WorldWideScience

Sample records for alkaline protease production

  1. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... the metal ions tested. Key words: Alkaline protease, casein agar, meat waste contaminated soil, Pseudomonas fluorescens. INTRODUCTION. Proteases are the most important industrial enzymes that execute a wide variety of functions and have various important biotechnological applications (Mohen et al.,.

  2. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  3. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    A protease producing bacteria was isolated from meat waste contaminated soil and identified as Pseudomonas fluorescens. Optimization of the fermentation medium for maximum protease production was carried out. The culture conditions like inoculum concentration, incubation time, pH, temperature, carbon sources, ...

  4. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Among various nitrogen sources, yeast extract was found to be the best inducer of alkaline protease. Among metal salts, KNO3 and NH4Cl were found to increase protease production. The maximum enzyme production (3600 U/ml) was observed with pomegranate peels of fermentation medium in the presence of yeast ...

  5. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Gomaa, O.M.; EI Shafey, H.M.

    2009-01-01

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  6. Production of alkaline protease by Teredinobacter turnirae cells ...

    African Journals Online (AJOL)

    The conditions for immobilizing the new alkaline protease-producing bacteria strain Teredinobacter turnirae by entrapment in calcium alginate gel were investigated. The influence of alginate concentration (20, 25 and 30 g/l) and initial cell loading (ICL) on enzyme production were studied. The production of alkaline ...

  7. Alkaline protease production by a strain of marine yeasts

    Science.gov (United States)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  8. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  9. Production and partial characterization of alkaline protease from bacillus subtilis mutant induced by gamma radiation

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.; Bashandy, A.S.

    2010-01-01

    Fourteen bacterial isolates belonging to B.subtilis were locally isolated from soil and screened for alkaline protease production. Only one strain, the highly potent one, was selected as alkaline protease producer and subjected to further studies to optimize its production. Alkaline protease production was maximum at 35 degree C after 72 h of incubation and at ph 10.0. molasses as a carbon source and combination of peptone and yeast extract as a nitrogen source enhanced greatly alkaline protease production. The mutant strain induced by gamma radiation showed higher alkaline protease production by 1.97 fold as compared with the parent strain. The alkaline protease enzyme was active at 40 degree C and ph 10. It was compatible with many commercial detergents and showed high stability (84 %) of its original activity with Ariel detergent. Moreover, alkaline protease enhanced the washing performance, and retained 95 % of its activity in the formulated dry powder.

  10. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... detergent industries (Moon and Parulekar, 1991). Proteases of commercial importance are produced from microbial, animal and plant sources (Patel, 1985). Almost all living organisms can produce alkaline protease at 32 to 45°C and pH 8 to 9 (Akcan and Uyar, 2011). Microbial proteases are produced ...

  11. Alkaline protease production on date waste by an alkalophilic ...

    African Journals Online (AJOL)

    This research focused on isolation and characterization of a new strain of Bacillus sp. from alkaline soil, which was able to producing extracellular alkaline protease and amylase from date waste at pH ranging from 8 to 11 and temperatures of 20 to 50°C. Purification was conducted by fractionation, concentration, and cation ...

  12. Optimization of alkaline protease production from Bacillus subtilis ...

    African Journals Online (AJOL)

    Optimization of the strain revealed that the most suitable nitrogen source to enhance protease production was beef extract. Among various carbon sources tested, maximum production of protease was registered in medium with added glucose. The effect of metals ions indicated that maximum protease production was ...

  13. Isolation, identification and optimization of alkaline protease production by Candida viswanathii

    Directory of Open Access Journals (Sweden)

    Mandana Lotfi

    2014-03-01

    Conclusion: Due to the high demand for industrial enzymes in the Country and the high activity of alkaline proteases produced by strain. It seems that the native strain can achieve high production of alkaline proteases.These native strains could be resulted in the independence of our country in industrial enzymes production.

  14. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa.

    Science.gov (United States)

    Iiyama, Kazuhiro; Takahashi, Eigo; Lee, Jae Man; Mon, Hiroaki; Morishita, Mai; Kusakabe, Takahiro; Yasunaga-Aoki, Chisa

    2017-04-01

    The role of the alkaline protease (AprA) in pyocyanin production in Pseudomonas aeruginosa was investigated. AprA was overproduced when a plasmid carrying the aprA gene was introduced to an aprA-deletion mutant strain, EG03; thus, aprA-complemented EG03 was used as an overproducing strain. The complemented strain produced higher pyocyanin than the mutant strain in all commercially available media evaluated. Particularly, pyocyanin production was higher in the complemented than in the parental strain in brain-heart infusion and tryptic soy broths. These results suggested that protein degradation products by AprA were utilized for pyocyanin production. Protein-rich media were used in subsequent validation studies. Similar results were obtained when the basal medium was supplemented with casein or skim milk as the sole organic nitrogen source. However, gelatin failed to induce abundant pyocyanin production in the complemented strain, despite the presence of protein degradation products by AprA as assessed by SDS-PAGE. Thus, gelatin degradation products may not be suitable for pyocyanin synthesis. In conclusion, AprA could contribute to pyocyanin production in the presence of several proteins or peptides. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Production of Thermostable Alkaline Protease from Streptomyces sp ...

    African Journals Online (AJOL)

    Bacterial extracellular alkaline proteases have been found to have broad spectrum industrial applications because of their stability characteristics among the bacteria. The Actinomyces are of enormous importance as they can be recovered easier than other bacteria after fermentation. Thus, the study was aimed at sourcing ...

  16. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    OpenAIRE

    Elham Dawoodi; Keivan Beheshtimaal; Hashem Nayeri

    2014-01-01

    Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected fro...

  17. Microbial alkaline proteases: Optimization of production parameters and their properties

    OpenAIRE

    Kanupriya Miglani Sharma; Rajesh Kumar; Surbhi Panwar; Ashwani Kumar

    2017-01-01

    Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous repor...

  18. An extremophile Microbacterium strain and its protease production under alkaline conditions.

    Science.gov (United States)

    Lü, Jin; Wu, Xiaodan; Jiang, Yali; Cai, Xiaofeng; Huang, Luyao; Yang, Yongbo; Wang, Huili; Zeng, Aibing; Li, Aiying

    2014-05-01

    Extremophiles are potential resources for alkaline protease production. In order to search for alkaline protease producers, we isolated and screened alkaliphilic microorganisms from alkaline saline environments. The microorganism HSL10 was identified as a member of the genus Microbacterium by morphological observation, Gram staining and sequence analysis of the 16S rRNA gene and the 16S-23S rRNA intergenic spacer region. By colony-forming unit counting under alkali or salt stress, it was further identified as an alkaliphilic microbe with mild halotolerance. In addition, it was capable of secreting alkaline proteases, evidenced by larger hydrolyzation zones in the skim milk-containing medium at pH 9.0 than at pH 7.0. Subsequently, we demonstrated that both NaCl and yeast extract significantly promoted protease production by HSL10. Finally, we established a sensitive colorimetric method for the detection of protease production by HSL10 under neutral and alkaline conditions, by using the Bradford reagent for substrate staining to improve the contrast between the hydrolyzation zone and the substrate background on agar plates. HSL10 was the first example of an alkaliphilic protease-producing member in Microbacterium, and its isolation and characterization have both academic and commercial importance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus.

    Science.gov (United States)

    Mothe, Thirumala; Sultanpuram, Vishnuvardhan Reddy

    2016-06-01

    Alkaline proteases are important enzymes in many industrial applications, especially as additives in laundry detergent industry. Though there are a number of Bacillus species which are reported to be producing proteases, the efficiency of a protease produced by a novel strain has to be studied in comparison to the others. Hence, in this study, an alkaline serine protease produced by a novel species Bacillus caseinilyticus was purified and characterized for its possible usage in detergent industry. Ammonium sulphate, dialysis and DEAE column chromatographic methods were used for purification of the isolated alkaline protease. The molecular weight of the protease was determined by SDS-PAGE and it was found to be 66 kDa. Peptide mass fingerprinting (PMF) was carried out using MALDI-TOF-TOF mass spectrometry and the peptides were found to be similar to that of subtilisin protease. Specific activity of purified protein was found to be 89.2 U/mg. Optimum pH and temperature for enzyme activity were at pH 8 and 60 °C, respectively, showing stability with 10 mM CaCl 2 . Phenyl methyl sulphonyl fluoride (PMSF) at both 5 and 10 mM concentrations completely inhibited the enzyme activity suggesting its serine nature. EDTA, metal ions Mg 2+ and Ca 2+ increased the enzyme activity. The one factor at a time optimisation of the protease production was carried to identify the important factors that affect its production. After optimisation, the protease was produced at lab scale, purified and characterised. This alkali, thermotolerant serine protease was found to be significantly stable in the presence of various surfactants and H 2 O 2. Also, it was successfully able to remove blood stain when used as an additive along with commercial detergent suggesting its potential application in the laundry detergent industry.

  20. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  1. Alkaline protease production by alkaliphilic marine bacteria isolated ...

    African Journals Online (AJOL)

    The molecular mass determined using SDS-PAGE, was nearly 31.0 39 kDa. Some fundamental properties like effects of different temperatures, pH, metal ions (Ca2+, Mg2+, Cu2+, Pb3+, Mn2+ and Cd2+) and ethylene diamine tetraacetic acid (EDTA) on protease activity were also studied. Maximum activities were obtained ...

  2. Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2010-10-01

    Full Text Available The purpose of the present investigations was to improve the yield of alkaline protease for leather dehairing by subjecting the indigenous proteolytic strain Bacillus licheniformis N-2 to various mutagenic treatments viz. UV irradiations, NTG (N-methyl-N-nitro-N-nitrosoguinidine and MMS (methyl methane sulfonate. After screening on skim milk agar plates, a total of nine positive mutants were selected for shake flask experiments. Among these, the best proteolytic mutant designated as UV-9 showed 1.4 fold higher alkaline protease activity in preoptimized growth medium than the parent strain. The fermentation profile and kinetic parameters such u(h-1, Yp/s, Yp/x, Yx/s, q s, Qs, q p and Qp also indicated the superiority of the selected mutant UV-9 for alkaline protease production over the parent strain and rest of the mutants. The dehairing capability of mutant UV-9 alkaline protease was analyzed by soaking goat skin pieces for different time intervals (3-15 h at 40 º C. A complete dehairing without degradation of collagen was achieved after 12 h, indicating its commercial exploitation in leather industry.

  3. Effect of Medium Composition on Commercially Important Alkaline Protease Production by Bacillus licheniformis N-2

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Qazi

    2008-01-01

    Full Text Available Protease production by alkalophilic B. licheniformis N-2 was investigated in 50 mL of the growth medium consisting of (in g/L: glucose 10.0, soybean meal 10.0, K2HPO4 3.0, MgSO4·7H2O 0.5, NaCl 0.5 and CaCl2·2H2O 0.5 at pH=10. Different carbon and nitrogen sources in the form of fine powder of organic, inorganic and defatted meals were studied to select the suitable substrate for alkaline protease production. The highest level of alkaline protease (677.64 U/mL was obtained in the medium containing glucose followed by soluble starch and wheat bran. Among various nitrogen sources, defatted soybean meal was found to be the best inducer of alkaline protease, while inorganic nitrogen sources in the form of ammonium salts repressed the enzyme activity up to 96 %. Thermostability studies showed that the enzyme in the presence of 10 mM Ca2+ ions retained its residual activity up to 80 % even after incubation at 40 °C for 12 h. The enzyme was found stable over a broad range of pH (8–11 and lost 52 % of its residual activity at pH=12. After the treatment with Tween 20, Tween 45, Tween 65, Triton X-405, H2O2 and sodium perborate, each at 1.0 % concentration, the enzyme showed residual activity of 105, 82, 116, 109, 135 and 126 %, respectively. The application of alkaline protease for removal of blood stains from cotton fabric also indicates its potential use in detergent formulations.

  4. Statistical optimization of alkaline protease production from newly isolated Pseudomonas species MTCC 16017

    Directory of Open Access Journals (Sweden)

    Swapna, V.

    2013-12-01

    Full Text Available Aims: The present study was investigated to optimize the production parameters using statistical method of the industrially important enzyme alkaline protease from newly isolated strain Pseudomonas putida from soil microorganisms. Methodology and results: Among 50 isolates of extensive screening two highly productive strains were selected. One among after biochemical characterization both laboratory level and by IMTECH Chandigarh was confirmed as P. putida. Submerged fermentation was carried out and statistical optimization methods Plackett and Burman and RSM were used to optimize the production parameters. Conclusion, significance and impact of study: Among the two selected strains out of 50 isolates, P. putida was identified as the one of the major protease producer. In this study eleven parameters were selected for the fractional factorial design (Plackett and Burman. Four significant parameters including time, carbon source, nitrogen source and salt showed significant impact on the alkaline protease production. During the study an increase in the alkaline protease activity from 4.659 U/mL to 7.396 U/mL was observed. Based on the above data more complex designs, such as Box Wilson design to study the impact of individual significant variable on the enzyme production as well as interactive effects among these significant variables were carried out. The interactive effect of the most influential parameters resulted in increase in enzyme activity from 7.246 up to 10.818 U/mL in 60 h. Analysis of variance showed the adequacy of the model and verification experiments confirmed its validity.

  5. Optimization of alkaline protease production by Streptomyces sp ...

    African Journals Online (AJOL)

    The enzyme production media are optimized according to statistical methods while using two plans of experiences. The first corresponds to the matrixes of Plackett and Burman in N=16 experiences and N-1 factors, twelve are real and three errors. The second is the central composite design of Box and Wilson. The analysis ...

  6. Optimization of alkaline protease production by Streptomyces sp ...

    African Journals Online (AJOL)

    Hacene

    2016-06-29

    Jun 29, 2016 ... asparagine agar, Hickey and Tresner gar) following the directions given by the International Streptomyces Project (Shirling and. Gottlieb, 1966). Cultural characteristics such as growth importance, aerial and substrate mycelium color and diffusible pigment production, were recorded after incubation for 7, ...

  7. Production of alkaline protease and larvicidal biopesticides by an ...

    African Journals Online (AJOL)

    Notably, maximum proteolytic activity was achieved with casein as a substrate followed by skim milk, gelatin and bovine serum albumin. The crude AP enzyme activity exhibited quasi-linear response with enzyme concentrations up to 0.25 mg ml-1. The isolated B. sphaericus might be employed for the economic production ...

  8. Production and Preliminary Characterization of Alkaline Protease from Aspergillus flavus and Aspergillus terreus

    OpenAIRE

    Chellapandi, P.

    2010-01-01

    Proteases are being an industrial candidate, which are widely used in food, bakery, and beverage and detergent industry. In leather industry, alkaline proteases are exhibiting a prominent role in unhairing and bating processes. An extensive use of filamentous fungi, especially Aspergillus species has been studied elaborately. Although, the significant application of alkaline protease produced from these strains in leather industry is being limited. Aspergillus flavus and Aspergillus terreus f...

  9. Production and Characterization of Alkaline Protease from a High Yielding and Moderately Halophilic Strain of SD11 Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Hongxia Cui

    2015-01-01

    Full Text Available A marine bacterium SD11, which was isolated from sea muds (Geziwo Qinhuangdao Sea area, China, was used to produce thermostable alkaline serine nonmetal protease in the skim milk agar plate medium with 10% NaCl. The optimal temperature about the manufacture of the extracellular protease was ~60°C. The crude enzyme was stable at 20–50°C. The activity was retained to 60% and 45% after heating for 1 h at 60 and 70°C, respectively. The protease was highly active in a wide pH scope (8.0–10.0 and maximum protease activity exhibited at pH 10.0. The activity was restrained by phenylmethylsulfonyl fluoride (PMSF but mildly increased (~107% in the presence of ethylenediaminetetraacetic acid (EDTA, indicating that the production contains serine-protease(s and nonmetal protease(s. Moreover, the crude alkaline protease was active with the 5 mM Ca2+, Mn2+, Zn2+, Cu2+, Na+, and K+ that existed separately. In addition, the protease showed superduper stability when exposed to an anionic surfactant (5 mM SDS, an oxidizing agent (1% H2O2, and several organic solvents (methanol, isopropanol, and acetone. These results suggest that the marine bacterium SD11 is significant in the industry from the prospects of its ability to produce thermally stable alkaline protease.

  10. Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18.

    Science.gov (United States)

    Selim, Samy; Hagagy, Nashwa; Abdel Aziz, Mohamed; El-Meleigy, El Syaed; Pessione, Enrica

    2014-01-01

    This study reports the production and biochemical characterisation of a thermostable alkaline halophilic protease from Natronolimnobius innermongolicus WN18 (HQ658997), isolated from soda Lake of Wadi An-Natrun, Egypt. The enzyme was concentrated by spinning through a centriplus, centrifugal ultrafiltration Millipore membrane with a total yield of 25%. The relative molecular mass of this protease determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis ranged from 67 to 43 kDa. The extracellular protease of N. innermongolicus WN18 was dependent on high salt concentrations for activity and stability, and it had an optimum temperature of 60°C in the presence of 2.5 M NaCl. This enzyme was stable in a broad pH range (6-12) with an optimum pH of 9-10 for azocasein hydrolysis. This extracellular protease, therefore, could be defined as thermostable and haloalkaliphilic with distinct properties that make the enzyme applicable for different industrial purposes.

  11. Data on optimized production and characterization of alkaline proteases from newly isolated alkaliphiles from Lonar soda lake, India

    Directory of Open Access Journals (Sweden)

    Mukundraj Govindrao Rathod

    2016-09-01

    Full Text Available Alkaline proteases are one of the industrially important enzymes and generally preferred from alkaliphilic sources. Here we have provided the data on optimized production and characterization of alkaline proteases from five newly isolated and identified alkaliphiles from Lonar soda lake, India. The data provided for optimization of physicochemical parameters for maximum alkaline proteases production is based on OVAT (one variable at a time approach. Alkaline protease production (U/mL recorded by using different agro industrial residues is included in the given data. Further readers can find more information in our previously published research article where we have already described about the methods used and comparative analysis of the data recorded regarding optimized production, characterization and application of alkaline proteases isolated from Lonar soda lake isolates (http://dx.doi.org/10.1016/j.bcab.2016.06.002 [1]. The data provided here by us is useful to other researchers for setting up various suitable statistical models to perform optimization studies other than OVAT approach.

  12. Statistical Approach for Optimization of Physiochemical Requirements on Alkaline Protease Production from Bacillus licheniformis NCIM 2042

    Directory of Open Access Journals (Sweden)

    Biswanath Bhunia

    2012-01-01

    Full Text Available The optimization of physiochemical parameters for alkaline protease production using Bacillus licheniformis NCIM 2042 were carried out by Plackett-Burman design and response surface methodology (RSM. The model was validated experimentally and the maximum protease production was found 315.28 U using optimum culture conditions. The protease was purified using ammonium sulphate (60% precipitation technique. The HPLC analysis of dialyzed sample showed that the retention time is 1.84 min with 73.5% purity. This enzyme retained more than 92% of its initial activity after preincubation for 30 min at 37∘C in the presence of 25% v/v DMSO, methanol, ethanol, ACN, 2-propanol, benzene, toluene, and hexane. In addition, partially purified enzyme showed remarkable stability for 60 min at room temperature, in the presence of anionic detergent (Tween-80 and Triton X-100, surfactant (SDS, bleaching agent (sodium perborate and hydrogen peroxide, and anti-redeposition agents (Na2CMC, Na2CO3. Purified enzyme containing 10% w/v PEG 4000 showed better thermal, surfactant, and local detergent stability.

  13. Selection of Suitable Carbon, Nitrogen and Sulphate Source for the Production of Alkaline Protease by Bacillus licheniformis NCIM-2042

    Directory of Open Access Journals (Sweden)

    Biswanath BHUNIA

    2010-06-01

    Full Text Available In this study, selection of suitable carbon, nitrogen and sulphate sources were carried out by one-variable-at-time approach for the production of alkaline protease enzyme by Bacillus licheniformis NCIM-2042. Maximum levels of alkaline protease were found in culture media supplemented with magnesium sulphate, starch and soybean meal as a good sulphate, carbon and nitrogen sources which influenced the maximum yield of this enzyme (137.69�4.57, 135.23�1.73 and 134.74�1.77, respectively in comparison with the other sulphate, carbon and nitrogen sources.

  14. Selection of Suitable Carbon, Nitrogen and Sulphate Source for the Production of Alkaline Protease by Bacillus licheniformis NCIM-2042

    Directory of Open Access Journals (Sweden)

    Biswanath BHUNIA

    2010-06-01

    Full Text Available In this study, selection of suitable carbon, nitrogen and sulphate sources were carried out by one-variable-at-time approach for the production of alkaline protease enzyme by Bacillus licheniformis NCIM-2042. Maximum levels of alkaline protease were found in culture media supplemented with magnesium sulphate, starch and soybean meal as a good sulphate, carbon and nitrogen sources which influenced the maximum yield of this enzyme (137.694.57, 135.231.73 and 134.741.77, respectively in comparison with the other sulphate, carbon and nitrogen sources.

  15. Cow Dung Substrate for the Potential Production of Alkaline Proteases by Pseudomonas putida Strain AT in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Ponnuswamy Vijayaraghavan

    2014-01-01

    Full Text Available Cow dung and agroresidues were used as the substrates for the production of alkaline proteases by Pseudomonas putida strain AT in solid-state fermentation. Among the various substrates evaluated, cow dung supported maximum (1351±217 U/g protease production. The optimum conditions for the production of alkaline proteases were a fermentation period of 48 h, 120% (v/w moisture, pH 9, and the addition of 6% (v/w inoculum, 1.5% (w/w trehalose, and 2.0% (w/w yeast extract to the cow dung substrate. The enzyme was active over a range of temperatures (50–70°C and pHs (8–10, with maximum activity at 60°C and pH 9. These enzymes showed stability towards surfactants, detergents, and solvent and digested various natural proteins.

  16. Production and some properties of crude alkaline proteases of indigenous Central Amazonian rhizobia strains

    Directory of Open Access Journals (Sweden)

    Arlem Nascimento de Oliveira

    2010-10-01

    Full Text Available Two rhizobia strains isolated from soils of the Central Amazonian floodplain produced appreciable quantities of crude alkaline protease extracts with inexpensive carbon and nitrogen sources. These protease crude extracts were optimally active at pH 9.0-11.0. The optimum temperatures were 35 ºC for Rhizobium sp. strain R-986 and 55 ºC for Bradyrhizobium sp. strain R-993. Protease activities in the crude extracts were enhanced in the presence of 5 mM metal ions, such as Na+, Ca2+, Mg2+ and Mn2+. Rhizobia proteases were strongly inhibited by PMSF, a serine-protease inhibitor. The enzymes were active in the presence of surfactants (SDS and Triton X-100 and stable in oxidizing (H2O2 and reducing agents (β-mercaptoethanol, and organic solvents (acetone, hexane, methanol, 1-propanol and toluene.Duas estirpes de rizóbia isoladas de solos de várzea da Amazônia Central produziram grandes quantidades de proteases alcalinas extracelulares, usando fontes baratas de carbono e nitrogênio. Os extratos brutos de proteases foram ativos em pH 9,0-11,0. As temperaturas ótimas foram de 35 ºC para a enzima do Rhizobium R-986 e de 55 ºC para a do Bradyrhizobium R-993. As atividades proteolíticas aumentaram na presença de 5 mM dos íons Na+, Ca2+ , Mg2+ e Mn2+ . As proteases secretadas pelos rizóbios foram fortemente inibidas por PMSF, um inibidor de serina protease. As enzimas foram ativas na presença de surfactantes (SDS e Triton X-100, e estáveis na presença de agentes oxidantes (H2O2 e redutores (β-mercaptoetanol e solventes orgânicos (acetona, hexano, metanol, 1-propanol e tolueno.

  17. Construction and application of recombinant strain for the production of an alkaline protease from Bacillus licheniformis.

    Science.gov (United States)

    Lin, Songyi; Zhang, Meishuo; Liu, Jingbo; Jones, Gregory S

    2015-03-01

    The alkaline protease gene, Apr, from Bacillus licheniformis 2709 was cloned into an expression vector pET - 28b (+), to yield the recombinant plasmid pET-28b (+) - Apr. The pET-28b (+) - Apr was expressed in a high expression strain E. coli BL21. The amino acid sequence deduced from the DNA sequence analysis revealed a 98% identity to that of Bacillus licheniformis 2709. Sodium salt-Polyacrylamide gel electrophoresis (SDS-PAGE) was used to access the protein expression. SDS-PAGE analysis indicated a protein of Mr of 38.8 kDa. The medium components and condition of incubation were optimized for the growth state of a recombinant strain. The optimal composition of production medium was composed of glucose 8 g/L, peptone 8 g/L and salt solution 10 mL. The samples were incubated on a rotary shaker of 180 r/min at 37°C for 24 h. Copyright © 2014. Published by Elsevier B.V.

  18. Immobilization of Bacillus megaterium MTCC 2444 by Ca-alginate entrapment method for enhanced alkaline protease production

    Directory of Open Access Journals (Sweden)

    Soma Mrudula

    2012-02-01

    Full Text Available Optimization of culture conditions and immobilization parameters for alkaline protease production was carried out by employing Bacillus megaterium MTCC2444. The partially purified enzyme was tested for its stability in the presence of oxidants, surfactants and commercial detergents. The optimum temperature, pH, incubation time and inoculum size were 55 ºC, 11, 48 h, 1 %, respectively. Calcium alginate was used as the immobilization matrix and the effects of gel concentration, bead size, age of immobilized cells, solidification period and initial biomass concentration on alkaline protease production and cell leakage were investigated. The results indicated that the immobilization was most effective with 4 % gel concentration, bead size of 3 mm, 24 h aged immobilized cells for a solidification period of 12 h at 1.5 % initial biomass concentration. The enzyme showed good stability in the presence of oxidants, surfactants and commercial detergents.

  19. Stimulatory effect of medium ingredients on alkaline protease production by bacillus licheniformis N-2 and compatibility studies with commercial detergents

    International Nuclear Information System (INIS)

    Nadeem, M.; Baig, S.; Qazi, J.I.

    2008-01-01

    Suitable concentration of ingredients of the growth medium played a vital role in production of alkaline protease by Bacillus licheniformis. Maximum enzyme activity (875.05 PU/ml) was achieved when the bacterium was grown in the medium containing glucose (1%), soybean meal (1%), K/sub 2/ HPO/sub 4/ (0.5%), MgSO/sub 4/ 7H/sub 2/O (0.05%), NaCI (0.05%), CaCI/sub 2/ 2H/sub 2/O (0.05%) at 37 degree C on 24 h incubation period with agitation of 140 rpm in shake flask cultures. More than 1% glucose decreased the enzyme production. The protease had excellent stability with wide range of Commercial detergents such as Ariel, Bonus, Bright Total, Surf Excel, Wheel and non-branded detergents, recommending its use as an effective additive in detergent formulation. (author)

  20. Statistical modeling and optimization of alkaline protease production from a newly isolated alkalophilic Bacillus species BGS using response surface methodology and genetic algorithm.

    Science.gov (United States)

    Moorthy, Innasi Muthu Ganesh; Baskar, Rajoo

    2013-01-01

    A new hyperactive alkalophilic bacterial strain (Bacillus sp. BGS) was isolated from samples collected from soil that received the effluent of a milk processing industry located in Madurai, Tamilnadu, India, and this bacterial strain was used for the production of alkaline protease. Four out of eight variables, such as molasses, peptone, pH, and inoculum size, have been identified through Plackett-Burman (PB) design and used for the alkaline protease production. These significant variables were further optimized through a hybrid system of response surface methodology (RSM) followed by genetic algorithm (GA). The optimal combination of media components and culture conditions for maximal protease production was found to be 16.827 g/L of peptone, 1.128% (v/v) of molasses, pH value of 11, and 2% (v/v) of inoculum size. A 6.36-fold increase in protease production was achieved through the RSM-GA hybrid system. The protease activity increased significantly with an optimized medium (2,992.75 U/mL) as opposed to an unoptimized basal medium (470.35 U/mL).

  1. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... suggest the suitability of the enzyme for applications in peptide synthesis, detergent formulation and ... The cell free supernatant was recovered as crude enzyme preparation and used for further studies. Assay of protease activity. Protease activity was ... Effect of pH on growth and protease production.

  2. Isolation of alkaline protease from Bacillus subtilis AKRS3

    African Journals Online (AJOL)

    ashok

    2012-08-28

    Aug 28, 2012 ... This research study was mainly focused on phenotypic, biochemical characterization, 16s rRNA sequence based species level identification of isolate and determination of the higher production of alkaline protease through optimization study (carbon, nitrogen, incubation period, temperature, pH and.

  3. Isolation of alkaline protease from Bacillus subtilis AKRS3 ...

    African Journals Online (AJOL)

    This research study was mainly focused on phenotypic, biochemical characterization, 16s rRNA sequence based species level identification of isolate and determination of the higher production of alkaline protease through optimization study (carbon, nitrogen, incubation period, temperature, pH and sodium chloride ...

  4. High-level expression of alkaline protease using recombinant ...

    African Journals Online (AJOL)

    The apr gene was cloned into plasmid pUB110, resulting in the recombinant plasmid pUB-apr, which was then transformed into Bacillus amyloliquefaciens CICIM B4803. The protease productivity was significantly improved in the transformants of B. amyloliquefaciens CICIM B4803. A transformant with high alkaline ...

  5. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    Science.gov (United States)

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films.

  6. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches.

    Science.gov (United States)

    Reddy, L V A; Wee, Young-Jung; Yun, Jong-Sun; Ryu, Hwa-Won

    2008-05-01

    The proteolytic enzymes are the most important group of commercially produced enzymes. The production of alkaline protease was optimized using a newly isolated Bacillus sp. RKY3. The fermentation variables were selected in accordance with the Plackett-Burman design and were further optimized via response surface methodological approach. Four significant variables (corn starch, yeast extract, corn steep liquor, and inoculum size) were selected for the optimization studies. The statistical model was constructed via central composite design (CCD) using three screened variables (corn starch, corn steep liquor, and inoculum size). An overall 2.3-fold increase in protease production was achieved in the optimized medium as compared with the unoptimized basal medium. Enzyme activity increased significantly with optimized medium (939 u ml(-1)) when compared with unoptimized medium (417 u ml(-1)).

  7. Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes

    Directory of Open Access Journals (Sweden)

    Abdelnasser S.S. Ibrahim

    2015-05-01

    Conclusions: A new halotolerant alkaliphilic alkaline protease producing Bacillus sp. NPST-AK15 was isolated from soda lakes. Optimization of various fermentation parameters resulted in an increase of enzyme yield by 22.8 fold, indicating the significance of optimization of the fermentation parameters to obtain commercial yield of the enzyme. NPST-AK15 and its extracellular alkaline protease with salt tolerance signify their potential applicability in the laundry industry and other applications.

  8. Purification and characterization of alkaline proteases from aspergillus terreus

    International Nuclear Information System (INIS)

    Hussain, A.; Mannan, A.; Zubair, H.; Mirza, B.

    2010-01-01

    Proteases belong to an important class of enzymes known as hydrolases and catalyze hydrolysis of proteins. They act primarily to degrade proteins that are used for energy production and as biosynthetic precursors. In the following study, protease produced from Aspergillus terreus was found to be thermo stable and included in the category of alkaline serine and metallo protease. During partial purification, presence of enzyme in 60% (NH/sub 4/)/sub 2/SO/sub 4/ indicated small molecular weight polypeptide; later purification with Sephadex G-75 fractionation yielded a single proteolytic active molecule. At final purification step, the increase in specific activity of the enzyme was 7.5 fold with 23% yield. SDS-PAGE analysis revealed that alkaline protease of Aspergillus terreus is a monomer with approximate molecular weight of 35 kDa. Optimum pH for protease activity was found in the range of 7.5-11.0 (maximum at pH 8.5), thus apparently classified as an alkaline protease. The enzyme was thermo stable towards high temperature (60 deg. C), however it denatured irreversibly at 70 deg. C showing 80% loss of activity. The maximum proteolytic activity was found at 40 deg. C. The enzyme was effectively inhibited by PMSF, EDTA and urea whereas iodoacetamide and thiourea did not result in any loss in activity while cysteine was found to be activator molecule. The study with metal ions Mg/sup +2/, Mn/sup +2/ and Fe/sup +3/ (1 mM each) showed minute stimulatory effects on enzyme activity. Co/sup +2/ and Ca/sup +2/ (1 mM) had neither excitatory nor inhibitory effect while Hg/sup +2/ and Cu/sup +2/ (1 mM) slightly reduced the enzyme activity. (author)

  9. Partial purification and characterization of alkaline proteases from ...

    African Journals Online (AJOL)

    Alkaline proteases from the digestive tract of anchovy were partially purified by ammonium sulfate fractionation, dialysis and Sephadex G-75 gel filtration. The purification fold and yield were 6.23 and 4.49%, respectively. The optimum activities of partially purified alkaline proteases were observed at 60°C and at pH 11.0.

  10. Fish Scales as Potential Substrate for Production of Alkaline Protease and Amino Acid Rich Aqua Hydrolyzate byBacillus altitudinisGVC11.

    Science.gov (United States)

    Harikrishna, N; Mahalakshmi, S; Kiran Kumar, K; Reddy, Gopal

    2017-09-01

    Fish processing industries generate large quantities of fish scales as processing waste, if not treated leading to environmental pollution. Fish scales are hard to degrade, hence cause difficulty in waste management. In this context present study was made to utilize fish scales as substrate for the production of alkaline protease by Bacillus altitudinis GVC11 and subsequently amino acid rich aqua hydrolyzate. B. altitudinis GVC11 efficiently utilized five types of fish scales as substrates and produced maximum alkaline protease using Labeo rohita (28,150 U/mL) followed by Catla catla (23,320 U/mL) at 48 h and Cyprinus carpio (17,146 U/mL) Mugil cephalus (18,917 U/mL) , Cirrhinus mrigala (12,430 U/mL) at 72 h. The HPLC analysis of protein hydrolyzate obtained after fermentation was enriched in essential amino acids, leucine, isoleucine, phenylalanine, lysine and non-essential amino acids, tyrosine, arginine and cysteine which can be used as animal feed supplement and organic fertilizer.

  11. Production and estimation of alkaline protease by immobilized Bacillus licheniformis isolated from poultry farm soil of 24 Parganas and its reusability

    Directory of Open Access Journals (Sweden)

    Shamba Chatterjee

    2015-01-01

    Full Text Available Microbial alkaline protease has become an important industrial and commercial biotech product in the recent years and exerts major applications in food, textile, detergent, and pharmaceutical industries. By immobilization of microbes in different entrapment matrices, the enzyme produced can be more stable, pure, continuous, and can be reused which in turn modulates the enzyme production in an economical manner. There have been reports in support of calcium alginate and corn cab as excellent matrices for immobilization of Bacillus subtilis and Bacillus licheniformis, respectively. This study has been carried out using calcium alginate, κ-carrageenan, agar-agar, polyacrylamide gel, and gelatin which emphasizes not only on enzyme activity of immobilized whole cells by different entrapment matrices but also on their efficiency with respect to their reusability as first attempt. Gelatin was found to be the best matrix among all with highest enzyme activity (517 U/ml at 24 h incubation point and also showed efficiency when reused.

  12. High-level expression of alkaline protease using recombinant ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... compared with that of wild-type B. licheniformis CICIM B5102. Key word: Alkaline protease, Bacillus amyloliquefaciens, Bacillus licheniformis. INTRODUCTION. Proteases are one of the most important industrial enzyme groups, accounting for approximately 60% of the total enzyme sales (Beg et al., 2003).

  13. Effect of amino acids on the repression of alkaline protease synthesis in haloalkaliphilic Nocardiopsis dassonvillei

    Directory of Open Access Journals (Sweden)

    Amit K. Sharma

    2016-12-01

    Full Text Available A newly isolated salt-tolerant alkaliphilic actinomycete, Nocardiopsis dassonvillei strain OK-18 grows on mineral salts medium with glucose as carbon source. It also grows and produces protease with amino acids as sole carbon source. The synthesis of extracellular alkaline protease parallel to growth was repressible by substrate concentrations. The absolute production of the protease was delinked with growth under nutritional stress, as protease production was high, despite poor growth. When amino acids served as the sole source of carbon and nitrogen, the enzyme production was significantly controlled by the number of amino acids. Maximal protease production was achieved with proline, asparagine, tyrosine, alanine, methionine and valine as sole source of carbon and nitrogen in minimal medium. With the increasing number of different amino acids in the presence and absence of glucose, the protease production was synergistically lower as compared to complex medium.

  14. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... optimum activity at 60°C and pH 8.0 with casein as substrate. The enzyme was .... appropriate buffers. 50 mM of buffer solutions (sodium citrate, pH .... Table 2. Hydrolysis of protein substrates by protease from Bacillus coagulans PSB-07. Substrate. Relative activity (%). Casein. 100. Gelatin. 18. BSA. 72.

  15. Isolation and screening of alkaline protease producing bacteria and ...

    African Journals Online (AJOL)

    Soil samples from different habitats including tanneries, soap industries, garden soil and soil compost were screened for the presence of alkalophilic Bacillus isolates capable of producing alkaline protease in large quantities. One hundred and eighteen (118) isolates were found having proteolytic activity on skim milk agar ...

  16. Alkaline Protease from Bacillus firmus 7728 | Rao | African Journal ...

    African Journals Online (AJOL)

    Extracellular alkaline protease producing Bacillus firmus MTCC 7728 was isolated from the soil samples taken from the leather factories in Nacharam industrial area, Hyderabad. Maximum activity was found after 48 h of fermentation. Optimum pH and temperature for maximum enzyme activity were 9 and 40°C, respectively.

  17. An oxidant, detergent and salt stable alkaline protease from Bacillus ...

    African Journals Online (AJOL)

    A novel soil bacterium, Bacillus cereus SIU1 was earlier isolated from non-saline, slightly alkaline soil of Eastern Uttar Pradesh, India. The isolate B. cereus SIU1 was grown in modified glucose yeast extract (modified GYE) medium at pH 9.0 and 45°C. It produced maximum protease at 20 h incubation. The enzyme was ...

  18. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease

    Science.gov (United States)

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J.

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  19. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil.

    Directory of Open Access Journals (Sweden)

    Sandeep Kaur Saggu

    Full Text Available Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production.

  20. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil

    Science.gov (United States)

    Saggu, Sandeep Kaur

    2017-01-01

    Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India) with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production. PMID:29190780

  1. Response surface methodology for production, characterization and application of solvent, salt and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA 2017.

    Science.gov (United States)

    Abdel Wahab, Walaa A; Ahmed, Samia A

    2018-04-17

    Isolated strain Aspergillus niger WA 2017 was selected as potential protease producer and was identified on the basis of 18S rDNA gene homology. Optimization of protease production conditions was performed using statistical methodology. The most significant factors were identified by Plackett-Burman design (PB) and were optimized by central composite design (CCD). The enzyme production was increased by 3.6-fold with statistically optimized medium when compared to the basal medium. Based on the protease activity, 25-50% ethanol fraction exhibited the highest specific activity. The partially purified enzyme showed its highest activity (4.7-fold) after 10 min incubation at pH 10.0 and 60 °C. The enzyme was stable over a wide range of pH (7-11) and salt concentration (up to 20%). Kinetic parameters Michaelis constant (K m ) and maximum velocity (V max ) were calculated at varying casein concentrations. Additionally, thermal stability of the enzyme was substantially improved by NaCl. The enzyme showed excellent stability and compatibility in presence of organic solvents and detergents retaining 115.3 and 114.5% of its activity in presence of ethanol and Tide, respectively at 40 °C for 1 h. The results revealed that the produced enzyme was able to recover silver from used X-ray film under optimized condition using statistical methodology (CCD). Copyright © 2017. Published by Elsevier B.V.

  2. Alkaline Protease Production from Brevibacterium luteolum (MTCC 5982) Under Solid-State Fermentation and Its Application for Sulfide-Free Unhairing of Cowhides.

    Science.gov (United States)

    Renganath Rao, R; Vimudha, M; Kamini, N R; Gowthaman, M K; Chandrasekran, B; Saravanan, P

    2017-06-01

    Enzyme-based unhairing in replacement of conventional lime sulfide system has been attempted as an alternative for tackling pollution. The exorbitant cost of enzyme and the need for stringent process control need to be addressed yet. This study developed a mechanism for regulated release of protease from cheaper agro-wastes, which overcomes the necessity for stringent process control along with total cost reduction. The maximum protease activity of 1193.77 U/g was obtained after 96 h of incubation with 15% inoculum of the actinomycete strain Brevibacterium luteolum (MTCC 5982) under solid-state fermentation (SSF). The medium after SSF was used for unhairing without the downstream processing to avoid the cost involved in enzyme extraction. This also helped in the regulated release of enzyme from bran to the process liquor for controlled unhairing and avoided the problem of grain-pitting. Unhairing process parameters were standardized as 20% enzyme offer, 40% Hide-Float ratio at 5 ± 1 rpm, and process pH of 9.0. The cost of production of 1000 kU of the protease was calculated as 0.44 USD. The techno-economic feasibility studies for setting up an SSF enzyme production plant showed a high return on investment of 15.58% with a payback period of 6.4 years.

  3. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives

    Directory of Open Access Journals (Sweden)

    Nilesh P. Nirmal

    2014-01-01

    Full Text Available A fungal strain (Conidiobolus brefeldianus MTCC 5184 isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found to be very effective in increasing the stability of FAP, which was found to be concentration dependent. Fivefold increase in residual activity of FAP was observed in the presence of trehalose (50% and sorbitol (50% at 50°C for 4 h, compared to FAP without additive. Other additives like calcium at 20 mM and 10–15% ammonium sulphate showed lower stability improvement than trehalose and sorbitol. NaCl, MgCl2, K2HPO4, and glycine were found to be poor stabilizers and showed only a marginal improvement. PEG 6000 did not show any increase in stability but was found to be slightly inhibitory.

  4. Production of thermostable and organic solvent-tolerant alkaline ...

    African Journals Online (AJOL)

    An alkaliphilic bacterium producing organic solvent-tolerant and thermostable alkaline protease was isolated from poultry litter site and identified as Bacillus coagulans PSB-07. Protease production under different submerged fermentation conditions were investigated with the aim of optimizing yield of enzyme. B. coagulans ...

  5. Fuzzy logic control of bioreactor for enhanced biosynthesis of alkaline protease by an alkalophilic strain of Bacillus subtilis.

    Science.gov (United States)

    ul-Haq, Ikram; Mukhtar, Hamid

    2006-02-01

    Present studies describe the optimization of some cultural parameters such as medium pH, incubation temperature, and agitation rate for the biosynthesis of alkaline protease by Bacillus subtilis IH-72 in a bioreactor using fuzzy logic control. The process of fermentation was carried out in a 7.5-L bioreactor (New Brunswick Scientific, USA) with a working volume of 5 L. All of the parameters were automatically controlled with the help of attached software. The optimum pH, temperature, and agitation for the production of alkaline protease by B. subtilis IH-72 were found to be 9.0, 35 degrees C, and 175 rpm, respectively. The performance of the fuzzy logic of the bioreactor was found to be encouraging for enhanced production of the enzymes. The maximum production of alkaline protease during the present study was found to be 9.6 U mL-1.

  6. Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR)

    Energy Technology Data Exchange (ETDEWEB)

    Kocab, S.; Erdem, B. [Middle East Technical University, Ankara (Turkey). Dept. of Biological Sciences

    2002-08-01

    In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70{sup o}C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes. (author)

  7. Nonnatural amino acid incorporation into the methionine 214 position of the metzincin Pseudomonas aeruginosa alkaline protease

    Directory of Open Access Journals (Sweden)

    Honek John F

    2005-10-01

    Full Text Available Abstract Background The alkaline protease from Pseudomonas aeruginosa (AprA is a member of the metzincin superfamily of metalloendoproteases. A key feature of these proteases is a conserved methionine-containing 1,4-tight β turn at the base of the active site zinc binding region. Results To explore the invariant methionine position in this class of protease, incorporation of a nonnatural fluorinated methionine, L-difluoromethionine (DFM, into this site was accomplished. Although overproduction of the N-terminal catalytic fragment of AprA resulted in protein aggregates which could not be resolved, successful heterologous production of the entire AprA was accomplished in the presence and absence of the nonnatural amino acid. DFM incorporation was found to only slightly alter the enzyme kinetics of AprA. In addition, differential scanning calorimetry indicated no significant alteration in the thermal stability of the modified enzyme. Conclusion Although invariant in all metzincin proteases, the methionine 214 position in AprA can be successfully replaced by the nonnatural amino acid DFM resulting in little effect on protein structure and function. This study indicates that the increased size of the methyl group by the introduction of two fluorines is still sufficiently non-sterically demanding, and bodes well for the application of DFM to biophysical studies of protein structure and function in this class of protease.

  8. Nonnatural amino acid incorporation into the methionine 214 position of the metzincin Pseudomonas aeruginosa alkaline protease

    Science.gov (United States)

    Walasek, Paula; Honek, John F

    2005-01-01

    Background The alkaline protease from Pseudomonas aeruginosa (AprA) is a member of the metzincin superfamily of metalloendoproteases. A key feature of these proteases is a conserved methionine-containing 1,4-tight β turn at the base of the active site zinc binding region. Results To explore the invariant methionine position in this class of protease, incorporation of a nonnatural fluorinated methionine, L-difluoromethionine (DFM), into this site was accomplished. Although overproduction of the N-terminal catalytic fragment of AprA resulted in protein aggregates which could not be resolved, successful heterologous production of the entire AprA was accomplished in the presence and absence of the nonnatural amino acid. DFM incorporation was found to only slightly alter the enzyme kinetics of AprA. In addition, differential scanning calorimetry indicated no significant alteration in the thermal stability of the modified enzyme. Conclusion Although invariant in all metzincin proteases, the methionine 214 position in AprA can be successfully replaced by the nonnatural amino acid DFM resulting in little effect on protein structure and function. This study indicates that the increased size of the methyl group by the introduction of two fluorines is still sufficiently non-sterically demanding, and bodes well for the application of DFM to biophysical studies of protein structure and function in this class of protease. PMID:16221305

  9. [Advances of alkaline amylase production and applications].

    Science.gov (United States)

    Yang, Haiquan; Liu, Long; Li, Jianghua; Du, Guocheng; Chen, Jian

    2012-04-01

    Alkaline amylase is one of alkaline enzymes with optimum pH in the alkaline range, and it could keep stability and efficiently hydrolyze starch under alkaline conditions. Alkaline amylase finds wide applications in textile, detergent, pharmaceutical, food and other fields. Alkaline amylases could be produced by alkaliphilic microorganisms. In this work, the advances of alkaline amylase production and applications were reviewed.

  10. Stability and selectivity of alkaline proteases in hydrophilic solvents

    DEFF Research Database (Denmark)

    Pedersen, Lars Haastrup; Ritthitham, Sinthuwat; Pleissner, Daniel

    2008-01-01

    Hydrophilic, organic solvents can be used as co-solvents with water to produce one phase systems sustaining optimal mass transfer of substrates and products of mixed polarity in biocatalysed processes. At concentrations below 50 % hydrophilic solvents can even have a stabilising effect on alkalin...

  11. Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera.

    Science.gov (United States)

    Hamdi, Marwa; Hammami, Amal; Hajji, Sawssen; Jridi, Mourad; Nasri, Moncef; Nasri, Rim

    2017-08-01

    Since chitin is closely associated with proteins, deproteinization is a crucial step in the process of extracting chitin. Thus, this research aimed to extract chitin from Portunus segnis and Penaeus kerathurus shells by means of crude digestive alkaline proteases from the viscera of P. segnis, regarding deproteinization step, as an alternative to chemical treatment. Casein zymography revealed that five caseinolytic proteases bands exist, suggesting the presence of at least five different major proteases. The optimum pH and temperature for protease activity were pH 8.0 and 60°C, respectively, using casein as a substrate. The crude enzymes extract was highly stable at low temperatures and over a wide range of pH from 6.0 to 12.0. The crude alkaline protease extract was found to be effective in the deproteinization of blue crab and shrimp shells, to produce chitin. The best efficiency in deproteinization (84.69±0.65% for blue crab shells and 91.06±1.40% for shrimp shells) was achieved with an E/S ratio of 5U/mg of proteins after 3h incubation at 50°C. These results suggest that enzymatic deproteinization of crab and shrimp wastes by fish endogenous alkaline proteases could be a potential alternative in the chitin production process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Production of Thermostab Streptomyc ction of Thermostable Alkaline ...

    African Journals Online (AJOL)

    Correspondence: onyi4bernardine@gmail.com. Introduction. Proteases are enzymes that catalyze the hydrolysis of protein into amino-acid. Proteases, especially alkaline type constitute about 60-65% of the global industrial enzyme market (Gupta et al., 2010). Among different proteases, alkaline proteases produced by.

  13. Kinetics Study of Extracellular Detergent Stable Alkaline Protease from Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Zareena Mushtaq

    2015-04-01

    Full Text Available In this study, extracellular alkaline protease was produced from Rhizopus oryzae in submerged fermentation using dairy waste (whey as a substrate. Fermentation kinetics was studied and various parameters were optimized. The strain produced maximum protease at initial medium pH of 6.0 medium depth of 26 mm, inoculum size of 2% at incubation temperature of 35ºC for 168 h of fermentation. Alkaline protease was purified to homogeneity by ammonium sulphate fractionation followed by sephadex G-100 chromatography. The molecular mass of alkaline protease was 69 kDa determined by 10% SDS-PAGE. The optimum pH and temperature of alkaline protease was 9.0 and 40ºC, respectively. Metal profile of the enzyme showed that the enzyme was non-metallic in nature. The Km , Kcat , Vmax and Kcat/Km values of purified protease were 7.0 mg/mL, 3.8 x102S-1, 54.30 µmol/min and 54.28 s-1mg -1.mL respectively, using casein as substrate. The purified alkaline protease had stability with commercial detergents.

  14. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    Science.gov (United States)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  15. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of its Binding Model towards its Applications as Detergent Additive

    Directory of Open Access Journals (Sweden)

    Mehak Baweja

    2016-08-01

    Full Text Available A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10˚C -70˚C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50 ºC and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and ̴ 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50ºC and 4ºC with low supplementation (109 U/ml. Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash.

  16. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea

    Science.gov (United States)

    Hou, Enling; Xia, Tao; Zhang, Zhaohui; Mao, Xiangzhao

    2017-04-01

    Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0-11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.

