel host DPSC-targeting alternative to current pulp capping agents in endodontics.

  9. Studies on Biocompatibility of Mg-4.0Zn-1.5Sr Alloy with Coated of the Laser Surface Processing Combining Alkaline Treatment

    Science.gov (United States)

    Cui, Tong; Guan, Renguo; Ma, Xinrui; Qin, Hai-ming; Song, Fulin

    2018-01-01

    The surface modification of biomaterial Mg-4.0Zn-1.5Sr alloy has been done by means of laser surface processing combining alkaline treatment process, as well as the biocompatibility of Mg-4.0Zn-1.5Sr alloy with and without coatings has been analyzed comparatively. The results indicate that the optimal parameters of laser surface processing are that the power is 3 kW, the current 200A, the width 1mm, the defocus amount 135mm and the scanning speed 1mm/s. The optimal parameters of alkaline treatment are that the solution is NaOH, the concentration 0.5 mol/L, the temperature 80 °C and the time 12 h. After alkaline treatment the surface is smooth and compact. The hemolysis rate of 1 d, 3 d, 5 d for uncoated alloy is 1.04%, 0.8% and 4.56%, respectively, which is less than 5%, and for Mg-4.0Zn-1.5Sr alloys with coated of the laser combining alkaline treatment, the hemolysis rate of 1 d, 3 d, 5 d is 0.62%, 1.24% and 0.83% respectively, which is also less than 5%. Therefore, the phenomenon of hemolysis for the alloy with and without coated will not occur. In addition, HR on coated with the laser combining alkaline treatment have larger decline, and less volatility than that without coated, which is express that surface treatment of the alloy has more application prospects. RGR value with coated of laser combining alkaline treatment is 105.7%, 106.0%, 110.4%, respectively which cultivation for 1 d, 3 days, 5days and slightly higher than that of without coated, which is100%, 108.8% and 101.8%, respectively. According the standard of cell cytotoxicity, for the alloy with and without coated it is zero level cytotoxicity, suitable for used of biomaterial.

  10. Use of electrochemical oxidation process as post-treatment for the effluents of a UASB reactor treating cellulose pulp mill wastewater.

    Science.gov (United States)

    Buzzini, A P; Miwa, D W; Motheo, A J; Pires, E C

    2006-01-01

    The main purpose of this study was to evaluate the performance of the electrochemical oxidation process as a post-treatment for the effluents of a bench-scale UASB reactor treating simulated wastewater from an unbleached pulp plant. The oxidation process was performed using a single compartment cell with two plates as electrodes. The anode was made of Ti/Ru0.3Ti0.7O2 and the cathode of stainless steel. The following variables were evaluated: current density (75, 150 and 225 mA cm(-2)) and recirculation flow rate in the electrochemical cell (0.22, 0.45 and 0.90 L h(-1)). The increase in current density from 75 to 225 mA cm(-2) did not increased the color removal efficiency for the tested flow rates, 0.22, 0.45 and 0.90 L h(-1), however the energy consumption increased significantly. The results indicated the technical feasibility of the electrochemical treatment as post-treatment for UASB reactors treating wastewaters from pulp and paper plants.

  11. Arundo donax L. reed: new perspectives for pulping and bleaching. Part 4. Peroxide bleaching of organosolv pulps.

    Science.gov (United States)

    Shatalov, A A; Pereira, H

    2005-05-01

    A comparative study on TCF (totally chlorine-free) bleachability of organosolv pulps from the annual fibre crop Arundo donax L. (giant reed) was carried out using a simple three-stage peroxide bleaching sequence without oxygen pre-bleaching. ASAM (alkali-sulfite-anthraquinone-methanol), Organocell (alkali-anthraquinone-methanol) and ethanol-soda organosolv pulps were bleached and compared with kraft pulp, as a reference. The final brightness of 76-78% ISO was attained for all tested pulps. The chemical charge required to reach this level of brightness varied for different pulps (despite the equal initial content of the residual lignin) and directly related to starting brightness values. No direct correlation between brightness improvement and lignin removal during bleaching was found, indicating the influence of the specific pulp properties introduced by pulping process on bleaching chemistry. The general higher bleaching response of organosolv pulps from A. donax was noted in comparison with kraft.

  12. Removal of straw lignin from spent pulping liquor using synthetic cationic and biobased flocculants

    Science.gov (United States)

    Aqueous alkaline delignification of wheat straw produces hemicellulose for bioenergy and other applications. After removal of the hemicellulose, spent pulping liquor (SPL) remains. The spent pulping liquor is approximately 28% water, 40% ash, 3% hemicellulose, 25% lignin, 5% protein, and less than...

  13. Optimization of pulping conditions of abaca. An alternative raw material for producing cellulose pulp.

    Science.gov (United States)

    Jiménez, L; Ramos, E; Rodríguez, A; De la Torre, M J; Ferrer, J L

    2005-06-01

    The influence of temperature (150-170 degrees C), pulping time (15-45 min) and soda concentration (5-10%) in the pulping of abaca on the yield, kappa, viscosity, breaking length, stretch and tear index of pulp and paper sheets, was studied. Using a factorial design to identify the optimum operating conditions, equations relating the dependent variables to the operational variables of the pulping process were derived that reproduced the former with errors lower than 25%. Using a high temperature, and a medium time and soda concentration, led to pulp that was difficult to bleach (kappa 28.34) but provided acceptable strength-related properties (breaking length 4728 m; stretch 4.76%; tear index 18.25 mN m2/g), with good yield (77.33%) and potential savings on capital equipment costs. Obtaining pulp amenable to bleaching would entail using more drastic conditions than those employed in this work.

  14. Modeling the kinetics nonenzymatic browning reactions and rheological behavior in the termal process of fruit juices and pulps

    Directory of Open Access Journals (Sweden)

    Damian Manayay

    2010-06-01

    Full Text Available In the manufacture of fruit juices and pulps, is of paramount importance to refer to non-enzymatic browning and rheological behavior. The non-enzymatic browning is a phenomenon of darkening of a purely chemical (Braverman, 1980, is characterized by the presence of brown polymers called melanoidins, generated by the Maillard reaction or condensation of melanoidins, the caramelization and degradation of acid ascorbic, while the rheological behavior is define as the proportion deformation of the material when exposed to shear stress (σ caused by a rheometer (Muller, 1978; Ibarz, 2005. Modeling studies of colour formation and definition of rheological behavior, considered in this review, aimed at the conclusion of the existence of a zero kinetic and first order respectively, and the most influential factors with the reactions are mainly Maillard, temperature, amino acids presence, water activity and pH, while the rheological behavior is affected by temperature, solid concentration and particles size that make up the suspension in the specific case of the pulps.

  15. Effects of high pressure processing on activity and structure of soluble acid invertase in mango pulp, crude extract, purified form and model systems.

    Science.gov (United States)

    Li, Renjie; Wang, Yongtao; Ling, Jiangang; Liao, Xiaojun

    2017-09-15

    The effects of high pressure processing (HPP) on the activity of soluble acid invertase (SAI) in mango pulp, crude extract, purified SAI and purified SAI in model systems (pectin, bovine serum albumin (BSA), sugars and pH 3-7) were investigated. The activity of SAI in mango pulp was increased after HPP, and that in crude extract stayed unchanged. The activity of purified SAI was decreased after HPP at 45 and 50°C. Pectin exhibited a concentration-dependent protection for purified SAI against HPP at 50°C/600MPa for 30min. Pectin that had an esterification degree (DE) of 85% exhibited a greater protection than pectin that had a DE of 20-34%. BSA, acidic pH (3-6) and sucrose also exhibited protection for purified SAI against HPP. HPP at 50°C/600MPa for 30min disrupted the secondary structure and tertiary structure of purified SAI, but no aggregation of purified SAI was observed after HPP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of Methanethiol on Product Formation in a Biological Sulfide Oxidition process at Natron-alkaline Conditions

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Fortuny-Picornell, M.; Janssen, A.J.H.

    2009-01-01

    The effects of methanethiol (MT) on biological sulfide oxidation were studied in a continuously operated bioreactor, in which chemolithoautotrophic bacteria belonging to the genus Thioalkalivibrio convert hydrogen sulfide (H2S) at natron-alkaline conditions. Previous bioreactor experiments have

  17. Preparation process of an yttrium (or one rare earth), one alkaline earth metal, copper and oxygen superconductive compound

    International Nuclear Information System (INIS)

    Michel, C.; Pham Ai-Qooc; Raveau, B.

    1991-01-01

    The present invention describes the fabrication at atmospheric pressure of a compound based on yttrium (or a rare earth), one alkaline earth metal, copper, and oxygen so as to get a high-tc superconductor material. 2 refs

  18. Pulp sensibility test in elderly patients.

    Science.gov (United States)

    Farac, Roberta Vieira; Morgental, Renata Dornelles; Lima, Regina Karla de Pontes; Tiberio, Denise; dos Santos, Maria Teresa Botti Rodrigues

    2012-06-01

    The ageing process transforms the histological composition of the dental pulp and may affect the response to pulp sensibility tests. The aim of this study was to assess the influence of age on pulp response time and on pain intensity. Fifty elderly patients and 50 young patients were selected. Different classes of teeth were evaluated. The pulp sensibility test was performed with a refrigerant spray. The pulp response time was measured in seconds and the pain intensity was assessed by visual analogue scale. The Spearman coefficient was calculated and detect a positive correlation between age and pulp response time for maxillary incisors, premolars, mandibular incisors, and mean (p < 0.05). On the contrary, there was a negative correlation between age and pain intensity for maxillary incisors, mandibular incisors, and mean (p < 0.05). Also, the results of elderly and young groups were compared by Mann-Whitney test. Significant difference was noted regarding the pulp response time for maxillary incisors, premolars, mandibular incisors, and mean (p < 0.05). Significant difference was detected regarding the pain intensity for mandibular incisors only (p < 0.05). Pulp response time increases when people get older while pain intensity decreases. There were variations among the classes of teeth. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  19. Studies on degradation performance of Mg-4.0Zn-1.5Sr alloy with coated of the laser surface processing combining alkaline treatment

    Science.gov (United States)

    Cui, Tong; Guan, Ren-guo; Ma, Xin-rui; Qin, Hai-ming; Song, Fu-lin

    2018-01-01

    The surface modification of biomaterial Mg-4.0Zn-1.5Sr alloy has been done by means of laser surface processing combining alkaline treatment process, as well as the degradation performance of Mg-4.0Zn-1.5Sr alloy with and without coatings in Hank’s solution has been analyzed comparatively. The results indicate that the optimal parameters of laser surface processing are that the power is 3 kW, the current 200 A, the width 1mm, the defocus amount 135 mm and the scanning speed 1mm/s. The optimal parameters of alkaline treatment are that the solution is NaOH, the concentration 0.5 mol/L, the temperature 80 °C and the time 12 h. There are only two phases of Mg (OH)2 and magnesium matrix, and the surface generated most of Mg (OH)2 which can improve the corrosion resistance of the alloy after laser combining alkaline treatment, as well as the corrosion rate is almost the stable, which is much smaller than both of uncoated and laser surface processing. The study of the electrochemical corrosion behavior shows that the corrosion potential of the alloy with coated of laser combining alkaline treatment is improved 0.1277 V than that of laser treatment, and the corrosion current is decreased 470.2 muA than laser treatment. The corrosion resistant ability of Mg-4.0Zn-1.5Sr alloy is greatly improved by means of laser combining alkaline treatment.

  20. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  1. High isostatic pressure and thermal processing of açaí fruit (Euterpe oleracea Martius): Effect on pulp color and inactivation of peroxidase and polyphenol oxidase.

    Science.gov (United States)

    Jesus, Ana Laura Tibério de; Leite, Thiago Soares; Cristianini, Marcelo

    2018-03-01

    The present study evaluated the effect of high isostatic pressure (HIP) on the activity of peroxidase (POD) and polyphenol oxidase (PPO) from açaí. Açaí pulp was submitted to several combinations of pressure (400, 500, 600MPa), temperature (25 and 65°C) for 5 and 15min. The combined effect of HIP technology and high temperatures (690MPa by 2 and 5min at 80°C) was also investigated and compared to the conventional thermal treatment (85°C/1min). POD and PPO enzyme activity and instrumental color were examined after processing and after 24h of refrigerated storage. Results showed stability of POD for all pressures at 25°C, which proved to be heat-resistant and baro-resistant at 65°C. For PPO, the inactivation at 65°C was 71.7% for 600MPa after 15min. In general, the increase in temperature from 25°C to 65°C reduced the PPO relative activity with no changes in color. Although the thermal treatment and the HIP (690MPa) along with high temperature (80°C) reduced the PPO relative activity, and relevant darkening was observed in the processed samples. Thus, it can be concluded that POD is more baro-resistant than PPO in açaí pulp subjected to the same HIP processing conditions and processing at 600MPa/65°C for 5min may be an effective alternative for thermal pasteurization treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterization and Degradation of Pectic Polysaccharides in Cocoa Pulp.

    Science.gov (United States)

    Meersman, Esther; Struyf, Nore; Kyomugasho, Clare; Jamsazzadeh Kermani, Zahra; Santiago, Jihan Santanina; Baert, Eline; Hemdane, Sami; Vrancken, Gino; Verstrepen, Kevin J; Courtin, Christophe M; Hendrickx, Marc; Steensels, Jan

    2017-11-08

    Microbial fermentation of the viscous pulp surrounding cocoa beans is a crucial step in chocolate production. During this process, the pulp is degraded, after which the beans are dried and shipped to factories for further processing. Despite its central role in chocolate production, pulp degradation, which is assumed to be a result of pectin breakdown, has not been thoroughly investigated. Therefore, this study provides a comprehensive physicochemical analysis of cocoa pulp, focusing on pectic polysaccharides, and the factors influencing its degradation. Detailed analysis reveals that pectin in cocoa pulp largely consists of weakly bound substances, and that both temperature and enzyme activity play a role in its degradation. Furthermore, this study shows that pulp degradation by an indigenous yeast fully relies on the presence of a single gene (PGU1), encoding for an endopolygalacturonase. Apart from their basic scientific value, these new insights could propel the selection of microbial starter cultures for more efficient pulp degradation.

  3. Effects of Soda-Anthraquinone Pulping Variables on the Durian Rind Pulp and Paper Characteristics: A Preliminary Test

    Science.gov (United States)

    Rizal Masrol, Shaiful; Irwan Ibrahim, Mohd Halim; Adnan, Sharmiza; Rahmad Talib, Mohd; Sian, Lau Lee

    2017-08-01

    Good combination of pulping variables is required to obtain the quality pulp and paper characteristics. Thus, in this preliminary work, naturally dried durian rind were pulped under Soda-Anthraquinone (Soda-AQ) pulping process with 18% to 22% alkali charge, 0% to 0.1% Anthraquinone (AQ) charge, 90 minutes to 150 minutes of cooking time and 150°C to 170°C to investigate the effect of pulping variables on the characteristics of the pulp and paper. Pulping condition with 0% of AQ charge was also conducted for comparison. Results indicated that the best screen yield percentage, reject yield percentage, freeness, drainage time, tear index, number of folds and optical properties were shown by the pulp produced with combination of the highest active alkali (22%), AQ charge (0.1%), cooking time (150 minutes) and cooking temperature (170°C) except apparent density, tensile index and burst index. This preliminary result shows that the optimum quality of durian rind pulp as a potential papermaking raw material pulp could be produced by selecting the good combination of pulping variables which influences the pulp and paper characteristics.

  4. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate

    Science.gov (United States)

    In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...

  5. Measurements of corrosion rates of carbon steels exposed to alkaline sulfide environments

    International Nuclear Information System (INIS)

    Yeske, R.A.

    1984-01-01

    Corrosion of carbon steel by alkaline sulfide liquors is a serious problem for pulp mills using kraft pulping processes. Studies have been conducted to characterize corrosion rates for carbon steels exposed to simulated liquors with various concentrations of major and minor species known to be present in kraft liquors. Corrosion rate measurements made by linear polarization methods have been compared with results of concurrent weight loss tests. With the exception of solutions containing high concentrations of polysulfides, linear polarization tests are in good qualitative agreement with weight loss measurements. Oxidation of species in the liquor apparently masquerades as metal dissolution in solutions where the rest potential is raised by oxidizing polysulfides. Some uncertainties remain regarding the origins of the Tafel slope constants and oxidation numbers required for agreement between the linear polarization and weight loss results

  6. Influence of the activator concentration on the kinetics of the alkaline activation process of a blast furnace slag

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    1997-06-01

    Full Text Available The influence of activator solution concentration on hydration kinetics of an alkaline activated blast furnace slag has been studied. The alkaline activator used was a mix of waterglass (Na2SiO3∙nH2O and NaOH solution (of variable concentration. Final activator concentrations were 3,4 and 5 % Na2O wt. with respect to the slag total weight. Degree of reaction (α was determined from hydration heat values obtained through isothermal conduction calorimetry. From the results obtained it is deduced that a treshold value of 4 % Na2O wt. exists. For those concentrations and at test temperatures (except for 25ºC and 3 % Na2O wt., the mechanism controlling hydration reaction for a values higher than 0.5, is a diffusion process. This process is described by .Jander equation [D3=(1-(1-α1/32=(k/r2t=0,0426(t/t0,5]. The activation energy obtained for that process is of approximately 50-58 Kj/mol.

    Se ha estudiado la influencia de la concentración de la disolución activante en la cinética de hidratación de una escoria granulada de alto horno, activada alcalinamente a distintas temperaturas. El activador alcalino utilizado fue una mezcla de water glass (Na2SiO3∙nH2O con una disolución de NaOH (de concentración variable. Las concentraciones finales del activador alcalino fueron: 3, 4 y 5 % en peso de Na2O respecto a la masa total de escoria. El grado de reacción (α se determinó a partir de valores de calor de hidratación obtenidos por calorimetría de conducción isotérmica. De los resultados obtenidos se deduce que existe un valor umbral de concentraciones en torno al 4 % en peso de Na2O. También para dichas concentraciones y a las temperaturas de ensayo (excepto a 25ºC con un 3 % en peso de Na2O, el mecanismo que controla la reacción de hidrataci

  7. The effect of temperature and addition of reducing agent on sodium stannate preparation from cassiterite by the alkaline roasting process

    Science.gov (United States)

    Lalasari, Latifa Hanum; Andriyah, Lia; Arini, Tri; Firdiyono, F.

    2018-04-01

    Sodium stannate is an intermediate compound with the formula Na2SnO3. This compound is easily dissolved in water and has many applications in the electroplating industry, tin alloy production, and catalysts for organic synthesis. In this occasion was investigated the effect of temperature and the addition of reducing agent on making of sodium stannate phase from cassiterite by an alkaline roasting process using sodium carbonate (Na2CO3). Firstly, cassiterite was roasted at 700 °C for 3 hours and continued leaching process using 10% HCl solution at 110 °C for 2 hours. The cassiterite residue than was dried at 110 °C and mixed homogenously with a Na2CO3 decomposer at a mass ratio Na2CO3/cassiterite as 5:3 for the decomposition process. It was done by variation temperatures (300 °C, 700 °C, 800 °C, 870 °C, 900 °C) for 3 hours, variation times (3, 4, 5 hours) at a roasting temperature of 700 °C and addition of reducing agent such as sub-bituminous coal. The result of the experiment shows that cassiterite prepared by roasting and acid leaching process has the chemical composition as follows: 59.98% Sn, 22.58% O, 3.20% Ce, 3.15% La, 2.57% Nd, 1.67% Ti, 1.56% Fe, 1.24% P, 0.62% Ca and others. The Na2SnO3 phase begins to form at a roasting temperature of 870 °C for 3 hours. Although the roasting times was extended from 3 hours to 5 hours at 700 °C, the Na2SnO3 phase also has not yet formed. In other conditions, the addition of coal reducing agent to the roasting process would cause formations of Sn metal besides Na2SnO3 phase at 870 °C. At temperatures lower than 870 °C, the addition of coal only forms Sn metal, whereas the sodium stannate phase is not formed.

  8. Can Acceptable Pulp be Obtained from Eucalyptus globulus Wood Chips after Hemicellulose Extraction?

    OpenAIRE

    Francisco López; M. Trinidad García; Vicente Mena; J. Mauricio Loaiza; Minerva A. M. Zamudio; Juan C. García

    2014-01-01

    This study investigates the operating conditions used in the soda-anthraquinone pulping of Eucalyptus globulus wood after autohydrolysis pretreatment on the yield, kappa number, and brightness of the resulting unbleached pulp. Moreover, strength-related properties of the resulting handsheets was examined to identify the best pulping conditions and compare the outcome with that of a conventional soda-anthraquinone pulping process. The paper strength properties of the pulp were similar to or be...

  9. Pulp and paper from blue agave waste from tequila production.

    Science.gov (United States)

    Idarraga, G; Ramos, J; Zuñiga, V; Sahin, T; Young, R A

    1999-10-01

    Pulping of blue agave waste, from the production of tequila, was evaluated by both chemical and biomechanical pulping processes. Two conventional and two organosolv systems were used to pulp the agave waste under a standard set of conditions. The soda-ethanol process was superior in terms of delignification and pulp properties in comparison to the soda and ethanol organosolv processes for pulping of agave waste; however, the kraft process gave the best strength properties. In general, the strength of the agave waste pulps was rather poor in comparison to wood and other agro-based pulps; however, the tear strength was relatively high. This result is typical of poorly bonded sheets and may be due to the coarseness of the agave fibers and/or loss of hemicelluloses in the steaming process for the tequila production. Fungal treatment of the agave waste with Ceriporiopsis subvermispora reduced the energy consumption for mechanical refining but gave biomechanical pulps with inferior strength properties. The blue agave chemical pulps should be suitable for blending with softwood kraft pulps for publication grade paper.

  10. Recuperation of uranium and gold in mineral pulps by adsorption

    International Nuclear Information System (INIS)

    Bruno, J.B.; Amorim, L.O.

    1985-06-01

    The technological routes for the treatment of the gold and uranium ores are presented. The results obtained during the continuous tests with the uraniferous Ores of Wabo in Somalia are presented. The utilization of 99% of the uranium content in the alkaline pulp is obtained. (C.B.) [pt

  11. FT–Raman investigation of bleaching of spruce thermomechanical pulp

    Science.gov (United States)

    U.P. Agarwal; L.L. Landucci

    2004-01-01

    Spruce thermomechanical pulp was bleached initially by alkaline hydrogen peroxide and then by sodium dithionite and sodium borohydride. Near-infrared Fourier-transform–Raman spectroscopy revealed that spectral differences were due primarily to coniferaldehyde and p-quinone structures in lignin, new direct evidence that bleaching removes p-quinone structures. In...

  12. Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process

    International Nuclear Information System (INIS)

    Macanas, Jorge; Soler, Lluis; Candela, Angelica Maria; Munoz, Maria; Casado, Juan

    2011-01-01

    The research of alternative processes to obtain clean fuels has become a main issue because of the concerns related to the current energy system, both from economical and environmental points of view. Hydrogen storage and production methods are being investigated for stationary and portable applications. Up to now, a significant part of H 2 production on demand was thought to be fulfilled by using chemical hydrides, but recent studies have proved the limitations of this approach. Conversely, H 2 production based in the corrosion of light metals in water solutions is an interesting alternative. Among all of them, Al is probably the most adequate metal for energetic purposes due to its high electron density and oxidation potential. But concerning H 2 production from Al corrosion in water, a major issue remains unsolved: metal passivation due to the formation of Al(OH) 3 inhibits H 2 evolution. In this work we show the last results obtained for the generation of H 2 from water using Al powder using diverse alkaline solutions. It is confirmed that corrosion is not affected solely by the solution pH but also by the nature of the ionic species found in the aqueous medium. Moreover, we describe the AlHidrox process, which minimizes Al passivation under mild conditions by the addition of different inorganic salts as corrosion promoters, allowing 100% yields and flow rates up to 2.9 L/min per gram of Al. The feasibility of the process has been regarded in terms of stability (by conducting several successive runs) and self-initiation without an external heating. -- Highlights: → The AlHidrox process minimizes Al passivation by the addition of inorganic salts. → Al corrosion to produce H 2 greatly depends on the nature of the dissolved species. → The maximum flow achieved was 2.9 dm 3 H 2 min -1 .per gram of Al using Fe 2 (SO 4 ) 3 . → We found conditions to start up H 2 generation without external energy input.

  13. Fabrication and characterization of silver/titanium dioxide composite nanoparticles in ethylene glycol with alkaline solution through sonochemical process.

    Science.gov (United States)

    Jhuang, Ya-Yi; Cheng, Wen-Tung

    2016-01-01

    This paper aims to study fabrication and characterization of silver/titanium oxide composite nanoparticle through sonochemical process in the presence of ethylene glycol with alkaline solution. By using ultrasonic irradiation of a mixture of silver nitrate, the dispersed TiO2 nanoparticle in ethylene glycol associated with aqueous solution of sodium oxide yields Ag/TiO2 composite nanoparticle with shell/core-type geometry. The powder X-ray diffraction (XRD) of the Ag/TiO2 composites showed additional diffraction peaks corresponding to the face-centered cubic (fcc) structure of silver crystallization phase, apart from the signals from the cores of TiO2. Transmission electron microscopy (TEM) images of Ag/TiO2 composites, which average particle size is roughly 80 nm, reveal that the titanium oxide coated by Ag nanoparticle with a grain size of about 2-5 nm. Additionally, the formation of silver nanoparticles on TiO2 was monitored by ultraviolet visible light spectrophotometer (UV-Vis). As measured the optical absorption spectra of as-synthesized Ag nanoparticle varying with time, the mechanism of surface formatting silver shell on the cores of TiO2 could be explored by autocatalytic reaction; the conversion of Ag particle from silver ion is 98% for the reaction time of 1000 s; and the activity energy of synthesizing Ag nanoparticles on TiO2 is 40 kJ/mol at temperature ranging from 5 to 25°C. Hopefully, this preliminary investigation could be used for mass production of composite nanoparticles assisted by ultrasonic chemistry in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Basic effects of pulp refining on fiber properties--a review.

    Science.gov (United States)

    Gharehkhani, Samira; Sadeghinezhad, Emad; Kazi, Salim Newaz; Yarmand, Hooman; Badarudin, Ahmad; Safaei, Mohammad Reza; Zubir, Mohd Nashrul Mohd

    2015-01-22

    The requirement for high quality pulps which are widely used in paper industries has increased the demand for pulp refining (beating) process. Pulp refining is a promising approach to improve the pulp quality by changing the fiber characteristics. The diversity of research on the effect of refining on fiber properties which is due to the different pulp sources, pulp consistency and refining equipment has interested us to provide a review on the studies over the last decade. In this article, the influence of pulp refining on structural properties i.e., fibrillations, fine formation, fiber length, fiber curl, crystallinity and distribution of surface chemical compositions is reviewed. The effect of pulp refining on electrokinetic properties of fiber e.g., surface and total charges of pulps is discussed. In addition, an overview of different refining theories, refiners as well as some tests for assessing the pulp refining is presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water.

    Science.gov (United States)

    Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert

    2015-01-01

    Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%.

  16. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP for the Production of Wood Fiber Insulation Boards Using Industrial Process Water.

    Directory of Open Access Journals (Sweden)

    Mark Schubert

    Full Text Available Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water. The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin. The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA, the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%.

  17. Pulp stem cells: implication in reparative dentin formation.

    Science.gov (United States)

    Dimitrova-Nakov, Sasha; Baudry, Anne; Harichane, Yassine; Kellermann, Odile; Goldberg, Michel

    2014-04-01

    Many dental pulp stem cells are neural crest derivatives essential for lifelong maintenance of tooth functions and homeostasis as well as tooth repair. These cells may be directly implicated in the healing process or indirectly involved in cell-to-cell diffusion of paracrine messages to resident (pulpoblasts) or nonresident cells (migrating mesenchymal cells). The identity of the pulp progenitors and the mechanisms sustaining their regenerative capacity remain largely unknown. Taking advantage of the A4 cell line, a multipotent stem cell derived from the molar pulp of mouse embryo, we investigated the capacity of these pulp-derived precursors to induce in vivo the formation of a reparative dentin-like structure upon implantation within the pulp of a rodent incisor or a first maxillary molar after surgical exposure. One month after the pulp injury alone, a nonmineralized fibrous matrix filled the mesial part of the coronal pulp chamber. Upon A4 cell implantation, a mineralized osteodentin was formed in the implantation site without affecting the structure and vitality of the residual pulp in the central and distal parts of the pulp chamber. These results show that dental pulp stem cells can induce the formation of reparative dentin and therefore constitute a useful tool for pulp therapies. Finally, reparative dentin was also built up when A4 progenitors were performed by alginate beads, suggesting that alginate is a suitable carrier for cell implantation in teeth. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Formation of carbonyl groups on cellulose during ozone treatment of pulp: consequences for pulp bleaching.

    Science.gov (United States)

    Pouyet, Frédéric; Chirat, Christine; Potthast, Antje; Lachenal, Dominique

    2014-08-30

    The formation of carbonyl groups during the ozone treatment (Z) of eucalyptus (Eucalyptus grandis and Eucalyptus urophylla hybrid) kraft pulps and their behaviors during subsequent alkaline stages were investigated by the CCOA method with carbazole-9-carboxylic acid [2-(2-aminooxethoxy)-ethoxy] amide (CCOA) as the carbonyl-selective fluorescence label. Several pulp samples with or without lignin and hexenuronic acids (hexA) were used to elucidate the effects of these components when present in unbleached kraft pulp. Both hexA and lignin increased the formation of carbonyl groups on cellulose and hemicellulose during ozonation. It was concluded that radicals are likely formed when ozone reacts with either lignin or hexA. These carbonyl groups were involved in cellulose depolymerization during subsequent alkaline extraction stages with sodium hydroxide (E) and alkaline hydrogen peroxide (P, in ZEP or ZP). Their numbers decreased after E but increased during P when H2O2 was not stabilized enough. Several ways to minimize the occurrence of carbonyl group formation are suggested. Copyright © 2014. Published by Elsevier Ltd.

  19. A comparison of human dental pulp response to calcium hydroxide and Biodentine as direct pulp-capping agents.

    Science.gov (United States)

    Jalan, Anushka Lalit; Warhadpande, Manjusha M; Dakshindas, Darshan M

    2017-01-01

    Direct pulp capping involves the placement of a biocompatible agent on pulp tissue that has been inadvertently exposed from traumatic injury or by iatrogenic means. To compare the human pulp response to calcium hydroxide and Biodentine as direct pulp-capping agents. Pulp exposures were performed on the pulpal floor of forty human permanent premolars. The exposure sites were dressed with either Dycal or Biodentine as pulp-capping materials. After 45 days, teeth were extracted and processed for histological examination. The histological data were subjected to Wilcoxon rank-sum test. The dentinal bridges in teeth that were capped with Biodentine were significantly thicker ( P Biodentine can be suggested as the material of choice for direct pulp capping procedure instead of Dycal. However, further long-term follow-up in vivo human studies using Biodentine on cariously exposed pulpal teeth are warranted to derive a definite conclusion.

  20. PEMUTIHAN PULP DENGAN HIDROGEN PEROKSIDA

    Directory of Open Access Journals (Sweden)

    Ahmad M. Fuadi

    2012-01-01

    Full Text Available The use of bleaching agent has increased as the result of increasing of paper consumption. The conventional bleaching agent that commonly used is material containing of chlorine. This material is not environmentally friendly and should be replaced by environmentally benign chemical, such as H2O2. About 40 gram of dry Akasia pulp was mixed with 600 ml of distilled water was put into plastic bag heated in a water bath. When the temperature reached 630C, a solution of 4 % of H2O2 and distilled water was added to obtain 5 % consistency. This mixture was put into water bath and was heated for 2 hours. The same procedure was conducted with various concentration of H2O2, time and pH. At the end of the process, the pulp was dewatered and washed. The filtrate obtained from the initial dewatering was used to determine the residual of H2O2. The pulp was analyzed to determine brightness, fiber strength and kappa number. The maximum achievement of brightness was 62,1 % ISO, 6.86 of kappa number and 1.02 kg/15 mm of fiber strength, which are reached at16 % of the use of H2O2, pH 11 and 5 hours of bleaching time. This achievement is similar to bleaching result by the additional of 4% H2O2. Inefficient usage of H2O2 was caused by some metal ions in the pulp which facilitate the decomposition of H2O2 to produce oxygen and water which has not effect on increasing the brightness. To improve the bleach ability of H2O2, initial treatment to remove metal ions from pulp should be done. Seiring dengan meningkatnya kebutuhan kertas, kebutuhan bahan pemutih juga mengalami kenaikan. Saat ini bahan pemutih yang banyak digunakan adalah senyawa yang mengandung khlor. Senyawa ini sangat tidak ramah lingkungan, oleh karena itu, perlu dicari bahan yang ramah lingkungan untuk menggantikannya. Salah satunya adalah hidrogen peroksida. Pulp dari pohon akasia sebanyak 40 gram kering dicampur dengan 600 ml aquadest dimasukkan dalam kantung plastik dipanaskan dalam water bath

  1. Reed Canary Grass Project. Development of a new crop production system based on delayed harvesting and a system for its combined processing to chemical pulp and bio fuel powder

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Rolf (ed.) (and others)

    2004-07-01

    The Reed canary grass project has been performed by 13 partners 8 countries; Sweden, Finland, Germany, Denmark, England, Wales, Scotland and Ireland. The aim of the project has been to evaluate if new breeding lines of reed canary grass suits in different European agricultural areas and to evaluate if the new delayed harvesting method originally developed in Sweden can be used all over the northern parts of Europe. The other part of the project deals with developing a system for its combined processing to chemical pulp and biofuel powder. The scientific objectives are to develop the C3 plant reed canary grass to an economically and environmentally competitive industrial crop for combined production of high quality chemical pulp and bioenergy fuel powder. Main results obtained in the project can be summarised as follows: The screening trials with new breeding lines of reed canary grass have shown a large potential for getting higher yields and better quality in new industrial varieties of reed canary grass. The best breeding lines tested gave at average a yield 20 % higher than now existing forage varieties which all economic calculations are based on. The results show that the delayed harvesting method gives important quality improvements and can be used except in areas with maritime climate. The research on chemical pulping and paper making have been successfully developed in the project and the obtained results in laboratory and pilot scale made it also possible to increase the ambitions in the project and include research on mill scale in cooperation with industry. This gave also possibilities to develop technologies needed for the whole chain from production fields to long distance handling and transport technology of intermediate processed raw materials. Different cooking processes have been developed for reed canary grass and a new cooking method the soda-oxygen process has given extremely high pulp yields if combined with intermediate processed raw material

  2. Signaling Molecules and Pulp Regeneration.

    Science.gov (United States)

    Schmalz, Gottfried; Widbiller, Matthias; Galler, Kerstin M

    2017-09-01

    Signaling molecules play an essential role in tissue engineering because they regulate regenerative processes. Evidence exists from animal studies that single molecules such as members of the transforming growth factor beta superfamily and factors that induce the growth of blood vessels (vascular endothelial growth factor), nerves (brain-derived neurotrophic factor), or fibroblasts (fibroblast growth factor) may induce reparative dentin formation. Mainly the formation of atubular dentin (osteodentin) has been described after the application of single molecules or combinations of recombinant growth factors on healthy exposed pulps or in pulp regeneration. Generally, such preparations have not received regulatory approval on the market so far. Only the use of granulocyte colony-stimulating factors together with cell transplantation is presently tested clinically. Besides approaches with only 1 or few combined molecules, the exploitation of tissue-derived growth factors depicts a third promising way in dental pulp tissue engineering. Preparations such as platelet-rich plasma or platelet-rich fibrin provide a multitude of endogenous signaling molecules, and special regulatory approval for the market does not seem necessary. Furthermore, dentin is a perfect reservoir of signaling molecules that can be mobilized by treatment with demineralizing agents such as EDTA. This conditions the dentin surface and allows for contact differentiation of pulp stem cells into odontoblastlike cells, protects dentin from resorption, and enhances cell growth as well as attachment to dentin. By ultrasonic activation, signaling molecules can be further released from EDTA pretreated dentin into saline, thus avoiding cytotoxic EDTA in the final preparation. The use of dentin-derived growth factors offers a number of advantages because they are locally available and presumably are most fit to induce signaling processes in dental pulp. However, better characterization and standardization of the

  3. Pilot scale fermentation of Jerusalem artichoke tuber pulp mashes

    Energy Technology Data Exchange (ETDEWEB)

    Ziobro, G.C.; Williams, L.A.

    1983-01-01

    Processing and fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tuber pulp mashes were successfully carried out at pilot scales of 60 gallons and 1000 gallons. Whole tubers were pulped mechanically into a thick mash and fermented, using commercially available Saccharomyces cerevisiae and selected strains of Kluyveromyces fragilis. EtOH fermentation yields ranging from 50-70% of theoretical maximum were obtained in 3-4 days. Several problems regarding the processing and direct fermentation of tuber pulp mashes are discussed.

  4. Treated dentin matrix paste as a novel pulp capping agent for dentin regeneration.

    Science.gov (United States)

    Chen, Jinlong; Cui, Caiyun; Qiao, Xiangchen; Yang, Bo; Yu, Mei; Guo, Weihua; Tian, Weidong

    2017-12-01

    Regenerating dentin and preserving pulp vitality are the two key targets for the treatment of dental pulp exposure. Calcium hydroxide (CH), the widely used capping agent, may induce potential tunnel defect in reparative dentin and cause inflammation or even necrosis in pulp tissues. This study aimed to produce a novel pulp capping agent with better bioactivities. Treated dentin matrix (TDM) paste (TDMP) was fabricated consisting of TDM powder and aqueous TDM extract. The chemical and biological characteristics of TDMP were investigated, and its effect on the odontogenic differentiation of dental pulp stem cells explored at gene and protein level; the therapeutic effect for pulp exposure in miniature swine was further verified. TDMP possessed better biocompatibility with neutral pH value, significantly promoted the proliferation of dental pulp stem cells, and enhanced the gene and protein expressions of alkaline phosphatase, bone sialoprotein, dentin sialoprotein etc., compared with CH. In vivo pulp capping using TDMP presented the formation of continuous reparative dentin bridge thicker and denser than CH group. Moreover, pulp tissues under TDMP capping sites showed relatively slight angiectasis than those induced by CH. TDMP could achieve both dentin regeneration and vital pulp conservation, and might serve as a feasible substitute for CH in dental pulp repair procedure. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Viinikainen, S.; Nousiainen, I.; Edelman, K.; Manninen, J.

    2002-07-01

    The pulp and paper industry has played a major role in Finland with regards to energy use, technological development and the economy. Finland's market share in printing and writing paper exports is 25%. Finnish companies now figure among the world's biggest pulp and paper enterprises through international consolidations. Finnish equipment manufacturers, control system suppliers and consulting engineering firms are also global players. Rapid technological changes have taken place in the unit sizes of main process equipment or whole production lines. Environmental effects have been reduced significantly, e.g. biological oxygen demand load has been reduced from 530 000 to 18 000 t/a in the last 30 years, even though the production of paper and board has tripled. Competitiveness in the future depends on the supply of raw material, energy use, environmental issues as well as on the development of information and communication technology (ICT) for transferring and storing information. The growth rate of paper products has been closely interconnected with economic development. The average annual increase in the production volume has been 2-3%, whereas the real price of products has followed a declining trend. The first indication of the effects of ICT is seen in the reduced newsprint demand in the US market. It is foreseen that the use of cut-size office papers will increase, together with individual printing. Global growth in the demand for paper products is expected to slow down but not to cease because of this development. Forest growth in Finland currently exceeds annual harvesting. Taking into account the changes in forest ownership, taxation principles and forest land protection, an increase in harvesting of 5-10% is feasible. The amount of imported wood is expected to increase also in the future. Utilisation of the available fibre supply has to be further optimised in terms of endproduct properties. Since the investment in a new production line is already

  6. Assessment of process variables on the use of macauba pulp oil as feedstock for the continuous production of ethyl esters under pressurized conditions

    Directory of Open Access Journals (Sweden)

    T. A. da S. Colonelli

    Full Text Available ABSTRACT This study evaluated the potential of macauba pulp oil (MPO as a feedstock for continuous ester production using ethanol under pressurized conditions. Experiments were performed in order to obtain data for the effect of process variables on ethyl ester (FAEE and free fatty acid (FFA conversion in a catalyst-free process. From the results, it appears that the MPO to ethanol mass ratio and the pressure were the variables with more favorable effect on the evaluated response variables. The addition of n-hexane caused an increase in the production of esters; however, this had a negative effect on FFA conversion. The addition of water was unfavorable for oil processing with high acidity. In this process, esterification and transesterification occur simultaneously, and the high FFA content in MPO provides high yields (85 wt% of esters; 93% FFA conversion at low temperature, since the esterification reaction rate is higher than the transesterification. The decomposition of fatty acids was evaluated and levels <5% were observed under the evaluated experimental conditions.

  7. Evaluating pulp stiffness from fibre bundles by ultrasound

    Science.gov (United States)

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  8. Steam explosion and new production processes for pulping industry: technical and economical feasibility; Steam explosion e nuovi processi di produzione cartaria: fattibilita` tecnico-economica

    Energy Technology Data Exchange (ETDEWEB)

    Viggiano, D. [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dipt. Energia; Bramanti, O. [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dipt. Innovazione

    1998-05-01

    Pulping and paper industry traditionally uses wood as the main raw material for its production processes. Thus, the global increasing of paper and pulp yield has causes so a depletion work of natural wood resources that the environment balances are weakened. About conversion technologies, the most important developments are carried out by the Companies from Sweden, Finland, Norway and Canada, where industrial management has chosen production processes anti pollution (soda-sulphate) in the place of those more dangerous (bi-sulphate). The international research and development activities are focused, at the same time, on new conversion processes and renewable resources in the last time shows to meet three different needs: 1. anti pollution laws; 2. public opinion for the environment policy; 3. market competitors. The present work offers a technical and economical assessment of industrial application of steam-explosion process and non-wood biomass (C{sub 4}, C{sub 5}). Then, the authors propose the introduction of the steam-explosion technology in pulping industry in order to obtain technical and economical advantages. [Italiano] Il comparto industriale cartario impiega per tradizione secolare il legno come principale materia prima all`interno dei cicli tecnologici di produzione. Cio` ha determinato un incremento produttivo di paste e di carta a cui si e` accompagnata una crescente opera di deforestazione ed una serie di conseguenti squilibri ecologici. A fronte di tali interventi di distruzione `programmata`, dal punto di vista delle tecnologie di trasformazione, va rilevato che i processi produttivi hanno subito una reale evoluzione nei Paesi maggiormente sensibili ai problemi ambientali come Svezia, Finlandia, Norvegia e Canada, ove gli imprenditori del setttore hanno abbandonato i processi a maggior impatto ambientale, come quelli al bisolfito, per adottarne alcuni meno inquinanti, come quello alla soda-solfato. Negli ultimi anni gli sforzi della ricerca

  9. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Jiang, Hongwei, E-mail: jianghw@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Gong, Qimei, E-mail: gongqmei@gmail.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fan, Chen, E-mail: c3.fan@student.qut.edu.au [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Huang, Yihua, E-mail: enu0701@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Ling, Junqi, E-mail: lingjq@mail.sysu.edu.cn [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2014-08-08

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.

  10. Determining the minimum conditions for soda-anthraquinone pulping of kenaf bast, core, and whole stalk fibers

    Science.gov (United States)

    James S. Han; Thomas A. Rymsza

    1999-01-01

    Chemical pulping of kenaf fiber is comparatively new. In this study, bast, core, and whole stalk kenaf fibers were pulped using a soda-AQ pulping process and various pulping conditions. Handsheets were evaluated for density, Canadian standard freeness, brightness, opacity, smoothness, and tensile, burst, and tear indexes and strength. The results indicate that...

  11. Characterization of alkaline xylanases from Bacillus pumilus

    Directory of Open Access Journals (Sweden)

    Duarte Marta Cristina Teixeira

    2000-01-01

    Full Text Available Alkaline xylanases produced by four different strains of Bacillus pumilus were characterized. The optimal pH and temperature were pH 9.0 and 60ºC for strain 13a, and pH 8.0 and 55ºC for strains 5(2, 5(14, and 4a. Under these conditions the following activities were found after 10 min in the presence of 1% xylan (birchwood: 328 U.ml-1, 131 U.ml-1, 90 U.ml-1, and 167 U.ml-1, respectively, for the four strains. The enzymes were stable at 40ºC, with 40% of the xylanase activity remaining after 2 hours for the enzymes of strain 5(2 and 60% for the other three strains. Stability at 50ºC was improved by addition of glycerol. Taking into account the conditions under which kraft pulps are bleached during the manufacture of paper, xylanases from B. pumilus exhibit favorable potential for application to bleaching in the paper making process.

  12. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    Science.gov (United States)

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Mineralization Effect of Hyaluronan on Dental Pulp Cells via CD44.

    Science.gov (United States)

    Chen, Kuan-Liang; Yeh, Ying-Yi; Lung, Jrhau; Yang, Yu-Chi; Yuan, Kuo

    2016-05-01

    CD44 is a cell-surface glycoprotein involved in various cellular functions. Recent studies have suggested that CD44 is involved in early mineralization of odontoblasts. Hyaluronic acid (HA) is the principal ligand for receptor CD44. Whether and how HA regulated the mineralization process of dental pulp cells were investigated. The effects of high-molecular-weight HA on differentiation and mineral deposition of dental pulp cells were tested by using alkaline phosphatase (ALP) activity assay and alizarin red S staining. Osteogenesis real-time polymerase chain reaction array, quantitative polymerase chain reaction, and Western blotting were performed to identify downstream molecules involved in the mineralization induction of HA. CD44 was knocked down and examined to confirm whether the mineralization effect of HA was mediated by receptor CD44. Immunohistochemistry was used to understand the localization patterns of CD44 and the identified downstream proteins in vivo. Pulse treatment of HA enhanced ALP activity and mineral deposition in dental pulp cells. Tissue-nonspecific ALP, bone morphogenetic protein 7 (BMP7), and type XV collagen (Col15A1) were upregulated via the HA-CD44 pathway in vitro. Immunohistochemistry of tooth sections showed that the staining pattern of BMP7 was very similar to that of CD44. Results of this study indicated that high-molecular-weight HA enhanced early mineralization of dental pulp cells mediated via CD44. The process involved important mineralization-associated molecules including tissue-nonspecific ALP, BMP7, and Col15A1. The findings may help develop new strategies in regenerative endodontics. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Properties of OCC Pulp

    Directory of Open Access Journals (Sweden)

    Masoumeh Moradi

    2013-06-01

    Full Text Available Old Corrugated Container (OCC recycled pulp provided by a local paper manufacturing company was treated by lactase enzyme. The pulp was sampled from headbox and treated by enzyme in the conditions of consistency 2%, pH 5, reaction time 2 hours, and reaction temperature 60 °C in dosing levels of 0.005, 0.01 and 0.015 % based on oven-dried weight of pulp. Fiber classification of the control pulp showed 31.3 % of fines content and 0.82 mm average fiber length. Results have indicated that lactase treatment decreased kappa number and SR degree to 20% and 14 degrees, respectively which consequently facilitated the drainage of pulp. The extraction of treated samples showed a peak at around 280 nm, confirming the delignification of pulp by enzyme. Microscopic observation of fiber walls of the treated sample indicated a local separation of middle lamella, fiber linting and removal of fines from fiber surface. The highest Water Retention Value (WRV was measured to be at 0.015% enzyme addition level. The apparent density of handsheets made from treated samples was lower compared with the handsheets made of control pulp resulting in loss of paper strengths.

  15. A constructed alkaline consortium and its dynamics in treating alkaline black liquor with very high pollution load.

    Directory of Open Access Journals (Sweden)

    Chunyu Yang

    Full Text Available Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor.Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs using random amplified polymorphic DNA-PCR profiles (RAPD. Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l(-1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l(-1 (27.3% COD(cr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE and gas chromatography/mass spectrometry (GC/MS analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions.Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor treatment. Facilitating the treatment process by the

  16. Research on Wheat Straw Pulping with Ionic Liquid 1-Ethyl-3-Methylimidazole Bromide

    Directory of Open Access Journals (Sweden)

    Wei Song

    2016-12-01

    Full Text Available In this paper, the pulping process of wheat straw using ionic liquid 1-ethyl-3-methylimidazolium bromide ([Emim]Br as the digestion liquor is presented. The influence of pulping conditions on the pulp yield are analysed by single-factor and orthogonal experiments, and optimum pulping conditions are obtained. The average pulp yield reaches 44 %, and the average recovery rate of ionic liquid is 93.5 %. The XRD pattern shows no obvious change in the crystal structure of the wheat straw cellulose. Additionally, the SEM image illustrates that there are many fine fibres in the pulp and the spaces between the fibres are large.

  17. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... from the olive pulp, and c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  18. Performance of a Horizontal Double Cylinder Type of Fresh Coffee Cherries Pulping Machine

    OpenAIRE

    Widyotomo, Sukrisno; Mulato, Sri; Ahmad, H; Soekarno, s

    2009-01-01

    Pulping is one important step in wet coffee processing method. Usually, pulping process uses a machine which constructed using wood or metal materials. A horizontal single cylinder type coffee pulping machine is the most popular machine in coffee processor and market. One of the weakness of a horizontal single cylinder type coffee pulping machine is high of broken beans. Broken beans is one of major aspect in defect system that result in low quality. Indonesian Coffee and Cocoa Research Insti...

  19. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy

    2008-09-22

    Project Abstract for “Steam Cycle Washer for Unbleached Pulp” When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporation’s pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: • energy is used in process heat and • power is required for pumping the large volume of pulp slurries

  20. Evaluation of processed green and ripe mango peel and pulp flours (Mangifera indica var. Chokanan) in terms of chemical composition, antioxidant compounds and functional properties.

    Science.gov (United States)

    Abdul Aziz, Noor Aziah; Wong, Lee Min; Bhat, Rajeev; Cheng, Lai Hoong

    2012-02-01

    Mango is a highly perishable seasonal fruit and large quantities are wasted during the peak season as a result of poor postharvest handling procedures. Processing surplus mango fruits into flour to be used as a functional ingredient appears to be a good preservation method to ensure its extended consumption. In the present study, the chemical composition, bioactive/antioxidant compounds and functional properties of green and ripe mango (Mangifera indica var. Chokanan) peel and pulp flours were evaluated. Compared to commercial wheat flour, mango flours were significantly low in moisture and protein, but were high in crude fiber, fat and ash content. Mango flour showed a balance between soluble and insoluble dietary fiber proportions, with total dietary fiber content ranging from 3.2 to 5.94 g kg⁻¹. Mango flours exhibited high values for bioactive/antioxidant compounds compared to wheat flour. The water absorption capacity and oil absorption capacity of mango flours ranged from 0.36 to 0.87 g kg⁻¹ and from 0.18 to 0.22 g kg⁻¹, respectively. Results of this study showed mango peel flour to be a rich source of dietary fiber with good antioxidant and functional properties, which could be a useful ingredient for new functional food formulations. Copyright © 2011 Society of Chemical Industry.

  1. Kinetic modeling of formic acid pulping of bagasse.

    Science.gov (United States)

    Tu, Qiliang; Fu, Shiyu; Zhan, Huaiyu; Chai, Xinsheng; Lucia, Lucian A

    2008-05-14

    Organic solvent or organosolv pulping processes are alternatives to soda or kraft pulping to delignify lignocellulosic materials for the production of paper pulp. Formic acid, a typical organosolv system, has been presently examined under atmospheric pressure to pulp bagasse fibers. It was shown that efficient bagasse pulping was achieved when the formic acid concentration was limited to 90% (v/v). A statistical kinetic model based on the experimental results for the delignification of bagasse during formic acid pulping was developed that can be described as follows: D (delignification) = 0.747 x C(formicacid) (1.688) x (1 - e(-0.05171t)), an equation that can be used to predict the lignin content in formic acid during the pulping process. The delignification of bagasse by 90% formic acid was almost completed after approximately 80 min, while extended pulping did not improve the delignification but tended to degrade the carbohydrates in bagasse, especially the hemicelluloses, which were rapidly hydrolyzed at the onset of pulping.

  2. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    Energy Technology Data Exchange (ETDEWEB)

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  3. Soda-anthraquinone, kraft and organosolv pulping of holm oak trimmings.

    Science.gov (United States)

    Alaejos, J; López, F; Eugenio, M E; Tapias, R

    2006-11-01

    The operating conditions for an organosolv (ethyleneglycol) and two alkaline (soda-anthraquinone and kraft) processes for obtaining cellulose pulp and paper from holm oak (Quercus ilex) wood trimmings were optimized. A range of variation for each process variable (viz. temperature, cooking time and soda or ethyleneglycol concentration) was established and a central composite experimental design involving three independent variables at three different variation levels was applied. The results obtained with the three cooking processes used were compared and those provided by the kraft process were found to be the best. Thus, the tensile index values it provided (5.9-16.3 N m/g) were 23.7% and 41.5% better than those obtained with the soda-AQ and ethyleneglycol processes, respectively. Also, the kraft process provided the best burst index, brightness and kappa number values. Based on the optimum working ranges, the temperature and cooking time were the variables resulting in the most and least marked changes, respectively, in pulp properties.

  4. Proteomic analysis of human tooth pulp: proteomics of human tooth.

    Science.gov (United States)

    Eckhardt, Adam; Jágr, Michal; Pataridis, Statis; Mikšík, Ivan

    2014-12-01

    The unique pulp-dentin complex demonstrates strong regenerative potential, which enables it to respond to disease and traumatic injury. Identifying the proteins of the pulp-dentin complex is crucial to understanding the mechanisms of regeneration, tissue calcification, defense processes, and the reparation of dentin by dental pulp. The lack of knowledge of these proteins limits the development of more efficient therapies. The proteomic profile of human tooth pulp was investigated and compared with the proteome of human dentin and blood. The samples of tooth pulp were obtained from 5 sound permanent human third molars of 5 adults (n = 5). The extracted proteins were separated by 2-dimensional gel electrophoresis, analyzed by nano-liquid chromatography tandem mass spectrometry, and identified by correlating mass spectra to the proteomic databases. A total of 342 proteins were identified with high confidence, and 2 proteins were detected for the first time in an actual human sample. The identified tooth pulp proteins have a variety of functions: structural, catalytic, transporter, protease activity, immune response, and many others. In a comparison with dentin and blood plasma, 140 (pulp/dentin) shared proteins were identified, 37 of which were not observed in plasma. It can be suggested that they might participate in the unique pulp-dentin complex. This proteomic investigation of human tooth pulp, together with the previously published study of human dentin, is one of the most comprehensive proteome lists of human teeth to date. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Failure analysis of a heat exchanger used of a wood pulp bleaching process; Analise de falha de um trocador de calor utilizado no processo de branqueamento da polpa de celulose

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.B.V.; Moreto, J.A.; Rossino, L.S.; Spinelli, D.; Tarpani, J.R. [Universidade de Sao Paulo (SMM/EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materais, Aeronautica e Automobilistica

    2010-07-01

    This study involved an investigation of the failure of a heat exchanger used in the ozone destruction stage of a wood pulp bleaching process at a pulp plant. The following procedures were carried out to determine the causes of the failure: a chemical analysis of the component, atomic absorption spectroscopy, measurements of hardness and of corrosion-related mass loss, characterization by scanning electron microscopy, and chemical microanalysis by X-ray energy dispersive spectroscopy. The corrosion damage of the heat exchanger was caused by chloric and sulfuric acid, which led to pitting, grooving and cracking, as well as generalized corrosion of the component (AISI 316L steel). Nitric acid caused minimal damage to the heat exchanger, with minor generalized corrosion and occasional pitting. White crystals rich in sulfur and chlorine were identified as the corrosive agents acting inside the heat exchanger. (author)

  6. Computation of interactive effects and optimization of process parameters for alkaline lipase production by mutant strain of Pseudomonas aeruginosa using response surface methodology

    Directory of Open Access Journals (Sweden)

    Deepali Bisht

    2013-01-01

    Full Text Available Alkaline lipase production by mutant strain of Pseudomonas aeruginosa MTCC 10,055 was optimized in shake flask batch fermentation using response surface methodology. An empirical model was developed through Box-Behnken experimental design to describe the relationship among tested variables (pH, temperature, castor oil, starch and triton-X-100. The second-order quadratic model determined the optimum conditions as castor oil, 1.77 mL.L-1; starch, 15.0 g.L-1; triton-X-100, 0.93 mL.L-1; incubation temperature, 34.12 ºC and pH 8.1 resulting into maximum alkaline lipase production (3142.57 U.mL-1. The quadratic model was in satisfactory adjustment with the experimental data as evidenced by a high coefficient of determination (R² value (0.9987. The RSM facilitated the analysis and interpretation of experimental data to ascertain the optimum conditions of the variables for the process and recognized the contribution of individual variables to assess the response under optimal conditions. Hence Box-Behnken approach could fruitfully be applied for process optimization.

  7. Computation of interactive effects and optimization of process parameters for alkaline lipase production by mutant strain of Pseudomonas aeruginosa using response surface methodology

    Science.gov (United States)

    Bisht, Deepali; Yadav, Santosh Kumar; Darmwal, Nandan Singh

    2013-01-01

    Alkaline lipase production by mutant strain of Pseudomonas aeruginosa MTCC 10,055 was optimized in shake flask batch fermentation using response surface methodology. An empirical model was developed through Box-Behnken experimental design to describe the relationship among tested variables (pH, temperature, castor oil, starch and triton-X-100). The second-order quadratic model determined the optimum conditions as castor oil, 1.77 mL.L−1; starch, 15.0 g.L−1; triton-X-100, 0.93 mL.L−1; incubation temperature, 34.12 °C and pH 8.1 resulting into maximum alkaline lipase production (3142.57 U.mL−1). The quadratic model was in satisfactory adjustment with the experimental data as evidenced by a high coefficient of determination (R2) value (0.9987). The RSM facilitated the analysis and interpretation of experimental data to ascertain the optimum conditions of the variables for the process and recognized the contribution of individual variables to assess the response under optimal conditions. Hence Box-Behnken approach could fruitfully be applied for process optimization. PMID:24159311

  8. Inhibition of odontogenic differentiation of human dental pulp cells by dental resin monomers

    OpenAIRE

    Kwon, Ji Hyun; Park, Hee Chul; Zhu, Tingting; Yang, Hyeong-Cheol

    2015-01-01

    Background Dental resin monomers that are leached from the resin matrix due to incomplete polymerization can affect the viability and various functions of oral tissues and cells. In this study, the effects of triethylene glycol dimethacrylate (TEGDMA) and 2-hydroxyethyl methacrylate (HEMA) on odontogenic differentiation of human dental pulp cells (HDPCs) were examined. To mimic clinical situations, dental pulp cells were treated with resin monomers for 24?h prior to the analysis of alkaline p...

  9. Biological treatment of high-pH and high-concentration black liquor of cotton pulp by an immediate aerobic-anaerobic-aerobic process.

    Science.gov (United States)

    Lihong, Miao; Furong, Li; Jinli, Wen

    2009-01-01

    In this study, an immediate aerobic-anaerobic-aerobic (O/A/O) biological process was established for the treatment of black liquor of cotton pulp and was tested by both laboratory-scale batch experiment and pilot-scale continuous experiment. The effects of the hydraulic retention time (HRT) were studied, as were the alkaliphilic bacteria number, the culturing temperature and the concentration of black liquor on COD (chemical oxygen demand) removal. The total COD (COD(tot)) removal rate of the novel O/A/O process, for a black liquor with influent COD(tot) over 8,000 mg/L and pH above 12.8, was 68.7+/-4% which is similar with that of the traditional acidic-anaerobic-aerobic process (64.9+/-3%). The first aerobic stage based on alkaliphilic bacteria was the crucial part of the process, which was responsible for decreasing the influent pH from above 12 to an acceptable level for the following treatment unit. The average generation time of the alkaliphilic bacteria in the black liquor was about 36 minutes at 40 degrees C in a batch aerobic activated sludge system. The efficiency of the first aerobic stage was affected greatly by the temperature. The COD(tot) removal at 55 degrees C was much lower in comparison with the COD(tot) removal at 45 degrees C or 50 degrees C. Both the laboratory-scale batch experiments and the pilot-scale continuous experiment showed that the COD(tot) removal rate could reach about 65% for original black liquor with a pH of about 13.0 and a COD of 18,000-22,000 mg/L by the immediate O/A/O process. The first aerobic stage gave an average COD(tot) removal of 45.5% at 35 degrees C (HRT = 72 h) at a volume loading rate of 3.4 kg COD m(-3) d(-1).

  10. Hard tissue deposition in dental pulp canal by {alpha}-tricalcium phosphate cement

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M.; Toda, T. [Osaka Dental Univ. (Japan). Dept. of Endodontics; Mandai, Y. [Bio-Chemical Lab. of Nitta Gelatin Inc., Yao (Japan); Oonishi, H. [Osaka Minami National Hospital, Kawachi (Japan). Dept. of Orthopaedic Surgery

    2001-07-01

    Canal closure by hard tissue proliferation in the pulp canal and/or apical foramen is the most ideal healing after pulp removal. Generally, Ca(OH){sub 2} may induce secondary dentine or dentine-bridge on the amputated pulp surface. However, Ca(OH){sub 2} shows strong alkalinity and may cause severe inflammatory responses in the residual pulp. Moreover, completely formed dentine-bridge at the orifice will disturb further treatment of residual pulp because of the difficulty in localizing the pathway. The purpose of this study was to see hard tissue induction using newly developed {alpha}-tricalcium phosphate cement and to recognize the morphological difference of hard tissue from that of Ca(OH){sub 2}. (orig.)

  11. Effects of different activation processes on H2O2/TAED bleaching of Populus nigra chemi-thermo mechanical pulp

    OpenAIRE

    Qiang Zhao; Dezhi Sun; Zhaohong Wang; Junwen Pu; Xiaojuan Jin; Mian Xing

    2012-01-01

    Tetra acetyl ethylene diamine (TAED) was used as an activator in H2O2 bleaching to improve bleaching efficiency. The present work was aimed at confirming different activations for various H2O2/TAED bleaching processes, including the addition of acetic anhydride and the step-addition of sodium hydroxide. The results showed that an acetic anhydride dosage of 1%, an acetic anhydride treatment time of 10 min, and an addition time of 45 min were the optimal treatment conditions. The optimum proces...

  12. Nutritional composition of Annona crassiflora pulp and acceptability of bakery products prepared with its flour

    Directory of Open Access Journals (Sweden)

    Paula Villela

    2013-09-01

    Full Text Available Annona crassiflora offers an edible fruit native to the Savanna. This study aimed to develop a flour meal from Annona crassiflora pulp; analyze the chemical composition of the fresh pulp and its flour; develop and verify the acceptance of formulations with different concentrations of the flour of Annona crassiflora pulp. Fruit used were selected and processed. The pulp was dried in an oven at 60-65 ºC/48h. We analyzed the chemical composition, and two formulations of breads were prepared with 10 and 20% Annona crassiflora pulp. The results showed that the drying of Annona crassiflora pulp enriched its nutritional value. The Annona crassiflora pulp showed important chemical components, as insoluble fibers (pulp and flour, minerals (potassium, calcium, manganese and others and antioxidant compounds. The formulations were well-accepted in a sensory point of view and proved to be a good alternative to the exploitation of the fruit.

  13. Removal of technetium from alkaline nuclear-waste media by a solvent-extraction process using crown ethers

    International Nuclear Information System (INIS)

    Bonnesen, P.V.; Presley, D.J.; Haverlock, T.J.; Moyer, B.A.

    1995-01-01

    Crown ethers dissolved in suitably modified aliphatic kerosene diluents can be employed to extract technetium as pertechnetate anion (TcO 4 - ) with good extraction ratios from realistic simulants of radioactive alkaline nitrate waste. The modifiers utilized are non-halogenated and non-volatile, and the technetium can be removed from the solvent by stripping using water. The crown ethers bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6 (di-t-BuCH18C6) and dicyclohexano-18-crown-6 (DCH18C6) provide stronger TcO 4 - extraction than dicyclohexano-21-crown-7 and 4-tert-butylcyclohexano 15-crown-5. Whereas DCH18C6 provides somewhat higher TcO 4 - extraction ratios than the more lipophilic di-t-BuCH18C6 derivative, the latter was selected for further study owing to its lower distribution to the aqueous phase. Particularly good extraction and stripping results were obtained with di-t-BuCH 18C6 at 0.02 M in a 2:1 vol/vol blend of tributyl phosphate and Isopar reg-sign M. Using this solvent, 98.9% of the technetium contained (at 6 x 10 -5 M) in a Double-Shell Slurry Feed (DSSF) Hanford tank waste simulant was removed following two cross-current extraction contacts. Two cross-current stripping contacts with deionized water afforded removal of 99.1% of the technetium from the organic solvent

  14. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2017-01-01

    Full Text Available Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  15. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration.

    Science.gov (United States)

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  16. Chemical and sensory characterization of orange (Citrus sinensis) pulp,a by-product of orange juice processing using gas-chromatography-olfactometry

    Science.gov (United States)

    Volatile composition of commercial orange pulp (from Brazil and Florida, U.S.A.) were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-Olfactometry (GC-O). In both samples 72 volatiles were detected, of which 58 were identified. Odor-active compounds with high frequency of detection (...

  17. Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: Influence on extractive contents, pulping process parameters, paper quality and effluent toxicity

    NARCIS (Netherlands)

    Beek, van T.A.; Kuster, B.; Claassen, F.W.; Tienvieri, T.; Bertaud, F.; Lennon, G.; Petit-Concil, M.; Sierra-Alvarez, R.

    2007-01-01

    Lipophilic low molar-mass constituents in wood chips for the paper industry result in low quality pulp, pitch deposition, and effluent toxicity. New biotechnological solutions such as fungal pre-treatment of wood chips can reduce pitch problems. This laboratory-scale study focuses on the potential

  18. Influence of kraft pulping on carboxylate content of softwood kraft pulps

    Science.gov (United States)

    Zheng Dang; Thomas Elder; Arthur J. Ragauskas

    2006-01-01

    This study characterizes changes in fiber charge, which is the carboxylate content of fibers, for two sets of kraft pulps: (1) conventional laboratory cooked loblolly pine kraft pulps and (2) conventional pulping (CK) versus low solids pulping (LS) pulps. Laboratory kraft pulping of loblolly pine was carried out to study the influence of pulping conditions, including...

  19. Influência da adição de um resíduo alcalino da indústria de papel e celulose na lixiviação de cátions em um solo ácido Cation leaching from an acid soil after application of alkaline by-product from the pulp and paper industry

    Directory of Open Access Journals (Sweden)

    Henrique Cesar Almeida

    2008-08-01

    á prejudicar os atributos químicos e físicos do solo.Alkaline by-products generated in the pulp and paper industry can be used to reduce soil acidity. However, the low Mg and intermediate Na values in these residues can negatively affect the bioavailability of some nutrients and soil properties. Before recommending them, it is therefore imperative that their effects on the soil be evaluated. The objective of this study was to quantify the soil chemical composition and vertical mobility of cations due to application of alkaline industrial residue in different forms, in comparison to dolomitic limestone. The experiment was carried out in a laboratory, with a Haplumbrept, from 2005 to 2006, using leaching columns (30 x 10 cm diameter. The treatments consisted of a 4 x 2 x 2 factorial design, including two previous values of soil pH with one control each, two alkaline compounds (industrial residue or dolomitic limestone and two application methods (surface applied or soil incorporated. Ten percolations were performed, at weekly intervals, in a volume of 300 mL of distilled water per week, corresponding to a total amount of 380 mm rain. 60 % of the Na added leached from the soil-incorporate by-product, but this leaching decreased to 12 % when it was applied on the soil surface. The addition of alkaline residue did not cause leaching of Ca, Mg or K, and dolomitic limestone leached only 2.4 % of the Ca and 7.2 % of added Mg, demonstrating the low vertical mobility of these cations when applied from basic compounds to variable charge soils. The previous elevation of the soil pH decreased cation leaching substantially due to the increase of the soil negative charges. Given the rainfall conditions in southern Brazil, the amount of Na added will disappear from the plow layer in less than one year after its application, so this product should not negatively affect any chemical or physical soil property.

  20. Novel Pulping Technology: Directed Green Liquor Utilization (D-GLU) Pulping

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    The general objectives of this new project are the same as those described in the original proposal. Conventional kraft pulping technologies will be modified for significant improvements in pulp production, such as strength, bleachability, and yield by using green liquor, a naturally high, kraft mill-derived sulfidity source. Although split white liquor sulfidity and other high sulfidity procedures have the promise of addressing several of the latter important economic needs of pulp mills, they require considerable engineering/capital retrofits, redesigned production methods, and thus add to overall mill expenditures. Green liquor use, however, possesses the required high sulfidity to obtain in general the benefits attributable to higher sulfidity cooking, without the required capital constraints for implementation. Before introduction of green liquor in our industrial operations, a stronger understanding of its fundamental chemical interaction with the lignin and carbohydrates in US hardwood and softwoods must be obtained. In addition, its effect on bleachability, enhancement of pulp properties, and influence on the overall energy and recovery of the mill requires further exploration before the process witnesses widespread mill use in North America. Thus, proof of principle will be accomplished in this work and the consequent effect of green liquor and other high sulfide sources on the pulping and bleaching operations will be explored for US kraft mills. The first year of this project will generate the pertinent information to validate its ability for implementation in US pulping operations, whereas year two will continue this work while proceeding to analyze pulp bleachability and final pulp/paper properties and develop a general economic and feasibility analysis for its eventual implementation in North America.