  17. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    Science.gov (United States)

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  18. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Production of extracellular aspartic protease in submerged fermentation with Mucor mucedo DSM 809. ... The preferred method was the inoculation of the culture media with spores at a total load of 6x105 spores per flask. Key words: Milk clotting enzyme, Aspartic protease, Mucor mucedo, Sub-merged fermentation.

  19. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum.

    Science.gov (United States)

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-09-02

    An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Optimization of novel and greener approach for the coproduction of uricase and alkaline protease in Bacillus licheniformis by Box-Behnken model.

    Science.gov (United States)

    Pawar, Shweta V; Rathod, Virendra K

    2018-01-02

    This study explores a novel concept of coproduction of uricase and alkaline protease by Bacillus licheniformis using single substrate in single step. Seven local bacterial strains were screened for uricase production, amongst which B. licheniformis is found to produce highest uricase along with alkaline protease. Optimization of various factors influencing maximum enzyme coproduction by B. licheniformis is performed. Maximum enzyme productivity of 0.386 U/mL uricase and 0.507 U/mL alkaline protease is obtained at 8 hr of incubation period, 1% (v/v) inoculum, and at 0.2% (w/v) uric acid when the organism is cultivated at 25°C, 180 rpm, in a media containing xylose as a carbon source, urea as a nitrogen source, and initial pH of 9.5. The statistical experimental design method of Box-Behnken was further applied to obtain optimal concentration of significant parameters such as pH (9.5), uric acid concentration (0.1%), and urea concentration (0.05%). The maximum uricase and alkaline protease production by B. licheniformis using Box-Behnken design was 0.616 and 0.582 U/mL, respectively, with 1.6- and 1.13-fold increase as compared to one factor at a time optimized media. This study will be useful to develop an economic, commercially viable, and scalable process for simultaneous production of uricase and protease enzymes.

  1. Alkaline protease from senesced leaves of invasive weed Lantana ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... SDS-PAGE was performed on a slab gel containing 10% ( w/v) polyacrylamide by the method of Laemmli (Laemmli, 1971). Native. PAGE was performed on 7% (w/v) polyacrylamide gel. Compatibility with detergents. The compatibility of protease with local laundry detergents was studied in the presence of ...

  2. Oxidant and solvent stable alkaline protease from Aspergillus flavus ...

    African Journals Online (AJOL)

    The enzyme retained 80% of its original activity in the presence of non ionic and ionic surfactants and 100% with 10% H2O2 after 1 h of incubation at 30°C. In addition, the enzyme showed excellent compatibility with some commercial powder detergents. The compatibility of our protease with several detergents, oxidants ...

  3. Recovery of silver from used X-ray film using alkaline protease from ...

    African Journals Online (AJOL)

    Jane Erike-Etchie

    2016-06-29

    Jun 29, 2016 ... Silver oxidation is followed by electrolysis or chemical treatment of the gelatin layers of X-ray films. All .... Gupta R, Beg K, Lorenz P (2002). Bacterial Alkaline Protease: Molecular approaches and industrial application. Appl. Micro. Biotechnol. 59:15-32. Kumaran E, Mahalakshmipriya A, Rajan S (2013).

  4. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  5. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  6. Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis.

    Science.gov (United States)

    Li, Fan; Yang, Liyuan; Lv, Xue; Liu, Dongbo; Xia, Hongmei; Chen, Shan

    2016-05-01

    An extracellular alkaline protease produced by the alkali-tolerant Cellulomonas bogoriensis was purified by a combination of ammonium sulfate precipitation and cation exchange chromatography. The purity of the protease was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was confirmed to be 18.3 kDa. The enzyme showed optimum activity at 60 °C and pH 11. The stability of the protease was maintained at a wide temperature range of 4-60 °C and pH range of 3-12. Irreversible inhibition of the enzyme activity by phenylmethylsulfonyl fluoride and tosyl-l-phenylalanine chloromethyl ketone demonstrated that the purified enzyme is a chymotrypsin of the serine protease family. The Km and Vmax of the protease activity on casein were 19.2 mg/mL and 25000 μg/min/mg, respectively. The broad substrate specificity and remarkable stability in the presence of organic solvents, salt, and commercial detergents, as well as its excellent stain removal and dehairing capability, make the purified alkaline protease a promising candidate for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases

    Science.gov (United States)

    Niehaus, F.; Gabor, E.; Wieland, S.; Siegert, P.; Maurer, K. H.; Eck, J.

    2011-01-01

    Summary In the wide field of laundry and cleaning applications, there is an unbroken need for novel detergent proteases excelling in high stability and activity and a suitable substrate range. We demonstrated the large amount of highly diverse subtilase sequences present in metagenomic DNA by recovering 57 non‐redundant subtilase sequence tags with degenerate primers. Furthermore, an activity‐ as well as a sequence homology‐based screening of metagenomic DNA libraries was carried out, using alkaline soil and habitat enrichments as a source of DNA. In this way, 18 diverse full‐length protease genes were recovered, sharing only 37–85% of their amino acid residues with already known protease genes. Active clones were biochemically characterized and subjected to a laundry application assay, leading to the identification of three promising detergent proteases. According to sequence similarity, two proteases (HP53 and HP70) can be classified as subtilases, while the third enzyme (HP23) belongs to chymotrypsin‐like S1 serine proteases, a class of enzymes that has not yet been described for the use in laundry and cleaning applications. PMID:21895993

  8. Optimization and characterization of alkaline protease and carboxymethyl-cellulase produced by Bacillus pumillus grown on Ficus nitida wastes

    Directory of Open Access Journals (Sweden)

    Eman Zakaria Gomaa

    2013-01-01

    Full Text Available The potentiality of 23 bacterial isolates to produce alkaline protease and carboxymethyl-cellulase (CMCase on Ficus nitida wastes was investigated. Bacillus pumillus ATCC7061 was selected as the most potent bacterial strain for the production of both enzymes. It was found that the optimum production of protease and CMCase were recorded at 30 °C, 5% Ficus nitida leaves and incubation period of 72 h. The best nitrogen sources for protease and CMCase production were yeast extract and casein, respectively. Also maximum protease and CMCase production were reported at pH 9 and pH 10, respectively. The enzymes possessed a good stability over a pH range of 8-10, expressed their maximum activities at pH10 and temperature range of 30-50 °C, expressed their maximum activities at 50 °C. Ions of Hg2+, Fe2+ and Ag+ showed a stimulatory effect on protease activity and ions of Fe2+, Mg2+, Ca2+, Cu2+ and Ag+ caused enhancement of CMCase activity. The enzymes were stable not only towards the nonionic surfactants like Triton X-100 and Tween 80 but also the strong anionic surfactant, SDS. Moreover, the enzymes were not significantly inhibited by EDTA or cystein. Concerning biotechnological applications, the enzymes retained (51-97% of their initial activities upon incubation in the presence of commercials detergents for 1 h. The potential use of the produced enzymes in the degradation of human hair and cotton fabric samples were also assessed.

  9. Stability and activity profile of alkaline protease produced from bacillus subtilis

    International Nuclear Information System (INIS)

    Anjum, S.; Mukhtar, H.; Nawaz, A.; Haq, I.U.

    2015-01-01

    The present study gives an insight into the effect of different activators and inhibitors on the activity and stability of alkaline proteases produced by Bacillus subtilis IH-72. The alkaline protease was strongly activated both by bivalent and monovalent cations such as Mg/sup 2+/, Mn/sup 2+/, Na/sup +/ and K/sup +/. The enzyme activity was considerably enhanced in the presence of fructose, galactose, glucose and mannitol. The enzyme was stabilized up to 10 days by immobilization on activated charcoal and was efficiently stabilized up to 2 months by lyophilization. The enzyme remained stable up to 19 days both at 4 degree C and 30 degree C in the presence of Mn/sup 2+/. However, it exhibited significant stability up to 22 days at 4 degree C and 30 degree C in the presence of fructose, galactose and polyethylene glycol. (author)

  10. Screening and characterization of alkaline protease produced by a pink pigmented facultative methylotrophic (PPFM strain, MSF 46

    Directory of Open Access Journals (Sweden)

    Shanmugam Jayashree

    2014-12-01

    Full Text Available Among the various bacterial isolates, the strain MSF 46 isolated from thorn forest soil samples, Tamil Nadu, India, was screened and characterized for its proteolytic activity. While the 16S rRNA sequencing and biochemical characterization revealed that the strain closely resembles Methylobacterium sp., methylotrophy of the strain was confirmed by the sequence homology of mxaF gene with other relative Methylobacterium sp. The alkaline protease was purified to homogeneity using DEAE cellulose ion exchange chromatography, with a 5.2-fold increase in specific activity and 34% recovery. The apparent molecular weight of the enzyme was determined as 40 kDa by SDS–PAGE study. The pH and temperature optima were 9.0 and 50 °C respectively with maximum protease activity of 1164 U/ml. Protease of MSF 46 was active in a broad pH range 7.0–11.0 with a maximum at pH 8.5 and exhibited thermostability at 50 °C. The enzyme activity was inhibited by PMSF but showed stability with Tween 20, Triton X-100 and hydrogen peroxide. Nearly 30% reduction in enzyme activity was observed in the presence of EDTA and DTT. The enzyme was effective in hydrolyzing gelatin, skimmed milk and blood clots and exhibited the potency for dehairing of goat skin and removing blood stain from cotton fabric. Significant morphological changes were observed under scanning electron microscope between cells grown in normal and casein amended medium. This first detailed report on the production of alkaline protease by a PPFM strain appears promising toward development of protocols for mass production, study of the molecular mechanism and other applications.

  11. Studies on the Catalytic Properties of Partially Purified Alkaline Proteases from Some Selected Microorganisms

    Directory of Open Access Journals (Sweden)

    Titilayo Olufunke Femi-Ola

    2012-09-01

    Full Text Available Aims: The research was done to study the conditions enhancing catalytic activities of alkaline proteases from Vibro sp., Lactobacillus brevis, Zymomonas sp., Athrobacter sp., Corynebacterium sp. and Bacillus subtilis.Methodology and Results: The proteolytic enzymes were purified in 2-step procedures involving ammonium sulphate precipitation and sephadex G-150 gel permeation chromatography. The upper and lower limits for the specific activities of proteases from the selected microorganisms were estimated at 20.63 and 47.51 units/mg protein with Zymomonas protease having the highest specific activity towards casein as its substrate and purification fold of 3.46, while that ofLactobacillus brevis protease was 8.06. The native molecular weights of these active proteins ranged from 30.4 to 45.7 kDa with Athrobacter sp. protease having the highest weight for its subunits. The proteolytic enzymes had optimum pH range of 8 to 10 and temperature range of 50 to 62 ºC accounting for the percentage relative activity range of 75 to 94% and 71 to 84 % respectively. The activities of Lactobacillus brevis and Bacillus subtilis proteases were maximum at pH 9 and 10 respectively. Lactobacillus brevis protease activity was maximum at temperature of 62 ºC, while beyond this value, a general thermal instability of these active proteins was observed. At above 70 ºC, the catalytic activities of Corynebacterium sp., Vibrio sp., Zymomonas sp. and Arthrobacter sp. proteases were progressively reduced over a period of 120 min of incubation, while Bacillus subtlis and Lactobacillus brevis proteases were relatively stable. Effect of metal ions was investigated on the catalytic activity of protease from the microorganisms. Lactobacillus brevis,Zymomonas sp., Arthrobacter sp., Corynebacterium sp. and Bacillus subtilis protease activities were strongly activated by metal ions such as Ca+2 and Mg+2. Enzyme activities were inhibited strongly by Cu2+ and Hg2+ but were not

  12. Identification and characterization of alkaline protease producing Bacillus firmus species EMBS023 by 16S rRNA gene sequencing.

    Science.gov (United States)

    Wishard, Rohan; wishard, Rohan; Jaiswal, Mahak; Parveda, Maheshwari; Amareshwari, P; Bhadoriya, Sneha Singh; Rathore, Pragya; Yadav, Mukesh; Nayarisseri, Anuraj; Nair, Achuthsankar S

    2014-12-01

    Probiotic microorganisms are those which exert a positive exect on the growth of the host, when administered as a dietary mixture in an adequate amount. They form the best alternative to the use of antibiotics for controlling enteric diseases in poultry farm animals, especially in the light of the gruesome problems of development of antibiotic resistance in enteric pathogens and the contamination of poultry products with antibiotics. 16S rDNA sequencing which has gained wide popularity amongst microbiologists for the molecular characterization and identification of newly discovered isolates provides accurate identification of isolates down to the level of sub-species (strain). It's most important advantage over the traditional biochemical characterization methods are that it can provide an accurate identification of strains with atypical phenotypic characters as well. The following work is an application of 16S rRNA gene sequencing approach to identify a novel, alkaline protease producing bacteria, from poultry farm waste. The sample was collected from a local poultry farm in the Guntur district, Andhra Pradesh, India. Subsequently the sample was serially diluted and the aliquots were incubated for a suitable time period following which the suspected colony was subjected to 16S rDNA sequencing. The results showed the isolate to be a novel, high alkaline protease producing bacteria, which was named Bacillus firmus isolate EMBS023, after characterization the sequence of isolate was deposited in GenBank with accession number JN990980.

  13. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Aysha Kamran

    2015-06-01

    Full Text Available Alkaline serine protease was purified to homogeneity from culture supernatant of a thermophilic, alkaliphilic Bacillus sp. by 80% ammonium sulphate precipitation followed by CM-cellulose and DEAE-cellulose ion exchange column chromatography. The enzyme was purified up to 16.5-fold with 6900 U/mg activity. The protease exhibited maximum activity towards casein at pH 8.0 and at 80 °C. The enzyme was stable at pH 8.0 and 80 °C temperature up to 2 h. The Ca2+ and Mn2+ enhanced the proteolytic activity up to 44% and 36% as compared to control, respectively. However, Zn2+, K+, Ba2+, Co2+, Hg2+ and Cu2+ significantly reduced the enzyme activity. PMSF (phenyl methyl sulphonyl fluoride completely inhibited the protease activity, whereas the activity of protease was stimulated up to two folds in the presence of 5 mM 2-mercaptoethanol. The enzyme was also stable in surfactant (Tween-80 and other commercial detergents (SDS, Triton X-100.

  14. The use of an economical medium for the production of alkaline ...

    African Journals Online (AJOL)

    The present study is concerned with the selection of new economical media based on agricultural and marine-processing by-products for the production of alkaline proteases by Bacillus licheniformis NH1. Powders from different fish species were prepared and then tested as growth media at a concentration of 10 g/l for ...

  15. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    OpenAIRE

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant athogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantl...

  16. Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity.

    Science.gov (United States)

    Zaghloul, T I

    1998-01-01

    The Bacillus subtilis alkaline protease(aprA) gene was previously cloned on a pUBHO-derivative plasmid. High levels of expression and gene stability were demonstrated when B. subtilis cells were grown on the laboratory medium 2XSG. B. subtilis cells harboring the multicopy aprA gene were grown on basal medium, supplemented with 1 % chicken feather as a source of energy, carbon, and nitrogen. Proteolytic and keratinolytic activities were monitored throughout the cultivation time. A high level of keratinolytic activity was obtained, and this indicates that alkaline protease is acting as a keratinase. Furthermore, considerable amounts of soluble proteins and free amino acids were obtained as a result of the enzymatic hydrolysis of feather. Biodegradation of feather waste using these cells represents an alternative way to improve the nutritional value of feather, since feather waste is currently utilized on a limited basis as a dietary protein supplement for animal feedstuffs. Moreover, the release of free amino acids from feather and the secreted keratinase enzyme would promote industries based on feather waste.

  17. Studies On Animal Skin Dehairing By Alkaline Protease Produced From Bacteria Isolated From Soil

    Directory of Open Access Journals (Sweden)

    Temam Abrar Hamza

    2017-08-01

    Full Text Available Microbes are living organisms that are too small to be seen by the unaided eye however they carry out extremely useful processes that cannot be achieved by other physical and chemical means. Alkaline proteases from those microbes are one of the most important hydrolytic group of enzymes that find varied application in various industrial sectors. The aim of this study was focused on isolation of alkaline protease producing bacteria from the study area which have potential application in dehairing of animal skin. Accordingly 38 alkaliphilic proteolytic bacteria were isolated from the study area Arba Minch University Abay campus. Five isolates were screened which had relatively higher clear zone and further examined for dehairing efficiency of their crude enzymes. Hair removal test was undertaken by incubating skin with 15ml of respective crude enzyme at 40oC. Regarding this one potential isolate was selected and designated as Bacillus sp.AMUa38. Maximum cell growth were observed from this strain at pH 8 1 salt NaCl concentration and 2.5 of inoculum size. Lactose and peptone are potential carbon and nitrogen source for optimum growth of AMUa38. The optimum activity was reached at pH 9 and 500C. The enzyme was stable in the pH range of 7 to 10. The crude enzyme from Bacillus sp. AMUa38 removed hair from goat skin after 6hrs at pH 9 and 400C. These properties suggest that protease from Bacillus sp. AMUa38 could find potential application in leather processing industries which have an economic implication.

  18. The use of an economical medium for the production of alkaline ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... Sardinelle powder; LB, Luria-Bertani; SDS-PAGE, sodium dodecyl ... detergent industry, because the pH of laundry detergents ... detergents tested. The strain exhibited higher productivity of alkaline protease in medium containing casein as carbon source (2800 U/ml). It showed higher growth but.

  19. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition.

    Science.gov (United States)

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried; Häussler, Susanne

    2016-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Selective modulation of the CD4 molecular complex by Pseudomonas aeruginosa alkaline protease and elastase

    DEFF Research Database (Denmark)

    Pedersen, B K; Kharazmi, A; Theander, T G

    1987-01-01

    The binding of monoclonal antibodies against CD4 was specifically inhibited by treatment of human CD4+ cells with either alkaline protease (AP) or elastase (Ela), purified from Pseudomonas aeruginosa. Binding of antibodies against CD3 (pan T), CD5 (pan T), CD8 (T suppressor/cytotoxic), HLA-ABC, HLA......-DR, HLA-DQ, HLA-DP/DR, and beta 2 microglobulin was not inhibited by AP or Ela. Heat-inactivation of the proteases at 65 degrees C for 20 min or treatment with the metal chelator EDTA abolished the inhibitory activity of both proteases. These findings may serve to develop novel immunological methods...

  1. Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature.

    Science.gov (United States)

    Pandey, Sandeep; Rakholiya, Kalpna D; Raval, Vikram H; Singh, Satya P

    2012-09-01

    A haloalkaliphilic bacterium, isolated from Coastal Gujarat (India) was identified as Oceanobacillus sp. (GQ162111) based on 16S rRNA gene sequence. The organism grew and secreted extra cellular protease in presence of various organic solvents. At 30% (v/v) concentration of hexane, heptane, isooctane, dodecane and decane, significant growth and protease production was evident. The alkaline protease was purified in a single step on phenyl sepharose 6 FF with 28% yield. The molecular mass as judged by SDS-PAGE was 30 kDa. The temperature optimum of protease was 50°C and the enzyme retained 70% activity in 10% (v/v) isooctane. Effect of salt and pH was investigated in combination to assess the effect of isooctane. In organic solvents, the enzyme was considerably active at pH 8-11, with optimum activity at pH 10. Salt at 2 M was optimum for activity and enzyme maintained significant stability up to 18 h even at 3 M salt concentration. Patters of growth, protease production, catalysis and stability of the enzyme are presented. The study resumes significance as limited information is available on the interaction of haloalkaliphilic bacteria and their enzymes with organic solvents. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Optimization Conditions of Extracellular Proteases Production from a Newly Isolated Streptomyces Pseudogrisiolus NRC-15

    Directory of Open Access Journals (Sweden)

    El-Sayed E. Mostafa

    2012-01-01

    Full Text Available Microbial protease represents the most important industrial enzymes, which have an active role in biotechnological processes. The objective of this study was to isolate new strain of Streptomyces that produce proteolytic enzymes with novel properties and the development of the low-cost medium. An alkaline protease producer strain NRC-15 was isolated from Egyptian soil sample. The cultural, morphological, physiological characters and chemotaxonomic evidence strongly indicated that the NRC-15 strain represents a novel species of the genus Streptomyces, hence the name Strptomyces pseudogrisiolus NRC-15. The culture conditions for higher protease production by NRC-15 were optimized with respect to carbon and nitrogen sources, metal ions, pH and temperature. Maximum protease production was obtained in the medium supplemented with 1% glucose, 1% yeast extract, 6% NaCl and 100 μmol/L of Tween 20, initial pH 9.0 at 50 °C for 96 h. The current results confirm that for this strain, a great ability to produce alkaline proteases, which supports the use of applications in industry.

  3. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA.

    Science.gov (United States)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    2014-07-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.

  4. Two-step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1.

    Science.gov (United States)

    Thumar, Jignasha; Singh, S P

    2007-07-01

    An alkaline protease from a salt-tolerant alkaliphilic Streptomyces clavuligerus was purified to homogeneity by 141-fold with a yield of 12% using two-step method of salt precipitation and ion exchange chromatography on DEAE cellulose. The apparent molecular mass was 49+/-2 kDa and the enzyme appeared as monomer based on SDS and Native-PAGE. The temperature optimum was 70 degrees C with significant stability at 60-80 degrees C for more than 60 min. The enzyme was active over the pH range of 8.5-11, with an optimum at 10-11. The serine nature of the protease was confirmed by PMSF inhibition. The enzyme was highly resistant against chemical denaturation and displayed varied effects towards metal ions. The results are significant as extremozymes are difficult to purify and therefore, a two-step purification of alkaline protease from relatively less explored group of actinomycetes is quite appealing.

  5. Purification and characterization of an alkaline protease from Bacillus licheniformis UV-9 for detergent formulations

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2013-04-01

    Full Text Available Alkaline protease produced by mutant strain B. licheniformis UV-9 was purified and characterized for its exploitationin detergent formulation. The enzyme was purified to homogeneity by employing ammonium sulphate precipitation andsephadex G-100 gel filtration chromatography with a 36.83 fold increase in specific activity and 11% recovery. The molecularweight of the protease was found to be 36.12 kDa by SDS-PAGE. The Km and Vmax values exhibited by purified proteasewere 5 mg/ml and 61.58ìM/ml/min, respectively, using casein as substrate. The enzyme exhibited highest activity at pH 11 andtemperature 60°C. Stability studies showed that the enzyme retained higher than 80% residual activity in the pH and temperature ranges of 8 to 11 and 30 to 50°C, respectively. However, in the presence of 10 mM Ca2+ ions the enzyme tained morethan 90% of its residual activity at pH 11 and temperature 60°C. Phenyl methyl sulphonyl fluoride (PMSF completelyinhibited the enzyme activity suggesting that it was serine protease. Among metal ions, the Mg2+ and Ca2+ ions enhancedactivity up to 128% and 145%, respectively. The purified enzyme showed extreme stability towards various surfactantssuch as Tween-20, Tween- 45, Tween-65 and Triton X-45. In addition, the enzyme also exhibited more than 100% residualactivity in the presence of oxidizing agents, H2O2 and sodium perborate. These biochemical properties indicate the potentialuse of B. licheniformis UV-9 enzyme in laundry detergents.

  6. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: Purification and characterization.

    Science.gov (United States)

    Patil, Ulhas; Mokashe, Narendra; Chaudhari, Ambalal

    2016-01-01

    Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.

  7. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    Science.gov (United States)

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (Palkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (⩾ 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Improvement of acid protease production by a mixed culture of ...

    African Journals Online (AJOL)

    The synthesis of acid protease by Aspergillus oryzae AS3042 was enhanced significantly with the mixed culture of Aspergillus niger SL-09 using solid-state fermentation technique. The influence of carbon sources, nitrogen sources and the addition of phytic acid on acid protease production were investigated. The enzyme ...

  9. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650.

    Science.gov (United States)

    Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bejar, Wacim; Boulkour Touioui, Souraya; Hmidi, Maher; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-08-01

    An alkaline proteinase (STAP) was produced from strain TN650 isolated from a Tunisian off-shore oil field and assigned as Streptomyces koyangensis strain TN650 based on physiological and biochemical properties and 16S rRNA gene sequencing. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 45125.17-Da. The enzyme had an NH2-terminal sequence of TQSNPPSWGLDRIDQTTAFTKACSIKY, thus sharing high homology with those of Streptomyces proteases. The results showed that this protease was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), diiodopropyl fluorophosphates (DFP), and partially inhibited by 5,5-dithio-bis-(2-nitro benzoic acid) (DTNB), which strongly suggested its belonging to the serine thiol protease family. Using casein as a substrate, the optimum pH and temperature values for protease activity were pH 10 and 70 °C, respectively. The protease was stable at pH 7-10 and 30-60 °C for 24 h. STAP exhibited high catalytic efficiency, significant detergent stability, and elevated organic solvent resistance compared to the SG-XIV proteases from S. griseus and KERAB from Streptomyces sp. AB1. The stap gene encoding STAP was isolated, and its DNA sequence was determined. These properties make STAP a potential candidate for future application in detergent formulations and non-aqueous peptide biocatalysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways.

    Science.gov (United States)

    Laarman, Alexander J; Bardoel, Bart W; Ruyken, Maartje; Fernie, Job; Milder, Fin J; van Strijp, Jos A G; Rooijakkers, Suzan H M

    2012-01-01

    The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.

  11. Protease Production by Different Thermophilic Fungi

    Science.gov (United States)

    Macchione, Mariana M.; Merheb, Carolina W.; Gomes, Eleni; da Silva, Roberto

    A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi — Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 — using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

  12. Acid protease production in fungal root endophytes.

    Science.gov (United States)

    Mayerhofer, Michael S; Fraser, Erica; Kernaghan, Gavin

    2015-01-01

    Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates. © 2015 by The Mycological Society of America.

  13. Cloning and sequencing of an alkaline protease gene from Bacillus lentus and amplification of the gene on the B. lentus chromosome by an improved technique.

    Science.gov (United States)

    Jørgensen, P L; Tangney, M; Pedersen, P E; Hastrup, S; Diderichsen, B; Jørgensen, S T

    2000-02-01

    A gene encoding an alkaline protease was cloned from an alkalophilic bacillus, and its nucleotide sequence was determined. The cloned gene was used to increase the copy number of the protease gene on the chromosome by an improved gene amplification technique.

  14. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    Science.gov (United States)

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  15. ISOLASI DAN KARAKTERISASI PROTEASE ALKALIN DARI ISOLAT BAKTERI LIMBAH TERNAK DI EXFARM FAKULTAS PETERNAKAN UNSOED

    Directory of Open Access Journals (Sweden)

    Zusfahair

    2011-05-01

    Full Text Available Protease is one of the widely used enzymes for the industry. The potential resource of microorganism that produced protease is milk cow waste. In this research, isolation and characterization has been done toward isolated protease from milk cow waste of the Exfarm’s Animal Husbandry Faculty at University of Jenderal Soedirman, Purwokerto. The research used experiment method and the parameters observed were the genus of bacteria which produce protease and the activity of protease. The characterizations of protease were determination of optimum pH and temperature, the influence of metal ions, EDTA, surfactant, and commercial detergent toward enzyme activity, and also the study of enzyme stability. The results from the research showed that the isolated bacteria from the Exfarm’s of Animal Husbandry Faculty of UNSOED, which produced protease was Salmonella sp. Characterization of isolated Salmonella sp. from 45% ammonium sulphate fraction indicated that the optimum temperature was 50 ºC, optimum pH was 8, the enzyme was activated by Ca2+ dan Mg2+ ion, whereas it was inhibited by Zn2+, Cu2+ ions and EDTA. The addition of Tween-80 with the concentration of 0.2% and 0.4% increased protease activity, however the addition of Tween-80 with concentration higher than 0.6% decreased the protease activity. Enzyme protease from isolated Salmonella sp. was relatively stable with the addition of commercial detergent such as Attack, Surf, and Bukrim.

  16. Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere.

    Science.gov (United States)

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, Chand Karan

    2016-02-01

    A thermostable extracellular alkaline protease producing Bacillus amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth promoting activities. Strain SP1 was purified to 6.48-fold using four-step purification protocol and characterized in detail for its robustness and ecofriendly application in leather and detergent industries. Structural analysis revealed that the protease was monomeric and had a molecular weight of 43 kDa. It exhibited optimum activity at 60°C in alkaline environment (pH 8.0) and stable in the presence of surfactants and oxidizing agents. Enzyme was thermostable at 50°C and retained more than 70% activity after 30 min incubation. It has shown stain removal property and dehairing of goat skin without chemical assistance and hydrolyzing fibrous proteins. This protease showed Km of 0.125 mg ml(-1) and V(max) of 12820 μg ml(-1) indicating its excellent affinity and catalytic role. Thermal inactivation of the pure enzyme followed first-order kinetics. The half life of the pure enzyme at 50, 60, and 65°C was 77, 19.80, and 13.33 min, respectively. The activation energy was 37.19 KJ mol(-1). The results suggest that the B. amyloliquefaciens SP1 has a potential application in different industries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    Science.gov (United States)

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  18. Optimizing PHB and Protease Production by Box Behnken Design

    Directory of Open Access Journals (Sweden)

    Amro Abd al fattah Amara

    2013-04-01

    Full Text Available Mixed culture is more suitable to adapt more flexible fermentation process and produce different product simultaneously. In this study a mixed Bacillus culture was investigated for their ability to produce the bioplastic "Polyhydroxybutyrate" and both of the mesophilic and the thermophilic proteases in one flask. Box-Behnken experimental design was used. The produced amount of PHB has been increased significantly. Meanwhile there is a competition between PHB and proteases. The maximum produced amount of PHB using Box-Behnken design was 2.82 g/l/48 h with protease activity equal to 41.9 Units/ml/48 h for thermophilic proteases and 99.65 Units/ml/48 h for mesophilic proteases. Excel solver was used for extra-optimization for the optimum conditions obtained from Box-Behnken experiments and its model. The maximum PHB obtained after using Excel solver was 2.88 g/l/48 h. The maximum mesophilic and thermophilic activities obtained at the same PHB production conditions were 175.68 and 243.38 Units/ml respectively. The model accuracy as obtained from Excel solver was 118.8%, which prove the power of the experimental design in optimizing such complicated process. The strategies used in this study are recommended for the production of PHB and different proteases simultaneously using Bacillus mixed culture. ABSTRAK: Kultur campuran adalah lebih sesuai bagi proses penapaian yang fleksibel dan ia boleh menghasilkan produk yang berbeza secara serentak. Dalam kajian ini keupayaan  menghasilkan "Polyhydroxybutyrate" bioplastik serta mesofilik dan termofilik protease dalam satu flask oleh  kultur Bacillus campuran telah disiasat. Eksperimen rekabentuk Box-Behnken telah digunakan. Jumlah PHB yang dikeluarkan meningkat dengan ketara dan terdapat persaingan antara PHB dan protease. Jumlah keluaran PHB maksima menggunakan rekabentuk Box-Behnken adalah 2.82 g/l/48 jam dengan aktiviti protease sama dengan 41.9 Unit/ml/48 jam untuk protease termofilik dan 99.65 Unit

  19. Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from bacillus thuringiensis: effect on insecticidal crystal proteins.

    Science.gov (United States)

    Tan, Y; Donovan, W P

    2001-11-17

    The aprA gene encoding alkaline protease A (AprA) was cloned from Bacillus thuringiensis subsp. kurstaki, and the cloned gene was used to construct aprA-deleted (aprA1) strains of B. thuringiensis. An aprA1 strain of B. thuringiensis that contained the wild-type gene for neutral protease A (nprA(+)) displayed levels of extracellular proteolytic activity that were similar to those of an aprA(+)nprA(+) strain. However, when EDTA was included in the protease assay to inhibit NprA activity the aprA1nprA(+) strain displayed only 2% of the extracellular proteolytic activity of the aprA(+)nprA(+) strain. A strain that was deleted for both aprA and nprA (aprA1nprA3 strain) failed to produce detectable levels of proteolytic activity either in the presence or absence of EDTA in the assay. Compared with the aprA(+)nprA(+) strain the aprA1nprA(+) strain yielded 10% more full-length Cry1Bb crystal protein and the aprA1nprA3 strain yielded 25% more full-length Cry1Bb protein. No significant differences were seen in the 50% lethal dose of Cry1Bb protein from aprA(+)nprA(+) and aprA1nprA3 strains against three species of lepidopteran insects. These results suggest that enhanced yield of certain crystal proteins can be obtained by deletion of the genes aprA and nprA which are the major extracellular proteases of B. thuringiensis.

  20. Anticipation of Artemia sp. supply in the larviculture of the barber goby Elacatinus figaro (Gobiidae: Teleostei influenced growth, metamorphosis and alkaline protease activity

    Directory of Open Access Journals (Sweden)

    Maria Fernanda da Silva-Souza

    2015-09-01

    Full Text Available The barber goby Elacatinus figaro is considered endangered due to overexploitation by the ornamental industry. Farming marine ornamental fishes, especially the threatened ones, can be one of the measures to minimize the pressure on the natural stocks. Among the priority issues for their production is the determination of the most appropriate feeding management. The feeding protocol commonly used in the larviculture of barber goby, when the start of Artemia sp. offer occurred at the 18th DAH (days after hatching (treatment T18, was modified, by anticipating brine shrimp supply in 6 days (treatment T12. Alkaline proteases activity, growth and metamorphosis of larvae were evaluated in both protocols. Juveniles at T12 showed higher weight (0.04 ± 0.001 g and lower activity of total alkaline proteases (1.3 ± 0.2 mU mg-1 protein compared to T18 (0.02 ± 0.001 g; 2.8 ± 0.4 mU mg-1 protein, respectively. With anticipation of brine shrimp, the commencing and end of larval transformation was observed earlier (at 24 and 34 DAH, respectively in comparison to those with the supply of Artemia sp. at 18 DAH (27 and 41 DAH, respectively. Thus, the Artemia sp. anticipation was beneficial during the larviculture of the barber goby, considering that larvae reached metamorphosis earlier.

  1. Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus

    NARCIS (Netherlands)

    van der Laan, J.M.; Teplyakov, A.V.; Kelders, H.; Kalk, K.H.; Misset, O.; Mulleners, L.J.S.M.; Dijkstra, B.W.

    The crystal structure of a serine protease from the alkalophilic strain Bacillus alcalophilus PB92 has been determined by X-ray diffraction at 1.75 Å resolution. The structure has been solved by molecular replacement using the atomic model of subtilisin Carlsberg. The model of the PB92 protease has

  2. Earthworm Protease

    Directory of Open Access Journals (Sweden)

    Rong Pan

    2010-01-01

    Full Text Available The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibriniolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP. The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate proenzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  3. Earthworm Protease

    International Nuclear Information System (INIS)

    Pan, R.; Zhang, Z.; He, R.

    2010-01-01

    The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibrinolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP). The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate pro enzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  4. Statistical medium optimization of an alkaline protease from Pseudomonas aeruginosa MTCC 10501, its characterization and application in leather processing.

    Science.gov (United States)

    Boopathy, Naidu Ramachandra; Indhuja, Devadas; Srinivasan, Krishnan; Uthirappan, Mani; Gupta, Rishikesh; Ramudu, Kamini Numbi; Chellan, Rose

    2013-04-01

    Proteases are shown to have greener mode of application in leather processing for dehairing of goat skins and cow hides. Production of protease by submerged fermentation with potent activity is reported using a new isolate P. aeruginosa MTCC 10501. The production parameters were optimized by statistical methods such as Plackett-Burman and response surface methodology. The optimized production medium contained (g/L); tryptone, 2.5; yeast extract, 3.0; skim milk 30.0; dextrose 1.0; inoculum concentration 4%: initial pH 6.0; incubation temperature 30 degrees C and optimum production at 48 h with protease activity of 7.6 U/mL. The protease had the following characteristics: pH optima, 9.0; temperature optima 50 degrees C; pH stability between 5.0-10.0 and temperature stability between 10-40 degrees C. The protease was observed to have high potential for dehairing of goat skins in the pre- tanning process comparable to that of the chemical process as evidenced by histology. The method offers cleaner processing using enzyme only instead of toxic chemicals in the pre-tanning process of leather manufacture.

  5. Production of Microbial Protease from Selected Soil Fungal Isolates ...

    African Journals Online (AJOL)

    Production of Microbial Protease from Selected Soil Fungal Isolates. ... Nigerian Journal of Biotechnology ... and 500C. The optimal pH on the enzyme production was observed to be between pH 3.5 and 5.5 for the organisms. Keywords: Soil microorganism, fungal isolate, incubation period, microbial enzyme. Nig J. Biotech.

  6. Alkaline protease production on date waste by an alkalophilic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... sodium citrate, casein and sodium acetate were added 10 (g/L) to basic culture medium containing (g/L) casamino acid 3, yeast extract 5, K2HPO4 1, MgSO4. 7H2O 0.2, adjusted to pH 10.5 with. 10% (w/v) sterilized Na2CO3 which separately were added to the medium. In the next step, the effect of different ...

  7. Enhancement of alkaline protease production by Bacillus clausii ...

    African Journals Online (AJOL)

    SERVER

    2007-11-19

    Nov 19, 2007 ... the optimum culture for bacterial growth, which contained (g/l): starch, 10; yeast extract, 10; ammonium ions, 5; trace element without Zn2+, 1.88 ... ions, environmental and fermentation parameters such as. pH, temperature, aeration, and agitation were evaluated in the literature (Adinarayana and Ellaiah, ...

  8. Production of alkaline protease and larvicidal biopesticides by an ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-27

    Aug 27, 2009 ... APA (citrate phosphat buffer. 0.2 M). 0.15 M). Figure 2. Effect of pH of buffered initial medium (A) and pH of enzyme reaction mixture (B) on crude AP activity produced by B. sphaericus (No.5). The experiments were run in 3 replicates with independent cultures. Values of each data point are the average of.

  9. Intramembrane protease RasP boosts protein production in Bacillus.

    Science.gov (United States)

    Neef, Jolanda; Bongiorni, Cristina; Goosens, Vivianne J; Schmidt, Brian; van Dijl, Jan Maarten

    2017-04-04

    The microbial cell factory Bacillus subtilis is a popular industrial platform for high-level production of secreted technical enzymes. Nonetheless, the effective secretion of particular heterologous enzymes remains challenging. Over the past decades various studies have tackled this problem, and major improvements were achieved by optimizing signal peptides or removing proteases involved in product degradation. On the other hand, serious bottlenecks in the protein export process per se remained enigmatic, especially for protein secretion at commercially significant levels by cells grown to high density. The aim of our present study was to assess the relevance of the intramembrane protease RasP for high-level protein production in B. subtilis. Deletion of the rasP gene resulted in reduced precursor processing and extracellular levels of the overproduced α-amylases AmyE from B. subtilis and AmyL from Bacillus licheniformis. Further, secretion of the overproduced serine protease BPN' from Bacillus amyloliquefaciens was severely impaired in the absence of RasP. Importantly, overexpression of rasP resulted in threefold increased production of a serine protease from Bacillus clausii, and 2.5- to 10-fold increased production of an AmyAc α-amylase from Paenibacillus curdlanolyticus, depending on the culture conditions. Of note, growth defects due to overproduction of the two latter enzymes were suppressed by rasP-overexpression. Here we show that an intramembrane protease, RasP, sets a limit to high-level production of two secreted heterologous enzymes that are difficult to produce in the B. subtilis cell factory. This finding was unexpected and suggests that proteolytic membrane sanitation is key to effective enzyme production in Bacillus.

  10. Optimization of mycelial biomass and protease production by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... 164: 81. De Azeredo LAI, De Lima MB, Coelho RRR, Freire DMG (2006). A low- cost fermentation medium for thermophilic protease production by. Streptomyces sp. 594 using feather meal and corn steep liquor. Curr. Microbiol. 53: 335-339. Dedman V (2000). “Native bread” Polyporus mylittae. Fungimap.

  11. Production of Microbial Protease from Selected Soil Fungal Isolates

    African Journals Online (AJOL)

    Dr Oseni

    Nig J. Biotech. Vol. 23 (2011) 28 - 34. ISSN: 0189 17131. Available online at www.biotechsocietynigeria.org. Production of Microbial Protease from Selected Soil Fungal. Isolates. Oseni, O.A.. Department of Medical Biochemistry, Ekiti State University, Ado-Ekiti, Nigeria. (Received 20.07.11, Accepted 09.11.11). Abstract.

  12. Deep-sea fungi as a source of alkaline and cold-tolerant proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.; Raghukumar, C.; Muraleedharan, U.; Raghukumar, S.

    suggesting it to be a serine protease. It was active in the presence of several commercial detergents at 2 g L-1 concentration and in the presence of 0.5 M NaCl, equivalent to 29 parts per thousand salinity. In the presence of stabilizing agents...

  13. Levels of antioxidant enzymes and alkaline protease from pulp and peel of sunflower

    Directory of Open Access Journals (Sweden)

    Wesen Adel Mehdi

    2017-06-01

    Conclusions: The present study concluded that peel in sunflower are strong radical scavengers and can be considered as good sources of natural antioxidants for medicinal and commercial uses. Further analysis showed that protease activity was a significantly high in the pulp compared to the peel.

  14. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence.

    Science.gov (United States)

    Huang, Rong; Yang, Qingjun; Feng, Hong

    2015-02-01

    Dehairing alkaline protease (DHAP) from Bacillus pumilus BA06 has been demonstrated to have high catalytic efficiency and good thermostability, with potential application in leather processing. In order to get insights into its catalytic mechanism, two mutants with single amino acid substitution according to the homology modeling and multiple sequence alignment were characterized in thermodynamics of thermal denaturation and temperature dependence of substrate hydrolysis. The results showed that both mutants of V149I and R249E have a systematic increase in catalytic efficiency (kcat/Km) in a wide range of temperatures, mainly due to an increase of k1 (substrate diffusion) and k2 (acylation) for V149I and of k2 and k3 (deacylation) for R249E. In comparison with the wild-type DHAP, the thermostability is increased for V149I and decreased for R249E. Thermodynamic analysis indicated that the free energy (ΔGa°) of activation for thermal denaturation may govern the thermostability. The value of ΔGa° is increased for V149I and decreased for R249E. Based on these data and the structural modeling, it is suggested that substitution of Val149 with Ile may disturb the local flexibility in the substrate-binding pocket, leading to enhancement of binding affinity for the substrate. In contrast, substitution of Arg249 with Glu leads to interruption of interaction with the C-terminal of enzyme, thus resulting in less thermostability. This study indicates that amino acid residues in the active center or in the substrate-binding pocket may disturb the catalytic process and can be selected as the target for protein engineering in the bacterial alkaline proteases. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  15. Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor

    Directory of Open Access Journals (Sweden)

    Hamid Mukhtar

    2012-09-01

    Full Text Available We describe the simultaneous production of Bacillus subtilis based proteases and alpha amylase using a computer controlled laboratory scale 7.5 L batch bioreactor. The present strain is the first to be reported that concomitantly produces these two industrially important enzymes. The growth and sporulation of Bacillus subtilis was monitored and maximum production of alkaline protease and alpha amylase was found to coincide with maximum sporulation. Two types of proteases were detected in the fermentation broth; a neutral and an alkaline protease most active in a pH range of 7.0-8.0 and 8.0-10, respectively. Maximum production of proteases was observed at an incubation temperature of 37ºC while that of alpha amylase was observed at 40ºC. The optimum aeration and agitation levels for protease production were 0.6 L/L/min and 200rpm, respectively, and for alpha amylase were 0.6 L/L/min and 150 rpm. The kinetic parameters Yp/x and qp were also found to be significant at the given fermentation conditions.

  16. High-level expression, purification, and enzymatic characterization of a recombinant Aspergillus sojae alkaline protease in Pichia pastoris.

    Science.gov (United States)

    Ke, Ye; Yuan, XiaoMei; Li, JiaSheng; Zhou, Wei; Huang, XiaoHui; Wang, Tao

    2018-03-26

    An alkaline protease (Ap) was cloned from Aspergillus sojae GIM3.33 via RT-PCR technique. A truncated Ap without the signal peptide was successfully expressed in the Pichia pastoris KM71 strain. The following describes the optimal process conditions for the recombinant engineering of a strain expressing a recombinant Ap (rAp) in a triangular flask: inoculum concentration OD 600 value 20.0 in 40 mL working volume (in 500 mL flasks), methanol addition (1.0%; volume ratio), 0.02% biotin solution (60 μL), and YNB primary concentration (13.0 g/L). Under these conditions, the protease activity of rAp in the fermentation broth reached 400.4 ± 40.5 U/mL after induction for three days. The rAp was isolated and purified, and its enzymatic characteristics were tested. Its optimal pH was 10.0, and it remained stable in a pH range of 7.0-10.0. Its optimal temperature was 45 °C and it retained >50% activity at 40 °C for 60 min. The rAp activity was significantly inhibited by PMSF, Zn 2+ and Fe 2+ and the rAp had a broad substrate specificity for natural proteins and synthetic peptide substrates, and preferred substrates at P1 position with large hydrophobic side-chain groups. Compared to Papain (8.7%) and Alcalase (12.2%), the degree of hydrolysis of rAp to soy protein isolate was 16.5%; therefore, rAp was a good candidate for the processing of food industry byproducts. Copyright © 2018. Published by Elsevier Inc.

  17. Purification and characterization of alkaline-thermostable protease enzyme from Pitaya (Hylocereus polyrhizus) waste: a potential low cost of the enzyme.

    Science.gov (United States)

    Amid, Mehrnoush; Manap, Mohd Yazid A B D; Zohdi, Nor Khanani

    2014-01-01

    The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus) waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent K m and V max of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0). The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe(2+) and Zn(2+), while protease activity was increased in the presence of Ca(2+) and Mg(2+) and Cu(2+) by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA). The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.

  18. ALKALINE PROTEASE, AMYLASE AND CELLULASE ACTIVITIES OF YELLOW RASBORA, Rasbora lateristriataBlkr., AT DIFFERENT FEEDING LEVELS

    Directory of Open Access Journals (Sweden)

    Untung Susilo

    2016-11-01

    Full Text Available Alkaline proteases, amylase and cellulase activities of digestive organ of yellow rasbora, Rasbora lateristriata Blkr., was evaluated with four different feeding levels of 0.34g protein+0.03g fiber, 1.01g protein+0.10g fiber, 1.69g protein+0.16g fiber and 2.36g protein+0.23g fiber/day/100 g fish biomass. A total of 280 fish with average body weight of 0.71±0.06g were used in this study. The results showed that the difference in the feeding levels resulted in a significant difference in trypsin and chymotrypsin  activities (P .05. In conclusion, protein digestion capacity increased, but not to the digestion of starch and fiber in response to different feeding levels and the optimal feeding level for yellow rasbora was 1,01g protein+0,10g fiber/day/100 g fish biomass.

  19. Photovoltaic hydrogen production with commercial alkaline electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Ursua, A.; Lopez, J.; Gubia, E.; Marroyo, L.; Sanchis, P. [Public Univ. of Navarra, Pamplona (Spain). Dept. of Electric and Electronic Engineering

    2010-07-01

    Renewable energy sources and Electrolysis generate the so-called green Hydrogen, a zero-emission and potentially fossil fuel independent energy source. However, the inherent variability of the renewable energy sources implies a mode of operation for which most current electrolysers have not been designed. This paper analyses the operation of a water electrolyser fed with photovoltaic (PV) generator electric profile. The system, Integrated by a 1 Nm{sup 3}/h Hydrogenics alkaline electrolyser and a 5100 W PV generator with 60 BP585 modules, is installed at the Public University of Navarra (Spain). The PV generator profile fed to the electrolyser is emulated by a custom-made apparatus designed and built by the authors of this paper. The profile is designed according to real irradiance data measured by a calibration cell. The irradiance data are converted to the electric power profile that the PV generator would have delivered in case of having been connected to the electrolyser by means of a DC/DC converter with maximum power point tracking (MPPT). Finally, from previously measured power-current electrolyser characteristic curves, the current profile to be delivered to the electrolyser is obtained and programmed to the electronic device. The electrolyser was tested for two types of days. During the first day, the irradiance was very stable, whereas during the second day, the irradiance was very variable. The experimental results show an average power consumption rate and an efficiency of 4908 Wh/Nm{sup 3} and 72.1%, on the first day, and 4842 Wh/Nm{sup 3} and 73.3% on the second day. The electrolyser performance was particularly good in spite of the high variability of the electric supply of the second day. (orig.)

  20. Regulation of Adrenal Aldosterone Production by Serine Protease Prostasin

    Directory of Open Access Journals (Sweden)

    Takehiro Ko

    2010-01-01

    Full Text Available A serine protease prostasin has been demonstrated to have a pivotal role in the activation of the epithelial sodium channel. Systemic administration of adenovirus carrying human prostasin gene in rats resulted in an increase in plasma prostasin and aldosterone levels. However, the mechanism by which the elevation of prostasin levels in the systemic circulation stimulated the plasma aldosterone levels remains unknown. Therefore, we examined if prostasin increases the aldosterone synthesis in a human adrenocortical cell line (H295R cells. Luciferase assay using CYP11B2 promoter revealed that prostasin significantly increased the transcriptional activity of CYP11B2. Prostasin significantly increased both CYP11B2 mRNA expression and aldosterone production in a dose-dependent manner. Surprisingly, treatment with camostat mesilate, a potent prostasin inhibitor, had no effect on the aldosterone synthesis by prostasin and also a protease-dead mutant of prostasin significantly stimulated the aldosterone production. A T-type/L-type calcium channel blocker and a protein kinase C (PKC inhibitor significantly reduced the aldosterone synthesis by prostasin. Our findings suggest a stimulatory effect of prostasin on the aldosterone synthesis by adrenal gland through the nonproteolytic action and indicate a new role of prostasin in the systemic circulation.

  1. Production dynamics of extracellular protease from Bacillus species ...

    African Journals Online (AJOL)

    ... showed that Bacillus species under study are good producers of extracellular protease at high temperature. This might be an indication that proteases produced would be thermostable. Keywords Protease; proteolytic bacteria; Bacillus macerans; Bacillus licheniformis; Bacillus subtilis. African Journal of Biotechnology Vol.