  1. Histological effects of enamel matrix derivative on exposed dental pulp

    Directory of Open Access Journals (Sweden)

    Popović-Bajić Marijana

    2015-01-01

    Full Text Available Introduction. Direct pulp capping procedure is a therapeutic application of a drug on exposed tooth pulp in order to ensure the closure of the pulp chamber and to allow the healing process to take place. Objective. The aim of this study was to examine the histological effects of Emdogain® on exposed tooth pulp of a Vietnamese pig (Sus scrofa verus. Methods. The study comprised 20 teeth of a Vietnamese pig. After class V preparation on the buccal surfaces of incisors, canines and first premolars, pulp was exposed. In the experimental group, the perforations were capped with Emdogain® (Straumann, Basel, Switzerland, while in the control group pulp capping was performed with MTA® (Dentsply Tulsa Dental, Johnson City, TN, USA. All cavities were restored with glass-ionomer cement (GC Fuji VIII, GC Corporation, Tokyo, Japan. The observational period was 28 days, after which the animal was sacrificed and histological preparations were made. A light microscope was used to analyze dentin bridge formation, tissue reorganization and inflammation, and the presence of bacteria in the pulp. Results. The formation of dentin bridge was observed in the experimental and control groups. Inflammation of the pulp was mild to moderate in both groups. Angiogenesis and many odontoblast-like cells, responsible for dentin bridge formation, were observed. Necrosis was not observed in any case, nor were bacteria present in the pulp. Conclusion. Histological analysis indicated a favorable therapeutic effect of Emdogain® Gel in direct pulp capping of Vietnamese pigs. Pulp reaction was similar to that of MTA®. [Projekat Ministarstva nauke Republike Srbije, br. ON172026

  2. An oxidant and organic solvent tolerant alkaline lipase by P. aeruginosa mutant: downstream processing and biochemical characterization

    Directory of Open Access Journals (Sweden)

    Deepali Bisht

    2013-12-01

    Full Text Available An extracellular alkaline lipase from Pseudomonas aeruginosa mutant has been purified to homogeneity using acetone precipitation followed by anion exchange and gel filtration chromatography and resulted in 27-fold purification with 19.6% final recovery. SDS-PAGE study suggested that the purified lipase has an apparent molecular mass of 67 kDa. The optimum temperature and pH for the purified lipase were 45°C and 8.0, respectively. The enzyme showed considerable stability in pH range of 7.0-11.0 and temperature range 35-55 °C. The metal ions Ca2+, Mg2+ and Na+ tend to increase the enzyme activity, whereas, Fe2+ and Mn2+ ions resulted in discreet decrease in the activity. Divalent cations Ca+2 and Mg+2 seemed to protect the enzyme against thermal denaturation at high temperatures and in presence of Ca+2 (5 mM the optimum temperature shifted from 45°C to 55°C. The purified lipase displayed significant stability in the presence of several hydrophilic and hydrophobic organic solvents (25%, v/v up to 168 h. The pure enzyme preparation exhibited significant stability and compatibility with oxidizing agents and commercial detergents as it retained 40-70% of its original activities. The values of Km and Vmax for p-nitrophenyl palmitate (p-NPP under optimal conditions were determined to be 2.0 mg.mL-1 and 5000 μg.mL-1.min-1, respectively.

  3. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    Science.gov (United States)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  4. Biomechanical pulping of kenaf

    Science.gov (United States)

    Aziz Ahmed; Masood Akhtar; Gary C. Myers; Gary M. Scott

    1999-01-01

    The objective of this study was to investigate the effect of fungal pretreatment of whole kenaf prior to refining on refiner electrical energy consumption, paper strength, and optical properties. We also explored the suitability of whole kenaf biomechanical pulp for making newsprint in terms of ISO brightness and strength properties. Kenaf was sterilized by autoclaving...

  5. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  6. Alkaline Peroxide Delignification of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [Biosciences; Katahira, Rui [National; Donohoe, Bryon S. [Biosciences; Black, Brenna A. [National; Pattathil, Sivakumar [Complex; Stringer, Jack M. [National; Beckham, Gregg T. [National

    2017-05-30

    Selective biomass fractionation into carbohydrates and lignin is a key challenge in the conversion of lignocellulosic biomass to fuels and chemicals. In the present study, alkaline hydrogen peroxide (AHP) pretreatment was investigated to fractionate lignin from polysaccharides in corn stover (CS), with a particular emphasis on the fate of the lignin for subsequent valorization. The influence of peroxide loading on delignification during AHP pretreatment was examined over the range of 30-500 mg H2O2/g dry CS at 50 degrees C for 3 h. Mass balances were conducted on the solid and liquid fractions generated after pretreatment for each of the three primary components, lignin, hemicellulose, and cellulose. AHP pretreatment at 250 mg H2O2/g dry CS resulted in the pretreated solids with more than 80% delignification consequently enriching the carbohydrate fraction to >90%. Two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy of the AHP pretreated residue shows that, under high peroxide loadings (>250 mg H2O2/g dry CS), most of the side chain structures were oxidized and the aryl-ether bonds in lignin were partially cleaved, resulting in significant delignification of the pretreated residues. Gel permeation chromatography (GPC) analysis shows that AHP pretreatment effectively depolymerizes CS lignin into low molecular weight (LMW) lignin fragments in the aqueous fraction. Imaging of AHP pretreated residues shows a more granular texture and a clear lamellar pattern in secondary walls, indicative of layers of varying lignin removal or relocalization. Enzymatic hydrolysis of this pretreated residue at 20 mg/g of glucan resulted in 90% and 80% yields of glucose and xylose, respectively, after 120 h. Overall, AHP pretreatment is able to selectively remove more than 80% of the lignin from biomass in a form that has potential for downstream valorization processes and enriches the solid pulp into a highly digestible material.

  7. Positive and negative aspects of soda/anthraquinone pulping of hardwoods.

    Science.gov (United States)

    Francis, R C; Bolton, T S; Abdoulmoumine, N; Lavrykova, N; Bose, S K

    2008-11-01

    The positive aspects of the non-sulfur soda/anthraquinone (SAQ) process are mostly tied to improved energy efficiency while lower pulp brightness after bleaching is its most significant drawback. A credible method that quantifies bleachability as well as an approach that solves the problem for SAQ pulps from hardwoods will be described. A straight line correlation (R2=0.904) was obtained between O2 kappa number and final light absorption coefficient (LAC) value after standardized OD0EpD1 bleaching of nine hardwood kraft pulps from three laboratories and one pulp mill. The bleachability of pulps from four different soda processes catalyzed by anthraquinone (AQ) and 2-methylanthraquinone (MAQ) was compared to that of conventional kraft pulps by comparing O2 kappa number decrease and final LAC values. It was observed that a mild hot water pre-hydrolysis improved the bleachability of SAQ pulps to a level equal to that of kraft.

  8. Effect of various refining processes for Kenaf Bast non-wood pulp fibers suspensions on heat transfer coefficient in circular pipe heat exchanger

    Science.gov (United States)

    Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan

    2018-03-01

    Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.

  9. Optimization of soybean processing into kinema, a Bacillus-fermented alkaline food, with respect to a minimum level of antinutrients

    NARCIS (Netherlands)

    Sharma, A.; Kumari, S.; Wongputtisin, P.; Nout, M.J.R.; Sarkar, P.K.

    2015-01-01

    Aims Optimization of traditional processing of soybeans using response surface methodology (RSM) to achieve a minimum level of antinutritional factors (ANFs) in kinema. Methods and Results Central composite rotatable designs were used to optimize the processing stages of kinema preparation. In each

  10. Performance of a Horizontal Triple Cylinder Type Pulping Machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2011-05-01

    Full Text Available Pulping is one important step in wet coffee processing method. Pulping process usually uses a machine which constructed by wood or metal materials. A horizontal single cylinder type of fresh coffee cherries pulping machine is the most popular machine in coffee processing. One of the weaknesses of a horizontal single cylinder type of fresh coffee cherries pulping machine is higher in broken beans. Broken bean is one of mayor aspects in defect system that contribute to low quality. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal double cylinder type of fresh coffee cherries pulping machine which resulted in 12.6—21.4% of broken beans. To reduce percentage of broken beans, Indonesian Coffee and Cocoa Research Institute has developed and tested a horizontal triple cylinder type of fresh coffee cherries pulping machine. Material tested was fresh mature Robusta coffee cherries, 60—65% (wet basis moisture content; has classified on 3 levels i.e. unsorted, small and medium, and clean from metal and foreign materials. The result showed that the machine produced 6,340 kg/h in optimal capacity for operational conditions, 1400 rpm rotor rotation speed for unsorted coffee cherries with composition 55.5% whole parchment coffee, 3.66% broken beans, and 1% beans in wet skin.Key words : coffee, pulp, pulper, cylinder, quality.

  11. Membrane treatment of alkaline bleaching effluents from elementary chlorine free kraft softwood cellulose production.

    Science.gov (United States)

    Oñate, Elizabeth; Rodríguez, Edgard; Bórquez, Rodrigo; Zaror, Claudio

    2015-01-01

    This paper reports experimental results on the sequential use of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) to fractionate alkaline extraction bleaching effluents from kraft cellulose production. The aim was to unveil the way key pollutants are distributed when subjected to sequential UF/NF/RO membrane separation processes. Alkaline bleaching effluents were obtained from a local pinewood-based mill, featuring elementary chlorine free bleaching to produce high-brightness cellulose. The experimental system was based on a laboratory-scale membrane system, DSS LabStak® M20 Alfa Laval, using Alfa Laval UF and NF/RO membranes, operated at a constant transmembrane pressure (6 bar for UF membranes and 32 bar for NF/RO membranes), at 25°C. Results show that 78% chemical oxygen demand (COD) and total phenols, 82% adsorbable organic halogens (AOX) and 98% colour were retained by UF membranes which have molecular weight cut-off (MWCO) above 10 kDa. In all, 16% of original COD, total phenols and AOX, and the remaining 2% colour were retained by UF membranes within the 1 to 10 kDa MWCO range. Chloride ions were significantly present in all UF permeates, and RO was required to obtain a high-quality permeate with a view to water reuse. It is concluded that UF/NF/RO membranes offer a feasible option for water and chemicals recovery from alkaline bleaching effluents in kraft pulp production.

  12. Alkaline Materials and Regenerative Endodontics: A Review

    Directory of Open Access Journals (Sweden)

    Bill Kahler

    2017-12-01

    Full Text Available Periapical health is the primary goal of endodontic treatment in mature and immature teeth. In addition, the goals of treatment of immature teeth with arrested root development include root growth to length and maturation of the apex, as well as thickening of the canal wall. These goals are valid for immature teeth that have been subjected to trauma and dental caries or that are the result of developmental anomalies that expose the tooth to the risk of pulp necrosis and consequently result in the cessation of root maturation. Regenerative endodontic procedures (REPs have been described as a “paradigm shift” in the treatment of immature teeth with pulp necrosis and underdeveloped roots, as there is the potential for further root maturation and return of vitality. Treatment with REPs is advocated as the treatment of choice for immature teeth with pulp necrosis. REP protocols involve the use of alkaline biomaterials, primarily sodium hypochlorite, calcium hydroxide, mineral trioxide aggregates and Biodentine, and are the essential components of a successful treatment regimen.

  13. Catalysis: A Potential Alternative to Kraft Pulping

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2014-01-01

    A thorough analysis of the kraft pulping process makes it obvious why it has dominated for over a century as an industrial process with no replacement in sight. It uses low-cost raw materials; collects and regenerates over 90% of the chemicals needed in the process; and is indifferent to wood raw material and good at preserving the cellulose portion of the wood, the...

  14. Thermoluminescent and optical processes in alkaline halogenides dosemeters contaminated with Europium; Procesos opticos y termoluminiscentes en dosimetros de halogenuros alcalinos contaminados con Europio

    Energy Technology Data Exchange (ETDEWEB)

    Barboza F, M.; Melendrez, R.; Castaneda, B.; Pedroza M, M.; Chernov, V.; Perez S, R.; Aceves, R. [Centro de Investigacion en Fisica, Universidad de Sonora, A.P. 5-088, 83190 Hermosillo, Sonora (Mexico)

    2000-07-01

    Recent research results are presented about the properties of the optical processes of photo transferred thermoluminescence (TLFT), optical whitening (BO), thermoluminescence induced by light (TLL) and its effect in the thermoluminescent curve (Tl) produced by ionizing and non-ionizing radiation. The systematic analysis of all these processes, acquires a singular importance due that actually the alkaline halogenide crystals are object of intense investigations which analyse their potential applications as detectors and radiation dosemeters through stimulated optical luminescence techniques or thermoluminescence. The obtained data show that the Tl curve of material with this nature can be enormously affected by exposure of phosphorus to the environmental light or UV. This is in part due to liberation processes of charge bearers are shouted and makes a subsequent trapping in less temperature traps; at the same time that induce changes in the intensity of determined Tl bands. Additionally, also it is observed that mentioned phenomena are related as with wavelength of incident light as of the illumination time. Finally, the obtained information allows to conclude that although the illumination effect is extremely complex, it is associated and can be explained mainly with phenomena that implicate the electrons excitation trapped in form of F centers and trapping mechanisms or radioactive and non-radioactive recombination. (Author)

  15. Statistical medium optimization of an alkaline protease from Pseudomonas aeruginosa MTCC 10501, its characterization and application in leather processing.

    Science.gov (United States)

    Boopathy, Naidu Ramachandra; Indhuja, Devadas; Srinivasan, Krishnan; Uthirappan, Mani; Gupta, Rishikesh; Ramudu, Kamini Numbi; Chellan, Rose

    2013-04-01

    Proteases are shown to have greener mode of application in leather processing for dehairing of goat skins and cow hides. Production of protease by submerged fermentation with potent activity is reported using a new isolate P. aeruginosa MTCC 10501. The production parameters were optimized by statistical methods such as Plackett-Burman and response surface methodology. The optimized production medium contained (g/L); tryptone, 2.5; yeast extract, 3.0; skim milk 30.0; dextrose 1.0; inoculum concentration 4%: initial pH 6.0; incubation temperature 30 degrees C and optimum production at 48 h with protease activity of 7.6 U/mL. The protease had the following characteristics: pH optima, 9.0; temperature optima 50 degrees C; pH stability between 5.0-10.0 and temperature stability between 10-40 degrees C. The protease was observed to have high potential for dehairing of goat skins in the pre- tanning process comparable to that of the chemical process as evidenced by histology. The method offers cleaner processing using enzyme only instead of toxic chemicals in the pre-tanning process of leather manufacture.

  16. [Application of enzymes in pulp and paper industry].

    Science.gov (United States)

    Lin, Ying

    2014-01-01

    The application of enzymes has a high potential in the pulp and paper industry to improve the economics of the paper production process and to achieve, at the same time, a reduced environmental burden. Specific enzymes contribute to reduce the amount of chemicals, water and energy in various processes. This review is aimed at presenting the latest progresses of applying enzymes in bio-pulping, bio-bleaching, bio-deinking, enzymatic control of pitch and enzymatic modification of fibers.

  17. Scaffolds to Control Inflammation and Facilitate Dental Pulp Regeneration

    Science.gov (United States)

    Colombo, John S.; Moore, Amanda N.; Hartgerink, Jeffrey D.; D’Souza, Rena N.

    2014-01-01

    In dentistry, the maintenance of a vital dental pulp is of paramount importance, as teeth devitalized by root canal treatment may become more brittle and prone to structural failure over time. Advanced carious lesions can irreversibly damage the dental pulp by propagating a sustained inflammatory response throughout the tissue. While the inflammatory response initially drives tissue repair, sustained inflammation has an enormously destructive effect on the vital pulp, eventually leading to total necrosis of the tissue and necessitating its removal. The implications of tooth devitalization have driven significant interest in the development of bioactive materials that facilitate the regeneration of damaged pulp tissues by harnessing the capacity of the dental pulp for self-repair. In considering the process by which pulpitis drives tissue destruction, it is clear that an important step in supporting the regeneration of pulpal tissues is the attenuation of inflammation. Macrophages, key mediators of the immune response, may play a critical role in the resolution of pulpitis due to their ability to switch to a pro-resolution phenotype. This process can be driven by the resolvins, a family of molecules derived from fatty acids that show great promise as therapeutic agents. In this review, we outline the importance of preserving the capacity of the dental pulp to self-repair through the rapid attenuation of inflammation. Potential treatment modalities, such as shifting macrophages to a pro-resolving phenotype with resolvins are described, and a range of materials known to support the regeneration of dental pulp are presented. PMID:24698696

  18. Microarray expression profiling of human dental pulp from single subject.

    Science.gov (United States)

    Tete, Stefano; Mastrangelo, Filiberto; Scioletti, Anna Paola; Tranasi, Michelangelo; Raicu, Florina; Paolantonio, Michele; Stuppia, Liborio; Vinci, Raffaele; Gherlone, Enrico; Ciampoli, Cristian; Sberna, Maria Teresa; Conti, Pio

    2008-01-01

    Microarray is a recently developed simultaneous analysis of expression patterns of thousand of genes. The aim of this research was to evaluate the expression profile of human healthy dental pulp in order to find the presence of genes activated and encoding for proteins involved in the physiological process of human dental pulp. We report data obtained by analyzing expression profiles of human tooth pulp from single subjects, using an approach based on the amplification of the total RNA. Experiments were performed on a high-density array able to analyse about 21,000 oligonucleotide sequences of about 70 bases in duplicate, using an approach based on the amplification of the total RNA from the pulp of a single tooth. Obtained data were analyzed using the S.A.M. system (Significance Analysis of Microarray) and genes were merged according to their molecular functions and biological process by the Onto-Express software. The microarray analysis revealed 362 genes with specific pulp expression. Genes showing significant high expression were classified in genes involved in tooth development, protoncogenes, genes of collagen, DNAse, Metallopeptidases and Growth factors. We report a microarray analysis, carried out by extraction of total RNA from specimens of healthy human dental pulp tissue. This approach represents a powerful tool in the study of human normal and pathological pulp, allowing minimization of the genetic variability due to the pooling of samples from different individuals.

  19. Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Mostinskii, I.L.

    1977-01-01

    Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K 2 CO 3 on the heat exchange surface are also included

  20. Laccase-HBT bleaching of eucalyptus kraft pulp: influence of the operating conditions.

    Science.gov (United States)

    Moldes, D; Vidal, T

    2008-12-01

    Different operating conditions (viz. pulp consistency, oxygen pressure and treatment time) in the biobleaching of eucalyptus kraft pulp with the laccase-HBT system was tested in order to describe their effect and normalize a biobleaching protocol. A high O(2) pressure (0.6MPa) was found to result in improved laccase-assisted delignification of the pulp. Also, a high pulp consistency (10%) and a short treatment time (2h) proved the best choices with a view to obtaining good pulp properties (kappa number and ISO brightness) under essentially mild conditions. The laccase-HBT treatment was found to result in slight delignification (in the form of a 20-27% decrease in kappa number); however, an alkaline extraction stage raised delignification to 41-45%, a much higher level than those obtained in the control tests (16-23%). Also, the use of hydrogen peroxide in the extraction stage resulted in improved brightness (14-19%), but in scarcely improved delignification (4-7%). Treating the pulp with the laccase-HBT system reduced the amount of hydrogen peroxide required for subsequent alkaline bleaching by a factor of 3-4 relative to control tests.

  1. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds.

    NARCIS (Netherlands)

    Yang, X.; Yang, F.; Walboomers, X.F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2010-01-01

    The aim of current study is to investigate the in vitro and in vivo behavior of dental pulp stem cells (DPSCs) seeded on electrospun poly(epsilon-caprolactone) (PCL)/gelatin scaffolds with or without the addition of nano-hydroxyapatite (nHA). For the in vitro evaluation, DNA content, alkaline

  2. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil.

    Science.gov (United States)

    Ribeiro da Silva, Larissa Morais; Teixeira de Figueiredo, Evania Altina; Silva Ricardo, Nagila Maria Pontes; Pinto Vieira, Icaro Gusmao; Wilane de Figueiredo, Raimundo; Brasil, Isabella Montenegro; Gomes, Carmen L

    2014-01-15

    This study aimed to quantify the levels of resveratrol, coumarin, and other bioactives in pulps and by-products of twelve tropical fruits from Brazil obtained during pulp production process. Pineapple, acerola, monbin, cashew apple, guava, soursop, papaya, mango, passion fruit, surinam cherry, sapodilla, and tamarind pulps were evaluated as well as their by-products (peel, pulp's leftovers, and seed). Total phenolic, anthocyanins, yellow flavonoids, β-carotene and lycopene levels were also determined. Resveratrol was identified in guava and surinam cherry by-products and coumarin in passion fruit, guava and surinam cherry by-products and mango pulp. These fruit pulp and by-products could be considered a new natural source of both compounds. Overall, fruit by-products presented higher (Pfruit pulps. This study provides novel information about tropical fruits and their by-products bioactive composition, which is essential for the understanding of their nutraceutical potential and future application in the food industry. Published by Elsevier Ltd.

  3. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.

    Science.gov (United States)

    Baptista, C; Robert, D; Duarte, A P

    2008-05-01

    This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.

  4. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals.

    Science.gov (United States)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2008-05-01

    Pulp mill effluent was treated by different advanced oxidation processes (AOPs) consisting of UV, UV/H2O2, TiO2-assisted photo-catalysis (UV/TiO2) and UV/H2O2/TiO2 in lab-scale reactors for total organic carbon (TOC) and toxicity removals. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC and toxicity removals were investigated. Almost every method resulted in some degree of TOC and toxicity removal from the pulp mill effluent. However, the TiO2-assisted photo-catalysis (UV/TiO2) resulted in the highest TOC and toxicity removals under alkaline conditions when compared with the other AOPs tested. Approximately, 79.6% TOC and 94% toxicity removals were obtained by the TiO2-assisted photo-catalysis (UV/TiO2) with a titanium dioxide concentration of 0.75gl(-1) at pH 11 within 60min.

  5. Biological treatment of paper pulp effluents: the application of ligninolytic white rot-fungi

    International Nuclear Information System (INIS)

    Martin, C; Fajardo, S.; Manzanares, P.

    1996-01-01

    Biological treatments using white-rot fungi, based in their ability to degrade lignin, can constitute an interesting approach to remove colour and toxic compounds usually contained in paper pulp effluents due to the presence of recalcitrant lignin derived molecules. In this work, strains A-137 and A-136 (IJFM collection, CIB-CSIC, Madrid) of Trameles versicolor, a ligninolytic white-rot fungus that have been frequently reported in relation to degradation of lignin, have been used for decolorisation studies of the straw alkaline-pulping effluent from SAICA factory (Zaragoza, Spain). From results obtained it can be concluded that decolorisation percentages about 80% can be obtained in 4-6 days (for maximum initial colour effluent between 12,000 and 15,000 CU) and total phenolics content can be reduced in about 90%. Mn-dependent peroxidase (about 20 IU/I) and high values of laccase activities (up to 700 IU/I) were produced, what may be of great interest to set up ligninolytic enzymes production processes for industrial uses. (Author) 19 refs

  6. Biological treatment of paper pulp effluents: the application of ligninolytic white rot-fungi

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C; Fajardo, S.; Manzanares, P.

    1996-07-01

    Biological treatments using white-rot fungi, based in their ability to degrade lignin, can constitute an interesting approach to remove colour and toxic compounds usually contained in paper pulp effluents due to the presence of recalcitrant lignin derived molecules. In this work, strains A-137 and A-136 (IJFM collection, CIB-CSIC, Madrid) of Trameles versicolor, a ligninolytic white-rot fungus that have been frequently reported in relation to degradation of lignin, have been used for decolorisation studies of the straw alkaline-pulping effluent from SAICA factory (Zaragoza, Spain). From results obtained it can be concluded that decolorisation percentages about 80% can be obtained in 4-6 days (for maximum initial colour effluent between 12,000 and 15,000 CU) and total phenolics content can be reduced in about 90%. Mn-dependent peroxidase (about 20 IU/I) and high values of laccase activities (up to 700 IU/I) were produced, what may be of great interest to set up ligninolytic enzymes production processes for industrial uses. (Author) 19 refs.

  7. Effect of radiopaque Portland cement on mineralization in human dental pulp cells.

    Science.gov (United States)

    Min, Kyung-San; Lee, Sang-Im; Lee, Yoon; Kim, Eun-Cheol

    2009-10-01

    The aim of this study was to investigate whether radiopaque Portland cement (RPC) facilitates the mineralization process in human dental pulp cells (HDPCs) compared with pure Portland cement (PC). Under a scanning electron microscope (SEM), cellular morphology was evaluated. Alkaline phosphatase (ALP) activity was analyzed, and nodule formation was assessed by performing Alizarin Red S staining. In addition, the mRNA expressions of mineralization-related proteins were evaluated by performing a real-time polymerase chain reaction. On SEM evaluation, healthy HDPCs were found adhering to the surfaces of PC and RPC. The ALP activity increased in the PC and RPC groups compared with the control group at 1 day. Alizarin Red stain increased in the PC and RPC groups compared with the control group at 2 and 3 weeks. The mRNA expression of dentin sialophosphoprotein increased at 14 days in the PC and RPC groups. These results show that PC and RPC have similar effects in terms of mineralization and suggest that RPC also has the potential to be used as a clinically suitable pulp-capping material.

  8. Optimization of soybean processing into kinema, a Bacillus-fermented alkaline food, with respect to a minimum level of antinutrients.

    Science.gov (United States)

    Sharma, A; Kumari, S; Wongputtisin, P; Nout, M J R; Sarkar, P K

    2015-07-01

    Optimization of traditional processing of soybeans using response surface methodology (RSM) to achieve a minimum level of antinutritional factors (ANFs) in kinema. Central composite rotatable designs were used to optimize the processing stages of kinema preparation. In each stage, the linear or quadratic effects of independent variables were significant in minimizing ANF levels. The predicted optimum condition for soaking was when the raw beans-water ratio was 1 : 10, and the soaking temperature, time and pH were 10°C, 20 h and 8·0 respectively. Here, tannins content (TC), phytic acid content (PAC) and trypsin inhibitor activity (TIA) decreased (P < 0·05). While haemagglutinating activity (HA) level remained unchanged (P < 0·05), total biogenic amines content (TBAC) increased. The optimum condition for cooking was optimally soaked beans-water ratio of 1 : 5, and cooking pressure and time were 1·10 kg cm(-2) and 20 min respectively. Here, TC, PAC, TIA and HA decreased (P < 0·05), but TBAC remained unchanged compared to optimally soaked beans. TC and HA went below the level of detection. The optimum condition for fermentation was obtained when inoculum load was 10(3) total cells g(-1) grits, and fermentation temperature and time were 37°C and 48 h respectively. Fermentation of optimally cooked beans caused a reduction (P < 0·05) of PAC. While TIA remained unchanged (P < 0·05), TBAC increased. In kinema, TC, PAC, TIA and HA decreased (P < 0·05) over raw beans by 100, 61, 71 and 100% respectively. Good agreement was observed between predicted values and experimental values. The processing treatments significantly minimized the level of ANFs in soybeans. RSM was successfully deployed to obtain the optimum condition for kinema-making with a minimum level of ANFs without impairing sensory attributes of the product. The results are useful for commercial production of kinema. © 2015 The Society for Applied Microbiology.

  9. Radioactive Demonstration of Caustic Recovery from Low-Level Alkaline Nuclear Waste by an Electrochemical Separation Process

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-04-01

    Bench-scale radioactive tests successfully demonstrated an electrochemical process for the recovery of sodium hydroxide (caustic) from Decontaminated Salt Solution produced from the In-Tank Precipitation and Effluent Treatment Processes at the Savannah River Site (SRS). This testing evaluated two membranes: an organic-based membrane, Nafion Type 350, manufactured by E. I. duPont de Nemours {ampersand} Company, Inc. (DuPont) and an inorganic-based membrane, NAS D, being developed by Ceramatec. Both membranes successfully separated caustic from radioactive SRS waste.Key findings of the testing indicate the following attributes and disadvantages of each membrane. The commercially-available Nafion membrane proved highly conductive. Thus, the electrochemical cell can operate at high current density minimizing the number of cells at the desired volumetric processing rate. Testing indicated cesium transported across the Nafion membrane into the caustic product. Therefore, the caustic product will contain low-levels of radioactive cesium due to the presence of {sup 134,137}Cs in the waste feed. To meet customer requirements, a post treatment stage may prove necessary to remove radioactive cesium resulting in increased overall process costs and decreased cost savings. In contrast to the Nafion membrane, the NAS D membrane demonstrated the production of caustic with much lower levels of gamma radioactivity ({sup 137}Cs activity was {lt} 51 dpm/g). Therefore, the caustic product could possibly release for onsite/offsite use without further treatment. The NAS D membrane remains in the development stage and does not exist as a commercial product. Operating costs and long-term membrane durability remain unknown.Caustic recovery has been successfully demonstrated in a bench-scale, 2-compartment electrochemical reactor operated for brief periods of time with simulated and radioactive waste solutions and two different types of membranes. The next phase of testing should be directed

  10. Preliminary study on the potential of improving pulp quality and energy efficiency in a South African TMP mills

    CSIR Research Space (South Africa)

    Johakimu, Jonas K

    2010-03-01

    Full Text Available value of freeness (32 ml CSF) for base fraction pulps confirmed the scenario. The second set of trials examined the efficiency of the mill fractionation process in terms of the final pulp quality. The mill’s accept pulps were fractionated. The results...

  11. ENVIRONMENTAL RISKS RELATED TO ACCIDENTS AT PULP AND PAPER PLANTS: THE CASE OF THE MANTUROVO PULP AND PAPER PLANT PROJECT

    Directory of Open Access Journals (Sweden)

    Maria Gunko

    2011-01-01

    Full Text Available The paper presents approaches to quantitative and spatial assessment of emergency environmental risks at new sites of pulp and paper production using mathematical statistics, probability theory, and cartographic modeling. Damage assessment is based on the type and sphere (atmosphere, soil, and underground and surface waters of impact. Although damage assessment considers governmentally approved methodology, the formula suggested for the assessment contains some suitable improvements. In addition, a brief characterization of technological process at pulp and paper plants provides objective substantiation of possible accident scenarios. Conclusions discuss economic and social benefits of pulp and paper plants versus their ecological disadvantages.

  12. Tumor-Derived Microvesicles Modulate Antigen Cross-Processing via Reactive Oxygen Species-Mediated Alkalinization of Phagosomal Compartment in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Federico Battisti

    2017-09-01

    Full Text Available Dendritic cells (DCs are the only antigen-presenting cells able to prime naïve T cells and cross-prime antigen-specific CD8+ T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies.

  13. Reutilization of effluents from laccase-mediator treatments of kraft pulp for biobleaching.

    Science.gov (United States)

    Moldes, D; Vidal, T

    2011-02-01

    Several effluents from laccase-mediator treatments of kraft pulp were recovered and subsequently reused with fresh pulp in order to simulate recirculation of effluents during biobleaching. The effluents were used as a new bleaching stage without any modification except enzyme addition. Pulp treated with effluents were afterwards chemically bleached by using the simple sequence LQPo, where L represents the treatment with effluent and laccase addition, Q is a chelating stage and Po is an alkaline peroxide stage. This system showed a promising potential on delignification, with kappa number ranging from 5.5 to 6.6 after LQPo sequence, depending on the type of effluent employed in L stage. Improvements on pulp brightness were also reported compared with control experiment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Human dental pulp cell responses to new calcium silicate-based endodontic materials.

    Science.gov (United States)

    Chen, C C; Shie, M Y; Ding, S J

    2011-09-01

    To evaluate human dental pulp cell responses to radiopaque dicalcium silicate cement and white-coloured mineral trioxide aggregate (WMTA). Flow cytometry was employed to quantify the phase percentage of pulp cell cycle. Alamar Blue was used for real-time and repeated monitoring of cell proliferation. Reverse transcription-polymerase chain reaction was performed to determine gene expression in pulp cells cultured on the cements. The cells cultured on the radiopaque dicalcium silicate cement had similar S and G2 phases in the cell cycle and proliferation to WMTA at all culture times. In addition, the two materials presented the same evolution with similar values in interleukin-1, inducible nitric oxide synthase, alkaline phosphatase, osteocalcin and bone sialoprotein gene expression at all culture times. The dental pulp cell responses to radiopaque dicalcium silicate cement were similar to those reported for WMTA in terms of cell cycle, proliferation, immunocompatibility and osteogenic differentiation. © 2011 International Endodontic Journal.

  15. Polyphenoloxidase and peroxidase in avocado pulp (Persea americana Mill.)

    OpenAIRE

    Vanini,Lucimara Salvat; Kwiatkowski,Angela; Clemente,Edmar

    2010-01-01

    The aim of the present investigation was to evaluate the enzymatic activity of polyphenoloxidase and peroxidase in avocado pulps, from the Northwest area of Paraná-Brazil, in order to compare the varieties on their enzymatic activity for both, minimum and industrial processing. Enzymatic extracts were prepared from avocado pulp of Choquete, Fortuna and Quintal varieties, in green and ripe maturation stage. Thermal treatment was applied with temperatures 60, 65, 70, 75 and 80 °C. The enzymatic...

  16. Short-rotation hardwood species as whole-tree raw material for pulp and paper. 4. Effect of bark upon chemical pulping

    Energy Technology Data Exchange (ETDEWEB)

    Loennberg, B.

    1976-01-01

    Data are tabulated and discussed from pulping, beating and washing experiments on pulps including various proportions of the bark and leaves of 4 species: Aspen (Populus tremula), Sallow (Salix caprea), White Birch (Betula pubescens) and Grey Alder (Alnus incana). Leaves were found to be unsuitable as a raw material, but the yields and strength of pulps including bark were satisfactory. The main problem in the use of these pulps is their bad drainage characteristics; this calls for either more washing capacity or for a chip barking process. An economic analysis indicates that it is best to use unbarked stems of these species at age 20 to 25.

  17. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  18. Performance and bacterial communities of successive alkalinity-producing systems (SAPSs) in passive treatment processes treating mine drainages differing in acidity and metal levels.