  2. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    Science.gov (United States)

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  3. THERMOPHILIC BACILLUS LICHENIFORMIS RBS 5 ISOLATED FROM HOT TUNISIAN SPRING CO-PRODUCING ALKALINE AND THERMOSTABLE α-AMYLASE AND PROTEASE ENZYMES

    Directory of Open Access Journals (Sweden)

    Rakia Ben Salem

    2016-06-01

    Full Text Available Bacillus licheniformis RBS 5 was isolated from thermal spring in Tunisia. The isolate coproduce α-amylase and protease enzymes. The α-amylase activity showed an optimal activity at approximately 65°C and in wide pH interval ranging from 4 to 9. This enzyme was stable over the range of 45 to 70°C after 30 min of incubation and in the pH range of 8 to 10. Protease activity was optimal; at 80°C, pH 12. This enzyme was stable until 60°C over the pH range of 10 to 12. EDTA at concentration of 5 mM reduces slightly both activities evoking the serine alkaline protease. Cationic ions (Ca2+, Cu2+, Zn2+, and Mg 2+ have an inhibition effect on α-amylase. However, protease activity was enhanced by Ca2+, Cu2+ and Mg 2+; the other cations reduce slightly the proteolytic activity. SDS and H2O2 were found as inhibitors for both activities whereas Triton X-100 and perfume have no effect. Taken together, these traits make protease activity of B. licheniformis RBS 5 as efficient for use in detergent industry.

  4. 21 CFR 184.1027 - Mixed carbohydrase and protease enzyme product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Mixed carbohydrase and protease enzyme product. 184... enzyme product. (a) Mixed carbohydrase and protease enzyme product is an enzyme preparation that includes... current good manufacturing practice conditions of use: (1) The ingredient is used as an enzyme, as defined...

  5. Optimum production and characterization of an acid protease from marine yeast Metschnikowia reukaufii W6b

    Science.gov (United States)

    Li, Jing; Peng, Ying; Wang, Xianghong; Chi, Zhenming

    2010-12-01

    The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease. The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 °C. The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts. The optimal medium of the acid protease production was seawater containing 1.0% glucose, 1.5% casein, and 0.5% yeast extract, and the optimal cultivation conditions of the acid protease production were pH 4.0, a temperature of 25 °C and a shaking speed of 140 rmin-1. Under the optimal conditions, 72.5 UmL-1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level. The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources. Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability. The acid protease produced by M. reukaufii W6b may have highly potential applications in cheese, food and fermentation industries.

  6. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    1991). Industrial enzymes-developments in production and application, Biotechnol. Adv. 9: 643-658. Ferrero MA, Castro GR, Abate CM, Baigori MD, Sineriz F (1996). Thermostable alkaline proteases of Bacillus licheniformis MIR ...

  7. Characterization of halo-alkaline and thermostable protease from Halorubrum ezzemoulense strain ETR14 isolated from Sfax solar saltern in Tunisia.

    Science.gov (United States)

    Dammak, Donyez Frikha; Smaoui, Salma Masmoudi; Ghanmi, Fadoua; Boujelben, Ines; Maalej, Sami

    2016-04-01

    A total of 54 halophilic strains were isolated from crystallizer TS18 (26 strains) and non-crystallizer M1 (28 strains) ponds and screened for their ability to produce protease, amylase, and lipase activities. Enzymatic assays allowed the selection of thirty-two active strains, among them, the ETR14 strain from TS18 showed maximum protease production yields and therefore, selected for further analysis. The results from 16S rRNA gene sequence analysis revealed that the strain belonged to Halorubrum ezzemoulense (Hrr. ezzemoulense) species. Further results indicated that optimum growth and protease production yields were obtained with 10-15% NaCl concentrations in the DSC-97 medium. The enzyme was also able to maintain high levels of protease activity at salt concentrations of up to 25%. While readily available carbon sources were noted to significantly reduce protease production, the combination between yeast extract and peptone enhanced protease excretion, which reached a maximum of 284 U ml(-1) at the end of the exponential growth phase. The enzyme exhibited optimum activity at pH 9 and 60 °C. The halophilic protease retained 87% of its initial activity after 1 h incubation at 70 °C and showed high stability over a wide range of pH, ranging from 7 to 10. This protease exhibited good temperature, pH, and salinity tolerance, which distinguishes it from other proteases previously described from other members of the holoarchaea genera and makes it a promising candidate for application in various industries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Directory of Open Access Journals (Sweden)

    Zahra Ghobadi Nejad

    2014-01-01

    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.

  9. Purification and Characterization of Alkaline-Thermostable Protease Enzyme from Pitaya (Hylocereus polyrhizus Waste: A Potential Low Cost of the Enzyme

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-01-01

    Full Text Available The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent Km and Vmax of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0. The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe2+ and Zn2+, while protease activity was increased in the presence of Ca2+ and Mg2+ and Cu2+ by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA. The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.

  10. Aspartic Protease Zymography Case Study: Detection of Fungal Acid Proteases by Zymography.

    Science.gov (United States)

    Kernaghan, Gavin; Mayerhofer, Michael

    2017-01-01

    This chapter describes a method for the production and characterization of fungal acid proteases. Protease production is induced by growth on BSA media over a pH gradient and protein levels are monitored over time with the Bradford assay. Once protein is depleted, the media is purified and proteases are characterized by gelatin zymography using acrylamide and buffers at near-neutral pH. Maintaining pH levels below those found in traditional zymographic systems avoids the potential loss of activity that may occur in aspartic proteases under alkaline conditions.

  11. Comparison of protease production from newly isolated bacterial ...

    African Journals Online (AJOL)

    Fermentation medium (by using sub-merged fermentation technique) was incubated for 48 h at 37°C temperature and agitation speed of 200 rpm. The protease was partially purified with 70% ammonium sulphate. Four different supports were used for the immobilization of the bacterial protease by physical adsorption ...

  12. Protease production by the keratinolytic Bacillus sp. CL18 through feather bioprocessing.

    Science.gov (United States)

    Sobucki, Lisiane; Ramos, Rodrigo Ferraz; Daroit, Daniel Joner

    2017-10-01

    Bacillus sp. CL18 was investigated to propose a bioprocess for protease production using feathers as organic substrate. In feather broth (FB), containing feathers as sole organic substrate (1-100 g l -1 ), maximal protease production was observed at 30 g l -1 (FB30) after 6 days of cultivation, whereas increased feather concentrations negatively affected protease production and feather degradation. Protease production peaks were always observed earlier during cultivations than maximal feather degradation. In FB30, 80% of initial feathers mass were degraded after 7 days. Addition of glucose, sucrose, starch, yeast extract (2 g l -1 ), CaCl 2 , or MgCl 2 (10 mmol l -1 ) to FB30 decreased protease production and feather degradation. FB30 supplementation with NH 4 Cl (1 g l -1 ) resulted in less apparent negative effects on protease production, whereas peptone (2 g l -1 ) increased protease yields earlier during cultivations (3 days). Through a central composite design employed to investigate the effects of peptone and NH 4 Cl (0.5-4.5 g l -1 ) on protease production and feather degradation, FB30 supplementation with peptone and NH 4 Cl (0.5-1.1 g l -1 ) increased protease production within a shorter cultivation time (5 days) and hastened complete feather degradation (6 days). Feather bioconversion concurs with sustainable production of value-added products.

  13. Production of extracellular proteases by Mucor circinelloides using D-glucose as carbon source / substrate

    Directory of Open Access Journals (Sweden)

    Andrade Vânia Sousa

    2002-01-01

    Full Text Available Recently, some Mucorales species have been reported as protease producers. The production of extracellular proteases by Mucor circinelloides using glucose as substrate was studied. Experiments were carried out with different D-glucose concentrations (40, 60 and 80 g/L. Biomass, pH and protease activity were determined. Although biomass production had reached best yields for the medium containing D-glucose in a concentration of 80 g/L, the enzymatic production was higher when the substrate concentration was reduced to 40 g/L. The yield factor for product on cell growth and the yield factor for product on carbon substrate were higher when the microorganism grew in medium containing 40 g/L glucose. The kinetics parameters suggest that this strain seems to be promising as an alternative microorganism for protease production.

  14. Dietary protease can alleviate negative effects of a coccidiosis infection on production performance in broiler chickens

    NARCIS (Netherlands)

    Peek, H.W.; Klis, van der J.D.; Vermeulen, B.; Landman, W.J.M.

    2009-01-01

    Two experiments were conducted to determine the effect of dietary protease on coccidiosis infection, production performance, the intestinal mucus layer thickness, and brush border enzyme activity using broilers challenged with Eimeria spp. laboratory isolates (Eimeria acervulina, E. maxima and E.

  15. Phytase and protease supplementation for laying hens in peak egg production

    Directory of Open Access Journals (Sweden)

    Bruno Serpa Vieira

    2016-12-01

    Full Text Available The effects of the combination of enzymes in commercial laying hens need to be more explored in literature. To determine if the type of protease affects performance, egg quality, nutrient intake, and morphometry of intestinal mucosa of laying hens in peak egg production and fed with phytase, 780 25-weeks Hy-Line W36 hens were assigned to a completely randomized design composed of five treatments/diets (one positive control, two negative controls, and negative controls plus protease A or B, with 12 replicates of 13 birds each. There was no effect of treatments (P > 0.05 on egg production, egg mass and feed conversion, even though the nutritional restriction imposed by the negative controls reduced egg weight (P = 0.02, albumen height (P < 0.01, and Haugh unit (P < 0.01. Although inclusion of proteases in negative controls did not cause the calculated intake of protein and amino acids to return to the same amount consumed by positive-control hens, egg quality parameters returned to positive control standards with protease A. Intestinal mucosa responded to treatment only at jejunum, where birds fed with protease B showed greater (P < 0.01 villus height and crypt depth than those treated with protease A. These findings suggest that different proteases and phytases interact distinctly and, in consequence, induce different responses on the birds. Moreover, the behavior of egg quality parameters after protease A inclusion in the diet indicates that the nutritional contribution of the combination of this protease with phytase is greater than the contribution of protease alone.

  16. Optimized production of extracellular proteases by Bacillus subtilis from degraded abattoir waste

    Directory of Open Access Journals (Sweden)

    PALLAVI BADHE

    2016-04-01

    Full Text Available Proteases are ubiquitous in occurrence and are found in all living organisms. These are essential for cell growth and differentiation. The extracellular proteases are of a high commercial value and find multiple applications in various industrial sectors. The present study describes the screening of protease producing bacteria from a hitherto unexplored source i.e. degraded waste from abattoir. Three isolates were found namely yellow, white and orange coloured bacteria. Amongst them, white colored colony was found to be more suitable for protease production. The morphological, cultural, biochemical and 16S rRNA confirmed that the isolate was Bacillus subtilis. Physical and chemical parameters were optimized for maximum protease production and optimum temperature and pH was found to be 40oC at pH 14. Glucose as a carbon source and yeast extract as a nitrogen source further stimulated the production process giving maximum protease activity to be 20.74 U/ml and 20.67 U/ml. The applications of protease in detergent and solvent industry were tested and it was revealed that the purified enzyme can be used as an additive in detergent industry.

  17. Chemistry and biology of natural product derived protease inhibitors

    OpenAIRE

    Stolze, Sara Christina

    2012-01-01

    Im Rahmen dieser Dissertation sollten Naturstoffe und davon abgeleitete Derivate synthetisiert und im Hinblick auf ihre biologische Aktivität als Protease-Inhibitoren untersucht werden. Für die Naturstoffklasse der 3-Amino-6-Hydroxy-2-piperidon(Ahp)-Cyclodepsipeptide, die als nicht-kovalente Serin-Protease-Inhibitoren bekannt sind, konnte eine Festphasensynthese basierend auf einem allgemeinen Ahp-Vorläufermolekül entwickelt werden. Für den Ahp-Vorläufer wurde eine Lösungssynthese entwicke...

  18. Optimization of protease production by an actinomycete Strain, PS ...

    African Journals Online (AJOL)

    Actinomycetes were isolated from the sediment samples of an estuarine shrimp pond located along the south east coast of India. During the investigation, a total of 28 strains of actinomycetes were isolated and examined for their protease activity. Among them, one strain PS-18A which was tentatively identified as ...

  19. Statistical Optimization of Media Components for Production of Fibrinolytic Alkaline Metalloproteases from Xenorhabdus indica KB-3

    Directory of Open Access Journals (Sweden)

    Kumar Pranaw

    2014-01-01

    Full Text Available Xenorhabdus indica KB-3, a well-known protease producer, was isolated from its entomopathogenic nematode symbiont Steinernema thermophilum. Since medium constituents are critical to the protease production, the chemical components of the selected medium (soya casein digest broth were optimized by rotatable central composite design (RCCD using response surface methodology (RSM. The effects of all five chemical components (considered as independent variables, namely tryptone, soya peptone, dextrose, NaCl, and dipotassium phosphate, on protease production (dependent variable were studied, and it was found that tryptone and dextrose had maximum influence on protease production. The protease production was increased significantly by 66.31% under optimal medium conditions (tryptone—5.71, soya peptone—4.9, dextrose—1.45, NaCl—6.08, and dipotassium phosphate—0.47 in g/L. To best of knowledge, there are no reports on optimization of medium component for protease production by X. indica KB-3 using RSM and their application in fibrinolysis. This study will be useful for industrial processes for production of protease enzyme from X. indica KB-3 for its application in the field of agriculture and medicine.

  20. Degradation rates and products of fluticasone propionate in alkaline solutions

    Directory of Open Access Journals (Sweden)

    Tadakazu Tokumura

    2017-10-01

    Full Text Available The apparent degradation rate constant of fluticasone propionate (FLT in 0.1 M NaOH:methanol=1:1 at 37 °C was previously reported to be 0.169±0.003 h−1, and four degradation products (products 1–4 were observed in the solution. The aims of the present study were to assess the degradation rates of FLT in other alkaline solutions and clarify the chemical structures of the four degradation products in order to obtain basic data for designing an enema for inflammatory bowel disease. The apparent degradation rate constants in 0.05 M NaOH and 0.1 M NaOH:CH3CN=1:1 were 0.472±0.013 h−1 and 0.154±0.000 h−1 (n=3, respectively. The chemical structures of products 1–4 in 0.1 M NaOH:methanol=1:1 were revealed by nuclear magnetic resonance (NMR and mass spectrometry data. The chemical structure of products 2 was that the 17-position of the thioester moiety of FLT was substituted by a carboxylic acid. The degradation product in 0.1 M NaOH:CH3CN=1:1 was found to be product 2 based on 1H NMR data. The degradation product in 0.05 M NaOH was considered to be product 2 based on the retention time of HPLC. These results are useful for detecting the degradation products of FLT by enzymes of the intestinal bacterial flora in the large intestine after dosing FLT as an enema.

  1. Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using agro-residues

    Directory of Open Access Journals (Sweden)

    Bijender Kumar Bajaj

    2014-10-01

    Full Text Available The aim of this work was to study the production of fibrinolytic protease by Bacillus subtilis I-2 on agricultural residues. Molasses substantially enhanced (63% protease production (652.32 U/mL than control (398.64 U/mL. Soybean meal supported maximum protease production (797.28 U/mL, followed by malt extract (770.1 U/mL, cotton cake (761.04 U/mL, gelatin (742.92 U/mL and beef extract (724.8 U/mL. Based on the Plackett-Burman designed experiments, incubation time, soybean meal, mustard cake and molasses were identified as the significant fermentation parameters. Ammonium sulfate precipitation and DEAE sephadex chromatography resulted 4.8-fold purification of protease. Zymography showed the presence of three iso-forms in the partially purified protease preparation, which was confirmed by the SDS-PAGE analysis (42, 48, 60 kDa. Protease exhibited maximum activity at 50oC and at pH 8.0. Significant stability was observed at 30-50oC and at pH 7.0-10.0. Mg2+, Zn2+, Co2+, Ca2+, Mn2+ and Cu2+,EGTA, EDTA and aprotinin severely decreased the enzyme activity.

  2. Digestive system development and study of acid and alkaline protease digestive capacities using biochemical and molecular approaches in totoaba (Totoaba macdonaldi) larvae.

    Science.gov (United States)

    Galaviz, Mario A; López, Lus M; García Gasca, Alejandra; Álvarez González, Carlos Alfonso; True, Conal D; Gisbert, Enric

    2015-10-01

    The present study aimed to describe and understand the development of the digestive system in totoaba (Totoaba macdonaldi) larvae from hatching to 40 days post-hatch (dph) from morphological and functional perspectives. At hatch, the digestive system of totoaba was undifferentiated. The anus and the mouth opened at 4 and 5 dph, respectively. During exogenous feeding, development of the esophagus, pancreas, liver and intestine was observed with a complete differentiation of all digestive organs. Expression and activity of trypsin and chymotrypsin were observed as early as at 1 dph, and increments in their expression and activity coincided with changes in food items (live and compound diets) and morpho-physiological development of the accessory digestive glands. In contrast, pepsin was detected later during development, which includes the appearance of the gastric glands between 24 and 28 dph. One peak in gene expression was detected at 16 dph, few days before the initial development of the stomach at 20 dph. A second peak of pepsin expression was detected at day 35, followed by a peak of activity at day 40, coinciding with the change from live to artificial food. Totoaba larvae showed a fully morphologically developed digestive system between 24 and 28 dph, as demonstrated by histological observations. However, gene expression and activity of alkaline and acid proteases were detected earlier, indicating the functionality of the exocrine pancreas and stomach before the complete morphological development of the digestive organs. These results showed that integrative studies are needed to fully understand the development of the digestive system from a morphological and functional point of views, since the histological organization of digestive structures does not reflect their real functionality. These results indicate that the digestive system of totoaba develops rapidly during the first days post-hatch, especially for alkaline proteases, and the stomach

  3. Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries.

    Science.gov (United States)

    Dadshahi, Zahra; Homaei, Ahmad; Zeinali, Farrokhzad; Sajedi, Reza H; Khajeh, Khosro

    2016-07-01

    A novel thermostable protease was purified from Penaeus vannamei from Persian Gulf to homogeneity level using ammonium sulfate precipitation and anion-exchange chromatography. The purified protease showed a single band on native and SDS-PAGE with a molecular weight of 24kDa on SDS-PAGE. The enzyme showed the broad highest catalytic activity for hydrolysis of the substrate with maximal activity at pH 7 and 80°C. Activity of the enzyme was inhibited by Hg(2+), Zn(2+) Co(2+) and Cu(2+), while protease activity was increased in the presence of Fe(2+) and Mn(2+) by factors of 173% and 102%, respectively. Enzyme shows a broad substrate specificity and hydrolyzes both natural and synthetic substrates. Based on the Michaelis-Menten plots, the Km with casein as substrate was 16.8μM and Vmax was 82.6μM/min. The enzyme, derived from L. vannamei, possesses unique characteristics and could be used in various industrial and biotechnological applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Production and Characterization of Keratinolytic Protease from New Wool-Degrading Bacillus Species Isolated from Egyptian Ecosystem

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hassan

    2013-01-01

    Full Text Available Novel keratin-degrading bacteria were isolated from sand soil samples collected from Minia Governorate, Egypt. In this study, the isolates were identified as Bacillus amyloliquefaciens MA20 and Bacillus subtilis MA21 based on morphological and biochemical characteristics as well as 16S rRNA gene sequencing. B. amyloliquefaciens MA20 and B. subtilis MA21 produced alkaline keratinolytic serine protease when cultivated in mineral medium containing 1% of wool straight off sheep as sole carbon and nitrogen source. The two strains were observed to degrade wool completely to powder at pH 7 and 37°C within 5 days. Under these conditions the maximum activity of proteases produced by B. amyloliquefaciens MA20 and B. subtilis MA21 was 922 and 814 U/ml, respectively. The proteases exhibited optimum temperature and pH at 60°C and 9, respectively. However, the keratinolytic proteases were stable in broad range of temperature and pH values towards casein Hammerstein. Furthermore the protease inhibitor studies indicated that the produced proteases belong to serine protease because of their sensitivity to PMSF while they were inhibited partially in presence of EDTA. The two proteases are stable in most of the used organic solvents and enhanced by metals suggesting their potential use in biotechnological applications such as wool industry.

  5. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    Science.gov (United States)

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Production and partial characterization of proteases from Mucor hiemalis URM3773

    Directory of Open Access Journals (Sweden)

    Roana Cecília dos Santos Ribeiro

    2015-03-01

    Full Text Available The current study evaluated the proteases production from 11 fungal species belonging to the genera Mucor, Rhizomucor and Absidia. The species were obtained from the Collection of Cultures URM at the Mycology Department-UFPE, Brazil. The best producing species was Mucor hiemalis URM 3773 (1.689 U mL-1. Plackett-Burman design methodology was employed to select the most effective parameter for protease production out of 11 medium components, including: concentration of filtrate soybean, glucose, incubation period, yeast extract, tryptone, pH, aeration, rotation, NH4Cl, MgSO4 and K2HPO4. Filtrated soybean concentration was the significant variable over the response variable, which was the specific protease activity. The crude enzyme extract showed optimal activity in pH 7.5 and at 50ºC. The enzyme was stable within a wide pH range from 5.8 to 8.0, in the phosphate buffer 0.1M and in stable temperature variation of 40-70ºC, for 180 minutes. The ions FeSO4, NaCl, MnCl2, MgCl2 and KCl stimulated the protease activity, whereas ZnCl2 ion inhibited the activity in 2.27%. Iodoacetic acid at 1mM was the proteases inhibitor that presented greater action.The results indicate that the studied enzyme have great potential for industrial application.

  7. De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: Biosynthesis and properties.

    Science.gov (United States)

    Vijayaraghavan, Ponnuswamy; Lazarus, Sophia; Vincent, Samuel Gnana Prakash

    2014-01-01

    Agro-industrial residues and cow dung were used as the substrate for the production of alkaline protease by Bacillus cereus strain AT. The bacterial strain Bacillus cereus strain AT produced a high level of protease using cow dung substrate (4813 ± 62 U g(-1)). Physiological fermentation factors such as the incubation time (72 h), the pH (9), the moisture content (120%), and the inoculum level (6%) played a vital role in the enzyme bioprocess. The enzyme production improved with the supplementation of maltose and yeast extract as carbon and nitrogen sources, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram analysis of the purified protease indicated an estimated molecular mass of 46 kDa. The protease enzyme was stable over a temperature range of 40-50 °C and pH 6-9, with maximum activity at 50 °C and pH 8. Among the divalent ions tested, Ca(2+), Na(+) and Mg(2+) showed activities of 107 ± 0.7%, 103.5 ± 1.3%, and 104.6 ± 0.9, respectively. The enzyme showed stability in the presence of surfactants such as sodium dodecyl sulfate and on various commercially available detergents. The crude enzyme effectively de-haired goat hides within 18 h of incubation at 30 °C. The enzymatic properties of this protease suggest its suitable application as an additive in detergent formulation and also in leather processing. Based on the laboratory results, the use of cow dung for producing and extracting enzyme is not cumbersome and is easy to scale up. Considering its cheap cost and availability, cow dung is an ideal substrate for enzyme bioprocess in an industrial point of view.

  8. Triclabendazole Effect on Protease Enzyme Activity in the Excretory- Secretory Products of Fasciola hepatica in Vitro.

    Directory of Open Access Journals (Sweden)

    Yosef Shrifi

    2014-03-01

    Full Text Available Fasciola hepatica is one of the most important helminthes parasites and triclabendazole (TCBZ is routinely used for treatment of infected people and animals. Secreted protease enzymes by the F. hepatica plays a critical role in the invasion, migration, nutrition and the survival of parasite and are key targets for novel drugs and vaccines. The aim of study was to determine the protease activity of excretory- secretory products (ESP of F. hepatica in the presence of TCBZ anthelmintic.F. hepatica helminthes were collected and cultured within RPMI 1640 [TCBZ treated (test and untreated (control] for 6 h at 37 °C. ESP of treated and control were collected, centrifuged and supernatants were stored at -20°C. Protein concentrations were measured according to Bradford method. Protease enzymes activities of ESP samples were estimated by using sigma's non-specific protease activity assay. ESP protein bands were detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE.Mean protein concentrations in control and treated of ESP samples were determined 196.1 ±14.52 and 376.4 ±28.20 μg/ml, respectively. Mean protease enzymes activities in control and treated were 0.37 ±0.1 and 0.089 ±0.03 U/ml, respectively. Significant difference between proteins concentrations and protease enzymes activities of two groups was observed (P<0.05. SDS-PAGE showed different patterns of protein bands between treated and control samples.The TCBZ reduced secreted protease enzymes activities and possibly effects on invasion, migration, nutrition and particularly survival of the parasite in the host tissues.

  9. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.

    Science.gov (United States)

    Wang, Dongbo; Liu, Yiwen; Ngo, Huu Hao; Zhang, Chang; Yang, Qi; Peng, Lai; He, Dandan; Zeng, Guangming; Li, Xiaoming; Ni, Bing-Jie

    2017-08-01

    In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R.

    Science.gov (United States)

    Mechri, Sondes; Kriaa, Mouna; Ben Elhoul Berrouina, Mouna; Omrane Benmrad, Maroua; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bouacem, Khelifa; Bouanane-Darenfed, Amel; Chebbi, Alif; Sayadi, Sami; Chamkha, Mohamed; Bejar, Samir; Jaouadi, Bassem

    2017-08-01

    In this study, we aimed to optimize the cultural and nutritional conditions for protease production by Lysinibacillus fusiformis strain C250R in submerged fermentation process using statistical methodology. The most significant factors (gruel, wheat bran, yeast extract, and FeSO 4 ) were identified by Plackett-Burman design. Response surface methodology (RSM) was used to determine the optimum levels of the screened factors and their interaction. Under the optimized conditions, protease yield 3100U/mL was 4.5 folds higher than those obtained by the use of the initial conditions (680U/mL). Additionally, a new extracellular 51kDa-protease, designated SAPLF, was purified and biochemically characterized from strain C250R. It shows optimum activity at 70°C and pH 10. Its half-life times at 70 and 80°C were 10 and 6-h, respectively. Irreversible inhibition of enzyme activity of SAPLF with serine protease inhibitors demonstrated that it belongs to the serine protease family. Interestingly, its catalytic efficiency was higher than that of SPVP from Aeribacillus pallidus strain VP3 and Alcalase Ultra 2.5L from Bacillus licheniformis. This study demonstrated that SAPLF has a high detergent compatibility and an excellent stain removal compared to Alcalase Ultra 2.5L; which offers an interesting potential for its application in the laundry detergent industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Production of foot-and-mouth disease virus capsid proteins by the TEV protease.

    Science.gov (United States)

    Puckette, Michael; Smith, Justin D; Gabbert, Lindsay; Schutta, Christopher; Barrera, José; Clark, Benjamin A; Neilan, John G; Rasmussen, Max

    2018-03-23

    Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells. To overcome the limitations of using the a wild-type 3Cpro in FMDV subunit vaccine expression systems, we altered the protease restriction sequences within a FMDV P1 polyprotein to enable production of FMDV capsid proteins by the Tobacco Etch Virus NIa protease (TEVpro). Separate TEVpro and modified FMDV P1 proteins were produced from a single open reading frame by an intervening FMDV 2A sequence. The modified FMDV P1 polyprotein was successfully processed by the TEVpro in both mammalian and bacterial cells. More broadly, this method of polyprotein production and processing may be adapted to other recombinant expression systems, especially plant-based expression. Published by Elsevier B.V.

  12. Effects of cysteine on growth, protease production, and catalase activity of Pseudomonas fluorescens.

    OpenAIRE

    Himelbloom, B H; Hassan, H M

    1986-01-01

    Cysteine inhibits growth of and protease production by Pseudomonas fluorescens NC3. Catalase activity in P. fluorescens NC3 was increased by cysteine. The addition of exogenous hydrogen peroxide did not increase catalase activity, thus suggesting a role for the endogenous generation of hydrogen peroxide via the autoxidation of cysteine.

  13. Neutral and alkaline cellulases: Production, engineering, and applications.

    Science.gov (United States)

    Ben Hmad, Ines; Gargouri, Ali

    2017-08-01

    Neutral and alkaline cellulases from microorganisms constitute a major group of the industrial enzymes and find applications in various industries. Screening is the important ways to get novel cellulases. Most fungal cellulases have acidic pH optima, except some fungi like Humicola insolens species. However, new applications require the use of neutral and alkaline cellulases in food, brewery and wine, animal feed, textile and laundry, pulp and paper industries, agriculture as well in scientific research purposes. Indeed, the demand for these enzymes is growing more rapidly than ever before, and becomes the driving force for research on engineering the cellulolytic enzymes. Here, we present an overview of the biotechnological research for neutral and alkaline cellulases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface methodology.

    Science.gov (United States)

    Wang, Quanfu; Hou, Yanhua; Xu, Zhong; Miao, Jinlai; Li, Guangyou

    2008-04-01

    Culture conditions were optimized for an extracellular cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341. Response surface methodology was applied for the most significant fermentation parameters (casein, citrate sodium, temperature and Tween-80) identified earlier by one-factor-at-a-time approach. A 2(4) full factorial central composite design was employed to determine the maximum protease production. Using this methodology, the quadratic regression model of producing cold-active protease was built and the optimal combinations of media constituents for maximum protease production (183.21 U/mL) were determined as casein 5.18 g/L, citrate sodium 3.84 g/L, temperature 7.96 degrees C, Tween-80 0.23 g/L. Protease production obtained experimentally coincident with the predicted value and the model was proven to be adequate.

  15. Purification and biochemical characterization of a novel thermostable serine alkaline protease from Aeribacillus pallidus C10: a potential additive for detergents.

    Science.gov (United States)

    Yildirim, Vildan; Baltaci, Mustafa Ozkan; Ozgencli, Ilknur; Sisecioglu, Melda; Adiguzel, Ahmet; Adiguzel, Gulsah

    2017-12-01

    An extracellular thermostable alkaline serine protease enzyme from Aeribacillus pallidus C10 (GenBank No: KC333049), was purified 4.85 and 17. 32-fold with a yield of 26.9 and 19.56%, respectively, through DE52 anion exchange and Probond affinity chromatography. The molecular mass of the enzyme was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), with approximately 38.35 kDa. The enzyme exhibited optimum activity at pH 9 and at temperature 60 °C. It was determined that the enzyme had remained stable at the range of pH 7.0-10.0, and that it had preserved more than 80% of its activity at a broad temperature range (20-80 °C). The enzyme activity was found to retain more than 70% and 55% in the presence of organic solvents and commercial detergents, respectively. In addition, it was observed that the enzyme activity had increased in the presence of 5% SDS. K M and V max values were calculated as 0.197 mg/mL and 7.29 μmol.mL - 1 .min - 1 , respectively.

  16. Optimization of alkaline α-amylase production by thermophilic ...

    African Journals Online (AJOL)

    Background: Starch‐degrading amylase enzyme is important in biotechnological applications as food, fermentation, textile, paper and pharmaceutical purposes. The aim of current study to isolate alkaline thermostable α-amylase bacteria and then study the composition of medium and culture conditions to optimize cells ...

  17. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    NARCIS (Netherlands)

    Rao, A.M.F.; Malkin, S.Y.; Montserrat, F; Meysman, F.J.R.

    2014-01-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete

  18. Optimization of growth medium for protease production by Haloferax Lucentensis VKMM 007 by response surface methodology

    Directory of Open Access Journals (Sweden)

    Muthu Manikandan

    2011-06-01

    Full Text Available The production of halophilic thermostable protease by Haloferax lucentensis VKMM 007 was optimized using a statistical approach. In accordance with factorial design, soluble starch, gelatin, KCl and MgSO4 were selected among 27 variables tested. Next, a second-order quadratic model was estimated and optimal medium concentrations were determined based on quadratic regression equation generated by model. These were 5.14 g L-1 of KCl, 6.57 g L-1of MgSO4, 9.05 g L-1of gelatin and 5.27 g L-1of soluble starch in high salts media supplemented with 0.5% (w/v of beef extract and peptone, respectively. In these optimal conditions, the obtained protease concentration of 6.80 U mL-1 was in agreement with the predicted protease concentration and was further improved to 7.02 U mL-1 by increasing the concentration of NaCl in the medium to 25% (w/v. An overall 4.0-fold increase in protease production was achieved in the optimized medium compared to activity obtained in initial medium.

  19. Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543

    Directory of Open Access Journals (Sweden)

    Jouni Jokela

    2017-10-01

    Full Text Available Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A–F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 μM after 1 h in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms.

  20. Optimization of alkaline cellulase production by the marine-derived fungus Chaetomium sp. using agricultural and industrial wastes as substrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Naveenan, T.; Varatharajan, G.R.

    agricultural and industrial wastes as substrates in submerged fermentation (SMF) and solid state fermentation (SSF) processes. Cotton seed under SSF conditions had maximum enzyme production at high alkaline pH. Cellulase enzymes produced under alkaline cotton...

  1. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  2. Intramembrane protease RasP boosts protein production in Bacillus

    NARCIS (Netherlands)

    Neef, Jolanda; Bongiorni, Cristina; Goosens, Vivianne J.; Schmidt, Brian; van Dijl, Jan Maarten

    2017-01-01

    Background: The microbial cell factory Bacillus subtilis is a popular industrial platform for high- level production of secreted technical enzymes. Nonetheless, the effective secretion of particular heterologous enzymes remains challenging. Over the past decades various studies have tackled this

  3. Medium optimization of protease production by Brevibacterium linens DSM 20158, using statistical approach

    Directory of Open Access Journals (Sweden)

    Khadija Shabbiri

    2012-09-01

    Full Text Available Various cultivation parameters were optimized for the production of extra cellular protease by Brevibacterium linens DSM 20158 grown in solid state fermentation conditions using statistical approach. The cultivation variables were screened by the Plackett-Burman design and four significant variables (soybean meal, wheat bran, (NH42SO4 and inoculum size were further optimized via central composite design (CCD using a response surface methodological approach. Using the optimal factors (soybean meal 12.0g, wheat bran 8.50g, (NH42SO4 0.45g and inoculum size 3.50%, the rate of protease production was found to be twofold higher in the optimized medium as compared to the unoptimized reference medium.

  4. Production, Characterization and Antioxidant Potential of Protease from Streptomyces sp. MAB18 Using Poultry Wastes

    Directory of Open Access Journals (Sweden)

    Panchanathan Manivasagan

    2013-01-01

    Full Text Available Poultry waste is an abundant renewable source for the recovery of several value-added metabolites with potential industrial applications. This study describes the production of protease on poultry waste, with the subsequent use of the same poultry waste for the extraction of antioxidants. An extracellular protease-producing strain was isolated from Cuddalore coast, India, and identified as Streptomyces sp. MAB18. Its protease was purified 17.13-fold with 21.62% yield with a specific activity of 2398.36 U/mg and the molecular weight was estimated as 43 kDa. The enzyme was optimally active at pH 8–10 and temperature 50–60°C and it was most stable up to pH 12 and 6–12% of NaCl concentration. The enzyme activity was reduced when treated with Hg2+, Pb2+, and SDS and stimulated by Fe2+, Mg2+, Triton X-100, DMSO (dimethyl sulfoxide, sodium sulphite, and β-mercaptoethanol. Furthermore, the antioxidant activities of protease were evaluated using in vitro antioxidant assays, such as DPPH radical-scavenging activity, O2 scavenging activity, NO scavenging activity, Fe2+ chelating activity, and reducing power. The enzyme showed important antioxidant potential with an IC50 value of 78±0.28 mg/mL. Results of the present study indicate that the poultry waste-derived protease may be useful as supplementary protein and antioxidant in the animal feed formulations.

  5. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    Science.gov (United States)

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; palkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; palkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (pAlkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac

  6. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Raheem Ullah

    Full Text Available Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  7. Effect of pH on the production of alkaline proteinase by alkalophilic Bacillus sp

    International Nuclear Information System (INIS)

    Kitada, Makio; Horikoshi, Koki

    1976-01-01

    The effect of the pH of the medium on the microbial growth and alkaline proteinase production, and on the uptake of various substances by alkalophilic Bacillus sp. No.8-1 were studied to investigate the physiological properties of alkalophilic bacteria. Both the microbial growth and alkaline proteinase production by replacement culture were maximum between pH 9 and 10. The alkaline proteinase production sources were also effective for the production. The uptake of various substances such as glucose, acetate, amino acids, and uracil, necessary for proteinase production by this strain, was maximum between pH 9 and 10. The uptake of α-aminoisobutyric acid, a nonmetabolizable amino acid analogue, was also maximum at pH 10. The pH-dependence of these substance was not due to their ionic forms being affected by extracellular pH. It was concluded from above results that good production of alkaline proteinase in alkaline media was due to the active uptake of various nutrients in this culture condition. (auth.)

  8. Conformational control of the bacterial Clp protease by natural product antibiotics.

    Science.gov (United States)

    Malik, I T; Brötz-Oesterhelt, H

    2017-07-06

    Covering: up to 2017The bacterial Clp protease is a highly conserved and structurally versatile machine. It has gained a lot of recognition during the last decade as a novel antibacterial drug target with an unprecedented mechanism of action. Due to its complexity, there are distinct means of interfering with its natural functions and several compounds targeting this machine have been identified. In this review, we summarize the current state of knowledge about natural products deregulating Clp proteolysis, a crucial and delicate process within the cell. Among those, acyldepsipeptide antibiotics of the ADEP class (ADEPs) are characterized best. The molecular mechanism of ADEP-mediated deregulation sheds light on the inner workings of the Clp protease.

  9. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment

    International Nuclear Information System (INIS)

    Zhong, Weizhang; Li, Guixia; Gao, Yan; Li, Zaixing; Geng, Xiaoling; Li, Yubing; Yang, Jingliang; Zhou, Chonghui

    2015-01-01

    In this study, the orthogonal experimental design was used to determine the optimum conditions for the effect of thermal alkaline; pretreatment on the anaerobic digestion of penicillin bacterial residue. The biodegradability of the penicillin; bacterial residue was evaluated by biochemical methane potential tests in laboratory. The optimum values of temperature,; alkali concentration, pretreatment time and moisture content for the thermal-alkaline pretreatment were determined as; 70 °C, 6% (w/v), 30 min, and 85%, respectively. Thermal-alkaline pretreatment could significantly enhance the soluble; chemical oxygen demand solubilization, the suspended solid solubilization and the biodegradability. Biogas production; was enhanced by the thermal-alkaline pretreatment, probably as a result of the breakdown of cell walls and membranes of; micro-organisms, which may facilitate the contact between organic molecules and anaerobic microorganisms.; Keywords: penicillin bacterial residue; anaerobic digestion; biochemical methane potential tests; pretreatment

  11. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Frison, A.

    2016-01-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from......, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55 °C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas...

  12. Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases.

    Directory of Open Access Journals (Sweden)

    Villanueva, Alvaro

    1999-12-01

    Full Text Available A high quality protein isolate has been obtained from defatted sunflower meal by alkaline extraction and isoelectric precipitation. Protein content was increased from 31.2 % in the defatted flour to 97 % in the protein isolate. The percentages of fiber, soluble sugars, polyphenols and residual lipids in the protein isolate were reduced to more than 90 % with respect to the defatted meal. The protein isolate was used as starting material for the generation of an extensive enzymatic protein hydrolysate. The hydrolysis was carried out in a pH stat using sequentially an endo-protease (Alcalase and an exo-protease (Flavourzyme. The protein hydrolysate, with a degree of hydrolysis of 50.7 %, was white and non bitter.

    Se ha obtenido un aislado proteico de alta calidad a partir de harina desengrasada de girasol, mediante extracción alcalina y precipitación isoeléctrica. Se incrementó el contenido proteico desde un 31.2 % en la harina desengrasada hasta un 97 % en el aislado proteico. Los porcentajes de fibra, azúcares solubles, polifenoles y lípidos residuales se redujeron en más del 90 % en el aislado proteico respecto a la harina desengrasada. Se usó el aislado proteico como material de partida para la producción de un hidrolizado enzimático proteico extenso. La hidrólisis se realizó en un reactor usando secuencialmente una endo-proteasa (Alcalasa y una exo-proteasa (Flavorzima. El hidrolizado proteico, con un grado de hidrólisis del 50.7 %, era blanco y no presentaba amargor.

  13. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.

    Science.gov (United States)

    Singh, Satbir; Bajaj, Bijender Kumar

    2016-10-02

    Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728 U ml(-1)), which was followed by gram husk (714 U ml(-1)), mustard cake (680 U ml(-1)), and soybean meal (653 U ml(-1)). Plackett-Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020 U ml(-1)). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.

  14. Optimization of Protease Production from Aspergillus Oryzae Sp. Using Box-Behnken Experimental Design

    Directory of Open Access Journals (Sweden)

    G. Srinu Babu

    2007-01-01

    Full Text Available Protease production by Aspergillus oryzae was optimized in shake-flask cultures using Box-Behnken experimental design. An empirical model was developed through response surface methodology to describe the relationship between tested variable (peptone, glucose, soyabeanmeal and pH. Maximum enzyme activity was attained with Peptone at 4 g∕L; temperature at 30 °C glucose at 6 g∕L; 30 °C and pH at 10. Experimental verification of the model showed a validation of 95%, which is more than 3-fold increase compare to the basal medium.

  15. Production of alkaline cellulase by fungi isolated from an undisturbed rain forest of peru.

    Science.gov (United States)

    Vega, Karin; Villena, Gretty K; Sarmiento, Victor H; Ludeña, Yvette; Vera, Nadia; Gutiérrez-Correa, Marcel

    2012-01-01

    Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL(-1)) with higher specific productivities (>30 U g(-1) h(-1)). Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry.

  16. Production of Alkaline Cellulase by Fungi Isolated from an Undisturbed Rain Forest of Peru

    Directory of Open Access Journals (Sweden)

    Karin Vega

    2012-01-01

    Full Text Available Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL−1 with higher specific productivities (>30 U g−1 h−1. Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry.

  17. Screening of Nutritional Parameters for the Production of Protease from Aspergillus Oryzae

    Directory of Open Access Journals (Sweden)

    G. Srinubabu

    2007-01-01

    Full Text Available Production of protease enzyme by fungus Aspergillus oryzae was investigated. The proteolytic activity was observed when the fungus was grown in the medium containing glucose, malt extract, yeast extract, peptone, K2HPO4, MgSO4 and FeSO4. The present paper describes the screening of media components and fermentation conditions in shake flask. The organism utilized carbon sources glucose, fructose, sucrose, lactose, dextrin and starch among them glucose was found to be the best carbon source, for nitrogen sources various inorganic and organic media components were investigated among them peptone is found to be the best nitrogen source. 1% cottonseed followed by 2% Soya bean meal was found to be the best inducer. With optimized media two-fold increase in the protease production. The fungus growth depends on the concentration of carbon, nitrogen and salt solution, where as the enzyme production was also influenced by the culture time, pH and interaction between these two variables.

  18. The effects of supplemental protease enzymes on production variables in lactating Holstein cows

    Directory of Open Access Journals (Sweden)

    Ekin Sucu

    2014-05-01

    Full Text Available A study was conducted to examine the effects of supplemental dietary protease enzymes on production variables in dairy cattle. Ninety-six multiparous lactating Holstein cows (624±62 kg body weight and 154±104 days in milk were blocked according to parity, days in milk, and previous milk production and randomly assigned to a control total mix ration (TMR or a TMR containing a blend of supplemental protease enzymes (PE; 4 g/cow/d in a crossover design with two 21-day experimental periods. Daily pen milk yield and dry matter intake (DMI were recorded and milk composition from all cows was determined on d 15, 17, 19 and 21 of each period. There was no treatment effect on milk yield (37.6 kg/d, but supplemental PE-fed cows consumed less DMI (P<0.05 compared to controls and therefore tended to have improved feed efficiency (P=0.06. Feeding supplemental PE decreased blood urea nitrogen (P<0.05 compared to the control cows. However, feeding PE had no effect on milk fat and protein content but tended (P=0.08 to increase milk lactose concentration and tended (P=0.10 to decrease milk urea nitrogen levels and somatic cell score. Results indicate that supplemental PE may enhance production efficiency and improve parameters of nitrogen status.

  19. Scale up of production in a bioreactor of a halotolerant protease from moderately halophilic Bacillus sp. isolated from soil

    Directory of Open Access Journals (Sweden)

    Roopa Prasad

    2014-06-01

    Full Text Available Studies were conducted on the production of protease by moderately halophilic Bacillus sp. on agro-industrial waste materials. The bacterium could efficiently use many agro wastes as substrates but wheat bran supported maximum enzyme production. To ascertain the performance of the process in shake flasks and lab scale bioreactor, experiments were conducted to analyse protease activity utilizing wheat bran as cost effective substrate. The studies unveiled that pH 7.0, temperature 30°C and static conditions were optimal for enzyme production in flask level fermentation. In scale-up fermentation, at optimal pH and temperature, agitation rate of 50 rpm was best for protease production. The enzymatic nature was studied in 10% SDS gels with BSA (2.5 mg/mL as substrate and banding pattern was compared with undigested BSA as control. The endoprotease nature and the kinetics of protease activity were confirmed. The enzyme retained 37% of its activity even at 5 M NaCl concentration. The proteolytic activity was also confirmed by casein zymogram analysis. The fermentation medium containing inexpensive substrates, physical conditions and ability of Bacillus sp. to exhibit protease activity on a large scale could collectively be useful for commercial production.

  20. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality

    Directory of Open Access Journals (Sweden)

    Nina G. Heredia-Sandoval

    2016-08-01

    Full Text Available Gluten-related diseases are a range of inflammatory disorders of the small intestine, characterized by an adverse response to gluten ingestion; therefore, the treatment is a gluten withdrawal. In spite of the increased market of gluten-free products, widely available breads with high acceptability are still missing due to the technological challenge of substituting the special gluten properties. Instead of using alternative ingredients for baking, some attempts have been done to decrease gluten immunogenicity by its enzymatic degradation with microbial proteases. Although the gluten immunogenicity reduction has been reached to an acceptable level, some quality parameters of the products are affected. This review focus on the use of microbial peptidases to prepare less immunogenic baked goods and their effect on product quality.

  1. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality.

    Science.gov (United States)

    Heredia-Sandoval, Nina G; Valencia-Tapia, Maribel Y; Calderón de la Barca, Ana M; Islas-Rubio, Alma R

    2016-08-30

    Gluten-related diseases are a range of inflammatory disorders of the small intestine, characterized by an adverse response to gluten ingestion; therefore, the treatment is a gluten withdrawal. In spite of the increased market of gluten-free products, widely available breads with high acceptability are still missing due to the technological challenge of substituting the special gluten properties. Instead of using alternative ingredients for baking, some attempts have been done to decrease gluten immunogenicity by its enzymatic degradation with microbial proteases. Although the gluten immunogenicity reduction has been reached to an acceptable level, some quality parameters of the products are affected. This review focus on the use of microbial peptidases to prepare less immunogenic baked goods and their effect on product quality.

  2. Fuel ethanol production from alkaline peroxide pretreated corn stover

    Science.gov (United States)

    Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...

  3. Toxicity of crude oil products and detergent on serum alkaline ...

    African Journals Online (AJOL)

    The comparative effect of exposing Clarias gariepinus juveniles (100.20 + 0.8g) to diferent concentrations of crude oil products and detergent were studied. Bonny Light Crude oil (BLCO), Premium motor spirit (PMS), Dual purpose kerosene (DPK) and Ariel Enzymax Detergent (AED) were respectively applied at three ...

  4. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    International Nuclear Information System (INIS)

    Jin Xin; Li Jufang; Huang Pingying; Dong Xuyan; Guo Lulu; Yang Liang; Cao Yuancheng; Wei Fang; Zhao Yuandi

    2010-01-01

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63±2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  5. Alkaline catalyzed biodiesel production from moringa oleifera oil with optimized production parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kafuku, G.; Mbarawa, M. [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, 0001 Pretoria (South Africa)

    2010-08-15

    The utilization of non-edible feedstock such as moringa oleifera for biodiesel production attracts much attention owing to the issue with regards to avoiding a threat to food supplies. In this study, the optimization of biodiesel production parameters for moringa oleifera oil was carried out. The free fatty acid value of moringa oil was found to be 0.6%, rendering the one step alkaline transesterification method for converting moringa fatty acids to their methyl esters possible. The optimum production parameters: catalyst amount, alcohol amount, temperature, agitation speed and reaction time were determined experimentally and found to be: 1.0 wt% catalyst amount, 30 wt% methanol amount, 60 C reaction temperature, 400 rpm agitation rate and 60 min reaction time. With these optimal conditions the conversion efficiency was 82%. The properties of the moringa biodiesel that was produced were observed to fall within the recommended international biodiesel standards. However, moringa biodiesel showed high values of cloud and pour points of 10 C and 3 C respectively, which present a problem as regards use in cold temperatures. (author)

  6. Effect of irradiation on protease production by a Philippine strain of Aspergillus oryzae (ahlburg) cohn

    International Nuclear Information System (INIS)

    Anglo, P.G.

    1974-03-01

    The Philippine strain of Aspergillus oryzae (ahlburg) cohn. was exposed to ultraviolet rays and ionizing radiation from cobalt-60 for the purpose of obtaining possible mutants or resistant strains which produce powerful proteolytic enzymes. Out of 58 isolates, only 3 gave significant proteolytic values (PV) high enough to merit further investigation. The isolates, G-10, G-110, and 23-110, were picked from plates exposed to gamma rays from cobalt-60. Optimum incubation temperature for these isolates for highest percentage of active protease was 24 0 -27 0 C. The isolates were found capable of producing active protease from the second day of incubation up to the fifth day, whereas the activity of the parent strain was retained the fourth day only. The isolates showed maximum digestive ability at 25 0 -55 0 C, giving proteolytic values of 833. The pH activity curves showed that the enzyme produced by the irradiated isolates G-10 and G-110 were very active at pH 9.0-10.0, and isolate 23-110 at pH 6.0-10.0. The parent strain revealed two pH optima, one at pH 7.5-8.5 and the other at pH 9.0-9.5. Crude enzyme powder gave activities comparable to alkalase and maxatase, commercial proteolytic enzymes imported from Belgium and Netherlands being used as component of laundry detergents by some manufacturing companies in the Philippines. The results obtained give valuable information for the commercial application of the enzyme. Since the organism can produce high yields of protease from copra meal, a by-product of the coconut industry, commerical feasibility may be envisioned in the near future

  7. Biomass and biofertilizer production by Sesbania cannabina in alkaline soil

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.L.N.; Gill, H.S. [Central Soil Salinity Research Inst., Haryana (India)

    1995-12-01

    Biomass shortages in developing countries require increased investigation into fast-growing, N-fixing, woody plant species. In field trials in north India, the potential of Sesbania cannabina for production of green leaf manure (biofertilizer) and firewood (woody biomass) was investigated. At 100 days after sowing (DAS), green matter was 21.5 and 9.4 Mg ha{sup -1} in the stem and the leaf. A seeding rate of 15 kg ha{sup -1} producing a population of 10{sup 5} plants per hectare was adequate. Biofertilizer potential was 124.7 N, 5.3 P, 80.7 K and 12.0 S (kg ha{sup -1}), respectively. Nodulation was profuse and effective and N fixed was nearly 122 kg ha{sup -1} at 100 DAS. At maturity, 200 DAS, woody biomass production was 19.2 Mg ha{sup -1} and growing Sesbania until this stage was no more demanding on soil nutrients than growing it for green-matter production. There was a considerable beneficial influence from growing Sesbania on soil C and N status. (Author)

  8. Structural Analysis of Alkaline Pretreated Rice Straw for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Paripok Phitsuwan

    2017-01-01

    Full Text Available Rice straw (RS is an abundant, readily available agricultural waste, which shows promise as a potential feedstock for Asian ethanol production. To enhance release of glucose by enzymatic hydrolysis, RS was pretreated with aqueous ammonia (27% w/w at two pretreatment temperatures: room temperature and 60°C. Statistical analysis indicated similarity of enzymatic glucose production at both pretreatment temperatures after 3-day incubation. Chemical composition, FTIR, and EDX analyses confirmed the retention of glucan and xylan in the pretreated solid, but significant reduction of lignin (60.7% removal and silica. SEM analysis showed the disorganized surfaces and porosity of the pretreated RS fibers, thus improving cellulose accessibility for cellulase. The crystallinity index increased from 40.5 to 52.3%, indicating the higher exposure of cellulose. With 10% (w/v solid loadings of pretreated RS, simultaneous saccharification and fermentation yielded a final ethanol concentration of 24.6 g/L, corresponding to 98% of maximum theoretical yield. Taken together, aqueous ammonia pretreatment is an effective method to generate highly digestible pretreated RS for bioethanol production and demonstrates potential application in biorefinery industry.

  9. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna.

    Science.gov (United States)

    Schwarzenberger, Anke; Sadler, Thomas; Von Elert, Eric

    2013-10-01

    Herbivore-plant interactions have been well studied in both terrestrial and aquatic ecosystems as they are crucial for the trophic transfer of energy and matter. In nutrient-rich freshwater ecosystems, the interaction between primary producers and herbivores is to a large extent represented by Daphnia and cyanobacteria. The occurrence of cyanobacterial blooms in lakes and ponds has, at least partly, been attributed to cyanotoxins, which negatively affect the major grazer of planktonic cyanobacteria, i.e. Daphnia. Among these cyanotoxins are the widespread protease inhibitors. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the gut of Daphnia, i.e. trypsins and chymotrypsins, and to reduce Daphnia growth. In this study we grew cultures of the cyanobacterium Microcystis sp. strain BM25 on nutrient-replete, N-depleted or P-depleted medium. We identified three different micropeptins to be the cause for the inhibitory activity of BM25 against chymotrypsins. The micropeptin content depended on nutrient availability: whereas N limitation led to a lower concentration of micropeptins per biomass, P limitation resulted in a higher production of these chymotrypsin inhibitors. The altered micropeptin content of BM25 was accompanied by changed effects on the fitness of Daphnia magna: a higher content of micropeptins led to lower IC50 values for D. magna gut proteases and vice versa. Following expectations, the lower micropeptin content in the N-depleted BM25 caused higher somatic growth of D. magna. Therefore, protease inhibitors can be regarded as a nutrient-dependent defence against grazers. Interestingly, although the P limitation of the cyanobacterium led to a higher micropeptin content, high growth of D. magna was observed when they were fed with P-depleted BM25. This might be due to reduced digestibility of P-depleted cells with putatively thick mucilaginous sheaths. These findings indicate that

  10. Enzymatic Hydrolysis of Yellowfin Tuna (Thunnus albacares By-Products Using Protamex Protease

    Directory of Open Access Journals (Sweden)

    Huong Thi My Nguyen

    2011-01-01

    Full Text Available Long-term proteolysis of tuna by-products (head, viscera and tail by the wide spectrum protease Protamex has been investigated and compared. After hydrolysis, two fractions (soluble aqueous phase and insoluble sludge were collected. Chemical compositions of each fraction and molecular mass distributions of soluble peptides were determined. Degrees of hydrolysis obtained after 12 h of hydrolysis of head, viscera and tail were 32.3, 16.8 and 22.2 %, respectively. Nitrogen recovery in the soluble fractions was 73.6 % for the head, 82.7 % for the viscera and 85.8 % for the tail. Lipid distribution indicated that the majority of lipids remained in the sludge. Such proteolysis appears useful for the production of very different fractions: one rich in peptides of medium to small molecular mass and poor in lipids, and another one containing the insoluble proteins and the majority of lipids.

  11. Methane production and microbial community structure for alkaline pretreated waste activated sludge.

    Science.gov (United States)

    Sun, Rui; Xing, Defeng; Jia, Jianna; Zhou, Aijuan; Zhang, Lu; Ren, Nanqi

    2014-10-01

    Alkaline pretreatment was studied to analyze the influence on waste activated sludge (WAS) reduction, methane production and microbial community structure during anaerobic digestion. Methane production from alkaline pretreated sludge (A-WAS) (pH = 12) increased from 251.2 mL/Ld to 362.2 mL/Ld with the methane content of 68.7% compared to raw sludge (R-WAS). Sludge reduction had been improved, and volatile suspended solids (VSS) removal rate and protein reduction had increased by ∼ 10% and ∼ 35%, respectively. The bacterial and methanogenic communities were analyzed using 454 pyrosequencing and clone libraries of 16S rRNA gene. Remarkable shifts were observed in microbial community structures after alkaline pretreatment, especially for Archaea. The dominant methanogenic population changed from Methanosaeta for R-WAS to Methanosarcina for A-WAS. In addition to the enhancement of solubilization and hydrolysis of anaerobic digestion of WAS, alkaline pretreatment showed significant impacts on the enrichment and syntrophic interactions between microbial communities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Hydrogen production by supercritical water gasification of alkaline black liquor

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Changqing; Guo, Liejin; Chen, Yunan; Lu, Youjun [Xi' an Jiatong Univ. (China)

    2010-07-01

    Black liquor was gasified continuously in supercritical water successfully and the main gaseous products were H{sub 2}, CO{sub 2} and CH{sub 4} with little amount of CO, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. The increase of the temperature and the decrease of the flow rate and black liquor concentration enhanced SCWG of black liquor. The change of the system pressure had limited influence on the gasification effect. The maximal COD removal efficiency of 88.69 % was obtained at the temperature of 600 C. The pH values of the aqueous residue were all decreased to the range of 6.4{proportional_to}8 while the pH value of cooling effluence below 360 C increased to about 11 and the sodium content was much higher than that in the aqueous residue. The reaction rate for COD degradation in supercritical water was obtained by assuming pseudo first order reaction. And the activation energy and pre-exponential for COD removal in SCWG were 74.38kJ/mol and 1.11 x 10{sup 4} s{sup -1} respectively. (orig.)

  13. Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology

    Directory of Open Access Journals (Sweden)

    Julalak Chuprom

    2016-06-01

    Full Text Available A new potent halophilic protease producer, Halobacterium sp. strain LBU50301 was isolated from salt-fermented fish samples (budu and identified by phenotypic analysis, and 16S rDNA gene sequencing. Thereafter, sequential statistical strategy was used to optimize halophilic protease production from Halobacterium sp. strain LBU50301 by shake-flask fermentation. The classical one-factor-at-a-time (OFAT approach determined gelatin was the best nitrogen source. Based on Plackett–Burman (PB experimental design; gelatin, MgSO4·7H2O, NaCl and pH significantly influenced the halophilic protease production. Central composite design (CCD determined the optimum level of medium components. Subsequently, an 8.78-fold increase in corresponding halophilic protease yield (156.22 U/mL was obtained, compared with that produced in the original medium (17.80 U/mL. Validation experiments proved the adequacy and accuracy of model, and the results showed the predicted value agreed well with the experimental values. An overall 13-fold increase in halophilic protease yield was achieved using a 3 L laboratory fermenter and optimized medium (231.33 U/mL.

  14. Effects of dietary protease on nitrogen emissions from broiler production: a holistic comparison using Life Cycle Assessment.

    Science.gov (United States)

    Leinonen, Ilkka; Williams, Adrian G

    2015-12-01

    The aim of the study was to quantify the effects of the use of a protease Ronozyme® ProAct in broiler feed on the environmental impacts of broiler and broiler feed production chains. This was done by using a Life Cycle Assessment (LCA) modelling approach with data from trials using both standard soya-based broiler diets and reduced-protein diets with added protease. The results for the feed production chain showed that there was a reduction in all environmental impact categories when protease was used in the diets. The biggest reduction occurred in the category of Global Warming Potential, mainly as a result of decreased carbon dioxide emissions from land use changes related to soya production. In the results for the broiler production chain, there were relatively bigger reductions in Eutrophication Potential and especially in Acidification Potential, mainly as a result of reduced feed protein content and subsequent nitrogen emissions from housing and manure management. The use of protease in the broiler diets reduced the environmental impacts of both feed production and broiler production. The latter is mainly through reduced ammonia emissions, which has substantial benefit per se in the poultry industry. © 2015 Society of Chemical Industry.

  15. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism

    Directory of Open Access Journals (Sweden)

    Lee Young Ah

    2014-01-01

    Full Text Available Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs contain large amounts of cysteine proteases (CPs, one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2 did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis.

  16. Optimization of Acid Protease Production by Aspergillus niger I1 on Shrimp Peptone Using Statistical Experimental Design

    Directory of Open Access Journals (Sweden)

    Rayda Siala

    2012-01-01

    Full Text Available Medium composition and culture conditions for the acid protease production by Aspergillus niger I1 were optimized by response surface methodology (RSM. A significant influence of temperature, KH2PO4, and initial pH on the protease production was evaluated by Plackett-Burman design (PBD. These factors were further optimized using Box-Behnken design and RSM. Under the proposed optimized conditions, the experimental protease production (183.13 U mL−1 closely matched the yield predicted by the statistical model (172.57 U mL−1 with R2=0.914. Compared with the initial M1 medium on which protease production was 43.13 U mL−1, a successful and significant improvement by 4.25 folds was achieved in the optimized medium containing (g/L: hulled grain of wheat (HGW 5.0; KH2PO4 1.0; NaCl 0.3; MgSO4(7H2O 0.5; CaCl2 (7H2O 0.4; ZnSO4 0.1; Na2HPO4 1.6; shrimp peptone (SP 1.0. The pH was adjusted at 5 and the temperature at 30°C. More interestingly, the optimization was accomplished using two cheap and local fermentation substrates, HGW and SP, which may result in a significant reduction in the cost of medium constituents.

  17. Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment

    Directory of Open Access Journals (Sweden)

    Senthilkumar Sivaprakasam

    2011-12-01

    Full Text Available Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1-6 % NaCl by wt makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v protease addition was found to be the optimum dosage value.

  18. Optimization of protease production by the fungusMonacrosporium thaumasium and its action againstAngiostrongylus vasorum larvae

    Directory of Open Access Journals (Sweden)

    Filippe Elias de Freitas Soares

    Full Text Available The objectives of this study were to optimize protease production from the nematophagous fungus Monacrosporium thaumasium (NF34a and evaluate its larvicidal activity and biological stability. An isolate of the nematophagous fungus Monacrosporium thaumasium (NF34a was used to produce the enzyme. The Plackett-Burman design was used in order to scan which components of the culture medium could have a significant influence on protease production by the fungus NF34a. An in vitro assay was also performed to evaluate the larvicidal activity of NF34a. It was observed that only one component of the culture medium (yeast extract, at the levels studied, had any significant effect (p < 0.05 on protease production. There was a reduction (p < 0.01 in the mean number of larvae recovered from the treated groups, compared with the control groups. The results confirm previous reports on the efficiency of nematophagous fungi for controlling nematode larvae that are potentially zoonotic. Thus, given the importance of biological control, we suggest that further studies should be conducted on the protease produced by the fungus Monacrosporium thaumasium.

  19. Cold alkaline extraction as a pretreatment for bioethanol production from eucalyptus, sugarcane bagasse and sugarcane straw

    International Nuclear Information System (INIS)

    Carvalho, Danila Morais de; Sevastyanova, Olena; Queiroz, José Humberto de; Colodette, Jorge Luiz

    2016-01-01

    Highlights: • Mathematical approach to optimize the process of cold alkaline extraction. • Hemicelluloses and lignin removal from biomasses by cold alkaline extraction. • Higher xylan and lignin removal for straw during pretreatment. • Formation of pseudo-extractives for eucalyptus during pretreatment. • Higher ethanol production for pretreated sugarcane straw. - Abstract: Optimal conditions for the cold alkaline extraction (CAE) pretreatment of eucalyptus, sugarcane bagasse and sugarcane straw are proposed in view of their subsequent bioconversion into ethanol through the semi-simultaneous saccharification and fermentation (SSSF) process (with presaccharification followed by simultaneous saccharification and fermentation, or SSF). The optimum conditions, which are identified based on an experiment with a factorial central composite design, resulted in the removal of 46%, 52% and 61% of the xylan and 15%, 37% and 45% of the lignin for eucalyptus, bagasse and straw, respectively. The formation of pseudo-extractives was observed during the CAE of eucalyptus. Despite the similar glucose concentration and yield for all biomasses after 12 h of presaccharification, the highest yield (0.065 g ethanol /g biomass ), concentrations (5.74 g L −1 ) and volumetric productivity for ethanol (0.57 g L −1 h −1 ) were observed for the sugarcane straw. This finding was most likely related to the improved accessibility of cellulose that resulted from the removal of the largest amount of xylan and lignin.

  20. Membrane treatment of alkaline bleaching effluents from elementary chlorine free kraft softwood cellulose production.

    Science.gov (United States)

    Oñate, Elizabeth; Rodríguez, Edgard; Bórquez, Rodrigo; Zaror, Claudio

    2015-01-01

    This paper reports experimental results on the sequential use of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) to fractionate alkaline extraction bleaching effluents from kraft cellulose production. The aim was to unveil the way key pollutants are distributed when subjected to sequential UF/NF/RO membrane separation processes. Alkaline bleaching effluents were obtained from a local pinewood-based mill, featuring elementary chlorine free bleaching to produce high-brightness cellulose. The experimental system was based on a laboratory-scale membrane system, DSS LabStak® M20 Alfa Laval, using Alfa Laval UF and NF/RO membranes, operated at a constant transmembrane pressure (6 bar for UF membranes and 32 bar for NF/RO membranes), at 25°C. Results show that 78% chemical oxygen demand (COD) and total phenols, 82% adsorbable organic halogens (AOX) and 98% colour were retained by UF membranes which have molecular weight cut-off (MWCO) above 10 kDa. In all, 16% of original COD, total phenols and AOX, and the remaining 2% colour were retained by UF membranes within the 1 to 10 kDa MWCO range. Chloride ions were significantly present in all UF permeates, and RO was required to obtain a high-quality permeate with a view to water reuse. It is concluded that UF/NF/RO membranes offer a feasible option for water and chemicals recovery from alkaline bleaching effluents in kraft pulp production.

  1. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol.

    Science.gov (United States)

    Menezes, Evandro G T; do Carmo, Juliana R; Alves, José Guilherme L F; Menezes, Aline G T; Guimarães, Isabela C; Queiroz, Fabiana; Pimenta, Carlos J

    2014-01-01

    The use of lignocellulosic raw materials in bioethanol production has been intensively investigated in recent years. However, for efficient conversion to ethanol, many pretreatment steps are required prior to hydrolysis and fermentation. Coffee stands out as the most important agricultural product in Brazil and wastes such as pulp and coffee husk are generated during the wet and dry processing to obtain green grains, respectively. This work focused on the optimization of alkaline pretreatment of coffee pulp with the aim of making its use in the alcoholic fermentation. A central composite rotatable design was used with three independent variables: sodium hydroxide and calcium hydroxide concentrations and alkaline pretreatment time, totaling 17 experiments. After alkaline pretreatment the concentration of cellulose, hemicellulose, and lignin remaining in the material, the subsequent hydrolysis of the cellulose component and its fermentation of substrate were evaluated. The results indicated that pretreatment using 4% (w/v) sodium hydroxide solution, with no calcium hydroxide, and 25 min treatment time gave the best results (69.18% cellulose remaining, 44.15% hemicelluloses remaining, 25.19% lignin remaining, 38.13 g/L of reducing sugars, and 27.02 g/L of glucose) and produced 13.66 g/L of ethanol with a yield of 0.4 g ethanol/g glucose. © 2013 American Institute of Chemical Engineers.

  2. Proposing and evaluating applications for products obtained during chromium chip alkaline hydrolysis produced during leather tanning

    Directory of Open Access Journals (Sweden)

    Andrea Díaz

    2006-09-01

    Full Text Available Some applications for products obtained by chromium chip alkaline hydrolysis produced during leather tanning were evaluated in this work, considering the concept of maximising tanneries’ solid residue reuse for different industrial applications and minimising the environmental impact so produced. When Cr(OH is transformed into Cr (OH(SO it can be used in tanning leather (i.e. as tanning salt. When compared to commercial salts, 2 4 it was determined that it could be applied to mixtures containing this salt, replacing it by up to 40%. Chromium content reduction was evaluated for collagen hydrolyzate by pH control after alkaline hydrolysis of the chips and by applying adsorbent materials such as bentonite, alfalfa and sorghum biomass and activated charcoal, a maximum 55% Cr removal being obtained when the first two adsorbent materials were used.

  3. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment.

    Science.gov (United States)

    Yuan, Zhaoyang; Wen, Yangbing; Li, Guodong

    2018-07-01

    An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H 2 O 2 )/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Production of lactic acid from C6-polyols by alkaline hydrothermal reactions

    International Nuclear Information System (INIS)

    Zhou Huazhen; Jin Fangming; Wu Bing; Cao Jianglin; Duan Xiaokun; Kishita, Atsushi

    2010-01-01

    Production of lactic acid from C6-polyols (Mannitol) under alkaline hydrothermal conditions was investigated. Experiments were performed to examine the difference in the production of lactic acid between C6-polyols and C3-polyols (glycerine), as well as C6-aldoses (glucose). Results showed that the yield of lactic acid from C6-polyols was lower than that from both glycerine and glucose. It indicated that long chain polyols might follow a different reaction pathway from that of glycerine. Further investigation is needed to clarify the reaction mechanism and improve the relatively low lactic acid acid yield from C6-polyols.

  5. Draft genome sequences of two protease-producing strains of Arsukibacterium, isolated from two cold and alkaline environments

    DEFF Research Database (Denmark)

    Lylloff, Jeanette Eva; Hansen, Lea Benedicte Skov; Jepsen, Morten

    2015-01-01

    Arsukibacterium ikkense GCM72(T) and a close relative, Arsukibacterium sp. MJ3, were isolated from two cold and alkaline environments as producers of extracellular proteolytic enzymes active at high pH and low temperature. This report describes the two draft genome sequences, which may serve...... as sources of future industrial enzymes....

  6. Two-stage cultivation of Nannochloropsis oculata for lipid production using reversible alkaline flocculation.

    Science.gov (United States)

    Aléman-Nava, Gibran Sidney; Muylaert, Koenraad; Cuellar Bermudez, Sara Paulina; Depraetere, Orily; Rittmann, Bruce; Parra-Saldívar, Roberto; Vandamme, Dries

    2017-02-01

    Two-stage cultivation for microalgae biomass is a promising strategy to boost lipid accumulation and productivity. Most of the currently described processes use energy-intensive centrifugation for cell separation after the first cultivation stage. This laboratory study evaluated alkaline flocculation as low-cost alternative separation method to harvest Nannochloropsis oculata prior to cultivation in the second nutrient-depleted cultivation stage. Biomass concentration over time and the maximum quantum yield of photosystem II expressed as Fv:Fm ratio showed identical patterns for both harvesting methods in both stages. The composition of total lipids, carbohydrates, and protein was similar for biomass harvested via alkaline flocculation or centrifugation. Likewise, both harvest methods yielded the same increase in total lipid content, to 40% within the first 2days of the nutrient-depleted stage, with an enrichment in C16 fatty acid methyl esters. Centrifugation can therefore be replaced with alkaline flocculation to harvest Nannochloropsis oculata after the first cultivation stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. ALKALINE WOOD PULPING WITH QUINONE PRESENCE AND ITS INFLUENCE ON QUALITY OF DESIRED PRODUCT USED FOR PACKING PRODUCTION

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2017-01-01

    Full Text Available Application of waste liquor at a rate of 25% that contains the used quinone and is applied as an additive has shown that qualitative characteristics of the obtained desired product do not differ from a product while using fresh quinone for pulping of cellulose-containing vegetable raw material. For this reason process of obtaining the desired product (cellulose or semicellulose becomes economically cost-efficient on the basis of calculation and with due account of ecology. While analyzing investigation results pertaining to production of wood pulp from vegetable raw material (sprucewood it is possible to point out the fact that qualitative characteristics of the desired product have been improved due to addition of quinone in the process of alkaline wood pulping (sulphate and sodic. A number of research publications have described a positive influence of additives on alkaline delignification of vegetable raw material. It subsequently improves the quality of the desired product: reduction of lignin content in the product; an output increase in cellulose and hemicellulose, α-cellulose in cellulose; upgrading of physical and mechanical indices. All the above-mentioned elements and components contribute to better quality of the manufactured packing products. In this case formation of hazardous sulfur-containing compounds is fully excluded.

  8. Contemporaneous Production of Amylase and Protease through CCD Response Surface Methodology by Newly Isolated Bacillus megaterium Strain B69

    Science.gov (United States)

    Saxena, Rajshree

    2014-01-01

    The enormous increase in world population has resulted in generation of million tons of agricultural wastes. Biotechnological process for production of green chemicals, namely, enzymes, provides the best utilization of these otherwise unutilized wastes. The present study elaborates concomitant production of protease and amylase in solid state fermentation (SSF) by a newly isolated Bacillus megaterium B69, using agroindustrial wastes. Two-level statistical model employing Plackett-Burman and response surface methodology was designed for optimization of various physicochemical conditions affecting the production of two enzymes concomitantly. The studies revealed that the new strain concomitantly produced 1242 U/g of protease and 1666.6 U/g of amylase by best utilizing mustard oilseed cake as the substrate at 20% substrate concentration and 45% moisture content after 84 h of incubation. An increase of 2.95- and 2.04-fold from basal media was observed in protease and amylase production, respectively. ANOVA of both the design models showed high accuracy of the polynomial model with significant similarities between the predicted and the observed results. The model stood accurate at the bench level validation, suggesting that the design model could be used for multienzyme production at mass scale. PMID:25478211

  9. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    Science.gov (United States)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    High CO2 partial pressure (pCO2) in deep rock reservoirs causes acidification of the porefluid. Such conditions occur during injection and subsurface storage of CO2 (to prevent the release of greenhouse gas) but also naturally in zones of strong methanogenic microbial activity in organic matter-rich ocean margin sediments. The acidic fluids are corrosive to carbonates and bear the risk of leakage of CO2 gas to the surface. Porefluid acidification may be moderated by processes that increase the alkalinity, i.e. that produce weak acid anions capable of buffering the acidification imposed by the CO2. Often, alkalinity increases as a result of anaerobic microbial activity, such as anaerobic oxidation of methane. However, on a long term the alteration of silicates, in particular, clay minerals, may be a more efficient mechanism of alkalinity production. Under altered temperature, pressure and porefluid composition at depth, clay minerals may change to thermodynamically more stable states, thereby increasing the alkalinity of the porefluid by partial leaching of Mg-(OH)2 and Ca-(OH)2 (e.g. Wallmann et al., 2008; Mavromatis et al., 2014). This alteration may even be enhanced by a high pCO2. Thus, silicate alteration can be essential for a long-term stabilization of volatile CO2 in the form of bicarbonate or may even induce precipitation of carbonate minerals, but these processes are not fully understood yet. The goal of this study is to simulate the alkalinity effect of silicate alteration under diagenetic conditions and high pCO2 by geochemical modeling. We are using the program PHREEQC (Parkhurst and Appelo, 2013) to generate high rock/fluid ratio characteristics for deep subsurface rock reservoirs. Since we are interested in the long-term evolution of diagenetic processes, over millions of years, we do not consider kinetics but calculate the theoretically possible equilibrium conditions. In a first step we are calculating the saturation state of different clay minerals

  10. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization

    Science.gov (United States)

    de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.

    2010-08-01

    Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.

  11. Effect of temperature, pH and metal lons on the activity and stability of alkaline protease from novel bacillus licheniformis mzk03

    International Nuclear Information System (INIS)

    Sayem, S.M.A.; Hoq, M.M.; Alam, M.J.

    2006-01-01

    The effect of temperature, pH and metal ions on the activity and stability of crude protease from Bacillus licheniformis MZK03 was studied. The fermentation in shake culture revealed that maximum level of enzyme was produced at 37 degree C and pH 8.5 after 39 hr at 120 rpm. It lost its activity rapidly above 50 degree C and half-life of the protease at this temperature was 50 min with optimum activity at 40 degree C. It was most stable at pH 8.5 and lost its activity rapidly above pH 10.0, and at pH 11.0 reached 30% of the activity obtained at pH 9.0. The enzyme lost its activity completely at pH 13.0. Optimum proteolytic activity was found at 40 degree C and pH 9.5. The enzyme activity was accelerated by the addition of Mg/sup 2+/, Ca/sup 2+/ and Mn/sup 2+/, whereas it was inhibited by Hg/sup 2+/. (author)

  12. Fuelwood production potential of six Prosopis species on an alkaline soil site

    Energy Technology Data Exchange (ETDEWEB)

    Goel, V.L.; Behl, H.M. [National Botanical Research Inst., Lucknow (India). Biomass Research Center

    1995-07-01

    The biomass potential of six species Prosopis was evaluated on highly alkaline soil site. Prosopis alba I was found to have the fastest growth rate and highest above-ground biomass production. P. juliflora ranked next. P. cineraria showed high plant establishment but relatively slow growth. The performance of P. glandulosa was poor on such sites. The high fuelwood value index and rapid growth rate of P. juliflora and P. alba makes them suitable for short-rotation fuelwood forestry programmes on waste-lands. Selection of promising genotypes is suggested as a means of improvement in yields. (author)

  13. Comparative performance of enzymatic and combined alkaline-enzymatic pretreatments on methane production from ensiled sorghum forage.

    Science.gov (United States)

    Rollini, Manuela; Sambusiti, Cecilia; Musatti, Alida; Ficara, Elena; Retinò, Isabella; Malpei, Francesca

    2014-12-01

    This study investigated the effect of enzymatic and combined alkaline-enzymatic pretreatments on chemical composition and methane production from ensiled sorghum forage. Four commercial enzymatic preparations were tested and the two yielding the highest sugars release were added to evaluate any hydrolytic effect on both untreated and alkaline pretreated samples. In the combined alkaline-enzymatic pretreatment trials, the highest sugar release was found with Primafast and BGL preparations (added at a final concentration 0.12 and 0.20 mL/g TS, respectively), with a total monomeric content of 12 and 6.5 g/L. Fibre composition analysis confirmed that the combined alkaline-enzymatic pretreatment led to cellulose (up to 32 %) and hemicelluloses (up to 56 %) solubilisation, compared to the enzymatic pretreatment alone. BMP tests were performed on both untreated and pretreated samples, and time courses of methane production were fitted. Both enzymatic and combined alkaline-enzymatic pretreatment led to a methane production increase (304 and 362 mL CH4/g VS), compared to that of untreated sorghum (265 mL CH4/g VS), as  +15 and  +37 %, respectively. Moreover, higher specific methane production rates, compared to that of untreated sorghum (20.31 mL CH4/g VS/d), were obtained by applying the enzymatic and combined alkaline-enzymatic pretreatment (33.94 and 31.65 mL CH4/g VS/d), respectively.

  14. RE/H2 Production Micro-System Based on Standard Alkaline Electrolytic Technology

    International Nuclear Information System (INIS)

    Moschetto, A.; Tina, G.M.; Ferraro, M.; Briguglio, N.; Antonucci, V.

    2006-01-01

    This paper presents the first task of a more comprehensive research project focused on the development of micro-scale (1-20 kW) Renewable Hydrogen (RE/H 2 ) production systems oriented to carry on a wide campaign of educational and demonstration projects. The paper proposes to rely on low-cost and rugged 'standard' alkaline electrolytic technology, well suited for decentralized hydrogen production, but requiring a certain R and D effort to get technical competitiveness. An electrolyser test facility has been designed and carried out. Then performance assessment of a commercial electrolyser and its sub-systems has been accomplished. First experimental results stated that the unit under test gets an average production efficiency of 51%, versus a stack (cell) efficiency of about 62%, while the aged AC/DC power converter, to be removed or replaced to adapt the unit to DC link with renewables, requires more than 16% of the incoming power. (authors)

  15. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    Science.gov (United States)

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  16. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  17. Optimization of Parameters that Affect the Activity of the Alkaline Protease from Halotolerant Bacterium, Bacillus acquimaris VITP4, by the Application of Response Surface Methodology and Evaluation of the Storage Stability of the Enzyme.

    Science.gov (United States)

    Chittoor, Jabeena Thaz; Balaji, Lavanya; Jayaraman, Gurunathan

    2016-03-01

    It was previously shown that the activity of a serine protease from a moderately halotolerant Bacillus aquimaris VITP4 strain is active in a wide range of pH and temperatures and could be modulated by the presence of the divalent metal ions. In the present study, a quantitative analysis was done in order to explore the parameters that are contributing to the protease activity. Changes in the secondary structure of the enzyme was determined by circular dichroism analysis. The conditions for the optimal activity was investigated by Response Surface Methodology. Stability of the enzyme was determined by thermal inactivation experiments. The initial one-factor-at-a-time experiments have indicated that the activity of the enzyme could be enhanced not only by the presence of low concentrations of NaCl but also by divalent metal ions, such as Ca 2+ , Mn 2+ and Cu 2+ . A clear dependence of the activity to the secondary structure of the enzyme could be established using circular dichroism spectroscopy. In the next level of optimization, four factors; viz. pH, temperature, concentration of Ca2+, and Mn 2+ were used to optimize the conditions required for the maximal activity of the enzyme by Response Surface Methodology, and the data could be explained using quadratic model. Under optimal condition of 43°C, pH 8.0, 8.2 mM Ca 2+ , and 4.3 mM Mn 2+ a 1.5 times enhancement in the enzyme activity could be achieved. The storage stability of the enzyme under these selected conditions has indicated a non-linear relation between the conditions for the enzymatic activity as well as stability. However, the condition for the maximal stability (267±18 min) has corresponded to that of the optimal conditions for the maximal activity. This study, for the first time, has explored the possibility of using statistical methods for identifying the optimal conditions for alkaline protease activity isolated from the halotolerant Bacillus aquimaris VITP4.

  18. Plate assay for determining the time of production of protease, cellulase, and pectinases by germinating fungal spores.

    Science.gov (United States)

    Hagerman, A E; Blau, D M; McClure, A L

    1985-12-01

    A new method for detecting enzymes produced by fungal spores during germination is described here. With this method, the production of enzymes such as protease, cellulase, or pectinase can be correlated with the extent of spore germination. Germination is studied in vitro on agar-based media containing protein, cellulose, or pectin. The spores are immobilized on a permeable membrane mounted on the substrate-containing medium. At various times after inoculation the membrane-bound spores are removed and the medium is stained. The extent of germination is assessed by microscopic examination of the spores and the presence of active hydrolytic enzymes is revealed by the staining. The staining methods are sensitive; detection limits are 1 X 10(-3) unit of cellulase; 2 X 10(-4) unit of protease; 3 X 10(-3) unit of pectin lyase; 3.5 units of polygalacturonase; 2 X 10(-3) unit of pectin methyl esterase. The method has been demonstrated by studying the production of enzymes by germinating conidia of Botrytis cinerea. Cellulase and protease were present before any spores germinated. Pectin lyase was first observed when at least 80% of the spores had germinated. Pectin methyl esterase and polygalacturonase were not produced by the spores.

  19. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide.

    Directory of Open Access Journals (Sweden)

    Nadia Zaraî Jaouadi

    Full Text Available The sapB gene, encoding Bacillus pumilus CBS protease, and seven mutated genes (sapB-L31I, sapB-T33S, sapB-N99Y, sapB-L31I/T33S, sapB-L31I/N99Y, sapB-T33S/N99Y, and sapB-L31I/T33S/N99Y were overexpressed in protease-deficient Bacillus subtilis DB430 and purified to homogeneity. SAPB-N99Y and rSAPB displayed the highest levels of keratinolytic activity, hydrolysis efficiency, and enzymatic depilation. Interestingly, and at the semi-industrial scale, rSAPB efficiently removed the hair of goat hides within a short time interval of 8 h, thus offering a promising opportunity for the attainment of a lime and sulphide-free depilation process. The efficacy of the process was supported by submitting depilated pelts and dyed crusts to scanning electron microscopic analysis, and the results showed well opened fibre bundles and no apparent damage to the collagen layer. The findings also revealed better physico-chemical properties and less effluent loads, which further confirmed the potential candidacy of the rSAPB enzyme for application in the leather industry to attain an ecofriendly process of animal hide depilation. More interestingly, the findings on the substrate specificity and kinetic properties of the enzyme using the synthetic peptide para-nitroanilide revealed strong preferences for an aliphatic amino-acid (valine at position P1 for keratinases and an aromatic amino-acid (phenylalanine at positions P1/P4 for subtilisins. Molecular modeling suggested the potential involvement of a Leu31 residue in a network of hydrophobic interactions, which could have shaped the S4 substrate binding site. The latter could be enlarged by mutating L31I, fitting more easily in position P4 than a phenylalanine residue. The molecular modeling of SAPB-T33S showed a potential S2 subside widening by a T33S mutation, thus suggesting its importance in substrate specificity.

  20. DksA-HapR-RpoS axis regulates haemagglutinin protease production in Vibrio cholerae.

    Science.gov (United States)

    Basu, Pallabi; Pal, Ritesh Ranjan; Dasgupta, Shreya; Bhadra, Rupak K

    2017-06-01

    DksA acts as a co-factor for the intracellular small signalling molecule ppGpp during the stringent response. We recently reported that the expression of the haemagglutinin protease (HAP), which is needed for shedding of the cholera pathogen Vibrio cholerae during the late phase of infection, is significantly downregulated in V. cholerae ∆dksA mutant (∆dksAVc) cells. So far, it has been shown that HAP production by V. cholerae cells is critically regulated by HapR and also by RpoS. Here, we provide evidence that V. cholerae DksA (DksAVc) positively regulates HapR at both the transcriptional and post-transcriptional levels. We show that in ∆dksAVc cells the CsrB/C/D sRNAs, required for the maintenance of intracellular levels of hapR transcripts during the stationary growth, are distinctly downregulated. Moreover, the expression of exponential phase regulatory protein Fis, a known negative regulator of HapR, was found to continue even during the stationary phase in ∆dksAVc cells compared to that of wild-type strain, suggesting another layer of complex regulation of HapR by DksAVc. Extensive reporter construct-based and quantitative reverse-transcriptase PCR (qRT-PCR) analyses supported that RpoS is distinctly downregulated at the post-transcriptional/translational levels in stationary phase-grown ∆dksAVc cells. Since HAP expression through HapR and RpoS is stationary phase-specific in V. cholerae, it appears that DksAVc is also a critical stationary phase regulator for fine tuning of the expression of HAP. Moreover, experimental evidence provided in this study clearly supports that DksAVc is sitting at the top of the hierarchy of regulation of expression of HAP in V. cholerae.

  1. A Comparison between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production

    Science.gov (United States)

    Rabelo, Sarita C.; Filho, Rubens Maciel; Costa, Aline C.

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/ sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

  2. Aromatic products from reaction of lignin model compounds with UV-alkaline peroxide

    International Nuclear Information System (INIS)

    Sun, Y.P.; Wallis, A.F.A.; Nguyen, K.L.

    1997-01-01

    A series of guaiacyl and syringyl lignin model compounds and their methylated analogues were reacted with alkaline hydrogen peroxide while irradiating with UV light at 254 nm. The aromatic products obtained were investigated by gas chromatography-mass spectrometry (GC-MS). Guaiacol, syringol and veratrol gave no detectable aromatic products. However, syringol methyl ether gave small amounts of aromatic products, resulting from ring substitution and methoxyl displacement by hydroxyl radicals. Reaction of vanillin and syringaldehyde gave the Dakin reaction products, methoxy-1,4-hydroquinones, while reaction of their methyl ethers yielded benzoic acids. Acetoguaiacone, acetosyringone and their methyl ethers afforded several hydroxylated aromatic products, but no aromatic products were identified in the reaction mixtures from guaiacylpropane and syringylpropane. In contrast, veratrylpropane gave a mixture from which 17 aromatic hydroxylated compounds were identified. It is concluded that for phenolic lignin model compounds, particularly those possessing electrondonating aromatic ring substituents, ring-cleavage reactions involving superoxide radical anions are dominant, whereas for non-phenolic lignin models, hydroxylation reactions through attack of hydroxyl radicals prevail

  3. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    Science.gov (United States)

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Purification and characterization of fibrinolytic protease from Bacillus amyloliquefaciens MCC2606 and analysis of fibrin degradation product by MS/MS.

    Science.gov (United States)

    Devaraj, Yogesh; Rajender, Savita Kumari; Halami, Prakash Motiram

    2018-02-07

    A serine protease with preference for fibrin protein was purified and characterized from Bacillus amyloliquefaciens MCC2606, isolated from dosa batter. The protease was purified using ammonium sulfate precipitation, ion-exchange, and gel filtration chromatography. The degradation activity of the protease toward the fibrin was significantly higher compared with other protein substrates in the study. The molecular weight of the CFR15-protease was estimated to be 32 kDa based on SDS-PAGE. The purified enzyme exhibited both fibrinolytic and fibrinogenolytic activity. The optimum pH and temperature for the activity of the enzyme was found to be 10.5 and 45°C. A significant inhibition was seen with the protease inhibitors phenyl methyl sulphonyl fluoride and ethylene diamine tetra acetic acid and the activity of the enzyme was enhanced in presence of Mn 2+ . There was an observed increase in vitro activated partial thromboplastin time and prothrombin time of both time and dose dependent study. Among the four chains of fibrin, the β-chain of fibrin appears to be the primary component and site susceptible for CFR15-protease in early action as indicated by MS/MS analysis of initial degradation products. These results indicated that the CFR15-protease have the potential to be an effective fibrinolytic agent.

  5. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis

    DEFF Research Database (Denmark)

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng

    2016-01-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased...... from 19.2 mL H2/gVSS at 37 °C and pH 10–80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and p......H 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable...

  6. Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis

    Directory of Open Access Journals (Sweden)

    Jan Christian Koj

    2017-06-01

    Full Text Available Industrial hydrogen production via alkaline water electrolysis (AEL is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However, today electricity from the national grid is widely utilized for industrial applications of AEL. Also, the ban on asbestos membranes led to a change in performance patterns, making a detailed assessment necessary. This study presents a comparative Life Cycle Assessment (LCA using the GaBi software (version 6.115, thinkstep, Leinfelden-Echterdingen, Germany, revealing inventory data and environmental impacts for industrial hydrogen production by latest AELs (6 MW, Zirfon membranes in three different countries (Austria, Germany and Spain with corresponding grid mixes. The results confirm the dependence of most environmental effects from the operation phase and specifically the site-dependent electricity mix. Construction of system components and the replacement of cell stacks make a minor contribution. At present, considering the three countries, AEL can be operated in the most environmentally friendly fashion in Austria. Concerning the construction of AEL plants the materials nickel and polytetrafluoroethylene in particular, used for cell manufacturing, revealed significant contributions to the environmental burden.

  7. Linear equations on thermal degradation products of wood chips in alkaline glycerol

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2004-01-01

    Wood chips of 0.3 and 2 mm depth from poplar and spruce wood samples, respectively, were degraded by using glycerol as a solvent and alkaline glycerol with and without Na 2 CO 3 and NaOH catalysts at different degradation temperatures: 440, 450, 460, 470, 480, 490 and 500 K. By products from the degradation processes of the ligno celluloses include lignin degradation products. Lignin and its degradation products have fuel values. The total degradation degree and cellulose degradation of the wood chips were determined to find the relationship, if any, between the yields of total degradation degree (YTD) and degradation temperature (T). There is a good linear relationship between YTD or the yields of cellulose degradation (YCD) and T (K). For the wood samples, the regression equations from NaOH (10%) catalytic runs for 0.3 mm x 15 mm x 15 mm chip size are: For poplar wood: (YTD=0.7250T-267.507) (YCD=0.1736T-71.707) For spruce wood: (YTD=0.2650T-105.979) (YCD=0.0707T-27.507) For Eqs., the square of the correlation coefficient (r 2 ) were 0.9841, 0.9496, 0.9839 and 0.9447, respectively

  8. Effectiveness of sal deoiled seed cake as an inducer for protease production from Aeromonas sp. S1 for its application in kitchen wastewater treatment.

    Science.gov (United States)

    Saini, Vandana; Bhattacharya, Amrik; Gupta, Anshu

    2013-08-01

    The present study is an attempt to demonstrate the feasibility of sal (Shorea robusta) deoiled cake--a forest-based industrial by-product--as a cheaper media supplement for augmented protease production from Aeromonas sp. S1 and application of protease in the treatment of kitchen wastewater. Under optimized conditions, protease production could successfully be enhanced to 5.13-fold (527.5 U mL(-1)) on using sal deoiled seed cake extract (SDOCE), as medium additive, compared to an initial production of 102.7 U mL(-1) in its absence. The culture parameters for optimum production of protease were determined to be incubation time (48 h), pH (7.0), SDOCE concentration (3 % (v/v)), inoculum size (0.3-0.6 % (v/v)), and agitation rate (100 rpm). The enzyme was found to have an optimum pH and temperature of 8.0 and 60 °C, respectively. The protease preparation was tested for treatment of organic-laden kitchen wastewater. After 96 h of wastewater treatment under static condition, enzyme preparation was able to reduce 74 % biological oxygen demand, 37 % total suspended solids, and 41 % oil and grease. The higher and improved level of protease obtained using sal deoiled seed cake-based media hence offers a new approach for value addition to this underutilized biomass through industrial enzyme production. The protease produced using this biomass could also be used as pretreatment tool for remediation of organic-rich food wastewater.

  9. Mathematical modeling of lipase and protease production by Penicillium restrictum in a batch fermenter.

    Science.gov (United States)

    Freire, D M; Sant'Anna, G L; Alves, T L

    1999-01-01

    This work presents a mathematical model that describes time course variations of extracellular lipase and protease activities for the batch fermentation of the fungus Penicillium restrictum, a new and promising strain isolated from soil and wastes of a Brazilian babassu coconut oil industry. The fermentation process was modeled by an unstructured model, which considered the following dependent variables: cells, fat acid, dissolved oxygen concentrations, lipase and protease activities, and cell lysate concentration. The last variable represents the amount of cells that has been lysed by the shear stress and natural cell death. Proteases released to the medium, as consequence of this process, enhance lipase inactivation. The model is able to predict the effects of some operation variables such as air flow rate and agitation speed. The mathematical model was validated against batch-fermentation data obtained under several operating conditions. Because substrate concentration has antagonistic effects on lipase activity, a typical optimization scheme should be developed in order to minimize these deleterious effects while maximizing lipase activity.

  10. Characterization and Preparation of Broken Rice Proteins Modified by Proteases

    Directory of Open Access Journals (Sweden)

    Lixia Hou

    2010-01-01

    Full Text Available Broken rice is an underutilized by-product of milling. Proteins prepared from broken rice by treatments with alkaline protease and papain have been characterized with regard to nutritional and functional properties. The protein content and the protein recovery were 56.45 and 75.45 % for alkaline protease treatment, and 65.45 and 46.32 % for papain treatment, respectively. Protease treatment increased the lysine and valine content, leading to a more balanced amino acid profile. Broken rice proteins had high emulsifying capacity, 58.3–71.6 % at neutral pH, and adequate water holding capacity, ranging from 1.96 to 2.93 g/g of proteins. At pH=7.0, the broken rice protein had the highest water holding capacity and the best interfacial activities (emulsifying capacity, emulsifying stability, foaming capacity and foaming stability, which may be the result of the higher solubility at pH=7.0. The interfacial activities increased with the increase in the mass fraction of broken rice proteins. The proteins prepared by the papain treatment had higher water holding capacity (p>0.05, emulsifying capacity (p0.05 than alkaline protease treatment at the same pH or mass fraction. To test the fortification of food products with broken rice proteins, pork sausages containing the proteins were prepared. Higher yield of the sausages was obtained with the increased content of broken rice proteins, in the range of 2.0–9.0 %. The results indicate that broken rice proteins have potential to be used as the protein fortification ingredient for food products.

  11. The production of glucose from corn stalk using hydrothermal process with pre-treatment ultrasound assisted alkaline

    Science.gov (United States)

    Yolanda, Dora; Prasutiyo, Indry; Trisanti, P. N.; Sumarno

    2015-12-01

    The production of glucose from corn stalk by using subcritical hydrothermal technology is studied in this work. Ultrasound-assisted alkaline delignification methods are used as pre-treatment. The corn stalk powder were pretreated with ultrasound-assisted alkaline (NaOH 2% w/w, solid to liquid ratio 1:22 w/v) at room temperature and 30 minutes. After pre-treatment, solid residue and liquid fractions are separated by filtration. Pretreated solids are further submitted to hydrothermal process for glucose production. Hydrothermal process was carried out at 100 Bar and 120°C in various times. The solid product was characterized by SEM and XRD. And liquid product was analysis using DNS method to determine percentage of glucose. From XRD analysis showed that crystallinity of material was lower than delignification product.

  12. Optimizing HIV-1 protease production in Escherichia coli as fusion protein.

    Science.gov (United States)

    Volontè, Federica; Piubelli, Luciano; Pollegioni, Loredano

    2011-06-30

    Human immunodeficiency virus (HIV) is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr) is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr) was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA) or glutathione S-transferase (GST), also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis) and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3)-RIL host and in TB or M9 medium to which 1% (w/v) glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts) and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth). GST:HIVPr was in part (50%) produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1Pr per liter. By using this optimized

  13. Optimizing HIV-1 protease production in Escherichia coli as fusion protein

    Directory of Open Access Journals (Sweden)

    Piubelli Luciano

    2011-06-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV is the etiological agent in AIDS and related diseases. The aspartyl protease encoded by the 5' portion of the pol gene is responsible for proteolytic processing of the gag-pol polyprotein precursor to yield the mature capsid protein and the reverse transcriptase and integrase enzymes. The HIV protease (HIV-1Pr is considered an attractive target for designing inhibitors which could be used to tackle AIDS and therefore it is still the object of a number of investigations. Results A recombinant human immunodeficiency virus type 1 protease (HIV-1Pr was overexpressed in Escherichia coli cells as a fusion protein with bacterial periplasmic protein dithiol oxidase (DsbA or glutathione S-transferase (GST, also containing a six-histidine tag sequence. Protein expression was optimized by designing a suitable HIV-1Pr cDNA (for E. coli expression and to avoid autoproteolysis and by screening six different E. coli strains and five growth media. The best expression yields were achieved in E. coli BL21-Codon Plus(DE3-RIL host and in TB or M9 medium to which 1% (w/v glucose was added to minimize basal expression. Among the different parameters assayed, the presence of a buffer system (based on phosphate salts and a growth temperature of 37°C after adding IPTG played the main role in enhancing protease expression (up to 10 mg of chimeric DsbA:HIV-1Pr/L fermentation broth. GST:HIVPr was in part (50% produced as soluble protein while the overexpressed DsbA:HIV-1Pr chimeric protein largely accumulated in inclusion bodies as unprocessed fusion protein. A simple refolding procedure was developed on HiTrap Chelating column that yielded a refolded DsbA:HIV-1Pr with a > 80% recovery. Finally, enterokinase digestion of resolubilized DsbA:HIV-1Pr gave more than 2 mg of HIV-1Pr per liter of fermentation broth with a purity ≤ 80%, while PreScission protease cleavage of soluble GST:HIVPr yielded ~ 0.15 mg of pure HIV-1

  14. Influence of delignification efficiency with alkaline peroxide on the digestibility of furfural residues for bioethanol production.

    Science.gov (United States)

    Wang, Kun; Yang, Haiyan; Chen, Qian; Sun, Run-cang

    2013-10-01

    Furfural residues (FR), the abundant lignocellulosic residues from commercial furfural production, were delignified with alkaline peroxide process and then taken as substrates for ethanol production by simultaneous saccharification and fermentation (SSF). It was apparent that the delignification efficiency was increased with higher chemical addition and temperature, reaching the maximum removal (73.5%) of lignin. The widespread accessible-cellulose in FR favored the enzymatic hydrolysis and achieved the considerable bioconversion (75.7% with 5 FPU+10 IU/g substrate). The delignification process increased the relative glucose content and then the bioconversion efficiency, closely relating to the increased specific surface area. As the cellulose contents were higher than 60%, the final conversions conversely fell to around 75%, probably due to the insufficient utilization of all active cellulose with low enzyme cocktails addition. Although the SSF bioconversion slightly decreased as the elevated amount of fermentable cellulose, the maximum of ethanol concentration (16.9 g/L) was expectedly obtained. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  16. Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF.

    Science.gov (United States)

    Kandasamy, Selvam; Muthusamy, Govarthanan; Balakrishnan, Senthilkumar; Duraisamy, Senbagam; Thangasamy, Selvankumar; Seralathan, Kamala-Kannan; Chinnappan, Sudhakar

    2016-12-01

    The aim of the study was to identify new sources of substrate from agro-industrial waste for protease production using Bacillus sp., a local bacteria isolated from an agro-waste dumping site. The strain was identified as Bacillus sp. BT MASC 3 by 16S rRNA sequence followed by phylogenic analysis. Response surface methodology-based Box-Behnken design (BBD) was used to optimize the variables such as pH, incubation time, coffee pulp waste (CPW) and corncob (CC) substrate concentration. The BBD design showed a reasonable adjustment of the quadratic model with the experimental data. Statistics-based contour and 3-D plots were generated to evaluate the changes in the response surface and understand the relationship between the culture conditions and the enzyme yield. The maximum yield of protease production (920 U/mL) was achieved after 60 h of incubation with 3.0 g/L of CPW and 2.0 g/L of CC at pH 8 and temperature 37 °C in this study. The molecular mass of the purified enzyme was 46 kDa. The highest activity was obtained at 50 °C and pH 9 for the purified enzymes.