    Science.gov (United States)

    Jung, Sokhee Philemon; Cheong, Youngwook; Yim, Giljae; Ji, Sangwoo; Kang, Hojeong

    2014-03-01

    Successive alkalinity-producing systems (SAPSs) is a key unit process in the passive treatment of acidic mine drainage. Physico-chemistry and pyrosequencing-based bacterial communities of two passive treatment processes in Gapjung (GJ) and Seokbong (SB) were analyzed. The influent of SB harbored higher levels of acidity and metals than that of GJ. SAPS-SB demonstrated better performance of acidity neutralization and metal removal than SAPS-GJ, despite its shorter hydraulic retention time and higher acidity. System diagnosis revealed that the capacities of SAPSs were not well predicted in the design steps. Bacterial diversity indices and composition were compared at the same sequence read number for fair evaluation. Most of the bacterial sequences were affiliated with uncultured species. A notable difference was observed in the bacterial community compositions of the SAPSs in GJ and SB. Classes of putative sulfate-reducing bacteria, Clostridia (8.3 %) and Deltaproteobacteria (6.1 %), were detected in SAPS-GJ, and Clostridia (14.6 %) was detected in SAPS-SB. Bacilli, which is not a known sulfate-reducing bacterial group, was the second largest class (12.8 %) in SAPS-GJ and the largest class (51.1 %) in SAPS-SB, suggesting that Bacilli may have a prominent role in SAPS. One hundred ninety operational taxonomic units were shared, which occupied ~10 % of each number of total operational taxonomic units in SAPS-GJ and SAPS-SB, respectively. Bacilli and Clostridia were the major shared classes, and Bacillus, Lysinibacillus, and Ureibacillus were the major shared genera. Rarefaction analysis, richness estimates, diversity estimates, and abundance rank analysis show that the sediment bacterial community of SAPS-GJ was more diverse and more evenly distributed than that of SAPS-SB.

  19. Factors affecting the corrosivity of pulping liquors

    Science.gov (United States)

    Hazlewood, Patrick Evan

    Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.

  20. Neutral and alkaline cellulases: Production, engineering, and applications.

    Science.gov (United States)

    Ben Hmad, Ines; Gargouri, Ali

    2017-08-01

    Neutral and alkaline cellulases from microorganisms constitute a major group of the industrial enzymes and find applications in various industries. Screening is the important ways to get novel cellulases. Most fungal cellulases have acidic pH optima, except some fungi like Humicola insolens species. However, new applications require the use of neutral and alkaline cellulases in food, brewery and wine, animal feed, textile and laundry, pulp and paper industries, agriculture as well in scientific research purposes. Indeed, the demand for these enzymes is growing more rapidly than ever before, and becomes the driving force for research on engineering the cellulolytic enzymes. Here, we present an overview of the biotechnological research for neutral and alkaline cellulases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Management of the deep carious lesion and the vital pulp dentine complex.

    Science.gov (United States)

    Ricketts, D

    2001-12-08

    This article describes the relationship between the carious process and pulp-dentine complex reactions. Where the balance between the two is in favour of the carious process and where conventional cavity preparation leads to a direct pulp exposure, the direct pulp cap technique is described. The success of the technique is addressed and more importantly an alternative technique for caries removal, namely stepwise excavation, is described which may lead to a reduced risk of carious exposure and the need for the direct pulp cap technique.

  2. Modeling chlorine dioxide bleaching of chemical pulp

    OpenAIRE

    Tarvo, Ville

    2010-01-01

    This doctoral thesis deals with the phenomenon-based modeling of pulp bleaching. Previous bleaching models typically utilize one or two empirical correlations to predict the kinetics in kappa number development. Empirical correlations are simple to develop, but their parameters are often tied to the validation system. A major benefit of physico-chemical phenomenon models is that they are valid regardless of the reaction environment. Furthermore, modeling the bleaching processes at molecular l...

  3. The Fractionation of Loblolly Pine Woodchips Into Pulp For Making Paper Products

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kadam, PhD

    2006-11-30

    The overall goal of the project was to test the PureVision biomass fractionation technology for making pulp from loblolly pine. A specific goal was to produce a pulp product that is comparable to pulp produced from the kraft process, while reducing the environmental effects of the kraft process, known to be a highly pollutant process. The overall goal of the project was met by using the biomass fractionation concept for making pulp product. This proof-of-concept study, done with Southern pine pinchips as feedstock, evaluated NaOH concentration and residence time as variables in single-stage cocurrent pulping process. It can be concluded that 1% NaOH is adequate for effective delignification using the PureVision process; this is about 1/3 of that used in the kraft process. Also, the PureVision process does not use sulfur-based chemicals such as N2S and hence, is environmentally more benign.

  4. Seeking optimality in fruit pulping schedules: A case study*

    Directory of Open Access Journals (Sweden)

    J.H. Van Vuuren

    2014-01-01

    Full Text Available The process of scheduling fruit pulping for the production of fruit juices is of great importance in the beverage industry. Decisions have to be made regarding available processing time, the disposal of fruit that will not be pulped before stock loss due to spoilage, the fulfilment of customer demand and an optimal financial position. Sheduling depends on the capacity of the work force, pulping machine limitations and delivery deadlines. However, the situation is often encountered where the plant manager has to decide which fruit batches (usually from stock piles of overwhelming proportions during the harvesting season are to be pulped in order to minimize losses due to fruit deterioration. Such decisions are usually done manually, based on intuition and experience. A mathematical model is presented here which constructs a pulping strategy while minimising cascading financial losses associated with fruit grade drops within the stock pile. It is shown in particular that a minimisation of fruit losses is not a good criterion for optimality, and that substantial financial gains may be accomplished when minimising financial losses in stead of fruit losses, which is currently standard practice at most fruit pulping plants.

  5. Extended oxygen delignification of high kappa softwood pulp in a flow-through reactor

    OpenAIRE

    Jafari, Vahid

    2015-01-01

    Julkaistu vain painettuna, saatavuus katso Bibid. Published only in printed form, availability see Bibid Oxygen delignification (O-delignification) is an important tool for improving yield, reducing lignin content of pulp and lowering the bleach chemical consumption in the pulp and paper industries. This process is designed after cooking to maximize the delignification rate in comparison to the final phase of Kraft cooking without sacrificing pulp quality. In order to improve the yield of ...

  6. Obtaining value prior to pulping with diethyl oxalate and oxalic acid

    Science.gov (United States)

    W.R. Kenealy; E. Horn; C.J. Houtman; J. Laplaza; T.W. Jeffries

    2007-01-01

    Pulp and paper are converted to paper products with yields of paper dependent on the wood and the process used. Even with high yield pulps there are conversion losses and with chemical pulps the yields approach 50%. The portions of the wood that do not provide product are either combusted to generate power and steam or incur a cost in waste water treatment. Value prior...

  7. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc

    Science.gov (United States)

    Hagen-Peter, Graham; Cottle, John M.

    2016-10-01

    Extensive exposure of intrusive igneous rocks along the Ross orogen of Antarctica-an ancient accretionary orogen on the margin of East Gondwana-provides an exceptional opportunity to study continental arc magmatism. There is significant petrologic and geochemical variability in igneous rocks within a 500-km-long segment of the arc in southern Victoria Land. The conspicuous occurrence of carbonatite and alkaline silicate rocks (nepheline syenite, A-type granite, and alkaline mafic rocks) adjacent to large complexes of subalkaline granitoids is not adequately explained by traditional models for continental arc magmatism. Extensive geochemical analysis (> 100 samples) and zircon U-Pb geochronology (n = 70) confirms that alkaline and carbonatitic magmatism was partially contemporaneous with the emplacement of large subduction-related igneous complexes in adjacent areas. Major pulses of subalkaline magmatism were compositionally distinct and occurred at different times along the arc. Large bodies of subalkaline orthogneiss and granite (sensu lato) were emplaced over similar time intervals (ca. 25 Myr) to the north (ca. 515-492 Ma) and south (ca. 550-525 Ma) of the alkaline magmatic province, although the initiation of these major pulses of magmatism was offset by ca. 35 Myr. Alkaline and carbonatitic magmatism spanned at least ca. 550-509 Ma, overlapping with voluminous subalkaline magmatism in adjacent areas. The most primitive rocks from each area have similarly enriched trace element compositions, indicating some common characteristics of the magma sources along the arc. The samples from the older subalkaline complex have invariably low Sr/Y ratios (generation and differentiation. The younger subalkaline complex and subalkaline rocks within the area of the alkaline province extend to higher Sr/Y ratios (up to 300), indicative of generation and differentiation at deeper levels. The significant spatial and temporal diversity in magmatism can be explained by a tectono

  8. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  9. Wastewater treatment of pulp and paper industry: a review.

    Science.gov (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  10. RELATIONSHIP BETWEEN CRYSTALLINE STRUCTURE AND OPTICAL PROPERTIES OF WHEAT (Triticum aestevum L. STRAW SODA-OXYGEN PULP

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2003-04-01

    Full Text Available In this study; pulp was produced with soda-oxygen process by using wheat (Triticum aestevum L. straw as raw material and this pulp bleached with hypocholoride (H and peroxyde (P stages. It was found that crystalline properties of unbleached and bleached pulp samples increased by removing amorphous components. In addition, paper sheets made from unbleached and bleached soda-oxygen pulp and determined their optical properties. Consequently; while crystalline properties of pulp samples was rising with HP bleaching, it was determined that optical properties of paper sheets improved with bleaching.

  11. Effects of Non Process Elements in the chemical recovery system of a kraft pulp mill from the incineration in the recovery boiler of biological sludge; Effekter av PFG vid indunstning och foerbraenning av bioslam i ett massabruks sodapanna

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbom, Johan

    2003-01-01

    The purpose of this project was to investigate the effects of incineration of biological sludge in the recovery boiler of a Swedish Kraft pulp mill, StoraEnso Pulp AB Skutskaers Bruk, which has practiced incineration of sludge in the recovery boiler during the last two years. The following aspects of the technique were investigated: Experience from operation of incineration of biological sludge in the recovery boiler; The content of Non-Process Elements (NPE) in process flows and evaluate the risks of incrustations in the system; The build-up of NPE in the chemicals recovery system and the estimated increase in make-up lime demand; and Technical risks for mills with different process equipment. This study comprises the following NPE: aluminium, silicon, phosphorus, magnesium, calcium, chloride, iron, manganese, potassium, copper, and nitrogen. The operational experience from the system for hydrolysis of the biological sludge and evaporation/incineration in the recovery boiler is excellent. The handling of the sludge takes place in a closed system that demands little supervision and maintenance. Overall, the mill has not seen any negative effects that can be explained by increased intake of NPEs to the chemical recovery system. Aluminium can lead to troublesome incrustations of sodium-aluminium-silicates on the heat surfaces in the evaporation plant. An effective elimination of aluminium by the green liquor dreg is obtained with the double salt hydrotalcite if the quotient Mg/Al is kept higher than 4-5 in the black liquor. The need for make-up lime has increased due to the build-up of phosphorus in the lime. Depending on the level of make-up lime the need will increase 2-5 kg/ t{sub 90} at a price of 2-5 kr/t{sub 90}. If a higher level of phosphorus is accepted instead of increasing lime make-up the running costs will be somewhat higher, 0,5-1 kr/t{sub 90} due to increased ballast. NO{sub x} in the flue gases from the recovery boiler has not increased since the

  12. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste.

    Science.gov (United States)

    Pérez-López, Rafael; Castillo, Julio; Quispe, Dino; Nieto, José Miguel

    2010-05-15

    In this study, experiments were conducted to investigate the applicability of low-cost alkaline paper mill wastes as acidity neutralizing agents for treatment of acid mine drainage (AMD). Paper wastes include a calcium mud by-product from kraft pulping, and a calcite powder from a previous study focused on sequestering CO(2) by carbonation of calcium mud. The neutralization process consisted of increase of pH by alkaline additive dissolution, decrease of metals solubility and precipitation of gypsum and poorly crystallized Fe-Al oxy-hydroxides/oxy-hydroxysulphates, which acted as a sink for trace elements to that extent that solutions reached the pre-potability requirements of water for human consumption. This improvement was supported by geochemical modelling of solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of reaction products. According to PHREEQC simulations, the annual amount of alkaline additive is able to treat AMD (pH 3.63, sulphate 3800 mg L(-1), iron 348 mg L(-1)) with an average discharge of about 114 and 40 Ls(-1) for calcium mud and calcite powder, respectively. Likewise, given the high potential of calcium mud to sequester CO(2) and of resulting calcite powder to neutralize AMD, paper wastes could be a promising solution for facing this double environmental problem. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste

    International Nuclear Information System (INIS)

    Perez-Lopez, Rafael; Castillo, Julio; Quispe, Dino; Nieto, Jose Miguel

    2010-01-01

    In this study, experiments were conducted to investigate the applicability of low-cost alkaline paper mill wastes as acidity neutralizing agents for treatment of acid mine drainage (AMD). Paper wastes include a calcium mud by-product from kraft pulping, and a calcite powder from a previous study focused on sequestering CO 2 by carbonation of calcium mud. The neutralization process consisted of increase of pH by alkaline additive dissolution, decrease of metals solubility and precipitation of gypsum and poorly crystallized Fe-Al oxy-hydroxides/oxy-hydroxysulphates, which acted as a sink for trace elements to that extent that solutions reached the pre-potability requirements of water for human consumption. This improvement was supported by geochemical modelling of solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of reaction products. According to PHREEQC simulations, the annual amount of alkaline additive is able to treat AMD (pH 3.63, sulphate 3800 mg L -1 , iron 348 mg L -1 ) with an average discharge of about 114 and 40 L s -1 for calcium mud and calcite powder, respectively. Likewise, given the high potential of calcium mud to sequester CO 2 and of resulting calcite powder to neutralize AMD, paper wastes could be a promising solution for facing this double environmental problem.

  14. De-pulping and Seed Separation from Tumba ( Citrullus colocynthis) Fruit

    Science.gov (United States)

    Mudgal, Vishvambhar Dayal

    2017-09-01

    Tumba ( Citrullus colocynthis) contains spongy pulp in which seeds are embedded unevenly. Seeds contain about 26% fats and 13% protein. The process of seed separation is highly time consuming and labour intensive. Two weeks are required to separate its seeds with traditional methods. The developed prototype, for separating tumba seeds, mainly consists of chopper, de-pulping screw, barrel assembly and seed separation unit. The de-pulping screw and barrel assembly was divided in two sections i.e. conveying (feeding zone) and compression sections (de-pulping zone). The performance of developed machine was evaluated at different screw speed in the range of 40-100 rpm. Maximum pulp removal efficiency of 78.1% was achieved with screw speed of 60 rpm. Seed separation from the pulp was carried out by adding different chemicals. Use of sodium hydroxide and potassium hydroxide produced seed separation up to 99%.

  15. Use of agar diffusion assay to measure bactericidal activity of alkaline salts of fatty acids against bacteria associated with poultry processing

    Science.gov (United States)

    The agar diffusion assay was used to examine antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids. A 0.5M concentration of each fatty acid was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric acid. Solu...

  16. Use of agar diffusion assay to evaluate bactericidal activity of formulations of alkaline salts of fatty acids against bacteria associated with poultry processing

    Science.gov (United States)

    The agar diffusion assay was used to examine antibacterial activity of alkaline salts of fatty acids (FA). Wells in agar media seeded with bacteria were filled with FA-potassium hydroxide (KOH) solutions, plates were incubated, and zones of inhibition were measured. The relationship between bacteric...

  17. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  18. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  19. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  20. Water requirements of the pulp and paper industry

    Science.gov (United States)

    Mussey, Orville D.

    1955-01-01

    Water, of varied qualities, is used for several purposes in the manufacture of pulp and paper, as a vehicle for transporting the constituents of paper in the paper machines; as process water for cooking wood chips to make pulp; as a medium for heat transfer; and for washing the pulpwood, the woodpulp, and the machines that handle the pulp. About 3,200 million gallons of water was withdrawn from surface- and ground-water sources each day during 1950 for the use of the pulp and paper industry. This is about 4 percent of the total estimated industrial withdrawal of water in the Nation The paper industry in the United States has been growing at a rapid rate. It has increased about tenfold in the last 50 years and has doubled every 15 years. The 1950 production of paper was about 24 million tons, which amounts to about 85 percent of the domestic consumption. In 1950, the pulp mills of the country produced more than 14 million tons of woodpulp, which supplied about 85 percent of the demand by the paper mills and other industries. The remainder of the fiber for paper manufacture was obtained from imported woodpulp, from reclaimed wastepaper, and from other fibers including rags and straw. The nationwide paper consumption for 1955 has been estimated at 31,700,000 tons. Woodpulp is classified according to the process by which it is made. Every woodpulp has characteristics that are carried over into the many and diverse grades of paper. Groundwood pulp is manufactured by simply grinding up wood and refining the resulting product. Soda, sulfite, and sulfate pulps are manufactured by chemically breaking down the lignin that cements the cellulose of the wood together and removing, cleaning, and sometimes bleaching the resulting fibers. Some woodpulp is produced by other methods. Sulfate-pulp mills are increasing in number and in rated daily capacity and are manufacturing more than half of the present domestic production of woodpulp. Most of the newer and larger woodpulp mills

  1. Dental Pulp Stem Cell Recruitment Signals within Injured Dental Pulp Tissue

    Science.gov (United States)

    Rombouts, Charlotte; Jeanneau, Charlotte; Bakopoulou, Athina; About, Imad

    2016-01-01

    The recruitment of dental pulp stem cells (DPSC) is a prerequisite for the regeneration of dentin damaged by severe caries and/or mechanical injury. Understanding the complex process of DPSC recruitment will benefit future in situ tissue engineering applications based on the stimulation of endogenous DPSC for dentin pulp regeneration. The current known mobilization signals and subsequent migration of DPSC towards the lesion site, which is influenced by the pulp inflammatory state and the application of pulp capping materials, are reviewed. The research outcome of migration studies may be affected by the applied methodology, which should thus be chosen with care. Both the advantages and disadvantages of commonly used assays for investigating DPSC migration are discussed. This review highlights the fact that DPSC recruitment is dependent not only on the soluble chemotactic signals, but also on their interaction with neighboring cells and the extracellular matrix, which can be modified under pathological conditions. These are discussed to explain how these modifications lead to the stimulation of DPSC recruitment. PMID:29563450

  2. Dental Pulp Stem Cell Recruitment Signals within Injured Dental Pulp Tissue

    Directory of Open Access Journals (Sweden)

    Charlotte Rombouts

    2016-03-01

    Full Text Available The recruitment of dental pulp stem cells (DPSC is a prerequisite for the regeneration of dentin damaged by severe caries and/or mechanical injury. Understanding the complex process of DPSC recruitment will benefit future in situ tissue engineering applications based on the stimulation of endogenous DPSC for dentin pulp regeneration. The current known mobilization signals and subsequent migration of DPSC towards the lesion site, which is influenced by the pulp inflammatory state and the application of pulp capping materials, are reviewed. The research outcome of migration studies may be affected by the applied methodology, which should thus be chosen with care. Both the advantages and disadvantages of commonly used assays for investigating DPSC migration are discussed. This review highlights the fact that DPSC recruitment is dependent not only on the soluble chemotactic signals, but also on their interaction with neighboring cells and the extracellular matrix, which can be modified under pathological conditions. These are discussed to explain how these modifications lead to the stimulation of DPSC recruitment.

  3. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  4. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    OpenAIRE

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  5. Effect of adding brewery wastewater to pulp and paper mill effluent to enhance the photofermentation process: wastewater characteristics, biohydrogen production, overall performance, and kinetic modeling.

    Science.gov (United States)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Juan, Joon Ching; Md Jahim, Jamaliah

    2017-04-01

    Although a significant amount of brewery wastewater (BW) is generated during beer production, the nutrients in the BW could be reused as a potential bio-resource for biohydrogen production. Therefore, improvements in photofermentative biohydrogen production due to a combination of BW and pulp and paper mill effluent (PPME) as a mixed production medium were investigated comprehensively in this study. The experimental results showed that both the biohydrogen yield and the chemical oxygen demand removal were improved through the combination of BW and PPME. The best biohydrogen yield of 0.69 mol H 2 /L medium was obtained using the combination of 10 % BW + 90 % PPME (10B90P), while the reuse of the wastewater alone (100 % BW and 100 % PPME) resulted in 42.3 and 44.0 % less biohydrogen yields than the highest yield, respectively. The greatest light efficiency was 1.97 % and was also achieved using the combination of both wastewaters at 10B90P. This study revealed the potential of reusing and combining two different effluents together, in which the combination of BW and PPME improved the nutrients and light penetration into the mixed production medium.

  6. British Orthodontic Society, Chapman Prize Winner 2003. A novel in vitro culture model to investigate the reaction of the dentine-pulp complex to orthodontic force.

    Science.gov (United States)

    Dhopatkar, A A; Sloan, A J; Rock, W P; Cooper, P R; Smith, A J

    2005-06-01

    To develop a novel mandible slice organ culture model to investigate the effects of externally applied force on the dentine-pulp complex. In vitro organ culture. School of Dentistry, Birmingham, UK. Transverse 2 mm thick sections were cut from the mandibles of five 28-day-old male Wistar rats. Serial sections were used for control and test pairs. Springs made from 0.016-inch and 0.019 x 0.025-inch stainless steel wires were used to apply a 50 g tensile or compressive force, respectively, to test specimens. Control and test specimens were cultured for 5 days in a humidified incubator with 5% CO(2) at 37 degrees C and processed for routine histological investigation. Nine more rats were used to provide control and compression test pairs where the pulps were extirpated after 3 days culture and total RNA isolated for gene expression analysis by reverse transcriptase polymerase chain reaction (RT-PCR). Histology showed the dental and supporting tissues maintained a healthy appearance in the control cultures after culture. Histomorphometric analysis revealed a 20-27% increase in pulp fibroblast density in test specimens compared with controls. Gene expression analyses revealed up-regulation in the test groups of PCNA, c-Myc, Collagen 1alpha, TGF-beta1 and alkaline phosphatase, whilst expression of osteocalcin was reduced. The results demonstrated that the present organ culture technique provides a valuable in vitro experimental model for studying the effects of externally applied forces. These forces stimulated a cellular response in the pulp chamber characterized by altered gene expression and proliferation of fibroblasts; the latter being unaffected by the nature of the force in terms of compression or tension.

  7. Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth.

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    Full Text Available Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition, their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These suggest differences in gene expression and regulation, and in this study we compared gene-expression profiles of the human dental pulp from deciduous and permanent teeth. Pulp tissues from permanent premolars and deciduous molars aged 11-14 years were extirpated and mRNA was isolated for cDNA microarray analysis, and quantitative real-time PCR (qPCR. Other teeth were used for immunohistochemical analysis (IHC. Microarray analysis identified 263 genes with a twofold or greater difference in expression level between the two types of pulp tissue, 43 and 220 of which were more abundant in deciduous and permanent pulp tissues, respectively. qPCR analysis was conducted for eight randomly selected genes, and the findings were consistent with the cDNA microarray results. IHC confirmed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1 was broadly expressed in deciduous dental pulp tissue, but minimally expressed in permanent dental pulp tissue. Immunohistochemical analysis showed that calbindin 1 (CALB1, leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5, and gamma-aminobutyric acid A receptor beta 1 (GABRB1 were abundantly expressed in permanent predentin/odontoblasts, but only minimally expressed in deciduous dental pulp tissue. These results show that deciduous and permanent pulp tissues have different characteristics and gene expression, suggesting that they may have different functions and responses to therapies focused on pulp or dentin regeneration.

  8. Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth.

    Science.gov (United States)

    Kim, Ji-Hee; Jeon, Mijeong; Song, Je-Seon; Lee, Jae-Ho; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; DenBesten, Pamela K; Kim, Seong-Oh

    2014-01-01

    Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition, their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These suggest differences in gene expression and regulation, and in this study we compared gene-expression profiles of the human dental pulp from deciduous and permanent teeth. Pulp tissues from permanent premolars and deciduous molars aged 11-14 years were extirpated and mRNA was isolated for cDNA microarray analysis, and quantitative real-time PCR (qPCR). Other teeth were used for immunohistochemical analysis (IHC). Microarray analysis identified 263 genes with a twofold or greater difference in expression level between the two types of pulp tissue, 43 and 220 of which were more abundant in deciduous and permanent pulp tissues, respectively. qPCR analysis was conducted for eight randomly selected genes, and the findings were consistent with the cDNA microarray results. IHC confirmed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was broadly expressed in deciduous dental pulp tissue, but minimally expressed in permanent dental pulp tissue. Immunohistochemical analysis showed that calbindin 1 (CALB1), leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), and gamma-aminobutyric acid A receptor beta 1 (GABRB1) were abundantly expressed in permanent predentin/odontoblasts, but only minimally expressed in deciduous dental pulp tissue. These results show that deciduous and permanent pulp tissues have different characteristics and gene expression, suggesting that they may have different functions and responses to therapies focused on pulp or dentin regeneration.

  9. Combined Extraction of Cesium, Strontium, and Actinides from Alkaline Media: An Extension of the Caustic-Side Solvent Extraction (CSSX) Process Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Raymond

    2004-11-03

    The wastes present at DOE long-term storage sites are usually highly alkaline, and because of this, much of the actinides in these wastes are in the sludge phase. Enough actinide materials still remain in the supernatant liquid that they require separation followed by long-term storage in a geological repository. The removal of these metals from the liquid waste stream would permit their disposal as low-level waste and dramatically reduce the volume of high-level wastes.

  10. Evaluation of a combined brown rot decay-chemical delignification process as a pretreatment for bioethanol production from Pinus radiata wood chips.

    Science.gov (United States)

    Fissore, Antonella; Carrasco, Lissete; Reyes, Pablo; Rodríguez, Jaime; Freer, Juanita; Mendonça, Regis Teixeira

    2010-09-01

    Wood chips of Pinus radiata softwood were biotreated with the brown rot fungus (BRF) Gloeophyllum trabeum for periods from 4 and 12 weeks. Biodegradation by BRF leads to an increase in cellulose depolymerization with increasing incubation time. As a result, the intrinsic viscosity of holocellulose decreased from 1,487 cm(3)/g in control samples to 783 and 600 cm(3)/g in 4- and 12-week decayed wood chips, respectively. Wood weight and glucan losses varied from 6 to 14% and 9 to 21%, respectively. Undecayed and 4-week decayed wood chips were delignified by alkaline (NaOH solution) or organosolv (ethanol/water) processes to produced cellulosic pulps. For both process, pulp yield was 5-10% lower for decayed samples than for control pulps. However, organosolv bio-pulps presented low residual lignin amount and high glucan retention. Chemical pulps and milled wood from undecayed and 4-week decayed wood chips were pre-saccharified with cellulases for 24 h at 50 degrees C followed by simultaneous saccharification and fermentation (SSF) with the yeast Saccharomyces cerevisiae IR2-9a at 40 degrees C for 96 h for bioethanol production. Considering glucan losses during wood decay and conversion yields from chemical pulping and SSF processes, no gains in ethanol production were obtained from the combination of BRF with alkaline delignification; however, the combination of BRF and organosolv processes resulted in a calculated production of 210 mL ethanol/kg wood or 72% of the maximum theoretically possible from that pretreatment, which was the best result obtained in the present study.

  11. Modification of paper properties by the pretreatment of wastepaper pulp with Graphiumputredinis, Trichodermaharzianum and fusant xylanases.

    Science.gov (United States)

    Savitha, S; Sadhasivam, S; Swaminathan, K

    2009-01-01

    Graphiumputredinis, Trichodermaharzianum and fusant were used in the present study to produce extracellular xylanases, an important industrial enzyme used in pulp and paper industry produced in a minimal medium supplemented with oat spelt xylan (1%, w/v) pH 7.0 at 27+/-2 degrees C. The enzyme was purified to homogeneity by DEAE-Cellulose and Superdex 75 FPLC column, respectively. The enzyme was found to be a monomer as determined by SDS gel electrophoresis. The optimum pH and temperature for purified G. putredinis, T. harzianum and fusant xylanases were 5.0-6.0 and 50-70 degrees C, respectively. Pretreatment of paper pulp with G. putredinis, T. harzianum and fusant xylanases decreased pulp kappa number. Xylanases particularly that of fusant at 5 IU/g pulp concentration and 1.5% pulp consistency at 60 degrees C for 18 h followed by EDED process yielded good quality paper from waste paper pulp. A significant increase in pulp brightness and improvement in various pulp properties, viz. burst capacity, thickness and bulkness of the treated pulp were observed in comparison to the conventional chemical bleaching. Easy purification and high stability of these enzymes makes it amicable for industrial applications.

  12. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure

    International Nuclear Information System (INIS)

    Panichnumsin, Pornpan; Nopharatana, Annop; Ahring, Birgitte; Chaiprasert, Pawinee

    2010-01-01

    Cassava pulp is a major by-product produced in a cassava starch factory, containing 50-60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic digestion process, the potential of co-digestion of cassava pulp (CP) with pig manure (PM) was further examined. The effect of the co-substrate mixture ratio was carried out in a semi-continuously fed stirred tank reactor (CSTR) operated under mesophilic condition (37 o C) and at a constant OLR of 3.5 kg VS m -3 d -1 and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP in concentrations up to 60% of the incoming VS. This was probably due to an increase in available easily degradable carbohydrates as the CP ratio in feedstock increased. The highest methane yield and VS removal of 306 mL g -1 VS added and 61%, respectively, were achieved with good process stability (VFA:Alkalinity ratio < 0.1) when CP accounted for 60% of the feedstock VS. A further increase of CP of the feedstock led to a decrease in methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth and buffering capacity.

  13. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure

    Energy Technology Data Exchange (ETDEWEB)

    Panichnumsin, Pornpan [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Thungkru, Bangkok 10140 (Thailand); Excellent Center of Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, Bangkhuntien, Bangkok 10150 (Thailand); Nopharatana, Annop [Pilot Plant Development and Training Institute, King Mongkut' s University of Technology Thonburi, Bangkhuntien, Bangkok 10150 (Thailand); Ahring, Birgitte [AAU, Copenhagen Institute of Technology, Lautrupvang 15, 2750 Ballerup (Denmark); Chaiprasert, Pawinee [School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, Bangkhuntien, Bangkok 10150 (Thailand)

    2010-08-15

    Cassava pulp is a major by-product produced in a cassava starch factory, containing 50-60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic digestion process, the potential of co-digestion of cassava pulp (CP) with pig manure (PM) was further examined. The effect of the co-substrate mixture ratio was carried out in a semi-continuously fed stirred tank reactor (CSTR) operated under mesophilic condition (37 C) and at a constant OLR of 3.5 kg VS m{sup -3} d{sup -1} and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP in concentrations up to 60% of the incoming VS. This was probably due to an increase in available easily degradable carbohydrates as the CP ratio in feedstock increased. The highest methane yield and VS removal of 306 mL g{sup -1} VS{sub added} and 61%, respectively, were achieved with good process stability (VFA:Alkalinity ratio < 0.1) when CP accounted for 60% of the feedstock VS. A further increase of CP of the feedstock led to a decrease in methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth and buffering capacity. (author)

  14. Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing

    Science.gov (United States)

    Nusheng Chen; Junyong Zhu; Zhaohui Tong

    2016-01-01

    This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical...

  15. Alkaline phosphatase: an overview.

    Science.gov (United States)

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  16. Application of enzymes in the pulp and paper industry

    Science.gov (United States)

    Bajpai

    1999-03-01

    The pulp and paper industry processes huge quantities of lignocellulosic biomass every year. The technology for pulp manufacture is highly diverse, and numerous opportunities exist for the application of microbial enzymes. Historically, enzymes have found some uses in the paper industry, but these have been mainly confined to areas such as modifications of raw starch. However, a wide range of applications in the pulp and paper industry have now been identified. The use of enzymes in the pulp and paper industry has grown rapidly since the mid 1980s. While many applications of enzymes in the pulp and paper industry are still in the research and development stage, several applications have found their way into the mills in an unprecedented short period of time. Currently the most important application of enzymes is in the prebleaching of kraft pulp. Xylanase enzymes have been found to be most effective for that purpose. Xylanase prebleaching technology is now in use at several mills worldwide. This technology has been successfully transferred to full industrial scale in just a few years. The enzymatic pitch control method using lipase was put into practice in a large-scale paper-making process as a routine operation in the early 1990s and was the first case in the world in which an enzyme was successfully applied in the actual paper-making process. Improvement of pulp drainage with enzymes is practiced routinely at mill scale. Enzymatic deinking has also been successfully applied during mill trials and can be expected to expand in application as increasing amounts of newsprint must be deinked and recycled. The University of Georgia has recently opened a pilot plant for deinking of recycled paper. Pulp bleaching with a laccase mediator system has reached pilot plant stage and is expected to be commercialized soon. Enzymatic debarking, enzymatic beating, and reduction of vessel picking with enzymes are still in the R&D stage but hold great promise for reducing energy

  17. Pulp Cell Tracking by Radionuclide Imaging for Dental Tissue Engineering

    Science.gov (United States)

    Souron, Jean-Baptiste; Petiet, Anne; Decup, Franck; Tran, Xuan Vinh; Lesieur, Julie; Poliard, Anne; Le Guludec, Dominique; Letourneur, Didier; Chaussain, Catherine; Rouzet, Francois

    2014-01-01

    Pulp engineering with dental mesenchymal stem cells is a promising therapy for injured teeth. An important point is to determine the fate of implanted cells in the pulp over time and particularly during the early phase following implantation. Indeed, the potential engraftment of the implanted cells in other organs has to be assessed, in particular, to evaluate the risk of inducing ectopic mineralization. In this study, our aim was to follow by nuclear imaging the radiolabeled pulp cells after implantation in the rat emptied pulp chamber. For that purpose, indium-111-oxine (111In-oxine)-labeled rat pulp cells were added to polymerizing type I collagen hydrogel to obtain a pulp equivalent. This scaffold was implanted in the emptied pulp chamber space in the upper first rat molar. Labeled cells were then tracked during 3 weeks by helical single-photon emission computed tomography (SPECT)/computed tomography performed on a dual modality dedicated small animal camera. Negative controls were performed using lysed radiolabeled cells obtained in a hypotonic solution. In vitro data indicated that 111In-oxine labeling did not affect cell viability and proliferation. In vivo experiments allowed a noninvasive longitudinal follow-up of implanted living cells for at least 3 weeks and indicated that SPECT signal intensity was related to implanted cell integrity. Notably, there was no detectable systemic release of implanted cells from the tooth. In addition, histological analysis of the samples showed mitotically active fibroblastic cells as well as neoangiogenesis and nervous fibers in pulp equivalents seeded with entire cells, whereas pulp equivalents prepared from lysed cells were devoid of cell colonization. In conclusion, our study demonstrates that efficient labeling of pulp cells can be achieved and, for the first time, that these cells can be followed up after implantation in the tooth by nuclear imaging. Furthermore, it appears that grafted cells retained the label and

  18. Advanced alkaline water electrolysis

    International Nuclear Information System (INIS)

    Marini, Stefania; Salvi, Paolo; Nelli, Paolo; Pesenti, Rachele; Villa, Marco; Berrettoni, Mario; Zangari, Giovanni; Kiros, Yohannes

    2012-01-01

    A short review on the fundamental and technological issues relevant to water electrolysis in alkaline and proton exchange membrane (PEM) devices is given. Due to price and limited availability of the platinum group metal (PGM) catalysts they currently employ, PEM electrolyzers have scant possibilities of being employed in large-scale hydrogen production. The importance and recent advancements in the development of catalysts without PGMs are poised to benefit more the field of alkaline electrolysis rather than that of PEM devices. This paper presents our original data which demonstrate that an advanced alkaline electrolyzer with performances rivaling those of PEM electrolyzers can be made without PGM and with catalysts of high stability and durability. Studies on the advantages/limitations of electrolyzers with different architectures do show how a judicious application of pressure differentials in a recirculating electrolyte scheme helps reduce mass transport limitations, increasing efficiency and power density.