  17. Otimização de um meio de cultura para a produção de proteases por um Bacillus sp. termofílico Optmization of a culture medium for protease production by Bacillus sp. thermophilic

    Directory of Open Access Journals (Sweden)

    Wellingta Cristina Almeida do Nascimento

    2007-06-01

    improvement of 82% (13 U.mg -1 protein in the protease activity. Replacing ammonium nitrate in the medium by 0.1% milk whey increased the protease activity to 25 U.mg -1 protein. In these conditions, the time required for the enzyme to reach a maximum activity increased from 9 to 16 hours. Replacing citrate trissodium in the medium by corn steep liquor (0.5% not only produced much better enzyme activity, but also delayed the deactivation process which is typical for the production of proteases. The maximum activity reached when these wastes were used in the medium was 59.5 U.mg -1 protein. In addition, the enzyme maintained stable for more than 20 hours, which is favorable for its production on a large scale.

  18. Inorganic nanofibers with tailored placement of nanocatalysts for hydrogen production via alkaline hydrolysis of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nathaniel S; Panels, Jeanne E; Joo, Yong Lak [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 (United States); Ferguson, Thomas E; Park, Ah-Hyung Alissa, E-mail: ylj2@cornell.edu [Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027 (United States)

    2011-08-12

    Monoaxial silica nanofibers containing iron species as well as coaxial nanofibers with a pure silica core and a silica shell containing high concentrations of iron nanocrystals were fabricated via electrospinning precursor solutions, followed by thermal treatment. Tetraethyl-orthosilicate (TEOS) and iron nitrate (Fe(NO{sub 3}){sub 3}) were used as the precursors for the silica and iron phases, respectively. Thermal treatments of as-spun precursor fibers were applied to generate nanocrystals of iron with various oxidation states (pure iron and hematite). Scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to probe the fiber morphology and crystal structures. The results indicated that the size, phase, and placement of iron nanocrystals can be tuned by varying the precursor concentration, thermal treatment conditions, and processing scheme. The resulting nanofiber/metal systems obtained via both monoaxial and coaxial electrospinning were applied as catalysts to the alkaline hydrolysis of glucose for the production of fuel gas. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bulk weight change in a furnace with residual gas analysis (RGA) were used to evaluate the performance of the catalysts for various ratios of both Fe to Si, and catalyst to glucose, and the oxidation state of the iron nanocrystals. The product gas is composed of mostly H{sub 2} (>96 mol%) and CH{sub 4} with very low concentrations of CO{sub 2} and CO. Due to the clear separation of reaction temperature for H{sub 2} and CH{sub 4} production, pure hydrogen can be obtained at low reaction temperatures. Our coaxial approach demonstrates that placing the iron species selectively near the fiber surface can lead to two to three fold reduction in catalytic consumption compared to the monoaxial fibers with uniform distribution of catalysts.

  19. The influence of different submerged cultivation conditions on mycelial biomass and protease production by Lentinus citrinus Walleyn et Rammeloo DPUA 1535 (Agaricomycetideae).

    Science.gov (United States)

    Kirsch, Larissa de Souza; Pinto, Ana Carolina dos Santos; Porto, Tatiana Souza; Porto, Ana Lúcia Figueiredo; Teixeira, Maria Francisca Simas

    2011-01-01

    The influence of different carbon and nitrogen sources, pH of the culture medium, and temperature and period of cultivation on mycelial biomass production and protease activity by Lentinus citrinus DPUA 1535 were investigated in submerged culture. A 2(5) full factorial design with three central points was employed, and the results showed that at a significance level of 95% only nitrogen source and temperature were statistically significant for mycelial biomass production. On the other hand, for protease activity all factors and some interactions were significant, and the temperature and nitrogen source had the most significant effect. The best condition for mycelial biomass production (5.76 mg mL(-1)) and protease activity (32.3 U mL(-1)) was obtained in medium formulated with 0.5% soluble starch, 0.2% gelatin, pH 7.0, 25 degrees C, in 5 days.

  20. Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution

    Directory of Open Access Journals (Sweden)

    Zhao Youcai

    2013-12-01

    Full Text Available Production of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 % were obtained.

  1. Alternaria Fungus Induces the Production of GM-CSF, Interleukin-6 and Interleukin-8 and Calcium Signaling in Human Airway Epithelium through Protease-Activated Receptor 2

    Science.gov (United States)

    Matsuwaki, Yoshinori; Wada, Kota; White, Thomas; Moriyama, Hiroshi; Kita, Hirohito

    2012-01-01

    Rationale Recent studies suggest that host immune responses to environmental fungi may play an important role in the development of allergic diseases, such as human asthma. Epithelium is considered an active participant in allergic inflammation. We previously reported that aspartate protease from Alternaria induces the activation and degranulation of human eosinophils that are mediated through protease-activated receptor 2 (PAR-2). However, our current knowledge on the innate immune responses of epithelium to environmental fungi is very limited. We investigated the responses of epithelium to fungi and the mechanisms of these responses. Methods Human airway epithelial cell line BEAS-2B and Calu-3 (both from American Type Culture Collection) were incubated with PAR-2 peptides and extracts of various fungi. The cellular responses, including GM-CSF, interleukin (IL)-6, IL-8, eotaxin, eotaxin-2 and RANTES production as well as increases in intracellular calcium concentration ([Ca2+]i), were examined. To characterize the proteases involved in these responses, protease inhibitors such as pepstatin A and alkalo-thermophilic Bacillus inhibitor (ATBI), HIV protease inhibitors and 4-amidinophenylmethanesulfonyl fluoride hydrochloride were used. To investigate the role of PAR-2, PAR-2-agonistic and PAR-2-antagonistic peptides were used. Results PAR-2-activating peptide, but not the control peptide, induced GM-CSF, IL-6 and IL-8 production; these cellular responses were accompanied by a quick and marked increase in [Ca2+]i. Among 7 common environmental fungi, only Alternaria induced GM-CSF, IL-6 and IL-8 production and increased [Ca2+]i response. Both cytokine production and increased [Ca2+]i were significantly inhibited by PAR-2 antagonist peptide and by aspartate protease inhibitors (pepstatin A, ritonavir, nelfinavir and ATBI), but not by the PAR-2 control peptide or by other protease inhibitors. Conclusions Aspartate proteases from Alternaria induce cytokine production and

  2. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  3. FULL ALKALINE HYDROLYSIS OF PESTICIDE DYMETOAT WITH OBTAINING ECO-SAFE PRODUCTS

    Directory of Open Access Journals (Sweden)

    А. Ранський

    2012-04-01

    Full Text Available In this work alkaline hydrolysis of the dimetoat pesticide and ways of determination of final substanceswere presented. Dependence passing of the reaction and time of the reaction was simulated

  4. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Kishor Duwadi

    Full Text Available Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10 were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER, suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves.

  5. A small-scale flow alkaline fuel cell for on-site production of hydrogen peroxide

    International Nuclear Information System (INIS)

    Brillas, Enric; Alcaide, Francisco; Cabot, Pere-Lluis

    2002-01-01

    The behavior of a small-scale flow alkaline fuel cell (AFC) built-up for on-site production of HO 2 - using commercial gas-diffusion electrodes has been studied. It produces a spontaneous current due to the oxidation of H 2 to H 2 O at the H 2 -diffusion anode and the reduction of O 2 to HO 2 - at the O 2 -diffusion cathode, while a fresh 1.0-6.0 mol dm -3 KOH electrolyte at 15.0-45.0 deg. C is injected through it. Under circulation of HO 2 - +KOH solutions in open circuit, the flow AFC behaves as a two-electron reversible system. When it is shorted with an external load (R ext ), steady cell voltage-current density curves are found. The use of O 2 /N 2 mixtures to fed the cathode causes a loss of its performance, being required to supply pure O 2 to yield a maximum HO 2 - electrogeneration. The current density and HO 2 - productivity increase with raising OH - concentration, temperature and pressure of O 2 fed. At R ext =0.10 Ω, a current efficiency close to 100% is obtained, and current densities >100 mA cm -2 are achieved for 1.0 mol dm -3 KOH at 45.0 deg. C and for higher KOH concentrations at 25.0 deg. C. The flow AFC can work under optimum conditions up to 6.0 mol dm -3 KOH and 45.0 deg. C for possible industrial applications

  6. Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid production from the by-products of rice as a biomass refinery function.

    Science.gov (United States)

    Watanabe, Masanori; Techapun, Charin; Kuntiya, Ampin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Takenaka, Shinji; Maeda, Isamu; Koyama, Masahiro; Nakamura, Kozo

    2017-02-01

    A lactic acid producing bacterium, Lactobacillus rhamnosus M-23, newly isolated from a rice washing drainage storage tank was found to produce l-(+)-lactic acid from a non-sterilized mixture of rice washing drainage and rice bran without any additions of nutrients under the simultaneous saccharification and fermentation (SSF) process. This strain has the ability to utilize the non-sterilized rice washing drainage and rice bran as a source of carbohydrate, saccharifying enzymes and nutrients for lactic acid production. Observation of extracellular protease activity in SSF culture broth showed that a higher protease activity was present in strain M-23 than in other isolated lactic acid producing bacteria (LABs). To investigate the structural changes of solid particles of rice washing drainage throughout LAB cultivation, scanning electron microscopic (SEM) observation and Fourier transform infrared-spectroscopy (FT-IR) analysis were performed. The results of the SEM observation showed that the surface material could be removed from solid particles of rice washing drainage treated by culture broth (supernatant) of strain M-23, thus exposing the crystal structure of the starch particle surface. The results of the FT-IR analysis revealed that the specific transmittance decrease of the CC and CO stretching and OH group of the solid particles of the rice washing drainage were highly correlated with the produced lactic acid concentration and extracellular protease activity, respectively. These results demonstrate the high lactic acid producing ability of strain M-23 from a non-sterilized mixture of rice washing drainage and rice bran under the SSF condition due to the removal of proteinaceous material and exposure of the starch particle surface by extracellular protease. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Lara N Mrak

    Full Text Available Mutation of the staphylococcal accessory regulator (sarA limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L or a Newman saeRS mutant (ΔsaeRS resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and ΔsaeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they

  8. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao

    2018-02-16

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named \\'tamarillin\\'.

  9. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes.

    Science.gov (United States)

    Yamasaki, Kenshi; Kanada, Kimberly; Macleod, Daniel T; Borkowski, Andrew W; Morizane, Shin; Nakatsuji, Teruaki; Cogen, Anna L; Gallo, Richard L

    2011-03-01

    A diverse environment challenges skin to maintain temperature, hydration, and electrolyte balance while also maintaining normal immunological function. Rosacea is a common skin disease that manifests unique inflammatory responses to normal environmental stimuli. We hypothesized that abnormal function of innate immune pattern recognition could explain the enhanced sensitivity of patients with rosacea, and observed that the epidermis of patients with rosacea expressed higher amounts of Toll-like receptor 2 (TLR2) than normal patients. Increased expression of TLR2 was not seen in other inflammatory skin disorders such as atopic dermatitis or psoriasis. Overexpression of TLR2 on keratinocytes, treatment with TLR2 ligands, and analysis of TLR2-deficient mice resulted in a calcium-dependent release of kallikrein 5 from keratinocytes, a critical protease involved in the pathogenesis of rosacea. These observations show that abnormal TLR2 function may explain enhanced inflammatory responses to environmental stimuli and can act as a critical element in the pathogenesis of rosacea.

  10. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  11. Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on ?-Cyclodextrins and Alkaline Treatments

    OpenAIRE

    Yang, Xue; Liu, Xiang; Chen, Si; Liu, Guangmin; Wu, Shuyan; Wan, Chunli

    2016-01-01

    Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the...

  12. Optimizing production of hydroxyapatite from alkaline residue for removal of Pb{sup 2+} from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yubo; Wang, YanPeng; Sun, Xiuyun, E-mail: sunxyun@njust.edu.cn; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun, E-mail: wanglj@njust.edu.cn

    2014-10-30

    Highlights: • The solid waste from Soda Ash Plants was firstly converted into the high-efficiency adsorbent (O-HAP). • The response surface methodology was used to optimize the preparation conditions of O-HAP. • The O-HAP showed excellent immobilization ability for Pb{sup 2+} in both aqueous and soil medium. • The maximum adsorption capacity for Pb{sup 2+} (1429 mg/g) was considerably greater than other familiar adsorbents. - Abstract: Alkaline residue, a common solid waste generated from the ammonia-soda process for the production of soda ash, has been converted into hydroxyapatite for Pb{sup 2+} removal from wastewater. Response surface methodology was used to optimize the preparation conditions which were Ca/P (molar ratio), reaction temperature and reaction time, with the Pb{sup 2+} removal percentage as targeted response. The optimum conditions were identified to be Ca/P of 1.29, reaction temperature of 165.87 °C and reaction time of 14.5 h. Batch tests were conducted to evaluate the adsorption performance of optimum adsorbent (O-HAP), and the adsorption data were analyzed with different kinetic and isotherm models. The results showed that the pseudo-second order kinetic model and Langmuir isotherm model could best describe the adsorption of Pb{sup 2+} on O-HAP. The maximum adsorption capacity calculated from Langmuir equation was 1429 mg/g, which was greater than other familiar adsorbents. The MINTEQ results predicted that the formation of different Pb precipitates was the main mechanism in Pb{sup 2+} removal process, which was in good agreement with the kinetic and thermodynamic studies and were confirmed by the SEM-EDS and XRD analysis. In addition to aqueous medium, the O-HAP also could efficiently immobilize Pb{sup 2+} from contaminated soil.

  13. Profiling acylated homoserine lactones in Yersinia ruckeri and influence of exogenous acyl homoserine lactones and known quorum-sensing inhibitors on protease production

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Nielsen, Kristian Fog; Dalsgaard, Inger

    2007-01-01

    produced. 3-oxo-C8-HSL was detected in organs from fish infected with Y. ruckeri. Protease production was significantly lower at temperatures above 23 degrees C than below although growth was faster at the higher temperatures. Neither addition of sterile filtered high-density Y. ruckeri culture supernatant...

  14. Studies On Optimization Of Protease Production Using Bacterial Isolate Clri Strain 5468 And Its Application In Dehairing And Hydrolysis Of Tannery Fleshings Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Vimala Devi Seenivasagham

    2015-08-01

    Full Text Available The strain which produces protease was originally isolated characterized in Biotechnology laboratory at CLRI and was maintained. The microorganism was growned on several proteolytic media and the maximum activity was observed. The characterization of enzyme was analysed for different pH temperature size of inoculum inhibitors age of the culture. Then the enzyme was observed for the unhairing of skin and the disadvantage in chemical treatment was studied. The conformation of unhairing was studied using histology studies. The tannery waste solid fleshings as it is cannot be directly disposed off to the environment. It was treated with the microbial proteases. The hydrolysis of waste was done using proteases. The solid waste was converted to protien fat and the salt matter. Future work is to optimize the cheap media for the production of the enzyme for large scale applications in various industries.

  15. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste.

    Science.gov (United States)

    Pérez-López, Rafael; Castillo, Julio; Quispe, Dino; Nieto, José Miguel

    2010-05-15

    In this study, experiments were conducted to investigate the applicability of low-cost alkaline paper mill wastes as acidity neutralizing agents for treatment of acid mine drainage (AMD). Paper wastes include a calcium mud by-product from kraft pulping, and a calcite powder from a previous study focused on sequestering CO(2) by carbonation of calcium mud. The neutralization process consisted of increase of pH by alkaline additive dissolution, decrease of metals solubility and precipitation of gypsum and poorly crystallized Fe-Al oxy-hydroxides/oxy-hydroxysulphates, which acted as a sink for trace elements to that extent that solutions reached the pre-potability requirements of water for human consumption. This improvement was supported by geochemical modelling of solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of reaction products. According to PHREEQC simulations, the annual amount of alkaline additive is able to treat AMD (pH 3.63, sulphate 3800 mg L(-1), iron 348 mg L(-1)) with an average discharge of about 114 and 40 Ls(-1) for calcium mud and calcite powder, respectively. Likewise, given the high potential of calcium mud to sequester CO(2) and of resulting calcite powder to neutralize AMD, paper wastes could be a promising solution for facing this double environmental problem. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste

    International Nuclear Information System (INIS)

    Perez-Lopez, Rafael; Castillo, Julio; Quispe, Dino; Nieto, Jose Miguel

    2010-01-01

    In this study, experiments were conducted to investigate the applicability of low-cost alkaline paper mill wastes as acidity neutralizing agents for treatment of acid mine drainage (AMD). Paper wastes include a calcium mud by-product from kraft pulping, and a calcite powder from a previous study focused on sequestering CO 2 by carbonation of calcium mud. The neutralization process consisted of increase of pH by alkaline additive dissolution, decrease of metals solubility and precipitation of gypsum and poorly crystallized Fe-Al oxy-hydroxides/oxy-hydroxysulphates, which acted as a sink for trace elements to that extent that solutions reached the pre-potability requirements of water for human consumption. This improvement was supported by geochemical modelling of solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of reaction products. According to PHREEQC simulations, the annual amount of alkaline additive is able to treat AMD (pH 3.63, sulphate 3800 mg L -1 , iron 348 mg L -1 ) with an average discharge of about 114 and 40 L s -1 for calcium mud and calcite powder, respectively. Likewise, given the high potential of calcium mud to sequester CO 2 and of resulting calcite powder to neutralize AMD, paper wastes could be a promising solution for facing this double environmental problem.

  17. Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production

    Science.gov (United States)

    Alkaline hydrogen peroxide (AHP) pretreatment and enzymatic saccharification were evaluated for conversion of corn stover cellulose and hemicellulose to fermentable sugars. Corn stover used in this study contained 37.0±0.2% cellulose, 26.8±0.2% hemicellulose and 18.0±0.1% lignin on dry basis. Unde...

  18. Enhanced alkaline catalase production by Serratia marcescens FZSF01: Enzyme purification, characterization, and recombinant expression

    Directory of Open Access Journals (Sweden)

    Xianbo Jia

    2017-11-01

    Conclusions: To our knowledge, these results represent one of the highest fermentation levels reported among current catalase-producing strains. This FZSF01 catalase may be suitable for several industrial applications that comprise exposure to alkaline conditions and under a wide range of temperatures.

  19. Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes.

    Science.gov (United States)

    Alakangas, Lena; Andersson, Elin; Mueller, Seth

    2013-11-01

    Backfilling of open pit with sulfidic waste rock followed by inundation is a common method for reducing sulfide oxidation after mine closure. This approach can be complemented by mixing the waste rock with alkaline materials from pulp and steel mills to increase the system's neutralization potential. Leachates from 1 m3 tanks containing sulfide-rich (ca.30 wt %) waste rock formed under dry and water saturated conditions under laboratory conditions were characterized and compared to those formed from mixtures. The waste rock leachate produced an acidic leachate (pH9). The decrease of elemental concentration in the leachate was most pronounced for Pb and Zn, while Al and S were relatively high. Overall, the results obtained were promising and suggest that alkaline by-products could be useful additives for minimizing ARD formation.

  20. Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by Same Vessel Saccharification and Co-Fermentation

    DEFF Research Database (Denmark)

    Karagöz, Pinar; Vaitkeviciute-Rocha, Indre; Özkan, Melek

    2012-01-01

    Alkaline peroxide pretreatment of rapeseed straw was evaluated for conversion of cellulose and hemicellulose to fermentable sugars. After pretreatment, a liquid phase called pretreatment liquid and a solid phase were separated by filtration. The neutralized pretreatment liquids were used in a co...... pretreatment combination with respect to overall ethanol production. At this condition, 5.73g ethanol was obtained from pretreatment liquid and 14.07g ethanol was produced by co-fermentation of solid fraction with P. stipitis. Optimum delignification was observed when 0.5M MgSO4 was included...... in the pretreatment mixture, and it resulted in 0.92% increase in ethanol production efficiency....

  1. A genomic survey of proteases in Aspergilli

    NARCIS (Netherlands)

    Budak, Sebnem Ozturkoglu; Zhou, M.; Brouwer, Carlo; Wiebenga, A.; Benoit, Isabelle; Di Falco, Marcos; Tsang, Adrian; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    BACKGROUND: Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide

  2. Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members.

    Directory of Open Access Journals (Sweden)

    Graham G Willsey

    Full Text Available Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment.

  3. Activation of Protease-Activated Receptor 2-Mediated Signaling by Mast Cell Tryptase Modulates Cytokine Production in Primary Cultured Astrocytes

    Directory of Open Access Journals (Sweden)

    Xiaoning Zeng

    2013-01-01

    Full Text Available Protease-activated receptor 2 (PAR-2, which is abundantly expressed in astrocytes, is known to play major roles in brain inflammation. However, the influence of the natural agonist of PAR-2, tryptase, on proinflammatory mediator releasedfrom astrocytes remains uninvestigated. In the present study, we found that tryptase at lower concentrations modestly reduced intracellular ROS production but significantly increased IL-6 and TNF-α secretion at higher concentrations without affecting astrocytic viability and proliferation. The actions of tryptase were alleviated by specific PAR-2 antagonist FSLLRY-NH2 (FS, indicating that the actions of tryptase were via PAR-2. PI3K/AKT inhibitor LY294002 reversed the effect of tryptase on IL-6 production, whereas inhibitors specific for p38, JNK, and ERK1/2 abolished the effect of tryptase on TNF-α production, suggesting that different signaling pathways are involved. Moreover, tryptase-induced activation of MAPKs and AKT was eliminated by FS, implicating that PAR-2 is responsible for transmitting tryptase biosignals to MAPKs and AKT. Tryptase provoked also expression of TGF-β and CNTF in astrocytes. The present findings suggest for the first time that tryptase can regulate the release of cytokines from astrocytes via PAR-2-MAPKs or PAR-2-PI3K/AKT signaling pathways, which reveals PAR-2 as a new target actively participating in the regulation of astrocytic functions.

  4. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.

    Science.gov (United States)

    Zwane, Eunice N; Rose, Shaunita H; van Zyl, Willem H; Rumbold, Karl; Viljoen-Bloom, Marinda

    2014-06-01

    The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.

  5. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  6. Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based onβ-Cyclodextrins and Alkaline Treatments.

    Science.gov (United States)

    Yang, Xue; Liu, Xiang; Chen, Si; Liu, Guangmin; Wu, Shuyan; Wan, Chunli

    2016-01-01

    Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β -cyclodextrins ( β -CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β -CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β -CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18-3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.

  7. Robust, high-productivity phototrophic carbon capture at high pH and alkalinity using natural microbial communities.

    Science.gov (United States)

    Sharp, Christine E; Urschel, Sydney; Dong, Xiaoli; Brady, Allyson L; Slater, Greg F; Strous, Marc

    2017-01-01

    Bioenergy with carbon capture and storage (BECCS) has come to be seen as one of the most viable technologies to provide the negative carbon dioxide emissions needed to constrain global temperatures. In practice, algal biotechnology is the only form of BECCS that could be realized at scale without compromising food production. Current axenic algae cultivation systems lack robustness, are expensive and generally have marginal energy returns. Here it is shown that microbial communities sampled from alkaline soda lakes, grown as biofilms at high pH (up to 10) and high alkalinity (up to 0.5 kmol m -3 NaHCO 3 and NaCO 3 ) display excellent (>1.0 kg m -3  day -1 ) and robust (>80 days) biomass productivity, at low projected overall costs. The most productive biofilms contained >100 different species and were dominated by a cyanobacterium closely related to Phormidium kuetzingianum (>60%). Frequent harvesting and red light were the key factors that governed the assembly of a stable and productive microbial community.

  8. Transmissible Gastroenteritis Virus Papain-Like Protease 1 Antagonizes Production of Interferon-βthrough Its Deubiquitinase Activity.

    Science.gov (United States)

    Hu, Xiaoliang; Tian, Jin; Kang, Hongtao; Guo, Dongchun; Liu, Jiasen; Liu, Dafei; Jiang, Qian; Li, Zhijie; Qu, Juanjuan; Qu, Liandong

    2017-01-01

    Coronaviruses (CoVs), such as human coronavirus NL63 (HCoV-NL63), severe acute respiratory syndrome CoV (SARS-CoV), murine hepatitis virus (MHV), porcine epidemic diarrhea virus (PEDV), and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), encode papain-like (PL) proteases that inhibit Sendai virus- (SeV-) induced interferon (IFN- β ) production. Recently, the crystal structure of transmissible gastroenteritis virus (TGEV) PL1 has been solved, which was similar to that of SARS-CoV PL2 pro , which may antagonize host innate immunity. However, very little is known about whether TGEV PL1 can antagonize host innate immune response. Here, we presented evidence that TGEV PL1 encoded by the replicase gene could suppress the IFN- β expression and inhibit the nuclear translocation of interferon regulatory factor 3 (IRF3). The ability to antagonize IFN- β production was dependent on the intact catalytic activity of PL1. Furthermore, TGEV PL1 exerted deubiquitinase (DUB) activity which strongly inhibited the retinoic acid-induced gene I- (RIG-1-) and stimulator of interferon gene- (STING-) dependent IFN expression. Our data collectively suggest that TGEV PL1 can inhibit the IFN- β expression and interfere with RIG-1- and STING-mediated signaling through a viral DUB activity. Our study has yielded strong evidence for the TGEV PL1 mechanisms that counteract the host innate immunity.

  9. Transmissible Gastroenteritis Virus Papain-Like Protease 1 Antagonizes Production of Interferon-β through Its Deubiquitinase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoliang Hu

    2017-01-01

    Full Text Available Coronaviruses (CoVs, such as human coronavirus NL63 (HCoV-NL63, severe acute respiratory syndrome CoV (SARS-CoV, murine hepatitis virus (MHV, porcine epidemic diarrhea virus (PEDV, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV, encode papain-like (PL proteases that inhibit Sendai virus- (SeV- induced interferon (IFN-β production. Recently, the crystal structure of transmissible gastroenteritis virus (TGEV PL1 has been solved, which was similar to that of SARS-CoV PL2pro, which may antagonize host innate immunity. However, very little is known about whether TGEV PL1 can antagonize host innate immune response. Here, we presented evidence that TGEV PL1 encoded by the replicase gene could suppress the IFN-β expression and inhibit the nuclear translocation of interferon regulatory factor 3 (IRF3. The ability to antagonize IFN-β production was dependent on the intact catalytic activity of PL1. Furthermore, TGEV PL1 exerted deubiquitinase (DUB activity which strongly inhibited the retinoic acid-induced gene I- (RIG-1- and stimulator of interferon gene- (STING- dependent IFN expression. Our data collectively suggest that TGEV PL1 can inhibit the IFN-β expression and interfere with RIG-1- and STING-mediated signaling through a viral DUB activity. Our study has yielded strong evidence for the TGEV PL1 mechanisms that counteract the host innate immunity.

  10. Protease production during growth and autolysis of submerged Metarhizium anisopliae cultures Produção de protease durante o crescimento e análise de culturas submersas de Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    Gilberto U.L. Braga

    1999-04-01

    Full Text Available The growth and autolysis of two strains of the entomopathogenic deuteromycete fungus Metarhizium anisopliae var. anisopliae were evaluated in medium containing casein or glucose as carbon source. Parameters such as economic coefficient and degree of autolysis were determined for each strain. Protease production was determined throughout the growth and autolysis phases of the cultures on medium under conditions of protease induction (in the presence of casein as sole source of carbon and nitrogen. The fungus was shown to utilize casein as a carbon/energy source in a more efficient manner than glucose. The autolysis shown by the strains was intense under both types of growth conditions, reaching up to 62.7% of the dry mass produced and started soon after the depletion of the exogenous carbon source. The relationship between the proteolytic activities of the two strains evaluated varied significantly (a maximum of 19.78 on the 5th day and a minimum of 2.03 on the 16th day of growth during the various growth and autolysis phases, clearly showing that the difference between the growth curves and the difference in the kinetics of enzyme production may decisively affect the process of strain selection for protease production.O crescimento e a autólise de duas linhagens do deuteromiceto entomopatogênico Metarhizium anisopliae var. anisopliae foram avaliados em meio contendo caseína ou glicose como fonte de carbono. Foram determinados parâmetros como o coeficiente econômico e o grau de autólise apresentado pelas linhagens. A produção de protease foi determinada durante todas as fases do crescimento e da autólise das culturas, em meio indutor da produção de proteases (meio contendo caseína como única fonte de carbono e de nitrogênio. Pôde-se verificar que o fungo foi capaz de utilizar a caseína como fonte de carbono/energia de maneira mais eficiente do que a glicose. A autólise apresentada pelas linhagens foi intensa em ambas as condi

  11. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    Science.gov (United States)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  12. Production of Extra-Cellular Proteases from Marine Bacillus Sp. Cultured in Media Containing Ammonium Sulfate as the Sole Nitrogen Source

    Directory of Open Access Journals (Sweden)

    Seri Intan, M.

    2005-01-01

    Full Text Available Useful bacterial strains can be used to increase mineralize activity of an aquatic system. These bacteria can specifically degrade targeted compound by producing extra-cellular enzymes. Three species of Bacillus i.e. B. subtilis, B. pumilus and B. licheniformis acquired from shrimp ponds were tested for their ability to utilize ammonia and produce extracellular enzymes. These bacteria were grown in artificial seawater (30 ppt salinity and pH 7.6 supplemented with decreasing yeast extract concentration but increasing ammonium sulfate concentration. All three bacteria grew in artificial seawater containing only 0.01% yeast extract and 1% ammonium sulfate. However, only B. pumilus and B. licheniformis were able to grow in the medium containing only 1% ammonium sulfate as a sole energy source. Bacterialgrowth reduced when alkaline proteases activities was maximum from culture filtrates of all three bacterial cultures during 24 hour culturing in artificial seawater containing 0.01% yeast extract and 1% ammonium sulfate at 30 C when assayed at pH 9. Bacterial growth increased when acid proteases activities was maximum from culture filtrates of all three bacterial cultures during 48 hour culturing in artificial seawater containing 0.01% yeast extract and 1% ammoniumsulfate at 30 C when assayed at pH 5.

  13. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    Science.gov (United States)

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Production and properties of an extracellular protease from thermophilic Bacillus sp Produção e propriedades de uma protease extracelular de um Bacillus sp termofílico

    Directory of Open Access Journals (Sweden)

    Wellingta Cristina Almeida do Nascimento

    2004-06-01

    Full Text Available Protease production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing trisodium citrate reached a maximum in 9h, with levels of 1.93U/mg protein. The microorganism utilized several carbon sources for the production of protease. Starch was the best substrate, followed by trisodium citrate, citric acid and sucrose. Among the various organic and inorganic nitrogen sources, ammonium nitrate was found to be the best. Studies on the protease characterization revealed that the optimum temperature of this enzyme was 60ºC. The enzyme was stable for 2h at 30ºC, while at 40ºC and 80ºC, 14% and 84% of the original activities were lost, respectively. The optimum pH of the enzyme was found to be 8.0. After incubation of crude enzyme solution for 24h at pH 5.5, 8.0 and 9.0, a decrease of about 51%, 18% and 66% of its original activity was observed respectively. A stronger inhibitory effect was observed in the presence of K+, Hg2+and Cu2+. Hg+ resulted in the complete loss of activity at 1mM concentrations. Activity was stimulated by Mn2+ and Ca+2, indicating that these ions had a functional role in the molecular structure of the enzyme.A produção de protease pelo termofílico Bacillus sp cepa SMIA-2 cultivado em culturas líquidas contendo citrato trissódico alcançou o máximo em 9h, com níveis de 1,93U/mg de proteína. O microrganismo utilizou várias fontes de carbono para a produção da protease, sendo que o amido foi o melhor substrato seguido por citrato trissódico, ácido cítrico e sacarose. Entre as várias fontes de nitrogênio orgânico e inorgânico, o nitrato de amônio foi a melhor. Estudos sobre a caracterização da protease revelaram que a temperatura ótima desta enzima foi 60ºC. A enzima foi estável por 2h a 30ºC, enquanto a 40ºC and 80ºC, 14% e 84% da atividade original foram perdidas, respectivamente. O valor ótimo de pH encontrado para a enzima foi 8,0. Após a incubação da solu

  15. Evaluation of alkaline dissolution of Al 6061 and Al 1050 for the production of Mo-99 from LEU targets

    International Nuclear Information System (INIS)

    Mindrisz, Ana C.; Camilo, Ruth L.; Araujo, Izilda C.; Forbicini, Christina A.L.G. de O.

    2013-01-01

    Since 2008, due to the global crisis in the production of radioisotope 99 Mo, which product of decay, 99m Tc, is the tracer element most often used in nuclear medicine and accounts for about 80% of all diagnostic procedures in vivo. Studies on the alkaline dissolution to obtain 9 9M o from irradiated UAl x -Al LEU targets are under development. Processing time should be minimized, considering the short half-life of 99 Mo and 99m Tc, about 66 h and 6 h, respectively. This makes dissolution time a significant factor in the development of the process. This paper presents the results of alkaline dissolution of 'scraps' of Al 6061 and 1050, used to simulate the dissolution process of UAl x -Al targets. Dissolution time and gas releasing were evaluated using the following alkaline solutions: a) NaOH 3 mol.L -1 and NaNO 3 2 mol.L -1 , b) NaOH 3 mol.L -1 and NaNO 3 4 mol.L -1 . The initial temperature of dissolution was 85 deg C in all cases. Al 6061 showed values of dissolution time greater than that for Al 1050, 25% for NaNO 3 2 mol.L -1 and 104.55% for NaNO 3 4 mol.L -1 . The dissolution with NaNO 3 2 mol.L -1 showed that the gas releasing for Al 6061 was 2.7% greater than for Al 1050. However Al 1050 showed that gas releasing 9.92% greater than for Al 6061 during the dissolution with NaNO 3 4 mol.L -1 . The decision about what type of alloy has to be used, Al 1050 or Al 6061, it will be upto the group that will manufacture the targets for the RMB. (author)

  16. Determination of phosphate compounds in meat products by 31-Phosphorus Nuclear Magnetic Resonance spectroscopy with methylenediphosphonic acid after alkaline extraction

    International Nuclear Information System (INIS)

    Hrynczyszyn, P.; Jastrzebska, A.; Szlyk, E.

    2010-01-01

    Modification of the extraction procedure and application of the 31 P NMR method for the determination of polyphosphates in meat products were studied. In the elaborated procedure threefold water extraction at alkaline pH (borate buffer and 0.1 M EDTA) was applied. Furthermore, the new external standard for 31 P NMR determination of phosphates was proposed. Obtained recoveries were between 95 and 99% and variation coefficients (CV) was ≤5%, indicating an increase in accuracy and the precision of the proposed procedure in relation to the spectrophotometric method. The described procedure of sample preparation with 31 P NMR method was applied for the determination of polyphosphate additives in meat products. The satisfactory precision (CV = 0.39-3.40%) shows the benefit of the NMR method in the routine analysis of the phosphate ions in meat products.

  17. Alkaline conditions stimulate the production of 1,3-propanediol in Lactobacillus panis PM1 through shifting metabolic pathways.

    Science.gov (United States)

    Grahame, Douglas A S; Kang, Tae Sun; Khan, Nurul H; Tanaka, Takuji

    2013-07-01

    A novel Lactobacillus panis PM1 isolate was found to be capable of converting glycerol to 1,3-propanediol (1,3-PDO), an increasingly valuable commodity chemical. In this study the effects of various process parameters, including glucose and glycerol concentrations, inoculum size, temperature, aeration, pH, and carbon source were examined to determine the optimal conditions for the production of 1,3-PDO using a culture method simulating late log to early stationary phases. Inoculum size did not influence the production of 1,3-PDO, and temperature variance showed similar 1,3-PDO production between 25 and 37 °C under the examined conditions. Glycerol concentration and pH played a primary role in the final concentration of 1,3-PDO. The highest production occurred at 150-250 mM glycerol when 50 mM glucose was available. Alkaline initial conditions (pH 9-10) stimulated the production of 1,3-PDO which concurrently occurred with increased acetic acid production. Under these conditions, 213.6 mM of 1,3-PDO were produced from 300 mM glycerol (conversion efficiency was 71 %). These observations indicated that the production of 1,3-PDO was associated with the shift of the metabolic end-product ethanol to acetic acid, and that this shift resulted in an excess concentration of NADH available for the processing of glycerol to 1,3-PDO.

  18. Characterisation of the thermostable protease AprX in strains of Pseudomonas fluorescens and impact on the shelf-life of dairy products: preliminary results

    Directory of Open Access Journals (Sweden)

    Nadia Andrea Andreani

    2016-12-01

    Full Text Available Bacterial proteases are involved in food spoilage and shelf-life reduction. Among the bacterial proteases, a predominant role in spoilage of dairy products seems to be played by the thermostable metallo-protease AprX, which is produced by various strains of Pseudomonas fluorescens. Differences in AprX enzyme activity among different strains were highlighted, but the most proteolytic strains were not identified. In this study, the presence of the aprX gene was evaluated in 69 strains isolated from food matrices and 18 reference strains belonging to the P. fluorescens group, which had been previously typed by the multi locus sequence typing method. Subsequently, a subset of reference strains was inoculated in ultra-high temperature milk, and the expression of the aprX gene was evaluated at 22 and 6°C. On the same milk samples, the proteolytic activity was then evaluated through Azocasein and trinitrobenzenesulfonic acid solution assays. Finally, to assess the applicability of the former assay directly on dairy products the proteolityc activity was tested on industrial ricotta samples using the Azocasein assay. These results demonstrate the spread of aprX gene in most strains tested and the applicability of Azocasein assay to monitor the proteolytic activity in dairy products.

  19. Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes

    Science.gov (United States)

    Lugovskoy, Alex; Zinigrad, Michael; Kossenko, Aleksey; Kazanski, Barbara

    2013-01-01

    Plasma electrolytic oxidation (PEO) of aluminum alloy 5052 in alkaline-silicate electrolytes having different SiO2/Na2O ratios (silicate indexes) was studied. For all the electrolytes 20-90 μm thick technological layer was obtained; composition, structure and properties of the oxidized layer were studied. For each sample, the oxidized layer consists of a denser internal and looser external sublayer. While for “n = 1 electrolytes” the oxidized layer is mainly formed by several kinds of alumina, the principal constituent of the oxidized layer for “n = 3 electrolytes” is mullite. Measurements of microhardness evidenced that it is apparently not influenced by the kind of silicate (n = 1 or n = 3) and by its concentration in the electrolyte. Electrolytes with silicate index n = 3 ensure better corrosion protection than those with n = 1. Corrosion protection parameters are significantly better for all PEO oxidized samples than for the untreated Al5052 alloy.

  20. Low dietary copper increases fecal free radical production, fecal water alkaline phosphatase activity and cytotoxicity in healthy men.

    Science.gov (United States)

    Davis, Cindy D

    2003-02-01

    One possible dietary factor that may increase susceptibility to colon cancer is inadequate copper intake. The objective of this study was to investigate the effects of low and adequate copper intakes on copper nutriture and putative risk factors for colon cancer susceptibility in healthy men. Seventeen healthy free-living nonsmoking men aged 21-52 y completed a 13-wk controlled feeding study in a randomized crossover design. The basal diet contained 0.59 mg Cu/13.65 MJ. After a 1-wk equilibration period in which the men consumed the basal diet supplemented with 1.0 mg Cu/d, they were randomly assigned to receive either the basal diet or the basal diet supplemented with 2 mg Cu/d for 6 wk. After the first dietary period, the men immediately began to consume the other level of Cu for the last 6 wk. They collected their feces during the equilibration period and during the last 2 wk of the two dietary periods for free radical and fecal water analysis. Low dietary copper significantly (P alkaline phosphatase activity. Low dietary copper significantly (P dietary treatments. These results suggest that low dietary copper adversely affects fecal free radical production and fecal water alkaline phosphatase activity, which are putative risk factors for colon cancer.

  1. Biotechnology of Cold-Active Proteases

    Directory of Open Access Journals (Sweden)

    Tulasi Satyanarayana

    2013-05-01

    Full Text Available The bulk of Earth’s biosphere is cold (<5 °C and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.

  2. Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization.

    Science.gov (United States)

    Ma, Yingfang; Shen, Wei; Chen, Xianzhong; Liu, Long; Zhou, Zhemin; Xu, Fei; Yang, Haiquan

    2016-01-01

    Alkaline amylase has significant potential for applications in the textile, paper and detergent industries, however, low yield of which cannot meet the requirement of industrial application. In this work, a novel ARTP mutagenesis-screening method and fermentation optimization strategies were used to significantly improve the expression level of recombinant alkaline amylase in B. subtilis 168. The activity of alkaline amylase in mutant B. subtilis 168 mut-16# strain was 1.34-fold greater than that in the wild-type, and the highest specific production rate was improved from 1.31 U/(mg·h) in the wild-type strain to 1.57 U/(mg·h) in the mutant strain. Meanwhile, the growth of B. subtilis was significantly enhanced by ARTP mutagenesis. When the agitation speed was 550 rpm, the highest activity of recombinant alkaline amylase was 1.16- and 1.25-fold of the activities at 450 and 650 rpm, respectively. When the concentration of soluble starch and soy peptone in the initial fermentation medium was doubled, alkaline amylase activity was increased 1.29-fold. Feeding hydrolyzed starch and soy peptone mixture or glucose significantly improved cell growth, but inhibited the alkaline amylase production in B. subtilis 168 mut-16#. The highest alkaline amylase activity by feeding hydrolyzed starch reached 591.4 U/mL, which was 1.51-fold the activity by feeding hydrolyzed starch and soy peptone mixture. Single pulse feeding-based batch feeding at 10 h favored the production of alkaline amylase in B. subtilis 168 mut-16#. The results indicated that this novel ARTP mutagenesis-screening method could significantly improve the yield of recombinant proteins in B. subtilis . Meanwhile, fermentation optimization strategies efficiently promoted expression of recombinant alkaline amylase in B. subtilis 168 mut-16#. These findings have great potential for facilitating the industrial-scale production of alkaline amylase and other enzymes, using B. subtilis cultures as microbial cell

  3. Production of a novel wheat gluten hydrolysate containing dipeptidyl peptidase-IV inhibitory tripeptides using ginger protease.

    Science.gov (United States)

    Taga, Yuki; Hayashida, Osamu; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2017-09-01

    Wheat gluten is a Pro-rich protein complex comprising glutenins and gliadins. Previous studies have reported that oral intake of enzymatic hydrolysates of gluten has beneficial effects, such as suppression of muscle injury and improvement of hepatitis. Here, we utilized ginger protease that preferentially cleaves peptide bonds with Pro at the P 2 position to produce a novel type of wheat gluten hydrolysate. Ginger protease efficiently hydrolyzed gluten, particularly under weak acidic conditions, to peptides with an average molecular weight of peptidase-IV with IC 50 values of 79.8, 70.9, 71.7, 56.7, and 78.9 μM, respectively, suggesting that the novel gluten hydrolysate prepared using ginger protease can be used as a functional food for patients with type 2 diabetes.

  4. Improving methane production from anaerobic digestion of Pennisetum Hybrid by alkaline pretreatment.

    Science.gov (United States)

    Kang, Xihui; Sun, Yongming; Li, Lianhua; Kong, Xiaoying; Yuan, Zhenhong

    2018-05-01

    Alkaline pretreatment with NaOH was used to improve methane yield from Pennisetum Hybrid. The pretreatments were carried out with different NaOH solutions (2-8% w/w) at three temperatures (35, 55 and 121 °C) for different periods of time (24, 24 and 1 h). All treated and untreated Pennisetum Hybrid were digested under mesophilic conditions (37 °C) to biogas, significant effects of the pretreatments on the yield of methane were observed. Results showed the modified Gompertz equation was reliable (determination coefficients (R 2 ) greater than 0.96) to describe the kinetic behavior of anaerobic digestion of Pennisetum Hybrid. The best result, obtained by the treatment at 35 °C 2% NaOH for 24 h, resulted in the methane yield of 301.7 mL/g VS, corresponding to 21.0% improvement in the methane yield. Compositional, SEM, XRD and FTIR analysis confirmed that lignin removal, structural modification and cellulose crystalline variation were responsible for the improvement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A statistical approach for optimization of alkaline lipase production by ascidian associated-Halobacillus trueperiRSK CAS9.

    Science.gov (United States)

    Sathishkumar, Ramamoorthy; Ananthan, Gnanakkan; Iyappan, Kathirvel; Stalin, Chinnathambi

    2015-12-01

    A marine ascidian-associated bacterium, Halobacillus trueperi RSK CAS9, was optimized for lipase production by response surface methodology using marine waste as substrate. The central composite design was employed, and the optimal medium constituents for maximum lipase production (1355.81 U/ml) were determined to be tuna powder (14.58 g/l), olive oil (5.05 ml/l); NaCl (72.42 g/l), temperature (45 °C) and pH 9.0. An alkaline lipase was purified to 8.46 fold with 1193.59 U mg -1 specific activities with the molecular weight of 44 kDa. The activity was substantially inhibited by EDTA and PMSF, indicating that it was a metalloenzyme serine residue which was essential for catalytic activity. Thus, lipase production by microbial conversion of marine fish wastes in this study suggested its potential utilization for the production of high value products.

  6. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    Science.gov (United States)

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  7. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium

    Directory of Open Access Journals (Sweden)

    Anderson F. Santos

    2013-12-01

    Full Text Available Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9, a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i molecular masses ranging from 30 to 80 kDa, (ii better hydrolytic activities under neutral-alkaline pH range, (iii expression modulated according to the culture age, (iv susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v specific cleavage over the chymotrypsin substrate, and (vi enzymatic stability in the presence of salt (up to 20% NaCl and organic solvents (e.g., ether, isooctane and cyclohexane. The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  8. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  9. "Supergreen" Renewables: Integration of Mineral Weathering Into Renewable Energy Production for Air CO2 Removal and Storage as Ocean Alkalinity

    Science.gov (United States)

    Rau, G. H.; Carroll, S.; Ren, Z. J.

    2015-12-01

    Excess planetary CO2 and accompanying ocean acidification are naturally mitigated on geologic time scales via mineral weathering. Here, CO2 acidifies the hydrosphere, which then slowly reacts with silicate and carbonate minerals to produce dissolved bicarbonates that are ultimately delivered to the ocean. This alkalinity not only provides long-term sequestration of the excess atmospheric carbon, but it also chemically counters the effects of ocean acidification by stabilizing or raising pH and carbonate saturation state, thus helping rebalance ocean chemistry and preserving marine ecosystems. Recent research has demonstrated ways of greatly accelerating this process by its integration into energy systems. Specifically, it has been shown (1) that some 80% of the CO2 in a waste gas stream can be spontaneously converted to stable, seawater mineral bicarbonate in the presence of a common carbonate mineral - limestone. This can allow removal of CO2 from biomass combustion and bio-energy production while generating beneficial ocean alkalinity, providing a potentially cheaper and more environmentally friendly negative-CO2-emissions alternative to BECCS. It has also been demonstrated that strong acids anodically produced in a standard saline water electrolysis cell in the formation of H2 can be reacted with carbonate or silicate minerals to generate strong base solutions. These solutions are highly absorptive of air CO2, converting it to mineral bicarbonate in solution. When such electrochemical cells are powered by non-fossil energy (e.g. electricity from wind, solar, tidal, biomass, geothermal, etc. energy sources), the system generates H2 that is strongly CO2-emissions-negative, while producing beneficial marine alkalinity (2-4). The preceding systems therefore point the way toward renewable energy production that, when tightly coupled to geochemical mitigation of CO2 and formation of natural ocean "antacids", forms a high capacity, negative-CO2-emissions, "supergreen

  10. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    DEFF Research Database (Denmark)

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban

    2016-01-01

    and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three...

  11. Statistical evaluation of the medium components for the production of high biomass, α-amylase and protease enzymes by Piriformospora indica using Plackett-Burman experimental design.

    Science.gov (United States)

    Swetha, S; Varma, Ajit; Padmavathi, T

    2014-08-01

    Piriformospora indica, a member of basidiomycota is an axenically cultivable endophytic fungus which exerts plant growth promoting effects on its host plant. P. indica is known to produce α-amylase and protease. Since the organism exhibits beneficial role in plant growth promotion, achieving high biomass is immensely essential. Hence to enable the commercial production, screening of medium components is a necessary step. The present paper investigates the screening of medium components using Plackett-Burman experimental design wherein the parameters such as α-amylase, protease and biomass have been examined. The parameters α-amylase, protease and biomass was found to vary from 0.25 to 0.45 mg -1  ml -1  min -1 , 0.1 to 0.15 mg -1  ml -1  h -1 and 0.8 to 22.6 g l -1 , respectively, in 16 runs which demonstrates the strong influence of the medium components.

  12. Acidic proteases from Monterey sardine (Sardinops sagax caerulea) immobilized on shrimp waste chitin and chitosan supports: searching for a by-product catalytic system.

    Science.gov (United States)

    Salazar-Leyva, Jesus Aaron; Lizardi-Mendoza, Jaime; Ramirez-Suarez, Juan Carlos; Valenzuela-Soto, Elisa Miriam; Ezquerra-Brauer, Josafat Marina; Castillo-Yañez, Francisco Javier; Pacheco-Aguilar, Ramon

    2013-10-01

    Solid wastes generated from the seafood industry represent an important environmental pollutant; therefore, utilization of those wastes for the development of processing biochemical tools could be an attractive and clean solution for the seafood industry. This study reports the immobilization of semi-purified acidic proteases from Monterey sardine stomachs onto chitin and chitosan materials extracted from shrimp head waste. Several supports (chitosan beads, chitosan flakes, and partially deacetylated flakes) were activated either with genipin or Na-tripolyphosphate and evaluated as a mean to immobilize acidic proteases. The protein load varied within the 67-91% range on different supports. The immobilization systems based on chitosan beads achieved the highest protein loads but showed the lowest retained catalytic activities. The best catalytic behavior was obtained using partially deacetylated chitin flakes activated either with genipin or Na-tripolyphosphate. According to results, the immobilization matrix structure, as well as acetylation degree of chitin-chitosan used, has considerable influence on the catalytic behavior of immobilized proteases. Partially deacetylated chitin flakes represent a suitable option as support for enzyme immobilization because its preparation requires fewer steps than other supports. Two abundant seafood by-products were used to obtain a catalytic system with enough proteolytic activity to be considered for biotechnological applications in diverse fields.