  19. Rice straw pulp obtained by using various methods.

    Science.gov (United States)

    Rodríguez, Alejandro; Moral, Ana; Serrano, Luis; Labidi, Jalel; Jiménez, Luis

    2008-05-01

    Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).

  20. Solubility and pH of direct pulp capping materials: a comparative study.

    Science.gov (United States)

    Poggio, Claudio; Lombardini, Marco; Colombo, Marco; Beltrami, Riccardo; Rindi, Simonetta

    2015-07-04

    The objective of the present study was to compare solubility and pH of 6 direct pulp capping materials. Specimens of each material - i.e., Dycal, Calcicur, Calcimol LC, TheraCal LC, MTA Angelus and ProRoot MTA - were prepared and immersed in water. Solubility was determined after 24 hours and 2 months and analyzed statistically using a 1-way ANOVA and post hoc Tukey test. pH values were measured 3 and 24 hours after manipulation. All direct pulp capping materials showed low solubility; the pH of tested materials ranged from 10 to 12 and showed a nonsignificant increase/reduction after 24 hours. Within the limitations of this in vitro study, the direct pulp capping materials studied showed different solubility even if no changes were recorded over time. All of the materials showed a very alkaline pH.

  1. Improving the hydrogen peroxide bleaching efficiency of aspen chemithermomechanical pulp by using chitosan.

    Science.gov (United States)

    Li, Zongquan; Dou, Hongyan; Fu, Yingjuan; Qin, Menghua

    2015-11-05

    The presence of transition metals during the hydrogen peroxide bleaching of pulp results in the decomposition of hydrogen peroxide, which decreases the bleaching efficiency. In this study, chitosans were used as peroxide stabilizer in the alkaline hydrogen peroxide bleaching of aspen chemithermomechanical pulp (CTMP). The results showed that the brightness of the bleached CTMP increased 1.5% ISO by addition of 0.1% chitosan with 95% degree of deacetylation during peroxide bleaching. Transition metals in the form of ions or metal colloid particles, such as iron, copper and manganese, could be adsorbed by chitosans. Chitosans could inhibit the decomposition of hydrogen peroxide catalyzed by different transition metals under alkaline conditions. The ability of chitosans to inhibit peroxide decomposition depended on the type of transition metals, chitosan concentration and degree of deacetylation applied. The addition of chitosan slightly reduced the concentration of the hydroxyl radical formed during the hydrogen peroxide bleaching of aspen CTMP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings.

    Science.gov (United States)

    Denisova, Marina N; Makarova, Ekaterina I; Pavlov, Igor N; Budaeva, Vera V; Sakovich, Gennady V

    2016-03-01

    Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm(3) and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume.

  3. Engineering structural integrity issues in the pulp and paper industry

    International Nuclear Information System (INIS)

    Garner, A.; Singbeil, D.

    2002-01-01

    ESI issues for Pulp and Paper (P and P) plant are reviewed. Five typical processes are covered, namely: Chemical Pulping, Bleaching, Chemical Recovery, Mechanical Pulping and Papermaking. Equipment, chemical environments and failure modes are summarized with examples from each process. Pressure, temperature, corrosion and rotation are typical sources of risk, which is managed by appropriate inspection. The nature of the P and P Industry and its technology supply is summarized: current trends are consolidation and outsourcing. Three examples are presented to illustrate typical ESI issues: deaerator cracking where the P and P Industry alerted others to this serious cross-industry problem; pressure vessel safety factors and inconsistent international codes; and caustic cracking in continuous kraft digesters, which required rapid and concerted action to diagnose and control. In the future better predictability, data-bases, more formal risk based inspection and fitness-for-service assessments are envisaged. (author)

  4. Characterization and quantification of biochar alkalinity.

    Science.gov (United States)

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK a organic structural (0.03-0.34 meq g -1 ), other organic (0-0.92 meq g -1 ), carbonate (0.02-1.5 meq g -1 ), and other inorganic (0-0.26 meq g -1 ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Radiation modification of cellulose pulps. Preparation of cellulose derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Zimek, Z.; Stupinska, H.; Mikolajczyk, W; Starostka, P.

    2005-01-01

    One of the most common methods of cellulose pulp modification (activation) applied in the production process of cellulose derivatives is the treatment of the pulp with NaOH solutions leading to the formation of alkalicellulose. The product then undergoes a prolonged process of maturation by its storage under specific conditions. The goal of the process is lowering of the molecular weight of cellulose down to the level resulting from various technological requirements. The process is time-consuming and costly; besides, it requires usage of large-capacity technological vessels and produces considerable amounts of liquid waste. Therefore, many attempts have been made to limit or altogether eliminate the highly disadvantageous stage of cellulose treatment with lye. One of the alternatives proposed so far is the radiation treatment of the cellulose pulp. In the pulp exposed to an electron beam, the bonds between molecules of D-antihydroglucopiranoses loosen and the local crystalline lattice becomes destroyed. This facilitates the access of chemical reagents to the inner structure of the cellulose and, in consequence, eliminates the need for the prolonged maturation of alkalicellulose, thus reducing the consumption of chemicals by the whole process. Research aimed at the application of radiation treatment of cellulose pulp for the production of cellulose derivatives has been conducted by a number of scientific institutions including the Institute of Nuclear Chemistry and Technology, Institute of Biopolymers and Chemical Fibres, and Pulp and Paper Research Institute. For the investigations and assessment of the molecular, hypermolecular, morphologic properties and the chemical reactivity, cellulose pulps used for chemical processing, namely Alicell, Borregaard and Ketchikan, as well as paper pulps made from pine and birch wood were selected. The selected cellulose pulps were exposed to an electron beam with an energy of 10 MeV generated in a linear electron accelerator

  6. [Advances of alkaline amylase production and applications].

    Science.gov (United States)

    Yang, Haiquan; Liu, Long; Li, Jianghua; Du, Guocheng; Chen, Jian

    2012-04-01

    Alkaline amylase is one of alkaline enzymes with optimum pH in the alkaline range, and it could keep stability and efficiently hydrolyze starch under alkaline conditions. Alkaline amylase finds wide applications in textile, detergent, pharmaceutical, food and other fields. Alkaline amylases could be produced by alkaliphilic microorganisms. In this work, the advances of alkaline amylase production and applications were reviewed.

  7. Reductive atmospheric acid leaching of spent alkaline batteries in H2SO4/Na2SO3 solutions

    Science.gov (United States)

    Morcali, Mehmet Hakan

    2015-07-01

    This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and leaching time on the dissolution of manganese and zinc were investigated in detail. Manganese dissolution by reductive acidic media is an intermediate-controlled process with an activation energy of 12.28 kJ·mol-1. After being leached, manganese and zinc were selectively precipitated with sodium hydroxide. The zinc was entirely converted into zincate (Zn(OH){4/2-}) ions and thus did not co-precipitate with manganese hydroxide during this treatment (2.0 M NaOH, 90 min, 200 r/min, pH > 13). After the manganese was removed from the solution, the Zn(OH){4/2-} was precipitated as zinc sulfate in the presence of sulfuric acid. The results indicated that this process could be effective in recovering manganese and zinc from alkaline batteries.

  8. Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp

    DEFF Research Database (Denmark)

    Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo

    2011-01-01

    separated from the roots of teeth extracted from C57BL/6 mice, and cultured under appropriate conditions. Flow cytometry, RT-PCR, light microscopy (staining for alkaline phosphatase) and immunofluorescence were used to investigate the expression of stem cell markers. The presence of chromosomal...... markers. Adipogenic, chondrogenic and osteogenic differentiation was achieved after two weeks of cell culture under chemically defined in vitro conditions. In addition, some elongated cells spontaneously acquired a contraction capacity. CONCLUSIONS: Our results reinforce that the dental pulp...

  9. Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells.

    Science.gov (United States)

    AbdulQader, Sarah T; Rahman, Ismail A; Thirumulu, Kannan P; Ismail, Hanafi; Mahmood, Zuliani

    2016-04-01

    Calcium phosphates (CaP) of different porosities have been widely and successfully used as scaffolds with osteoblast cells for bone tissue regeneration. However, the effects of scaffold porosities on cell viability and differentiation of human dental pulp cells for dentin tissue regeneration are not well known. In this study, biphasic calcium phosphate (BCP) scaffolds of 20/80 hydroxyapatite to beta tricalcium phosphate ratio with a mean pore size of 300 μm were prepared into BCP1, BCP2, BCP3, and BCP4 of 25%, 50%, 65%, and 75% of total porosities, respectively. The extracts of these scaffolds were assessed with regard to cell viability, proliferation, and differentiation of human dental pulp cells. The high alkalinity, and more calcium and phosphate ions release that were exhibited by BCP3 and BCP4 decreased the viability and proliferation of human dental pulp cells as compared to BCP1 and BCP2. BCP2 significantly increased both cell viability and cell proliferation. However, the cells cultured with BCP3 extract revealed high alkaline phosphatase (ALP) activity and high expression of odontoblast related genes, collagen type I alpha 1, dentin matrix protein-1, and dentin sialophosphoprotein as compared to that cultured with BCP1, BCP2, and BCP4 extracts. The results highlight the effect of different scaffold porosities on the cell microenvironment and demonstrate that BCP3 scaffold of 65% porosity can support human dental pulp cells differentiation for dentin tissue regeneration. © The Author(s) 2016.

  10. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  11. Human dental pulp cells response to mineral trioxide aggregate (MTA) and MTA Plus: cytotoxicity and gene expression analysis.

    Science.gov (United States)

    Rodrigues, E M; Cornélio, A L G; Mestieri, L B; Fuentes, A S C; Salles, L P; Rossa-Junior, C; Faria, G; Guerreiro-Tanomaru, J M; Tanomaru-Filho, M

    2017-08-01

    To investigate the cytotoxicity, osteogenic bioactivity and mRNA expression of osteogenic markers of bone morphogenetic protein 2 (BMP-2), osteocalcin (OC) and alkaline phosphatase (ALP) induced by the extracts of set MTA Plus (MTA P) (Avalon Biomed Inc. Bradenton, FL, USA) in comparison with MTA (Angelus, Londrina, PR, Brazil) on human dental pulp cells (hDPCs). Cell viability was assessed by mitochondrial dehydrogenase enzymatic (MTT) assay, and the mechanism of cell death was evaluated by flow cytometry. Bioactivity was evaluated by alkaline phosphatase (ALP) assay and detection of calcium deposits with alizarin red staining (ARS). The gene expression of BMP-2, OC and ALP was quantified with real-time PCR. Statistical analysis was performed with analysis of variance and Bonferroni or Tukey post-test (α = 0.05). MTA and MTA P were not cytotoxic and did not induce apoptosis. MTA P had significant higher ALP activity in relation to MTA and the control (P MTA had a significantly higher percentage of mineralized area than MTA P (P MTA than MTA P after 1 day (P MTA P compared with MTA (P MTA and MTA Plus were noncytotoxic, increased mineralization processes in vitro and induced the expression of osteogenic markers. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Kraft pulping of industrial wood waste

    Science.gov (United States)

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  13. Magnet options for sensors for the pulp and paper industry

    Science.gov (United States)

    Green, M. A.; Barale, P. J.; Fong, C. G.; Luft, P. A.; Reimer, J. A.; Yahnke, M. S.

    2002-05-01

    The Lawrence Berkeley National Laboratory (LBNL) has been developing sensors for the pulp and paper industry that use a magnetic field. The applications for magnetic sensors that have been studied include 1) sensors for the measurement of the water and ice content of wood chips entering the pulping mill, 2) sensors for measuring the water content and other constituents of the black liquor leaving the paper digester, and 3) sensors for measuring paper thickness and water content as the paper is being processed. These tasks can be done using nuclear magnetic resonance (NMR). The magnetic field used for doing the NMR can come from either permanent magnets or superconducting magnets. The choice of the magnet is dependent on a number of factors, which include the size of the sample and field strength needed to do the sensing task at hand. This paper describes some superconducting magnet options that can be used in the pulp and paper industry.

  14. Environmental regulation of the Norwegian pulp and paper industry

    International Nuclear Information System (INIS)

    Golombek, Rolf; Greve, Arent; Harris, Ken

    2000-01-01

    The report discusses how the Norwegian pulp and paper industry has adapted to the emission requirements given by the Norwegian Pollution Control Authority (SFT) during the last 30 years. The authors have identified process alterations and internal measures in the factories that are due to stricter emission requirements, and they have identified external cleaning measures. The report also documents the interaction between the companies and SFT and it maps out real and permitted emissions to water and air from the Norwegian pulp and paper industry

  15. Petrogenetic processes, crystallization conditions and nature of the Lower-Oligocene calc-alkaline spessartitic lamprophyres from Kal-e-kafi area (East of Anarak, Isfahan province

    Directory of Open Access Journals (Sweden)

    Gholam Hossain Nazari

    2017-11-01

    Full Text Available Introduction Lamprophyres are mesocratic to melanocratic igneous rocks, usually hypabyssal, with a panidiomorphic texture and abundant mafic phenocrysts of dark mica or amphibole (or both with or without pyroxene, with or without olivine, set in a matrix of the same minerals, and with alkali-feldspar restricted to the groundmass (Woolley et al., 1996. Lamprophyres are frequently associated with orogenic settings and a mantle modified by dehydration of subducted slab (Gibson et al., 1995. Small outcrops of lamprophyres with Paleozoic to Oligocene age are reported from the central parts of Iran (Torabi 2009 and 2010. The primary magmas of these lamprophyres were derived from decompression melting of the mantle induced by a tensional regime of continental crust (Torabi, 2010. Bayat and Torabi (2011 called the western part of the CEIM (Central-East Iranian Microcontinent (Anarak to Bayazeh a “Paleozoic lamprophyric province” and suggested that the lamprophyre magmas were formed by subduction of Paleo-Tethys oceanic crust from the Early to late Paleozoic which resulted in the mantle metasomatism and enrichment. Lamprophyric dykes and stocks of the Kal-e-kafi area (Central Iran, Northern part of Yazd Block cross-cut the Eocene volcanic rocks and other older rock units such as Cretaceous limestone. These lamprophyres are mainly composed of hornblende (magnesio-hastingsite, clinopyroxene (diopside and plagioclase (labradorite to bytownite as phenocryst, in a matrix of fine to medium grained of the same minerals and orthoclase, apatite, magnetite, chlorite and epidote. In this paper that is a report on the first study on the calc-alkaline lamprophyres of Central Iran, the petrography and mineral chemistry of calc-alkaline lamprophyric dykes of the Kal-e-kafi area are discussed. Materials and methods Chemical composition of minerals were conducted at Kanazawa University (Kanazawa, Japan using the wavelength-dispersive electron probe microanalyzer

  16. Integration of water footprint accounting and costs for optimal pulp supply mix in paper industry

    DEFF Research Database (Denmark)

    Manzardo, Alessandro; Ren, Jingzheng; Piantella, Antonio

    2014-01-01

    studies have focused on these aspects, but there have been no previous reports on the integrated application of raw material water footprint accounting and costs in the definition of the optimal supply mix of chemical pulps from different countries. The current models that have been applied specifically......Chemical pulp is one of the most important raw materials used in the paper industry. This material is known to make a significant contribution to the water footprint and cost of final paper products; therefore, chemical pulp is crucial in determining the competitiveness of final products'. Several...... that minimizes the water footprint accounting results and costs of chemical pulp, thereby facilitating the assessment of the water footprint by accounting for different chemical pulps purchased from various suppliers, with a focus on the efficiency of the production process. Water footprint accounting...

  17. Wood and non-wood pulp production. Comparative ecological footprinting on the Canadian prairies

    International Nuclear Information System (INIS)

    Kissinger, Meidad; Fix, Jennifer; Rees, William E.

    2007-01-01

    Pulp production accounts for a major part of the Canadian forest industry. Because of the ecological damage caused by the industry, there has been growing interest in the use of agricultural residues as an alternative or supplementary fibre source for pulp making. The purpose of this study is to determine whether the use of crop residues has the potential to reduce the environmental 'load' associated with pulp production. We answer this question by estimating and comparing the ecological footprints of the currently dominant practice of using spruce and aspen harvested from the boreal forest, with the practice of using plant fibre from the residue of wheat and flax crops commonly grown in the Canadian prairie provinces. The analysis accounts for all major land and energy inputs associated with the two production processes. The study results indicate that the ecological load of pulp production varies among resources and provinces. However, overall, the total eco-footprint of pulped wheat straw is the smallest. (author)

  18. Optical Approach To The Measurement Of Delignification In Kraft Pulping: Part B: Using Infrared Spectroscopy.

    Science.gov (United States)

    Adam, E.; Sugden, N.

    1986-10-01

    A study of the infrared (IR) absorption characteristics of dried kraft pulp sheets was made. This was done in order to assess the potential of using this approach as the basis for determining residual lignin, or Kappa number, in pulp after cooking. Strong positive linear correlations were obtained between Kappa number and IR absorbance at 1509 cm-for pulps made from different wood species, produced in different mills and having a Kappa number range of 13-37. For pulps from some mills, made from the same wood furnish and having a small Kappa number range, the degree of correlation was seriously reduced. The method requires the use of moisture-free pulp specimens in the measurement of absorbance. It is suggested that it would be more suitable as the basis for a laboratory instrument than for an on-line, process Kappa number sensor.

  19. EFFECTS OF XYLAN IN EUCALYPTUS PULP PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bianca Moreira Barbosa

    2016-06-01

    Full Text Available The search for a better use of wood in the pulp industry has fuelled interest in a more rational use of its components, particularly xylans. The impact of xylans removal and of xylans redeposition on pulp properties for tissue and P&W paper grades are discussed in this paper. Kraft pulp (15.6% xylans treatment with 10-70 g.L-1 NaOH resulted in pulps of 14.5-5.9% xylans. The treatments decreased pulp lignin and HexA contents and caused significant positive impact on subsequent oxygen delignification and ECF bleaching. Xylan removal decreased pulp beatability, water retention value and tensile index but increased drainability, water absorption capacity, capillarity Klemm and bulk. Overall, xylan depleted pulps showed almost ideal properties for tissue paper grade pulps. In a second step of the research, xylans extracted from unbleached (BXL and bleached eucalyptus pulps (WXL by cold caustic extraction (CCE were added to a commercial brown pulp in the oxygen delignification (O-stage and further bleached. Xylans deposition occurred at variable degree (up to 7% on pulp weight depending upon the O-stage reaction pH. Pulp bleachability was not impaired by WXL xylan deposition but slightly negatively affected by BXL xylans. Pulp beatability was improved by xylan deposition. The deposited xylans were quite stable across bleaching and beating, with the WXL xylans being more stable than the BXL ones. At low energy consumption, the deposited xylans improved pulp physical and mechanical properties. Xylans extraction by CCE with subsequent deposition onto pulp in the O-stage proved attractive for manufacturing high xylan P&W paper grades.

  20. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses.

    Science.gov (United States)

    Ai, Jun; Tschirner, Ulrike

    2010-01-01

    Switchgrass (Panicum virgatum), alfalfa stems (Medicago sativa), second year growth hybrid poplar (Populus) and willow (Salix spp.) were examined to determine fiber characteristics, pulping behavior and paper properties. Alfalfa stems and switchgrass both showed length weighted average fiber length (LWW) of 0.78 mm, a very narrow fiber length distribution and high fines content. Willow and hybrid poplar have lower fines content but a very low average fiber length (0.42 and 0.48 mm LWW). In addition, the four biomass species showed distinctly different chemical compositions. Switchgrass was defibered successfully using Soda and Soda Anthraquinone (AQ) pulping and demonstrated good paper properties. Both fast-growing wood species pulped well using the Kraft process, and showed acceptable tensile strength, but low tear strength. Alfalfa stems reacted very poorly to Soda and Soda AQ pulping but responded well to Kraft and Kraft AQ. Pulps with tensile and tear strength considerably higher than those found for commercial aspen pulps were observed for alfalfa. All four biomass species examined demonstrated low pulp yield. The highest yields were obtained with poplar and switchgrass (around 43%). Considering the short fibers and low yields, all four biomass types will likely only be used in paper manufacturing if they offer considerable economic advantage over traditional pulp wood.

  1. Pequi pulp ( Caryocar brasiliense Cambess): Drying kinetics and ...

    African Journals Online (AJOL)

    The entropy values found were -251.01, -250.38 and -250.05 (J.Mol-1K-1) for the same temperatures. The values obtained from the Gibbs free energy for the drying of Pequi pulp increased with increasing temperature. The obtained data were consistent to the drying process, and the mathematical equations were effective ...

  2. Comparative study of percentage yield of pulp from various Nigerian ...

    African Journals Online (AJOL)

    user

    writing paper products, newsprint and other paperboard products (Market Pulp Association, 2007). The domi- nance by small to medium enterprises (SMEs), most of which operate in the informal sector, coupled with the use of obsolete equipment and low recovery rate remain the problem in the wood-processing sector in ...

  3. Factors influencing cassava - pulp fermentation period for gari ...

    African Journals Online (AJOL)

    paper examined factors influencing cassava pulp fermentation period for gari processing among cassava processors in South-eastern Nigeria. Five out of nine states that constitute South-east Agro-ecological zone of Nigeria were purposively sampled on the basis of being notable for cassava production. From each ...

  4. Oxalic acid pretreatment for mechanical pulping greatly improves paper strength while maintaining scattering power and reducing shives and triglycerides

    Science.gov (United States)

    Ross Swaney; Masood Akhtar; Eric Horn; Michael Lentz; John Klungness; Marc Sabourin

    2003-01-01

    In this paper we introduce a new technology based on a mild chemical pretreatment process prior to mechanical pulping. Chips are treated with a dilute solution of oxalic acid (OA) for only 10 minute at 130°C, in a typical example. The properties of the pulp produced by this OA process are quite different from those obtained via conventional chemical pretreatments,...

  5. Structure-based protein engineering for thermostable and alkaliphilic enhancement of endo-β-1,4-xylanase for applications in pulp bleaching.

    Science.gov (United States)

    Boonyapakron, Katewadee; Jaruwat, Aritsara; Liwnaree, Benjamas; Nimchua, Thidarat; Champreda, Verawat; Chitnumsub, Penchit

    2017-10-10

    In the pulp bleaching industry, enzymes with robust activity at high pH and temperatures are desirable for facilitating the pre-bleaching process with simplified processing and minimal use of chlorinated compounds. To engineer an enzyme for this purpose, we determined the crystal structure of the Xyn12.2 xylanase, a xylan-hydrolyzing enzyme derived from the termite gut symbiont metagenome, as the basis for structure-based protein engineering to improve Xyn12.2 stability in high heat and alkaline conditions. Engineered cysteine pairs that generated exterior disulfide bonds increased the k cat of Xyn12.2 variants and melting temperature at all tested conditions. These improvements led to up to 4.2-fold increases in catalytic efficiency at pH 9.0, 50°C for 1h and up to 3-fold increases at 60°C. The most effective variants, XynTT and XynTTTE, exhibited 2-3-fold increases in bagasse hydrolysis at pH 9.0 and 60°C compared to the wild-type enzyme. Overall, engineering arginines and phenylalanines for increased pK a and hydrogen bonding improved enzyme catalytic efficiency at high stringency conditions. These modifications were the keys to enhancing thermostability and alkaliphilicity in our enzyme variants, with XynTT and XynTTTE being especially promising for their application to the pulp and paper industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Chronobiology of pulp sensibility in young people].

    Science.gov (United States)

    Guo, Bin; Xu, Zhen; Chen, Xiu-Mei; Wang, Qing-Qing; Xie, Si-Jing; Zhang, Qiong; Zhou, Xue-Dong

    2005-11-01

    To explore the biological clock of pulp sensibility in young people so as to enrich the theory of pulp-chronobiology and conduce to clinical diagnosis and the treatment of pulposis. 40 healthy young volunteers (20 males and 20 females) were examined. Pulp sensibility test was performed using the pulp sensibility tester produced in France. Pulp sensibility reading was obtained at each 4 hours from 8:00 a.m. till next 8:00 a.m., thus there were totally seven time-pints in 24 hours. And the readings were averaged. The pulp sensibility data of every volunteer were analyzed by methods for cosinor-rhythmometry, and significant difference (P 0.05). Circadian rhythm is demonstrated in thepulp sensibility data of young people; the highest pulp sensibility is at 12:00 while the lowest is at 0:00.

  7. Pulp regeneration: Current approaches and future challenges

    Directory of Open Access Journals (Sweden)

    Jingwen eYANG

    2016-03-01

    Full Text Available Regenerative endodontics aims to replace inflamed/necrotic pulp tissues with regenerated pulp-like tissues to revitalize teeth and improve life quality. Pulp revascularization case reports, which showed successful clinical and radiographic outcomes, indicated the possible clinical application of pulp regeneration via cell homing strategy. From a clinical point of view, functional pulp-like tissues should be regenerated with the characterization of vascularization, re-innervation, and dentin deposition with a regulated rate similar to that of normal pulp. Efficient root canal disinfection and proper size of the apical foramen are the two requisite preconditions for pulp regeneration. Progress has been made on pulp regeneration via cell homing strategies. This review focused on the requisite preconditions and cell homing strategies for pulp regeneration. In addition to the traditionally used mechanical preparation and irrigation, antibiotics, irrigation assisted with EndoVac apical negative-pressure system, and ultrasonic and laser irradiation are now being used in root canal disinfection. In addition, pulp-like tissues could be formed with the apical foramen less than 1 mm, although more studies are needed to determine the appropriate size. Moreover, signaling molecules including stromal cell derived factor (SDF-1α, basic Fibroblast Growth Factor (bFGF, Platelet Derived Growth Factor (PDGF, stem cell factor (SCF, and Granulocyte Colony-Stimulating Factor (G-CSF were used to achieve pulp-like tissue formation via a cell homing strategy. Studies on the cell sources of pulp regeneration might give some indications on the signaling molecular selection. The active recruitment of endogenous cells into root canals to regenerate pulp-like tissues is a novel concept that may offer an unprecedented opportunity for the near-term clinical translation of current biology-based therapies for dental pulp regeneration.

  8. The induction of dentin bridge-like structures by constructs of subcultured dental pulp-derived cells and porous HA/TCP in porcine teeth.

    Science.gov (United States)

    Ando, Yusuke; Honda, Masaki J; Ohshima, Hayato; Tonomura, Akiko; Ohara, Takayuki; Itaya, Toshimitsu; Kagami, Hideaki; Ueda, Minoru

    2009-02-01

    The purpose of this study was to investigate dentin-bridge formation in teeth following the transplantation of dental pulp-derived cells seeded on hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds. The dental pulp tissues were removed from the extracted first molar teeth of miniature pigs and single cell populations were subcultured. Second-passage cells that had alkaline phosphatase activity were combined with scaffolds. Cell-scaffold constructs were placed in contact with the exposed pulp tissue. The dimensions of the exposed pulp site were approximately 1-2.5 mm in diameter and 2-3 mm in depth from the tooth surface. After placing the constructs, the tooth was restored with composite resin. Six weeks after transplantation, hard tissue formation was observed on the pulp tissue in histology. Dentinal tubule-like structures were observed in most of the hard tissue generated, and columnar cells, which showed positive immunoreactions with dentin sialoprotein (DSP) and heat shock protein (HSP)-25, were aligned beneath the hard tissues. When only scaffolds were placed on the pulp tissues, particles of hard tissue were formed, however dentinal tubule-like structures and odontoblasts were not observed despite the formation of hard tissue. In conclusion, the implantation of dental pulp constructs into pulp exposed stimulates the formation of calcified dentin-like structures.

  9. Assessing the value of pulp mill biomass savings in a climate change conscious economy

    International Nuclear Information System (INIS)

    Adahl, Anders; Harvey, Simon; Berntsson, Thore

    2006-01-01

    Pulp mills use significant amounts of biofuels, both internal and purchased. Biofuels could contribute to reach greenhouse gas emission targets at competitive costs. Implementing process integration measures at a pulp mill in order to achieve pulp production with less use of energy (biofuels) has not only on-site consequences but also off-site consequences, such as substitution of fossil fuels elsewhere by the saved pulp mill biofuels, and less on-site electric power generation. In this paper a method, a linking model, is suggested to analyse pulp mill biofuel saving measures when carbon dioxide (CO 2 ) external costs are internalised. The linking model is based on equilibrium economics and links information from CO 2 constrained energy market future scenarios with process integration measures. Pulp mill economics and marginal energy market CO 2 response are identified. In an applied study, four process integration measures at a Swedish pulp mill were analysed using five energy market future scenarios emanating from a Nordic energy model. The investigated investment alternatives for biofuel savings all result in positive net annual savings, irrespectively of the scenario used. However, CO 2 emissions may increase or decrease depending on the future development of the Nordic energy market

  10. Preliminary analysis of the state of the art of robotics and precision engineering and evaluation of potential for improved energy utilization in the pulp, paper, and related energy-consuming processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This study was undertaken to conduct a preliminary analysis of the state of the art of two technologies, robotics and precision engineering, and to evaluate their potential for improved energy utilization in the pulp, paper, and related energy consuming processes. Activity in the robotics field is growing rapidly, most activity being related to the development of smart robots rather than to systems. There is a broad base of support, both in industry and the universities, for upgrading robot machine capabilities. A large part of that support is associated with visualization and tactile sensors which facilitate assembly, placement, inspection, and tracking. Progress in this area is relatively rapid and development times are short for specifically engineered applications. The critical path in the development of robotic systems lies in the generation of reliable sensor signals. Robotic systems require a broad spectrum of sensors from which hierarchical logic systems can draw decision making information. This requirement resulted in the establishment of a program at the National Bureau of Standards which is attempting to develop a spectrum of sensor capabilities. Such sensors are applicable to robotic system automatic process control in a variety of energy-intensive industries. Precision engineering is defined as the generation or manufacture of components wherein geometry, dimension, and surface finish are controlled to within several hundred Angstroms in single point turning operations. Investigation into the state of the art of precision engineering in the United States finds that this capability exists in several national laboratories and is intended to be used exclusively for the development of weapons. There is an attempt at the present time by Lawrence Livermore Laboratory to expand its capability into industry. Several corporations are now beginning to develop equipment to support the precision engineering field.

  11. Identification of a β-galactosidase fruit pulp-specific promoter and its ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-05-01

    Safety, Fujian Agriculture and Forestry. University ... rapid softening during postharvest processing and storage of papaya. ... life of papaya, we identified a softening-related β-Gal gene in fruit pulp at the 50% pericarp yellowing.

  12. Action of nitric oxide on healthy and inflamed human dental pulp tissue.

    Science.gov (United States)

    da Silva, Leopoldo Penteado Nucci; Issa, João Paulo Mardegan; Del Bel, Elaine Aparecida

    2008-10-01

    Irreversible pulpitis has been associated with pain and an increase in the number of pulp inflammatory cells. Based on the action of nitric oxide (NO) elsewhere, NO may possibly participate in the sensory and autonomic innervation of the dental pulp, and may influence local inflammatory responses. The purpose of this study was to analyze normal and inflamed human dental pulp for the presence of NADPH-diaphorase (NADPH-d), as an index of NO system activity. Six non-carious second premolar pulp tissue samples were obtained from young patients who required extractions for orthodontic reasons and six inflamed samples were obtained from symptomatic carious second premolars clinically diagnosed with irreversible pulpitis. Pulp tissue was carefully removed, fixed by immersion in a cold 4% PFA buffered solution for 120 min, rinsed in cold phosphate buffer, and quickly-frozen for cryostat sectioning. Pulp tissue was sectioned perpendicularly to the vertical axis of the tooth at 20 microm and processed for histochemistry. Sections of each specimen were stained with hematoxylin-eosin and other sections were subjected to histochemical NADPH-d detection. Results indicated the presence of NADPH reactivity within the pulps of both normal and carious teeth. In the normal teeth NADPH-d activity was detected in a small number of vascular endothelial cells and fibroblasts. The inflammatory response of the pulp from carious premolars was detected in connective tissue by the presence of an increased number of fibroblasts, angioblasts and collagen fibers. It was possible to determine the extent of odontoblast reactivity since the odontoblast layer was usually absent in these split-peel preparations. There were no obvious signs of stained pulpal nerve fibers. Overall NADPH-d staining was significantly more intense within inflamed pulp tissues compared to normal healthy samples (Mann-Whitney test, pfunctions of NO in human dental pulp in pathophysiological situations.

  13. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    Science.gov (United States)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  14. Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro.

    Science.gov (United States)

    Del Angel-Mosqueda, Casiano; Gutiérrez-Puente, Yolanda; López-Lozano, Ada Pricila; Romero-Zavaleta, Ricardo Emmanuel; Mendiola-Jiménez, Andrés; Medina-De la Garza, Carlos Eduardo; Márquez-M, Marcela; De la Garza-Ramos, Myriam Angélica

    2015-09-03

    Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs). Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR. EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology.