  13. A preliminary study of the protease activities in germinating brown rice (Oryza sativa L.).

    Science.gov (United States)

    Li, Cuijuan; Cao, Xiaohong; Gu, Zhenxin; Wen, Huanbin

    2011-03-30

    Proteases hydrolyse storage proteins to provide precursors for perpetuating species. The aim of this study was to investigate and characterise different proteases in germinating brown rice. The protease activity of brown rice increased sevenfold during 7 days of germination. It was highest on day 6 when determined at pH 3.5. With casein as substrate the proteases showed two catalytic groups: acidic proteases with an optimal pH of 3.5 and alkaline proteases with an optimal pH of 8.0. The acidic protease activity was inhibited by Ba(2+) and Pb(2+) but stimulated by Zn(2+) , while the alkaline protease activity was inhibited by Ca(2+) and Pb(2+) but stimulated by Mg(2+) and Zn(2+) . SDS-gelatin-PAGE assay showed two protease activity bands at pH 3.5, while two different bands with higher molecular weights were observed at pH 8.0. Inhibition assay revealed that pepstatin A and E-64 inhibited 67.63 and 38.26% respectively of the protease activity at pH 3.5, indicating the presence of aspartic and cysteine proteases. Metalloproteases played a major role under alkaline conditions (88.37% inhibition with EDTA). Germinated brown rice proteases fall into different classes with different properties. This study is helpful for their further purification. Copyright © 2010 Society of Chemical Industry.

  14. Release of fission products from oxidised zircaloy cladding in contact with an alkaline solution

    International Nuclear Information System (INIS)

    Poulard, K.

    2001-09-01

    Before nuclear spent fuel reprocessing, the cladding tubes are sectioned into pieces called hulls in order to release the UO 2 pellets. The hulls are collected as solid wastes and were embedded inside a concrete structure until 1995. In the perspective of geological storage, a great interest is given to iodine release during contact between hulls and basic water infiltrated inside the concrete structure. Experiments were performed on zircaloy or zirconium oxidised samples representative of oxidised hulls surfaces. Corrosion tests were performed in autoclave. The specimens were exposed to a basic solution at 250 deg C, 275 deg C and 300 deg C. The corrosion tests were conducted during 12 weeks with regular sampling every two weeks. The partial dissolution of the oxide coating was studied using the rare earth europium element as a surface marker of zirconia. Such a choice is based on experimental results ensuring that this marker will not diffuse in the 250-300 deg C temperature range. Europium was introduced by ion implantation (Rp = 42 nm). The evolutions of europium concentration profiles measured at each corrosion step show that a non homogeneous dissolution of zirconia occurs in this alkaline medium. The mean dissolution rate is equal to 1 nm/day at 300 deg C. In order to analyse the mechanism involved in iodine migration, iodine atoms were introduced in samples by ion implantation. The iodine profile evolution allows to identify two steps in iodine release. A rapid desorption which could not be related to zirconia dissolution and then a stabilisation as far as low the iodine concentration (0.3 at.%) were reached. We demonstrated that hydrogen (representative of hydroxyl) migration in zirconia is clearly enhanced by the presence of iodine in the sample and that the iodine release is correlated to that of hydroxyl ions. The correlation of the behaviour between iodine and hydroxyl ions could be explained by the creation of complexes. (author)

  15. Hydrogen production from a rectangular horizontal filter press Divergent Electrode-Flow-Through (DEFT™) alkaline electrolysis stack

    Science.gov (United States)

    Gillespie, M. I.; Kriek, R. J.

    2017-12-01

    A membraneless Divergent Electrode-Flow-Through (DEFT™) alkaline electrolyser, for unlocking profitable hydrogen production by combining a simplistic, inexpensive, modular and durable design, capable of overcoming existing technology current density thresholds, is ideal for decentralised renewable hydrogen production, with the only requirement of electrolytic flow to facilitate high purity product gas separation. Scale-up of the technology was performed, representing a deviation from the original tested stack design, incorporating elongated electrodes housed in a filter press assembly. The pilot plant operating parameters were limited to a low flow velocity range (0.03 m s-1 -0.04 m s-1) with an electrode gap of 2.5 mm. Performance of this pilot plant demonstrated repeatability to results previously obtained. Mesh electrodes with geometric area of 344.32 cm2 were used for plant performance testing. A NiO anode and Ni cathode combination developed optimal performance yielding 508 mA cm-2 at 2 VDC in contrast to a Ni anode and cathode combination providing 467 mA cm-2 at 2.26 VDC at 0.04 m s-1, 30% KOH and 80 °C. An IrO2/RuO2/TiO2 anode and Pt cathode combination underwent catalyst deactivation. Owing to the nature of the gas/liquid separation system, gas qualities were inadequate compared to results achieved previously. Future improvements will provide qualities similar to results achieved before.

  16. Pilot-Scale Production and Thermostability Improvement of the M23 Protease Pseudoalterin from the Deep Sea Bacterium Pseudoalteromonas sp. CF6-2

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-11-01

    Full Text Available Pseudoalterin is the most abundant protease secreted by the marine sedimental bacterium Pseudoalteromonas sp. CF6-2 and is a novel cold-adapted metalloprotease of the M23 family. Proteases of the M23 family have high activity towards peptidoglycan and elastin, suggesting their promising biomedical and biotechnological potentials. To lower the fermentive cost and improve the pseudoalterin production of CF6-2, we optimized the fermentation medium by using single factor experiments, added 0.5% sucrose as a carbon source, and lowered the usage of artery powder from 1.2% to 0.6%. In the optimized medium, pseudoalterin production reached 161.15 ± 3.08 U/mL, 61% greater than that before optimization. We further conducted a small-scale fermentation experiment in a 5-L fermenter and a pilot-scale fermentation experiment in a 50-L fermenter. Pseudoalterin production during pilot-scale fermentation reached 103.48 ± 8.64 U/mL, 77% greater than that before the medium was optimized. In addition, through single factor experiments and orthogonal tests, we developed a compound stabilizer for pseudoalterin, using medically safe sugars and polyols. This stabilizer showed a significant protective effect for pseudoalterin against enzymatic thermal denaturation. These results lay a solid foundation for the industrial production of pseudoalterin and the development of its biomedical and biotechnological potentials.

  17. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment

    NARCIS (Netherlands)

    Pol, van der E.C.; Bakker, R.; Zeeland, van A.N.T.; Sanchez Garcia, D.; Punt, A.M.; Eggink, G.

    2015-01-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after

  18. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool.

    Science.gov (United States)

    Kimura, Hiroyuki; Mori, Kousuke; Nashimoto, Hiroaki; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-02-01

    Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.

  19. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from...... the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according...... to their chemical structure, e.g. diacids (oxalic and succinic acids), furan aldehydes, phenol aldehydes, phenol ketones and phenol acids. Aromatic aldehyde formation was correlated to severe conditions with high temperatures and low pH. Apart from CO2 and water, carboxylic acids were the main degradation products...

  20. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation

    DEFF Research Database (Denmark)

    Topakas, E.; Christakopoulos, Paul

    2004-01-01

    Production of feruloyl esterases (FAEs) by Fusarium oxysporum was enhanced by optimization of initial pH of the culture medium, the type and concentration of nitrogen and carbon source. Submerged batch cultivation in a laboratory bioreactor (17 1) produced activity at 82 nkat g(-1) dry substrate...... (corn cobs) which compared favorably to those reported for the other microorganisms. Use of de-esterified corn cobs as carbon source decreased FAE production by 5.5-fold compared to untreated corn cobs even though ferulic acid (FA) was added to the concentration found in alkali-extracts of corn cobs...

  1. Biodiesel Production Using Waste Cooking Oil and Ethanol for Alkaline Catalysis

    OpenAIRE

    Bulla Pereira, Edwin A.; Sierra, Fabio E.; Guerrero, Carlos A.

    2014-01-01

    This work presents a study of the results of the project “Design of a Biodiesel Production Process Based on Cooking Oils at the Universidad Nacional de Colombia” (“Diseño de un proceso de producción de biodiesel a partir de aceites de fritura de la Universidad Nacional de Colombia”) carried out in 2013. Refined vegetable oils are the most commonly used to produce biodiesel fuels; however, used fried oils (auf from the Spanish acronym) make for a product with quality, yield and environmental b...

  2. Advances in protease engineering for laundry detergents.

    Science.gov (United States)

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    Science.gov (United States)

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was soil.

  4. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation

    DEFF Research Database (Denmark)

    Topakas, E.; Christakopoulos, Paul

    2004-01-01

    Production of feruloyl esterases (FAEs) by Fusarium oxysporum was enhanced by optimization of initial pH of the culture medium, the type and concentration of nitrogen and carbon source. Submerged batch cultivation in a laboratory bioreactor (17 1) produced activity at 82 nkat g(-1) dry substrate...

  5. Evaluation of alkaline phosphatase detection in dairy products using a modified rapid chemiluminescent method and official methods.

    Science.gov (United States)

    Albillos, S M; Reddy, R; Salter, R

    2011-07-01

    Alkaline phosphatase is a ubiquitous milk enzyme that historically has been used to verify adequate pasteurization of milk for public health purposes. Current approved methods for detection of alkaline phosphatase in milk include the use of enzyme photoactivated substrates to give readings in milliunits per liter. The U.S. and European public health limit for alkaline phosphatase in pasteurized drinks is 350 mU/liter. A modified chemiluminescent method, fast alkaline phosphatase, was compared with the approved fluorometric and chemiluminescent alkaline phosphatase methods to determine whether the modified method was equivalent to the approved methods and suitable for detecting alkaline phosphatase in milk. Alkaline phosphatase concentrations in cow's, goat's, and sheep's milk and in flavored drinks and cream were determined by three methods. Evaluations in each matrix were conducted with pasteurized samples spiked with raw milk to produce alkaline phosphatase concentrations of 2 to 5,000 mU/liter. The tests were performed by the method developer and then reproduced at a laboratory at the National Center for Food Safety and Technology following the criteria for a single laboratory validation. The results indicated that the fast alkaline phosphatase method was not significantly different from the approved chemiluminescent method, with a limit of detection of 20 to 50 mU/liter in all the studied matrices. This modified chemiluminescent method detects alkaline phosphatase in the 350 mU/liter range with absolute differences from triplicate data that are lower and within the range of the allowed intralaboratory repeatability values published for the approved chemiluminescent method. Copyright ©, International Association for Food Protection

  6. Improving the gas productivity of the alkaline electrolyzer through the circulation technique

    Directory of Open Access Journals (Sweden)

    Kitipong Tangphant

    2014-03-01

    Full Text Available This research aims to study and improve the efficiency of a KOH electrolyzer through the gas productivity of the electrolyzer with different the circulation technique. In this work, the conceptual design of an electrolyzer falls into 2 categories; without pumping and with pumping. Direct current electricity at 5 different levels of 10, 15, 20, 25 and 30 A are charged into the system and the gas flow rate generated from the electrolyzer is subsequently monitored. The results show that at 30 A the gas generated from the circulation with pumping and the circulation without pumping are 2.31 litre/min and 1.76 litre/min, respectively. It is also found that the energy consumed by both techniques is the same; however, the circulation with pumping design shows the better gas productivity than that of the circulation without pumping design.

  7. Reductive Alkaline Release of N-Glycans Generates a Variety of Unexpected, Useful Products.

    Science.gov (United States)

    Figl, Rudolf; Altmann, Friedrich

    2018-02-01

    Release of O-glycans by reductive β-elimination has become routine in many glyco-analytical laboratories and concomitant release of N-glycans has repeatedly been observed. Revisiting this somewhat forgotten mode of N-glycan release revealed that all kinds of N-glycans including oligomannosidic and complex-type N-glycans from plants with 3-linked fucose and from mammals with or without 6-linked fucose and with sialic acid could be recovered. However, the mass spectra of the obtained products revealed very surprising facts. Even after 16 h incubation in 1 M sodium borohydride, a large part of the glycans occurred in reducing form. Moreover, about one third emerged in the form of the stable amino-functionalized 1-amino-1-deoxy-glycitol. When avoiding acidic conditions, considerable amounts of glycosylamine were observed. In addition, a compound with a reduced asparagine and de-N-acetylation products, in particular of sialylated glycans, was seen. The relative yields of the products reducing glycosylamine, reducing N-glycan, 1-amino-1-deoxy-glycitol or glycitol could be controlled by the release conditions, foremost by temperature and borohydride concentration. Thus, chemical release of N-glycans constitutes a cost-saving alternative to enzymatic hydrolysis for the preparation of precursors for the production of reference compounds for various formats of N-glycan analysis. Moreover, it allows to obtain a stable amino-functionalized glycan derivative, which can be employed to construct glycan arrays or affinity matrices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Production optimization of a heat-tolerant alkaline pectinase from Bacillus subtilis ZGL14 and its purification and characterization.

    Science.gov (United States)

    Yu, Ping; Zhang, Yishu; Gu, Donglu

    2017-09-03

    Alkaline pectinase has important applications in the pretreatment of waste water from food processing and in both the fabric and paper industries. In this study, a 2-level factorial design was used to screen significant factors that affect the activity of alkaline pectinase, and the response surface methodology (RSM) with a Box-Behnken design (BBD) was used to optimize their concentrations. Starch, peptone, KH 2 PO 4 and K 2 HPO 4 ·3H 2 O were found to significantly affect the activity of alkaline pectinase. Their optimal concentrations were as follows: 4.68% starch, 1.6% peptone, 0.26% KH 2 PO 4 and 0.68% K 2 HPO 4 ·3H 2 O. Under the above conditions, the activity of alkaline pectinase was significantly improved to 734.11 U/mL. Alkaline pectinase was purified to homogeneity with a recovery rate of 9.6% and a specific activity of 52372.52 U/mg. Its optimal temperature and pH were 50°C and 8.6, respectively. The purified enzyme showed strong thermo-stability and good alkali resistance. In addition, the activity of alkaline pectinase was improved in the presence of Mg 2+ . Cu 2+ , Mn 2+ , and Co 2+ significantly inhibited its activity. This study provides an important basis for the future development and use of a heat-tolerant alkaline pectinase from B. subtilis ZGL14.

  9. Production of class a biosolids with anoxic low dose alkaline treatment and odor management

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Orf, M.M.; Brewster, J.; Oleszkiewicz, J.; Reimers, R.S.; Lagasse, P.; Amy, B.; Glindemann, D.

    2003-07-01

    The feasibility of full-scale anoxic disinfection of dewatered and digested sludge from Winnipeg, Manitoba with low lime doses and lagoon fly ash was investigated to determine if a class A product could be produced. Lime doses of 50g, 100g, and 200g per kg of biosolids (dry) were used along with fly ash doses of 500g. 1000g. and 1500g per kg of biosolids (dry). The mixed product was buried in eight-10 cubic meter trenches at the West End Water Pollution Control Center In Winnipeg. The trenches were backfilled with dirt and trapped to simulate anoxic conditions. Sampling cages were packed with the mixed product and pathogens non-indigenous to Winnipeg's biosolids. The cages were buried amongst the mixed biosolids in the trench. The non-indigenous pathogens spiked in the laboratory were the helminth Ascaris suum and the enteric virus reovirus. Samples were removed at days 12, 40, 69, 291, and 356 and were tested for the presence of fecal Coliform, Clostridium perfringens spores, Ascaris suum eggs, and reovirus. The pH, total solids, and free ammonia content of the mixed product were also determined for each sample. Odor was quantified for samples at both 291 and 356 days. Fecal Coliform bacteria and reovirus were completely inactivated for doses as low as 100g lime per kg biosolids (dry) and 50g lime + 500g fly ash per kg biosolids (dry). Spores of the bacteria C. perfringens experienced a 4-log reduction when treated with 100g lime per kg biosolids and a 5-log reduction when treated with doses as low as 50g lime + 500g fly ash per kg biosolids (dry) after 69 days. Ascaris eggs were completely inactivated in 5 gram packets for all treatments involving 100g lime per kg biosolids (dry) after 69 days. Class A pathogen requirements were met for all treatments involving a lime dose of at least 100g per kg biosolids. The odor potential from the produced biosolids is also assessed. (author)

  10. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Optimization of the fermentation medium for maximization of thermostable neutral protease production by Bacillus sp. ... at 3.6 g/l and yeast extract at 3.9 g/l gived maximum protease activity of 6804 U/ml. Key words: Medium ... face method, which is used to study the effects of several factors influencing the ...

  11. Semi-continuous in situ magnetic separation for enhanced extracellular protease productionmodeling and experimental validation

    DEFF Research Database (Denmark)

    Cerff, M.; Scholz, A.; Käppler, T.

    2013-01-01

    ) constitutes an excellent adsorptive method for efficient extracellular protease removal during cultivation. In this work, the impact of semi‐continuous ISMS on the overall protease yield has been investigated. Results reveal significant removal of the protease from Bacillus licheniformis cultivations......In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS...

  12. Assessment of the Fusion Tags on Increasing Soluble Production of the Active TEV Protease Variant and Other Target Proteins in E. coli.

    Science.gov (United States)

    Yu, Xuelian; Sun, Jiaqi; Wang, Weiyu; Jiang, Li; Cheng, Beijiu; Fan, Jun

    2017-06-01

    In this study, five fusion tags affecting soluble production and cleavage activity of the tobacco etch virus (TEV) protease (TEVp) variant in Escherichia coli strains BL21 (DE3) and Rosetta™ (DE3) are investigated. Combination of the augmenting rare transfer RNAs (tRNAs) and the fused expressivity tag (N-terminal seven amino acid residues of E. coli translation initiation factor II) promotes the soluble TEVp partner expressed at relatively high level. Attachment of the maltose-binding protein (MBP) tag increases soluble expression of the protease released from the fusion protein in E. coli cells, but the incorporated TEVp recognition sequence slightly decreases expressivity of the fusion construct. Except for the green fluorescent protein, the attached expressivity tag shows less efficiency than the MBP tag in enhancing expression levels of the selected five target proteins in the Rosetta™ (DE3) cells under different induction conditions. Our results identified that high-level production of the functional target protein as the fusion partner in E. coli is combined with the intrinsic property of fusion tag, fusion protein stability, inherent folding of target protein, rare tRNA abundance, and the incorporated linker. Purified TEVp fusion constructs with the N-terminal expressivity tag, as well as the MBP partner, are the ideal alternatives for removing fusion tag.

  13. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Directory of Open Access Journals (Sweden)

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  14. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Science.gov (United States)

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-11-17

    It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  15. Effect of Methanethiol on Product Formation in a Biological Sulfide Oxidition process at Natron-alkaline Conditions

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Fortuny-Picornell, M.; Janssen, A.J.H.

    2009-01-01

    The effects of methanethiol (MT) on biological sulfide oxidation were studied in a continuously operated bioreactor, in which chemolithoautotrophic bacteria belonging to the genus Thioalkalivibrio convert hydrogen sulfide (H2S) at natron-alkaline conditions. Previous bioreactor experiments have

  16. Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production.

    Science.gov (United States)

    Talha, Zahir; Ding, Weimin; Mehryar, Esmaeil; Hassan, Muhammad; Bi, Jinhua

    2016-01-01

    To enhance the codigestion of degradation and improve biomethane production potential, sugarcane bagasse and filter mud were pretreated by sodium hydroxide NaOH 1 N at 100°C for 15, 30, and 45 minutes, respectively. Biomethane generation from 1-liter batch reactor was studied at mesophilic temperature (37 ± 1)°C, solid concentrations of 6%, and five levels of mixing proportion with and without pretreatment. The results demonstrate that codigestion of filter mud with bagasse produces more biomethane than fermentation of filter mud as single substrate; even codigested substrate composition presented a better balance of nutrients (C/N ratio of 24.70) when codigestion ratio between filter mud and bagasse was 25 : 75 in comparison to filter mud as single substrate (C/N ratio 9.68). All the pretreatments tested led to solubilization of the organic matter, with a maximum lignin reduction of 86.27% and cumulative yield of biomethane (195.8 mL·gVS -1 , digestion of pretreated bagasse as single substrate) obtained after 45 minutes of cooking by NaOH 1 N at 100°C. Under this pretreatment condition, significant increase in cumulative methane yield was observed (126.2 mL·gVS -1 ) at codigestion ratio of 25 : 75 between filter mud and bagasse by increase of 81.20% from untreated composition.

  17. Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Foulquié-Moreno, Maria R; Van de Velde, Miet; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2016-09-01

    Cocos nucifera L., coconut, is a palm of high importance in the food industry, but a considerable part of the biomass is inedible. In this study, the pretreatment and saccharification parameters NaOH solution, pretreatment duration and enzyme load were evaluated for the production of hydrolysates from green coconut mesocarp using 18% (w/v) total solids (TS). Hydrolysates were not detoxified in order to preserve sugars solubilized during the pretreatment. Reduction of enzyme load from 15 to 7.5 filter paper cellulase unit (FPU)/g of biomass has little effect on the final ethanol titer. With optimized pretreatment and saccharification, hydrolysates with more than 7% (w/v) sugars were produced in 48h. Fermentation of the hydrolysate using industrial Saccharomyces cerevisiae strains produced 3.73% (v/v) ethanol. Our results showed a simple pretreatment condition with a high-solid load of biomass followed by saccharification and fermentation of undetoxified coconut mesocarp hydrolysates to produce ethanol with high titer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ethyl ester production by homogeneous alkaline transesterification: influence of the catalyst.

    Science.gov (United States)

    Mendow, G; Veizaga, N S; Querini, C A

    2011-06-01

    In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH(3)ONa, and CH(3)OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH(3)ONa and CH(3)OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil-ethyl ester phase, thus accelerating the saponification reaction. It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae)

    KAUST Repository

    Šustr, Vladimír

    2014-08-01

    The saprophagous larvae of bibionid flies harbor bacteria in their alkaline intestinal tracts, but little is known about the contribution of the gut microbiota to the digestion of their recalcitrant diet. In this study, we measured oxygen and hydrogen partial pressure, redox potential and pH in the midgut, gastric caeca and hindgut of larvae of the bibionid fly Penthetria holosericea with Clark-type O2 and H2 microsensors, platinum redox microelectrodes, and LIX-type pH microelectrodes. The center of the midgut lumen was anoxic, whereas gastric caeca and hindgut were hypoxic. However, redox potential profiles indicated oxidizing conditions throughout the gut, with lowest values in the midgut (+20 to +60mV). Hydrogen production was not detected. The midgut was extremely alkaline (pH around 11), whereas hindgut and gastric caeca were neutral to slightly alkaline. While HPLC analysis showed high concentrations of glucose in the midgut (15mM) and gastric caeca (27mM), the concentrations of microbial fermentation products such as lactate (2-4mM), acetate (<1mM) and succinate (<0.5mM) were low in all gut regions, suggesting that the contribution of microorganisms to the digestive process, particularly in the alkaline midgut, is only of minor importance. We conclude that the digestive strategy of the saprophytic larva of P. holosericea, which feeds selectively on decomposed leaves and its own microbe-rich faeces, differs fundamentally from those of detritivorous and humivorous insects, which host a highly active, fermentative microbiota in their alkaline midgut or hindgut compartments. © 2014 Elsevier Ltd.

  20. Proteases and protease inhibitors in cancer

    NARCIS (Netherlands)

    van Noorden, C. J.

    1998-01-01

    The second conference on 'Proteases and protease inhibitors in cancer' was organized by the American Association for Cancer Research (AACR) and Acta Pathologica Microbiologica et Immunologica Scandinavica (APMIS). To understand the role of proteinases and to develop relevant synthetic inhibitors to

  1. Advanced alkaline water electrolysis

    International Nuclear Information System (INIS)

    Marini, Stefania; Salvi, Paolo; Nelli, Paolo; Pesenti, Rachele; Villa, Marco; Berrettoni, Mario; Zangari, Giovanni; Kiros, Yohannes

    2012-01-01

    A short review on the fundamental and technological issues relevant to water electrolysis in alkaline and proton exchange membrane (PEM) devices is given. Due to price and limited availability of the platinum group metal (PGM) catalysts they currently employ, PEM electrolyzers have scant possibilities of being employed in large-scale hydrogen production. The importance and recent advancements in the development of catalysts without PGMs are poised to benefit more the field of alkaline electrolysis rather than that of PEM devices. This paper presents our original data which demonstrate that an advanced alkaline electrolyzer with performances rivaling those of PEM electrolyzers can be made without PGM and with catalysts of high stability and durability. Studies on the advantages/limitations of electrolyzers with different architectures do show how a judicious application of pressure differentials in a recirculating electrolyte scheme helps reduce mass transport limitations, increasing efficiency and power density.

  2. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  3. A biotechnology perspective of fungal proteases

    Science.gov (United States)

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira, Edivaldo Ximenes; Pessoa, Adalberto; Magalhães, Pérola Oliveira

    2015-01-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  4. HIV protease inhibitor resistance

    NARCIS (Netherlands)

    Wensing, Annemarie M.J.; Fun, Axel; Nijhuis, Monique

    2017-01-01

    HIV protease is pivotal in the viral replication cycle and directs the formation of mature infectious virus particles. The development of highly specific HIV protease inhibitors (PIs), based on thorough understanding of the structure of HIV protease and its substrate, serves as a prime example of

  5. Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium.

    Science.gov (United States)

    del Rio, Beatriz; Linares, Daniel M; Ladero, Victor; Redruello, Begoña; Fernández, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2015-01-01

    Lactococcus lactis is the most important starter culture organism used in the dairy industry. Although L. lactis species have been awarded Qualified Presumption of Safety status by the European Food Safety Authority, and Generally Regarded as Safe status by the US Food and Drug Administration, some strains can produce the biogenic amine putrescine. One such strain is L. lactis subsp. cremoris CECT 8666 (formerly L. lactis subsp. cremoris GE2-14), which was isolated from Genestoso cheese. This strain catabolizes agmatine to putrescine via the agmatine deiminase (AGDI) pathway, which involves the production of ATP and two ammonium ions. The present work shows that the availability of agmatine and its metabolization to putrescine allows for greater bacterial growth (in a biphasic pattern) and causes the alkalinization of the culture medium in a dose-dependent manner. The construction of a mutant lacking the AGDI cluster (L. lactis CECT 8666 Δagdi) confirmed the latter's direct role in putrescine production, growth, and medium alkalinization. Alkalinization did not affect the putrescine production pattern and was not essential for increased bacterial growth.

  6. Cytomegalovirus protease targeted prodrug development.

    Science.gov (United States)

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  7. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.

    Science.gov (United States)

    van der Pol, Edwin; Bakker, Rob; van Zeeland, Alniek; Sanchez Garcia, David; Punt, Arjen; Eggink, Gerrit

    2015-04-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretreatment included acetic, glycolic and coumaric acid in concentrations up to 40, 21 and 2.5 g/kg dry weight bagasse respectively. Alkaline pretreated material contained up to 45 g/kg bagasse DW of sodium. Acid and autohydrolysis pretreatment results in a furan formation of 14 g/kg and 25 g/kg DW bagasse respectively. Enzyme monomerization efficiencies of pretreated solid material after 72 h were 81% for acid pretreatment, 77% for autohydrolysis and 57% for alkaline pretreatment. Solid material was washed with superheated water to decrease the amount of by-products. Washing decreased organic acid, phenol and furan concentrations in solid material by at least 60%, without a major sugar loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The alkaline comet assay used in evaluation of genotoxic damage of drinking water disinfection by-products (bromoform and chloroform

    Directory of Open Access Journals (Sweden)

    Messaouda Khallef

    2015-06-01

    Full Text Available The alkaline comet assay (pH 12.3 is a useful method for monitoring genotoxic effects of environmental pollutants in the root nuclei of Allium cepa and various plants; it allows the detection of single- and double-strand breaks, incomplete excision-repair sites and cross-links. It has been introduced to detect even small changes in DNA structure. It is a technically simple, highly sensitive, fast and economic test which detects in vitro and in vivo genotoxicity (DNA integrity and packing mode in any cell types examined, and requires just a few cells for its execution (Liman et al., 2011; Yıldız et al., 2009. Chloroform and bromoform are the most important trihalomethanes found in drinking water. Different concentrations of bromoform (25, 50, 75and 100µg/ml and chloroform (25, 50, 100 and 200 µg/ml were introduced to onion tuber roots. Distilled water was used as a negative control and methyl methansulfonate (MMS-10 µg/ml as positive control. All obtained data were subjected to statistical analyses by using SPSS 15.0 for Windows software. For comparison purposes, Duncan multiple range tests using one-way analysis of variance (ANOVA were employed and p<0.05 was accepted as the test of significance. Comet assay results showed that DNA damage was significant at p <0.05 for the different concentrations of chloroform and bromoform compared to the negative control which has a damage rate equal to 3.5 ± 0.7 and the positive control which has damage rate equal to 13.5 ± 2.12. The exposure of root tip cells to these disinfection by-products increases DNA damage. All concentrations examined in this study of bromoform and chloroform cause significant harm, which could be due to DNA damage induced by oxidative stress. The measurement of DNA damage in the nuclei of higher plant tissues is a new area of study with SCGE. This assay could be incorporated into in situ monitoring of atmosphere, water and soil: the comet assay allows a fast detection without

  9. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    Science.gov (United States)

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    Science.gov (United States)

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Linked production of pyroglutamate-modified proteins via self-cleavage of fusion tags with TEV protease and autonomous N-terminal cyclization with glutaminyl cyclase in vivo.

    Directory of Open Access Journals (Sweden)

    Yan-Ping Shih

    Full Text Available Overproduction of N-terminal pyroglutamate (pGlu-modified proteins utilizing Escherichia coli or eukaryotic cells is a challenging work owing to the fact that the recombinant proteins need to be recovered by proteolytic removal of fusion tags to expose the N-terminal glutaminyl or glutamyl residue, which is then converted into pGlu catalyzed by the enzyme glutaminyl cyclase. Herein we describe a new method for production of N-terminal pGlu-containing proteins in vivo via intracellular self-cleavage of fusion tags by tobacco etch virus (TEV protease and then immediate N-terminal cyclization of passenger target proteins by a bacterial glutaminyl cyclase. To combine with the sticky-end PCR cloning strategy, this design allows the gene of target proteins to be efficiently inserted into the expression vector using two unique cloning sites (i.e., SnaB I and Xho I, and the soluble and N-terminal pGlu-containing proteins are then produced in vivo. Our method has been successfully applied to the production of pGlu-modified enhanced green fluorescence protein and monocyte chemoattractant proteins. This design will facilitate the production of protein drugs and drug target proteins that possess an N-terminal pGlu residue required for their physiological activities.

  12. OPTIMIZATION OF MILK-CLOTTING PROTEASE PRODUCTION BY A LOCAL ISOLATE OF ASPERGILLUS NIGER FFB1 IN SOLID-STATE FERMENTATION

    Directory of Open Access Journals (Sweden)

    Souhila Bensmail

    2015-04-01

    Full Text Available The need to surmount the limitation of obtaining rennin, has been actively pushed researches to find new substitutes that present high milk-clotting activity which enables the production of high yields of cheese. In this study, the production of extracellular milk-clotting protease by locally isolated fungal specie, Aspergillus niger FFB1 under solid-state fermentation (SSF using cheep agro-industrial byproduct (wheat bran was optimized. The effects of several physicochemical and environmental factors were investigated to select the optimal conditions that ensure the best milk-clotting activity by application of "One-factor-at-a-time" method. A trial of cheese production using the crude extract was also carried out. The maximum enzyme activity (830 SU/g bran with a ratio MCA/PA of 4.25 was obtained under the optimum conditions of temperature (30°C, spores concentration (106 spores/mL, incubation time (72 hours, and moisture content of solid substrate (39.2% adjusted suitably with mineral solution (Czapek-Dox of pH 4.

  13. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    International Nuclear Information System (INIS)

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-01-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon - cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes [ 3 H]methyl-casein to acid-soluble products in the presence of ATP and Mg 2+ . ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles

  14. Comparative characterization of protease activity in cultured spotted rose snapper juveniles (Lutjanus guttatus

    Directory of Open Access Journals (Sweden)

    Emyr Peña

    2015-09-01

    Full Text Available Partial characterizations of digestive proteases were studied in three life stages of spotted rose snapper: early (EJ, middle (MJ and late juvenile (LJ with corresponding average weights of 21.3 ± 2.6 g (3 months after hatching, MAH, 190 ± 4.4 g (7 MAH, and 400 ± 11.5 g (12 MAH. At sampling points, the digestive tract was dissected into the stomach (St, pyloric caeca (PC, and the intestine in three sections (proximal (PI, middle (MI and distal intestine (DI. The effect of pH and temperature and specific inhibitors were evaluated for acid and alkaline proteases. Total acid and alkaline protease activity showed a tendency to increase with juvenile life stage of fish while trypsin activity decreased. Differences were found in acid and alkaline protease activities at different pH and temperatures during juvenile stages. Pepstatin A inhibited total activity in the stomach extract in all juvenile stages. Activity in total alkaline protease inhibition was significantly higher in EJ using TLCK, PMSF, SBTI, Phen and Ovo than in MJ and LJ, while no significant differences were found with TPCK inhibition. Therefore increases in protease activities with fish growth through juvenile stages in which a substitution or diversification in the type of alkaline enzymes exist. These results lead a better comprehension of changes in digestive potential of Lutjanidae fish.

  15. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications.

    Science.gov (United States)

    Juntunen, Kari; Mäkinen, Susanna; Isoniemi, Sari; Valtakari, Leena; Pelzer, Alexander; Jänis, Janne; Paloheimo, Marja

    2015-09-01

    A gene encoding a novel extracellular subtilisin-like protease was cloned from the ascomycete Fusarium equiseti and expressed in Trichoderma reesei. The F. equiseti protease (Fe protease) showed excellent performance in stain removal and good compatibility with several commercial laundry detergent formulations, suggesting that it has high potential for use in various industrial applications. The recombinant enzyme was purified and characterized. The temperature optimum of the Fe protease was 60 °C and it showed high activity in the pH range of 6-10, with a sharp decline in activity at pH above 10. The amino acid specificity of the Fe protease was studied using casein, cytochrome c, and ubiquitin as substrates. The Fe protease had broad substrate specificity: almost all amino acid residues were accepted at position P1, even though it showed some preference for cleavage at the C-terminal side of asparagine and histidine residues. The S4 subsite of Fe protease favors aspartic acid and threonine. The other well-characterized proteases from filamentous fungi, Proteinase K from Engyodontium album, Thermomycolin from Malbranchea sulfurea, and alkaline subtilisins from Bacillus species prefer hydrophobic amino acids in both the S1 and S4 subsites. Due to its different specificity compared to the members of the S8 family of clan SB of proteases, we consider that the Fe protease is a new protease. It does not belong to any previously defined IUBMB groups of proteases.

  16. Quantitative evaluation of the alkaline phosphatase activity in industrial and traditional dairy products supplied in Ahvaz as an indicator of pasteurization

    Directory of Open Access Journals (Sweden)

    M. Zarei

    2017-05-01

    Full Text Available Alkaline phosphatase is an indigenous milk enzyme and is probably, the most important indigenous milk enzyme from a dairy technology viewpoint which is used to determine the efficacy of the pasteurization process. The aim of this study was to assess the alkaline phosphatase activity of 200 samples of industrial and traditional yoghurt, ice cream and cheese, as well as raw and pasteurized milk samples. To achieve this purpose, p-nitrophenylphosphate was used as substrate and the amount of liberated p-nitrophenol was measured spectrophotometrically. The amount of liberated p-nitrophenol in all samples of raw milk was very high (6839±4070 µg/ml but in pasteurized milk samples, the amount was in the range of 0.75-52.96 µg/ml and 88% of the samples had less than 10 µg p-nitrophenol/ml, the maximum permissible limit of p-nitrophenol in pasteurized products. The amount of liberated p-nitrophenol was in the range of 5.68-1210 µg/ml and 2.61-18.22 µg/ml in traditional and industrial cheese samples, respectively and it was estimated at the range of 0.75-26.67 µg/ml and 0.71- 35.82 µg/ml for traditional and industrial ice cream samples, respectively. The lowest alkaline phosphatase activity was observed in both industrial and traditional yoghurt samples. Meanwhile, p-nitrophenol in 12% of industrial cheese, 44% of traditional cheese and 16% of both industrial and traditional ice cream samples was higher than 10 µg/ml which could be due to the inadequate pasteurization of the product or cross contamination with raw milk. The results of the present study showed a need for more strict attention in the pasteurization of milk and its products.

  17. Herbivore damage-induced production and specific anti-digestive function of serine and cysteine protease inhibitors in tall goldenrod, Solidago altissima L. (Asteraceae).

    Science.gov (United States)

    Bode, Robert F; Halitschke, Rayko; Kessler, André

    2013-05-01

    Plant protease inhibitors (PIs) are among the most well-studied and widely distributed resistance traits that plants use against their herbivore attackers. There are different types of plant PIs which putatively function against the different types of proteases expressed in insect guts. Serine protease inhibitors (SPIs) and cysteine protease inhibitors (CPIs) are hypothesized to differentially function against the predominant gut proteases in lepidopteran and coleopteran herbivores, respectively. Here, we test the hypothesis that tall goldenrod, Solidago altissima, can specifically respond to damage by different herbivores and differentially induce SPIs and CPIs in response to damage by lepidopteran and coleopteran herbivores. Moreover, we ask if the concerted induction of different types of PIs accounts for variation in induced resistance to herbivory. We altered and optimized a rapid and effective existing methodology to quantitatively analyze both SPI and CPI activity simultaneously from a single tissue sample and to use the same plant extracts directly for characterization of inhibitory effects on insect gut protease activity. We found that both SPIs and CPIs are induced in S. altissima in response to damage, regardless of the damaging herbivore species. However, only SPIs were effective against Spodoptera exigua gut proteases. Our data suggest that plant PI responses are not necessarily specific to the identity of the attacking organism but that different components of generally induced defense traits can specifically affect different herbivore species. While providing an efficient and broadly applicable methodology to analyze multiple PIs extracted from the same tissue, this study furthers our understanding of specificity in induced plant resistance.

  18. Exposure of RML scrapie agent to a sodium percarbonate-based product and sodium dodecyl sulfate renders PrPSc protease sensitive but does not eliminate infectivity.

    Science.gov (United States)

    Smith, Jodi D; Nicholson, Eric M; Foster, Gregory H; Greenlee, Justin J

    2013-01-11

    Prions, the causative agents of the transmissible spongiform encephalopathies, are notoriously difficult to inactivate. Current decontamination recommendations by the World Health Organization include prolonged exposure to 1 N sodium hydroxide or > 20,000 ppm sodium hypochlorite, or autoclaving. For decontamination of large stainless steel surfaces and equipment as in abattoirs, for example, these methods are harsh or unsuitable. The current study was designed to evaluate the effectiveness of a commercial product containing sodium percarbonate to inactivate prions. Samples of mouse brain infected with a mouse-adapted strain of the scrapie agent (RML) were exposed to a sodium percarbonate-based product (SPC-P). Treated samples were evaluated for abnormal prion protein (PrPSc)-immunoreactivity by western blot analysis, and residual infectivity by mouse bioassay. Exposure to a 21% solution of SPC-P or a solution containing either 2.1% or 21% SPC-P in combination with sodium dodecyl sulfate (SDS) resulted in increased proteinase K sensitivity of PrPSc. Limited reductions in infectivity were observed depending on treatment condition. A marginal effect on infectivity was observed with SPC-P alone, but an approximate 2-3 log10 reduction was observed with the addition of SDS, though exposure to SDS alone resulted in an approximate 2 log10 reduction. This study demonstrates that exposure of a mouse-adapted scrapie strain to SPC-P does not eliminate infectivity, but does render PrPSc protease sensitive.

  19. Pulmonary Proteases in the Cystic Fibrosis Lung Induce Interleukin 8 Expression from Bronchial Epithelial Cells via a Heme/Meprin/Epidermal Growth Factor Receptor/Toll-like Receptor Pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2011-03-04

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from ΔF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, α(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  20. Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2012-02-01

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from DeltaF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, alpha(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  1. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell......Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...

  2. Exceptional enhancement of H{sub 2} production in alkaline environment over plasmonic Au/TiO{sub 2} photocatalyst under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xianguang; Liu, Guigao [Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0814 (Japan); Environmental Remediation Materials Unit and International Center for Materials Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Yu, Qing [Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0814 (Japan); Wang, Tao; Chang, Kun; Li, Peng [Environmental Remediation Materials Unit and International Center for Materials Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Liu, Lequan, E-mail: Jinhua.YE@nims.go.jp, E-mail: Lequan.Liu@tju.edu.cn [TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072 (China); Ye, Jinhua, E-mail: Jinhua.YE@nims.go.jp, E-mail: Lequan.Liu@tju.edu.cn [Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0814 (Japan); Environmental Remediation Materials Unit and International Center for Materials Nanoarchitectonics (WPI-MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072 (China)

    2015-10-01

    A reaction environment modulation strategy was employed to promote the H{sub 2} production over plasmonic Au/semiconductor composites. It is shown that the fast consumption of the holes in plasmonic Au nanoparticles by methanol in alkaline reaction environment remarkably increases H{sub 2} generation rate under visible light. The photocatalytic reaction is mainly driven by the interband transition of plasmonic Au nanoparticles, and the apparent quantum efficiency of plasmon-assisted H{sub 2} production at pH 14 reaches 6% at 420 nm. The reaction environment control provides a simple and effective way for the highly efficient solar fuel production from biomass reforming through plasmonic photocatalysis in future.

  3. Secreted fungal aspartic proteases: A review.

    Science.gov (United States)

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. Copyright © 2016 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  4. PARTIAL PURIFICATION AND CHARACTERIZATION OF ALKALOPHILIC PROTEASE FROM PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    R. Satheeskumar

    2013-10-01

    Full Text Available Partial purification and characterization of alkalophilic protease production from Pseudomonas aeruginosa was isolated from the gut of marine and coastal waters shrimp Penaeus monodon. The protease production was assayed in submerged fermentation to produce maximum protease activity (423 ± 0.09 U/ml. The enzyme was precipitated with ammonium sulphate and partially purified by ion exchange chromatography through DEAE Sephadex A-50 column. In 10th fraction showed maximum protease activity (734 ± 0.18 U/ml with increase in purification fold. The molecular weight of protease from Pseudomonas aeruginosa was recorded as 60 kDa. The stability of protease was tested at various pH and temperature; it showed maximum protease activity at pH-9 and temperature 50ºC. Among the various surfactants tested for enzyme stability, maximum activity was retained in poly ethylene glycol. The compatibility of protease enzyme with various commercial detergents; the enzyme retained maximum protease activity in tide. The results are indicated that all these properties make the bacterial proteases are most suitable for wide industrial applications.

  5. Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Koo, Won-Mo; Jung, Su-Hwa; Kim, Joo-Sik

    2014-01-01

    Fast pyrolysis of ACQ (alkaline copper quaternary)-treated wood was carried out in a bench-scale pyrolysis plant equipped with a fluidized bed reactor and char separation system. This study focused on the production of a bio-oil with low copper and chlorine contents, especially by adopting the fractional condensation of bio-oil using water condensers, an impact separator and an electrostatic precipitator. In addition, various analytical tools were applied to investigate the physicochemical properties of the pyrolysis products and the behavior of the preservative during pyrolysis. The bio-oil yield was maximized at 63.7 wt% at a pyrolysis temperature of 411 °C. Highly water-soluble holocellulose-derived components such as acetic acid and hydroxyacetone were mainly collected by the condensers, while lignin-derived components and levoglucosan were mainly observed in the oils collected by the impact separator and electrostatic precipitator. All the bio-oils produced in the experiments were almost free of copper and chlorine. Most copper in ACQ was transferred into the char. - Highlights: • ACQ(alkaline copper quaternary)-treated wood was successfully pyrolyzed in a bench-scale fluidized bed. • Bio-oils separately collected were different in their characteristics. • Bio-oils were free of didecyldimethylammonium chloride. • Bio oils were almost free of copper and chlorine. • The concentration of levoglucosan in a bio-oil was 24–31 wt%

  6. Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping.

    Science.gov (United States)

    Santos, José I; Fillat, Úrsula; Martín-Sampedro, Raquel; Eugenio, María E; Negro, María J; Ballesteros, Ignacio; Rodríguez, Alejandro; Ibarra, David

    2017-12-01

    In modern lignocellulosic-based biorefineries, carbohydrates can be transformed into biofuels and pulp and paper, whereas lignin is burned to obtain energy. However, a part of lignin could be converted into value-added products including bio-based aromatic chemicals, as well as building blocks for materials. Then, a good knowledge of lignin is necessary to define its valorisation procedure. This study characterized different lignins from side-streams produced from olive tree pruning bioethanol production (lignins collected from steam explosion pretreatment with water or phosphoric acid as catalysts, followed by simultaneous saccharification and fermentation process) and alkaline pulping (lignins recovered from kraft and soda-AQ black liquors). Together with the chemical composition, the structure of lignins was investigated by FTIR, 13 C NMR, and 2D NMR. Bioethanol lignins had clearly distinct characteristics compared to pulping lignins; a certain number of side-chain linkages (mostly alkyl-aryl ether and resinol) accompanied with lower phenolic hydroxyls content. Bioethanol lignins also showed a significant amount of carbohydrates, mainly glucose and protein impurities. By contrast, pulping lignins revealed xylose together with a dramatical reduction of side-chains (some resinol linkages survive) and thereby higher phenol content, indicating rather severe lignin degradation during alkaline pulping processes. All lignins showed a predominance of syringyl units. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Computation of interactive effects and optimization of process parameters for alkaline lipase production by mutant strain of Pseudomonas aeruginosa using response surface methodology

    Directory of Open Access Journals (Sweden)

    Deepali Bisht

    2013-01-01

    Full Text Available Alkaline lipase production by mutant strain of Pseudomonas aeruginosa MTCC 10,055 was optimized in shake flask batch fermentation using response surface methodology. An empirical model was developed through Box-Behnken experimental design to describe the relationship among tested variables (pH, temperature, castor oil, starch and triton-X-100. The second-order quadratic model determined the optimum conditions as castor oil, 1.77 mL.L-1; starch, 15.0 g.L-1; triton-X-100, 0.93 mL.L-1; incubation temperature, 34.12 ºC and pH 8.1 resulting into maximum alkaline lipase production (3142.57 U.mL-1. The quadratic model was in satisfactory adjustment with the experimental data as evidenced by a high coefficient of determination (R² value (0.9987. The RSM facilitated the analysis and interpretation of experimental data to ascertain the optimum conditions of the variables for the process and recognized the contribution of individual variables to assess the response under optimal conditions. Hence Box-Behnken approach could fruitfully be applied for process optimization.

  8. Computation of interactive effects and optimization of process parameters for alkaline lipase production by mutant strain of Pseudomonas aeruginosa using response surface methodology

    Science.gov (United States)

    Bisht, Deepali; Yadav, Santosh Kumar; Darmwal, Nandan Singh

    2013-01-01

    Alkaline lipase production by mutant strain of Pseudomonas aeruginosa MTCC 10,055 was optimized in shake flask batch fermentation using response surface methodology. An empirical model was developed through Box-Behnken experimental design to describe the relationship among tested variables (pH, temperature, castor oil, starch and triton-X-100). The second-order quadratic model determined the optimum conditions as castor oil, 1.77 mL.L−1; starch, 15.0 g.L−1; triton-X-100, 0.93 mL.L−1; incubation temperature, 34.12 °C and pH 8.1 resulting into maximum alkaline lipase production (3142.57 U.mL−1). The quadratic model was in satisfactory adjustment with the experimental data as evidenced by a high coefficient of determination (R2) value (0.9987). The RSM facilitated the analysis and interpretation of experimental data to ascertain the optimum conditions of the variables for the process and recognized the contribution of individual variables to assess the response under optimal conditions. Hence Box-Behnken approach could fruitfully be applied for process optimization. PMID:24159311

  9. Treatment of PCR products with exonuclease I and heat-labile alkaline phosphatase improves the visibility of combined bisulfite restriction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kousuke; Emoto, Noriko; Sunohara, Mitsuhiro; Kawakami, Masanori; Kage, Hidenori; Nagase, Takahide; Ohishi, Nobuya [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Takai, Daiya, E-mail: dtakai-ind@umin.ac.jp [Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2010-08-27

    Research highlights: {yields} Incubating PCR products at a high temperature causes smears in gel electrophoresis. {yields} Smears interfere with the interpretation of methylation analysis using COBRA. {yields} Treatment with exonuclease I and heat-labile alkaline phosphatase eliminates smears. {yields} The elimination of smears improves the visibility of COBRA. -- Abstract: DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonuclease I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 {sup o}C or 65 {sup o}C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.

  10. Investigation of the roles of T6SS genes in motility, biofilm formation, and extracellular protease Asp production in Vibrio alginolyticus with modified Gateway-compatible plasmids.

    Science.gov (United States)

    Liu, H; Gu, D; Sheng, L; Wang, Q; Zhang, Y

    2012-07-01

    The aims of this study were to create and evaluate the Gateway-compatible plasmids for investigating the function of genes in Vibrio alginolyticus and other Gram-negative bacteria. In this study, Gateway-compatible plasmids were successfully constructed for rapid and comprehensive function analysis of genes. Taking advantage of these plasmids, the in-frame deletion mutant strains and their complemented strains of five T6SS genes, including dotU1, VEPGS_0008, VEPGS_0011, hcp2 and ppkA2, were obtained. The results illustrated that all the mutant strains showed no significant effects on extracellular protease production, expression of Hcp1, and biofilm formation when compared to the wild-type strain, but in-frame deletion of VEPGS_0008 resulted in obvious biofilm reduction and the complemented strain restored to the level of the wild-type strain. Besides, in-frame deletion of dotU1, VEPGS_0008 and ppkA2 abolished the swarming ability. A set of Gateway-compatible vectors for internal insertion, in-frame deletion and complementation of the target genes is constructed to facilitate the general and rapid function analysis of genes involved in T6SS in Vibrio alginolyticus. The modified Gateway-compatible plasmids greatly facilitate the high-throughput and convenient function analysis of the unidentified genes. No claim to Chinese Government works. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  11. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    International Nuclear Information System (INIS)

    Kalayarasan, Srinivasan; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam

    2013-01-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells

  12. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Kalayarasan, Srinivasan, E-mail: kalaivasanbio@gmail.com; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam, E-mail: sudhandiran@yahoo.com

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  13. Biodiesel production using alkaline ionic liquid and adopted as lubricity additive for low-sulfur diesel fuel.

    Science.gov (United States)

    Luo, Hui; Fan, Weiyu; Li, Yang; Nan, Guozhi

    2013-07-01

    Preparation of biodiesel from vegetable oils, such as rapeseed oil, soybean oil and sunflower oil, catalyzed by an alkaline ionic liquid 1-butyl-3-methylimidazolium imidazolide ([Bmim]Im) was investigated in this work. The results demonstrated that [Bmim]Im exhibited high activity and the yield of biodiesel was up to 95% or more when molar ratio of methanol to vegetable oil was 6:1, ionic liquid dosage was 6 wt.%, reaction temperature was 60°C, and reaction time was 60 min. After [Bmim]Im was used for the sixth time, the yield of biodiesel still remained at about 95%. The effects of the biodiesels on the lubricity of low-sulfur diesel fuel were also investigated using the High Frequency Reciprocating Rig method, and the results showed that sunflower biodiesel and soybean biodiesel had higher lubrication performance than that of rapeseed biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer

    International Nuclear Information System (INIS)

    Khalilnejad, A.; Riahy, G.H.