  15. Reactions of human dental pulp cells to capping agents in the presence or absence of bacterial exposure.

    Science.gov (United States)

    Cai, Shiwei; Zhang, Wenjian; Tribble, Gena; Chen, Wei

    2017-01-01

    An ideal pulp-capping agent needs to have good biocompatibility and promote reparative dentinogenesis. Although the effects of capping agents on healthy pulp are known, limited data regarding their effects on bacterial contaminated pulp are available. This study aimed to evaluate the reaction of contaminated pulps to various capping agents to assist clinicians in making informed decisions. Human dental pulp (HDP) cell cultures were developed from extracted human molars. The cells were exposed to a bacterial cocktail comprising Porphyromonas gingivalis, Prevotella intermedia, and Streptococcus gordonii before being cocultured with capping agents such as mineral trioxide aggregate (MTA) Portland cement (PC), and Dycal. HDP cell proliferation was assayed by MTS colorimetric cell proliferation assay, and its differentiation was evaluated by real-time PCR for detecting alkaline phosphatase, dentin sialophosphoprotein, and osteocalcin expressions. MTA and PC had no apparent effect, whereas Dycal inhibited HDP cell proliferation. PC stimulated HDP cell differentiation, particularly when they were exposed to bacteria. MTA and Dycal inhibited differentiation, regardless of bacterial infection. In conclusion, PC was the most favorable agent, followed by MTA, and Dycal was the least favorable agent for supporting the functions of bacterial compromised pulp cells.

  16. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    Science.gov (United States)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  17. Assessing ocean alkalinity for carbon sequestration

    Science.gov (United States)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  18. Production of cellulose pulp from agribusiness waste: experimental analysis of factors affecting the characteristics of pulp for absorbent purposes

    Directory of Open Access Journals (Sweden)

    Liziane da Luz Seben Scheffler

    2017-12-01

    Full Text Available Sustainable production is a recurrent theme in industrial engineering. Commercial production of canned palm hearts generates an amount of waste from the leaf sheaths that envelop the heart of palm, which can be used to produce cellulose pulp then reducing environmental impacts. This study aims to examine the feasibility of cellulose pulping from King Palm leaf sheaths to obtain a fiber with absorbent capacity and low residual lignin content, as well as demonstrate the influence of the controllable process factors on the response variables analyzed through the formulation of n-dimensional equations and surfaces which permitted the optimization of the variables of interest. The response variables were selected in order to characterize the fiber obtained according to degree of delignification, absorption capability and speed and apparent density. The results indicated that the pulps obtained from the processes proposed although didn’t meet the quality standards required for absorbent pulps, since values are lower than those established in the research hypotheses, is very promising. This attempt raises the discussion around the role that industrial engineering professionals and researchers may play in the agribusiness waste recovery and recycling. Moreover it provides useful information for re-planning of experiments in search for extraction optimization of this or similar agribusiness wastes.

  19. Physical and Flavor Profiles of Arabica Coffee as Affected by Cherry Storage Before Pulping

    OpenAIRE

    Yusianto; Nugroho, Dwi

    2014-01-01

    Harvesting and pulping process of coffee cherry in the same day is inaccesible. Storage of coffee cherry before pulping was carried out incorrectly. Some storage treatments before pulping of Arabica coffee cherry had been examined at Indonesian Coffee and Cocoa Research Institute using Arabica coffee cherries from Andungsari Experimental Garden, Bondowoso, East Java. Treatments of the experiment were method and period of cherry storage. Methods of coffee cherry storage were put in plastic sac...

  20. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    Science.gov (United States)

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  1. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  2. [Confusion and solution for vital pulp therapy].

    Science.gov (United States)

    Dingming, Huang; Qian, Lu; Qian, Liao; Ling, Ye; Xuedong, Zhou

    2017-06-01

    Dental pulp tissue plays a role in forming dentin, providing nutrition, conducting pain, and generating protective responses to environmental stimuli. Bacterial infection is the main cause of pulp disease, where histopathological changes are the histological basis for determining the choice of treatment and the evaluation of therapeutic effect. Thus, particular attention should be given to eliminate infection, as well as preserve and maintain pulpal health in teeth that show reversible or limited pulpal injuries. Vital pulp therapy, especially its indications and prognostic factors, has been a research hotspot that often causes confusion among clinicians. In this paper, we briefly introduce the confusion and solution for vital pulp therapy in terms of indications, pulp condition assessment, infection elimination, and capping material selection. In addition, we develop a clinical pathway and an operation normalization of vital pulp therapy to better perform the therapy.

  3. Physicochemical characteristics of commercial umbu pulp (Spondias tuberosa Arruda Câmara: concentration effect

    Directory of Open Access Journals (Sweden)

    Jaqueline Santos Bastos

    2016-03-01

    Full Text Available The umbu is the umbuzeiro fruit (Spondias tuberosa Arr. Cam. which is a tree native of the Brazilian backlands. The aim of this work was to evaluate the physical and chemical properties of commercial and concentrated umbu pulp to be used as raw material in the production of structured. The commercial pulp (2.5 kg was acquired in the trade of Feira de Santana. The concentration of the evaporator route pulp vacuo to increase the soluble solids content of 8.5ºBrix to 15.5ºBrix It was held in the Food Chemistry Laboratory of the State University of Feira de Santana. It was obtained after concentrating a yield of 41.12% by mass of fruit pulp. The concentration process had no influence in the nutritional value of umbu pulp. The concentrated pulp had the following properties pH (2.43, soluble solids (15.5°Brix, acidity (3.11 g citric acid/100 g, total protein (1.28% - w/v, vitamin C (4.36 mg/100 g - w/v, reducing sugars (6.08% - w/v, total sugars (13.55% - w/v non reducing sugars (7.46% - w/v and ash (0.42% - w/v. The physicochemical characteristics of commercial umbu pulps had similar pH, Total Soluble Solids, acidity, proteins and ashes; higher values of reducing sugars and non-reducing and a lower vitamin C content that the pulps reported in the literature. The concentration process produced an increase in Total Soluble Solids, proteins, acidity, reducing and non reducing sugars and ash content. However there was a decrease in vitamin C concentration of the pulp.

  4. Wnt/β-catenin Inhibits Dental Pulp Stem Cell Differentiation

    Science.gov (United States)

    Scheller, E.L.; Chang, J.; Wang, C.Y.

    2010-01-01

    Dental pulp stem cells (DPSCs) are a unique precursor population isolated from post-natal human dental pulp and have the ability to regenerate a reparative dentin-like complex. Canonical Wnt signaling plays a critical role in tooth development and stem cell self-renewal through β-catenin. In this study, the regulation of odontoblast-like differentiation of DPSCs by canonical Wnt signaling was examined. DPSCs were stably transduced with canonical Wnt-1 or the active form of β-catenin, with retrovirus-mediated infection. Northern blot analysis found that Wnt-1 strongly induced the expression of matricellular protein osteopontin, and modestly enhanced the expression of type I collagen in DPSCs. Unexpectedly, Wnt-1 inhibited alkaline phosphatase (ALP) activity and the formation of mineralized nodules in DPSCs. Moreover, over-expression of β-catenin was also sufficient to suppress the differentiation and mineralization of DPSCs. In conclusion, our results suggest that canonical Wnt signaling negatively regulates the odontoblast-like differentiation of DPSCs. PMID:18218837

  5. Simulation of pulp mill wastewater recycling after tertiary treatment.

    Science.gov (United States)

    Fontanier, V; Albet, J; Baig, S; Molinier, J

    2005-12-01

    The aim of this work is to study the possibilities of effluent recycling in a bleached Kraft pulp mill, for a better water management. To avoid problems associated with effluent recycling (corrosion, odors, loss in pulp and paper quality), wastewaters have to be treated before recycling. This study is particularly focused on organic matter removal. Several treatments are applied on a biological secondary effluent: adsorption on activated carbon, coagulation with ferric chloride or alum sulfate, precipitation with lime, ozonation and catalytic ozonation. These techniques are compared in terms of COD (Chemical Oxygen Demand) removal. Catalytic ozonation is finally chosen as the most effective solution to achieve 50% of COD removal in the effluent. The characteristics of the effluent treated according to this technique are then used to simulate the impact of its reuse in the process for pulp production. The study is focused on the changes in these parameters in the various stages of bleaching and final washing when water is replaced by the wastewater treated or directly issued from the wastewater treatment plant. The simulation demonstrates the need of a tertiary treatment to eliminate COD in order to avoid possible reactant overconsumption and decrease in pulp brightness. Chloride and sulfate ions which could cause corrosion should also be removed.

  6. Pelletization of biomass waste with potato pulp content

    Science.gov (United States)

    Obidziński, Sławomir

    2014-03-01

    This paper presents the results of a research on the influence of potato pulp content in a mixture with oat bran on the power demand of the pelletization process and on the quality of the produced pellets, in the context of use thereof as a heating fuel. The tests of the densification of the pulp and bran mixture were carried out on a work stand whose main element was a P-300 pellet mill with the `flat matrix-densification rolls' system. 24 h after the pellets left the working system, their kinetic durability was established with the use of a Holmen tester. The research results obtained in this way allowed concluding that increasing the potato pulp content in a mixture with oat bran from 15 to 20% caused a reduction of the power demand of the pellet mill. It was also established that as the pulp content in a mixture with oat bran increases from 15 to 25%, the value of the kinetic durability of the pellets determined using Holmen and Pfost methods decreases.

  7. Polyoxometalates in Oxidative Delignification of Chemical Pulps: Effect on Lignin

    Directory of Open Access Journals (Sweden)

    Kolby Hirth

    2010-03-01

    Full Text Available Chemical pulps are produced by chemical delignification of lignocelluloses such as wood or annual non-woody plants. After pulping (e.g., kraft pulping, the remaining lignin is removed by bleaching to produce a high quality, bright paper. The goal of bleaching is to remove lignin from the pulp without a negative effect on the cellulose; for this reason, delignification should be performed in a highly selective manner. New environmentally-friendly alternatives to conventional chlorine-based bleaching technologies (e.g., oxygen, ozone, or peroxide bleaching have been suggested or implemented. In an attempt to find inorganic agents that mimic the action of highly selective lignin-degrading enzymes and that can be applicable in industrial conditions, the researchers have focused on polyoxometalates (POMs, used either as regenerable redox reagents (in anaerobic conditions or as catalysts (in aerobic conditions of oxidative delignification. The aim of this paper is to review the basic concepts of POM delignification in these two processes.

  8. Fourier Transform Infrared Imaging analysis of dental pulp inflammatory diseases.

    Science.gov (United States)

    Giorgini, E; Sabbatini, S; Conti, C; Rubini, C; Rocchetti, R; Fioroni, M; Memè, L; Orilisi, G

    2017-05-01

    Fourier Transform Infrared microspectroscopy let characterize the macromolecular composition and distribution of tissues and cells, by studying the interaction between infrared radiation and matter. Therefore, we hypothesize to exploit this analytical tool in the analysis of inflamed pulps, to detect the different biochemical features related to various degrees of inflammation. IR maps of 13 irreversible and 12 hyperplastic pulpitis, together with 10 normal pulps, were acquired, compared with histological findings and submitted to multivariate (HCA, PCA, SIMCA) and statistical (one-way ANOVA) analysis. The fit of convoluted bands let calculate meaningful band area ratios (means ± s.d., P infrared imaging analysis pin-pointed higher amounts of water and lower quantities of type I collagen in all inflamed pulps. Specific vibrational markers were defined for irreversible pulpitis (Lipids/Total Biomass, PhII/Total Biomass, CH 2 /CH 3 , and Ty/AII) and hyperplastic ones (OH/Total Biomass, Collagen/Total Biomass, and CH 3 Collagen/Total Biomass). The study confirmed that FTIR microspectroscopy let discriminate tissues' biological features. The infrared imaging analysis evidenced, in inflamed pulps, alterations in tissues' structure and composition. Changes in lipid metabolism, increasing amounts of tyrosine, and the occurrence of phosphorylative processes were highlighted in irreversible pulpitis, while high amounts of water and low quantities of type I collagen were detected in hyperplastic samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Laccase modification of the physical properties of bark and pulp of loblolly pine and spruce pulp

    Science.gov (United States)

    William Kenealy; John Klungness; Mandla Tshabalala; Eric Horn; Masood Akhtar; Roland Gleisner; Gisela Buschle-Diller

    2004-01-01

    Pine bark, pine pulp, and spruce pulp were reacted with laccase in the presence of phenolic laccase substrates to modify the fiber surface properties. The acid-base and dispersive characteristics of these modified steam-treated thermomechanical loblolly pine pulps were determined by inverse gas chromatography. Different combinations of substrates with laccase modified...

  10. Universal industrial sectors integrated solutions module for the pulp and paper industry.

    Science.gov (United States)

    Bhander, Gurbakhash; Jozewicz, Wojciech

    2017-09-01

    The U.S. is the world's second-leading producer of pulp and paper products after China. Boilers, recovery furnaces, and lime kilns are the dominant sources of emissions from pulp and paper mills, collectively accounting for more than 99 % of the SO 2 , almost 96 % of the NO X , and more than 85 % of the particulate matter (PM) emitted to the air from this sector in the U.S. The process of developing industrial strategies for managing emissions can be made efficient, and the resulting strategies more cost-effective, through the application of modeling that accounts for relevant technical, environmental and economic factors. Accordingly, the United States Environmental Protection Agency is developing the Universal Industrial Sectors Integrated Solutions module for the Pulp and Paper Industry (UISIS-PNP). It can be applied to evaluate emissions and economic performance of pulp and paper mills separately under user-defined pollution control strategies. In this paper, we discuss the UISIS-PNP module, the pulp and paper market and associated air emissions from the pulp and paper sector. After illustrating the sector-based multi-product modeling structure, a hypothetical example is presented to show the engineering and economic considerations involved in the emission-reduction modeling of the pulp and paper sector in the U.S.

  11. Pulp development, repair, and regeneration: challenges of the transition from traditional dentistry to biologically based therapies.

    Science.gov (United States)

    Schmalz, Gottfried; Smith, Anthony J

    2014-04-01

    The traditional concept of replacing diseased tooth/pulp tissues by inert materials (restoration) is being challenged by recent advances in pulp biology leading to regenerative strategies aiming at the generation of new vital tissue. New tissue formation in the pulp chamber can be observed after adequate infection control and the formation of a blood clot. However, differentiation of true odontoblasts is still more speculative, and the approach is largely limited to immature teeth with open apices. A more systematic approach may be provided by the adoption of the tissue engineering concepts of using matrices, suitable (stem) cells, and signaling molecules to direct tissue events. With these tools, pulplike constructs have already been generated in experimental animals. However, a number of challenges still remain for clinical translation of pulp regeneration (eg, the cell source [resident vs nonresident stem cells, the latter associated with cell-free approaches], mechanisms of odontoblast differentiation, the pulp environment, the role of infection and inflammation, dentin pretreatment to release fossilized signaling molecules from dentin, and the provision of suitable matrices). Transition as a process, defined by moving from one form of "normal" to another, is based not only on the progress of science but also on achieving change to established treatment concepts in daily practice. However, it is clear that the significant recent achievements in pulp biology are providing an exciting platform from which clinical translation of dental pulp regeneration can advance. Copyright © 2014. Published by Elsevier Inc.

  12. DIRECT PULP CAPPING IN TREATMENT OF REVERSIBLE PULPITIS IN PRIMARY TEETH- CLINICAL PROTOCOL

    Directory of Open Access Journals (Sweden)

    Nina Milcheva

    2016-10-01

    Full Text Available The pulp of primary teeth is identical morphologically and physiologically to that of permanent teeth and it is capable to answer to pathological stimuli by producing tertiary dentin. When the inflammation of the pulp is in its reversible stage vital methods of treatment are indicated in order to stimulate the healing processes in it and protect its vitality. In Bulgaria the most popular method of treatment of inflammation diseases of the pulp in primary dentition is the mortal amputation. The biological way of treatment is not very common even in cases where there are indications for it. Purpose: The aim of this paper is to present the approbated by us protocol for application of direct pulp capping for treatment of reversible pulpitis in primary teeth. Material and methods: On the base of world experience and our contemporary meta- analysis of the researches published in the last 15 years concerning the problems of diagnostics. We determined clinical and radiographic diagnostic criteria for reversible pulpitis in primary teeth and indications for application of direct pulp capping as a method of treatment. We give clinical steps for application of the method and summarized the clinical and radiographic criteria for success after treatment. Results/conclusion: We gather all the information for applying direct pulp cappingfor treatment of reversible pulpitis in primary dentition. We offer the method of direct pulp capping as a clinical protocol “step by step” and illustrated by scheme which can be useful for students and dentists in their everyday practice.

  13. THE EFFECT OF WATER REDUCTION IN KRAFT PULP WASHING IN ECF BLEACHING

    Directory of Open Access Journals (Sweden)

    Tânia Cristina Frigieri

    Full Text Available ABSTRACT The main objective of this work was to study the technical viability of using the cellulose bleaching effluent, at several stages of the process, seeking fresh water reduction in pulp washing, and evaluating its effect on pulp quality. Eucalyptus spp. industrial cellulosic pulp with oxygen was used in this experiment. The same bleaching sequence D(E+PDP was performed ten times, under the same conditions (temperature, consistency and time. Counter current washing was used in the bleaching stages, and each sequence was carried out with different washing factors: 9, 6, 3, 0 m3 of distilled water/ton of pulp, trying to reach brightness of 92 ± 0,5% ISO. The ten sequences sought to achieve the stability of the effluent organic load, measured by the chemical oxygen demand (COD. Then, the COD results were compared to the brightness ones from the bleached pulp. The evaluated results from the ten sequences and four different washings showed an increasing in COD due to the organic load accumulation, resulting from the reuse of effluent from previous sequences. This COD increasing provided the lower brightness results during the cycles, besides the water reduction, evidencing the necessity of washing between bleaching stages. In this study, the obtained result for the pulp washing up to 3m3/t was tolerable and even recommended. On the other hand, the pulp without any washing (0m3/t, due to the lack of enough brightness, it is commercially unviable.

  14. Effects of exposure to 4-META/MMA-TBB resin on pulp cell viability.

    Science.gov (United States)

    Imaizumi, Nakako; Kondo, Hisatomo; Ohya, Keiichi; Kasugai, Shohei; Araki, Kouji; Kurosaki, Norimasa

    2006-06-01

    Adhesive restorative systems have expanded the range of possibilities for direct pulp-capping technique, with evidences of clinical success in vital pulp therapy. However, quite few studies have described the direct responses of pulp cells following the application of resinous materials to pulp exposure. To address this issue, effects of exposure to an adhesive resin, 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate-tri-n-butyl borane (4-META/MMA-TBB) resin on cellular activity were investigated in an established rat dental pulp cell line (RPC-C2A). RPC-C2A cells were cultured on normal plastic plates or the disks prepared from 4-META/MMA-TBB resin (Super Bond C&B) in a-MEM containing 10% FBS. After 3, 7 and 14 days, DNA content and alkaline phosphatase (ALP) activity were measured. Total RNA in each group was extracted and RT-PCR analysis was performed. Moreover, the live cell ratio was also evaluated by cytotoxicity assay after treatment with various concentrations of 4-META/MMA-TBB. At day 3, 7 and 14, amount of DNA and ALP activity of the cells on normal plastic plates and the one on the 4-META/MMA-TBB were comparable. Cells of both groups expressed mRNA of type I collagen (Coll), ALP, osteopontin (OPN), osteocalcin (OC), and bone morphogenetic protein (BMP-2). Furthermore, 4-META/MMA-TBB (10(-1)% or less) did not influence dead cell ratio in the confluent state. According to the results of these in vitro studies, exposure to this resinous material would not induce cytotoxic response in the pulp cells.

  15. Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process.

    Science.gov (United States)

    Wen, Jia-Long; Sun, Shao-Ni; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2013-12-01

    Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Stem Cells of the Dental Pulp

    OpenAIRE

    Mahboobe Dehghani

    2014-01-01

     Dental Pulp Stem Cells (DPSCs) can be found within the cell rich zone of dental pulp. These stem cells, under specific stimuli, differentiate into many cell types which have wide therapeutic applications.   The dental stem cells are derived from both deciduous and permanent teeth. The viable dental stem cells are very simple to collect, without any mortality and morbidity. Dental pulp stem cells can be obtained from the patient’s vital pulp with the help of stem cell markers, which hel...

  17. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Jun, Soo-Kyung; Lee, Jung-Hwan; Lee, Hae-Hyoung

    2017-01-01

    The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive® [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal® [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) activity and alizarin red staining (ARS). Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC ( p 0.05). Ca (~110 ppm) and hydroxide ions (pH 11) were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions.

  18. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Soo-Kyung Jun

    2017-01-01

    Full Text Available The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs. The product (Bioactive® [BA] was compared with a conventional calcium hydroxide-incorporated (Dycal [DC] and a light-curable (Theracal® [TC] counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP activity and alizarin red staining (ARS. Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p0.05. Ca (~110 ppm and hydroxide ions (pH 11 were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions.

  19. The Determinants of Brazilian Pulp exports from 1980 to 2001

    OpenAIRE

    Bacha, Carlos José Caetano; SanJuan, Adriana E.

    2004-01-01

    This paper makes an econometric analysis of the determinants of BrazilÂ’s pulp exports. The time period from 1980 to 2001 is considered for estimating a supply equation of pulp exports. Exogenous variables considered were: price of Brazilian exported pulp, production cost of Brazilian pulp, productive capacity, exchange rate between dollar and domestic currency and lagged pulp exports. It was observed that BrazilÂ’s pulp exports have responded little to price fluctuation; however, these expor...

  20. Cassava Pulp as a Biofuel Feedstock of an Enzymatic Hydrolysis Proces

    Directory of Open Access Journals (Sweden)

    Djuma’ali Djuma’ali

    2013-03-01

    Full Text Available Cassava pulp, a low cost solid byproduct of cassava starch industry, has been proposed as a high potential ethanolic fermentation substrate due to its high residual starch level, low ash content and small particle size of the lignocellulosic fibers. As the economic feasibility depends on complete degradation of the polysaccharides to fermentable glucose, the comparative hydrolytic potential of cassava pulp by six commercial enzymes were studied. Raw cassava pulp (12% w/v, particle size <320 μm hydrolyzed by both commercial pectinolytic (1 and amylolytic (2 enzymes cocktail, yielded 70.06% DE. Hydrothermal treatment of cassava pulp enhanced its susceptibility to enzymatic cleavageas compared to non-hydrothermal treatment raw cassava pulp. Hydrothermal pretreatment has shown that a glucoamylase (3 was the most effective enzyme for hydrolysis process of cassava pulp at temperature 65 °C or 95 °C for 10 min and yielded approximately 86.22% and 90.18% DE, respectively. Enzymatic pretreatment increased cassava pulp vulnerability to cellulase attacks. The optimum conditions for enzymatic pretreatment of 30% (w/v cassava pulp by a potent cellulolytic/ hemicellulolytic enzyme (4 was achieves at 50 °C for 3, meanwhile for liquefaction and saccharification by a thermo-stable α-amylase (5 was achieved at 95 °C for 1 and a glucoamylase (3 at 50 °C for 24 hours, respectively, yielded a reducing sugar level up to 94,1% DE. The high yield of glucose indicates the potential use of enzymatic-hydrothermally treated cassava pulp as a cheap substrate for ethanol production.

  1. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  2. Alkaline Activator Impact on the Geopolymer Binders

    Science.gov (United States)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  3. Process of defect formation in alkaline halogenides contaminated with Eu{sup 2+} induced by non ionizing radiation; Procesos de formacion de defectos en halogenuros alcalinos contaminados con Eu{sup 2+} inducidos por radiacion no ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Pedroza M, M.; Melendrez, R.; Barboza F, M. [Centro de Investigacion en Fisica de la Universidad de Sonora, A.P. 5-088, 83190 Hermosillo, Sonora (Mexico); Castaneda, B. [UNISON, A.P. 1626, 83190 Hermosillo, Sonora (Mexico)

    2004-07-01

    The creation of defects in polluted alkaline halogenides with divalent impurities exposed to ionizing radiation is explained by means of the creation of auto trapped excitons (STE), which can be formed by means of the excitement of the halogen ion or through the trapping of electrons in centers V{sub K} taken place during the process of ionization of the halogen ion. The luminescent recombination of the exciton auto trapped produces a characteristic exciton luminescence and the recombination non radiative causes the formation of the Frenkel type defects, even of centers F - H. Experimentally has been demonstrated that the same type of glasses, exposed to radiation non ionizing of the type UV of around 230 nm, they produce defects similar Frenkel. The situation is interesting all time that photons of 230 nm (5.3 eV) they cannot create excitons directly since they are in an energy level of approximately 2.4 inferior eV to the necessary energy for the production of the same ones. In order to investigating the type of process of creation of defects with UV light energy below the energy of the band prohibited in polluted alkaline halogenides with Eu{sup 2+}, mainly looking for experimental information that allows to explain the creation of defects taken place by the radiation non ionizing, one carries out the present work. It was found that, independently of the energy of the radiation used for the excitement, the emission comes from the transition 4f{sup 6}5d(t{sub 2g})-4f{sup 7}({sup 8}S{sub 7/2}) of the ion Eu{sup 2+} characterized by a wide band centered in 420 nm and an additional component in 460 nm of possibly intrinsic origin. It was determined that so much the F centers and F{sub z} participate in the thermoluminescent processes and of optically stimulated luminescence, achieving to identify those peaks of Tl strictly associated to the F centers (peak in 470 K for the KCl: Eu{sup 2+}) and F{sub z} (peak in 370 K). Also, by means of a process of selective photo

  4. Collection and dissemination of TES system information for the paper and pulp industry

    Science.gov (United States)

    Dietrich, M. W.; Edde, H.

    1980-01-01

    A survey of U.S. and international paper and pulp mills using thermal energy storage (TES) systems as a part of their production processes was conducted to obtain sufficient operating data to conduct a benefits analysis encompassing: (1) an energy conservation assessment, (2) an economic benefits analysis, and (3) an environmental impact assessment. An information dissemination plan was then proposed to effectively present the benefits of TES to the U.S. paper and pulp industry.

  5. Investigation of functional activity human dental pulp stem cells at acute and chronic pulpitis.

    Science.gov (United States)

    Ustiashvili, M; Kordzaia, D; Mamaladze, M; Jangavadze, M; Sanodze, L

    2014-09-01

    It is already recognized that together with the other connective tissues organ-specific progenic stem cells are also found in postnatal dental pulp. This group of undifferentiated cells is only 1% of total cell population of the pulp. The aim of the study was the identification of stem cells in human dental pulp, detection of their localization and assessment of functional activity during inflammation process and/or at norm. The obtained results showed that at acute pulpitis the pulp stroma is hypocellular in comparison with the norm but cells proliferative activity is low. CD 133 and NCAM (CD 56) positive stem cells were found in perivascularl space of the pulp stroma and in Hohle layer. At process prolongation and transition to the chronic phase pulp stroma is hypercellular, the cells with large, rounded or oval-shaped nuclei with clear chromatin appear together with fibroblasts. They are distributed as about entire thickness of the stroma as especially Hohle layer. In such cells higher proliferative activity (Ki67 expression) was observed. The cells in the mentioned proliferation phase are intensively marked by CD133, the rate of which is high in Hohle layer and along it. A large number of NCAM (CD 56) positive cells appear in pulp stroma. During pulpitis an involvement of stem cells into the process of reparative dentinogenesis should be conducted stepwise. In acute cases of the disease, stem cell perivascularl mobilization and proliferation and its migration to Hohle layer occur in response to irritation /stimulation. Chronification of the process leads not only to the migration of stem cells to the periphery of the pulp but also s their В«maturationВ» (increase of NCAM expression in the stem cells), which causes an increase the number of dentin producing active odontoblasts and initiation of reparative dentinogenesis.

  6. Dentin permeability: the basis for understanding pulp reactions and adhesive technology

    OpenAIRE

    Mjör, Ivar A.

    2009-01-01

    Permeability involves the passage of fluids, ions, molecules, particulate matter and bacteria into and through a substance or tissue under different and varying conditions. The permeability of the dentin is essential to support the physiology and reaction patterns of the pulp-dentin organ. Nutrients and impulses are transported from the pulp via the odontoblast process and the contents of its tubules maintain the dentin as a vital tissue. However, the main interest of this paper focuses on pe...

  7. ALKALI EXTRACTION OF HEMICELLULOSE FROM DEPITHED CORN STOVER AND EFFECTS ON SODA-AQ PULPING

    OpenAIRE

    Heli Cheng; Huaiyu Zhan; Shiyu Fu; Lucian A. Lucia

    2011-01-01

    A biorefinery using the process of hemicellulose pre-extraction and subsequent pulping provides a promising way for the utilization of straw biomass and resolution of problems related to silicon. In this work, hemicellulose was extracted from depithed corn stover with sodium hydroxide solution before soda-AQ pulping. Components of the extracts were quantified by ion chromatography. The parameters (alkali concentration and temperature) affecting hemicellulose pre-extraction were optimized. The...

  8. PENGGUNAAN ASAM PERASETAT PADA PROSES DELIGNIFIKASI PULP ACETOSOLV DARI AMPAS TEBU DAN BAMBU BETUNG

    Directory of Open Access Journals (Sweden)

    Ahmad Sapta Zuidar

    2014-07-01

    Full Text Available Acetosolv process produced dark pulp because of the high lignin content.  Therefore ,  delignification  process is needed. This process uses peracetic acid to improve pulp qualities. The objective of this research was to determine the effect of different concentrations of peracetic acid against the characteristics of pulp acetosolv from bagasse and bamboo betung.  The research was arranged in a Complete Randomized Block Design with a single treatment and 4 replications.  The treatment used peracetic acid with six levels concentration (9%, 11%, 13%, 15%, 17%, 19% at a temperature of 85oC for 3 hours. The homogenity and additivity of the data were  analyzed using Bartlett and Tuckey Tests, then they were analyze for ANOVA to see if there is any difference among means, and then processed further using  Least Significant Difference at level of 1% and 5%.  The results showed that the concentration of peracetic acid had significant effect on yield, cellulose, hemicellulose, lignin, and organoleptic color pulp from bagasse and bamboo betung.  The best results showed that the concentration of peracetic acid 15% with cooking duration of  3 hours gave the best pulp. The pulp contained 85.837% of cellulose , 7.757% of hemicellulose , 1.758% of lignin , 73.048% of yield  and  the average organoleptic score for the pulp color was 4.3. Keywords:   acetosolv pulp,  baggase, bamboo,  delignification, paracetic acid

  9. Cellulose fibril aggregation studies of eucalyptus dissolving pulps using atomic force microscopy

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2006-11-01

    Full Text Available STUDIES OF Eucalyptus DISSOLVING PULPS USING ATOMIC FORCE MICROSCOPY V. Chunilall1, J.Wesley-Smith2, T. Bush1 1CSIR, Forestry and Forest Product Research Centre, P.O. Box 17001, Congella, 4013, South Africa. 2Electron Microscope Unit, University of Kwa... pulp using atomic force microscopy (AFM) have reported increased cellulose fibril aggregation during processing, and a concomitant decrease in surface area available for chemical reaction1,2. These findings were subsequently confirmed...

  10. Pengaruh Pendidikan dan Pelatihan terhadap Kinerja Karyawan Bagian Produksi Pulp Making 8 PT. Indah Kiat Pulp And Paper Perawang

    OpenAIRE

    Etalia, Mikha; Andri, Seno

    2015-01-01

    This research aimed to determine the effect of education and training to employee performance in pulp production Pulp Making PT.Indah Kiat Pulp and Paper. Education and training as an independent variable (X) has been formulated by ability and skill instructors coach, the determination of material, facilities and infrastructure. While employee performance as the dependent variable (Y). This research was conducted on all employees pulp production Pulp Making PT.Indah Kiat Pulp and Paper by 40 ...

  11. ACCUMULATION OF ALKALIS IN THE RECYCLING FILTRATE OF THE PHOSPHOGYPSUM PULPS

    Directory of Open Access Journals (Sweden)

    ANTANAS KAZILIUNAS

    2011-12-01

    Full Text Available Sodium and potassium combinations existing in phosphogypsum are highly soluble and remain in the filtrate, their amount increasing with each recycle. It has been determined that the amount of alkalis in the recycling filtrate depends on an amount of alkalis in uncleaned phosphogypsum, a number of recycles in the filtrate, the technology of the phosphogypsum pulp preparation and an amount of soluble phosphates. New phosphate formations composed in an acid medium (pH = 4.5-5 are well crystalized crystals. They do not alter the filtrability of the phosphogypsum pulp. The new combinations formed in an alkaline medium (pH = 7-11 are colloidal. They settle down on the surface of the hard particles and make the filtration of the phosphogypsum pulp complicated. The filtrated phosphogypsum is more humid which causes the growth of the amount of alkalis carried out together with moisture and thus the lower alkali concentration is observed in the recycling filtrate. In the discussed case, the larger amount of soluble phosphates of uncleaned phosphogypsum is formed the larger amount of the colloidal particles in the neutralized phosphogypsum pulp which results in complicated filtration. In all the cases, the alkali concentration in the recycling filtrate approaches the maximum degree which would take place if alkalis existing in uncleaned phosphogypsum were thawed in humidity of cleaned phosphogypsum.

  12. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization.

    Science.gov (United States)

    Zanini, Marjorie; Sautier, Jean Michel; Berdal, Ariane; Simon, Stéphane

    2012-09-01

    Biodentine (Septodont, Saint Maur des Faussés, France), a new tricalcium silicate-based cement, has recently been commercialized and advertised as a bioactive material. Its clinical application and physical properties have been widely described, but, so far, its bioactivity and biological effect on pulp cells have not been clearly shown. Thus, the aim of this study was to evaluate the biological effect of Biodentine on immortalized murine pulp cells (OD-21). OD-21 cells were cultured with or without Biodentine. Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) colorimetric assay after 2, 3, and 5 days of stimulation. The expression of several biomolecular markers was analyzed to screen differentiation pathways, both on a gene level with Real-time reverse transcription polymerase chain reaction and on a protein level by measuring alkaline phosphatase activity. Alizarin red staining was used to assess and quantify biomineralization. The expression patterns of several genes confirmed the differentiation of OD-21 cells into odontoblasts during the period of cell culture. Our results suggest that Biodentine is bioactive because it increased OD-21 cell proliferation and biomineralization in comparison with controls. Because of its bioactivity, Biodentine can be considered as a suitable material for clinical indications of dentin-pulp complex regeneration, such as direct pulp capping. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Comparative study of the efficiency of synthetic and natural mediators in laccase-assisted bleaching of eucalyptus kraft pulp.

    Science.gov (United States)

    Moldes, D; Díaz, M; Tzanov, T; Vidal, T

    2008-11-01

    The natural phenolic compounds syringaldehyde and vanillin were compared to the synthetic mediators 1-hydroxybenzotriazole, violuric acid and promazine in terms of boosting efficiency in a laccase-assisted biobleaching of eucalyptus kraft pulp. Violuric acid and 1-hydroxybenzotriazole revealed to be the most effective mediators of the bioprocess. Nevertheless, laccase-syringaldehyde system also improved the final pulp properties (28% delignification and 63.5% ISO brightness) compared to the process without mediator (23% and 61.5% respectively), in addition to insignificant denaturation effect over laccase. The efficiency of the biobleaching process was further related to changes in non-conventionally used optical and chromatic parameters of pulp, such as (L*), chroma (C*) and dye removal index (DRI) showing good correlation. Adverse coupling reactions of the natural phenolic mediators on pulp lignin were predicted by electrochemical studies, demonstrating the complexity of the laccase-mediator reaction on pulp.