    2014-01-01

    Highlights: • A new index for optimal sizing of system is proposed. • Electromechanical model of all components is designed and simulated using MATLAB. • Detailed and accurate model of advanced alkaline electrolyzer is simulated. • Three different conditions of using WT and PV array for this system are discussed. • Actual data for weekly irradiation, wind speed, and temperature of Sahand are used. - Abstract: In this study, design and modelling of hybrid wind–photovoltaic system is done for the purpose of hydrogen production through water electrolysis. Actual data for weekly solar irradiation, wind speed, and ambient temperature of Sahand, Iran, are used for performance simulation and analysis of the system examined. The detailed model of components is used. The 10 kW alkaline electrolyzer model, which produces hydrogen, is based on combination of empirical electrochemical relationships, thermodynamics, and heat transfer theory. The operation of this system is optimized using imperial competitive colony algorithm. The objective of optimization is to maximize hydrogen production, considering minimum production of average excess power. This system is analysed in three different conditions of using just wind turbine (WT), photovoltaic (PV) array, and combination of them as power source, producing hydrogen of 8297, 4592, and 10,462 mol, respectively. As for this result and with analysing other results of simulation, it is clarified that the hybrid system is more useful for this study. In hybrid form the ratio of average produced power to nominal power for PV array is 0.247 and for WT is 0.493 which demonstrates that WT is more effective in production

  15. Alkaline proteases are important group of enzymes used primarily ...

    African Journals Online (AJOL)

    KTUZ

    Full Length Research Paper. Extracellular proteolytic activity of Deinococcus geothermalis. Olga Pietrow, Anna Panek and Józef Synowiecki*. Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology,. Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland.

  16. Alkaline Protease from Bacillus firmus 7728 | Rao | African Journal ...

    African Journals Online (AJOL)

    African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 6, No 21 (2007) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Download this PDF file. The PDF file you selected should ...

  17. Alkaline protease from senesced leaves of invasive weed Lantana ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... food and other biotechnology industries. Endoproteases were also isolated from alfalfa, oat and barley senesced leaves which are involved in the process of protein degradation during foliar senescence (Nieri et al., 1998;. Miller and Huffaker, 1981; Drivdahl and Thimann, 1977,. 1978). Senescing leaves ...

  18. Increasing the alkaline protease activity of Bacillus cereus and ...

    African Journals Online (AJOL)

    User

    2011-05-09

    73441, Iran. Accepted 1 April, 2011 ... Bacterial spores are amongst the most resistant of all microbial forms to inactivation by chemical or ... containing soya flour, starch and wheat bran as the main com-ponents. The produced ...

  19. Alkaline protease from senesced leaves of invasive weed | Gaur ...

    African Journals Online (AJOL)

    step procedure involving ammonium sulfate precipitation and Sephadex G-250 gel permeation chromatography. The Sephadex-G-250 fraction of senesced leaves of Lantana camara showed 28.31 fold with a yield of 6.19%. The enzyme was ...

  20. Effect of the culture conditions on the production of an extracellular protease by thermophilic Bacillus sp and some properties of the enzymatic activity Efeito das condições de cultivo sobre a produção de proteases extracelulares pelo termofílico Bacillus sp e algumas propriedades da atividade enzimática

    Directory of Open Access Journals (Sweden)

    Camila Rocha da Silva

    2007-06-01

    Full Text Available Protease production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing 1% maltose as a carbon source and supplemented with whey protein (0.1% and corn steep liquor (0.3% reached a maximum at 14 h, with levels of 42 U/mg protein. The microorganism was capable of utilizing a wide range of carbon sources, but protease activity varied according the carbon source. Starch and maltose were the best carbon sources in the present study for protease secretion, while lactose and sucrose were less effective. Increasing maltose concentration in the medium until 1%, improved the growth of the organism and the enzyme activity. Regarding the amounts of corn steep liquor and whey protein in the medium, the concentrations of 0.2% and 0.1% respectively, were considered the most effective for protease secretion by the organism. Studies on the protease characterization revealed that the optimum temperature of this enzyme was 70ºC. Thermostability profile indicated that the enzyme retained 80% of the original activity after 2 h heat treatment at 60ºC. At 70ºC, 70% of the original activity was retained after 15 min heat treatment. The optimum pH of the enzyme was found to be 8.5. After incubation of crude enzyme solution at room temperature for 2 h at pH 6.0-10.0, a decreased of about 15% of its original activity at pH 8.5 was observed. At pH 10.0, the decrease was 24%. In the presence of 1.0 M and 5.0 M NaCl, 76% and 37% of protease activity was retained after 2 h incubating at 45ºC respectively.A produção de proteases pelo termofílico Bacillus sp cepa SMIA-2 cultivado em culturas líquidas contendo maltose (1% e suplementada com proteínas de soro (0,1% e água de maceração de milho (0,3% alcançou o máximo em 14 h, com níveis de 42 U/mg proteína. O microrganismo foi capaz de utilizar várias fontes de carbono, mas a atividade da protease variou com cada fonte. Amido e maltose foram as melhores fontes para a secreção da

  1. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  2. Alkaline-cell lysis through in-line static mixer reactor for the production of plasmid DNA for gene therapy.

    Science.gov (United States)

    Chamsart, Saethawat; Karnjanasorn, Tanyawat

    2007-02-15

    A state-of-the-art in-line static mixer reactor (ISMR) was invented to lyse E. coli cells and neutralize the cell lysate continuously and efficiently for the extraction of plasmid DNA. It comprised two connected static dynamic mixers, each 0.01 m in diameter and 0.9 m in length, one for lysis and one for neutralization. Cells were lysed using concentrated alkaline with 1% SDS and the lysate was neutralized at feed rates of cell suspension:lysis solution:neutralization solution of 125:250:125, 250:500:250, and 500:1,000:500 mL/min. Distances for the mixtures to reach color homogeneity were dependent on feed rates. The higher the feed rates the shorter the mixing distances and times. However, complete cell lysis and neutralization were independent of color homogeneity. Lysate viscosity and neutralized floc size decreased and floc density increased, as distances and feed rates increased. High plasmid yields were obtained from both lysis and neutralization at feed rate ratios of 125:250:125 and 250:500:250 mL/min within mixing distances or =0.6 m at all feed rates due to a longer exposure to strong alkali and shear flow. This invention showed excellent performance with scaleable potential for the commercial manufacture of plasmid DNA.

  3. Menstrual blood loss measurement: validation of the alkaline hematin technique for feminine hygiene products containing superabsorbent polymers.

    Science.gov (United States)

    Magnay, Julia L; Nevatte, Tracy M; Dhingra, Vandana; O'Brien, Shaughn

    2010-12-01

    To validate the alkaline hematin technique for measurement of menstrual blood loss using ultra-thin sanitary towels that contain superabsorbent polymer granules as the absorptive agent. Laboratory study using simulated menstrual fluid (SMF) and Always Ultra Normal, Long, and Night "with wings" sanitary towels. Keele Menstrual Disorders Laboratory. None. None. Recovery of blood, linearity, and interassay variation over a range of SMF volumes applied to towels. Because of the variable percentage of blood in menstrual fluid, blood recovery was assessed from SMF constituted as 10%, 25%, 50%, and 100% blood. The lower limit of reliable detection and the effect of storing soiled towels for up to 4 weeks at 15°C-20°C, 4°C, and -20°C before analysis were determined. Ninety percent recovery was reproducibly achieved up to 30 mL applied volume at all tested SMF compositions, except at low volume or high dilution equivalent to sanitary towels that contain superabsorbent polymers. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    Science.gov (United States)

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    Science.gov (United States)

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  6. Peptide synthesis in neat organic solvents with novel thermostable proteases

    NARCIS (Netherlands)

    Toplak, Ana; Nuijens, Timo; Quaedflieg, Peter J L M; Wu, Bian; Janssen, Dick B

    Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the

  7. Extracellular protease produced by Bacillus subtilis isolated from ...

    African Journals Online (AJOL)

    In a study to evaluate the microbiological safety of some paracetamol oral solutions sold in some Nigerian drug stores, 40.0% of the samples examined was contaminated with protease-producing Bacillus subtilis. The production of extracellular protease was induced by casein in the minimal medium and was found to be the ...

  8. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... The highest protease activity was determined at 30°C temperature and 6.4 pH conditions and after the 18th hour, it decreased evidently. Key words: Protease, production, optimization, Bacillus sp. INTRODUCTION. Enzymes have been produced in large industrial scale for several decades (Falch, 1991).

  9. Simultaneous α-amylase and protease production by the soil bacterium Bacillus sp. SMIA-2 under submerged culture using whey protein concentrate and corn steep liquor: compatibility of enzymes with commercial detergents

    OpenAIRE

    Corrêa, Thamy Lívia Ribeiro; Moutinho, Stella Karla dos Santos; Martins, Meire Lelis Leal; Martins, Marco Antônio

    2011-01-01

    Protease and α-amylase production by a thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.25% (w/v) starch as a carbon source reached a maximum at 18 hours (47 U.mg-1 Protein) and 36 hours (325 U.mg-1 Protein), respectively. Culture medium supplementation with whey protein concentrate (0.1%, w/v) and corn steep liquor (0.3%, w/v) not only improved the production of both enzymes but also enabled them to be produced simultaneously. Under these conditions, α-amylase and ...

  10. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    Science.gov (United States)

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Metal complexation in near field conditions of nuclear waste repository - stability constant of copper complexation with cellulose degradation products, in alkaline conditions

    International Nuclear Information System (INIS)

    Guede, Kipre Bertin

    2005-11-01

    Copper is a stable element and spent fuel component which constitutes the radioactive waste. The reaction of Copper with cellulose degradation products in alkaline conditions was performed to mimic what occurs in near field conditions of nuclear waste repository. From the characteristics of Cu (II), this thesis aims at inferring the behaviour of radionuclides vis a vis the degradation products of cellulose. The contribution of the present work is therefore the assessment of the stability of the major cellulose degradation product, its affinity for Copper and the extent of the complexation function 13 between Cu (II) and the organic moieties. The formation of cellulose degradation products was followed by measurement of p11, Conductivity, Angle of rotation, relative abundance of aliphatics and aromatics (E4/E6 ) aid by UV-visible spectroscopy. The TOC was determined using the Walkley and Black titration after respectively 31 weeks and 13 weeks of degradation for the reaction mixtures T and A, N. The stability of the major degradation products gave the following figures: ISA(A): - 13 43.39 <ΔG -10639.88 ISA(N): - Ii 436.45<ΔG< -9103.6. The study of the characteristics of Gluconic Acid, as a model compound, was carried out in an attempt to give a general picture of the roper ties of cellulose degradation products. The Complexation between Cu (II) and the organic ligand (Cellulose degradation products) was performed using UV-visible spectroscopy and Ion Distribution technique. The Log B value obtained from the complexation studies at 336 nm for 1 = 0. I Ni NaClO4 and I = 0.01 M NaClO4, falls within a range of 3.48 to 3.74 for the standard reference material (Gluconic Acid), and within I .87 to 2.3 I, and I .6 to 2.01, respectively for the degradation Products ISA (A) and ISA(N). The ion distribution studies showed that: • In (he absence of the degradation product ISA and at pH = 3.68. 56. 17 % of Cu (II) was bound to the resin. • In the presence of ISA and at 2

  12. Application of normal fluorescence and stability-indicating derivative synchronous fluorescence spectroscopy for the determination of gliquidone in presence of its fluorescent alkaline degradation product

    Science.gov (United States)

    El-ghobashy, Mohamed R.; Yehia, Ali M.; Helmy, Aya H.; Youssef, Nadia F.

    2018-01-01

    Simple, smart and sensitive normal fluorescence and stability-indicating derivative synchronous spectrofluorimetric methods have been developed and validated for the determination of gliquidone in the drug substance and drug product. Normal spectrofluorimetric method of gliquidone was established in methanol at λ excitation 225 nm and λ emission 400 nm in concentration range 0.2-3 μg/ml with LOD equal 0.028. The fluorescence quantum yield of gliquidone was calculated using quinine sulfate as a reference and found to be 0.542. Stability-indicating first and third derivative synchronous fluorescence spectroscopy were successfully utilized to overcome the overlapped spectra in normal fluorescence of gliquidone and its alkaline degradation product. Derivative synchronous methods are based on using the synchronous fluorescence of gliquidone and its degradation product in methanol at Δ λ50 nm. Peak amplitude in the first derivative of synchronous fluorescence spectra was measured at 309 nm where degradation product showed zero-crossing without interference. The peak amplitudes in the third derivative of synchronous fluorescence spectra, peak to trough were measured at 316,329 nm where degradation product showed zero-crossing. The different experimental parameters affecting the normal and synchronous fluorescence intensity of gliquidone were studied and optimized. Moreover, the cited methods have been validated as per ICH guidelines. The peak amplitude-concentration plots of the derivative synchronous fluorescence were linear over the concentration range 0.05-2 μg/ml for gliquidone. Limits of detection were 0.020 and 0.022 in first and third derivative synchronous spectra, respectively. The adopted methods were successfully applied to commercial tablets and the results demonstrated that the derivative synchronous fluorescence spectroscopy is a powerful stability-indicating method, suitable for routine use with a short analysis time. Statistical comparison between

  13. Secreted proteases from pathogenic fungi.

    Science.gov (United States)

    Monod, Michel; Capoccia, Sabrina; Léchenne, Barbara; Zaugg, Christophe; Holdom, Mary; Jousson, Olivier

    2002-10-01

    Many species of human pathogenic fungi secrete proteases in vitro or during the infection process. Secreted endoproteases belong to the aspartic proteases of the pepsin family, serine proteases of the subtilisin family, and metalloproteases of two different families. To these proteases has to be added the non-pepsin-type aspartic protease from Aspergillus niger and a unique chymotrypsin-like protease from Coccidioides immitis. Pathogenic fungi also secrete aminopeptidases, carboxypeptidases and dipeptidyl-peptidases. The function of fungal secreted proteases and their importance in infections vary. It is evident that secreted proteases are important for the virulence of dermatophytes since these fungi grow exclusively in the stratum corneum, nails or hair, which constitutes their sole nitrogen and carbon sources. The aspartic proteases secreted by Candida albicans are involved in the adherence process and penetration of tissues, and in interactions with the immune system of the infected host. For Aspergillus fumigatus, the role of proteolytic activity has not yet been proved. Although the secreted proteases have been intensively investigated as potential virulence factors, knowledge on protease substrate specificities is rather poor and few studies have focused on the research of inhibitors. Knowledge of substrate specificities will increase our understanding about the action of each protease secreted by pathogenic fungi and will help to determine their contribution to virulence.

  14. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products.

    Science.gov (United States)

    Tantis, Iosif; Bousiakou, Leda; Frontistis, Zacharias; Mantzavinos, Dionissios; Konstantinou, Ioannis; Antonopoulou, Maria; Karikas, George-Albert; Lianos, Panagiotis

    2015-08-30

    Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC-MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7×10(-4)min(-1) under low intensity UVA irradiation of 1.5mWcm(-2) in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6×10(-4)min(-1) by applying a forward bias of +0.6V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC-MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Determination of humic and fulvic acids in commercial solid and liquid humic products by alkaline extraction and gravimetric determination

    Science.gov (United States)

    Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method for quantification of humic (HA) and fulvic acids (FA) in raw ores and products. Here we present a thoroughly validated method, the Humic Pro...

  16. Death proteases come alive

    NARCIS (Netherlands)

    Woltering, E.J.

    2004-01-01

    Cell death in plants exhibits morphological features comparable to caspase-mediated apoptosis in animals, suggesting that plant cell death is executed by (caspase-like) proteases. However, to date, no caspase homologues have been identified in plants and therefore the existence and nature of these

  17. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Studies On Optimization Of Protease Production Using Bacterial Isolate Clri Strain 5468 And Its Application In Dehairing And Hydrolysis Of Tannery Fleshings Solid Waste Management

    OpenAIRE

    Vimala Devi Seenivasagham; C. Rose

    2015-01-01

    The strain which produces protease was originally isolated characterized in Biotechnology laboratory at CLRI and was maintained. The microorganism was growned on several proteolytic media and the maximum activity was observed. The characterization of enzyme was analysed for different pH temperature size of inoculum inhibitors age of the culture. Then the enzyme was observed for the unhairing of skin and the disadvantage in chemical treatment was studied. The conformation of unhairing was stud...

  19. Biodiesel Production from Kapok (Ceiba pentandra Seed Oil using Naturally Alkaline Catalyst as an Effort of Green Energy and Technology

    Directory of Open Access Journals (Sweden)

    N.A. Handayani

    2013-10-01

    Full Text Available Nowadays, energy that used to serve all the needs of community, mainly generated from fossil (conventional energy. Terrace in energy consumption is not balanced with adequate fossil fuel reserves and will be totally depleted in the near future. Indonesian Government through a Presidential Decree No. 5 year 2006 mandates an increased capacity in renewable energy production from 5 percent to 15 percent in 2025. C. pentandra seed oil has feasibility as a sustainable biodiesel feedstock in Indonesia. The aim of this paper was to investigate biodiesel production from ceiba petandra seed oil using naturally potassium hydroxide catalyst. Research designs are based on factorial design with 2 levels and 3 independent variables (temperature, reaction time and molar ratio of methanol to oil. According to data calculation, the most influential single variable is molar ratio of methanol to oil. Characterization of biodiesel products meet all the qualifications standardized by SNI 04-7182-2006. Keywords: biodiesel, kapok seed oil, c. pentandra, green technology

  20. Effect of Light/Dark Regimens on Hydrogen Production by Tetraselmis subcordiformis Coupled with an Alkaline Fuel Cell System.

    Science.gov (United States)

    Guo, Zhen; Li, Ying; Guo, Haiyan

    2017-12-01

    To improve the photoproduction of hydrogen (H 2 ) by a green algae-based system, the effect of light/dark regimens on H 2 photoproduction regulated by carbonyl cyanide m-chlorophenylhydrazone (CCCP) was investigated. A fuel cell was integrated into a photobioreactor to allow online monitoring of the H 2 evolution rate and decrease potential H 2 feedback inhibition by consuming the generated H 2 in situ. During the first 15 h of H 2 evolution, the system was subjected to dark treatment after initial light illumination (L/D = 6/9 h, 9/6 h, and 12/3 h). After the dark period, all systems were again exposed to light illumination until H 2 evolution stopped. Two peaks were observed in the H 2 evolution rate under all three light/dark regimens. Additionally, a high H 2 yield of 126 ± 10 mL L -1 was achieved using a light/dark regimen of L 9 h/D 6 h/L until H 2 production ceased, which was 1.6 times higher than that obtained under continuous illumination. H 2 production was accompanied by some physiological and morphological changes in the cells. The results indicated that light/dark regimens improved the duration and yield of H 2 photoproduction by the CCCP-regulated process of Tetraselmis subcordiformis.

  1. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Tantis, Iosif [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Bousiakou, Leda [Department of Physics and Astronomy, King Saud University, Riyadh (Saudi Arabia); Department of Automation Engineering, Technological Educational Institute of Pireaus, GR-12244 Athens (Greece); Frontistis, Zacharias; Mantzavinos, Dionissios [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Konstantinou, Ioannis; Antonopoulou, Maria [Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio (Greece); Karikas, George-Albert [Department of Medical Laboratories Technology, Technological Educational Institute of Athens, 12210 Athens (Greece); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); FORTH/ICE-HT, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-08-30

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10{sup −4} min{sup −1} under low intensity UVA irradiation of 1.5 mW cm{sup −2} in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10{sup −4} min{sup −1} by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  2. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    International Nuclear Information System (INIS)

    Tantis, Iosif; Bousiakou, Leda; Frontistis, Zacharias; Mantzavinos, Dionissios; Konstantinou, Ioannis; Antonopoulou, Maria; Karikas, George-Albert; Lianos, Panagiotis

    2015-01-01

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10 −4 min −1 under low intensity UVA irradiation of 1.5 mW cm −2 in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10 −4 min −1 by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture

  3. Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds.

    Science.gov (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat; Zarnegar, Mohammad; Ahmadi, Hamed

    2018-01-02

    The steam gasification of algal biomass (Cladophora glomerata L.) in presence of alkali and alkaline-earth metal compounds catalysts was studied to enhance the yield of syngas and reduce its tar content through cracking and reforming of condensable fractions. The commercial catalysts used include NaOH, KHCO 3 , Na 3 PO 4 and MgO. The gasification runs carried out with a research scale, biomass gasification unit, show that the NaOH has a strong potential for production of hydrogen, along with the added advantages of char converting and tar destruction, allowing enhancement of produced syngas caloric value. When the temperature increased from 700°C to 900°C, the tar content in the gas sharply decreased, while the hydrogen yield increased. Increasing steam/biomass ratio significantly increased hydrogen yield and tar destruction; however, the particle size in the range of 0.5-2.5 mm played a minor role in the process.

  4. Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering.

    Science.gov (United States)

    Liu, Zhuo; Zhao, Xinqing; Bai, Fengwu

    2013-05-01

    Xylanase is the enzyme complex that is responsible for the degradation of xylan; however, novel xylanase producers remain to be explored in marine environment. In this study, a Streptomyces strain M11 which exhibited xylanase activity was isolated from marine sediment. The 16S rDNA sequence of M11 showed the highest identity (99 %) to that of Streptomyces viridochromogenes. The xylanase produced from M11 exhibited optimum activity at pH 6.0, and the optimum temperature was 70 °C. M11 xylanase activity was stable in the pH range of 6.0-9.0 and at 60 °C for 60 min. Xylanase activity was observed to be stable in the presence of up to 5 M NaCl. Antibiotic-resistant mutants of M11 were isolated, and among the various antibiotics tested, streptomycin showed the best effect on obtaining xylanase overproducer. Mutant M11-1(10) isolated from 10 μg/ml streptomycin-containing plate showed 14 % higher xylanase activities than that of the wild-type strain. An analysis of gene rpsL (encoding ribosomal protein S12) showed that rpsL from M11-1(10) contains a K88R mutation. This is the first report to show that marine-derived S. viridochromogenes strain can be used as a xylanase producer, and utilization of ribosome engineering for the improvement of xylanase production in Streptomyces was also first successfully demonstrated.

  5. Structural characterization of alkaline and oxidative stressed degradation products of lurasidone using LC/ESI/QTOF/MS/MS.

    Science.gov (United States)

    Talluri, M V N Kumar; Dharavath, Shireesha; Kalariya, Pradipbhai D; Prasanth, B; Srinivas, R

    2015-02-01

    A selective, accurate, precise and robust stability indicating liquid chromatography assay method was developed for the monitoring of a novel antipsychotic drug, lurasidone, in the presence of its degradation products (DPs). Also, we investigated degradation behavior of the drug under various stressed conditions such as hydrolytic (acidic, basic and neutral), oxidation, photolytic and thermal. The drug was found to be degraded under base hydrolytic and oxidative conditions, while it was stable in acid and neutral hydrolytic, photolytic and thermal conditions. The method showed adequate separation of lurasidone and its DPs on Xterra C18 (150 mm × 4.6 mm i.d., 3.5 μm) column using 20 mM ammonium formate (pH 3.0): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. This method was extended to liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC/ESI/QTOF/MS/MS) for structural characterization of DPs. A total of five DPs were characterized by LC/ESI/QTOF/MS/MS studies. Most probable mechanisms for the formation of DPs were proposed. The developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization Guideline Q2 (R1). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Bacillus amyloliquefaciens ssp. plantarum strains as potential protective starter cultures for the production of Bikalga, an alkaline fermented food.

    Science.gov (United States)

    Compaoré, C S; Nielsen, D S; Sawadogo-Lingani, H; Berner, T S; Nielsen, K F; Adimpong, D B; Diawara, B; Ouédraogo, G A; Jakobsen, M; Thorsen, L

    2013-07-01

    To identify and screen dominant Bacillus spp. strains isolated from Bikalga, fermented seeds of Hibiscus sabdariffa for their antimicrobial activities in brain heart infusion (BHI) medium and in a H. sabdariffa seed-based medium. Further, to characterize the antimicrobial substances produced. The strains were identified by gyrB gene sequencing and phenotypic tests as B. amyloliquefaciens ssp. plantarum. Their antimicrobial activity was determined by the agar spot and well assay, being inhibitory to a wide range of Gram-positive and Gram-negative pathogenic bacteria and fungi. Antimicrobial activity against Bacillus cereus was produced in H. sabdariffa seed-based medium. PCR results revealed that the isolates have potential for the lipopeptides iturin, fengycin, surfactin, the polyketides difficidin, macrolactin, bacillaene and the dipeptide bacilysin production. Ultra-high-performance liquid chromatography-time of flight mass spectrometry analysis of antimicrobial substance produced in BHI broth allowed identification of iturin, fengycin and surfactin. The Bacillus amyloliquefaciens ssp. plantarum exhibited broad-spectrum antifungal and antibacterial properties. They produced several lipopeptide antibiotics and showed good potential for biological control of Bikalga. Pathogenic bacteria often occur in spontaneous food fermentations. This is the first report to identify indigenous B. amyloliquefaciens ssp. plantarum strains as potential protective starter cultures for safeguarding Bikalga. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  7. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Zhou

    Full Text Available Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 10(5 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%, Flavobacterium (21.0% and Lacinutrix (16.2%. Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea.

  8. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.

    OpenAIRE

    Pizzi, E; Tramontano, A; Tomei, L; La Monica, N; Failla, C; Sardana, M; Wood, T; De Francesco, R

    1994-01-01

    We have built a model of the specificity pocket of the protease of hepatitis C virus on the basis of the known structures of trypsin-like serine proteases and of the conservation pattern of the protease sequences among various hepatitis C strains. The model allowed us to predict that the substrate of this protease should have a cysteine residue in position P1. This hypothesis was subsequently proved by N-terminal sequencing of two products of the protease. The success of this "blind" test inc...

  9. Application of normal fluorescence and stability-indicating derivative synchronous fluorescence spectroscopy for the determination of gliquidone in presence of its fluorescent alkaline degradation product.

    Science.gov (United States)

    El-Ghobashy, Mohamed R; Yehia, Ali M; Helmy, Aya H; Youssef, Nadia F

    2018-01-05

    Simple, smart and sensitive normal fluorescence and stability-indicating derivative synchronous spectrofluorimetric methods have been developed and validated for the determination of gliquidone in the drug substance and drug product. Normal spectrofluorimetric method of gliquidone was established in methanol at λ excitation 225nm and λ emission 400nm in concentration range 0.2-3μg/ml with LOD equal 0.028. The fluorescence quantum yield of gliquidone was calculated using quinine sulfate as a reference and found to be 0.542. Stability-indicating first and third derivative synchronous fluorescence spectroscopy were successfully utilized to overcome the overlapped spectra in normal fluorescence of gliquidone and its alkaline degradation product. Derivative synchronous methods are based on using the synchronous fluorescence of gliquidone and its degradation product in methanol at Δ λ50nm. Peak amplitude in the first derivative of synchronous fluorescence spectra was measured at 309nm where degradation product showed zero-crossing without interference. The peak amplitudes in the third derivative of synchronous fluorescence spectra, peak to trough were measured at 316,329nm where degradation product showed zero-crossing. The different experimental parameters affecting the normal and synchronous fluorescence intensity of gliquidone were studied and optimized. Moreover, the cited methods have been validated as per ICH guidelines. The peak amplitude-concentration plots of the derivative synchronous fluorescence were linear over the concentration range 0.05-2μg/ml for gliquidone. Limits of detection were 0.020 and 0.022 in first and third derivative synchronous spectra, respectively. The adopted methods were successfully applied to commercial tablets and the results demonstrated that the derivative synchronous fluorescence spectroscopy is a powerful stability-indicating method, suitable for routine use with a short analysis time. Statistical comparison between the

  10. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  11. Alkaline "Permanent" Paper.

    Science.gov (United States)

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  12. Serine protease inhibitors suppress pancreatic endogenous proteases and modulate bacterial neutral proteases.

    Science.gov (United States)

    Nduaguibe, Chikodili C; Bentsi-Barnes, Kwamina; Mullen, Yoko; Kandeel, Fouad; Al-Abdullah, Ismail

    2010-01-01

    Pefabloc, Trasylol and Urinary Trypsin Inhibitor (UTI) have been reported to be effective serine protease inhibitors that impair pancreatic endogenous proteases resulting in improved islet yield. Here we evaluated the effect of these inhibitors on endogenous proteases (trypsin, chymotrypsin and elastase), bacterial neutral proteases (thermolysin and neutral protease) and islet isolation digestion samples. Protease activity was measured using a fluorimetric assay and islet function was assessed by dynamic perifusion. Trypsin, chymotrypsin and elastase were significantly inhibited by Pefabloc and UTI. Trasylol showed strong inhibitory effects on trypsin and chymotrypsin but also decreased thermolysin activity. UTI was found to inhibit the activity of endogenous proteases and increase the activity of bacterial neutral proteases. Human islets exposed to Pefabloc had reduced insulin response, unlike Trasylol or UTI, which had no detrimental effect on insulin secretion. Although Trasylol was an effective inhibitor of endogenous proteases, FDA regulatory issues preclude its use in clinical application and thus in the isolation process. UTI has the greatest potential because it impairs endogenous pancreatic proteases and enhances digestion enzymes.

  13. Clp chaperone-proteases: structure and function.

    Science.gov (United States)

    Kress, Wolfgang; Maglica, Zeljka; Weber-Ban, Eilika

    2009-11-01

    Clp proteases are the most widespread energy-dependent proteases in bacteria. Their two-component architecture of protease core and ATPase rings results in an inventory of several Clp protease complexes that often coexist. Here, we present insights into Clp protease function, from their assembly to substrate recruitment and processing, and how this is coupled to the expense of energy.

  14. Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity

    DEFF Research Database (Denmark)

    Porta, Claudine; Xu, Xiaodong; Loureiro, Silvia

    2013-01-01

    or incomplete inactivation. Non-infectious empty capsids are structural mimics of authentic particles with no associated risk and constitute an alternate vaccine candidate. Capsids self-assemble from the processed virus structural proteins, VP0, VP3 and VP1, which are released from the structural protein...... precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown...... to be efficient but linkage of the cognate 3C protease to the C-terminus reduces expression significantly. Inactivation of the 3C enzyme in a P1-2A-3C cassette allows expression and intermediate levels of 3C activity resulted in efficient processing of the P1-2A precursor into the structural proteins which...

  15. Processing Methods of Alkaline Hydrolysate from Rice Husk

    Directory of Open Access Journals (Sweden)

    Olga D. Arefieva

    2017-07-01

    Full Text Available This paper devoted to finding processing methods of alkaline hydrolysate produced from rice husk pre-extraction, and discusses alkaline hydrolysate processing schemed and disengagement of some products: amorphous silica of various quality, alkaline lignin, and water and alkaline extraction polysaccharides. Silica samples were characterized: crude (air-dried, burnt (no preliminary water treatment, washed in distilled water, and washed in distilled water and burnt. Waste water parameters upon the extraction of solids from alkaline hydrolysate dropped a few dozens or thousand times depending on the applied processing method. Color decreased a few thousand times, turbidity was virtually eliminated, chemical oxygen demanded about 20–136 times; polyphenols content might decrease 50% or be virtually eliminated. The most prospective scheme obtained the two following solid products from rice husk alkaline hydrolysate: amorphous silica and alkaline extraction polysaccharide. Chemical oxygen demand of the remaining waste water decreased about 140 times compared to the silica-free solution.

  16. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus

    Directory of Open Access Journals (Sweden)

    Fabíola Dorneles Inácio

    2015-01-01

    Full Text Available Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine.

  17. Production of Cellulases, Xylanase, Pectinase, alpha-amylase and Protease Enzymes Cocktail by Bacillus spp. and Their Mixed Cultures with Candida tropicalis and Rhodotorula glutinis under Solid State Fermentation

    International Nuclear Information System (INIS)

    El-Batal, A.I.; Abo-State, M.A.

    2006-01-01

    A group of twelve locally isolated Bacillus species, B.megaterium (MAI and MA II), B.licheniformis (MLI and ML II); B. circulans, B. stearothermophilis, B.cereus, B.sphaericus, B. pumilus, B. laterosporus, B. coagulans and B. pantothenticus, were examined for the production of cellulases, xylanase, pectinase, alpha-amylase and protease enzymes cocktail on wheat bran under solid state fermentation (SSF). All species were found to be potent hydrolyzing enzymes producers and the superior producing species were B. megaterium MAI and B. licheniformis. On the other hand, both of them still produced highest enzyme titres when mixed with Candida tropicalis or Rhodotorula glutinis, yeast strains. The two superior bacterial strains produced the highest enzymatic activities when coculturing with C. tropicalis compared with coculturing with R. glutinis only or with both C. tropicalis and R. glutinis in combination. The inferior activities of cocultures (B. megaterinm MAI and R. glutinis) were enhanced in carboxymethyl cellulase (CMCase), filter paper cellulase (FPase), avecilase, xylanase, pectinase, -amylase and protease by gamma irradiation at dose 1.0 kGy with percent increase 8 %, 20 %, 10 %, 4 %, 31 %, 22 % and 34 %, respectively as compared with un-irradiated cocultures

  18. A validated inherent stability indicating HPTLC method for estimation of cyclobenzaprine hydrochloride in tablets and use of MS–QTOF in characterization of its alkaline stress degradation product

    Directory of Open Access Journals (Sweden)

    Minal T. Harde

    2016-12-01

    Full Text Available A simple, selective and sensitive stability indicating high-performance thin-layer chromatographic method was developed and validated for estimation of cyclobenzaprine hydrochloride (CBP in bulk drug and commercial tablets according to ICH guidelines. A precoated silica gel 60F254 HPTLC plates were used for chromatographic separation using mobile phase toluene: ethyl acetate: methanol: glacial acetic acid in the ratio 4:2:3.5:0.5 v/v/v/v. A TLC scanner was set at detection wavelength 290 nm for densitometric analysis of analyte on absorbance mode. The degradants were resolved satisfactorily in a mixture of stressed sample having Rf values 0.48 ± 0.05, 0.52 ± 0.05, 0.86 ± 0.05, 0.66 ± 0.05 and 0.27 ± 0.05. The calibration curve of drug was found linear in the concentration range 200–1000 ng/band. The (r2 > 0.999 correlation coefficient value indicated good correlation between the analyte concentrations and peak areas. The repeatability and intermediate precision study revealed the % RSD value less than 2.0 and was found to be satisfactory. The accuracy of developed method was ascertained by performing the recovery study using standard addition method and expressed by percent recovery (100.32% which was found satisfactory. CBP was subjected to various stress conditions as per International Conference on Harmonization (ICH guidelines. The drug showed significant degradation during hydrolytic and oxidative stress condition. CBP remained stable in thermal and photolytic stress testing. The validated chromatographic method was further utilized to isolate the alkaline degradation product using preparative HPTLC technique and extensive FT-IR, ESI-MS/TOF studies were performed to ascertain the structure of degradant.

  19. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.

    Science.gov (United States)

    Pizzi, E; Tramontano, A; Tomei, L; La Monica, N; Failla, C; Sardana, M; Wood, T; De Francesco, R

    1994-02-01

    We have built a model of the specificity pocket of the protease of hepatitis C virus on the basis of the known structures of trypsin-like serine proteases and of the conservation pattern of the protease sequences among various hepatitis C strains. The model allowed us to predict that the substrate of this protease should have a cysteine residue in position P1. This hypothesis was subsequently proved by N-terminal sequencing of two products of the protease. The success of this "blind" test increases our confidence in the overall correctness of our proposed alignment of the enzyme sequence with those of other proteases of known structure and constitutes a first step in the construction of a complete model of the viral protease domain.

  20. Hybrid Alkaline Cements: Bentonite-Opc Binders

    Directory of Open Access Journals (Sweden)

    Ines Garcia-Lodeiro

    2018-03-01

    Full Text Available Moderately alkaline activators can be used to formulate cementitious binders with a high Supplemetary Cementitious Materials (SCMs and a low portland cement content (hybrid alkaline cements. This study aimed to prepare hybrid alkaline cements containing large percentages of dehydroxylated bentonite (BT and small Portland cement (OPC fractions, with 5% Na2SO4 as a solid alkaline activator. The hydration kinetics of the pastes hydrated in water in the presence and absence of the solid activator were assessed by isothermal conduction calorimetry, whilst the reaction products were characterised with X-Ray Powder Diffraction (XRD and Fourier-transform Infrared Spectroscopy (FTIR. The presence of the alkaline activator hastened OPC and BT/OPC hydration: more heat of hydration was released, favouring greater initial bentonite reactivity. The portlandite forming during cement hydration reacted readily with the Na2SO4, raising medium alkalinity and enhancing bentonite dissolution and with it reaction product precipitation (primarily (N,C-A-S-H-like gels that co-exist with C-S-H- or C-A-S-H-like gels. The presence of sulfate ions favoured the formation of AFm-like phases. Preceding aspects accelerated the hydration reactions, with the formation of more reaction product and matrix densification. As a result, the 28 days Na2SO4 activated systems developed greater mechanical strength than the water-hydrated systems, with the 60% BT/40% OPC blends exhibiting higher compressive strength than the 100% OPC pastes.

  1. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  2. Alkaliphiles: Some Applications of Their Products for Biotechnology

    Science.gov (United States)

    Horikoshi, Koki

    1999-01-01

    The term “alkaliphile” is used for microorganisms that grow optimally or very well at pH values above 9 but cannot grow or grow only slowly at the near-neutral pH value of 6.5. Alkaliphiles include prokaryotes, eukaryotes, and archaea. Many different taxa are represented among the alkaliphiles, and some of these have been proposed as new taxa. Alkaliphiles can be isolated from normal environments such as garden soil, although viable counts of alkaliphiles are higher in samples from alkaline environments. The cell surface may play a key role in keeping the intracellular pH value in the range between 7 and 8.5, allowing alkaliphiles to thrive in alkaline environments, although adaptation mechanisms have not yet been clarified. Alkaliphiles have made a great impact in industrial applications. Biological detergents contain alkaline enzymes, such as alkaline cellulases and/or alkaline proteases, that have been produced from alkaliphiles. The current proportion of total world enzyme production destined for the laundry detergent market exceeds 60%. Another important application is the industrial production of cyclodextrin by alkaline cyclomaltodextrin glucanotransferase. This enzyme has reduced the production cost and paved the way for cyclodextrin use in large quantities in foodstuffs, chemicals, and pharmaceuticals. It has also been reported that alkali-treated wood pulp could be biologically bleached by xylanases produced by alkaliphiles. Other applications of various aspects of alkaliphiles are also discussed. PMID:10585964

  3. Functional expression of a novel alkaline-adapted lipase of Bacillus amyloliquefaciens from stinky tofu brine and development of immobilized enzyme for biodiesel production.

    Science.gov (United States)

    Cai, Xianghai; Ma, Jing; Wei, Dong-Zhi; Lin, Jin-Ping; Wei, Wei

    2014-11-01

    Using enrichment procedures, a lipolytic strain was isolated from a stinky tofu brine and was identified as Bacillus amyloliquefaciens (named B. amyloliquefaciens Nsic-8) by morphological, physiological, biochemical tests and 16S rDNA sequence analysis. Meanwhile, the key enzyme gene (named lip BA) involved in ester metabolism was obtained from Nsic-8 with the assistance of homology analysis. The novel gene has an open reading frame of 645 bp, and encodes a 214-amino-acid lipase (LipBA). The deduced amino acid sequence shows the highest identity with the lipase from B. amyloliquefaciens IT-45 (NCBI database) and belongs to the family of triacylglycerol lipase (EC 3.1.1.3). The lipase gene was expressed in Escherichia coli BL21(DE3) using plasmid pET-28a. The enzyme activity and specific activity were 250 ± 16 U/ml and 1750 ± 153 U/mg, respectively. The optimum pH and temperature of the recombinant enzyme were 9.0 and 40 °C respectively. LipBA showed much higher stability under alkaline conditions and was stable at pH 7.0-11.0. The Km and Vmax values of purified LipBA using 4-nitrophenyl palmitate as the substrate were 1.04 ± 0.06 mM and 119.05 ± 7.16 μmol/(ml min), respectively. After purification, recombinant lipase was immobilized with the optimal conditions (immobilization time 3 h at 30 °C, with 92 % enzyme recovery) and the immobilized enzyme was applied in biodiesel production. This is the first report of the lipase activity and lipase gene obtained from B. amyloliquefaciens (including wild strain and recombinant strain) and the recombinant LipBA with the detailed enzymatic properties. Also the preliminary study of the transesterification shows the potential value in biodiesel production applications.

  4. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  5. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  6. Evaluation and demonstration of remediation alternatives for historical mine waste using ash and alkaline by products; Utvaerdering och demonstration av efterbehandlingsalternativ foer historiskt gruvavfall med aska och alkaliska restprodukter

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias; Sartz, Lotta; Karlsson, Stefan (MTM, Man-Technology-Envionrment, Oerebro Univ., 701 82 Oerebro (Sweden))

    2009-03-15

    The results clearly show that the use of alkaline by products can significantly reduce the leakage of trace metals from historical acid mine waste. Under ideal conditions (laboratory experiments) pH increase significantly and the trace metal concentrations decrease with around 99% compared to the untreated reference. During more realistic conditions (pilot scale) the same increase in pH was not obtained and thus the decrease in trace metal concentrations was not as great. In the stabilisation experiments pH was between 5.8 and 6.8 while the trace metal reduction was around 96-99%. In the filter experiments a median pH between 4 (aged ash) and 10 (lime kiln dust) was obtained after the alkaline section. Average metal reduction is around 95% for cadmium, copper and lead while it is slightly lower for zinc (85%). In summary it is indicated that hydroxide dominated materials work best in aerated environments while carbonate dominated materials work best in reducing environments. In summary it can be concluded that the use of alkaline by products to neutralise acidic mine waste and acid mine drainage from historical mine sites give rise to both environmental and economical benefits and should therefore be encouraged as a sustainable remediation method

  7. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, nutrient concentrations, and plant nutrition and growth

    Science.gov (United States)

    Liming agents in irrigation water, typically associated with carbonates and bicarbonates of calcium and magnesium, contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient availability imbalan...

  8. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, and nutrient concentrations; and plant nutrition and growth

    Science.gov (United States)

    Liming agents (LA) in irrigation water, typically associated with carbonates and bicarbonates of calcium (Ca) and magnesium (Mg), contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient avail...

  9. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continued presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.

  10. Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases

    DEFF Research Database (Denmark)

    Theander, T G; Kharazmi, A; Pedersen, B K

    1988-01-01

    This study was undertaken to determine the effect of Pseudomonas aeruginosa alkaline protease (AP) and elastase (ELA) on human lymphocyte function. AP at 50 micrograms/ml and ELA at 12 micrograms/ml caused a 50% inhibition of phytohemagglutinin-induced proliferation. There was no difference...... in the effect of proteases on CD4- and CD8-positive cells. To determine the effect of proteases on interleukin-2 (IL-2)-induced cell proliferation, the proteases and IL-2 were added to the IL-2-dependent CTLL-2 cell line. AP and ELA inhibited the proliferation of these cells. When IL-2 was added in excess......, the inhibition was partly reversed. ELA at 10 micrograms/ml cleaved IL-2, as judged by size chromatography of a reaction mixture containing 125I-labeled IL-2 and the proteases. The ELA-digested IL-2 exhibited a reduced binding capacity to IL-2 receptors on the lymphocytes. Furthermore, treatment...

  11. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  12. First-principles study of fission product (Xe, Cs, Sr) incorporation and segregation in alkaline earth metal oxides, HfO(2), and the MgO-HfO(2) interface.

    Science.gov (United States)

    Liu, Xiang-Yang; Uberuaga, Blas P; Sickafus, Kurt E

    2009-01-28

    In order to close the nuclear fuel cycle, advanced concepts for separating out fission products are necessary. One approach is to use a dispersion fuel form in which a fissile core is surrounded by an inert matrix that captures and immobilizes the fission products from the core. If this inert matrix can be easily separated from the fuel, via e.g. solution chemistry, the fission products can be separated from the fissile material. We examine a surrogate dispersion fuel composition, in which hafnia (HfO(2)) is a surrogate for the fissile core and alkaline earth metal oxides are used as the inert matrix. The questions of fission product incorporation in these oxides and possible segregation behavior at interfaces are considered. Density functional theory based calculations for fission product elements (Xe, Sr, and Cs) in these oxides are carried out. We find smaller incorporation energy in hafnia than in MgO for Cs and Sr, and Xe if variation of charge state is allowed. We also find that this trend is reversed or reduced for alkaline earth metal oxides with large cation sizes. Model interfacial calculations show a strong tendency of segregation from bulk MgO to MgO-HfO(2) interfaces.

  13. Complexing power of hydro-soluble degradation products from γ-irradiated polyvinylchloride. Influence on Eu(OH)3(s) solubility and Eu(III) speciation in neutral to alkaline environment

    International Nuclear Information System (INIS)

    Reiller, Pascal E.; Badji, Hawa; Tabarant, Michel; Vercouter, Thomas; Fromentin, Elodie; Ferry, Muriel; Dannoux-Papin, Adeline

    2017-01-01

    The complexing power of hydrosoluble degradation products (HDPs) from an alkaline hydrolysis of a 10 MGy γ-irradiated polyvinylchloride is studied. The complexation of Eu(III), as an analogue of lanthanide and actinide radionuclides at their +III oxidation state for oxygen containing functions, is evidenced both from the increasing of Eu(OH) 3 (s) dissolution, and from a complexometric titration by time-resolved luminescence spectroscopy. The dissolution of Eu(OH) 3 (s) in a simplified alkaline solution (0.3 M KOH/0.1 M NaOH) increases moderately, but significantly, with the HDPs concentration. The luminescence signal of the supernatant clearly indicates the presence of several complexed Eu(III) species. Performing a complexometric titration of Eu(III) from pH 6 by alkaline HDPs shows the formation of two different species with increasing HDPs' concentration and pH. Operational complexation constants - based on dissolved carbon concentration - are proposed. The analyses of the spectra and luminescence decays seem to confirm the presence of two different species.

  14. Complexing power of hydro-soluble degradation products from γ-irradiated polyvinylchloride. Influence on Eu(OH){sub 3}(s) solubility and Eu(III) speciation in neutral to alkaline environment

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, Pascal E.; Badji, Hawa; Tabarant, Michel; Vercouter, Thomas [CEA, Paris-Saclay Univ., Gif-sur-Yvette (France). Service d' Etudes Analytiques et de Reactivite des Surfaces (SEARS); Fromentin, Elodie; Ferry, Muriel [CEA, Paris-Saclay Univ., Gif-sur-Yvette (France). Service d' Etudes du Comportement des Radionucleides (SECR); Dannoux-Papin, Adeline [CEA, Bagnols-sur-Ceze (France). Service des Procedes de Decontamination et d' Enrobage

    2017-10-01

    The complexing power of hydrosoluble degradation products (HDPs) from an alkaline hydrolysis of a 10 MGy γ-irradiated polyvinylchloride is studied. The complexation of Eu(III), as an analogue of lanthanide and actinide radionuclides at their +III oxidation state for oxygen containing functions, is evidenced both from the increasing of Eu(OH){sub 3}(s) dissolution, and from a complexometric titration by time-resolved luminescence spectroscopy. The dissolution of Eu(OH){sub 3}(s) in a simplified alkaline solution (0.3 M KOH/0.1 M NaOH) increases moderately, but significantly, with the HDPs concentration. The luminescence signal of the supernatant clearly indicates the presence of several complexed Eu(III) species. Performing a complexometric titration of Eu(III) from pH 6 by alkaline HDPs shows the formation of two different species with increasing HDPs' concentration and pH. Operational complexation constants - based on dissolved carbon concentration - are proposed. The analyses of the spectra and luminescence decays seem to confirm the presence of two different species.

  15. Alkaline phosphatase: an overview.

    Science.gov (United States)

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  16. Protease-Sensitive Synthetic Prions

    OpenAIRE

    Colby, David W.; Wain, Rachel; Baskakov, Ilia V.; Legname, Giuseppe; Palmer, Christina G.; Nguyen, Hoang-Oanh B.; Lemus, Azucena; Cohen, Fred E.; DeArmond, Stephen J.; Prusiner, Stanley B.

    2010-01-01

    Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but no...

  17. Characterization and quantification of biochar alkalinity.

    Science.gov (United States)

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK a organic structural (0.03-0.34 meq g -1 ), other organic (0-0.92 meq g -1 ), carbonate (0.02-1.5 meq g -1 ), and other inorganic (0-0.26 meq g -1 ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Co-evolution of insect proteases and plant protease inhibitors.

    Science.gov (United States)

    Jongsma, Maarten A; Beekwilder, Jules

    2011-08-01

    Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.

  19. Cloning and Expression of Soluble Recombinant HIV-1 CRF35 Protease-HP Thioredoxin Fusion Protein.

    Science.gov (United States)

    Azarnezhad, Asaad; Sharifi, Zohreh; Seyedabadi, Rahmatollah; Hosseini, Arshad; Johari, Behrooz; Sobhani Fard, Mahsa

    2016-01-01

    As a drug target and an antigenic agent, HIV-1 protease (HIV-1 PR) is at the center of attention for designing anti-AIDS inhibitors and diagnostic tests. In previous studies, the production of the recombinant protease has been faced with several difficulties; therefore, the aims of this study were the easy production, purification of the soluble form of protease in E. coli and investigation of its immunoreactivity. Protease coding region was isolated from the serum of an infected individual, amplified by RT-PCR and cloned into PTZ57R using TA-cloning. Protease coding frame was isolated by PCR and cloned in pET102/D. TOPO expression vector and cloned protease was expressed in Escherichia coli ( E. coli) BL21 . Produced recombinant protein was purified by affinity Ni-NTA column and protein concentration was checked by BCA protein assay kit. Subsequently, immunoreactivity of recombinant protease (rPR) was assayed by Western blotting and ELISA. Cloning of the HIV protease by TOPO cloning system in pET102/D.TOPO was confirmed with PCR and sequencing. The concentration range of purified recombinant protein was 85 to 100 μg/ml . Immunogenicity of rPR was confirmed by Western blotting and ELISA. Soluble production of recombinant HIV-1 protease (HIV-1 rPR) was performed successfully. This recombinant protein disclosed 86% specificity and 90% sensitivity in immunoassay tests.