  14. Alkaline direct alcohol fuel cells

    Science.gov (United States)

    Antolini, E.; Gonzalez, E. R.

    The faster kinetics of the alcohol oxidation and oxygen reduction reactions in alkaline direct alcohol fuel cells (ADAFCs), opening up the possibility of using less expensive metal catalysts, as silver, nickel and palladium, makes the alkaline direct alcohol fuel cell a potentially low cost technology compared to acid direct alcohol fuel cell technology, which employs platinum catalysts. A boost in the research regarding alkaline fuel cells, fuelled with hydrogen or alcohols, was due to the development of alkaline anion-exchange membranes, which allows the overcoming of the problem of the progressive carbonation of the alkaline electrolyte. This paper presents an overview of catalysts and membranes for ADAFCs, and of testing of ADAFCs, fuelled with methanol, ethanol and ethylene glycol, formed by these materials.

  15. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp

    Directory of Open Access Journals (Sweden)

    Aileen I. Tsai

    2017-01-01

    Full Text Available This study aimed to identify predictors of success rate of mesenchymal stem cell (MSC isolation from human deciduous teeth pulp. A total of 161 deciduous teeth were extracted at the dental clinic of Chang Gung Memorial Hospital. The MSCs were isolated from dental pulps using a standard protocol. In total, 128 colonies of MSCs were obtained and the success rate was 79.5%. Compared to teeth not yielding MSCs successfully, those successfully yielding MSCs were found to have less severe dental caries (no/mild-to-moderate/severe: 63.3/24.2/12.5% versus 12.5/42.4/42.4%, P<0.001 and less frequent pulpitis (no/yes: 95.3/4.7% versus 51.5/48.5%, P<0.001. In a multivariate regression model, it was confirmed that the absence of dental caries (OR = 4.741, 95% CI = 1.564–14.371, P=0.006 and pulpitis (OR = 9.111, 95% CI = 2.921–28.420, P<0.001 was significant determinants of the successful procurement of MSCs. MSCs derived from pulps with pulpitis expressed longer colony doubling time than pulps without pulpitis. Furthermore, there were higher expressions of proinflammatory cytokines, interleukin- (IL- 6 and monocyte chemoattractant protein- (MCP- 1, P<0.01, and innate immune response [toll-like receptor 1 (TLR1 and TLR8, P<0.05; TLR2, TLR3, and TLR6, P<0.01] in the inflamed than noninflamed pulps. Therefore, a carious deciduous tooth or tooth with pulpitis was relatively unsuitable for MSC processing and isolation.

  16. Demineralized bone matrix used for direct pulp capping in rats.

    Directory of Open Access Journals (Sweden)

    Qian Liu

    Full Text Available To evaluate the wound healing process following direct pulp capping with demineralized bone matrix (DBM and calcium hydroxide (Ca(OH2.Fifty 8-weeks-old SPF Wistar male rats were divided into two groups: one was the DBM treated group, and the other was the Ca(OH2 treated group. Pulpotomy was performed on the maxillary first molar of one side of each rat, and the another side was left as the blank control. Rats were sacrificed after each observation period (1, 3, 7, 14 and 28 days and specimen slices were made. Hematoxylin-Eosin (HE staining was used for observing the changes of pulp tissue, and immunohistochemical staining was used for observing the expression of reparative dentinogenesis-related factors runt transcription factor 2 (Runx2, type I collagen (COL I, osteocalcin (OCN and dentin sialoprotein (DSP.Inflammatory cell infiltration (ICI and pulp tissue disorganization (PTD could be observed in both the DBM and Ca(OH2 groups at all observation periods. The DBM group showed slighter ICI on 1 and 28 days and milder PTD on 28 days, with a significant difference (P<0.05. Reparative dentin formation (RDF could initially be observed on 14 days postoperatively, and the DBM group showed more regular and thinner RDF with significant differences on 14 and 28 days compared with the Ca(OH2 group (P<0.05. In both groups, the expression of Runx2, COL I, DSP and OCN were positive. Generally, the expression of these four factors in the DBM group was stronger than the Ca(OH2 group on the same observation periods.DBM had the ability of inducing odontoblast differentiation and promoting dentinogenesis. DBM could initiate physiologic wound healing in pulp and had the ability to promote reparative dentin formation. Consequently, DBM may be an acceptable alternative for direct pulp capping.

  17. Magnetic Nanocomposite Scaffold-Induced Stimulation of Migration and Odontogenesis of Human Dental Pulp Cells through Integrin Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Hyung-Mun Yun

    Full Text Available Magnetism is an intriguing physical cue that can alter the behaviors of a broad range of cells. Nanocomposite scaffolds that exhibit magnetic properties are thus considered useful 3D matrix for culture of cells and their fate control in repair and regeneration processes. Here we produced magnetic nanocomposite scaffolds made of magnetite nanoparticles (MNPs and polycaprolactone (PCL, and the effects of the scaffolds on the adhesion, growth, migration and odontogenic differentiation of human dental pulp cells (HDPCs were investigated. Furthermore, the associated signaling pathways were examined in order to elucidate the molecular mechanisms in the cellular events. The magnetic scaffolds incorporated with MNPs at varying concentrations (up to 10%wt supported cellular adhesion and multiplication over 2 weeks, showing good viability. The cellular constructs in the nanocomposite scaffolds played significant roles in the stimulation of adhesion, migration and odontogenesis of HDPCs. Cells were shown to adhere to substantially higher number when affected by the magnetic scaffolds. Cell migration tested by in vitro wound closure model was significantly enhanced by the magnetic scaffolds. Furthermore, odontogenic differentiation of HDPCs, as assessed by the alkaline phosphatase activity, mRNA expressions of odontogenic markers (DMP-1, DSPP,osteocalcin, and ostepontin, and alizarin red staining, was significantly stimulated by the magnetic scaffolds. Signal transduction was analyzed by RT-PCR, Western blotting, and confocal microscopy. The magnetic scaffolds upregulated the integrin subunits (α1, α2, β1 and β3 and activated downstream pathways, such as FAK, paxillin, p38, ERK MAPK, and NF-κB. The current study reports for the first time the significant impact of magnetic scaffolds in stimulating HDPC behaviors, including cell migration and odontogenesis, implying the potential usefulness of the magnetic scaffolds for dentin-pulp tissue engineering.

  18. The effect of delta-like 1 homologue on the proliferation and odontoblastic differentiation in human dental pulp stem cells.

    Science.gov (United States)

    Qi, Shengcai; Yan, Yanhong; Wen, Yue; Li, Jialiang; Wang, Jing; Chen, Fubo; Tang, Xiaoshan; Shang, Guangwei; Xu, Yuanzhi; Wang, Raorao

    2017-06-01

    This study aimed to investigate the functions of delta-like homologue 1 (DLK1) in the proliferation and differentiation of human dental pulp stem cells (hDPSCs). Immunohistochemical analysis was used to determine the expression of alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP), DLK1, NOTCH1 and p-ERK1/2 in the mouse first maxillary molar. Recombinant lentivirus was constructed to overexpress DLK1 stably in hDPSCs. The cell viability and proliferation of hDPSCs were examined by CCK8 and EdU incorporation assay respectively. The odontoblastic differentiation of hDPSCs was determined by detection of ALPase activity assay, ALP and alizarin red staining and the expression of mineralization-related genes including ALP, DSPP and dental matrix protein. The mRNA and protein levels of DLK1 and p-ERK1/2 protein expression were detected. ERK inhibitor was used to test the differentiation effect of DLK1 on hDPSCs. Delta-like homologue 1 was highly expressed on the odontoblasts and dental pulp cells on the first maxillary molar; the expression of p-ERK1/2 is similar with the DLK1 in the same process. The expression level of DLK1 increased significantly after the odontoblastic induction of hDPSCs. DLK1 overexpression increased the proliferation ability of hDPSCs and inhibited odontoblastic differentiation of hDPSCs. The protein level of p-ERK1/2 significantly increased in hDPSCs/dlk1-oe group. ERK signalling pathway inhibitor reversed the odontoblastic differentiation effects of DLK1 on hDPSCs. The proliferation of hDPSCs was promoted after DLK1 overexpression. DLK1 inhibited the odontoblastic differentiation of hDPSCs, which maybe through ERK signalling pathway. © 2017 John Wiley & Sons Ltd.

  19. Faster onset and more comfortable injection with alkalinized 2% lidocaine with epinephrine 1:100,000.

    Science.gov (United States)

    Malamed, Stanley F; Tavana, Susan; Falkel, Mic

    2013-02-01

    The pH of lidocaine with epinephrine in dental cartridges ranges between 2.9 and 4.4. In this pH range, less than 0.1% of the anesthetic is in the de-ionized or "active" form. The acidity of the anesthetic may delay onset and contribute to injection pain. The study compared anesthetic latency and injection pain for alkalinized versus non-alkalinized anesthetic in inferior alveolar nerve blocks (IANBs). The study buffered the anesthetic directly in the cartridges using a mixing pen device. The study included 20 participants, each receiving one control and one test IANB injection. The control solution was non-alkalinized 2% lidocaine/epinephrine 1:100,000 at pH 3.85. The test solution was 2% lidocaine/ epinephrine 1:100,000 alkalinized to pH 7.31. Latency was measured using endodontic ice confirmed with an electric pulp tester (EPT), and injection pain was measured using a visual analog scale (VAS). ONSET TIME: With the alkalinized anesthetic, 71% of participants achieved pulpal analgesia in 2 minutes or less. With non-alkalinized anesthetic, 12% achieved pulpal analgesia in 2 minutes or less (P = 0.001). The average time to pulpal analgesia for the non-alkalinized anesthetic was 6:37 (range 0:55 to 13:25). Average time to pulpal analgesia for alkalinized anesthetic was 1:51 (range 0:11 to 6:10) (P = 0.001). INJECTION PAIN RESULTS: 72% of the participants rated the alkalinized injection as more comfortable, 11% rated the non-alkalinized injection as more comfortable, and 17% reported no preference (P = 0.013). Forty-four percent of the patients receiving alkalinized anesthetic rated the injection pain as zero ("no pain") on a 100-mm VAS, compared to 6% of the patients who received non-alkalinized anesthetic (P = 0.056). Alkalinizing lidocaine with epinephrine toward physiologic pH immediately before injection significantly reduces anesthetic onset time and increases the comfort of the injection. Clinicians can begin procedures more quickly and give a more comfortable

  20. The effect of wood supply and bleaching process on pulp brightness stability O efeito do tipo de madeira e do processo de branqueamento na estabilidade da alvura da polpa

    Directory of Open Access Journals (Sweden)

    Romildo Lopes Oliveira

    2006-06-01

    Full Text Available One hundred different 5.5-year-old Eucalyptus grandis x Eucalyptus urophylla wood clones were cooked to kappa number 15-17.5 and the resulting kraft pulps oxygen-delignified to kappa 9.5-11.5 under fixed conditions, except for chemical charges. Thirteen samples showing large variations in effective alkali requirement, pulp yield and O-stage efficiency and selectivity were selected for brightness reversion studies. These samples were bleached to 90-91% ISO by DEDD and DEDP sequences and their brightness stability and chemical characteristics determined. Heat reversion of the eucalyptus kraft pulps was strongly influenced by the wood supply, with brightness loss varying in the range of 2.1-3.6 and 0.8-1.7 %ISO for ODEDD and ODEDP bleached pulps, respectively. Pulps bleached by the ODEDP sequence showed reversion values 1.3-1.9 % ISO lower than those bleached by the ODEDD sequence. Pulp carbonyl content decreased by 35-40% during the final peroxide bleaching stage. Carbonyl and carboxyl groups correlated positively with brightness reversion, as did permanganate number and acid soluble lignin. Pulp final viscosity and metal and DCM extractives contents showed no significant correlation with brightness reversion. Pulping, oxygen delignification and ECF bleaching performances also showed no correlation with brightness reversion.Madeiras de 100 diferentes clones de Eucalyptus grandis e Eucalyptus urophylla, com aproximadamente 5,5 anos de idade, foram cozidas ao número kappa 15-17,5. As polpas kraft produzidas foram pré-deslignificadas com oxigênio ao número kappa 9,5-11,5, sob condições fixas. Treze polpas, que mostraram grandes variações na exigência da carga de álcali efetivo e rendimento no processo de polpação, seletividade e eficiência no estágio de Pré-O, foram selecionadas e branqueadas à alvura DE 90-91% ISO pelas seqüências DEDD e DEDP, para estudos de estabilidade de alvura e características químicas. A reversão de

  1. Histological transformations of the dental pulp as possible indicator of post mortem interval: a pilot study.

    Science.gov (United States)

    Carrasco, Patricio A; Brizuela, Claudia I; Rodriguez, Ismael A; Muñoz, Samuel; Godoy, Marianela E; Inostroza, Carolina

    2017-10-01

    The correct estimation of the post mortem interval (PMI) can be crucial on the success of a forensic investigation. Diverse methods have been used to estimate PMI, considering physical changes that occur after death, such as mortis algor, livor mortis, among others. Degradation after death of dental pulp is a complex process that has not yet been studied thoroughly. It has been described that pulp RNA degradation could be an indicator of PMI, however this study is limited to 6 days. The tooth is the hardest organ of the human body, and within is confined dental pulp. The pulp morphology is defined as a lax conjunctive tissue with great sensory innervation, abundant microcirculation and great presence of groups of cell types. The aim of this study is to describe the potential use of pulp post mortem alterations to estimate PMI, using a new methodology that will allow obtainment of pulp tissue to be used for histomorphological analysis. The current study will identify potential histological indicators in dental pulp tissue to estimate PMI in time intervals of 24h, 1 month, 3 months and 6 months. This study used 26 teeth from individuals with known PMI of 24h, 1 month, 3 months or 6 months. All samples were manipulated with the new methodology (Carrasco, P. and Inostroza C. inventors; Universidad de los Andes, assignee. Forensic identification, post mortem interval estimation and cause of death determination by recovery of dental tissue. United State patent US 61/826,558 23.05.2013) to extract pulp tissue without the destruction of the tooth. The dental pulp tissues obtained were fixed in formalin for the subsequent generation of histological sections, stained with Hematoxylin Eosin and Masson's Trichrome. All sections were observed under an optical microscope using magnifications of 10× and 40×. The microscopic analysis of the samples showed a progressive transformation of the cellular components and fibers of dental pulp along PMI. These results allowed creating a

  2. Pulp and Paper Industry Effluent Management.

    Science.gov (United States)

    Gove, George W.

    1978-01-01

    Presents a literature review of wastes from pulp and paper industry, covering publications of 1976-77. This review focuses on: (1) receiving water, toxicity, and effluent characterization; (2) pulping liquor disposal and recovery; and (3) physicochemical and biological treatment. A list of 238 references is also presented. (HM)

  3. Characterization of sugar beet pulp derived oligosaccharides

    NARCIS (Netherlands)

    Leijdekkers, M.

    2015-01-01

    Abstract This thesis aimed at characterizing complex mixtures of sugar beet pulp derived oligosaccharides, in order to be able to monitor and optimize the enzymatic saccharification of sugar beet pulp. Hydrophilic interaction chromatography with on-line evaporative light scattering

  4. Characterization of sugar beet pulp derived oligosaccharides

    NARCIS (Netherlands)

    Leijdekkers, M.

    2015-01-01

    Abstract

    This thesis aimed at characterizing complex mixtures of sugar beet pulp derived oligosaccharides, in order to be able to monitor and optimize the enzymatic saccharification of sugar beet pulp.

    Hydrophilic interaction chromatography with on-line evaporative

  5. ARE PULP SENSIBILITY TESTS STILL SENSIBLE?

    Science.gov (United States)

    Farid, Huma; Khan, Farhan Raza; Pasha, Lubna; Shinwari, Muhammad Saad

    2015-01-01

    Electric and thermal tests are the most commonly employed methods for the diagnosis of pulp health status. The objectives of our study are to assess the validity, yield and accuracy of cold and electric pulp tests in determining the vitality of teeth requiring endodontic treatment. A cross sectional study was carried out at the Dental Clinic of Aga Khan University Hospital on 75 patients requiring endodontic treatment. Before commencement of endodontic treatment, a provisional diagnosis of pulp status was made using an electric pulp tester and cold test. The tooth was then labelled as either vital or necrotic. Then an access openings was made and tooth's actual pulp status (vital/necrotic) was determined by observing bleeding in the pulp chamber. The validity, yield and accuracy were calculated on the basis of these findings. The sensitivity, specificity, positive predictive value and negative predictive value of cold test were 84%, 88%, 93% and 73% respectively. The sensitivity & specificity of electric test were 82% and 88% respectively whereas the positive predictive value negative predictive value of electric test were 93% and 71% respectively. The accuracy of cold and electric pulp test was 85% and 84% respectively. Both cold test and EPT have similar sensitivity, specificity and accuracy values. Although vitality tests have a promising future in the diagnosis of pulp health status but within limitation of this study we found that sensibility tests have satisfactory validity and accuracy values to be used routinely prior to endodontic and restorative treatments especially when used in conjunction with one each other.

  6. PULP DEMAND IN THE INTERNATIONAL MARKET

    Directory of Open Access Journals (Sweden)

    Edmilson Santos Cruz

    2003-01-01

    Full Text Available This study aimed at analyzing the international pulp market, taking into account themain exporting countries and importing regions, with the objective of estimating, for each market, theown-price and cross-price elasticity in relation to the demand of the pulp, differentiated for country oforigin. The model considers that imports are differentiated by origin; therefore they are not perfect substitutes. The demand from Europe, North America and the Rest of the World for the pulp from theUnited States,Canada, Sweden, Finland, Portugal and Brazil was inelastic. The Asian demand for thissome pulp was elastic. Europe and the Rest of the World showed negative cross-price elasticity, i. e.,and the imported pulp from other countries are complementary products. North America and Asiashowed positive crow-price elasticity, i. e., they consider the pulp produced in other countries assubstitute products. The net effect of the variation on the price of pulp in a country h, over the amountof pulp that goes to the region i depends on the matching of values related to the elasticity ofsubstitution and the price elasticity of the total demand.

  7. Structural and morphological characterization of cellulose pulp

    CSIR Research Space (South Africa)

    Ocwelwang, A

    2015-09-01

    Full Text Available International Symposium on Wood, Fibre and Pulping Chemistry, BOKU University, Vienna, Austria, 09-11th September 2015 9-11 September 2015 Structural and morphological characterization of cellulose pulp Atsile Ocwelwang1,2,*Bruce Sithole1,2, Deresh...

  8. Alkaline earth metal catalysts for asymmetric reactions.

    Science.gov (United States)

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    earth metal catalyst. We found that pyridinebisoxazolines (Pybox) worked well: they served as excellent ligands for calcium compounds in 1,4-addition reactions and Mannich reactions. Moreover, they were successful in 1,4-additions in concert with enantioselective protonation, affording the desired products in good to high enantioselectivities. Our results demonstrate that alkaline earth metals are very useful and attractive catalysts in organic synthesis. Moreover, their ubiquity in the environment is a distinct advantage over rare metals for large-scale processes, and their minimal toxicity is beneficial in both handling and disposal.

  9. [Endodontic treatment of primary teeth. Pulp exposure and pulp necrosis].

    Science.gov (United States)

    Gruythuysen, R J M

    2005-11-01

    With management of the deep caries in primary teeth we have to take account into the coping strategies of the patient and the state of the development of the dentition. That's why in most cases a root canal treatment of primary incisors or even a pulpotomy is not indicated. Often Intellectual Decision Not To Restore is a good alternative for treatment of deep caries in primary incisors. In deep caries lesions of primary canines and molars preferably minimal invasive techniques as indirect pulp capping are performed. In case of a exposure, the dentist can choose between several types of treatment. Improved techniques have lead to clinical satisfying results of the calcium hydroxide pulpotomy. A partial pulpotomy is if possible the treatment of choice. A resin modified glass ionomer cement is used to cover the pulp wound because it has good sealing properties and it is easy to handle. To limit the burden in young children a root canal treatment in primary teeth is seldom indicated. Overfilling with calcium hydroxide in root canal treatment of primary teeth never causes problems.

  10. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  11. Pulp tissue inflammation and angiogenesis after pulp capping with transforming growth factor β1

    Directory of Open Access Journals (Sweden)

    Sri Kunarti

    2008-06-01

    Full Text Available In Restorative dentistry the opportunity to develop biomemitic approaches has been signalled by the possible use of various biological macromolecules in direct pulp capping reparation. The presence of growth factors in dentin matrix and the putative role indicating odontoblast differentiation during embryogenesis has led to the examination on the effect of endogenous TGF-β1. TGF-β1 is one of the Growth Factors that plays an important role in pulp healing. The application of exogenous TGF-β1 in direct pulp capping treatment should be experimented in fibroblast tissue in-vivo to see the responses of inflammatory cells and development of new blood vessels. The increase in food supplies always occurs in the process of inflammation therefore the development of angiogenesis is required to fulfil the requirement. This in-vivo study done on orthodontic patients indicated for premolar extraction between 10–15 years of age. A class V cavity preparation was created in the buccal aspect 1 mm above gingival margin to pulp exposure. The cavity was slowly irrigated with saline solution and dried using a sterile small cotton pellet. The sterile absorbable collagen membrane was applied and soaked in 5 ml TGF-β1. It was covered by a Teflon pledge to separate from Glass Ionomer Cement restoration. Evaluation was performed on day 7; 14; and 21. All samples were histopathologycally examined and data was statistically analysed using one way ANOVA and Dunnet T3.There were no inflammatory symptoms in clinical examination on both Ca(OH2 and TGF-β1, but they increased the infiltration of inflammatory cells on histopathological examination. There were no significant differences (p > 0.05 between Ca(OH2 and TGF-β1 in inflammation cell and significant differences (p < 0.05 in angiogenesis on day 7 and 14. There were no significant differences (p > 0.05 in inflammation cell with in TGF-β1 groups and significant differences (p < 0.05 with in Ca(OH2 groups on day 7

  12. Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey

    Directory of Open Access Journals (Sweden)

    Cüneyt Güler

    2017-01-01

    Full Text Available The aim of this study was to investigate natural and anthropogenic processes governing the chemical composition of alkaline groundwater within a fractured rock (ophiolitic mélange aquifer underlying a seasonally inhabited headwater area in the Aladağlar Range (Adana, Turkey. In this aquifer, spatiotemporal patterns of groundwater flow and chemistry were investigated during dry (October 2011 and wet (May 2012 seasons utilizing 25 shallow hand-dug wells. In addition, representative samples of snow, rock, and soil were collected and analyzed to constrain the PHREEQC inverse geochemical models used for simulating water-rock interaction (WRI processes. Hydrochemistry of the aquifer shows a strong interseasonal variability where Mg–HCO3 and Mg–Ca–HCO3 water types are prevalent, reflecting the influence of ophiolitic and carbonate rocks on local groundwater chemistry. R-mode factor analysis of hydrochemical data hints at geochemical processes taking place in the groundwater system, that is, WRI involving Ca- and Si-bearing phases; WRI involving amorphous oxyhydroxides and clay minerals; WRI involving Mg-bearing phases; and atmospheric/anthropogenic inputs. Results from the PHREEQC modeling suggested that hydrogeochemical evolution is governed by weathering of primary minerals (calcite, chrysotile, forsterite, and chromite, precipitation of secondary minerals (dolomite, quartz, clinochlore, and Fe/Cr oxides, atmospheric/anthropogenic inputs (halite, and seasonal dilution from recharge.

  13. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif; Estudio geoquimico de los procesos de interaccion agua-roca sobre sistemas goetermales de aguas alcalinas en granitoides

    Energy Technology Data Exchange (ETDEWEB)

    Buil gutierrez, B.; Garcia Sanz, S.; Lago San Jose, M.; Arranz Uague, E.; Auque Sanz, L. [Universidad de Zaragoza (Spain)

    2002-07-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  14. Effect of depth beating on the fiber properties and enzymatic saccharification efficiency of softwood kraft pulp.

    Science.gov (United States)

    Gao, Wenhua; Xiang, Zhouyang; Chen, Kefu; Yang, Rendang; Yang, Fei

    2015-01-01

    Commercial bleached softwood kraft pulp was mechanically fibrillated by a PFI-mill with beating revolution from 5000 to 30,000 r. The extent of fibrillating on the pulp was evaluated by beating degree, fiber morphological properties (fiber length, width, coarseness and curls index), water retention value (WRV) and physical properties of paper made from the pulp. Depth beating process significantly affected the pulp fibrillations as showed by the decreased fiber length and width as well as the SEM analysis, but the effects were limited after beating revolution of 15,000. Depth beating process also improved the total internal pore and inter-fibril surface areas as shown by the increased WRV values. Substrate enzymatic digestibility (SED) of beaten pulp at 5000 revolutions could reach 95% at cellulase loading of 15 FPU/g of glucan. After the enzymatic hydrolysis, the size of the pulp residues was reduced to micro-scale, and a relative uniform size distribution of the residues appeared at 10,000 r beating revolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of a calcium-silicate-based restorative cement on pulp repair.

    Science.gov (United States)

    Tran, X V; Gorin, C; Willig, C; Baroukh, B; Pellat, B; Decup, F; Opsahl Vital, S; Chaussain, C; Boukpessi, T

    2012-12-01

    In cases of pulp injury, capping materials are used to enhance tertiary dentin formation; Ca(OH)(2) and MTA are the current gold standards. The aim of this study was to evaluate the capacity of a new calcium-silicate-based restorative cement to induce pulp healing in a rat pulp injury model. For that purpose, cavities with mechanical pulp exposure were prepared on maxillary first molars of 27 six-week-old male rats, and damaged pulps were capped with either the new calcium-silicate-based restorative cement (Biodentine), MTA, or Ca(OH)(2). Cavities were sealed with glass-ionomer cement, and the repair process was assessed at several time-points. At day 7, our results showed that both the evaluated cement and MTA induced cell proliferation and formation of mineralization foci, which were strongly positive for osteopontin. At longer time-points, we observed the formation of a homogeneous dentin bridge at the injury site, secreted by cells displaying an odontoblastic phenotype. In contrast, the reparative tissue induced by Ca(OH)(2) showed porous organization, suggesting a reparative process different from those induced by calcium silicate cements. Analysis of these data suggests that the evaluated cement can be used for direct pulp-capping.

  16. Investigation of mechanisms of dechlorination of archaeological ferrous objects corroded in marine environment. Case of processing in aerated and deaerated alkaline solutions

    International Nuclear Information System (INIS)

    Kergourlay, Florian

    2012-01-01

    After a bibliographic study on the present knowledge on dechlorination mechanisms within corrosion layers of archaeological objects of submarine origin, this research thesis presents an analytical methodology which comprises characterization experimental techniques (from optical microscopy to Raman spectroscopy) and in situ investigation of the evolution of the corrosion layer during a processing under synchrotron radiation. The obtained results are then presented and discussed: morphological, elemental and structural characteristics. The author also compares the corrosion system between an object recently taken out of water and an object which has been air dried. He also comments and discusses the in situ observation by X ray diffraction under micro-beam of the evolution of the corrosion system during the processing. The ex situ characterization of corrosion systems after the rinsing and drying steps (after processing) is reported. Results are discussed in terms of thermodynamics. A kinetic approach is proposed

  17. Grafted wood pulp containing quaternary ammonium group and its application in the removal of different anions from aqueous solution

    International Nuclear Information System (INIS)

    Sokker, H.H.

    2005-01-01

    Network wood pulp based on acrylonitrile has been chemically modified through different reactions to obtain group capable of anion exchange. Graft copolymerization of acrylonitrile onto wood pulp was carried out by using gamma-radiation 60 Co. Factors affecting the grafting process e.g radiation dose and monomer concentration were investigated.The chemical modification of cyano groups were carried out by reaction with ethanol amine producing oxazoline group followed by quaternization of tertiary amine by reaction with benzyl chloride producing quaternary ammonium salt. The grafted and modified wood pulp were characterized by FTIR, SEM and TGA.Qualitative experiments of adsorption were conducted to evaluate the modified wood pulp on fixing sulfate, phosphate,nitrate and dichromate from aqueous solution using batch extractions. Based on the results obtained, it may be concluded that it is possible to modify chemically wood pulp containing cyano groups by different routes for its usage as anion exchanger

  18. BMP7 transfection induces in-vitro osteogenic differentiation of dental pulp mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ka Po John Yau

    2013-01-01

    Full Text Available Objective: To assess whether in-vitro osteogenic differentiation of human dental pulp mesenchymal stem cells can be induced by transient transfection with the gene encoding human bone morphogenic protein 7 (BMP7. Materials and Methods: A mesenchymal stem cell population was isolated from the dental pulp of two extracted permanent premolars, expanded and characterized. The human BMP7 gene, as a recombinant pcDNA3.1/V5-His-TOPO-BMP7 plasmid, was transfected into the cells. Three negative controls were used: No plasmid, empty vector, and an unrelated vector encoding green fluorescent protein. After the interval of 24 and 48 h, mRNA levels of alkaline phosphatase and osteocalcin as markers of in-vitro osteogenic differentiation were measured by real-time polymerase chain reaction and standardized against β-actin mRNA levels. Results: The level of alkaline phosphatase mRNA was significantly higher for the BMP7 group than for all three negative controls 48 h after transfection (706.9 vs. 11.24 for untransfected cells, 78.05 for empty vector, and 73.10 for green fluorescent protein vector. The level of osteocalcin mRNA was significantly higher for the BMP7 group than for all three negative controls 24 h after transfection (1.0, however, decreased after another 24 h. Conclusions: In-vitro osteoblastic differentiation of human dental pulp mesenchymal stem cells, as indicated by expression of alkaline phosphatase and osteocalcin, can be induced by transient transfection with the BMP7 gene.

  19. The effects of alkalinity and acidity of process water and hydrochar washing on the adsorption of atrazine on hydrothermally produced hydrochar.

    Science.gov (United States)

    Flora, Justine F R; Lu, Xiaowei; Li, Liang; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization of simulated food waste was performed at 250 °C for 20 h using deionized water (DI) and 0.01 N solutions of HCl, NaCl, and NaOH. The hydrochars produced were washed with acetone and the adsorptive capacity of the washed and unwashed hydrochars for atrazine were characterized. Using a generalized linear model, it was shown that the adsorptive capacity of the washed hydrochar was significantly higher than that of the unwashed hydrochars. The HCl processed unwashed hydrochar has a slightly higher adsorptive capacity compared to the DI processed hydrochar while both the NaOH processed washed and unwashed hydrochars were slightly lower than the corresponding DI processed hydrochars. (13)C solid-state NMR results showed no discernible differences in surface functional groups among the washed hydrochars and among the unwashed hydrochars. A clear decrease in alkyl groups and an increase in aromatic/olefinic-C groups were observed after acetone washing. (1)H liquid-phase NMR showed carbon alkyl chains were present in the acetone wash. Interaction energies calculated using dispersion corrected density functional theory show that atrazine is more strongly adsorbed to surfaces without weakly associated alkyl groups. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Review of pulp sensibility tests. Part II: electric pulp tests and test cavities.

    Science.gov (United States)

    Jafarzadeh, H; Abbott, P V

    2010-11-01

    The electric pulp test (EPT) is one type of pulp sensibility test that can be used as an aid in the diagnosis of the status of the dental pulp. However, like thermal pulp sensibility tests, it does not provide any direct information about the vitality (blood supply) of the pulp or whether the pulp is necrotic. The relevant literature on pulp sensibility tests in the context of endodontics up to January 2009 was reviewed using PubMed and MEDLINE database searches. This search identified articles published between November 1964 and January 2009 in all languages. The EPT is technique sensitive, and false responses may occur. Various factors can affect the test results, and therefore it is important that dental practitioners understand the nature of these tests and how to interpret them. Test cavities have been suggested as another method for assessing the pulp status; however, the use of this technique needs careful consideration because of its invasive and irreversible nature. In addition, it is unlikely to be useful in apprehensive patients and should not be required because it provides no further information beyond what thermal and electric pulp sensibility tests provide - that is, whether the pulp is able to respond to a stimulus. A review of the literature and a discussion of the important points regarding these two tests are presented. © 2010 International Endodontic Journal.

  1. Microbial alkaline pectinases and their industrial applications: a review.

    Science.gov (United States)

    Hoondal, G S; Tiwari, R P; Tewari, R; Dahiya, N; Beg, Q K

    2002-08-01

    The biotechnological potential of pectinolytic enzymes from microorganisms has drawn a great deal of attention from various researchers worldwide as likely biological catalysts in a variety of industrial processes. Alkaline pectinases are among the most important industrial enzymes and are of great significance in the current biotechnological arena with wide-ranging applications in textile processing, degumming of plant bast fibers, treatment of pectic wastewaters, paper making, and coffee and tea fermentations. The present review features the potential applications and uses of microbial alkaline pectinases, the nature of pectin, and the vast range of pectinolytic enzymes that function to mineralize pectic substances present in the environment. It also emphasizes the environmentally friendly applications of microbial alkaline pectinases thereby revealing their underestimated potential. The review intends to explore the potential of these enzymes and to encourage new alkaline pectinase-based industrial technology.

  2. Temporal variability of secondary processes in alkaline geothermal waters associated to granitic rocks: the Caldes de Boí geothermal system (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M.; Gimeno, M.J.; Auqué, L.F.; Galve, J.P.; Gómez, J.; Acero, P.; Lapuente, P.

    2017-11-01

    The Caldes de Boí geothermal waters show important differences in pH (6.5–9.6) and temperature (15.9ºC–52ºC) despite they have a common origin and a very simple circuit at depth (4km below the recharge area level). Thes differences are the result of secondary processes such as conductive cooling, mixing with colder shallower waters, and input of external CO2, which affect each spring to a different extent in the terminal part of the thermal circuit. In this paper, the secondary processes that control the geochemical evolution of this system have been addressed using a geochemical dataset spanning over 20 years and combining different approaches: classical geochemical calculations and geochemical modelling. Mixing between a cold and a thermal end-member, cooling and CO2 exchange are the processes affecting the spring waters with different intensity over time. These differences in the intensity of the secondary processes could be controlled by the effect of climate and indirectly by the geomorphological and hydrogeological setting of the different springs. Infiltration recharging the shallow aquifer is dominant during the rainy seasons and the extent of the mixing process is greater, at least in some springs.Moreover, significant rainfall can produce a decrease in the ground temperature favouring the conductive cooling. Finally, the geomorphological settings of the springs determine the thickness and the hydraulic properties of the saturated layer below them and, therefore, they affect the extent of the mixing process between the deep thermal waters and the shallower cold waters. The understanding of the compositional changes in the thermal waters and the main factors that could affect them is a key issue to plan the future management of the geothermal resources of the Caldes de Boí system. Here, we propose to use a simple methodology to assess the effect of those factors, which could affect the quality of the thermal waters for balneotherapy at long

  3. Temporal variability of secondary processes in alkaline geothermal waters associated to granitic rocks: the Caldes de Boí geothermal system (Spain)

    International Nuclear Information System (INIS)

    Asta, M.; Gimeno, M.J.; Auqué, L.F.; Galve, J.P.; Gómez, J.; Acero, P.; Lapuente, P.

    2017-01-01

    The Caldes de Boí geothermal waters show important differences in pH (6.5–9.6) and temperature (15.9ºC–52ºC) despite they have a common origin and a very simple circuit at depth (4km below the recharge area level). Thes differences are the result of secondary processes such as conductive cooling, mixing with colder shallower waters, and input of external CO2, which affect each spring to a different extent in the terminal part of the thermal circuit. In this paper, the secondary processes that control the geochemical evolution of this system have been addressed using a geochemical dataset spanning over 20 years and combining different approaches: classical geochemical calculations and geochemical modelling. Mixing between a cold and a thermal end-member, cooling and CO2 exchange are the processes affecting the spring waters with different intensity over time. These differences in the intensity of the secondary processes could be controlled by the effect of climate and indirectly by the geomorphological and hydrogeological setting of the different springs. Infiltration recharging the shallow aquifer is dominant during the rainy seasons and the extent of the mixing process is greater, at least in some springs.Moreover, significant rainfall can produce a decrease in the ground temperature favouring the conductive cooling. Finally, the geomorphological settings of the springs determine the thickness and the hydraulic properties of the saturated layer below them and, therefore, they affect the extent of the mixing process between the deep thermal waters and the shallower cold waters. The understanding of the compositional changes in the thermal waters and the main factors that could affect them is a key issue to plan the future management of the geothermal resources of the Caldes de Boí system. Here, we propose to use a simple methodology to assess the effect of those factors, which could affect the quality of the thermal waters for balneotherapy at long

  4. Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement.

    Science.gov (United States)

    Duarte, Marta C Teixeira; da Silva, Elizete Cristina; de Bulhões Gomes, Isabel Menezes; Ponezi, Alexandre Nunes; Portugal, Edilberto Princi; Vicente, João Roberto; Davanzo, Ednilson

    2003-05-01

    The extracellular productions of beta-xylanase, beta-xylosidase, beta-glucosidase, beta-mannanase, arabinosidase, alpha-glucuronidase, alpha-galactosidase and Fpase from Bacillus pumilus CBMAI 0008 were investigated with three different xylan sources as substrate. The enzymatic profiles on birchwood, Eucalyptus grandis and oat were studied at alkaline and acidic pH conditions. B. pumilus CBMAI 0008 grown on the three carbon sources produced mainly beta-xylanase. At pH 10, the levels of xylanase were 328, 160 and 136 U/ml, for birch, oat and E. grandis, respectively. beta-Mannanase production was induced on E. grandis (5 U/ml) and arabinofuranosidase on oat (5 U/ml). Although small quantities of alpha-glucuronidase had been produced at pH 10, activity at pH 4.8 was 1.5 U/ml, higher than observed for Aspergillus sp. in literature reports. Preliminary assays carried out on E. grandis kraft pulp from an industrial paper mill (RIPASA S.A. Celulose e Papel, Limeira, SP, Brazil) showed a reduction of 0.3% of chlorine use in the pulp treated with the enzymes, resulting in increased brightness, compared to conventional bleaching. The enzymes were more efficient if applied before the initial bleaching sequence, in a non-pre-oxygenated pulp.

  5. Comparative study of percentage yield of pulp from various Nigerian ...

    African Journals Online (AJOL)

    user

    lignin content and lignin type present in these wood species. The infra red analysis of the pulp obtained from the various wood species confirmed the chemical integrity of the pulps obtained from all the hard wood species surveyed. Key words: Kraft pulp, Nigerian wood species, pulp yield, cellulose. INTRODUCTION.

  6. Novel bleaching of thermomechanical pulp for improved paper properties

    Science.gov (United States)

    Marguerite S. Sykes; John H. Klungness; Freya. Tan

    2002-01-01

    Production of mechanical pulp is expected to increase significantly to meet the growing global demand for paper. Mechanical pulping uses wood resources more efficiently with less negative impact on the environment than does chemical pulping. However, several problems related to mechanical pulping need to be resolved: high energy consumption, low paper strength...

  7. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    African Journals Online (AJOL)

    Pulp resin is also influenced by effective alkali concentration of the pulping medium. With increase in effective alkali concentration from 13% to 15%, pulp pitch is reduced. The interaction effect of storage and effective alkali concentration was not significant indicating that reduction in pulp pitch caused by effective alkali ...

  8. Optimization of alkaline cellulase production by the marine-derived fungus Chaetomium sp. using agricultural and industrial wastes as substrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Naveenan, T.; Varatharajan, G.R.

    agricultural and industrial wastes as substrates in submerged fermentation (SMF) and solid state fermentation (SSF) processes. Cotton seed under SSF conditions had maximum enzyme production at high alkaline pH. Cellulase enzymes produced under alkaline cotton...

  9. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Biner; Wang, Yishan; Zuo, Yu, E-mail: zuoy@mail.buct.edu.cn

    2015-12-01

    Highlights: • Inhibition effect of LaCl{sub 3} and SDBS for AA 2024 in NaCl solution (pH 10) was studied. • At the beginning the active polarization behavior of the alloy changed to passivation. • The passive behavior gradually disappeared with time and pitting happened at S-phases. • The compounded inhibitors showed good inhibition but cannot totally inhibit pitting. • The adsorption of SDBS played the key role for inhibition to the corrosion process. - Abstract: The evolution of the corrosion process of AA 2024-T3 in 0.58 g L{sup −1} NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl{sub 3} and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La{sub 3}Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  10. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  11. Strategies for Industry Internationalization Brazilian Pulp and Paper the Perspective of Eclectic Paradigm: A Case Study of Pulp and Paper Company Suzano

    Directory of Open Access Journals (Sweden)

    Mayra Batista Bitencourt Fagundes

    2012-12-01

    Full Text Available This article aims to analyze the process of internationalization of the Brazilian pulp and paper. This analysis has an economic bias, basing on the model of internationalization of Eclectic Paradigm of Dunning (1980 in order to identify the internationalization strategies, as well as the key drivers that have enabled reach new markets. We adopted a qualitative methodology, developed through a case study in the company Suzano, a Brazilian company, a global leader in the pulp and paper industry, with a strong presence in the international market. The data were obtained from literature searches, statistics, press releases and official documents of the company. For the treatment of these was used to pattern matching techniques, which enabled contrast them with the theory selected. The results revealed that Suzano differentiated adopted guidelines for the marketing of paper and pulp. The paper is intended primarily for the domestic market, whereas most of the pulp produced is intended to international trade. The company went international for having, according to the Eclectic Paradigm, the advantages of ownership and internalization over their competitors. The strategies used consists in finding markets (market seeking, search efficiency (efficiency seeking and search for strategic assets (strategic asset seeking. We conclude that the theory is Eclectic Paradigm in an appropriate tool for analyzing the internationalization process of the pulp and paper industries.

  12. Influência do tempo decorrido entre a colheita e o despolpamento de café cereja, sôbre a qualidade da bebida Influence of the time intervals between harvesting and the pulping process of cherry coffee beans on the beverage quality

    Directory of Open Access Journals (Sweden)

    Ayrton Rigitano

    1967-01-01

    Full Text Available São apresentados resultados de ensaios relativos à influência do tempo decorrido entre a colheita e o despolpamento de café maduro, sôbre a qualidade da bebida, na zona ecológica de Campinas. Os resultados acusaram não haver influência do tempo de armazenamento até 46 1/2 horas após a colheita. Todos os tratamentos alcançaram valores correspondentes a bebida "mole" ou "apenas mole".Experiments were carried out in 1958 and 1959 to determine the influence of the time intervals between harvesting and the pulping process of cherry coffee beans on the beverage quality. The green coffee was the Mundo Novo variety which came from the São Quirino farm (massape soil located in the rural zone of the city of Campinas. The treatments were represented by 13 lots of cherry coffee with different time intervals of pulping after harvesting: 0, 4, 51/2, 81/2, 14 1/2, 26 1/2 and 46 1/2 hours Coffee was harvested at the beginning of the day, midday and the end of the day. Some lots of beans were exposed to the sun and some others were shaded. The cup tests were carried out in the Sensory Evaluation Laboratory of the Instituto Agronômico of Campinas, by trained panel with 8 tasters. The data were based on 32 determinations (8 tasters x 4 replications and showed no difference among treatments; all of them were scored as soft and softish coffee. The autors arrived at the conclusion that the pulping process at Campinas conditions can be made up to 46 1/2 hours after harvesting without causing any "off flavor" to the coffee beverage. The results obtained are true for the pulped cherry beans for the rural zone of Campinas. To any other locality with different climate and soil, the conclusions can't be extended without previous experimental works.

  13. Chitosan-collagen biomembrane embedded with calcium-aluminate enhances dentinogenic potential of pulp cells

    Directory of Open Access Journals (Sweden)

    Diana Gabriela SOARES

    2016-01-01

    Full Text Available Abstract The development of biomaterials capable of driving dental pulp stem cell differentiation into odontoblast-like cells able to secrete reparative dentin is the goal of current conservative dentistry. In the present investigation, a biomembrane (BM composed of a chitosan/collagen matrix embedded with calcium-aluminate microparticles was tested. The BM was produced by mixing collagen gel with a chitosan solution (2:1, and then adding bioactive calcium-aluminate cement as the mineral phase. An inert material (polystyrene was used as the negative control. Human dental pulp cells were seeded onto the surface of certain materials, and the cytocompatibility was evaluated by cell proliferation and cell morphology, assessed after 1, 7, 14 and 28 days in culture. The odontoblastic differentiation was evaluated by measuring alkaline phosphatase (ALP activity, total protein production, gene expression of DMP-1/DSPP and mineralized nodule deposition. The pulp cells were able to attach onto the BM surface and spread, displaying a faster proliferative rate at initial periods than that of the control cells. The BM also acted on the cells to induce more intense ALP activity, protein production at 14 days, and higher gene expression of DSPP and DMP-1 at 28 days, leading to the deposition of about five times more mineralized matrix than the cells in the control group. Therefore, the experimental biomembrane induced the differentiation of pulp cells into odontoblast-like cells featuring a highly secretory phenotype. This innovative bioactive material can drive other protocols for dental pulp exposure treatment by inducing the regeneration of dentin tissue mediated by resident cells.

  14. Feruloyl Esterase Activity from Coffee Pulp in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Gerardo Saucedo-Castañeda

    2011-01-01

    Full Text Available Hydroxycinnamic acids (HAs have a potential application in the food and pharmaceutical industry because they are rich in phenolics. Feruloyl esterases release phenolic compounds from plant cell walls. Coffee pulp is rich in HAs linked to polysaccharides. A solvent extraction of free HAs was performed with aqueous methanol (80 %. A response surface methodology was applied to optimise the extraction of these compounds from coffee pulp, and the best results were obtained at 56 °C for 34 min. Alkaline and acid hydrolyses were performed to evaluate the content of linked HAs. Treated (extracted coffee pulp was used to produce feruloyl esterases in solid-state fermentation by Aspergillus tamarii V12307, previously selected by a hydrolysis plate assay. Different dilutions of a culture medium were added to the coffee pulp, and the diluted medium with half the nutrients allowed for higher CO2 production. A specific growth rate (μCO2 of 0.25 h^–1 and a lag phase (tlag of 14.3 h were observed under the selected conditions. Finally, enzymatic activities were 14.0 and 10.8 nkat per g of dried matter when methyl and ethyl ferulate were used as substrates, respectively. Productivities (9.3 and 7.2 nkat per g of dried matter per day, respectively were higher when compared to other studies carried out in solid-state fermentation. Utilisation of coffee pulp for enzyme production improves the added value of this abundant by-product of the coffee industry.

  15. Neural network modeling to support an experimental study of the delignification process of sugarcane bagasse after alkaline hydrogen peroxide pre-treatment.

    Science.gov (United States)

    Valim, Isabelle C; Fidalgo, Juliana L G; Rego, Artur S C; Vilani, Cecília; Martins, Ana Rosa F A; Santos, Brunno F

    2017-11-01

    The present study examines the use of Artificial Neural Networks (ANN) as prediction and fault detection tools for the delignification process of sugarcane bagasse via hydrogen peroxide (H 2 O 2 ). Experimental conditions varied from 25 to 45°C for temperature and from 1.5% to 7.5% (v/v) for H 2 O 2 concentrations. Analytical results for the delignification were obtained by Fourier Transform Infrared (FT-IR) analysis and used for the ANN training and testing steps, allowing for the development of ANN models. The condition experimentally identified as the most suitable for the delignification process was of 25°C with 4.5% (v/v) H 2 O 2 , oxidizing 54% of total lignin. An ANN topology was selected for each proposed model, whose performance was evaluated by the correlation coefficient (R 2 ) and error indices (MSE and SSE). The values obtained for R 2 and the error indices indicated good agreements of the theoretical and actual data, of close to 1 and close to 0, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of Extracellular pH on Dental Pulp Cells In Vitro.

    Science.gov (United States)

    Hirose, Yujiro; Yamaguchi, Masaya; Kawabata, Shigetada; Murakami, Masashi; Nakashima, Misako; Gotoh, Momokazu; Yamamoto, Tokunori

    2016-05-01

    The proliferation and migration of dental pulp stem cells (DPSCs), a population comprised of dental pulp cells (DPCs), are important processes for pulp tissue repair. Dental pulp is exposed to changes in extracellular pH under various conditions, such as acidosis and exposure to caries-associated bacteria or a pulp capping agent. The objective of this study was to investigate the effects of extracellular pH on DPC proliferation and migration in vitro. To evaluate the proliferation potency of DPCs in various extracellular pH conditions, 2 × 10(4) cells were seeded into 35-mm dishes. The following day, we changed to NaHCO3-free medium, which was adjusted to different extracellular pH levels. After 120 hours, DPCs cultured in media from a pH of 3.5 to 5.5 showed cell death, those cultured in conditions from a pH of 6.5 to 7.5 showed growth arrest or cell death, and those grown at a pH of 9.5 showed mild proliferation. The migratory activity of living DPCs was not affected by extracellular pH. For histologic analysis, human teeth possessing a small abscess in the coronal pulp chamber were sliced for histologic analysis. Proliferating cell nuclear antigen (PCNA) immunolocalization was used as an index of cell proliferation for the sections and cultured cells. Acidic extracellular pH conditions resulted in reduced numbers of PCNA-positive DPCs in the dishes. As for pulp tissue affected by a small abscess, a PCNA-negative pulp cell layer was observed in close proximity to the infectious lesion. Together, these results suggest that an acidic extracellular pH condition is associated with DPC growth arrest or cell death. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Preparation of Cellulose Nanofibrils from Bamboo Pulp by Mechanical Defibrillation for Their Applications in Biodegradable Composites.

    Science.gov (United States)

    Guimarães, Mario; Botaro, Vagner Roberto; Novack, Kátia Monteiro; Neto, Wilson Pires Flauzino; Mendes, Lourival Marin; Tonoli, Gustavo H D

    2015-09-01

    There is a growing interest in cellulose nanofibrils from renewable sources for various industrial applications. However, there is a lack of information on cellulose arising from bamboo pulps. Nanofibrils from refined bamboo pulps, including bleached, unbleached, and unrefined/unbleached, were obtained by mechanical defibrillation for use in biodegradable composites. The influence of industrial processes, such as pulping and refining of unbleached pulps, as well as of alkali pretreatments and bleaching of refined pulps, on the chemical composition of the samples was analyzed. Morphological, structural, thermal, optical and viscometric properties were investigated as a function of the number of passages of refined/bleached suspensions through a defibrillator. For the unbleached suspensions, the effects of refining and bleaching on the properties of nanofibrils were evaluated, fixing the number of passages through the defibrillator. Microscopic studies demonstrated that nanoscale cellulose fibers were obtained from both pulps, with a higher yield for the refined/bleached and refined/unbleached pulp, at the expense of the unbleached/unrefined pulps. The study showed that, in addition to the effectiveness of the pre-treatments, there was an increase in the production efficiency of nanofibrils, as well as in the transparency of the bleached suspensions, while viscosity, thermal stability and crystallinity had reduced levels as the number of passages through the defibrillator increased, showing a gradual improvement in the transition from the micro- to the nano-scale. The present study contributed to the different methods that are available for the production of bamboo cellulose nanofibrils, which can be used in the production of biodegradable composites for various applications.

  18. The number of bleaching sessions influences pulp tissue damage in rat teeth.

    Science.gov (United States)

    Cintra, Luciano Tavares Angelo; Benetti, Francine; da Silva Facundo, Aguinaldo Cândido; Ferreira, Luciana Louzada; Gomes-Filho, João Eduardo; Ervolino, Edilson; Rahal, Vanessa; Briso, André Luiz Fraga

    2013-12-01

    Hydrogen peroxide tooth bleaching is claimed to cause alterations in dental tissue structures. This study investigated the influence of the number of bleaching sessions on pulp tissue in rats. Male Wistar rats were studied in 5 groups (groups 1S-5S) of 10 each, which differed by the number (1-5) of bleaching sessions. In each session, the animals were anesthetized, and 35% hydrogen peroxide gel was applied to 3 upper right molars. Two days after the experimental period, the animals were killed, and their jaws were processed for light microscope evaluation. Pulp tissue reactions were scored as follows: 1, no or few inflammatory cells and no reaction; 2, session, necrotic tissue in the pulp horns and underlying inflammatory changes were observed. The extent and intensity of these changes increased with the number of bleaching sessions. After 5 sessions, the changes included necrotic areas in the pulp tissue involving the second third of the radicular pulp and intense inflammation in the apical third. The number of bleaching sessions directly influenced the extent of pulp damage. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Application of enzymatic preparations to produce araçá pulp and juice

    Directory of Open Access Journals (Sweden)

    Ivana Greice Sandri

    2014-12-01

    Full Text Available In the present study, the effect of pectinases on the production of pulp and juice of araçá and the presence of bioactive compounds were evaluated. An enzyme extract (EE produced by Aspergillus niger LB-02-SF in solid state fermentation and the commercial enzyme Ultrazym®AFP-L were used in this study. After enzyme treatment with the EE preparation, the extraction yield increased by 23.1% and viscosity decreased by 42.8%, during pulp maceration. During juice processing, there was an increase of 70.6% in clarification and a decrease of 72.87% in turbidity. Higher values of these parameters, 47.7, 69.0, 80.7, and 79.7%, respectively, were obtained using the Ultrazym®AFP-L, which also led to a significant increase in the polyphenol content, both in the pulp (24% and in the juice (28%, with a less pronounced effect when the EE was applied (10 and 21%, respectively. The anthocyanins content in the araçá pulp increased after treatment with the commercial preparation (23%, and there was no significant increase with the use of EE. The use of Ultrazym®AFP-L increased the β-carotene content by 29.4% in the fruit pulp, while the treatment with EE did not result in significant changes compared with those of the juice and pulp controls.

  20. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations.

    Science.gov (United States)

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino; Verstrepen, Kevin J

    2015-09-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. PROSES PEMBUATAN PULP BERBASIS AMPAS TEBU: BATANG PISANG DENGAN METODE ACETOSOLVE

    Directory of Open Access Journals (Sweden)

    Zulferiyenni Zulferiyenni

    2012-12-01

    Full Text Available In Indonesia, pulp and paper production generally uses wood.  Intensive forest explotation causes deforesting, global warming,and lessen the wood deposit and forest area.  Therefore, government should seek alternative raw material such as bagasse for pulp and paper production, with naturally friendly environment pulping method, such as acetosolve method. In this research bagasse and banana fiber were used as raw material for pulp production.  Then, raw material analyses was conducted for chemical content which were cellulose, hemicellulose, lignin, and ash, and  pulp physical properties.  The best result in pulping process was 70:30 ratio of bagasse and banana fiber with 80% acetate acid concentration which resulted 56% of cellulose, 27,4% of hemicellulose, 16,2% of lignin, 66% rendemen, 16.1 GE of brightness index,  0,83 (kPa.m/g of  break index, 2,05 Nm2/Kg Of tear index,  19 Nm/g of tensil strength, and 93% of paper opacity. Keywords: Bagasse, banana trunk fiber, acetosolve

  2. Citrus pulp pellets as an additive for orange bagasse silage

    Directory of Open Access Journals (Sweden)

    R. K. Grizotto

    2017-03-01

    efficiently conserved as silage if the initial DM content is at least 25%. The inclusion of 20% (in relation to orange bagasse weight citrus pulp pellets as moisture-absorbing additive is recommended to guarantee adequate fermentation and to reduce losses inherent to the ensiling process.

  3. Vital Pulp Therapy—Current Progress of Dental Pulp Regeneration and Revascularization

    Directory of Open Access Journals (Sweden)

    Weibo Zhang

    2010-01-01

    Full Text Available Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization.

  4. In vitro antibacterial activity of different pulp capping materials

    OpenAIRE

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Ceci, Matteo; Dagna, Alberto; Chiesa, Marco

    2015-01-01

    Background Direct pulp capping involves the application of a dental material to seal communications between the exposed pulp and the oral cavity (mechanical and carious pulp exposures) in an attempt to act as a barrier, protect the dental pulp complex and preserve its vitality. The aim of this study was to evaluate and compare, by the agar disc diffusion test, the antimicrobial activity of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC...

  5. EIS and adjunct electrical modeling for material selection by evaluating two mild steels for use in super-alkaline mineral processing

    DEFF Research Database (Denmark)

    Bakhtiyari, Leila; Moghimi, Fereshteh; Mansouri, Seyed Soheil

    2012-01-01

    The production of metal concentrates during mineral processing of ferrous and non-ferrous metals involves a variety of highly corrosive chemicals which deteriorate common mild steel as the material of choice in the construction of such lines, through rapid propagation of localized pitting...... in susceptible parts, often in sensitive areas. This requires unscheduled maintenance and plant shut down. In order to test the corrosion resistance of different available materials as replacement materials, polarization and electrochemical impedance spectroscopy (EIS) tests were carried out. The EIS numerical...... software-enhanced polarization resistance, and reduced capacitance added to much diminished current densities, verified the acceptable performance of CK45 compared with high priced stainless steel substitutes with comparable operational life. Therefore, CK45 can be a suitable alternative in steel...

  6. Vital Pulp Therapy?Current Progress of Dental Pulp Regeneration and Revascularization

    OpenAIRE

    Zhang, Weibo; Yelick, Pamela C.

    2010-01-01

    Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space ...

  7. Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs

    OpenAIRE

    Ravindran, Sriram; Huang, Chun-Chieh; George, Anne

    2014-01-01

    Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs) have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinica...

  8. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay.

    Science.gov (United States)

    Høie, Anja Hortemo; Svendsen, Camilla; Brunborg, Gunnar; Glatt, Hansruedi; Alexander, Jan; Meinl, Walter; Husøy, Trine

    2015-10-01

    The food processing contaminants 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 5-hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N-hydroxy-PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild-type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N-hydroxy-PhIP and HMF in vivo. © 2015 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.

  9. Effects of Pulp and Na-Bentonite Amendments on the Mobility of Trace Elements, Soil Enzymes Activity and Microbial Parameters under Ex Situ Aided Phytostabilization

    Science.gov (United States)

    Wasilkowski, Daniel; Mrozik, Agnieszka

    2017-01-01

    The objective of this study was to explore the potential use of pulp (by-product) from coffee processing and Na-bentonite (commercial product) for minimizing the environmental risk of Zn, Pb and Cd in soil collected from a former mine and zinc-lead smelter. The effects of soil amendments on the physicochemical properties of soil, the structural and functional diversity of the soil microbiome as well as soil enzymes were investigated. Moreover, biomass of Festuca arundinacea Schreb. (cultivar Asterix) and the uptake of trace elements in plant tissues were studied. The outdoor pot set contained the following soils: control soil (initial), untreated soil (without additives) with grass cultivation and soils treated (with additives) with and without plant development. All of the selected parameters were measured at the beginning of the experiment (t0), after 2 months of chemical stabilization (t2) and at the end of the aided phytostabilization process (t14). The obtained results indicated that both amendments efficiently immobilized the bioavailable fractions of Zn (87–91%) and Cd (70–83%) at t14; however, they were characterized by a lower ability to bind Pb (33–50%). Pulp and Na-bentonite drastically increased the activity of dehydrogenase (70- and 12-fold, respectively) at t14, while the activities of urease, acid and alkaline phosphatases differed significantly depending on the type of material that was added into the soil. Generally, the activities of these enzymes increased; however, the increase was greater for pulp (3.5-6-fold) than for the Na-bentonite treatment (1.3–2.2-fold) as compared to the control. Soil additives significantly influenced the composition and dynamics of the soil microbial biomass over the experiment. At the end, the contribution of microbial groups could be ordered as follows: gram negative bacteria, fungi, gram positive bacteria, actinomycetes regardless of the type of soil enrichment. Conversely, the shift in the functional

  10. Pulp and paper program fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Summaries are presented of Argonne technology transfer research projects in: sustainable forest management, environmental performance, energy performance, improved capital effectiveness, recycling, and sensors and controls. Applications in paper/pulp industry, other industries, etc. are covered.

  11. 21 CFR 872.1720 - Pulp tester.

    Science.gov (United States)

    2010-04-01

    ... battery powered device intended to evaluate the pulpal vitality of teeth by employing high frequency current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b) Classification...

  12. GHGRP Pulp and Paper Sector Industrial Profile

    Science.gov (United States)

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. The profiles available for download below contain detailed analyses for the Pulp and Paper industry.

  13. Physicochemical and functional characteristics of residual pulp of potato

    Directory of Open Access Journals (Sweden)

    Webber Tavares de CARVALHO

    Full Text Available Abstract Starch-rich liquid effluent is generated after peeling, cutting and washing of tubers during the fries processing. After sedimentation of this effluent is recovered a wet residual pulp, and after drying is obtained dry residual pulp or simply named in this study residual pulp of potato (RPP. In order to convert the effluent into a material easy to store for long periods (such as the potato starch, which would make it suitable for various applications. The aim of this study was to evaluate the effect of the drying conditions, specifically variables temperature and air flow on the drying time and water activity, pH, titratable acidity, instrumental colour parameters, water absorption index, water solubility index and oil absorption capacity of dry RPP. Central Composite Design was used, with temperature levels from 50.0 to 70.0 °C and air flow from 0.06 to 0.092 m3 m–2 s–1. Temperature and airflow affected the study characteristics, except for lightness (L*, water solubility index and oil absorption capacity. It was concluded that milder conditions (lower temperatures and intermediate air flow resulted in higher-quality final products (lighter, less acidic, although requiring higher drying time. Therefore, depending on the product application, different drying conditions can be used.

  14. KAJIAN PENGGUNAAN KATALISATOR ASAM SULFAT DAN LAMA PEMASAKAN PADA PROSES PRODUKSI PULP ACETOSOLVE DARI AMPAS TEBU DAN BAMBU BETUNG

    Directory of Open Access Journals (Sweden)

    Ahmad Sapta Zuidar

    2013-09-01

    Full Text Available Pulp production requires raw materials that have high cellulose and hemicellulose content.  Alternative materials that can be used in the production of pulp are sugarcane bagasse and betung bamboo.  The production process of pulp used in this study was the acetosolve.  Acetosolve process was pulp production processes that use acetic acid as an organic solvent.  The objectives of this research were to find out the H2SO4 concentration and duration of pulp cooking to produce acetosolve pulp that have the highest yield, cellulose, hemicellulose, and lignin.  The research was arranged within a Complete Randomized Block Design in factorial with three replications.  The first factor was five levels of the concentration catalyst  (H2SO4: (K1 0,125%, (K2 0,25%, (K3 0,5%, (K4 1%, and (K5 2%; and the second factor was two levels of the cooking duration:  (L1 2 hours and (L2 4 hours.  Data were analyzed using ANOVA and further tested using LSD at 5% level ofsignificance.  The results showed that the best pulping condition was found at 0,5% H2SO4 and two hours cooking duration.  The highest yield of pulp acetosolve was 81,42%, and its characteristics were:  83,57% of cellulose, 5,43% of hemicellulose, and 9,52% of lignin. Keywords: acetosolve pulp,  betung bamboo, sugarcane bagasse.

  15. Flow dynamics of pulp fiber suspensions

    OpenAIRE

    Ventura, Carla; Garcia, Fernando; Ferreira, Paulo; Rasteiro, Maria

    2008-01-01

    The transport between different equipment and unit operations plays an important role in pulp and paper mills because fiber suspensions differ from all other solid-liquid systems, due to the complex interactions between the different pulp and paper components. Poor understanding of the suspensions’ flow dynamics means the industrial equipment design is usually conservative and frequently oversized, thus contributing to excessive energy consumption in the plants. Our study aim was ...

  16. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification.

    Science.gov (United States)

    Rocha, George J M; Martín, Carlos; da Silva, Vinícius F N; Gómez, Edgardo O; Gonçalves, Adilson R

    2012-05-01

    Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Comparative study of ultra-lightweight pulp foams obtained from various fibers and reinforced by MFC.

    Science.gov (United States)

    Liu, Y; Kong, S; Xiao, H; Bai, C Y; Lu, P; Wang, S F

    2018-02-15

    A range of cellulose-based, ultra-lightweight pulp foams with different morphologies were prepared and reinforced with microfibrillated cellulose (MFC). By careful design of the pulp foam forming process, free-standing ultra-lightweight pulp foams were obtained through high velocity mixing and air/oven drying from cellulose fiber in the presence of surfactant, MFC, and retention aid. The effects of different types of fibers and surfactants on the air uptake volumes and mechanical properties of the foam were systematically investigated. The structures characterized using an optical microscope and scanning electron microscope (SEM) showed that the foam was composed of wood fibers into two- or three-dimensional microstructures within random orientations surrounding gas bubbles. The results indicated that in spite of the strength of the foam could be manipulated by varying the surfactants and processing parameters, the addition of MFC indeed improved strength of pulp foams further. The process developed in this work provides a cost effective approach to fabricate the strong and ultra-lightweight pulp foam, with a density lower than 0.02g/cm 3 , using a standard handsheet former. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. An experimental study on the effect of irradiation on deciduous dental pulp and periodontal membrane

    International Nuclear Information System (INIS)

    Nagayama, Takehiko

    1986-01-01

    Left mandibular third deciduous molars of young dogs were irradiated for 3,000 R with 200 kVp X-ray and the effect on the dental pulp and periodontal membrane was investigated histopathologically. 1. From 3rd to 7th days after irradiation, localized inflammatory cell infiltration was observed in part in the dental pulp tissue. No abnormal findings were observed in the periodontal membrane. 2. On 14th day after irradiation in the coronal dental pulp, cells decreased; karyopycnosis occurred; cells were connected only by cellular processes, and large and small reticular networks were formed. In the periodontal membrane, fibers ran irregularly although in part and findings of atrophy were seen. Fibroblasts showed a decreasing tendency. 3. In the cases from 1 to 2 months after irradiation, the pulp tissue showed marked atrophy of odontoblasts and the dental pulp showed hyalinization-like changes. In the periodontal membrane, Sharpey's fibers ran irregularly or became indistinct, and fibroblasts decreased extensively. The periodontal membrane in general showed hyalinization. 4. In the cases of 4 months after irradiation, the pulp tissue on the whole showed marked atrophy and disappearance of odontoblast layers. In the periodontal membrane, inflammatory cell infiltration was seen in part and membrane fibers, as those in 2nd month, showed marked atrophy, became enlarged, and presented findings of hyalinization. 5. At 8th month, the necleoli nearly disappeared in the pulp tissue from the crown to the root and the cells were connected like filaments by cellular processes. Nearly all the blood vessels and fibers disappeared. In the periodontal membrane, most of Sharpey's fibers disappeared. Fibroblasts showed marked atrophy and disappearance, and few normal fibloblasts could be found. (J.P.N.)

  19. Conditioning alkaline coolant radioactive waste from research reactor BR-10

    International Nuclear Information System (INIS)

    Vladimir, Smykov; Mikhail, Kononyuk; Kirill, Butov

    2014-01-01

    In the Institute for Physics and Power Engineering (Russia) has developed and was successfully demonstrated a technology of solid-phase oxidation of alkaline metal by slag from the copper-smelting industry. Neutralization of alkaline metal in the solid-phase oxidation process occurs in a single phase. The solid-phase oxidation process does not result in the generation of hydrogen. The product of alkaline metal radioactive waste processing is solid mineral-like sinter of reaction products, contained inside a steel reaction container, which is immediately shipped for dry storage in a solid radioactive waste storage facility. The presence of a mercury admixture in the research reactor BR-10 (BR-10) reactor alkaline metals radioactive waste makes conditioning of that waste considerably more complicated. Laboratory research demonstrated that mercury could be effectively removed from alkaline metal by pushing the Na-K alloy through chips of metallic magnesium in elevated temperatures. For neutralization of non-drainable sodium residues and admixtures in individual equipment (cold traps, pipe lines, tanks) of the research reactor BR-10 has developed a method for neutralization of non-drainable residues of alkaline liquid metal coolants with a gaseous sub oxide of nitrogen, which is characterized by absence of hydrogen generation, improving the safety of the technology. Currently, the reactor building is undergoing installation of the experimental-industrial plant 'Magma', the purpose of which is processing of accumulated alkaline metals radioactive waste. In according with concept of 'experimental polygon for testing the decommissioning technologies of the BN series of reactors' based on the BR-10 installation, it would appear sensible to start the development of the installation for conditioning by solid-phase oxidation of up to 1000 liters of radioactive waste per loading. (author)

  20. Recovering gold from thiosulfate leach pulps via ion exchange

    Science.gov (United States)

    Nicol, Michael J.; O'Malley, Glen

    2002-10-01

    Increasing environmental and occupational safety concerns about the use of cyanide in gold processing has increased interest in more acceptable alternative lixiviants, the most promising of which is thiosulfate. However, the thiosulfate process lacks a proven inpulp method of recovering the dissolved gold because activated carbon is not effective for the absorption of the gold-thiosulfate complex. This paper describes work aimed at evaluating the effectiveness of commercially available anion exchange resins for the recovery of gold from thiosulfate leach liquors and pulps.