  20. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells

    Directory of Open Access Journals (Sweden)

    Chen Chaoping

    2010-07-01

    Full Text Available Abstract Background HIV protease (PR is a virus-encoded aspartic protease that is essential for viral replication and infectivity. The fully active and mature dimeric protease is released from the Gag-Pol polyprotein as a result of precursor autoprocessing. Results We here describe a simple model system to directly examine HIV protease autoprocessing in transfected mammalian cells. A fusion precursor was engineered encoding GST fused to a well-characterized miniprecursor, consisting of the mature protease along with its upstream transframe region (TFR, and small peptide epitopes to facilitate detection of the precursor substrate and autoprocessing products. In HEK 293T cells, the resulting chimeric precursor undergoes effective autoprocessing, producing mature protease that is rapidly degraded likely via autoproteolysis. The known protease inhibitors Darunavir and Indinavir suppressed both precursor autoprocessing and autoproteolysis in a dose-dependent manner. Protease mutations that inhibit Gag processing as characterized using proviruses also reduced autoprocessing efficiency when they were introduced to the fusion precursor. Interestingly, autoprocessing of the fusion precursor requires neither the full proteolytic activity nor the majority of the N-terminal TFR region. Conclusions We suggest that the fusion precursors provide a useful system to study protease autoprocessing in mammalian cells, and may be further developed for screening of new drugs targeting HIV protease autoprocessing.

  1. Investigating Mechanisms of Alkalinization for Reducing Primary Breast Tumor Invasion

    Directory of Open Access Journals (Sweden)

    Ian F. Robey

    2013-01-01

    Full Text Available The extracellular pH (pHe of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs. We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (. Tumor pHe buffering may reduce optimal conditions for enzymes involved in tumor invasion such as cathepsins and matrix metalloproteases (MMPs. To address this, we tested the effect of transient alkalinization on cathepsin and MMP activity using enzyme activatable fluorescence agents in mice bearing MDA-MB-231 mammary xenografts. Transient alkalinization significantly reduced the fluorescent signal of protease-specific activatable agents in vivo (. Alkalinization, however, did not affect expression of carbonic anhydrase IX (CAIX. The findings suggest a possible mechanism in a live model system for breast cancer where systemic alkalinization slows the rate of invasion.

  2. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.

    Science.gov (United States)

    Köcher, Steffen; Rey, Juliana; Bongard, Jens; Tiaden, André N; Meltzer, Michael; Richards, Peter J; Ehrmann, Michael; Kaiser, Markus

    2017-07-10

    The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases. For efficient synthetic access, we developed a practical mixed solid- and solution-phase synthesis that we validated through performing the first chemical synthesis of the two natural products Tasipeptin A and B. The suitability of the Ahp-cyclodepsipeptide scaffold for tailored inhibitor synthesis is showcased by the generation of the most potent human HTRA protease inhibitors to date. We anticipate that our approach may also be applied to other serine proteases, thus opening new avenues for a systematic discovery of serine protease inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses.

    Directory of Open Access Journals (Sweden)

    Jong W Yu

    Full Text Available CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo.

  4. Effects of Protease Addition and Replacement of Soybean Meal by Corn Gluten Meal on the Growth of Broilers and on the Environmental Performances of a Broiler Production System in Greece.

    Directory of Open Access Journals (Sweden)

    Ilias Giannenas

    Full Text Available An experimental study was conducted to examine the combined effects of adding a dietary protease, reducing the levels of soybean meal (SBM and introducing corn gluten meal (CGM in the ration of a group of broilers reared on a commercial Greek farm. Five hundred forty chicks were divided into three dietary treatments with six replicates of thirty birds each. The first group (Control was fed a conventional diet based on corn and soybean meal, containing 21% w/w crude protein (CP. The second group (Soy-Prot was supplied a corn and SBM-based diet containing a lower level of CP (20% w/w and 200 mg of the protease RONOZYME® Proact per kg of feed. The third group (Gluten-Prot was fed a diet without soybean-related constituents which was based on corn and CGM and with CP and protease contents identical to those of the diet of the Soy-Prot group. Body weight, feed intake, feed conversion ratio (FCR, intestinal microbiota populations and morphology, meat quality and cost were evaluated. Furthermore, a partial life cycle assessment (LCA was performed in order to assess the potential environmental performance of the systems defined by these three dietary treatments and identify their environmental hot-spots. The growth performance of the broilers supplied the Soy-Prot diet was similar to the broilers supplied the Control diet. However, the broilers which were fed the Gluten-Prot diet at the end of the trial showed a tendency (P≤0.010 for lower weight gain and feed intake compared to those of the Control diet. When compared to the Control group, lower counts of C. perfringens (P≤0.05 were detected in the ileum and cecum parts, and lower counts of F. necrophorum (P≤0.001 were detected in the cecum part of the birds from the Gluten-Prot group. The evaluation of intestinal morphometry showed that the villus height and crypt depth values were not significantly different (P>0.05 among the experimental groups for the duodenum, jejunum and ileum parts. No

  5. Effects of Protease Addition and Replacement of Soybean Meal by Corn Gluten Meal on the Growth of Broilers and on the Environmental Performances of a Broiler Production System in Greece.

    Science.gov (United States)

    Giannenas, Ilias; Bonos, Eleftherios; Anestis, Vasileios; Filioussis, Georgios; Papanastasiou, Dimitrios K; Bartzanas, Thomas; Papaioannou, Nikolaos; Tzora, Athina; Skoufos, Ioannis

    2017-01-01

    An experimental study was conducted to examine the combined effects of adding a dietary protease, reducing the levels of soybean meal (SBM) and introducing corn gluten meal (CGM) in the ration of a group of broilers reared on a commercial Greek farm. Five hundred forty chicks were divided into three dietary treatments with six replicates of thirty birds each. The first group (Control) was fed a conventional diet based on corn and soybean meal, containing 21% w/w crude protein (CP). The second group (Soy-Prot) was supplied a corn and SBM-based diet containing a lower level of CP (20% w/w) and 200 mg of the protease RONOZYME® Proact per kg of feed. The third group (Gluten-Prot) was fed a diet without soybean-related constituents which was based on corn and CGM and with CP and protease contents identical to those of the diet of the Soy-Prot group. Body weight, feed intake, feed conversion ratio (FCR), intestinal microbiota populations and morphology, meat quality and cost were evaluated. Furthermore, a partial life cycle assessment (LCA) was performed in order to assess the potential environmental performance of the systems defined by these three dietary treatments and identify their environmental hot-spots. The growth performance of the broilers supplied the Soy-Prot diet was similar to the broilers supplied the Control diet. However, the broilers which were fed the Gluten-Prot diet at the end of the trial showed a tendency (P≤0.010) for lower weight gain and feed intake compared to those of the Control diet. When compared to the Control group, lower counts of C. perfringens (P≤0.05) were detected in the ileum and cecum parts, and lower counts of F. necrophorum (P≤0.001) were detected in the cecum part of the birds from the Gluten-Prot group. The evaluation of intestinal morphometry showed that the villus height and crypt depth values were not significantly different (P>0.05) among the experimental groups for the duodenum, jejunum and ileum parts. No

  6. Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo-chitinases

    Directory of Open Access Journals (Sweden)

    Tomas eErban

    2016-02-01

    Full Text Available Tyrophagus putrescentiae (Schrank, 1781 is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida. In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities and mite-bacterial interaction in dry dog food. Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30 and (polyubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (dry dog food and low-fat, low-protein (flour diets to 1% and 5% (w/w, and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist

  7. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease

    Directory of Open Access Journals (Sweden)

    Vikram Surendra

    2010-07-01

    Full Text Available Abstract Background Many workers have reported halotolerant bacteria from saline conditions capable of protease production. However, antibiotic resistance and heavy metal tolerance pattern of such organisms is not documented very well. Similarly, only a few researchers have reported the pattern of pH change of fermentation medium during the course of protease production. In this study, we have isolated a halotolerant Bacillus cereus SIU1 strain from a non-saline environment and studied its antibiotic and heavy metal resistance pattern. The isolate produces a thermoalkaline protease and changes the medium pH during the course of fermentation. Thermostability of protease was also studied for 30 min. Results Seventy bacterial strains isolated from the soils of Eastern Uttar Pradesh, India were screened for protease production. All of them exhibited protease activity. However, 40% bacterial isolates were found good protease producers as observed by caseinolytic zones on milk agar plates. Among them, culture S-4 was adjudged as the best protease producer, and was identified as Bacillus cereus by morphological, biochemical and 16 S rDNA sequence analyses. The isolate was resistant to heavy metals (As2+, Pb2+, Cs1+ and antibiotics (penicillin, lincomycin, cloxacillin, pefloxacin. Its growth behavior and protease production was studied at 45°C and pH 9.0. The protease units of 88 ml-1 were noted in unoptimized modified glucose yeast extract (GYE medium during early stationary phase at 20 h incubation period. The enzyme was stable in the temperature range of 35°-55°C. Conclusions An antibiotic and heavy metal resistant, halotolerant Bacillus cereus isolate is capable of producing thermoalkaline protease, which is active and stable at pH 9.0 and 35°-55°C. This isolate may be useful in several industrial applications owing to its halotolerance and antibiotic and heavy metal resistance characteristics.

  8. Discovery of novel phosphonate derivatives as hepatitis C virus NS3 protease inhibitors.

    Science.gov (United States)

    Sheng, X Christopher; Pyun, Hyung-Jung; Chaudhary, Kleem; Wang, Jianying; Doerffler, Edward; Fleury, Melissa; McMurtrie, Darren; Chen, Xiaowu; Delaney, William E; Kim, Choung U

    2009-07-01

    A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described.

  9. Cysteine Protease (Capparin from Capsules of Caper (Capparis spinosa

    Directory of Open Access Journals (Sweden)

    Yasar Demir

    2008-01-01

    Full Text Available Proteases are enzymes that perform very important functions in organisms and are used for a variety of objectives in vitro. In recent years, proteases have been used for clinical, pharmaceutical (alimentary digestion, anti-inflammatory, etc. and industrial applications (cheese production, meat tenderizing, leather tanning. In this research, a protease has been purified from capsules of caper (Capparis spinosa and characterized. Caper plants have been used for food and medicine since ancient times. The plant grows abundantly in certain regions of Turkey. Ammonium sulphate fractionation and a CM Sephadex column were used for purification of the enzyme. The purification enzyme has an optimum pH=5.0 and its optimum temperature was 60 °C. The vmax and Km values determined by Lineweaver-Burk graphics were 1.38 μg/(L·min and 0.88 μg/L, respectively. The purification degree and the molecular mass of the enzyme (46 kDa were determined by SDS-PAGE and gel filtration chromatography. It was investigated whether the purified and characterized protease could cause milk to congeal or digest chicken and cow meat. The results show that protease can be used for industrial production.

  10. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator.

    Science.gov (United States)

    Obruca, Stanislav; Benesova, Pavla; Oborna, Jana; Marova, Ivana

    2014-04-01

    Whole whey hydrolyzed by Alcalase (WWH) was tested as a complex nitrogen source for the production of poly(3-hydroxybutyrate) (PHB) from waste frying oils by Cupriavidus necator H16. Addition of WWH (10 % (v/v) of cultivation media) supported the growth and PHB accumulation; PHB yields in Erlenmeyer flasks were more than 3.5-fold higher than in control cultivations. The positive influence of WWH on PHB production was confirmed in experiments performed in laboratory fermentor. C. necator cultivated with WWH produced 28.1 g PHB l(-1) resulting in a very high product yield coefficient of 0.94 g PHB per g oil. Since PHB yields were ~40 % higher than in the control cultivation, WWH can be considered as an excellent inexpensive nitrogen source for PHB production by C. necator.

  11. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  12. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  13. Influence of initial temperature and heating method in the temperature profile during alkaline dissolution of Al for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth L.; Araujo, Izilda C.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O., E-mail: rcamilo@ipen.br, E-mail: cruzaraujo22@gmail.com, E-mail: acmindri@ipen.br, E-mail: cforbici@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radionuclides in nuclear medicine can be used for diagnosis and therapy. The {sup 99m}Tc, son of {sup 99}Mo, is most often used in nuclear medicine as tracer element because of its favorable nuclear properties, accounting for about 80% of all diagnostic procedures in vivo. Aiming to resolve the dependency of Brazil with respect to the supply of {sup 99}Mo was created the Brazilian Multipurpose Reactor project (BMR), started in 2008, having as main objective to produce about 1000 Ci/week of {sup 99}Mo. This study is part of the project to obtain {sup 9}'9Mo by alkaline dissolution of UAl{sub x}-Al targets. The initial reaction temperature is an important parameter, since it has great influence on the value of the maximum temperature and dissolution time. According to literature, for security reasons the dissolution process must have its temperature controlled so that the maximum temperature has to be around 90 deg C. The behavior of the temperature during dissolution using three different methods of heating in order to minimize the fluctuation of temperature during dissolution, keeping its maximum value at around 90 deg C was studied. The three methods of heating chosen were: a) initial temperature of 85 deg C with continuous heating, b) heating water bath until it reaches the initial temperature (70 to 95 deg C), turning off after that, and c) external heating until it reached the starting temperature (60-95 deg C). The alkaline solution used was 3 mol.L{sup -1} NaOH{sub 3} and 2 mol.L{sup -1} NaNO{sub 3}. In the first study it was observed that after 1 minute of dissolution the solution temperature reached 100 deg C on average, up to a maximum of 109 deg C, ending with values around 95 deg C. In the second study after 3 minutes of dissolution the maximum temperature was 106 deg C and the minimum 100 deg C. In the third study the temperature rise during dissolution increased with increasing initial temperature which practically remains constant until the end

  14. Carbohydrase and protease supplementation increased ...

    African Journals Online (AJOL)

    User

    2014-09-15

    Sep 15, 2014 ... Department of Animal and Wildlife Sciences, Faculty of Natural and Agricultural Science ... control birds was 12% higher than that of the positive control, while diets supplemented with single enzyme ... The inclusion of exogenous proteases in maize-soya-based diets increases protein digestion by.

  15. Carbohydrase and protease supplementation increased ...

    African Journals Online (AJOL)

    A trial was conducted to evaluate whether the addition of commercial enzyme preparations containing carbohydrases and a protease would increase the available metabolizable energy (ME) of maize-soya-based broiler diets. Seven thousand five hundred and sixty (7560) day-old Ross 788 chicks were randomly allocated ...

  16. Characterization of the Protease Activity of Detergents: Laboratory Practicals for Studying the Protease Profile and Activity of Various Commercial Detergents

    Science.gov (United States)

    Valls, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2011-01-01

    Detergent enzymes account for about 30% of the total worldwide production of enzymes and are one of the largest and most successful applications of modern industrial biotechnology. Proteases can improve the wash performance of household, industrial, and institutional laundry detergents used to remove protein-based stains such as blood, grass, body…

  17. Photolysis of alkaline-earth nitrates

    Science.gov (United States)

    Kriger, L. D.; Miklin, M. B.; Dyagileva, E. P.; Anan'ev, V. A.

    2013-02-01

    Peroxynitrite and nitrite ions are the diamagnetic products of photolysis (with light at a wavelength of 253.7 nm) of alkaline-earth nitrates; the paramagnetic products and hydrogen peroxide were not found. The structural water in alkaline-earth nitrate crystals did not affect the qualitative composition of the photodecomposition products. The quantum yield of nitrite ions was 0.0012, 0.0038, 0.0078, and 0.0091 quanta-1 and that of peroxynitrite ions was 0.0070, 0.0107, 0.0286, and 0.0407 quanta-1 for Sr(NO3)2, Ba(NO3)2, Ca(NO3)2 · 4H2O, and Mg(NO3)2 · 6H2O, respectively.

  18. Enhancement of nisin production in milk by conjugal transfer of the protease-lactose plasmid pLP712 to the wild strain Lactococcus lactis UQ2

    OpenAIRE

    García-Parra, María D.; Campelo, Ana B.; García-Almendárez, Blanca E.; Regalado, Carlos; Rodríguez González, Ana; Martínez Fernández, Beatriz

    2010-01-01

    Lactococcus lactis UQ2 is a wild nisin A producer isolated from a Mexican cheese that grows poorly in milk. Conjugal matings with L. lactis NCDO712 to transfer the Lac+ Prt+ plasmid pLP712 and selection with nisin and lactose yielded L. lactis NCDO712 NisA+. Naturally rifampicin resistant L. lactis UQ2Rif was isolated to provide an additional selective marker. The identity of a transconjugant L. lactis UQ2Rif Lac+ was confirmed by RAPD-PCR fingerprinting, nisA PCR amplification, nisin product...

  19. Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low- and intermediate level radioactive waste. Pt. III. Effect of degradation products on the sorption of radionuclides on feldspar

    International Nuclear Information System (INIS)

    Loon, L.R. van; Glaus, M.A.; Laube, A.; Stallone, S.

    1999-01-01

    The effect of degradation products of different cellulosic materials on the sorption behaviour of Th(IV), Eu(III) and Ni(II) on feldspar at pH 13.3 was studied. For all three metals, a decrease in sorption could be observed with increasing concentration of organics in solution. For Th(IV), α-ISA is the effective ligand present in the solutions of degraded cellulose, independent on the type of cellulose studied. For Eu(III), α-ISA is the effective ligand in the case of pure cellulose degradation. In the case of other cellulosic materials, unknown ligands cause the sorption reduction. For Ni(II), also unknown ligands cause sorption reduction, independent on the type of cellulose studied. These unknown ligands are not formed during alkaline degradation of cellulose, but are present as impurities in certain cellulosic materials. (orig.)

  20. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  1. Extraction of uranium from alkaline medium by organic extractants

    International Nuclear Information System (INIS)

    El - nadi, Y.A.M.

    1996-01-01

    A recent possible route for treatment of small amounts of neutron irradiated uranium from alkaline medium was addressed. This have some advantages related to the isolation of many troublesome fission products which forms insoluble carbonates or hydroxides upon alkaline carbonate dissolution of uranium oxide. In alkaline solution containing sodium carbonate and hydroxide, hexavalent uranium is expected to be dissolved in solution whereby most of the fission products transition elements exemplified by zirconium and niobium as well as trivalent lanthanides and actinides will be precipitated. Therefore, in this medium the solution will contain mainly alkali and alkaline earth metal such as Cs + and Sr 2+ and anionic fission products such as pertechnetates and antimonates, Which can be easily separted from uranium. Therefore, The present thesis is directed to investigate the following; 1 - solubility of uranium oxide in alkaline medium consists of sodium carbonate and sodium hydroxide in presence of oxidizing agent. 2 - Extraction of uranium from the aforementioned alkaline medium by immiscible organic diluent containing different amine extractants. 3 - Extraction behaviour of uranium by the macroporous anion exchanger, amberlite IRA - 410, from alkaline solution

  2. ANALISIS POTENSI PROTEASE EKTRASELULER TANAH HUTAN MANGROVE PANTAI SUWUNG KAUH BALI

    Directory of Open Access Journals (Sweden)

    Inten Hardianti Nizar

    2015-10-01

    Full Text Available ABSTRAK: Potensi tanah hutan mangrove pantai Suwung Kauh Bali sebagai sumber protease dapat diketahui dengan melakukan uji aktivitas protease ekstraseluler. Pada penelitian ini telah dilakukan pengukuran aktivitas protease ekstraseluler dan penentuan pengaruh waktu inkubasi serta penambahan toluena terhadap aktivitas protease. Sampel yang digunakan sebagai sumber enzim berupa slurry dan direaksikan dengan substrat kasein 0,3% selama 3,6,9 dan 24 jam dengan dan tanpa penambahan toluena 1% (v/v. Produk reaksi enzimatis diukur dengan metode kolorimetri. Aktivitas protease tertinggi yang diperoleh sebesar 1,9 x 10-4 U/mL dengan penambahan toluena pada waktu inkubasi 6 jam dan sebesar 1,2 x 10-4 U/mL tanpa penambahan toluena pada waktu inkubasi 9 jam. Hasil ini menunjukkan bahwa protease ekstraseluler pada tanah hutan mangrove yang dihasilkan oleh mikroba proteolitik memilki potensi digunakan untuk eksplorasi enzim. Waktu inkubasi dan penambahan toluena tidak berpengaruh signifikan terhadap aktivitas protease.   ABSTRACT: The potency of mangrove soil in Suwung Kauh Bali as a source of protease has been determined by protease activity assay. This research has been done to determine protease activity and the effect of incubation time and the addition of toluene to the protease activity. The slurry of soil was used as a source of extracellular  enzyme for protease assay, which was reacted with casein 0,3% for 3, 6, 9, and 24 hours with and without the addition of toluene 1% (v/v. The enzymatic reaction product was measured by colorimetric method. The highest protease activity with addition of toluene was 1,9 x 10-4 U/mL at 6 hours incubation and without toluene was 1,2 x 10-4 U/mL at 9 hours incubation. These results showed extracelluler protease on mangrove soil produced by proteolytic microorganisms had a potency to be used in enzyme exploration. Furthermore, the incubation time and addition of toluene had no significant effect to protease activity.

  3. Produção de proteases por Bacillus sp SMIA-2 crescido em soro de leite e água de maceração de milho e compatibilidade das enzimas com detergentes comerciais Production of proteases by Bacillus sp. SMIA-2 grow on whey and corn steep liquor and compatibility of the enzyme with commercial detergents

    OpenAIRE

    Wellingta Cristina Almeida do Nascimento; Meire Lelis Leal Martins

    2006-01-01

    A produção de proteases por Bacillus sp. SMIA-2 cultivado em um meio de cultura contendo soro de leite e água de maceração de milho foi estudada. Além disso, a compatibilidade da enzima com detergentes comerciais foi também avaliada. A atividade máxima da enzima (70 U/mg proteína) foi observada na fase estacionária de crescimento, com 32 h de incubação. Estudos sobre a caracterização da protease revelaram que a temperatura ótima para atividade desta enzima foi 70 °C e que a mesma manteve ...

  4. An enzyme from the earthworm Eisenia fetida is not only a protease but also a deoxyribonuclease.

    Science.gov (United States)

    Pan, Rong; Zhou, Yuan; He, Hai-Jin; He, Rong-Qiao

    2011-04-01

    The earthworm enzyme Eisenia fetida Protease-III-1 (EfP-III-1) is known as a trypsin-like protease which is localized in the alimentary canal of the earthworm. Here, we show that EfP-III-1 also acts as a novel deoxyribonuclease. Unlike most DNases, this earthworm enzyme recognizes 5'-phosphate dsDNA (5'P DNA) and degrades it without sequence specificity, but does not recognize 5'OH DNA. As is the case for most DNases, Mg(2+) was observed to markedly enhance the DNase activity of EfP-III-1. Whether the earthworm enzyme functioned as a DNase or as a protease depended on the pH values of the enzyme solution. The protein acted as a protease under alkaline conditions whereas it exhibited DNase activity under acid conditions. At pH 7.0, the enzyme could work as either a DNase or a protease. Given the complex living environment of the earthworm, this dual function of EfP-III-1 may play an important role in the alimentary digestion of the earthworm. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. TiO2-NT electrodes modified with Ag and diamond like carbon (DLC) for hydrogen production by alkaline water electrolysis

    Science.gov (United States)

    Baran, Evrim; Baz, Zeynep; Esen, Ramazan; Yazici Devrim, Birgül

    2017-10-01

    In present work, the two-step anodization technique was applied for synthesis of TiO2 nanotube (NT). Silver and diamond like carbon (DLC) were coated on the surface of as prepared TiO2-NT using chemical reduction method and MW ECR plasma system. The morphology, composition and structure of the electrodes were examined by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results showed that Ag nanoparticles, having size in the range of 48-115 nm, are evenly distributed on the top, inside and outside surface of TiO2-NT and when DLC was coated on the surface of TiO2-NT and TiO2-NT-Ag, the top of nanotubes were partially open and the pore diameter of hexagonal structure decreased from 165 nm to of 38-80 nm. On the other hand, the microhardness test and contact angle measurements revealed that additions of Ag and diamond like carbon have a positive effect on the mechanical properties of TiO2-NT film. The electrocatalytic properties of the electrodes towards the hydrogen evolution reaction (HER) were investigated by the electrochemical measurements recorded in 1 M KOH solution. In addition, long-term durability of electrodes towards HER and the energy consumption of alkaline electrolysis were investigated. The energy requirement showed that while the deposition of silver provides approximately 14.95% savings of the energy consumption, the DLC coating causes increase in energy consumption.

  6. Alkaline Activator Impact on the Geopolymer Binders

    Science.gov (United States)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  7. Isolation, identification and characterization of organic solvent tolerant protease from Bacillus sp. DAF-01

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2012-01-01

    Full Text Available Introduction: Organic solvent-tolerant bacteria are relatively novel extermophilic microorganisms, which can produce organic tolerant protease with capacity of being used in industrial biotechnology for producing high-value compounds. Therefore, finding of these bacteria has drawn much researchers attention nowadays. Materials and Methods: In this project, samples were collected from a hot spring, located in Jiroft. Samples were incubated in medium supplemented with cyclohexane and toluene for 3 days. Screening of protease producing bacteria was performed on the specific media, SKM (Skim milk agar, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Protease activity was considered in different temperatures, pH and organic solvents.Results: Sequence alignment and phylogenetic tree results showed that this bacteria was closely related to Bacillus niacini, with 97% homology. Enzymatic studies showed that, this enzyme was active at a wide range of temperatures, 20-90 °C and it,s optimal activity was in 60 °C. In addition, maximum protease activity was obtained in the 8-9 range of pH, and optimal stability was also at pH 9.0. Protease activity in the presence of methanol, toluene, isopropanol, cyclohexane and DMF ‏showed that, remaining activity was at least 80% compared to the control (without organic solvent Discussion and Conclusion: Thermopilic capacity, being active in alkaline protease and high protease stability in the presence of organic solvents all herald a remarkable application for using in different industries.

  8. Purification and biochemical characterization of a 22-kDa stable cysteine- like protease from the excretory-secretory product of the liver fluke Fasciola hepatica by using conventional techniques.

    Science.gov (United States)

    Hemici, Ahmed; Benerbaiha, Roumaila Sabrina; Bendjeddou, Dalila

    2017-11-15

    This study describes the purification and characterization of a stable protease activity isolated from Fasciola hepatica adult worms maintained in vitro by employing acetone precipitation (40-60%) followed by a gel filtration through Sephadex G-100 and DEAE- cellulose ion exchange column. Through this three-step purification, the enzyme was purified 11-fold with a specific activity of 1893.9U/mg and 31.5% recovery. After the final ultrafiltration step, the purification fold was increased up to 13.1 and the overall activity yield reached a rate of 18.8%. The MW of the purified protease was estimated by reducing SDS-PAGE to be 22kDa while the proteolytic activity detection was carried out by zymography on non-denaturing SDS-PAGE containing the casein as substrate. Using this substrate, the protease showed extreme proteolytic activity at pH 5.5 and temperature 35-40°C and was highly stable over a wide range of pH, from 5.0 to 10.0. In addition to its preference for the Z-Phe-Arg-AMC fluorogenic substrate resulting in maximum proteolytic activity (99.7%) at pH 7.0, the pure protease exhibited highest cleavage activity against hemoglobin and casein substrates at pH 5.5 (85.6% and 82.8%, respectively). The K m values obtained for this protease were 5.4, 13, 160 and approximately 1000μM using respectively the fluorogenic substrate Z-Phe-Arg-AMC, hemoglobin, casein and albumin. The protease activity was completely inhibited either by E-64 inhibitor (5mM) or iodoacetamide (10mM), indicating its cysteine nature. The usefulness of the purified protease as an antigen was studied by immunoblotting. Thus, sera from sheep experimentally infected with F. hepatica recognized the protease band at 2 weeks post-infection (WPI) and strongly at 7 WPI. The early detection of antibodies anti- F. hepatica suggests the application of this molecule as a specific epitope for the serodiagnosis of fascioliasis disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    Science.gov (United States)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  10. Perspectives de développement de la production industrielle d'hydrogène par électrolyse alcaline avancée Development Outlook for Industrial Hydrogen Production by Advanced Alkaline Electrolysis

    Directory of Open Access Journals (Sweden)

    Derive C.

    2006-11-01

    -prototypes sont prolongés et deux programmes complémentaires d'essais sur les composants principaux sont actuellement menés avant l'engagement de la phase de qualification de l'électrolyseur industriel sur un pilote de 2 MWe. Under the development conditions of the French nuclear program, which has succeeded in producing electricity at an interesting cost in off-peak hours, hydrogen production by water electrolysis can be considered in the mediumterm to be in competition with other hydrogen production processes such as natural-gas reforming. Since 1976 Electricité de France (EDF and Gaz de France (GDF have been cooperating on an R & D project on hydrogen production by alkaline water electrolysis with the aim of reducing the investment cost and maintaining the efficiency level compared to present-day installations. Prior research has shown that these objectives can be attained by advanced electrolysis with increased current density and temperature. These technical constraints have led EDF and GDF to undertake research on the chemical and mechanical resistance of materials, on the selection of suitable cell components, and on improving the overall design of installations. The two French industrial groups, headed by Alsthom-Atlantique and Creusot-Loire, have been associated to this research since 1979 and have set the following operating conditions:(a potash-base electrolyte (40% mass;(b temperatures of 120 and 160°C;(c pressures of 30 and 70 bar. In an initial phase, these groups made a technico-economic survey of the massive production of hydrogen by plants having a power of about 300 MWe. Detailed plans were drawn up for a 2-MWe pilot plant, and technological choices were made on 25-30 kWe prototype loops. To give further certainty to the choices made and to go further into problems of scaling up to large-size electrolyzers, tests on prototype loops were extended, and additional tests are now being made of the principal components before undertaking the qualification phase

  11. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  12. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  13. Molecular Imaging of Proteases in Cancer

    Directory of Open Access Journals (Sweden)

    Yunan Yang

    2009-01-01

    Full Text Available Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence, magnetic resonance imaging (MRI, single-photon emission computed tomography (SPECT, and positron emission tomography (PET. In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction.

  14. Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods.

    Science.gov (United States)

    Salim, Abdalla Ali; Grbavčić, Sanja; Šekuljica, Nataša; Stefanović, Andrea; Jakovetić Tanasković, Sonja; Luković, Nevena; Knežević-Jugović, Zorica

    2017-03-01

    Study on potential of different agro-industrial waste residues for supporting the growth of newly isolated Bacillus sp. TMF-1 strain under solid-state fermentation (SSF) was conducted aiming to produce several industrially valuable enzymes. Since the feasibility of the initial study was confirmed, further objectives included evaluation of several pretreatments of the studied agricultural by-products (soybean meal, sunflower meal, maize bran, maize pericarp, olive oil cake and wheat bran) on the microbial productivity as means of enhancing the yields of produced proteases, α-amylases, cellulases and pectinases. Among acid/alkaline treatment, ultrasound and microwave assisted methods, chemical treatments superiorly affected most of the studied substrates. Highest yields of produced proteases (50.5IUg -1 ) and α-amylases (50.75IUg -1 ) were achieved on alkaline treated corn pericarp. Alkaline treatment also promoted the secretion of cellulases on maize bran (1.19IUg -1 ). Highest yield of pectinases was obtained on untreated soybean meal (64.90IUg -1 ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  16. Role of alkaline-tolerant fungal cellulases in release of total antioxidants from agro-wastes under solid state fermentation

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Varatharajan, G. R.; Karthikeyan, A.

    The alkaline-tolerant marine-derived fungus Chaetomium globosum was tested for the production of enhanced levels of cellulases and free phenolics under highly alkaline conditions using agro wastes (cotton seed, sugar cane bagasse) as substrates...

  17. Cysteine Protease Zymography: Brief Review.

    Science.gov (United States)

    Wilkesman, Jeff

    2017-01-01

    Cysteine proteases play multiple roles in basically all aspects of physiology and development. In plants, they are involved in growth and development and in accumulation and mobilization of storage proteins. Furthermore, they are engaged in signalling pathways and in the response to biotic and abiotic stresses. In animals and also in humans, they are responsible for senescence and apoptosis, prohormone processing, and ECM remodelling. When analyzed by zymography, the enzyme must be renaturated after SDS-PAGE. SDS must be washed out and substituted by Triton X-100. Gels are then further incubated under ideal conditions for activity detection. Cysteine proteases require an acidic pH (5.0-6.0) and a reducing agent, usually DTT. When screening biological samples, there is generally no previous clue on what peptidase class will be present, neither optimal proteolysis conditions are known. Hence, it is necessary to assess several parameters, such as incubation time, pH, temperature, influence of ions or reducing agents, and finally evaluate the inhibition profile. For detection of cysteine peptidase activity, the use of specific inhibitors, such as E-64, can be used to prevent the development of cysteine peptidase activity bands and positively confirm its presence. Here four different protocols to assess cysteine protease activity from different sources are presented.

  18. Alkaline direct alcohol fuel cells

    Science.gov (United States)

    Antolini, E.; Gonzalez, E. R.

    The faster kinetics of the alcohol oxidation and oxygen reduction reactions in alkaline direct alcohol fuel cells (ADAFCs), opening up the possibility of using less expensive metal catalysts, as silver, nickel and palladium, makes the alkaline direct alcohol fuel cell a potentially low cost technology compared to acid direct alcohol fuel cell technology, which employs platinum catalysts. A boost in the research regarding alkaline fuel cells, fuelled with hydrogen or alcohols, was due to the development of alkaline anion-exchange membranes, which allows the overcoming of the problem of the progressive carbonation of the alkaline electrolyte. This paper presents an overview of catalysts and membranes for ADAFCs, and of testing of ADAFCs, fuelled with methanol, ethanol and ethylene glycol, formed by these materials.

  19. Preliminary characterisation of extracellular serine proteases of Dermatophilus congolensis isolates from cattle, sheep and horses.

    Science.gov (United States)

    Ambrose, N C; Mijinyawa, M S; Hermoso de Mendoza, J

    1998-08-15

    Dermatophilus congolensis is a filamentous branching actinomycete that causes dermatophilosis, an exudative dermatitis in ruminants. The pathogenesis of this disease is poorly understood and virulence factors of D. congolensis have not been characterised. Culture filtrate (CF) of 14 D. congolensis isolates from cattle, 15 from sheep and four from horses were examined for proteolytic activity using azocasein as a non-specific substrate. The isolates were from a variety of geographical locations. All the isolates examined produced extracellular proteolytic activity. CF from 24 and 48 h cultures and from first and third passages contained proteases. Proteolytic activity was greatest in neutral to alkaline pH (pH 7-10). CF of bovine isolates contained more proteolytic activity than that of ovine isolates. Furthermore, in substrate SDS-PAGE gels containing azocasein the number of proteolytic bands and their molecular weights in CF of bovine, ovine and equine isolates were different, giving distinctive band patterns for isolates from each host species. Three out of four bovine isolates from Antigua gave a fourth band pattern. Bands of equivalent molecular weights to the proteases could not be identified in silver stained SDS-PAGE gels of CF. Serine protease inhibitors had a concentration-dependent inhibitory effect on proteolytic activity in CF and inhibited activity of all proteolytic bands in substrate gels. With the exception of EDTA which had a variable-enhancing effect on activity, inhibitors of other classes of protease had no effect on activity. We conclude that D. congolensis produces a number of extracellular alkaline serine proteases, our results suggest the presence of host-specific variation between isolates and to a lesser extent between isolates from the same host species.

  20. Alkaline earth metal catalysts for asymmetric reactions.

    Science.gov (United States)

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    earth metal catalyst. We found that pyridinebisoxazolines (Pybox) worked well: they served as excellent ligands for calcium compounds in 1,4-addition reactions and Mannich reactions. Moreover, they were successful in 1,4-additions in concert with enantioselective protonation, affording the desired products in good to high enantioselectivities. Our results demonstrate that alkaline earth metals are very useful and attractive catalysts in organic synthesis. Moreover, their ubiquity in the environment is a distinct advantage over rare metals for large-scale processes, and their minimal toxicity is beneficial in both handling and disposal.

  1. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    Science.gov (United States)

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3.

    Science.gov (United States)

    Zheng, Fengwei; Lu, Guoliang; Li, Ling; Gong, Peng; Pan, Zishu

    2017-11-01

    The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å 2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis -cleavage event. Although this conformation is incompatible with protease trans -cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis -cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different

  3. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    Science.gov (United States)

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Mass spectrometry-assisted protease substrate screening

    DEFF Research Database (Denmark)

    Schlüter, Hartmut; Rykl, Jana; Thiemann, Joachim

    2007-01-01

    Since sequencing of the human genome was completed, more than 500 genes have been annotated as proteases. Exploring the physiological role of each protease requires the identification of their natural substrates. However, the endogenous substrates of many of the human proteases are as yet unknown....... Here we describe a new assay that addresses this problem. The assay, which easily can be automated, is based on the incubation of immobilized protein fractions, which may contain the natural substrate, with a defined protease. After concentrating the proteolytically released peptides by reversed...

  5. Proteolytic crosstalk in multi-protease networks

    Science.gov (United States)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  6. A Deg-protease family protein in marine Synechococcus is involved in outer membrane protein organization

    Directory of Open Access Journals (Sweden)

    Rhona Kayra Stuart

    2014-06-01

    Full Text Available Deg-family proteases are a periplasm-associated group of proteins that are known to be involved in envelope stress responses and are found in most microorganisms. Orthologous genes SYNW2176 (in strain WH8102 and sync_2523 (strain CC9311 are predicted members of the Deg-protease family and are among the few genes induced by copper stress in both open ocean and coastal marine Synechococcus strains. In contrast to the lack of a phenotype in a similar knockout in Synechocystis PCC6803, a SYNW2176 knockout mutant in strain WH8102 was much more resistant to copper than the wild-type. The mutant also exhibited a significantly altered outer membrane protein composition which may contribute to copper resistance, longer lag phase after transfer, low-level consistent alkaline phosphatase activity, and an inability to induce high alkaline phosphatase activity in response to phosphate stress. This phenotype suggests a protein-quality-control role for SYNW2176, the absence of which leads to a constitutively activated stress response. Deg-protease family proteins in this ecologically important cyanobacterial group thus help to determine outer membrane responses to both nutrients and toxins.

  7. Excretory bladder: the source of cysteine proteases in Paragonimus westermani metacercariae

    Science.gov (United States)

    Yang, Hyun-Jong; Kang, Shin-Yong; Kong, Yoon; Cho, Seung-Yull

    2002-01-01

    The cysteine proteases of Paragonimus westermani metacercariae are involved in metacercarial excystment, host immune modulation, and possibly in tissue penetration. In order to clarify the origin of the enzymes, 28 and 27 kDa cysteine proteases in metacercarial excretory-secretory products were purified through the FPLC system using Mono Q column chromatography. The polyclonal antibodies to the enzymes were produced in BALB/c mice. Immunolocalization studies revealed that both cysteine proteases were distributed at the linings of excretory bladder and excretory concretions of the metacercariae. It was suggested that the excretory epithelium of P. westermani undertake the secretory function of metacercarial cysteine proteases, in addition to its role as a route for eliminating waste products. PMID:12073734

  8. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses.

    Science.gov (United States)

    Wan, Jingjing; Jing, Yuhang; Rao, Yue; Zhang, Shicheng; Luo, Gang

    2018-03-15

    Thermophilic alkaline fermentation followed by mesophilic anaerobic digestion (TM) for hydrogen and methane production from waste-activated sludge (WAS) was investigated. The TM process was also compared to a process with mesophilic alkaline fermentation followed by a mesophilic anaerobic digestion (MM) and one-stage mesophilic anaerobic digestion (M) process. The results showed that both hydrogen yield (74.5 ml H 2 /g volatile solids [VS]) and methane yield (150.7 ml CH 4 /g VS) in the TM process were higher than those (6.7 ml H 2 /g VS and 127.8 ml CH 4 /g VS, respectively) in the MM process. The lowest methane yield (101.2 ml CH 4 /g VS) was obtained with the M process. Taxonomic results obtained from metagenomic analysis showed that different microbial community compositions were established in the hydrogen reactors of the TM and MM processes, which also significantly changed the microbial community compositions in the following methane reactors compared to that with the M process. The dynamics of bacterial pathogens were also evaluated. For the TM process, the reduced diversity and total abundance of bacterial pathogens in WAS were observed in the hydrogen reactor and were further reduced in the methane reactor, as revealed by metagenomic analysis. The results also showed not all bacterial pathogens were reduced in the reactors. For example, Collinsella aerofaciens was enriched in the hydrogen reactor, which was also confirmed by quantitative PCR (qPCR) analysis. The study further showed that qPCR was more sensitive for detecting bacterial pathogens than metagenomic analysis. Although there were some differences in the relative abundances of bacterial pathogens calculated by metagenomic and qPCR approaches, both approaches demonstrated that the TM process was more efficient for the removal of bacterial pathogens than the MM and M processes. IMPORTANCE This study developed an efficient process for bioenergy (H 2 and CH 4 ) production from WAS and elucidates the

  9. EFFECTIVE ALKALINE PEROXIDE OXIDATION PRETREATMENT OF SHEA TREE SAWDUST FOR THE PRODUCTION OF BIOFUELS: KINETICS OF DELIGNIFICATION AND ENZYMATIC CONVERSION TO SUGAR AND SUBSEQUENT PRODUCTION OF ETHANOL BY FERMENTATION USING Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    A. O. Ayeni

    Full Text Available Abstract Shea tree sawdust delignification kinetic data during alkaline peroxide pretreatment were investigated at temperatures of 120 °C, 135 °C, and 150 °C. The activation energy during delignification was 76.4 kJ/mol and the Arrhenius constant was calculated as 8.4 x 106 per min. The reducing sugar yield for the treated to the untreated biomass was about 22-fold. Enzymatic hydrolysis conditions studied were; time (72 h and 96 h, substrate concentration (20, 30, 40, and 50 g/L, and enzyme loadings (10, 25, 40, 50 FPU/g dry biomass, which showed the optimum conditions of 96 h, 40 g/L, and 25 FPU/g dry biomass at 45 °C hydrolysis temperature. At the optimized enzymatic hydrolysis conditions, the reducing sugar yield was 416.32 mg equivalent glucose/g treated dry biomass. After 96 h fermentation of treated biomass, the ethanol obtained at 2% effective cellulose loading was 12.73 g/L. Alkaline peroxide oxidation pretreatment and subsequent enzymatic hydrolysis improved the ethanol yield of the biomass.

  10. Isolation and rheological properties of tamarind seed polysaccharide from tamarind kernel powder using protease enzyme and high-intensity ultrasound.

    Science.gov (United States)

    Poommarinvarakul, Sukhum; Tattiyakul, Jirarat; Muangnapoh, Chirakarn

    2010-06-01

    The effectiveness of using protease and combinations of protease and high-intensity ultrasound for high-purity, high-yield tamarind seed polysaccharide (TSP) production was investigated. Tamarind kernel powder (TKP) suspension was treated with protease alone at 0.16, 0.48, and 0.80 units/mL and with protease-ultrasound combinations over 3 different orders of sequence (before, simultaneous with, and after protease digestion) using combinations of 0.48 units/mL protease and high-intensity ultrasound at 25% and 50% amplitude for 15 and 30 min. The long protease digestion time could produce high-purity isolated TSP, but the polysaccharide yields were lower. The polysaccharide purity and yield were highly improved, even at a shorter protease digestion time, when the protease treatment was combined with high-intensity ultrasound. The increased amplitude level and sonication time decreased the average molecular weight of the polysaccharide. The rheological properties of the TKP and the isolated TSP, from nondestructive oscillatory measurements, demonstrated that the latter present a viscoelastic solution. The decreasing of protein content resulted in better elasticity of the solution. The power law model could be used to fit the down curve between shear rate and shear stress data. The consistency coefficient (K) increased while the flow behavior index decreased with the increased purity of the polysaccharide as a result of increasing increased digestion time, enzyme concentration, sonication power, and sonication time.

  11. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.

    Science.gov (United States)

    Bozóki, Beáta; Gazda, Lívia; Tóth, Ferenc; Miczi, Márió; Mótyán, János András; Tőzsér, József

    2018-01-01

    In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Galectin-3 Is a Target for Proteases Involved in the Virulence of Staphylococcus aureus.

    Science.gov (United States)

    Elmwall, Jonas; Kwiecinski, Jakub; Na, Manli; Ali, Abukar Ahmed; Osla, Veronica; Shaw, Lindsey N; Wang, Wanzhong; Sävman, Karin; Josefsson, Elisabet; Bylund, Johan; Jin, Tao; Welin, Amanda; Karlsson, Anna

    2017-07-01

    Staphylococcus aureus is a major cause of skin and soft tissue infection. The bacterium expresses four major proteases that are emerging as virulence factors: aureolysin (Aur), V8 protease (SspA), staphopain A (ScpA), and staphopain B (SspB). We hypothesized that human galectin-3, a β-galactoside-binding lectin involved in immune regulation and antimicrobial defense, is a target for these proteases and that proteolysis of galectin-3 is a novel immune evasion mechanism. Indeed, supernatants from laboratory strains and clinical isolates of S. aureus caused galectin-3 degradation. Similar proteolytic capacities were found in Staphylococcus epidermidis isolates but not in Staphylococcus saprophyticus Galectin-3-induced activation of the neutrophil NADPH oxidase was abrogated by bacterium-derived proteolysis of galectin-3, and SspB was identified as the major protease responsible. The impact of galectin-3 and protease expression on S. aureus virulence was studied in a murine skin infection model. In galectin-3 +/+ mice, SspB-expressing S. aureus caused larger lesions and resulted in higher bacterial loads than protease-lacking bacteria. No such difference in bacterial load or lesion size was detected in galectin-3 -/- mice, which overall showed smaller lesion sizes than the galectin-3 +/+ animals. In conclusion, the staphylococcal protease SspB inactivates galectin-3, abrogating its stimulation of oxygen radical production in human neutrophils and increasing tissue damage during skin infection. Copyright © 2017 American Society for Microbiology.

  13. The Effect of the Protease Inhibitors Ritonavir on the Rate of Metabolism of Midazolam

    Science.gov (United States)

    1999-10-01

    the HIV protease enzyme that processes the viral proteins essential for the completion of the viral life cycle , thus decreasing the production of more...of long protein chains of the virus so that they can be packaged to complete the viral life cycle . The HIV protease enzyme cuts the long chain into...enzyme (Vmax) and rate constants (Km). In order to avoid the difficulty plotting curvilinear data of enzyme catalyzed reactions, the biochemists

  14. Excretory bladder: the source of cysteine proteases in Paragonimus westermani metacercariae

    OpenAIRE

    Yang, Hyun-Jong; Chung, Young-Bae; Kang, Shin-Yong; Kong, Yoon; Cho, Seung-Yull

    2002-01-01

    The cysteine proteases of Paragonimus westermani metacercariae are involved in metacercarial excystment, host immune modulation, and possibly in tissue penetration. In order to clarify the origin of the enzymes, 28 and 27 kDa cysteine proteases in metacercarial excretory-secretory products were purified through the FPLC system using Mono Q column chromatography. The polyclonal antibodies to the enzymes were produced in BALB/c mice. Immunolocalization studies revealed that both cysteine protea...

  15. A Simple and Fast Method for the Production and Characterization of Methylic and Ethylic Biodiesels from Tucum Oil via an Alkaline Route

    Directory of Open Access Journals (Sweden)

    Marcelo Firmino de Oliveira

    2011-01-01

    Full Text Available A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds were treated with potassium methoxide or ethoxide at 40°C for 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100°C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit.

  16. Production and partial characterization of alkaline polygalacturonase secreted by thermophilic Bacillus sp. SMIA-2 under submerged culture using pectin and corn steep liquor

    Directory of Open Access Journals (Sweden)

    Marcela Vicente Vieira de Andrade

    2011-03-01

    Full Text Available Polygalacturonase production by the thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.5% (w/v apple pectin and supplemented with 0.3% (w/v corn steep liquor, reached its maximum after 36 hours with levels of 39 U.mL-1. The increase in apple pectin and corn steep liquor concentrations in the medium from 0.5 and 0.3%, respectively, to 0.65%, markedly affected the production of polygalacturonase, whose activity increased four times, reaching a maximum of 150.3 U.mL-1. Studies on polygalacturonase characterization revealed that the optimum temperature of this enzyme was between 60-70 °C. Thermostability profile indicated that the enzyme retained about 82 and 63% of its activity at 60 and 70 °C, respectively, after 2 hours of incubation. The optimum pH of the enzyme was found to be 10.0. After incubation of crude enzyme solution at room temperature for 2 hours at pH 8.0, a decrease of about 29% on its original activity was observed. At pH 10.0, the decrease was 25%.

  17. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    Science.gov (United States)

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Current and Novel Inhibitors of HIV Protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Machala, L.; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    Roč. 1, č. 3 (2009), s. 1209-1239 ISSN 1999-4915 R&D Projects: GA MŠk 1M0508 Grant - others:GA AV ČR(CZ) IAAX00320901 Program:IA Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * protease inhibitor * HAART Subject RIV: CE - Biochemistry

  19. Tissue dissociation enzyme neutral protease assessment.

    Science.gov (United States)

    Breite, A G; Dwulet, F E; McCarthy, R C

    2010-01-01

    Neutral proteases, essential components of purified tissue dissociation enzymes required for successful human islet isolation, show variable activities and effects of substrate on their activities. Initially we used a spectrophotometric endpoint assay with azocasein substrate to measure neutral protease activity. After critical review of the results, we observed these data to be inconsistent and not correlating expected differences in specific activities between thermolysin and Bacillus polymyxa proteases. This observation led to the development of a fluorescent microplate assay using fluorescein isothyocyanate-conjugated bovine serum albumin (FITC-BSA) as the substrate. This simpler, more flexible method offered a homogeneous, kinetic enzyme assay allowing determination of steady state reaction rates of sample replicates at various dilutions. The assay had a linear range of 4- to 8-fold and interassay coefficients of variation for B polymyxa protease and thermolysin of inhibitors, as illustrated by addition of sulfhydryl protease inhibitors, which, consistent with earlier reports, strongly indicated that the main contaminant in purified collagenase preparations was clostripain. Determination of the specific activities for several purified neutral proteases showed that the B polymyxa and Clostridium histolyticum proteases had approximately 40% and 15% specific activities, respectively, of those obtained with purified thermolysin, indicating the different characteristics of neutral protease enzymes for cell isolation procedures. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    user

    2013-03-20

    Mar 20, 2013 ... be absorbed and utilized by living cells. Due to their wide .... The effect of pH on protease stability was determined by pre-incubating the enzyme without substrate at different pH values (5 to 11) using different buffers. The residual ..... detergent formulations: effects of thermodynamic stabilizers and protease ...